, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190

, The Lancet . GLOBOCAN 2018: counting the toll of cancer, Lancet Lond. Engl, vol.392, p.985, 2018.

N. J. Schork, Personalized medicine: Time for one-person trials, Nature, vol.520, pp.609-611, 2015.

H. Kantarjian and P. P. Yu, Artificial Intelligence, Big Data, and Cancer, JAMA Oncol, vol.1, pp.573-574, 2015.

C. E. Kahn, From Images to Actions: Opportunities for Artificial Intelligence in Radiology, Radiology, vol.285, pp.719-720, 2017.

S. Jha and E. J. Topol, Adapting to Artificial Intelligence: Radiologists and Pathologists as Information Specialists, JAMA, vol.316, pp.2353-2354, 2016.

S. Reuzé, A. Schernberg, and F. Orlhac, Radiomics in Nuclear Medicine applied to Radiation Therapy: methods, pitfalls and challenges, Int. J. Radiat. Oncol, 2018.

E. J. Limkin, R. Sun, and L. Dercle, Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology, Ann. Oncol, vol.28, pp.1191-1206, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01648559

P. Lambin, E. Rios-velazquez, and R. Leijenaar, Extracting more information from medical images using advanced feature analysis, Eur. J. Cancer, vol.48, pp.441-446, 2012.

R. J. Gillies, P. E. Kinahan, and H. Hricak, Radiomics: Images Are More than Pictures, They Are Data, Radiology, vol.278, pp.563-577, 2016.

S. D. Curran, A. U. Muellner, and L. H. Schwartz, Imaging response assessment in oncology, Cancer Imaging Off. Publ. Int. Cancer Imaging Soc, vol.6, pp.126-130, 2006.

E. T. Ahrens and J. Bulte, Tracking immune cells in vivo using magnetic resonance imaging, Nat. Rev. Immunol, vol.13, pp.755-763, 2013.

M. Esmaeili, S. A. Moestue, and B. C. Hamans, In vivo 31 P magnetic resonance spectroscopic imaging (MRSI) for metabolic profiling of human breast cancer xenografts, J. Magn. Reson. Imaging JMRI, vol.41, pp.601-609, 2015.

S. Haneder, V. Juras, and H. J. Michaely, In vivo sodium (23Na) imaging of the human kidneys at 7 T: preliminary results, Eur. Radiol, vol.24, pp.494-501, 2014.

C. Cudalbu, A. Comment, and F. Kurdzesau, Feasibility of in vivo 15N MRS detection of hyperpolarized 15N labeled choline in rats, Phys. Chem. Chem. Phys. PCCP, vol.12, pp.5818-5823, 2010.

R. Schmidt, C. Laustsen, and J. Dumez, In vivo single-shot 13C spectroscopic imaging of hyperpolarized metabolites by spatiotemporal encoding, J. Magn. Reson, vol.240, pp.8-15, 1997.

D. H. Carr, J. Brown, and G. M. Bydder, Intravenous chelated gadolinium as a contrast agent in NMR imaging of cerebral tumours, Lancet Lond. Engl, vol.1, pp.484-486, 1984.

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190

Y. Xiao, R. Paudel, and J. Liu, MRI contrast agents: Classification and application (Review), Int. J. Mol. Med, vol.38, pp.1319-1326, 2016.

M. K. Islam, S. Kim, and H. Kim, Manganese Complex of Ethylenediaminetetraacetic Acid (EDTA)-Benzothiazole Aniline (BTA) Conjugate as a Potential Liver-Targeting MRI Contrast Agent, J. Med. Chem, vol.60, pp.2993-3001, 2017.

F. Lux, V. L. Tran, and E. Thomas, AGuIX® from bench to bedside-Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine, Br. J. Radiol, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01935540

E. Diamandis, C. Gabriel, and U. Würtemberger, MR-spectroscopic imaging of glial tumors in the spotlight of the 2016 WHO classification, J. Neurooncol, 2018.

H. Nandu, P. Y. Wen, and R. Y. Huang, Imaging in neuro-oncology, Ther. Adv. Neurol. Disord, vol.11, p.1756286418759865, 2018.

C. H. Suh, H. S. Kim, and S. C. Jung, Multiparametric MRI as a potential surrogate endpoint for decision-making in early treatment response following concurrent chemoradiotherapy in patients with newly diagnosed glioblastoma: a systematic review and meta-analysis, Eur. Radiol, 2018.

Y. Hayashida, T. Hirai, and S. Morishita, Diffusion-weighted imaging of metastatic brain tumors: comparison with histologic type and tumor cellularity, AJNR Am. J. Neuroradiol, vol.27, pp.1419-1425, 2006.

J. L. Boxerman, L. M. Hamberg, and B. R. Rosen, MR contrast due to intravascular magnetic susceptibility perturbations, Magn. Reson. Med, vol.34, pp.555-566, 1995.

C. H. Suh, H. S. Kim, and S. C. Jung, Perfusion MRI as a diagnostic biomarker for differentiating glioma from brain metastasis: a systematic review and meta-analysis, Eur. Radiol, 2018.

M. Neska-matuszewska, J. Bladowska, and M. S?siadek, Differentiation of glioblastoma multiforme, metastases and primary central nervous system lymphomas using multiparametric perfusion and diffusion MR imaging of a tumor core and a peritumoral zone-Searching for a practical approach, PloS One, vol.13, p.191341, 2018.

A. Deviers, S. Ken, and T. Filleron, Evaluation of the lactate-to-N-acetyl-aspartate ratio defined with magnetic resonance spectroscopic imaging before radiation therapy as a new predictive marker of the site of relapse in patients with glioblastoma multiforme, Int. J. Radiat. Oncol. Biol. Phys, vol.90, pp.385-393, 2014.

E. Ratai, Z. Zhang, and J. Fink, ACRIN 6684: Multicenter, phase II assessment of tumor hypoxia in newly diagnosed glioblastoma using magnetic resonance spectroscopy, PloS One, vol.13, p.198548, 2018.

M. Mahajan, R. Kuber, and K. Chaudhari, MR imaging of carcinoma cervix, Indian J. Radiol. Imaging, vol.23, p.247, 2013.

S. L. Laifer-narin, W. F. Genestine, and N. C. Okechukwu, The Role of Computed Tomography and Magnetic Resonance Imaging in Gynecologic Oncology, PET Clin, vol.13, pp.127-141, 2018.

C. Haie-meder, R. Pötter, and E. Van-limbergen, Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV, Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol, vol.74, pp.235-245, 2005.

R. Pötter, C. Haie-meder, and E. Van-limbergen,

, concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology, Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol, vol.78, pp.67-77, 2006.

T. P. Hellebust, C. Kirisits, and D. Berger, Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group: considerations and pitfalls in commissioning and applicator reconstruction in 3D image-based treatment planning of cervix cancer brachytherapy, Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol, vol.96, pp.153-160, 2010.

J. Dimopoulos, P. Petrow, and K. Tanderup, Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (IV): Basic principles and parameters for MR imaging within the frame of image based adaptive cervix cancer brachytherapy, Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol, vol.103, pp.113-122, 2012.

S. Surti and J. S. Karp, Advances in time-of-flight PET, Phys. Med, vol.32, pp.12-22, 2016.

C. Lois, B. W. Jakoby, and M. J. Long, An assessment of the impact of incorporating time-of-flight information into clinical PET/CT imaging, J. Nucl. Med. Off. Publ. Soc. Nucl. Med, vol.51, pp.237-245, 2010.

E. Rapisarda, V. Bettinardi, and K. Thielemans, Image-based point spread function implementation in a fully 3D OSEM reconstruction algorithm for PET, Phys. Med. Biol, vol.55, pp.4131-4151, 2010.

C. Lopes, P. Bauer, J. Salomon, and A. , First in situ TOF-PET study using digital photon counters for proton range verification, Phys. Med. Biol, vol.61, pp.6203-6230, 2016.

D. Koopman, G. Koerkamp, M. Jager, and P. L. , Digital PET compliance to EARL accreditation specifications, EJNMMI Phys, vol.4, p.9, 2017.

V. Paidpally, A. Chirindel, and S. Lam, FDG-PET/CT imaging biomarkers in head and neck squamous cell carcinoma, Imaging Med, vol.4, pp.633-647, 2012.

T. Beyer, J. Czernin, and L. S. Freudenberg, Variations in Clinical PET/CT Operations: Results of an International Survey of Active PET/CT Users, J. Nucl. Med, vol.52, pp.303-310, 2011.

N. Galldiks and K. Langen, Amino Acid PET -An Imaging Option to Identify Treatment Response, Posttherapeutic Effects, and Tumor Recurrence?, Front. Neurol, vol.7, 2016.

Y. Terakawa, N. Tsuyuguchi, and Y. Iwai, Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy, J. Nucl. Med. Off. Publ. Soc. Nucl. Med, vol.49, pp.694-699, 2008.

F. Cicone, G. Minniti, and A. Romano, Accuracy of F-DOPA PET and perfusion-MRI for differentiating radionecrotic from progressive brain metastases after radiosurgery, Eur. J. Nucl. Med. Mol. Imaging, vol.42, pp.103-111, 2015.

N. Galldiks, G. Stoffels, and C. Filss, The use of dynamic O-(2-18F-fluoroethyl)-l-tyrosine PET Université, p.173

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France in the diagnosis of patients with progressive and recurrent glioma, Neuro-Oncol, vol.17, pp.1293-1300, 2015.

W. Rachinger, C. Goetz, and G. Pöpperl, Positron emission tomography with O, issue.2

, l-tyrosine versus magnetic resonance imaging in the diagnosis of recurrent gliomas, Neurosurgery, vol.57, pp.505-511, 2005.

N. Galldiks, V. Dunkl, and G. Stoffels, Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-L-tyrosine PET, Eur. J. Nucl. Med. Mol. Imaging, vol.42, pp.685-695, 2015.

