A. Züttel, A. Remhof, and L. Schlapbach, Hydrogen as a Future Energy Carrier, 2011.

N. S. Lewis, Light work with water, Nature, vol.414, issue.6864, pp.589-590, 2001.

J. K. Nørskov, F. Abild-pedersen, F. Studt, and T. Bligaard, Density functional theory in surface chemistry and catalysis, Proc. Natl. Acad. Sci, vol.108, pp.937-943, 2011.

Y. Li and G. A. Somorjai, Nanoscale Advances in Catalysis and Energy Applications, pp.2289-2295, 2010.

J. Creus, Ligand-capped Ru nanoparticles as efficient electrocatalyst for the hydrogen evolution reaction, ACS Catal, vol.8, issue.12, pp.11094-11102, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01954374

J. D. Tovar, Light-driven water oxidation using hybrid photosensitizer-decorated Co 3 O 4 nanoparticles, vol.9, pp.506-515, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01948406

S. A. Grigoriev, P. Millet, and V. N. Fateev, Evaluation of carbon-supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolysers, J. Power Sources, vol.177, issue.2, pp.281-285, 2008.

S. Liu, X. Mu, H. Duan, C. Chen, and H. Zhang, Pd nanoparticle assemblies as efficient catalysts for the hydrogen evolution and oxygen reduction reactions, Eur. J. Inorg. Chem, vol.3, pp.535-539, 2017.

S. Drouet, A porous Ru nanomaterial as an efficient electrocatalyst for the hydrogen evolution reaction under acidic and neutral conditions, hemical Commun, vol.53, issue.85, pp.11713-11716, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01940904

J. K. Nørskov, Trends in the Exchange Current for Hydrogen Evolution, J. Electrochem. Soc, vol.152, issue.3, pp.23-26, 2005.

J. P. Wilcoxon and B. L. Abrams, Synthesis, structure and properties of metal nanoclusters, Chem. Soc. Rev, vol.35, issue.11, pp.1162-1194, 2006.

C. Burda, X. Chen, R. Narayanan, and M. , Chemistry and properties of nanocrystals of different shapes, vol.105, 2005.

G. Schmid, Nanoparticles: From Theory to Applications, 2010.

J. D. Iii and R. G. Finke, A review of modern transition-metal nanoclusters: their synthesis, characterization, and applications in catalysis, J. Mol. Catal. A Chem, vol.145, issue.1-2, pp.1-44, 1999.

R. Narayanan and M. A. El-sayed, Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability, J. Phys. Chem. B, vol.109, pp.12663-12676, 2005.

B. H. Kim, M. J. Hackett, J. Park, and T. Hyeon, Synthesis, Characterization, and Application of Ultrasmall Nanoparticles, Chem. Mater, vol.26, issue.1, pp.59-71, 2013.

T. Castro, R. Reifenberger, E. Choi, and R. P. Andres, Size-dependent melting temperature of individual nanometer-sized metallic clusters, Phys. Rev. B, vol.42, issue.13, pp.8548-8557, 1990.

G. Schmid, Metal Nanocluster in Catalysis ad Materials Science: The Issues of Size Control, 2008.

E. Roduner, Size matters: why nanomaterials are different, Chem. Soc. Rev, vol.35, issue.7, pp.583-592, 2006.

L. Guczi, Z. Paszti, and G. Petö, Metal Nanocluster in Catalysis ad Materials Science: The Issues of Size Control, 2008.

R. Narayanan, A. C. Tabor, and M. A. El-sayed, Can the observed changes in the size or shape of a colloidal nanocatalyst reveal the nanocatalysis mechanism type: homogeneous or heterogeneous?, Top. Catal, vol.48, issue.1-4, pp.60-74, 2008.

R. Tsybukh, MnO(100) and MnOx/MnO(100) surfaces by STM and AFM after heat treatment in UHV, O2 , CO and H2, A comparative study of platinum nanodeposits on HOPG (0001), 2010.

G. Schmid, N. Klein, B. Morun, A. Lehnert, and J. Malm, Two, four, five-shell clusters and colloids, Pure Appl. Chem, vol.62, issue.6, pp.1175-1177, 1990.

O. Rossell and M. Seco, SACs o nuevos catalizadores formados por átomos metálicos aislados sobre un soporte, An. Química, vol.3, pp.165-171

G. Schmid, B. D. Alexander, J. Barthelmes, A. M. Mueting, and L. H. Pignolet,

. Pentapentacontagold, Inorg. Synth, vol.27, pp.214-218, 1990.

P. Serp and K. Philippot, Nanomaterials in Catalysis, 2013.

A. Roucoux, J. Schulz, and H. Patin, Reduced transition metal colloids: a novel family of reusable catalysts?, Chem. Rev, vol.102, issue.10, pp.3757-3778, 2002.

W. Soutter, Nanocatalysis: New Dimensions in Catalysis, p.21, 2012.

M. Zahmak?ran and S. Özkar, Metal nanoparticles in liquid phase catalysis; from recent advances to future goals, Nanoscale, vol.3, issue.9, pp.3462-3481, 2011.

