J. Diamond, Evolution, consequences and future of plant and animal domestication, Nature, vol.418, pp.700-707, 2002.

J. Ross-ibarra, P. L. Morrell, and B. S. Gaut, Plant domestication, a unique opportunity to identify the genetic basis of adaptation, Proc. Natl. Acad. Sci, vol.104, pp.8641-8648, 2007.

R. S. Meyer and M. D. Purugganan, Evolution of crop species: genetics of domestication and diversification, Nat. Rev. Genet, vol.14, pp.840-852, 2013.

Y. Matsuoka, Evolution of Polyploid Triticum Wheats under Cultivation: The Role of Domestication, Natural Hybridization and Allopolyploid Speciation in their Diversification, Plant Cell Physiol, vol.52, pp.750-764, 2011.

S. Renny-byfield and J. F. Wendel, Doubling down on genomes: Polyploidy and crop plants, Am. J. Bot, vol.101, pp.1711-1725, 2014.

L. Cui, Widespread genome duplications throughout the history of flowering plants

, Genome Res, vol.16, pp.738-749, 2006.

J. F. Doebley, B. S. Gaut, and B. D. Smith, The Molecular Genetics of Crop Domestication, Cell, vol.127, pp.1309-1321, 2006.

J. H. Peng, D. Sun, and E. Nevo, Domestication evolution, genetics and genomics in wheat

, Mol. Breed, vol.28, pp.281-301, 2011.

Y. Fu, Understanding crop genetic diversity under modern plant breeding, Theor. Appl

. Genet, , vol.128, pp.2131-2142, 2015.

A. Fita, A. Rodríguez-burruezo, M. Boscaiu, J. Prohens, and O. Vicente, Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production, Front. Plant Sci, vol.6, 2015.

M. A. Ramesh, S. Malik, and J. M. Logsdon, A Phylogenomic Inventory of Meiotic Genes, Curr. Biol, vol.15, pp.185-191, 2005.

A. M. Villeneuve and K. J. Hillers, Whence Meiosis ? Minireview. Cell, vol.106, pp.647-650, 2001.

J. L. Gerton and R. S. Hawley, Homologous chromosome interactions in meiosis: Diversity amidst conservation, Nat. Rev. Genet, vol.6, pp.477-487, 2005.

H. B. Creighton and B. Mcclintock, A Correlation of Cytological and Genetical CrossingOver in Zea mays, Proc. Natl. Acad. Sci. U. S. A, vol.17, pp.492-499, 1931.

J. Pellicer, M. F. Fay, and I. J. Leitch, The largest eukaryotic genome of them all?, Bot. J. Linn. Soc, vol.164, pp.10-15, 2010.

M. L. Kaul and T. G. Murthy, Mutant genes affecting higher plant meiosis, Theor. Appl. Genet, vol.70, pp.449-466, 1985.

J. W. Szostak, T. L. Orr-weaver, R. J. Rothstein, and F. W. Stahl, The double-strand-break repair model for recombination, Cell, vol.33, pp.25-35, 1983.

G. A. Cromie and G. R. Smith, Branching out: meiotic recombination and its regulation, Trends Cell Biol, vol.17, pp.448-455, 2007.

S. Keeney, Spo11 and the Formation of DNA Double-Strand Breaks in Meiosis, Genome Dyn. Stab, vol.11, pp.27-68, 2007.

R. Holliday, Mechanism of gene conversion in fungi, Genet. Res, vol.5, pp.282-304, 1964.

R. Mercier, C. Mézard, E. Jenczewski, N. Macaisne, and M. Grelon, The Molecular Biology of Meiosis in Plants, Annu. Rev. Plant Biol, vol.66, pp.297-327, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01204185

L. Berchowitz and G. Copenhaver, Genetic Interference: Dont Stand So Close to Me, Curr. Genomics, vol.11, pp.91-102, 2010.

L. Zhang, Topoisomerase II mediates meiotic crossover interference, Nature, vol.511, pp.551-556, 2014.

E. J. Louis and R. H. Borts, Meiotic Recombination: Too Much of a Good Thing?, Curr. Biol, vol.13, pp.953-955, 2003.

W. Crismani, FANCM Limits Meiotic Crossovers. Science, vol.336, pp.1588-1590, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004174

S. Lu, Probing Meiotic Recombination and Aneuploidy of Single Sperm Cells by Whole-Genome Sequencing. Science (80-. ), vol.338, pp.1627-1630, 2012.

E. Wijnker and A. Schnittger, Control of the meiotic cell division program in plants. Plant Reprod, vol.26, pp.143-158, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00863661

H. Khademian, L. Giraut, J. Drouaud, C. Mézard, W. P. Pawlowski et al.,

E. Armstrong, Methods in Molecular Biology, vol.990, pp.177-190, 2013.

M. Cifuentes, M. Rivard, L. Pereira, L. Chelysheva, and R. Mercier, Haploid Meiosis in Arabidopsis: Double-Strand Breaks Are Formed and Repaired but Without Synapsis and Crossovers, PLoS One, vol.8, pp.1-12, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01190545

S. Burma, B. P. Chen, and D. J. Chen, Role of non-homologous end joining (NHEJ) in maintaining genomic integrity, DNA Repair (Amst), vol.5, pp.1042-1048, 2006.

A. F. Smit, Identification of a new, abundant superfamily of mammalian LTRtransposons, Nucleic Acids Res, vol.21, pp.1863-1872, 1993.

S. Myers, A Fine-Scale Map of Recombination Rates and Hotspots Across the Human Genome. Science (80-. ), vol.310, pp.321-324, 2005.

S. Myers, C. Freeman, A. Auton, P. Donnelly, and G. Mcvean, A common sequence motif associated with recombination hot spots and genome instability in humans, Nat. Genet, vol.40, pp.1124-1129, 2008.

J. K. Pace and C. Feschotte, The evolutionary history of human DNA transposons: Evidence 285 for intense activity in the primate lineage, Genome Res, vol.17, pp.422-432, 2007.

F. Baudat, PRDM9 Is a Major Determinant of Meiotic Recombination Hotspots in Humans and Mice. Science (80-. ), vol.327, pp.836-840, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00459048

V. Borde and B. De-massy, Programmed induction of DNA double strand breaks during meiosis: Setting up communication between DNA and the chromosome structure, Curr. Opin. Genet. Dev, vol.23, pp.147-155, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00824360

B. De-massy, Initiation of Meiotic Recombination: How and Where? Conservation and Specificities Among Eukaryotes, Annu. Rev. Genet, vol.47, pp.563-599, 2013.

L. Zhang and H. Ma, Complex evolutionary history and diverse domain organization of SET proteins suggest divergent regulatory interactions, New Phytol, vol.195, pp.248-263, 2012.

K. Choi, Arabidopsis meiotic crossover hot spots overlap with H2A.Z nucleosomes at gene promoters, Nat. Genet, vol.45, pp.1327-1363, 2013.

S. Shilo, C. Melamed-bessudo, Y. Dorone, N. Barkai, and A. A. Levy, DNA Crossover Motifs Associated with Epigenetic Modifications Delineate Open Chromatin Regions in Arabidopsis, Plant Cell, vol.27, pp.2427-2436, 2015.

L. Aliyeva-schnorr, Cytogenetic mapping with centromeric bacterial artificial chromosomes contigs shows that this recombination-poor region comprises more than half of barley chromosome 3H, Plant J, vol.84, pp.385-394, 2015.

T. Wu and M. Lichten, Meiosis-induced double-strand break sites determined by yeast chromatin structure. Science (80-. ), vol.263, pp.515-518, 1994.

E. Segal and J. Widom, From DNA sequence to transcriptional behaviour: a quantitative approach, Nat. Rev. Genet, vol.10, pp.443-456, 2009.

L. E. Berchowitz, S. E. Hanlon, J. D. Lieb, and G. P. Copenhaver, A positive but complex association between meiotic double-strand break hotspots and open chromatin in 286

. Saccharomyces-cerevisiae, Genome Res, vol.19, pp.2245-2257, 2009.

J. Pan, A Hierarchical Combination of Factors Shapes the Genome-wide Topography of Yeast Meiotic Recombination Initiation, Cell, vol.144, pp.719-731, 2011.

S. Liu, Mu Transposon Insertion Sites and Meiotic Recombination Events CoLocalize with Epigenetic Marks for Open Chromatin across the Maize Genome, PLoS Genet, vol.5, p.1000733, 2009.