L. Bekaert, S. Valable, and E. Lechapt-zalcman, 18F]-FMISO PET study of hypoxia in gliomas before surgery: correlation with molecular markers of hypoxia and angiogenesis, Eur. J. Nucl. Med. Mol. Imaging, vol.44, pp.1383-1392, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01575007

M. Kanoto, K. Kirii, and T. Hiraka, Correlation between hypoxic area in primary brain tumors and WHO grade: differentiation from malignancy using 18F-fluoromisonidazole positron emission tomography, Acta Radiol. Stockh. Swed, vol.59, pp.229-235, 1987.

N. Magné, C. Chargari, and L. Vicenzi, New trends in the evaluation and treatment of cervix cancer: the role of FDG-PET, Cancer Treat. Rev, vol.34, pp.671-681, 2008.

J. D. Wright, F. Dehdashti, and T. J. Herzog, Preoperative lymph node staging of early-stage cervical carcinoma by [18F]-fluoro-2-deoxy-D-glucose-positron emission tomography, Cancer, vol.104, pp.2484-2491, 2005.

E. A. Kidd, B. A. Siegel, and F. Dehdashti, The standardized uptake value for F-18 fluorodeoxyglucose is a sensitive predictive biomarker for cervical cancer treatment response and survival, Cancer, vol.110, pp.1738-1744, 2007.

T. Yen, L. See, and C. Lai, Standardized uptake value in para-aortic lymph nodes is a significant prognostic factor in patients with primary advanced squamous cervical cancer, Eur. J. Nucl. Med. Mol. Imaging, vol.35, pp.493-501, 2008.

H. H. Chung, J. W. Kim, and K. H. Han, Prognostic value of metabolic tumor volume measured by FDG-PET/CT in patients with cervical cancer, Gynecol. Oncol, vol.120, pp.270-274, 2011.

T. Beyer, D. W. Townsend, and T. Brun, A combined PET/CT scanner for clinical oncology, J. Nucl. Med. Off. Publ. Soc. Nucl. Med, vol.41, pp.1369-1379, 2000.

M. Charron, T. Beyer, and N. N. Bohnen, Image analysis in patients with cancer studied with a combined PET and CT scanner, Clin. Nucl. Med, vol.25, pp.905-910, 2000.

D. L. Bailey, B. J. Pichler, and B. Gückel, Combined PET/MRI: Global Warming-Summary Report of the 6th International Workshop on PET/MRI, Mol. Imaging Biol. MIB Off. Publ. Acad. Mol. Imaging, vol.20, pp.4-20, 2017.

N. Tomura, M. Kokubun, and T. Saginoya, Differentiation between Treatment-Induced Necrosis and Recurrent Tumors in Patients with Metastatic Brain Tumors: Comparison among 11C-Methionine-PET, FDG-PET, MR Permeability Imaging, and MRI-ADC-Preliminary Results, AJNR Am. J. Neuroradiol, vol.38, pp.1520-1527, 2017.

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190

A. J. Theruvath, A. Ilivitzki, and A. Muehe, A PET/MR Imaging Approach for the Integrated Assessment of Chemotherapy-induced Brain, Heart, and Bone Injuries in Pediatric Cancer Survivors: A Pilot Study, Radiology, vol.285, pp.971-979, 2017.

M. R. Ponisio, K. J. Fowler, and F. Dehdashti, The Emerging Role of PET/MR Imaging in Gynecologic Cancers, PET Clin, vol.11, pp.425-440, 2016.

M. A. Ohliger, T. A. Hope, and J. S. Chapman, PET/MR Imaging in Gynecologic Oncology, Magn. Reson. Imaging Clin. N. Am, vol.25, pp.667-684, 2017.

P. Brandmaier, S. Purz, and K. Bremicker, Simultaneous [18F]FDG-PET/MRI: Correlation of Apparent Diffusion Coefficient (ADC) and Standardized Uptake Value (SUV) in Primary and Recurrent Cervical Cancer, PloS One, vol.10, p.141684, 2015.

J. Grueneisen, K. Beiderwellen, and P. Heusch, Correlation of standardized uptake value and apparent diffusion coefficient in integrated whole-body PET/MRI of primary and recurrent cervical cancer, PloS One, vol.9, p.96751, 2014.

J. Grueneisen, B. M. Schaarschmidt, and M. Heubner, Integrated PET/MRI for whole-body staging of patients with primary cervical cancer: preliminary results, Eur. J. Nucl. Med. Mol. Imaging, vol.42, pp.1814-1824, 2015.

M. Daniel, P. Andrzejewski, and A. Sturdza, Impact of hybrid PET/MR technology on multiparametric imaging and treatment response assessment of cervix cancer, Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol, vol.125, pp.420-425, 2017.

D. Jones, ICRU Report 50-Prescribing, Recording and Reporting Photon Beam Therapy, Med. Phys, vol.21, pp.833-834, 1994.

T. Landberg, J. Chavaudra, and J. Dobbs, J. Int. Comm. Radiat. Units Meas, vol.32, 1999.

N. G. Burnet, Defining the tumour and target volumes for radiotherapy, Cancer Imaging, vol.4, pp.153-161, 2004.

M. Van-herk, P. Remeijer, and J. V. Lebesque, Inclusion of geometric uncertainties in treatment plan evaluation, Int. J. Radiat. Oncol. Biol. Phys, vol.52, pp.1407-1422, 2002.

V. Grégoire, K. Haustermans, and X. Geets, PET-based treatment planning in radiotherapy: a new standard?, J. Nucl. Med. Off. Publ. Soc. Nucl. Med, vol.48, issue.1, pp.68-77, 2007.

E. Weiss, S. Richter, and T. Krauss, Conformal radiotherapy planning of cervix carcinoma: differences in the delineation of the clinical target volume, Radiother. Oncol, vol.67, pp.87-95, 2003.

J. Van-de-steene, N. Linthout, and J. De-mey, Definition of gross tumor volume in lung cancer: inter-observer variability, Radiother. Oncol, vol.62, pp.37-49, 2002.

C. W. Hurkmans, J. H. Borger, and B. R. Pieters, Variability in target volume delineation on CT scans of the breast, Int. J. Radiat. Oncol. Biol. Phys, vol.50, pp.1366-1372, 2001.

L. F. Cazzaniga, M. A. Marinoni, and A. Bossi, Interphysician variability in defining the planning target volume in the irradiation of prostate and seminal vesicles, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190, vol.47, p.293, 1998.

C. B. Caldwell, K. Mah, and Y. C. Ung, Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18 FDG-hybrid PET fusion, Int. J. Radiat. Oncol, vol.51, pp.923-931, 2001.

M. Yamamoto, Y. Nagata, and K. Okajima, Differences in target outline delineation from CT scans of brain tumours using different methods and different observers, Radiother. Oncol, vol.50, pp.151-156, 1999.

A. Tzikas, P. Karaiskos, and N. Papanikolaou, Investigating the clinical aspects of using CT vs. CT-MRI images during organ delineation and treatment planning in prostate cancer radiotherapy, Technol. Cancer Res. Treat, vol.10, pp.231-242, 2011.

B. O'neill, G. Salerno, and K. Thomas, MR vs CT imaging: low rectal cancer tumour delineation for three-dimensional conformal radiotherapy, Br. J. Radiol, vol.82, pp.509-513, 2009.

T. Rosewall, V. Kong, and D. Vesprini, Prostate delineation using CT and MRI for radiotherapy patients with bilateral hip prostheses, Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol, vol.90, pp.325-330, 2009.

I. F. Ciernik, E. Dizendorf, and B. G. Baumert, Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study, Int. J. Radiat. Oncol. Biol. Phys, vol.57, pp.853-863, 2003.

D. De-ruysscher, U. Nestle, and R. Jeraj, PET scans in radiotherapy planning of lung cancer, Lung Cancer Amst. Neth, vol.75, pp.141-145, 2012.

M. Leclerc, E. Lartigau, and T. Lacornerie, Primary tumor delineation based on (18)FDG PET for locally advanced head and neck cancer treated by chemo-radiotherapy, Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol, vol.116, pp.87-93, 2015.

X. Li, N. Liu, and L. Zhu, Consequences of additional use of contrast-enhanced (18)F-FDG PET/CT in target volume delineation and dose distribution for pancreatic cancer, Br. J. Radiol, vol.88, 2015.

D. Verellen, M. De-ridder, and N. Linthout, Innovations in image-guided radiotherapy, Nat. Rev. Cancer, vol.7, pp.949-960, 2007.

B. W. Raaymakers, I. M. Jürgenliemk-schulz, and G. H. Bol, First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment, Phys. Med. Biol, vol.62, pp.41-50, 2017.

Z. Ma, W. Zhang, and Y. Su, Optical Surface Management System for Patient Positioning in Interfractional Breast Cancer Radiotherapy, BioMed Res. Int, p.6415497, 2018.

C. Lafond, A. Simon, and O. Henry, Radiothérapie adaptative en routine ? État de l'art : point de vue du physicien médical, Cancer/Radiothérapie, vol.19, pp.450-457, 2015.

R. Wang, S. Zhang, and L. Zhou, Volume and dosimetric variations during two-phase adaptive intensity-modulated radiotherapy for locally advanced nasopharyngeal carcinoma, Biomed. Mater. Université Paris-Saclay, vol.176

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France Eng, vol.24, pp.1217-1225, 2014.

J. Schatteman, D. Van-gestel, and D. Berwouts, A feasibility study on adaptive 18F-FDG-PETguided radiotherapy for recurrent and second primary head and neck cancer in the previously irradiated territory, Strahlenther. Onkol. Organ Dtsch. Rontgengesellschaft Al, 2018.

I. Chitapanarux, K. Chomprasert, and W. Nobnaop, A dosimetric comparison of two-phase adaptive intensity-modulated radiotherapy for locally advanced nasopharyngeal cancer, J. Radiat. Res. (Tokyo), vol.56, pp.529-538, 2015.