T. R. Endo and B. S. Gill, The deletion stocks of common wheat, J. Hered, vol.87, pp.295-307, 1996.

J. D. Paris, K. M. Haen, and B. S. Gill, Saturation mapping of a gene-rich recombination hot spot region in wheat, Genetics, vol.154, pp.823-835, 2000.

E. Paux, A Physical Map of the 1-Gigabase Bread Wheat Chromosome 3B. Science (80-. ), vol.322, pp.101-104, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00964135

C. Saintenac, Detailed recombination studies along chromosome 3B provide new insights on crossover distribution in wheat, Triticum aestivum L.). Genetics, vol.181, pp.393-403, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00964380

A. J. Lukaszewski, D. Kopecky, and G. Linc, Inversions of chromosome arms 4AL and 2BS in wheat invert the patterns of chiasma distribution, Chromosoma, vol.121, pp.201-208, 2012.

C. Saintenac, Variation in crossover rates across a 3-Mb contig of bread wheat (Triticum aestivum) reveals the presence of a meiotic recombination hotspot
URL : https://hal.archives-ouvertes.fr/hal-00964315

, Chromosoma, vol.120, pp.185-198, 2011.

F. Choulet, Structural and functional partitioning of bread wheat chromosome 3B, Science, vol.345, p.1249721, 2014.

K. F. Mayer, A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science (80-. ), vol.345, pp.1251788-1251788, 2014.

B. Darrier, High-Resolution Mapping of Crossover Events in the Hexaploid Wheat Genome Suggests a Universal Recombination Mechanism, Genetics, vol.206, pp.1373-1388, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608797

P. B. Talbert and S. Henikoff, Centromeres Convert but Don't Cross, vol.8, p.1000326, 2010.

G. H. Jones and S. M. Albini, Recombination nodules, chiasmata and crossing-over in the nucleolus organizing short arm of Allium fistulosum, Heredity (Edinb), vol.61, pp.217-224, 1988.

A. H. Paterson, The Sorghum bicolor genome and the diversification of grasses, Nature, vol.457, pp.551-556, 2009.

H. Fu, The highly recombinogenic bz locus lies in an unusually gene-rich region of the maize genome, Proc. Natl. Acad. Sci, vol.98, pp.8903-8908, 2001.

H. Fu, Z. Zheng, and H. K. Dooner, Recombination rates between adjacent genic and retrotransposon regions in maize vary by 2 orders of magnitude, Proc. Natl. Acad. Sci, vol.99, pp.1082-1087, 2002.

H. Yao and P. S. Schnable, Cis-effects on meiotic recombination across distinct a1-sh2 intervals in a common zea genetic background, Genetics, vol.170, pp.1929-1944, 2005.

J. Drouaud, Contrasted Patterns of Crossover and Non-crossover at Arabidopsis thaliana Meiotic Recombination Hotspots, PLoS Genet, vol.9, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01204079

L. Duret, G. Marais, and C. Biemont, Transposons but not retrotransposons are located preferentially in regions of high recombination rate in Caenorhabditis elegans, Genetics, vol.156, pp.1661-1669, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00427072

H. L. Levin and J. V. Moran, Dynamic interactions between transposable elements and their 288 hosts, Nat. Rev. Genet, vol.12, pp.615-627, 2011.

C. Barron, P. Neis, and A. Zipf, A Comprehensive Framework for Intrinsic OpenStreetMap Quality Analysis, Trans. GIS, vol.18, pp.877-895, 2014.

R. K. Slotkin and R. Martienssen, Transposable elements and the epigenetic regulation of the genome, Nat. Rev. Genet, vol.8, pp.272-285, 2007.

C. Rizzon, G. Marais, M. Gouy, and C. Biémont, Recombination rate and the distribution of transposable elements in the Drosophila melanogaster genome, Genome Res, vol.12, pp.400-407, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00427298

H. Liu, L. K. Frankel, and T. M. Bricker, Functional complementation of the Arabidopsis thaliana psbo1 mutant phenotype with an N-terminally His6-tagged PsbO-1 protein in photosystem II, Biochim. Biophys. Acta -Bioenerg, vol.1787, pp.1029-1038, 2009.

H. K. Dooner and I. M. Martinez-ferez, Recombination Occurs Uniformly within the bronze Gene, a Meiotic Recombination Hotspot in the Maize Genome, Plant Cell, vol.9, p.1633, 2007.

L. He and H. K. Dooner, Haplotype structure strongly affects recombination in a maize genetic interval polymorphic for Helitron and retrotransposon insertions, Proc. Natl. Acad. Sci, vol.106, pp.8410-8416, 2009.

E. Rodgers-melnick, Recombination in diverse maize is stable, predictable, and associated with genetic load, Proc. Natl. Acad. Sci, vol.112, p.201413864, 2015.

N. E. Yelina, DNA methylation epigenetically silences crossover hot spots and controls chromosomal domains of meiotic recombination in Arabidopsis, Genes Dev, vol.29, pp.2183-2202, 2015.

N. Zamudio, DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination, Genes Dev, vol.29, pp.1256-1270, 2015.

H. J. Muller, The Mechanism of Crossing-Over, vol.50, pp.193-221, 1916.

L. Chelysheva, Zip4/Spo22 is required for class I CO formation but not for synapsis completion in Arabidopsis thaliana, PLoS Genet, vol.3, pp.802-813, 2007.

L. Chelysheva, The Arabidopsis HEI10 is a new ZMM protein related to Zip3, PLoS Genet, vol.8, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01190765

N. Macaisne, J. Vignard, and R. Mercier, SHOC1 and PTD form an XPF-ERCC1-like complex that is required for formation of class I crossovers, J. Cell Sci, vol.124, pp.2687-2691, 2011.

L. E. Berchowitz, K. E. Francis, A. L. Bey, and G. P. Copenhaver, The role of AtMUS81 in interference-insensitive crossovers in A. thaliana, PLoS Genet, vol.3, pp.1355-1364, 2007.

S. Basu-roy, Hot Regions of Noninterfering Crossovers Coexist with a Nonuniformly Interfering Pathway in Arabidopsis thaliana, Genetics, vol.195, pp.769-779, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01204088

E. Bauer, Intraspecific variation of recombination rate in maize, Genome Biol, vol.14, p.103, 2013.

M. Falque, L. K. Anderson, S. M. Stack, F. Gauthier, and O. C. Martin, Two Types of Meiotic Crossovers Coexist in Maize, Plant Cell, vol.21, pp.3915-3925, 2009.

S. Y. Lam, Crossover Interference on Nucleolus Organizing Region-Bearing Chromosomes in Arabidopsis, Genetics, vol.170, pp.807-812, 2005.

L. K. Anderson, Combined fluorescent and electron microscopic imaging unveils the specific properties of two classes of meiotic crossovers, Proc. Natl. Acad. Sci, vol.111, pp.13415-13420, 2014.

J. D. Higgins, Spatiotemporal Asymmetry of the Meiotic Program Underlies the Predominantly Distal Distribution of Meiotic Crossovers in Barley, Plant Cell, vol.24, pp.4096-4109, 2012.

D. Phillips, The effect of temperature on the male and female recombination 290 landscape of barley, New Phytol, vol.208, pp.421-429, 2015.

T. Draeger and G. Moore, Short periods of high temperature during meiosis prevent normal meiotic progression and reduce grain number in hexaploid wheat

, Theor. Appl. Genet, vol.130, pp.1785-1800, 2017.

J. L. Modliszewski, Elevated temperature increases meiotic crossover frequency via the interfering (Type I) pathway in Arabidopsis thaliana, PLoS Genet, vol.14, pp.1-15, 2018.

N. De-storme and D. Geelen, The impact of environmental stress on male reproductive development in plants: Biological processes and molecular mechanisms, Plant, Cell Environ, vol.37, pp.1-18, 2014.

M. Rey, Magnesium Increases Homoeologous Crossover Frequency During Meiosis in ZIP4 (Ph1 Gene) Mutant Wheat-Wild Relative Hybrids, Front. Plant Sci, vol.9, pp.1-12, 2018.

K. J. Hillers, V. Jantsch, E. Martinez-perez, and J. L. Yanowitz, Meiosis. WormBook, vol.241, pp.1-43, 2017.

F. Hartung, An archaebacterial topoisomerase homolog not present in other eukaryotes is indispensable for cell proliferation of plants, Curr. Biol, vol.12, pp.1787-1791, 2002.

K. Sugimoto-shirasu, N. J. Stacey, J. Corsar, K. Roberts, and M. C. Mccann, DNA

, Topoisomerase VI Is Essential for Endoreduplication in Arabidopsis, Curr. Biol, vol.12, pp.1782-1786, 2002.

Y. Yin, A crucial role for the putative Arabidopsis topoisomerase VI in plant growth and development, Proc. Natl. Acad. Sci. U. S. A, vol.99, pp.10191-10197, 2002.

X. J. An, Z. Y. Deng, and T. Wang, OsSpo11-4, a Rice Homologue of the Archaeal TopVIA Protein, Mediates Double-Strand DNA Cleavage and Interacts with OsTopVIB, PLoS One, vol.6, p.20327, 2011.

M. Jain, A. K. Tyagi, and J. P. Khurana, Overexpression of putative topoisomerase 6 genes from rice confers stress tolerance in transgenic Arabidopsis plants, FEBS J, vol.273, pp.5245-5260, 2006.

H. Yu, OsSPO11-1 is essential for both homologous chromosome pairing and crossover formation in rice, Chromosoma, vol.119, pp.625-636, 2010.

A. D. Muyt, AtPRD1 is required for meiotic double strand break formation in Arabidopsis thaliana, EMBO J, vol.26, pp.4126-4137, 2007.

A. D. Muyt, A High Throughput Genetic Screen Identifies New Early Meiotic Recombination Functions in Arabidopsis thaliana, PLoS Genet, vol.5, p.1000654, 2009.

J. Miao, Targeted mutagenesis in rice using CRISPR-Cas system, Cell Res, vol.23, pp.1233-1236, 2013.

K. Nonomura, The novel gene HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 of rice encodes a putative coiled-coil protein required for homologous chromosome pairing in meiosis, Plant Cell, vol.16, pp.1008-1028, 2004.

C. Zhang, The Arabidopsis thaliana DSB formation ( AtDFO ) gene is required for meiotic double-strand break formation, Plant J, vol.72, pp.271-281, 2012.

R. Kumar, H. Bourbon, and B. De-massy, Functional conservation of Mei4 for meiotic DNA double-strand break formation from yeasts to mice, Genes Dev, vol.24, pp.1266-1280, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00493839

A. Ronceret, M. Doutriaux, I. N. Golubovskaya, and W. P. Pawlowski, PHS1 regulates meiotic recombination and homologous chromosome pairing by controlling the transport of RAD50 to the nucleus, Proc. Natl. Acad. Sci, vol.106, pp.20121-20126, 2009.

S. A. Boden, P. Langridge, G. Spangenberg, and J. A. Able, TaASY1 promotes homologous 292 chromosome interactions and is affected by deletion of Ph1, Plant J, vol.57, pp.487-497, 2009.

M. J. Neale, J. Pan, and S. Keeney, Endonucleolytic processing of covalent protein-linked DNA double-strand breaks, Nature, vol.436, pp.1053-1057, 2005.

A. Shibata, P. Jeggo, and M. Löbrich, The pendulum of the Ku-Ku clock, DNA Repair (Amst), vol.71, pp.164-171, 2018.

C. Uanschou, A novel plant gene essential for meiosis is related to the human CtIP and the yeast COM1/SAE2 gene, EMBO J, vol.26, pp.5061-5070, 2007.

J. Puizina, J. Siroky, P. Mokros, D. Schweizer, and K. Riha, Mre11 deficiency in Arabidopsis is associated with chromosomal instability in somatic cells and Spo11-dependent genome fragmentation during meiosis, Plant Cell, vol.16, pp.1968-78, 2004.

S. K. Binz and M. S. Wold, Regulatory Functions of the N-terminal Domain of the 70-kDa Subunit of Replication Protein A (RPA), J. Biol. Chem, vol.283, pp.21559-21570, 2008.

M. T. Limborg, G. J. Mckinney, L. W. Seeb, and J. E. Seeb, Recombination patterns reveal information about centromere location on linkage maps, Mol. Ecol. Resour, vol.16, pp.655-661, 2016.

B. B. Aklilu, R. S. Soderquist, and K. M. Culligan, Genetic analysis of the Replication Protein A large subunit family in Arabidopsis reveals unique and overlapping roles in DNA repair, meiosis and DNA replication, Nucleic Acids Res, vol.42, pp.3104-3118, 2014.

V. Eschbach and D. Kobbe, Different replication protein a complexes of arabidopsis thaliana have different DNA-binding properties as a function of heterotrimer composition, Plant Cell Physiol, vol.55, pp.1460-1472, 2014.

R. Ishibashi and A. Komaru, Abortive second meiosis detected in cytochalasin-treated eggs in androgenetic diploid Corbicula fluminea, Dev. Growth Differ, vol.48, pp.277-282, 2006.

K. Sakaguchi, T. Ishibashi, Y. Uchiyama, and K. Iwabata, The multi-replication protein A (RPA) system -A new perspective, FEBS J, vol.276, pp.943-963, 2009.

M. Kurzbauer, C. Uanschou, D. Chen, and P. Schlogelhofer, The Recombinases DMC1 and RAD51 Are Functionally and Spatially Separated during Meiosis in Arabidopsis, Plant Cell, vol.24, pp.2058-2070, 2012.

V. Cloud, Y. Chan, J. Grubb, B. Budke, and K. Douglas, , vol.337, pp.1222-1225, 2014.

O. Da-ines, Meiotic Recombination in Arabidopsis Is Catalysed by DMC1, with RAD51 Playing a Supporting Role, PLoS Genet, vol.9, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-01907382

J. Vignard, The interplay of RecA-related proteins and the MND1-HOP2 complex during meiosis in Arabidopsis thaliana, PLoS Genet, vol.3, pp.1894-1906, 2007.

F. Couteau and M. Zetka, HTP-1 coordinates synaptonemal complex assembly with homolog alignment during meiosis in C. elegans, Genes Dev, vol.19, pp.2744-56, 2005.

Z. Deng and T. Wang, OsDMC1 is required for homologous pairing in Oryza sativa, Plant Mol. Biol, vol.65, pp.31-42, 2007.

J. P. Lao, Meiotic Crossover Control by Concerted Action of Rad51-Dmc1 in Homolog Template Bias and Robust Homeostatic Regulation, PLoS Genet, vol.9, p.1003978, 2013.

H. Tsubouchi and G. S. Roeder, Budding yeast Hed1 down-regulates the mitotic recombination machinery when meiotic recombination is impaired, Genes Dev, vol.20, pp.1766-75, 2006.

S. D. Sheridan, A comparative analysis of Dmc1 and Rad51 nucleoprotein filaments, Nucleic Acids Res, vol.36, pp.4057-4066, 2008.

E. Sanchez-moran, J. L. Santos, G. H. Jones, and F. C. Franklin, , pp.1-1

, dependent interhomolog recombination during meiosis in Arabidopsis, Genes Dev, vol.21, pp.2220-2233, 2007.

W. Crismani, MCM8 Is Required for a Pathway of Meiotic Double-Strand Break Repair Independent of DMC1 in Arabidopsis thaliana, PLoS Genet, vol.9, p.1003165, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01190669

E. Dray, N. Siaud, E. Dubois, and M. Doutriaux, Interaction between Arabidopsis Brca2 and Its Partners Rad51, Dmc1, and Dss1, PLANT Physiol, vol.140, pp.1059-1069, 2006.

N. Siaud, Brca2 is involved in meiosis in Arabidopsis thaliana as suggested by its interaction with Dmc1, EMBO J, vol.23, pp.1392-1401, 2004.

J. D. Higgins, S. J. Armstrong, F. C. Franklin, and G. H. Jones, The Arabidopsis MutS homolog AtMSH4 functions at an early step in recombination: Evidence for two classes of recombination in Arabidopsis, Genes Dev, vol.18, pp.2557-2570, 2004.

J. D. Higgins, AtMSH5 partners AtMSH4 in the class I meiotic crossover pathway in Arabidopsis thaliana, but is not required for synapsis, Plant J, vol.55, pp.28-39, 2008.

N. Macaisne, SHOC1, an XPF Endonuclease-Related Protein, Is Essential for the Formation of Class I Meiotic Crossovers, Curr. Biol, vol.18, pp.1432-1437, 2008.