S. Lim-reinders, B. M. Keller, A. , and S. , Online Adaptive Radiation Therapy, Int. J. Radiat. Oncol. Biol. Phys, vol.99, pp.994-1003, 2017.

L. Henke, R. Kashani, and C. Robinson, Phase I trial of stereotactic MR-guided online adaptive radiation therapy (SMART) for the treatment of oligometastatic or unresectable primary malignancies of the abdomen, Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol, vol.126, pp.519-526, 2018.

M. Buschmann, K. Majercakova, and A. Sturdza, Image guided adaptive external beam radiation therapy for cervix cancer: Evaluation of a clinically implemented plan-of-the-day technique, Z. Med. Phys, 2017.

B. W. Raaymakers, J. Lagendijk, and J. Overweg, Integrating a 1.5 T MRI scanner with a 6 MV accelerator: proof of concept, Phys. Med. Biol, vol.54, pp.229-237, 2009.

L. Kerkmeijer, C. D. Fuller, and H. M. Verkooijen, The MRI-Linear Accelerator Consortium: Evidence-Based Clinical Introduction of an Innovation in Radiation Oncology Connecting Researchers, Methodology, Data Collection, Quality Assurance, and Technical Development. Front. Oncol, vol.6, p.215, 2016.

J. Kim, H. Lee, and H. Wu, Development of patient-controlled respiratory gating system based on visual guidance for magnetic-resonance image-guided radiation therapy, Med. Phys, vol.44, pp.4838-4846, 2017.

H. Li, H. Chen, and S. Dolly, An integrated model-driven method for in-treatment upper airway motion tracking using cine MRI in head and neck radiation therapy, Med. Phys, vol.43, p.4700, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01648077

C. C. Ling, J. Humm, and S. Larson, Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality, Int. J. Radiat. Oncol, vol.47, pp.551-560, 2000.

S. Devic, Towards Biological Target Volumes Definition for Radiotherapy Treatment Planning: Quo Vadis PET/CT?, J. Nucl. Med. Radiat. Ther, p.4, 2013.

S. Devic, N. Tomic, and S. Faria, Defining radiotherapy target volumes using 18F-fluorodeoxy-glucose positron emission tomography/computed tomography: still a Pandora's box?, Int. J. Radiat. Oncol. Biol. Phys, vol.78, pp.1555-1562, 2010.

M. R. Horsman, L. S. Mortensen, and J. B. Petersen, Imaging hypoxia to improve radiotherapy outcome, Nat. Rev. Clin. Oncol, vol.9, pp.674-687, 2012.

B. Henriques-de-figueiredo, C. Zacharatou, and S. Galland-girodet, Hypoxia imaging with Université

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190

, FMISO-PET for guided dose escalation with intensity-modulated radiotherapy in head-andneck cancers, Strahlenther. Onkol. Organ Dtsch. Rontgengesellschaft Al, vol.191, pp.217-224, 2015.

B. Lelandais, S. Ruan, and T. Denoeux, Fusion of multi-tracer PET images for dose painting, Med. Image Anal, vol.18, pp.1247-1259, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01127787

D. Thorwarth, X. Geets, and M. Paiusco, Physical radiotherapy treatment planning based on functional PET/CT data, Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol, vol.96, pp.317-324, 2010.

G. Meijer, J. Steenhuijsen, and M. Bal, Dose painting by contours versus dose painting by numbers for stage II/III lung cancer: practical implications of using a broad or sharp brush, Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol, vol.100, pp.396-401, 2011.

A. M. Barragán, S. Differding, and G. Janssens, Feasibility and robustness of dose painting by numbers in proton therapy with contour-driven plan optimization: Feasibility and robustness of dose painting by numbers in proton therapy, Med. Phys, vol.42, pp.2006-2017, 2015.

F. Duprez, W. De-neve, D. Gersem, and W. , Adaptive dose painting by numbers for head-andneck cancer, Int. J. Radiat. Oncol. Biol. Phys, vol.80, pp.1045-1055, 2011.

S. Differding, E. Sterpin, and N. Hermand, Radiation dose escalation based on FDG-PET driven dose painting by numbers in oropharyngeal squamous cell carcinoma: a dosimetric comparison between TomoTherapy-HA and RapidArc, Radiat. Oncol. Lond. Engl, vol.12, p.59, 2017.

M. Schlenter, V. Berneking, and B. Krenkel, Intensity-modulated radiotherapy of prostate cancer with simultaneous integrated boost after molecular imaging with 18F-choline-PET/CT : Clinical results and quality of life, Strahlenther. Onkol. Organ Dtsch. Rontgengesellschaft Al, 2018.

R. Stupp, W. P. Mason, and M. J. Van-den-bent, Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma, N. Engl. J. Med, vol.352, pp.987-996, 2005.

G. Minniti, D. Amelio, and M. Amichetti, Patterns of failure and comparison of different target volume delineations in patients with glioblastoma treated with conformal radiotherapy plus concomitant and adjuvant temozolomide, Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol, vol.97, pp.377-381, 2010.

P. Metcalfe, G. P. Liney, and L. Holloway, The potential for an enhanced role for MRI in radiation-therapy treatment planning, Technol. Cancer Res. Treat, vol.12, pp.429-446, 2013.

C. Chargari, R. Mazeron, and A. Escande, Image-guided adaptive brachytherapy in cervical cancer: Patterns of relapse by brachytherapy planning parameters, Brachytherapy, vol.15, pp.456-462, 2016.

P. Castelnau-marchand, C. Chargari, and P. Maroun, Clinical outcomes of definitive chemoradiation followed by intracavitary pulsed-dose rate image-guided adaptive brachytherapy in locally advanced cervical cancer, Gynecol. Oncol, vol.139, pp.288-294, 2015.

R. Mazeron, J. Gilmore, and I. Dumas, Adaptive 3D Image-Guided Brachytherapy: A Strong Argument in the Debate on Systematic Radical Hysterectomy for Locally Advanced Cervical Cancer, The Oncologist, vol.18, pp.415-422, 2013.

N. Magné, C. Chargari, and N. Sanfilippo, Technical aspects and perspectives of the vaginal mold applicator for brachytherapy of gynecologic malignancies, Brachytherapy

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, vol.9, pp.274-277, 2010.

I. Fumagalli, C. Haie-méder, and C. Chargari, 3D brachytherapy for cervical cancer: New optimization ways, Cancer Radiother. J. Soc. Francaise Radiother. Oncol, vol.22, pp.345-351, 2018.

R. Pötter, K. Tanderup, and C. Kirisits, The EMBRACE II study: The outcome and prospect of two decades of evolution within the GEC-ESTRO GYN working group and the EMBRACE studies, Clin. Transl. Radiat. Oncol, vol.9, pp.48-60, 2018.

D. Hanahan and R. A. Weinberg, Hallmarks of Cancer: The Next Generation, Cell, vol.144, pp.646-674, 2011.

D. Hanahan and R. A. Weinberg, The hallmarks of cancer. cell, vol.100, pp.57-70, 2000.

K. H. Allison and G. W. Sledge, Heterogeneity and cancer, Oncol. Williston Park N, vol.28, pp.772-778, 2014.

B. Vogelstein, N. Papadopoulos, and V. E. Velculescu, Cancer genome landscapes, Science, vol.339, pp.1546-1558, 2013.

M. Höglund, D. Gisselsson, and T. Säll, Coping with complexity, Cancer Genet. Cytogenet, vol.135, pp.103-109, 2002.

D. Shibata, J. Schaeffer, and Z. Li, Genetic Heterogeneity of the c-K-ras Locus in Colorectal Adenomas but not in Adenocarcinomas, JNCI J. Natl. Cancer Inst, vol.85, pp.1058-1063, 1993.

M. Gerlinger, A. J. Rowan, and S. Horswell, Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing, N. Engl. J. Med, vol.366, pp.883-892, 2012.

P. J. Campbell, S. Yachida, and L. J. Mudie, The patterns and dynamics of genomic instability in metastatic pancreatic cancer, Nature, vol.467, pp.1109-1113, 2010.

A. Marusyk and K. Polyak, Tumor heterogeneity: causes and consequences, Biochim. Biophys. Acta, vol.1805, pp.105-117, 2010.

M. Jamal-hanjani, S. A. Quezada, and J. Larkin, Translational implications of tumor heterogeneity, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.21, pp.1258-1266, 2015.

M. Robertson-tessi, R. J. Gillies, and R. A. Gatenby, Impact of metabolic heterogeneity on tumor growth, invasion, and treatment outcomes, Cancer Res, vol.75, pp.1567-1579, 2015.

E. A. Eisenhauer, P. Therasse, and J. Bogaerts, New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1), Eur. J. Cancer Oxf. Engl, vol.45, pp.228-247, 1990.

L. S. Fournier, S. Ammari, and R. Thiam, Critères de la réponse tumorale en imagerie : RECIST, mRECIST, Cheson, J. Radiol. Diagn. Interv, vol.95, pp.678-692, 2014.

C. C. Jaffe, Measures of response: RECIST, WHO, and new alternatives, J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol, vol.24, pp.3245-3251, 2006.

A. Burton, RECIST: right time to renovate?, Lancet Oncol, vol.8, pp.464-465, 2007.

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190

E. Segal, C. B. Sirlin, and C. Ooi, Decoding global gene expression programs in liver cancer by noninvasive imaging, Nat. Biotechnol, vol.25, pp.675-680, 2007.

M. Diehn, C. Nardini, and D. S. Wang, Identification of noninvasive imaging surrogates for brain tumor gene-expression modules, Proc. Natl. Acad. Sci, vol.105, pp.5213-5218, 2008.

R. J. Gillies, A. R. Anderson, and R. A. Gatenby, The biology underlying molecular imaging in oncology: from genome to anatome and back again, Clin. Radiol, vol.65, pp.517-521, 2010.

C. Liang, Y. Huang, and L. He, The development and validation of a CT-based radiomics signature for the preoperative discrimination of stage I-II and stage III-IV colorectal cancer, Oncotarget, 2016.