A. J. Wijeratne, C. Chen, W. Zhang, L. Timofejeva, and H. Ma, The Arabidopsis thaliana PARTING DANCERS Gene Encoding a Novel Protein Is Required for Normal Meiotic Homologous Recombination, Mol. Biol. Cell, vol.17, pp.1331-1343, 2006.

C. Chen, W. Zhang, L. Timofejeva, Y. Gerardin, and H. Ma, The Arabidopsis ROCK-N-ROLLERS gene encodes a homolog of the yeast ATP-dependent DNA helicase MER3 and is required for normal meiotic crossover formation, Plant J, vol.43, pp.321-334, 2005.

Q. Luo, The Role of OsMSH5 in Crossover Formation during Rice Meiosis, Mol. Plant, vol.6, pp.729-742, 2013.

Y. Chang, Replication Protein A (RPA1a) Is Required for Meiotic and Somatic DNA 295

, Repair But Is Dispensable for DNA Replication and Homologous Recombination in Rice, PLANT Physiol, vol.151, pp.2162-2173, 2009.

Y. Shen, ZIP4 in homologous chromosome synapsis and crossover formation in rice meiosis, J. Cell Sci, vol.125, pp.2581-2591, 2012.

K. Wang, MER3 is required for normal meiotic crossover formation, but not for presynaptic alignment in rice, J. Cell Sci, vol.122, pp.2055-2063, 2009.

K. Wang, The Role of Rice HEI10 in the Formation of Meiotic Crossovers, PLoS Genet, vol.8, p.1002809, 2012.

N. Jackson, Reduced meiotic crossovers and delayed prophase I progression in AtMLH3-deficient Arabidopsis, EMBO J, vol.25, pp.1315-1323, 2006.

M. Wang, The Central Element Protein ZEP1 of the Synaptonemal Complex Regulates the Number of Crossovers during Meiosis in Rice, Plant Cell, vol.22, pp.417-430, 2010.

I. Colas, A spontaneous mutation in MutL-Homolog 3 (HvMLH3) affects synapsis and crossover resolution in the barley desynaptic mutant des10, New Phytol, vol.212, pp.693-707, 2016.

L. Chelysheva, An Easy Protocol for Studying Chromatin and Recombination Protein Dynamics during Arabidopsisthaliana Meiosis: Immunodetection of Cohesins, Histones and MLH1, Cytogenet. Genome Res, vol.129, pp.143-153, 2010.

A. Ciccia, N. Mcdonald, and S. C. West, Structural and Functional Relationships of the XPF/MUS81 Family of Proteins, Annu. Rev. Biochem, vol.77, pp.259-287, 2008.

A. Agostinho, Combinatorial Regulation of Meiotic Holliday Junction Resolution in C. elegans by HIM-6 (BLM) Helicase, SLX-4, and the SLX-1

, Nucleases. PLoS Genet, vol.9, p.1003591, 2013.

J. J. Sekelsky, K. S. Mckim, G. M. Chin, and R. S. Hawley, The Drosophila meiotic recombination gene mei-9 encodes a homologue of the yeast excision repair protein Rad1, Genetics, vol.141, pp.619-646, 1995.

K. Zakharyevich, S. Tang, Y. Ma, and N. Hunter, Delineation of Joint Molecule Resolution Pathways in Meiosis Identifies a Crossover-Specific Resolvase, Cell, vol.149, pp.334-347, 2012.

M. Bauknecht and D. Kobbe, AtGEN1 and AtSEND1, Two Paralogs in Arabidopsis, Possess Holliday Junction Resolvase Activity, Plant Physiol, vol.166, pp.202-216, 2014.

K. Yano, Ku recruits XLF to DNA double-strand breaks, EMBO Rep, vol.9, pp.91-96, 2008.

L. Chelysheva, D. Vezon, K. Belcram, G. Gendrot, and M. Grelon, The Arabidopsis BLAP75/Rmi1 homologue plays crucial roles in meiotic double-strand break repair, PLoS Genet, vol.4, 2008.

F. Hartung, S. Suer, A. Knoll, R. Wurz-wildersinn, and H. Puchta, Topoisomerase 3? and RMI1 suppress somatic crossovers and are essential for resolution of meiotic recombination intermediates in Arabidopsis thaliana, PLoS Genet, vol.4, 2008.

L. Wu and I. D. Hickson, The Bloom's syndrome helicase suppresses crossing over during homologous recombination, Nature, vol.426, pp.870-874, 2003.

H. Serra, Massive crossover elevation via combination of HEI10 and recq4a recq4b during Arabidopsis meiosis, Proc. Natl. Acad. Sci, vol.115, pp.2437-2442, 2018.

T. De and . Santos, The MUS81/MMS4 endonuclease acts independently of doubleholliday junction resolution to promote a distinct subset of crossovers during meiosis in budding yeast, Genetics, vol.164, pp.81-94, 2003.

S. Sarbajna, D. Davies, and S. C. West, Roles of SLX1-SLX4, MUS81-EME1, and GEN1 in avoiding genome instability and mitotic catastrophe, Genes Dev, vol.28, pp.1124-1136, 2014.

C. Girard, AAA-ATPase FIDGETIN-LIKE 1 and Helicase FANCM Antagonize Meiotic Crossovers by Distinct Mechanisms, PLOS Genet, vol.11, p.1005369, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01204200

A. Knoll, The Fanconi Anemia Ortholog FANCM Ensures Ordered Homologous Recombination in Both Somatic and Meiotic Cells in Arabidopsis, Plant Cell, vol.24, pp.1448-1464, 2012.

C. Melamed-bessudo and A. A. Levy, Deficiency in DNA methylation increases meiotic crossover rates in euchromatic but not in heterochromatic regions in Arabidopsis, Proc. Natl. Acad. Sci, vol.109, pp.981-988, 2012.

M. Mirouze, Loss of DNA methylation affects the recombination landscape in Arabidopsis, Proc. Natl. Acad. Sci, vol.109, pp.5880-5885, 2012.

N. E. Yelina, Epigenetic Remodeling of Meiotic Crossover Frequency in Arabidopsis thaliana DNA Methyltransferase Mutants, PLoS Genet, vol.8, p.1002844, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01190760

M. Séguéla-arnaud, Multiple mechanisms limit meiotic crossovers: TOP3? and two BLM homologs antagonize crossovers in parallel to FANCM, Proc. Natl. Acad. Sci, vol.112, pp.4713-4718, 2015.

C. Lambing, Arabidopsis PCH2 Mediates Meiotic Chromosome Remodeling and Maturation of Crossovers, PLOS Genet, vol.11, p.1005372, 2015.

M. T. Jahns, Crossover Localisation Is Regulated by the Neddylation Posttranslational Regulatory Pathway, PLoS Biol, vol.12, p.1001930, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204105

Y. Duroc, The Kinesin AtPSS1 Promotes Synapsis and is Required for Proper Crossover Distribution in Meiosis, PLoS Genet, vol.10, p.1004674, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204133

A. J. Bogdanove, D. F. Voytas, and . Effectors, Customizable Proteins for DNA Targeting. Science (80-. ), vol.333, pp.1843-1846, 2011.

D. F. Voytas and C. Gao, Precision Genome Engineering and Agriculture: Opportunities and Regulatory Challenges, PLoS Biol, vol.12, p.1001877, 2014.

F. Paques and P. Duchateau, Meganucleases and DNA Double-Strand Break-Induced Recombination: Perspectives for Gene Therapy, Curr. Gene Ther, vol.7, pp.49-66, 2007.

J. Smith, A combinatorial approach to create artificial homing endonucleases cleaving chosen sequences, Nucleic Acids Res, vol.34, pp.149-149, 2006.

F. Delacôte, High Frequency Targeted Mutagenesis Using Engineered Endonucleases and DNA-End Processing Enzymes, PLoS One, vol.8, p.53217, 2013.

K. D'halluin, Targeted molecular trait stacking in cotton through targeted doublestrand break induction, Plant Biotechnol. J, vol.11, pp.933-941, 2013.

A. Honig, Transient Expression of Virally Delivered Meganuclease In Planta Generates Inherited Genomic Deletions, Mol. Plant, vol.8, pp.1292-1294, 2015.

D. Youssef, Induction of Targeted Deletions in Transgenic Bread Wheat (Triticum aestivum L.) Using Customized Meganuclease, Plant Mol. Biol. Report, vol.36, pp.71-81, 2018.

S. Kim and J. Kim, Targeted genome engineering via zinc finger nucleases, Plant Biotechnol. Rep, vol.5, pp.9-17, 2011.

F. D. Urnov, E. J. Rebar, M. C. Holmes, H. S. Zhang, and P. D. Gregory, Genome editing with engineered zinc finger nucleases, Nat. Rev. Genet, vol.11, pp.636-646, 2010.

H. J. Lee, E. Kim, and J. Kim, Targeted chromosomal deletions in human cells using zinc finger nucleases, Genome Res, vol.20, pp.81-89, 2010.

C. ?öllü, Autonomous zinc-finger nuclease pairs for targeted chromosomal deletion, Nucleic Acids Res, vol.38, pp.8269-8276, 2010.

J. F. Petolino, Zinc finger nuclease-mediated transgene deletion, Plant Mol. Biol, vol.73, pp.617-628, 2010.

D. M. Weinthal, R. A. Taylor, and T. Tzfira, Nonhomologous End Joining-Mediated Gene Replacement in Plant Cells, PLANT Physiol, vol.162, pp.390-400, 2013.

W. M. Ainley, Trait stacking via targeted genome editing, Plant Biotechnol. J, vol.11, pp.1126-1134, 2013.

V. K. Shukla, Precise genome modification in the crop species Zea mays using zincfinger nucleases, Nature, vol.459, pp.437-441, 2009.

Y. Ran, Zinc finger nuclease-mediated precision genome editing of an endogenous gene in hexaploid bread wheat ( Triticum aestivum ) using a DNA repair template, Plant Biotechnol. J, vol.16, pp.2088-2101, 2018.

C. L. Ramirez, Unexpected failure rates for modular assembly of engineered zinc fingers, Nat. Methods, vol.5, pp.374-379, 2008.

C. Mussolino, A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity, Nucleic Acids Res, vol.39, pp.9283-9293, 2011.

S. Kay, S. Hahn, E. Marois, G. Hause, and U. Bonas, A Bacterial Effector Acts as a Plant Transcription Factor and Induces a Cell Size Regulator, Science, vol.318, pp.648-651, 2007.

P. Römer, Plant Pathogen Recognition Mediated by Promoter Activation of the Pepper Bs3 Resistance Gene. Science (80-. ), vol.318, pp.645-648, 2007.

J. Boch and U. Bonas, Xanthomonas AvrBs3 Family-Type III Effectors: Discovery and Function, Annu. Rev. Phytopathol, vol.48, pp.419-436, 2010.

J. Boch, Breaking the code of DNA binding specificity of TAL-type III effectors, Science, vol.326, pp.1509-1521, 2009.

M. J. Moscou and A. J. Bogdanove, A Simple Cipher Governs DNA Recognition by TAL Effectors. Science (80-. ), vol.326, pp.1501-1501, 2009.

D. Deng, Structural Basis for Sequence-Specific Recognition of DNA by TAL Effectors. Science (80-. ), vol.335, pp.720-723, 2012.

W. Liu, Synthetic TAL effectors for targeted enhancement of transgene expression in plants, Plant Biotechnol. J, vol.12, pp.436-446, 2014.

Y. Wang, Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew, Nat. Biotechnol, vol.32, pp.947-51, 2014.

J. Valton, Overcoming transcription activator-like effector (TALE) DNA binding domain sensitivity to cytosine methylation, J. Biol. Chem, vol.287, pp.38427-38432, 2012.

D. Reyon, FLASH assembly of TALENs for high-throughput genome editing, Nat. Biotechnol, vol.30, pp.460-465, 2012.

M. Jinek, A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity, Science, vol.337, pp.816-837, 2012.

Q. Shan, Targeted genome modification of crop plants using a CRISPR-Cas system, Nat. Biotechnol, vol.31, pp.686-688, 2013.

K. Belhaj, A. Chaparro-garcia, S. Kamoun, and V. Nekrasov, Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system, Plant Methods, vol.9, p.39, 2013.

V. Nekrasov, B. Staskawicz, D. Weigel, J. D. Jones, and S. Kamoun, Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease, Nat. Biotechnol, vol.31, pp.691-693, 2013.

Q. Shan, Y. Wang, J. Li, and C. Gao, Genome editing in rice and wheat using the CRISPR/Cas system, Nat. Protoc, vol.9, pp.2395-2410, 2014.

D. Jaganathan, K. Ramasamy, G. Sellamuthu, S. Jayabalan, and G. Venkataraman, CRISPR for, p.301

, Crop Improvement: An Update Review, Front. Plant Sci, vol.9, pp.1-17, 2018.

Y. Zhang, Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA, Nat. Commun, vol.7, pp.1-8, 2016.

W. Wang, Gene editing and mutagenesis reveal inter-cultivar differences and additivity in the contribution of TaGW2 homoeologues to grain size and weight in wheat

, Theor. Appl. Genet, vol.131, pp.2463-2475, 2018.

A. Peciña, Targeted Stimulation of Meiotic Recombination, Cell, vol.111, pp.173-184, 2002.

M. Johnston, A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae, Microbiol. Rev, vol.51, pp.458-76, 1987.

S. Klapholz, C. S. Waddell, and R. E. Esposito, The role of the SPO11 gene in meiotic recombination in yeast, Genetics, vol.110, pp.187-216, 1985.

L. Cao, E. Alani, and N. Kleckner, A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae, Cell, vol.61, pp.1089-1101, 1990.

M. Grelon, D. Vezon, G. Gendrot, and G. Pelletier, AtSPO11-1 is necessary for effi cient meiotic recombination in plants, EMBO J, vol.20, pp.589-600, 2001.

N. J. Stacey, Arabidopsis SPO11-2 functions with SPO11-1 in meiotic recombination, Plant J, vol.48, pp.206-216, 2006.

T. Sprink and F. Hartung, The splicing fate of plant SPO11 genes, Front. Plant Sci, vol.5, p.214, 2014.

S. B. Malik, M. A. Ramesh, A. M. Hulstrand, and J. M. Logsdon, Protist homologs of the meiotic Spo11 gene and topoisomerase VI reveal an evolutionary history of gene duplication and lineage-specific loss, Mol. Biol. Evol, vol.24, pp.2827-2841, 2007.

F. Hartung, The catalytically active tyrosine residues of both SPO11-1 and SPO11-2 are required for meiotic double-strand break induction in Arabidopsis, Plant Cell, vol.19, pp.3090-3099, 2007.

T. Robert, N. Vrielynck, C. Mézard, B. De-massy, and M. Grelon, A new light on the meiotic DSB catalytic complex, Semin. Cell Dev. Biol, vol.54, pp.165-176, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01320053

Z. Xue, OsMTOPVIB Promotes Meiotic DNA Double-Strand Break Formation in Rice, Mol. Plant, vol.9, pp.1535-1538, 2016.

C. C. Bouuaert, S. Keeney, and D. Breaking, , vol.351, pp.916-917, 2016.

G. Stebbins and E. Arnold, , p.216, 1971.

J. Masterson, Stomatal Size in Fossil Plants: Evidence for Polyploidy in Majority of Angiosperms. Science (80-. ), vol.264, pp.421-424, 1994.

M. C. Sattler, C. R. Carvalho, and W. R. Clarindo, The polyploidy and its key role in plant breeding, Planta, vol.243, pp.281-296, 2016.

Y. Jiao, Ancestral polyploidy in seed plants and angiosperms, Nature, vol.473, pp.97-100, 2011.

J. Ramsey, D. W. Schemske, . Pathways, . Mechanisms, . Rates et al., Annu. Rev. Ecol. Syst, vol.29, pp.467-501, 1998.

F. Bretagnolle and J. D. Thompson, Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants, New Phytol, vol.129, pp.1-22, 1995.

S. and P. Ferrante, Assessment of the origin of new citrus tetraploid hybrids (2n = 4x) by means of SSR markers and PCR based dosage effects, Euphytica, vol.173, pp.223-233, 2010.

Y. Van-de-peer, S. Maere, and A. Meyer, The evolutionary significance of ancient genome duplications, Nat. Rev. Genet, vol.10, pp.725-732, 2009.

J. A. Fawcett, S. Maere, and Y. , Van de Peer, Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event, Proc. Natl. Acad. Sci, vol.106, pp.5737-5742, 2009.