W. Wu, C. Parmar, and P. Grossmann, Exploratory Study to Identify Radiomics Classifiers for Lung Cancer Histology, Front. Oncol, vol.6, 2016.

W. Mu, Z. Chen, and Y. Liang, Staging of cervical cancer based on tumor heterogeneity characterized by texture features on (18)F-FDG PET images, Phys. Med. Biol, vol.60, pp.5123-5139, 2015.

H. Li, Y. Zhu, and E. S. Burnside, Quantitative MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set, NPJ Breast Cancer, vol.2, 2016.

Y. Huang, Z. Liu, and L. He, Radiomics Signature: A Potential Biomarker for the Prediction of Disease-Free Survival in Early-Stage (I or II) Non-Small Cell Lung Cancer, Radiology, vol.281, pp.947-957, 2016.

B. Zhang, J. Tian, and D. Dong, Radiomics Features of Multiparametric MRI as Novel Prognostic Factors in Advanced Nasopharyngeal Carcinoma, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.23, pp.4259-4269, 2017.

L. Cozzi, N. Dinapoli, and A. Fogliata, Radiomics based analysis to predict local control and survival in hepatocellular carcinoma patients treated with volumetric modulated arc therapy, BMC Cancer, vol.17, p.829, 2017.

R. Shiradkar, T. K. Podder, and A. Algohary, Radiomics based targeted radiotherapy planning (Rad-TRaP): a computational framework for prostate cancer treatment planning with MRI, Radiat. Oncol. Lond. Engl, vol.11, p.148, 2016.

R. Sun, F. Orlhac, and C. Robert, Regard to Mattonen, vol.95, pp.1544-1545, 2016.

M. Macmanus, U. Nestle, and K. E. Rosenzweig, Use of PET and PET/CT for Radiation Therapy Planning: IAEA expert report, Radiother. Oncol, vol.91, pp.85-94, 2006.

B. Foster, U. Bagci, and A. Mansoor, A review on segmentation of positron emission tomography images, Comput. Biol. Med, vol.50, pp.76-96, 2014.

L. Drever, W. Roa, and A. Mcewan, Iterative threshold segmentation for PET target volume delineation, Med. Phys, vol.34, pp.1253-1265, 2007.

R. Adams and L. Bischof, Seeded region growing, IEEE Trans. Pattern Anal. Mach. Intell

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, vol.16, pp.641-647, 1994.

U. Ba?ci, J. Yao, and J. Caban, A graph-theoretic approach for segmentation of PET images

, Conf. Proc. Annu. Int. Conf, pp.8479-8482, 2011.

L. Grady, Random walks for image segmentation, IEEE Trans. Pattern Anal. Mach. Intell, vol.28, pp.1768-1783, 2006.

D. P. Onoma, S. Ruan, and S. Thureau, Segmentation of heterogeneous or small FDG PET positive tissue based on a 3D-locally adaptive random walk algorithm, Comput. Med. Imaging Graph. Off. J. Comput. Med. Imaging Soc, vol.38, pp.753-763, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01117275

M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour models, Int. J. Comput. Vis, vol.1, pp.321-331, 1988.

X. Geets, J. A. Lee, and A. Bol, A gradient-based method for segmenting FDG-PET images: methodology and validation, Eur. J. Nucl. Med. Mol. Imaging, vol.34, pp.1427-1438, 2007.

M. Aristophanous, B. C. Penney, and M. K. Martel, A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography, Med. Phys, vol.34, pp.4223-4235, 2007.

M. Hatt, C. Le-rest, C. Descourt, and P. , Accurate automatic delineation of heterogeneous functional volumes in positron emission tomography for oncology applications, Int. J. Radiat. Oncol. Biol. Phys, vol.77, pp.301-308, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00537776

M. Hatt, C. Le-rest, C. Turzo, and A. , A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET, IEEE Trans. Med. Imaging, vol.28, pp.881-893, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00372910

D. L. Pham, C. Xu, and J. L. Prince, Current methods in medical image segmentation, Annu. Rev. Biomed. Eng, vol.2, pp.315-337, 2000.

Z. Ma, J. Tavares, and R. N. Jorge, Segmentation of Structures in Medical Images: Review and a New Computational Framework. 8th Int, Symp. Comput. Methods Biomech. Biomed. Eng, 2008.

M. Hatt, J. A. Lee, and C. R. Schmidtlein, Classification and evaluation strategies of autosegmentation approaches for PET: Report of AAPM task group No. 211, Med. Phys, vol.44, pp.1-42, 2017.

S. K. Vinod, M. G. Jameson, and M. Min, Uncertainties in volume delineation in radiation oncology: A systematic review and recommendations for future studies, Radiother. Oncol, vol.121, pp.169-179, 2016.

S. Ghose, L. Holloway, and K. Lim, A review of segmentation and deformable registration methods applied to adaptive cervical cancer radiation therapy treatment planning, Artif. Intell. Med, vol.64, pp.75-87, 2015.

F. Orlhac, M. Soussan, and K. Chouahnia, 18F-FDG PET-Derived Textural Indices Reflect Tissue-Specific Uptake Pattern in Non-Small Cell Lung Cancer, PloS One, vol.10, p.145063, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01820353

F. Tixier, L. Rest, C. C. Hatt, and M. , Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in Université, p.181

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France esophageal cancer, J. Nucl. Med. Off. Publ. Soc. Nucl. Med, vol.52, pp.369-378, 2011.

F. Yang, M. A. Thomas, and F. Dehdashti, Temporal analysis of intratumoral metabolic heterogeneity characterized by textural features in cervical cancer, Eur. J. Nucl. Med. Mol. Imaging, vol.40, pp.716-727, 2013.

M. Vallières, C. R. Freeman, and S. R. Skamene, A radiomics model from joint FDG-PET and MRI texture features for the prediction of lung metastases in soft-tissue sarcomas of the extremities, Phys. Med. Biol, vol.60, pp.5471-5496, 2015.

M. Carles, T. Bach, and I. Torres-espallardo, Significance of the impact of motion compensation on the variability of PET image features, Phys. Med. Biol, 2018.

A. Zwanenburg, S. Leger, and M. Vallières, Image biomarker standardisation initiative-feature definitions. ArXiv Prepr, 2016.

L. Dercle, S. Ammari, and M. Bateson, Limits of radiomic-based entropy as a surrogate of tumor heterogeneity: ROI-area, acquisition protocol and tissue site exert substantial influence, Sci. Rep, vol.7, p.7952, 2017.

S. G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Mach. Intell, vol.11, pp.674-693, 1989.

K. I. Laws, Rapid Texture Identification, pp.376-381, 1980.

R. M. Haralick, K. Shanmugam, and I. Dinstein, Textural Features for Image Classification, IEEE Trans. Syst. Man Cybern, vol.3, pp.610-621, 1973.

D. Xu, A. S. Kurani, and J. D. Furst, Run-length encoding for volumetric texture, 4th IASTED Int. Conf. Vis. Imaging Image Process, p.27, 2004.

G. Thibault, B. Fertil, and C. Navarro, Texture Indexes and Gray Level Size Zone Matrix Application to Cell Nuclei Classification, 10th Int. Conf. Pattern Recognit. Inf. Process. PRIP, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01499715

M. Amadasun and R. King, Textural features corresponding to textural properties, IEEE Trans. Syst. Man Cybern, vol.19, pp.1264-1274, 1989.

C. Nioche, F. Orlhac, and S. Boughdad, LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in the characterization of tumor heterogeneity, Cancer Res, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01938545

B. Sahiner, H. P. Chan, and N. Petrick, Improvement of mammographic mass characterization using spiculation meausures and morphological features, Med. Phys, vol.28, pp.1455-1465, 2001.

R. M. Rangayyan, N. R. Mudigonda, and J. E. Desautels, Boundary modelling and shape analysis methods for classification of mammographic masses, Med. Biol. Eng. Comput, vol.38, pp.487-496, 2000.

R. M. Rangayyan, N. M. El-faramawy, and J. E. Desautels, Measures of acutance and shape for classification of breast tumors, IEEE Trans. Med. Imaging, vol.16, pp.799-810, 1997.

D. Cusumano, N. Dinapoli, and L. Boldrini, Fractal-based radiomic approach to predict Université Paris-Saclay 182

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France complete pathological response after chemo-radiotherapy in rectal cancer, Radiol. Med. (Torino), vol.123, pp.286-295, 2018.

H. Aerts, E. R. Velazquez, and R. Leijenaar, Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach, Nat. Commun, vol.5, 2014.

X. He, B. Sahiner, and B. D. Gallas, Computerized characterization of lung nodule subtlety using thoracic CT images, Phys. Med. Biol, vol.59, pp.897-910, 2014.

J. Wang-null, X. Liu-null, and D. Dong-null, Prediction of malignant and benign of lung tumor using a quantitative radiomic method, Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf, vol.2016, pp.1272-1275, 2016.

E. Pena, M. Ojiaku, and J. R. Inacio, Can CT and MR Shape and Textural Features Differentiate Benign Versus Malignant Pleural Lesions?, Acad. Radiol, vol.24, pp.1277-1287, 2017.

M. Bogowicz, O. Riesterer, and K. Ikenberg, Computed Tomography Radiomics Predicts HPV Status and Local Tumor Control After Definitive Radiochemotherapy in Head and Neck Squamous Cell Carcinoma, Int. J. Radiat. Oncol. Biol. Phys, vol.99, pp.921-928, 2017.

E. Huynh, T. P. Coroller, and V. Narayan, Associations of Radiomic Data Extracted from Static and Respiratory-Gated CT Scans with Disease Recurrence in Lung Cancer Patients Treated with SBRT Deutsch E, ed. PLOS ONE, vol.12, p.169172, 2017.

S. H. Song, H. Park, and G. Lee, Imaging Phenotyping Using Radiomics to Predict Micropapillary Pattern within Lung Adenocarcinoma, J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer, vol.12, pp.624-632, 2017.