G. Stebbins, Variation and Evolution in Plants, 1950.

J. D. Hollister, Genetic Adaptation Associated with Genome-Doubling in Autotetraploid Arabidopsis arenosa, PLoS Genet, vol.8, p.1003093, 2012.

J. Sybenga, Cytogenetics in Plant Breeding, vol.17, 1992.

J. Ramsey and D. W. Schemske, Neopolyploidy in Flowering Plants, Annu. Rev. Ecol. Syst, vol.33, pp.589-639, 2002.

L. Grandont, E. Jenczewski, and A. Lloyd, Meiosis and Its Deviations in Polyploid Plants, Cytogenet. Genome Res, vol.140, pp.171-184, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01203988

L. Yant, Meiotic Adaptation to Genome Duplication in Arabidopsis arenosa, Curr. Biol, vol.23, pp.2151-2156, 2013.

E. Jenczewski and K. Alix, From Diploids to Allopolyploids: The Emergence of Efficient Pairing Control Genes in Plants, CRC. Crit. Rev. Plant Sci, vol.23, pp.21-45, 2004.

T. Sutton, The Ph2 pairing homoeologous locus of wheat ( Triticum aestivum ): identification of candidate meiotic genes using a comparative genetics approach, Plant J, vol.36, pp.443-456, 2003.

A. H. Lloyd, A. S. Milligan, P. Langridge, and J. A. Able, TaMSH7: A cereal mismatch repair gene that affects fertility in transgenic barley (Hordeum vulgare L.), BMC Plant Biol, vol.7, p.67, 2007.

R. Riley and V. Chapman, Genetic Control of the Cytologically Diploid Behaviour of Hexaploid Wheat, Nature, 1958.

R. Riley, V. Chapman, and G. Kimber, Genetic control of chromosome pairing in intergeneric hybrids with wheat, Nature, vol.183, pp.1244-1250, 1959.

S. Griffiths, Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat, Nature, vol.439, pp.749-752, 2006.

N. Al-kaff, Detailed dissection of the chromosomal region containing the Ph1 locus in wheat Triticum aestivum: With deletion mutants and expression profiling, Ann. Bot, vol.101, pp.863-872, 2008.

E. Greer, The Ph1 Locus Suppresses Cdk2-Type Activity during Premeiosis and Meiosis in Wheat, Plant Cell, vol.24, pp.152-162, 2012.

M. D. Rey, Exploiting the ZIP4 homologue within the wheat Ph1 locus has identified two lines exhibiting homoeologous crossover in wheat-wild relative hybrids, Mol. Breed, vol.37, 2017.

V. Chapman and R. Riley, Homoeologous Meiotic Chromosome Pairing in Triticum aestivum in which Chromosome 5B is replaced by an Alien Homoeologue, Nature, vol.226, pp.376-377, 1970.

A. C. Martín, M. D. Rey, P. Shaw, and G. Moore, Dual effect of the wheat Ph1 locus on chromosome synapsis and crossover, Chromosoma, vol.126, pp.669-680, 2017.

T. Mello-sampayo, Genetic Regulation of Meiotic Chromosome Pairing by Chromosome 3D of Triticum aestivum, Nat. New Biol, vol.230, pp.22-23, 1971.

T. Mello-sampayo and R. Lorente, , pp.16-24, 1968.

T. Mello-sampayo and P. Canas, Fourth Int Wheat Genet Symp, pp.709-713, 1973.

C. J. Driscoll, G. Suppression, . Homoeologous, . In, . Wheat et al., J. Genet. Cytol, vol.14, pp.39-42, 1972.

A. J. Lukaszewski and C. A. Curtis, Physical distribution of recombination in B-genome chromosomes of tetraploid wheat, Theor. Appl. Genet, vol.86, pp.121-127, 1993.

K. S. Gill, B. S. Gill, T. R. Endo, and E. Boyko, Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat, Genetics, vol.143, pp.1001-1013, 1996.

K. S. Gill, B. S. Gill, T. R. Endo, and T. Taylor, Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat, Genetics, vol.144, pp.1883-91, 1996.

T. Naranjo, Forcing the shift of the crossover site to proximal regions in wheat chromosomes, Theor. Appl. Genet, vol.128, pp.1855-1863, 2015.

I. Colas, Observation of Extensive Chromosome Axis Remodeling during the "Diffuse-Phase, of Meiosis in Large Genome Cereals. Front. Plant Sci, vol.8, pp.1-9, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608183

U. K. Devisetty, K. Mayes, and S. Mayes, The RAD51 and DMC1 homoeologous genes of bread wheat: cloning, molecular characterization and expression analysis, BMC Res. Notes, vol.3, p.245, 2010.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, J. Mol. Biol, vol.215, pp.403-410, 1990.

, A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome, International Wheat Genome Sequencing Consortium (IWGSC), vol.345, p.1251788, 2014.

M. D. Curtis and U. Grossniklaus, A Gateway cloning vector set for high-hhroughput hunctional hnalysis of henes in planta, Breakthr. Technol, vol.133, pp.462-469, 2003.

O. Da-ines, K. Abe, C. Goubely, M. E. Gallego, and C. I. White, Differing requirements for RAD51 and DMC1 in meiotic pairing of centromeres and chromosome arms in Arabidopsis thaliana, PLoS Genet, vol.8, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-01907402

S. J. Clough and A. F. Bent, Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana, Plant J, vol.16, pp.735-743, 1998.

P. J. Kersey, Ensembl Genomes 2018: An integrated omics infrastructure for nonvertebrate species, Nucleic Acids Res, vol.46, pp.802-808, 2018.

D. R. Zerbino, Nucleic Acids Res, vol.46, pp.754-761, 2018.

M. Van-bel, Dissecting Plant Genomes with the PLAZA Comparative Genomics Platform, Plant Physiol, vol.158, pp.590-600, 2012.

A. Dereeper, Phylogeny.fr: robust phylogenetic analysis for the non-specialist, Nucleic Acids Res, vol.36, pp.465-469, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00324099

A. Dereeper, S. Audic, J. M. Claverie, and G. Blanc, BLAST-EXPLORER helps you build datasets for phylogenetic analysis, Evol. Biol, vol.10, pp.8-13, 2010.

K. J. Ross, P. Fransz, and G. H. Jones, A light microscopic atlas of meiosis inArabidopsis thaliana, Chromosom. Res, vol.4, pp.507-516, 1996.

S. Kurtz, A. Narechania, J. C. Stein, and D. Ware, A new method to compute K-mer frequencies and its application to annotate large repetitive plant genomes, BMC Genomics, vol.9, p.517, 2008.

H. Christensen and P. H. Quail, Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants, Transgenic Res, vol.5, pp.213-218, 1996.

C. Tassy, A. Partier, M. Beckert, C. Feuillet, and P. Barret, Biolistic transformation of wheat: increased production of plants with simple insertions and heritable transgene expression, Plant Cell Tissue Organ Cult, vol.119, pp.171-181, 2014.

M. Wright, Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker, Plant Cell Rep, vol.20, pp.429-436, 2001.

P. Stoykova and P. Stoeva-popova, PMI (manA) as a nonantibiotic selectable marker gene in plant biotechnology, Plant Cell Tissue Organ Cult, vol.105, pp.141-148, 2011.

S. M. Smith and P. J. Maughan, , pp.243-256, 2015.

E. Paux, Insertion site-based polymorphism markers open new perspectives for genome saturation and marker-assisted selection in wheat, Plant Biotechnol. J, vol.8, pp.196-210, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00964403

I. Wheat-genome-sequencing-consortium, Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science (80-. ). To be publ, p.7191, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01885399

J. G. Burleigh, Genome-Scale Phylogenetics: Inferring the Plant Tree of Life from 18, Gene Trees. Syst. Biol, vol.896, pp.117-125, 2011.

A. S. Chanderbali, B. A. Berger, D. G. Howarth, P. S. Soltis, and D. E. Soltis, Evolving Ideas on the Origin and Evolution of Flowers: New Perspectives in the Genomic Era, Genetics, vol.202, pp.1255-1265, 2016.

G. Petersen, O. Seberg, M. Yde, and K. Berthelsen, Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B, and D genomes of common wheat (Triticum aestivum), Mol. Phylogenet. Evol, vol.39, pp.70-82, 2006.

J. Dvo?ák, P. Di-terlizzi, H. Zhang, and P. Resta, The evolution of polyploid wheats: identification of the A genome donor species, Genome, vol.36, pp.21-31, 1993.

Y. Shingu, T. Mikawa, M. Onuma, T. Hirayama, and T. Shibata, A DNA-binding surface of SPO11-1, an Arabidopsis SPO11 orthologue required for normal meiosis, FEBS J, vol.277, pp.2360-2374, 2010.

F. Hartung and H. Puchta, Molecular characterisation of two paralogous SPO11 homologues in Arabidopsis thaliana, Nucleic Acids Res, vol.28, pp.1548-1554, 2000.

C. Chen, Meiosis-specific gene discovery in plants: RNA-Seq applied to isolated Arabidopsis male meiocytes, BMC Plant Biol, vol.10, 2010.

H. Yang, P. Lu, Y. Wang, and H. Ma, The transcriptome landscape of Arabidopsis male meiocytes from high-throughput sequencing: the complexity and evolution of the meiotic process, Plant J, vol.65, pp.503-516, 2011.

J. Walker, Sexual-lineage-specific DNA methylation regulates meiosis in Arabidopsis, Nat. Genet, vol.50, pp.130-137, 2018.

N. Vrielynck, A DNA topoisomerase VI-like complex initiates meiotic recombination. Science (80-. ), vol.351, pp.939-943, 2016.

T. L. Bailey, MEME Suite: Tools for motif discovery and searching, Nucleic Acids Res, vol.37, pp.202-208, 2009.

W. Zhu, Altered chromatin compaction and histone methylation drive non-additive gene expression in an interspecific Arabidopsis hybrid, Genome Biol, vol.18, p.157, 2017.

H. Hamada, An in planta biolistic method for stable wheat transformation, Sci. Rep, vol.7, pp.2-9, 2017.

L. Rooke, D. Byrne, and S. Salgueiro, Marker gene expression driven by the maize ubiquitin promoter in transgenic wheat, Ann. Appl. Biol, vol.136, pp.167-172, 2000.

R. Michard, Cold-conserved hybrid immature embryos for efficient wheat transformation, Tissue Organ Cult, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02192508

A. Geard, C. J. Spurr, and P. H. Brown, Seeds: biology, development and ecology. Proceedings of the Eighth International Workshop on Seeds, 2005.

E. A. Golovina, F. A. Hoekstra, and A. C. Van-aelst, The competence to acquire cellular desiccation tolerance is independent of seed morphological development, J. Exp. Bot, vol.52, pp.1015-1042, 2001.

A. Fábián, K. Jäger, M. Rakszegi, and B. Barnabás, Embryo and endosperm development in wheat (Triticum aestivum L.) kernels subjected to drought stress, Plant Cell Rep, vol.30, pp.551-63, 2011.

S. M. Pescitelli, C. D. Johnson, and J. F. Petolino, Isolated microspore culture of maize: effects of isolation technique, reduced temperature, and sucrose level, Plant Cell Rep, vol.8, pp.628-659, 1990.

E. Kiviharju and E. Pehu, The effect of cold and heat pretreatments on anther culture response of Avena sativa and A . sterilis. Plant Cell, Tissue Organ Cult, vol.54, pp.97-104, 1998.

J. Luo, S. Jiang, and L. Pan, Cold-enhanced somatic embryogenesis in cell suspension cultures of Astragalus adsurgens Pall.: relationship with exogenous calcium during cold pretreatment, Plant Growth Regul, vol.40, pp.171-177, 2003.

R. B. Malabadi and J. Van-staden, Cold-enhanced somatic embryogenesis in Pinus patula is mediated by calcium, South African J. Bot, vol.72, pp.613-618, 2006.

H. H. Gu, P. Hagberg, and W. J. Zhou, Cold pretreatment enhances microspore embryogenesis in oilseed rape (Brassica napus L.). Plant Growth Regul, vol.42, pp.137-143, 2004.

I. A. Montalbán, O. García-mendiguren, T. Goicoa, M. D. Ugarte, and P. Moncaleán, Cold storage of initial plant material affects positively somatic embryogenesis in Pinus radiata, New For, vol.46, pp.309-317, 2015.

B. Li, K. Caswell, N. Leung, and R. N. Chibbar, Wheat (Triticum aestivum L.) somatic embryogenesis from isolated scutellum: Days post anthesis, days of spike storage, and sucrose concentration affect efficiency, Vitr. Cell. Dev. Biol. -Plant, vol.39, pp.20-23, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00964172

A. Lublin and S. Sela, The impact of temperature during the storage of table eggs on the viability of Salmonella enterica serovars Enteritidis and Virchow in the Eggs, Poult. Sci, vol.87, pp.2208-2222, 2008.

S. F. Bailey, Thrips as Vectors of Plant Disease, J. Econ. Entomol, vol.28, pp.856-863, 1935.

T. K. Hodges, K. K. Kamo, C. W. Imbrie, and M. R. Becwar, Genotype Specificity of Somatic Embryogenesis and Regeneration in Maize, Nat. Biotechnol, vol.4, pp.219-223, 1986.

J. A. Birchler, H. Yao, S. Chudalayandi, D. Vaiman, and R. A. Veitia, Heterosis. Plant Cell, vol.22, pp.2105-2117, 2010.

I. M. Ben-amer, A. J. Worland, V. Korzun, and A. Börner, Genetic mapping of QTL controlling tissue-culture response on chromosome 2B of wheat ( Triticum aestivum L.) in relation to major genes and RFLP markers, TAG Theor. Appl. Genet, vol.94, pp.1047-1052, 1997.

H. Bolibok and M. Rakoczy-trojanowska, Genetic Mapping of QTLs for Tissue-Culture Response in Plants, Euphytica, vol.149, pp.73-83, 2006.

H. Jia, Mapping QTLs for tissue culture response of mature wheat embryos, Mol. Cells, vol.23, pp.323-353, 2007.

S. Rasco-gaunt, A. Riley, M. Cannell, P. Barcelo, and P. Lazzeri, Procedures allowing the transformation of a range of European elite wheat (Triticum aestivum L.) varieties via particle bombardment, J. Exp. Bot, vol.52, pp.865-74, 2001.

L. S. Kulnane, E. J. Lehman, B. J. Hock, K. D. Tsuchiya, and B. T. Lamb, Rapid and efficient detection of transgene homozygosity by FISH of mouse fibroblasts

, Genome, vol.13, pp.223-226, 2002.

Z. Liang, A. M. Breman, B. R. Grimes, and E. D. Rosen, Identifying and genotyping transgene integration loci, Transgenic Res, vol.17, pp.979-983, 2008.

A. J. Dubose, Use of microarray hybrid capture and next-generation sequencing to identify the anatomy of a transgene, Nucleic Acids Res, vol.41, pp.10-14, 2013.

Y. Ji, Identification of the genomic insertion site of Pmel-1 TCR ? and ? Transgenes by next-generation sequencing, PLoS One, vol.9, 2014.

R. P. Singh, Disease Impact on Wheat Yield Potential and Prospects of Genetic Control, Annu. Rev. Phytopathol, vol.54, pp.303-322, 2016.

M. Fossi, K. R. Amundson, S. Kuppu, A. B. Britt, and L. Comai, Plant Physiol

A. H. Lloyd, Meiotic Gene Evolution: Can You Teach a New Dog New Tricks?, Mol. Biol. Evol, vol.31, pp.1724-1727, 2014.

J. B. Frenette-charron, G. Breton, M. Badawi, and F. Sarhan, Molecular and structural analyses of a novel temperature stress-induced lipocalin from wheat and Arabidopsis, FEBS Lett, vol.517, pp.129-132, 2002.

X. Y. Zhao, M. Liu, J. R. Li, C. M. Guan, and X. S. Zhang, The wheat TaGI1, involved in photoperiodic flowering, encodesan Arabidopsis GI ortholog, Plant Mol. Biol, vol.58, pp.53-64, 2005.

S. Proietti, Cross activity of orthologous WRKY transcription factors in wheat and Arabidopsis, J. Exp. Bot, vol.62, 1975.

C. Somerville and S. Somerville, Plant functional genomics, Science, vol.285, pp.380-383, 1999.

B. Clarke, M. Lambrecht, and S. Y. Rhee, Arabidopsis genomic information for interpreting wheat EST sequences, Funct. Integr. Genomics, vol.3, pp.33-38, 2003.