A. Chaddad, C. Desrosiers, and M. Toews, Predicting survival time of lung cancer patients using radiomic analysis, Oncotarget, vol.8, 2017.

S. Reuzé, E. Limkin, and D. Ou, A radiomic signature based on advanced tumor shape parameters (Spiculated-ness) to predict the outcome of locally advanced (LA) HNSCC patients, J. Clin. Oncol, vol.34, issue.15, 2016.

T. P. Coroller, P. Grossmann, and Y. Hou, CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma, Radiother. Oncol, vol.114, pp.345-350, 2015.

M. Hatt, M. Majdoub, and M. Vallières, 18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort, J. Nucl. Med. Off. Publ. Soc. Nucl. Med, vol.56, pp.38-44, 2015.

I. Buvat, F. Orlhac, and M. Soussan, Tumor Texture Analysis in PET: Where Do We Stand?, J. Nucl. Med, vol.56, pp.1642-1644, 2015.

C. Parmar, P. Grossmann, and J. Bussink, Machine Learning methods for Quantitative Radiomic Biomarkers. Sci. Rep, vol.5, 2015.

G. Roman-jimenez, O. Acosta, and J. Leseur, Random forests to predict tumor recurrence following cervical cancer therapy using pre-and per-treatment 18F-FDG PET parameters, Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf
URL : https://hal.archives-ouvertes.fr/hal-01533433

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, vol.2016, pp.2444-2447, 2016.

P. Desbordes, S. Ruan, and R. Modzelewski, Predictive value of initial FDG-PET features for treatment response and survival in esophageal cancer patients treated with chemo-radiation therapy using a random forest classifier, PloS One, vol.12, p.173208, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01649722

X. Gao, C. Chu, and Y. Li, The method and efficacy of support vector machine classifiers based on texture features and multi-resolution histogram from (18)F-FDG PET-CT images for the evaluation of mediastinal lymph nodes in patients with lung cancer, Eur. J. Radiol, vol.84, pp.312-317, 2015.

C. Lartizien, M. Rogez, and E. Niaf, Computer-aided staging of lymphoma patients with FDG PET/CT imaging based on textural information, IEEE J. Biomed. Health Inform, vol.18, pp.946-955, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00830260

L. Antunovic, F. Gallivanone, and M. Sollini, 18F]FDG PET/CT features for the molecular characterization of primary breast tumors, Eur. J. Nucl. Med. Mol. Imaging, vol.44, pp.1945-1954, 2017.

F. Gallivanone, M. M. Panzeri, and C. Canevari, Biomarkers from in vivo molecular imaging of breast cancer: pretreatment 18F-FDG PET predicts patient prognosis, and pretreatment DWI-MR predicts response to neoadjuvant chemotherapy, Magma N. Y. N, vol.30, pp.359-373, 2017.

Y. Balagurunathan, V. Kumar, and Y. Gu, Test-Retest Reproducibility Analysis of Lung CT Image Features, J. Digit. Imaging, vol.27, pp.805-823, 2014.

S. G. Armato, C. R. Meyer, and M. F. Mcnitt-gray, The Reference Image Database to Evaluate Response to therapy in lung cancer (RIDER) project: a resource for the development of changeanalysis software, Clin. Pharmacol. Ther, vol.84, pp.448-456, 2008.

R. Kohavi and G. H. John, Wrappers for feature subset selection, Artif. Intell, vol.97, pp.273-324, 1997.

H. Zou and T. Hastie, Regularization and Variable Selection via the Elastic Net, J. R. Stat. Soc. Ser. B Stat. Methodol, vol.67, pp.301-320, 2005.

J. Lao, Y. Chen, and Z. Li, A Deep Learning-Based Radiomics Model for Prediction of Survival in Glioblastoma Multiforme, Sci. Rep, vol.7, 2017.

S. J. Pan and Q. Yang, A Survey on Transfer Learning, IEEE Trans. Knowl. Data Eng, vol.22, pp.1345-1359, 2010.

V. Kumar, Y. Gu, and S. Basu, Radiomics: the process and the challenges, Magn. Reson. Imaging, vol.30, pp.1234-1248, 2012.

A. M. Karlberg, O. Saether, and L. Eikenes, Quantitative comparison of PET performanceSiemens Biograph mCT and mMR, EJNMMI Phys, vol.3, 2016.

C. S. Van-der-vos, D. Koopman, and S. Rijnsdorp, Quantification, improvement, and harmonization of small lesion detection with state-of-the-art PET, Eur. J. Nucl. Med. Mol. Imaging, vol.44, pp.4-16, 2017.

E. Quak, L. Roux, P. Lasnon, and C. , Does PET SUV Harmonization Affect PERCIST Response Classification?, J. Nucl. Med, vol.57, pp.1699-1706, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02043604

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190

C. Lasnon, R. J. Hicks, and J. Beauregard, Impact of point spread function reconstruction on thoracic lymph node staging with 18F-FDG PET/CT in non-small cell lung cancer, Clin. Nucl. Med, vol.37, pp.971-976, 2012.

F. L. Andersen, T. L. Klausen, and A. Loft, Clinical evaluation of PET image reconstruction using a spatial resolution model, Eur. J. Radiol, vol.82, pp.862-869, 2013.

G. Akamatsu, K. Mitsumoto, and T. Taniguchi, Influences of point-spread function and timeof-flight reconstructions on standardized uptake value of lymph node metastases in FDG-PET, Eur. J. Radiol, vol.83, pp.226-230, 2014.

T. Tsujikawa, H. Tsuyoshi, and M. Kanno, Selected PET radiomic features remain the same, Oncotarget, 2018.

J. C. Dickson, C. O'meara, and A. Barnes, A comparison of CT-and MR-based attenuation correction in neurological PET, Eur. J. Nucl. Med. Mol. Imaging, vol.41, pp.1176-1189, 2014.

J. Cortes-rodicio, G. Sanchez-merino, and M. A. Garcia-fidalgo, Identification of low variability textural features for heterogeneity quantification of (18)F-FDG PET/CT imaging, Rev. Espanola Med. Nucl. E Imagen Mol, vol.35, pp.379-384, 2016.

C. Bailly, C. Bodet-milin, and S. Couespel, Revisiting the Robustness of PET-Based Textural Features in the Context of Multi-Centric Trials, PloS One, vol.11, p.159984, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01414301

P. E. Galavis, C. Hollensen, and N. Jallow, Variability of textural features in FDG PET images due to different acquisition modes and reconstruction parameters, Acta Oncol, vol.49, pp.1012-1016, 2010.

J. Yan, J. L. Chu-shern, and H. Y. Loi, Impact of Image Reconstruction Settings on Texture Features in 18F-FDG PET, J. Nucl. Med, vol.56, pp.1667-1673, 2015.

I. Shiri, A. Rahmim, and P. Ghaffarian, The impact of image reconstruction settings on 18F-FDG PET radiomic features: multi-scanner phantom and patient studies, Eur. Radiol, 2017.

M. J. Nyflot, F. Yang, and D. Byrd, Quantitative radiomics: impact of stochastic effects on textural feature analysis implies the need for standards, J. Med. Imaging Bellingham Wash, vol.2, p.41002, 2015.

M. Shafiq-ul-hassan, G. G. Zhang, and K. Latifi, Intrinsic dependencies of CT radiomic features on voxel size and number of gray levels, Med. Phys, vol.44, pp.1050-1062, 2017.

D. Mackin, X. Fave, and L. Zhang, Harmonizing the pixel size in retrospective computed tomography radiomics studies Tian J, PLOS ONE, vol.12, p.178524, 2017.

M. Carles, I. Torres-espallardo, and A. Alberich-bayarri, Evaluation of PET texture features with heterogeneous phantoms: complementarity and effect of motion and segmentation method, Phys. Med. Biol, vol.62, pp.652-668, 2017.

S. Yip, K. Mccall, and M. Aristophanous, Comparison of texture features derived from static and respiratory-gated PET images in non-small cell lung cancer, PloS One, vol.9, p.115510, 2014.

J. A. Oliver, M. Budzevich, and G. G. Zhang, Variability of Image Features Computed from Conventional and Respiratory-Gated PET/CT Images of Lung Cancer, Transl. Oncol, vol.8, 2015.

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190, vol.534

J. A. Oliver, M. Budzevich, and D. Hunt, Sensitivity of Image Features to Noise in Conventional and Respiratory-Gated PET/CT Images of Lung Cancer: Uncorrelated Noise Effects, Technol. Cancer Res. Treat, vol.16, pp.595-608, 2017.

S. Reuzé, F. Orlhac, and C. Chargari, Prediction of cervical cancer recurrence using textural features extracted from 18

F. , PET images acquired with different scanners, Oncotarget, 2017.

J. S. Oh, B. C. Kang, and J. Roh, Intratumor Textural Heterogeneity on Pretreatment (18)F-FDG PET Images Predicts Response and Survival After Chemoradiotherapy for Hypopharyngeal Cancer, Ann. Surg. Oncol, vol.22, pp.2746-2754, 2015.

D. S. Surasi, P. Bhambhvani, and J. A. Baldwin, 18F-FDG PET and PET/CT Patient Preparation: A Review of the Literature, J. Nucl. Med. Technol, vol.42, pp.5-13, 2014.

C. Lasnon, B. Houdu, and E. Kammerer, Patient's weight: a neglected cause of variability in SUV measurements? A survey from an EARL accredited PET centre in 513 patients, Eur. J. Nucl. Med. Mol. Imaging, vol.43, pp.197-199, 2016.

S. Beaulieu, P. Kinahan, and J. Tseng, SUV varies with time after injection in (18)F-FDG PET of breast cancer: characterization and method to adjust for time differences, J. Nucl. Med. Off. Publ. Soc. Nucl. Med, vol.44, pp.1044-1050, 2003.

B. F. Kurland, M. Muzi, and L. M. Peterson, Multicenter Clinical Trials Using 18F-FDG PET to Measure Early Response to Oncologic Therapy: Effects of Injection-to-Acquisition Time Variability on Required Sample Size, J. Nucl. Med. Off. Publ. Soc. Nucl. Med, vol.57, pp.226-230, 2016.

K. A. Wangerin, M. Muzi, and L. M. Peterson, Effect of (18)F-FDG uptake time on lesion detectability in PET imaging of early stage breast cancer, Tomogr. J. Imaging Res, vol.1, pp.53-60, 2015.

E. H. De-groot, N. Post, and R. Boellaard, Optimized dose regimen for whole-body FDG-PET imaging, EJNMMI Res, vol.3, p.63, 2013.

U. Nestle, S. Kremp, and A. Schaefer-schuler, Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with nonSmall cell lung cancer, J. Nucl. Med. Off. Publ. Soc. Nucl. Med, vol.46, pp.1342-1348, 2005.

A. Dewalle-vignion, N. Yeni, and G. Petyt, Evaluation of PET volume segmentation methods: comparisons with expert manual delineations, Nucl. Med. Commun, vol.33, pp.34-42, 2012.

N. Withofs, C. Bernard, and C. Van-der-rest, FDG PET/CT for rectal carcinoma radiotherapy treatment planning: comparison of functional volume delineation algorithms and clinical challenges, J. Appl. Clin. Med. Phys, vol.15, p.4696, 2014.

P. Cheebsumon, M. Yaqub, and F. Van-velden, Impact of [ 18 F]FDG PET imaging parameters on automatic tumour delineation: need for improved tumour delineation methodology, Eur. J. Nucl. Med. Mol. Imaging, vol.38, pp.2136-2144, 2011.

U. Bashir, G. Azad, and M. M. Siddique, The effects of segmentation algorithms on the measurement of 18F-FDG PET texture parameters in non-small cell lung cancer, EJNMMI Res

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, vol.7, p.60, 2017.

F. Ben-bouallègue, Y. A. Tabaa, and M. Kafrouni, Association between textural and morphological tumor indices on baseline PET-CT and early metabolic response on interim PET-CT in bulky malignant lymphomas, Med. Phys, vol.44, pp.4608-4619, 2017.

P. B. Johnson, L. A. Young, and N. Lamichhane, Quantitative imaging: Correlating image features with the segmentation accuracy of PET based tumor contours in the lung, Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol, vol.123, pp.257-262, 2017.

F. Van-velden, G. M. Kramer, and V. Frings, Repeatability of Radiomic Features in NonSmall-Cell Lung Cancer [(18)F]FDG-PET/CT Studies: Impact of Reconstruction and Delineation, Mol. Imaging Biol. MIB Off. Publ. Acad. Mol. Imaging, vol.18, pp.788-795, 2016.

I. S. Knudtsen, W. Van-elmpt, and M. Ollers, Impact of PET reconstruction algorithm and threshold on dose painting of non-small cell lung cancer, Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol, vol.113, pp.210-214, 2014.

F. Orlhac, M. Soussan, and J. Maisonobe, Tumor Texture Analysis in 18F-FDG PET: Relationships Between Texture Parameters, Histogram Indices, Standardized Uptake Values, Metabolic Volumes, and Total Lesion Glycolysis, J. Nucl. Med, vol.55, pp.414-422, 2014.

M. Hatt, B. Laurent, and H. Fayad, Tumour functional sphericity from PET images: prognostic value in NSCLC and impact of delineation method, Eur. J. Nucl. Med. Mol. Imaging, vol.45, pp.630-641, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01659258

M. Hatt, A. Dekker, D. Ruysscher, and D. , Accurate functional volume definition in PET for radiotherapy treatment planning, pp.5567-5571, 2008.

M. Hatt, F. Tixier, C. Le-rest, and C. , Robustness of intratumour 18 F-FDG PET uptake heterogeneity quantification for therapy response prediction in oesophageal carcinoma, Eur. J. Nucl. Med. Mol. Imaging, vol.40, pp.1662-1671, 2013.

B. A. Altazi, G. G. Zhang, and D. C. Fernandez, Reproducibility of F18-FDG PET radiomic features for different cervical tumor segmentation methods, gray-level discretization, and reconstruction algorithms, J. Appl. Clin. Med. Phys, vol.18, pp.32-48, 2017.

K. G. Foley, R. K. Hills, and B. Berthon, Development and validation of a prognostic model incorporating texture analysis derived from standardised segmentation of PET in patients with oesophageal cancer, Eur. Radiol, vol.28, pp.428-436, 2018.

B. Berthon, C. Marshall, and M. Evans, ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography, Phys. Med. Biol, vol.61, pp.4855-4869, 2016.

R. Leijenaar, G. Nalbantov, and S. Carvalho, The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis, Sci. Rep, vol.5, p.11075, 2015.

F. Orlhac, B. Thézé, and M. Soussan, Multiscale Texture Analysis: From 18F-FDG PET Images to Histologic Images, J. Nucl. Med. Off. Publ. Soc. Nucl. Med, vol.57, pp.1823-1828, 2016.

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190

F. Orlhac, C. Nioche, and M. Soussan, Understanding changes in tumor textural indices in PET: a comparison between visual assessment and index values in simulated and patient data, J. Nucl. Med. Off. Publ. Soc. Nucl. Med, 2016.

A. Schernberg, S. Reuze, and F. Orlhac, A score combining baseline neutrophilia and primary tumor SUVpeak measured from FDG PET is associated with outcome in locally advanced cervical cancer, Eur. J. Nucl. Med. Mol. Imaging, 2017.

M. Hatt, F. Tixier, and L. Pierce, Characterization of PET/CT images using texture analysis: the past, the present? any future?, Eur. J. Nucl. Med. Mol. Imaging, vol.44, pp.151-165, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01330349

M. E. Mayerhoefer, P. Szomolanyi, and D. Jirak, Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination: an application-oriented study, Med. Phys, vol.36, pp.1236-1243, 2009.

S. A. Waugh, R. A. Lerski, and L. Bidaut, The influence of field strength and different clinical breast MRI protocols on the outcome of texture analysis using foam phantoms, Med. Phys, vol.38, pp.5058-5066, 2011.

D. Molina, J. Pérez-beteta, and A. Martínez-gonzález, Influence of gray level and space discretization on brain tumor heterogeneity measures obtained from magnetic resonance images, Comput. Biol. Med, vol.78, pp.49-57, 2016.

D. Molina, J. Pérez-beteta, and A. Martínez-gonzález, Lack of robustness of textural measures obtained from 3D brain tumor MRIs impose a need for standardization Sherman JH, PLOS ONE, vol.12, p.178843, 2017.

G. Collewet, M. Strzelecki, and M. F. , Influence of MRI acquisition protocols and image intensity normalization methods on texture classification, Magn. Reson. Imaging, vol.22, pp.81-91, 2004.

J. Goya-outi, F. Orlhac, and R. Calmon, Computation of reliable textural indices from multimodal brain MRI: suggestions based on a study of patients with diffuse intrinsic pontine glioma, Phys. Med. Biol, vol.63, p.105003, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01801219

D. Jirák, M. Dezortová, and M. Hájek, Phantoms for texture analysis of MR images. Long-term and multi-center study, Med. Phys, vol.31, pp.616-622, 2004.

F. Yang, N. Dogan, and R. Stoyanova, Evaluation of radiomic texture feature error due to MRI acquisition and reconstruction: A simulation study utilizing ground truth, Phys. Medica PM Int. J. Devoted Appl. Phys. Med. Biol. Off. J. Ital. Assoc. Biomed. Phys. AIFB, vol.50, pp.26-36, 2018.

B. H. Menze, A. Jakab, and S. Bauer, The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS), IEEE Trans. Med. Imaging, vol.34, pp.1993-2024, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00935640

K. P. Pruessmann, M. Weiger, and P. Börnert, Advances in sensitivity encoding with arbitrary k -space trajectories: SENSE With Arbitrary k -Space Trajectories, Magn. Reson. Med, vol.46, pp.638-651, 2001.

B. Wohlberg and P. Rodriguez, An Iteratively Reweighted Norm Algorithm for Minimization of Total Variation Functionals, IEEE Signal Process. Lett, vol.14, pp.948-951, 2007.

M. Guerquin-kern, M. Haberlin, and K. P. Pruessmann, A Fast Wavelet-Based Reconstruction Université Paris-Saclay 188

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France Method for Magnetic Resonance Imaging, IEEE Trans. Med. Imaging, vol.30, pp.1649-1660, 2011.

S. Reuzé, F. Orlhac, and C. Chargari, Prediction of cervical cancer recurrence using textural features extracted from 18

F. , PET images acquired with different scanners, Oncotarget, 2017.

V. Bettinardi, L. Presotto, and E. Rapisarda, Physical Performance of the new hybrid PET?CT Discovery-690, Med. Phys, vol.38, p.5394, 2011.

S. Surti, A. Kuhn, and M. E. Werner, Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities, J. Nucl. Med. Off. Publ. Soc. Nucl. Med, vol.48, pp.471-480, 2007.

G. Reynés-llompart, C. Gámez-cenzano, and I. Romero-zayas, Performance Characteristics of the Whole-Body Discovery IQ PET/CT System, J. Nucl. Med, vol.58, pp.1155-1161, 2017.

S. Ahn, S. G. Ross, and E. Asma, Quantitative comparison of OSEM and penalized likelihood image reconstruction using relative difference penalties for clinical PET, Phys. Med. Biol, vol.60, pp.5733-5751, 2015.

E. Quak, L. Roux, P. Hofman, and M. S. , Harmonizing FDG PET quantification while maintaining optimal lesion detection: prospective multicentre validation in 517 oncology patients, Eur. J. Nucl. Med. Mol. Imaging, vol.42, pp.2072-2082, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01276023

R. Boellaard, The engagement of FDG PET/CT image quality and harmonized quantification: from competitive to complementary, Eur. J. Nucl. Med. Mol. Imaging, vol.43, pp.1-4, 2016.