R. J. Konopka and S. Benzer, Konopka & Benzer PNAS.pdf, vol.68, pp.2112-2116, 1971.

A. Shearn, Complementation analysis of late lethal mutants of Drosophila melanogaster, Genetics, vol.77, pp.115-125, 1974.

M. E. Dorf and B. Benacerraf, Complementation of H-2-linked Ir genes in the mouse, Proc. Natl. Acad. Sci, vol.72, pp.3671-3675, 2006.

H. Chiang, Gene-Specific Genetic Complementation between Brca1 and Cobra1 During Mouse Mammary Gland Development, Sci. Rep, vol.8, p.2731, 2018.

J. M. Gurung, Heterologous Complementation Studies With the YscX and YscY Protein Families Reveals a Specificity for Yersinia pseudotuberculosis Type III Secretion, Front. Cell. Infect. Microbiol, vol.8, pp.1-16, 2018.

M. Doumith, R. Legrand, C. Lang, J. A. Salas, and M. , Interspecies complementation in Saccharopolyspora erythraea : elucidation of the function of oleP1, oleG1 and oleG2 from the oleandomycin biosynthetic gene cluster of Streptomyces antibioticus and generation of new erythromycin derivatives, Mol. Microbiol, vol.34, pp.1039-1048, 1999.

L. Monferrer and R. Artero, An interspecific functional complementation test in Drosophila for introductory genetics laboratory courses, J. Hered, vol.97, pp.67-73, 2006.

J. M. Lohmar, O. Puel, J. W. Cary, and A. M. Calvo, The rtfA gene regulates plant and animal pathogenesis and secondary metabolism in Aspergillus flavus, Appl. Environ. Microbiol, vol.85, pp.1-19, 2019.

S. R. Norris, X. Shen, and D. Dellapenna, Complementation of the Arabidopsis pds1 mutation with the gene encoding p-hydroxyphenylpyruvate dioxygenase, Plant Physiol, vol.117, pp.1317-1340, 1998.

R. Zhang, X. Xia, K. Lindsey, and P. S. Da-rocha, Functional complementation of dwf4 mutants of Arabidopsis by overexpression of CYP724A1, J. Plant Physiol, vol.169, pp.421-428, 2012.

G. H. Lilay, P. H. Castro, A. Campilho, and A. G. Assunção, The Arabidopsis bZIP19 and bZIP23 Activity Requires Zinc Deficiency -Insight on Regulation From Complementation Lines, Front. Plant Sci, vol.9, pp.1-13, 2019.

T. Fan, Complementation studies of the Arabidopsis fc1 mutant substantiate essential functions of ferrochelatase 1 during embryogenesis and salt stress, Plant Cell Environ, vol.42, pp.618-632, 2019.

L. Gomez and M. J. Chrispeels, Complementation of an Arabidopsis thaliana mutant that lacks complex asparagine-linked glycans with the human cDNA encoding Nacetylglucosaminyltransferase I, Proc. Natl. Acad. Sci, vol.91, pp.1829-1833, 1994.

X. Dong, Functional Conservation of Plant Secondary Metabolic Enzymes Revealed by Complementation of Arabidopsis Flavonoid Mutants with Maize Genes, PLANT Physiol, vol.127, pp.46-57, 2001.

M. Fu, The DNA Topoisomerase VI-B Subunit OsMTOPVIB Is Essential for Meiotic Recombination Initiation in Rice, Mol. Plant, vol.9, pp.1539-1541, 2016.

Y. Shingu, The double-stranded break-forming activity of plant SPO11s and a novel rice SPO11 revealed by a Drosophila bioassay, BMC Mol. Biol, vol.13, p.1, 2012.

R. L. Brinster, J. M. Allen, R. R. Behringer, R. E. Gelinas, and R. D. Palmiter, Introns increase transcriptional efficiency in transgenic mice, Proc. Natl. Acad. Sci. U. S. A, vol.85, pp.836-876, 1988.

M. Laxa, Intron-Mediated Enhancement: A Tool for Heterologous Gene Expression in Plants? Front, Plant Sci, vol.7, pp.1-13, 2017.

K. Schreiber, G. Csaba, M. Haslbeck, and R. Zimmer, Alternative splicing in next generation sequencing data of saccharomyces cerevisiae, PLoS One, vol.10, pp.1-18, 2015.

Y. Wang, Mechanism of alternative splicing and its regulation (Review), Biomed. Reports, vol.3, pp.152-158, 2015.

F. S. Collins, E. S. Lander, J. Rogers, and R. H. Waterson, Finishing the euchromatic sequence of the human genome, Nature, vol.431, pp.931-945, 2004.

H. Sierra, M. Cordova, C. J. Chen, and M. Rajadhyaksha, Confocal Imaging-Guided Laser Ablation of Basal Cell Carcinomas: An Ex Vivo Study, J. Invest. Dermatol, vol.135, pp.612-615, 2015.

G. Ast, How did alternative splicing evolve?, Nat. Rev. Genet, vol.5, pp.773-782, 2004.

N. H. Syed, M. Kalyna, Y. Marquez, A. Barta, and J. W. Brown, Alternative splicing in plants -coming of age, Trends Plant Sci, vol.17, pp.616-623, 2012.

X. Shang, Y. Cao, and L. Ma, Alternative Splicing in Plant Genes: A Means of Regulating the Environmental Fitness of Plants, Int. J. Mol. Sci, vol.18, p.432, 2017.

J. E. Gallegos, Plant Cell

C. P. Calixto, W. Guo, A. B. James, N. A. Tzioutziou, and J. W. Brown, Rapid and Dynamic Alternative Splicing Impacts the Arabidopsis, Plant Cell Adv. Publ. Publ, vol.30, pp.1424-1444, 2018.

A. Miya, , vol.104, pp.1-6, 2007.

D. Kroll, VIPP1, a nuclear gene of Arabidopsis thaliana essential for thylakoid membrane formation, Proc. Natl. Acad. Sci, vol.98, pp.4238-4242, 2001.

T. Cermak, Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting, Nucleic Acids Res, vol.39, pp.82-82, 2011.

S. Bultmann, Targeted transcriptional activation of silent, Nucleic Acids Res, vol.40, pp.5368-5377, 2012.

A. K. Maunakea, Conserved role of intragenic DNA methylation in regulating alternative promoters, Nature, vol.466, pp.253-257, 2010.

Y. Wang, Y. Zong, and C. Gao, , pp.169-185, 2017.

S. Toki, Expression of a Maize Ubiquitin Gene Promoter-bar Chimeric Gene in Transgenic Rice Plants, PLANT Physiol, vol.100, pp.1503-1507, 1992.

M. Cornejo, D. Luth, K. M. Blankenship, O. D. Anderson, and A. E. Blechl, Activity of a maize ubiquitin promoter in transgenic rice, Plant Mol. Biol, vol.23, pp.567-581, 1993.

S. Dreissig, Measuring Meiotic Crossovers via Multi-Locus Genotyping of Single Pollen Grains in Barley, PLoS One, vol.10, pp.1-10, 2015.

R. W. Summers and J. K. Brown, Constraints on breeding for disease resistance in commercially competitive wheat cultivars, Plant Pathol, vol.62, pp.115-121, 2013.

J. K. Brown and J. C. , Rant, Fitness costs and trade-offs of disease resistance and their consequences for breeding arable crops, Plant Pathol, vol.62, pp.83-95, 2013.

P. R. Shewry and N. G. Halford, Cereal seed storage proteins: Structures, properties and role in grain utilization, J. Exp. Bot, vol.53, pp.947-958, 2002.

R. G. Allaby, M. Banerjee, and T. A. Brown, Evolution of the high molecular weight glutenin loci of the A, B, D, and G genomes of wheat, Genome, vol.42, pp.296-307, 1999.

P. R. Shewry and A. S. Tatham, The prolamin storage proteins of cereal seeds: structure and evolution, Biochem. J, vol.267, pp.1-12, 1990.

Q. G. Yong, Types and rates of sequence evolution at the high-molecular-weight glutenin locus in hexaploid wheat and its ancestral genomes, Genetics, vol.174, pp.1493-1504, 2006.

, Contigs dans lesquels sont contenus les gènes Spo11-1 et Spo11-2 de blé tendre Spo11-1-5A : >5AL_2686861 6212, vol.6, p.1329145