C. Lasnon, M. Majdoub, and B. Lavigne, 18)F-FDG PET/CT heterogeneity quantification through textural features in the era of harmonisation programs: a focus on lung cancer, Eur. J. Nucl. Med. Mol. Imaging, vol.43, pp.2324-2335, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01386846

J. Ptá?ek, P. Karhan, and P. Fiala, Optimal reconstruction matrix and PET image filtration for pointspread function and time-of-flight reconstruction -A phantom study, Phys. Medica PM Int. J. Devoted Appl. Phys. Med. Biol. Off. J. Ital. Assoc. Biomed. Phys. AIFB, vol.39, pp.95-99, 2017.

G. Riegler, G. Karanikas, and I. Rausch, Influence of PET reconstruction technique and matrix size on qualitative and quantitative assessment of lung lesions on [18F]-FDG-PET: A prospective study in 37 cancer patients, Eur. J. Radiol, vol.90, pp.20-26, 2017.

F. Orlhac, S. Boughdad, and C. Philippe, A post-reconstruction harmonization method for multicenter radiomic studies in PET, J. Nucl. Med, 2018.

W. E. Johnson, C. Li, and A. Rabinovic, Adjusting batch effects in microarray expression data using empirical Bayes methods, Biostat. Oxf. Engl, vol.8, pp.118-127, 2007.

M. E. Mayerhoefer, P. Szomolanyi, and D. Jirak, Effects of magnetic resonance image interpolation on the results of texture-based pattern classification: a phantom study, Invest. Radiol, vol.44, pp.405-411, 2009.

L. Scarpace, T. Mikkelsen, and S. Cha, Radiology Data from The Cancer Genome Atlas Glioblastoma Multiforme, 2016.

K. Clark, B. Vendt, and K. Smith, The Cancer Imaging Archive (TCIA): Maintaining and Université Paris-Saclay 189

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France Operating a Public Information Repository, J. Digit. Imaging, vol.26, pp.1045-1057, 2013.

A. Madabhushi and J. K. Udupa, New methods of MR image intensity standardization via generalized scale, Med. Phys, vol.33, pp.3426-3434, 2006.

L. G. Nyúl, J. K. Udupa, and X. Zhang, New variants of a method of MRI scale standardization, IEEE Trans. Med. Imaging, vol.19, pp.143-150, 2000.

R. T. Shinohara, E. M. Sweeney, and J. Goldsmith, Statistical normalization techniques for magnetic resonance imaging, NeuroImage Clin, vol.6, pp.9-19, 2014.

M. Shah, Y. Xiao, and N. Subbanna, Evaluating intensity normalization on MRIs of human brain with multiple sclerosis, Med. Image Anal, vol.15, pp.267-282, 2011.

F. G. Herrera, T. Breuneval, and J. O. Prior, FDG-PET/CT metabolic parameters as useful prognostic factors in cervical cancer patients treated with chemo-radiotherapy, Radiat. Oncol, vol.18, p.11, 2016.

N. Scher, J. Castelli, and A. Depeursinge, FDG PET/CT parameters to predict survival and recurrence in patients with locally advanced cervical cancer treated with chemoradiotherapy. Cancer/Radiothérapie, vol.18, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01807371

R. Mazeron, P. Castelnau-marchand, and A. Escande, Tumor dose-volume response in imageguided adaptive brachytherapy for cervical cancer: A meta-regression analysis, Brachytherapy, vol.15, pp.537-542, 2016.

M. Follen, C. F. Levenback, and R. B. Iyer, Imaging in cervical cancer. Cancer, vol.98, pp.2028-2038, 2003.

Y. Sun, P. Lu, and L. Yu, The Volume-metabolic Combined Parameters from (18)F-FDG PET/CT May Help Predict the Outcomes of Cervical Carcinoma, Acad. Radiol, vol.23, pp.605-610, 2016.

J. H. Hong, U. S. Jung, and K. J. Min, Prognostic value of total lesion glycolysis measured by 18F-FDG PET/CT in patients with locally advanced cervical cancer, Nucl. Med. Commun, vol.37, pp.843-848, 2016.

F. Yang, L. Young, and P. Grigsby, Predictive Value of Standardized Intratumoral Metabolic Heterogeneity in Locally Advanced Cervical Cancer Treated With Chemoradiation, Int. J. Gynecol. Cancer Off. J. Int. Gynecol. Cancer Soc, vol.26, pp.777-784, 2016.

I. El-naqa, P. Grigsby, and A. Apte, Exploring feature-based approaches in PET images for predicting cancer treatment outcomes, Pattern Recognit, vol.42, pp.1162-1171, 2009.

F. Lucia, D. Visvikis, and M. Desseroit, Prediction of outcome using pretreatment18F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy, Eur. J. Nucl. Med. Mol. Imaging, vol.45, pp.768-786, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01659241

R. Mazeron, P. Castelnau-marchand, and I. Dumas, Impact of treatment time and dose escalation on local control in locally advanced cervical cancer treated by chemoradiation and image-guided pulsed-dose rate adaptive brachytherapy, Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol, vol.114, pp.257-263, 2015.

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190

A. Escande, C. Haie-meder, and P. Maroun, Neutrophilia in locally advanced cervical cancer: A novel biomarker for image-guided adaptive brachytherapy?, Oncotarget, vol.7, pp.74886-74894, 2016.

A. Schernberg, A. Escande, R. Del-campo, and E. , Leukocytosis and neutrophilia predicts outcome in anal cancer, Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol, vol.122, pp.137-145, 2017.

A. Schernberg, L. Moureau-zabotto, R. Del-campo, and E. , Leukocytosis and neutrophilia predict outcome in locally advanced esophageal cancer treated with definitive chemoradiation, Oncotarget, vol.8, pp.11579-11588, 2017.

A. Schernberg, F. Huguet, and L. Moureau-zabotto, External validation of leukocytosis and neutrophilia as a prognostic marker in anal carcinoma treated with definitive chemoradiation, Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol, vol.124, pp.110-117, 2017.

A. Escande, C. Haie-meder, and R. Mazeron, Brachytherapy for Conservative Treatment of Invasive Penile Carcinoma: Prognostic Factors and Long-Term Analysis of Outcome, Int. J. Radiat. Oncol. Biol. Phys, vol.99, pp.563-570, 2017.

C. Nioche, F. Orlhac, and I. Buvat, A software for characterizing intra-tumor heterogeneity in multimodality imaging towards the creation of reference charts, Eur J Nucl Med Mol Imaging, vol.43, issue.1, p.516, 2016.

. Akaike, Information theory and an extension of the maximum likelihood principle, Second International Symposium on Information Theory, 1973.

Z. Zhang, Variable selection with stepwise and best subset approaches, Ann. Transl. Med, vol.4, pp.136-136, 2016.

F. Xue, L. L. Lin, and F. Dehdashti, F-18 fluorodeoxyglucose uptake in primary cervical cancer as an indicator of prognosis after radiation therapy, Gynecol. Oncol, vol.101, pp.147-151, 2006.

C. Kunos, T. Radivoyevitch, and A. Fw, 18F-fluoro-2-deoxy-D-glucose positron emission tomography standard uptake value ratio as an indicator of cervical cancer chemoradiation therapeutic response, Int. J. Gynecol. Cancer Off. J. Int. Gynecol. Cancer Soc, vol.21, pp.1117-1123, 2011.

J. Choi, H. J. Kim, and Y. H. Jeong, The Role of (18) F-FDG PET/CT in Assessing Therapy Response in Cervix Cancer after Concurrent Chemoradiation Therapy, Nucl. Med. Mol. Imaging, vol.48, pp.130-136, 2014.

K. Nakamura, Y. Okumura, and J. Kodama, The predictive value of measurement of SUVmax and SCC-antigen in patients with pretreatment of primary squamous cell carcinoma of cervix, Gynecol. Oncol, vol.119, pp.81-86, 2010.

T. Skripcak, C. Belka, and W. Bosch, Creating a data exchange strategy for radiotherapy research: towards federated databases and anonymised public datasets, Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol, vol.113, pp.303-309, 2014.

F. Bamberg, H. Kauczor, and S. Weckbach, Whole-Body MR Imaging in the German National Cohort: Rationale, Design, and Technical Background, Radiology, vol.277, pp.206-220, 2015.

J. Kalpathy-cramer, J. B. Freymann, and J. S. Kirby, Quantitative Imaging Network: Data Sharing and Competitive AlgorithmValidation Leveraging The Cancer Imaging Archive

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France Oncol, vol.7, pp.147-152, 2014.

H. Aerts, The Potential of Radiomic-Based Phenotyping in Precision Medicine: A Review, JAMA Oncol, vol.2, pp.1636-1642, 2016.

E. A. Kidd, I. El-naqa, and B. A. Siegel, FDG-PET-based prognostic nomograms for locally advanced cervical cancer, Gynecol. Oncol, vol.127, pp.136-140, 2012.

M. A. Lodge, Repeatability of SUV in Oncologic 18 F-FDG PET, J. Nucl. Med, vol.58, pp.523-532, 2017.

M. Yagi, J. Froelich, and L. Arentsen, Longitudinal FDG-PET Revealed Regional Functional Heterogeneity of Bone Marrow, Site-Dependent Response to Treatment and Correlation with Hematological Parameters, J. Cancer, vol.6, pp.531-537, 2015.

Y. Murata, K. Kubota, and M. Yukihiro, Correlations between 18F-FDG uptake by bone marrow and hematological parameters: measurements by PET/CT, Nucl. Med. Biol, vol.33, pp.999-1004, 2006.

R. D. Seban, C. Robert, and L. Dercle, OC-0394: Pretreatment bone marrow SUVmax in locally advanced cervical cancer: a novel prognostic biomarker?, Radiother. Oncol, vol.127, p.202, 2018.

A. Sturdza, R. Pötter, and L. U. Fokdal, Image guided brachytherapy in locally advanced cervical cancer: Improved pelvic control and survival in RetroEMBRACE, a multicenter cohort study, Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol, vol.120, pp.428-433, 2016.

J. Fruehwald-pallamar, J. R. Hesselink, and M. F. Mafee, Texture-Based Analysis of 100 MR Examinations of Head and Neck Tumors -Is It Possible to Discriminate Between Benign and Malignant Masses in a Multicenter Trial?, ROFO. Fortschr. Geb. Rontgenstr. Nuklearmed, vol.188, pp.195-202, 2016.

R. Leijenaar, S. Carvalho, and E. R. Velazquez, Stability of FDG-PET Radiomics features: An integrated analysis of test-retest and inter-observer variability, Acta Oncol, vol.52, pp.1391-1397, 2013.

P. Tiwari, P. Prasanna, and L. Wolansky, Computer-Extracted Texture Features to Distinguish Cerebral Radionecrosis from Recurrent Brain Tumors on Multiparametric MRI: A Feasibility Study, AJNR Am. J. Neuroradiol, vol.37, pp.2231-2236, 2016.

A. Larroza, D. Moratal, and A. Paredes-sánchez, Support vector machine classification of brain metastasis and radiation necrosis based on texture analysis in MRI, J. Magn. Reson. Imaging JMRI, vol.42, pp.1362-1368, 2015.

P. Tiwari, S. F. Danish, and B. Jiang, Association of computerized texture features on MRI with early treatment response following laser ablation for neuropathic cancer pain: preliminary findings, J. Med. Imaging Bellingham Wash, vol.2, p.41008, 2015.

S. Viswanath, R. Toth, and M. Rusu, Identifying Quantitative In Vivo Multi-Parametric MRI Features For Treatment Related Changes after Laser Interstitial Thermal Therapy of Prostate Cancer, Neurocomputing, vol.144, pp.13-23, 2014.

P. Prasanna, P. Tiwari, and A. Madabhushi, Co-occurrence of local anisotropic gradient orientations (CoLIAGe): distinguishing tumor confounders and molecular subtypes on MRI

, Espace Technologique / Immeuble Discovery Route de l'Orme aux Merisiers RD 128 / 91190

, Comput. Comput.-Assist. Interv. MICCAI Int. Conf. Med. Image Comput. Comput.-Assist. Interv, vol.17, pp.73-80, 2014.

Y. Lakhman, H. Veeraraghavan, and J. Chaim, Differentiation of Uterine Leiomyosarcoma from Atypical Leiomyoma: Diagnostic Accuracy of Qualitative MR Imaging Features and Feasibility of Texture Analysis, Eur. Radiol, vol.27, pp.2903-2915, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02299248

V. S. Parekh and M. A. Jacobs, Integrated radiomic framework for breast cancer and tumor biology using advanced machine learning and multiparametric MRI, NPJ Breast Cancer, vol.3, p.43, 2017.

J. B. Tenenbaum, V. De-silva, and J. C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science, vol.290, pp.2319-2323, 2000.

C. Cortes and V. Vapnik, Support-vector networks, Mach. Learn, vol.20, pp.273-297, 1995.

A. J. Walker, J. Ruzevick, and A. A. Malayeri, Postradiation imaging changes in the CNS: how can we differentiate between treatment effect and disease progression?, Future Oncol, vol.10, pp.1277-1297, 2014.

A. Raimbault, X. Cazals, and M. Lauvin, Radionecrosis of malignant glioma and cerebral metastasis: A diagnostic challenge in MRI, Diagn. Interv. Imaging, vol.95, pp.985-1000, 2014.

J. Van-griethuysen, A. Fedorov, and C. Parmar, Computational Radiomics System to Decode the Radiographic Phenotype, Cancer Res, vol.77, pp.104-107, 2017.

A. P. Apte, A. Iyer, and M. Crispin-ortuzar, Technical Note: Extension of CERR for computational radiomics: A comprehensive MATLAB platform for reproducible radiomics research, Med. Phys, 2018.

Y. Fang, C. Lin, and M. Shih, Development and evaluation of an open-source software package "CGITA" for quantifying tumor heterogeneity with molecular images, BioMed Res. Int, p.248505, 2014.

L. Zhang, D. V. Fried, and X. J. Fave, IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics, Med. Phys, vol.42, pp.1341-1353, 2015.

B. Ganeshan, V. Goh, and H. C. Mandeville, Non-Small Cell Lung Cancer: Histopathologic Correlates for Texture Parameters at CT, Radiology, vol.266, pp.326-336, 2013.

P. M. Szczypinski, M. Strzelecki, and A. Materka, Mazda -a software for texture analysis, pp.245-249, 2007.

. Ej-limkin, . Reuzé, . Carré, . Sun, . Schernberg et al., The complexity of tumor shape, spiculatedness, correlates with tumor radiomic shape features, Liste des publications Publications dans des revues à comité de lecture, vol.2

. -a-alexis, . Reuzé, . Bockel, A. Berthelot, . Dirand et al., Radiomics-based analysis of pre-brachytherapy MRI for predicting relapse in locally advanced cervical cancer, Int J Radiat Oncol Biol Phys

C. -r-d-seban, . Robert, . Dercle, S. Yeh, . Reuzé et al., Increased bone marrow SUVmax on 18 F-FDG PET is associated with higher locoregional treatment failure in patients with cervical cancer treated by chemoradiotherapy and brachytherapy, OncoImmunology

F. -c-nioche, . Orlhac, . Boughdad, . Reuzé, C. Goya-outi et al.,

I. Frouin and . Buvat, LIFEx: a freeware for radiomic feature calculation in multimodality imaging to accelerate advances in tumor heterogeneity characterization, Cancer Research, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01938545

. -s-reuzé, . Schernberg, . Orlhac, . Sun, . Chargari et al., Radiomics in Nuclear Medicine applied to Radiation Therapy: methods, pitfalls and challenges, Int J Radiat Oncol Biol Phys, 2018.

-. Schernberg, S. Reuzé, . Orlhac, . Buvat, . Dercle et al., A score combining baseline neutrophilia and primari tumor SUVpeak is associated with outcome in locally advanced cervical cancer, Eur J Nucl Med Mol Imaging, 2017.

. -r-sun, . Ej-limkin, . Dercle, . Reuzé, C. Zacharaki et al.,

A. , N. Paragios, C. Deutsch, C. Ferté, and . Robert, Computational medical imaging (radiomics) and potential for immuno-oncology, Cancer Radiotherapy, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01668902

F. -s-reuzé, C. Orlhac, C. Chargari, . Nioche, . Limkin et al., Prediction of cervical cancer recurrence using textural features extracted from 18 F-FDG PET images acquired with different scanners, Oncotarget, 2017.

. -ej-limkin, . Sun, E. Dercle, C. Zacharaki, . Robert et al., Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology, Ann Oncol, 2017.

. -r-sun, . Orlhac, . Robert, . Reuzé, . Schernberg et al., Regard to Mattonen, 2016.

. S-reuzé, Glioblastoma versus Cerebral Metastases: Differentiation Using a Radiomic Evaluation on Post-Contrast 3DT1 MR Images, 2018.

. -s-reuzé, Glioblastomes versus Métastases Cérébrales : une Analyse de Texture basée sur des Séquences d'IRM 3DT1 après Injection de Produit de Contraste, Voxel scale texture analysis: an innovative radiomics pipeline for intra-tumoral heterogeneity characterization in glioblastoma, vol.18, 2018.

S. Barcelona and . Reuzé, An innovative normalization method for MRI texture analysis to characterize tumor heterogeneity in glioblastoma, seminar young scientists SFPM, FDG-PET is associated with higher locoregional treatment failure in patients with cervical cancer treated by chemoradiotherapy and brachytherapy, 2017.

. -a-alexis and *. Reuzé, Texture analysis on pre-brachytherapy MRI for predicting relapse in locally advanced cervical cancer, seminar young scientists SFPM, 2017.

. -s-reuzé, Prediction of cervical cancer recurrence using textural features calculated from 18F-FDG PET images, 2016.

. -s-reuzé, Prediction of cervical cancer recurrence using textural features calculated from 18F-FDG PET images, 2016.

. S-reuzé, Voxel scale texture analysis : a new radiomics pipeline for tumor heterogeneity characterization, Communications orales en workshops et journées scientifiques, 2018.

. -s-reuzé, Multimodal imaging biomarkers for predicting cervical cancer treatment outcome: towards a clinical implementation?, Implementation of radiomic studies in multimodal imaging, Journées scientifiques de Gustave Roussy, 2017.

. -s-reuzé, Analyse de Texture : un outil d'orientation diagnostique. Exemple d'une cohorte de 140 lésions cérébrales, Assessment of efficacy and safety of bevacizumab in the treatment of brain metastases radionecrosis: A retrospective cohort analysis, 2018.

. -a-gobert, . Sun, S. Hendriks, and . Reuzé, Assessment of clinical, radiological and radiomic predictive factors of bevacizumab efficacy in brain metastases radionecrosis treatment, 2018.

. -s-reuzé, Development of a filter-based method for multicenter PET image harmonization in radiomic studies, 2018.

-. E. Limkin and . Reuzé, A score combining SUVpeak of the primary tumor computed on pre-treatment 18F-FDG-PET scans and neutrophilia predicts outcome in locally advanced cervical cancer, ESTRO 2018, 2017.

. -r-sun, . Limkin, . Dercle, . Champiat, and . Reuzé, A novel radiomic based imaging tool to monitor tumor lymphocyte infiltration and outcome of patients treated by anti-PD-1/PD-L1, 2017.

F. -c-nioche, . Orlhac, . Boughdad, and . Reuzé, A freeware for tumor heterogeneity characterization in PET, SPECT, CT, MRI and US to accelerate advances in radiomics, 2017.

F. -i-chabert, . Dhermain, . Bibard, and . Reuzé, An advanced tumor shape radiomic signature predicts recurrence of locally advanced (LA) HNSCC patients, A radiomic signature based on advanced tumor shape parameters, 2016.