K. Na, Q. Zhang, and G. A. Somorjai, Colloidal metal nanocatalysts: synthesis, characterization, and catalytic applications, J. Clust. Sci, vol.25, issue.1, pp.83-114, 2014.

T. L. Tan, L. Wang, J. Zhang, D. D. Johnson, and K. Bai, Platinum nanoparticle during electrochemical hydrogen evolution: adsorbate distribution, active reaction species, and size effect, ACS Catal, vol.5, issue.4, pp.2376-2383, 2015.

M. Risch, Atomic structure of cobalt-oxide nanoparticles active in light-driven catalysis of water oxidation, Int. J. Hydrogen Energy, vol.37, issue.10, pp.8878-8888, 2012.

K. Balasubramanian, Electronic structure of coinage metal clusters, J. Mol. Struct. THEOCHEM, vol.202, issue.1, pp.291-313, 1989.

X. Gu, M. Ji, S. H. Wei, and X. G. Gong, Cagelike structures of pure metal atoms, Phys. Rev. B, vol.33, issue.20, p.205401, 2004.

E. M. Fernández, J. M. Soler, I. L. Garzón, and L. C. Balbás, Trends in the structure and bonding of noble metal clusters, Phys. Rev. B, vol.70, issue.16, p.165403, 2004.

D. Fedlheim and C. Foss, Metal nanoparticles: synthesis, characterization and applications. Base, Switzerland: Marcel Dekker AG, 2002.

B. Corain, G. Schmid, and N. Toshima, Metal Nanoclusters in Catalysis and Materials Science: The Issue of Size Control, 2008.

R. S. Rawat, Dense plasma focus-from alternative fusion source to versatile high energy density plasma source for plasma nanotechnology, J. Phys. Conf. Ser, vol.591, issue.1, p.12021, 2015.

B. H. Kammler, L. Mädler, and S. E. Pratsinis, Flame Synthesis of Nanoparticles, Chem. Eng. Technol. Ind. Chem. Equipment-Process Eng, vol.24, issue.6, pp.583-596, 2001.

H. Bönnemann, W. Brijoux, R. Brinkmann, T. Joußen, B. Korall et al., Formation of colloidal transition metals in organic phases and their application in catalysis, Angew. Chemie Int. Ed. English, vol.30, issue.10, pp.1312-1314, 1991.

T. Adschiri, Supercritical hydrothermal synthesis of organic-inorganic hybrid nanoparticles, Chem. Lett, vol.36, issue.10, pp.1188-1193, 2007.

K. S. Suslick, J. W. Goodale, P. F. Schubert, and H. H. Wang, Sonochemistry and sonocatalysis of metal carbonyls, J. Am. Chem. Soc, vol.105, issue.18, pp.5781-5785, 1983.

M. T. Reetz and S. A. Quaiser, A new method for the preparation of nanostructured metal clusters, Angew. Chemie Int. Ed. English, vol.34, issue.20, pp.2240-2241, 1995.

C. Amiens, Organometallic approach for the synthesis of nanostructures, New J. Chem, vol.37, issue.11, pp.3374-3401, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00992986

J. Fan, S. W. Boettcher, and G. D. Stucky, Nanoparticle assembly of ordered multicomponent mesostructured metal oxides via a versatile sol? gel process, Chem. Mater, vol.18, issue.26, pp.6391-6396, 2006.

M. Artus, Synthesis and magnetic properties of ferrimagnetic CoFe2O4 nanoparticles embedded in an antiferromagnetic NiO matrix, Chem. Mater, vol.20, issue.15, pp.4861-4872, 2008.

S. Roginsky and A. Schalnikoff, Eine neue methode der herstellung kolloider lösungen, Kolloid-Zeitschrift, vol.43, issue.2, pp.67-70, 1927.

V. K. Lamer and R. H. Dinegar, Theory, production and mechanism of formation of monodispersed hydrosols, J. Am. Chem. Soc, vol.72, issue.11, pp.4847-4854, 1950.

J. Turkevich, P. C. Stevenson, and J. Hillier, A study of the nucleation and growth processes in the synthesis of colloidal gold, Discuss. Faraday Soc, vol.11, pp.55-75, 1951.

B. J. Hornstein and R. G. Finke, Transition-metal nanocluster kinetic and mechanistic studies emphasizing nanocluster agglomeration: Demonstration of a kinetic method that allows monitoring of all three phases of nanocluster formation and aging, Chem. Mater, vol.16, issue.1, pp.139-150, 2004.

C. Besson, E. E. Finney, and R. G. Finke, A Mechanism for Transition-Metal Nanoparticle Self-Assembly, J. Am. Chem. Soc, vol.127, issue.22, pp.8179-8184, 2005.

T. W. Hansen, A. T. Delariva, S. R. Challa, and A. K. Datye, Sintering of Catalytic Nanoparticles: Particle Migration or Ostwald Ripening?, Acc. Chem. Res, vol.46, issue.8, pp.1720-1730, 2013.

C. Jia and F. Schüth, Colloidal metal nanoparticles as a component of designed catalyst, Phys. Chem. Chem. Phys, vol.13, issue.7, pp.2457-2487, 2011.

L. S. Ott and R. G. Finke, Transition-metal nanocluster stabilization for catalysis : A critical review of ranking methods and putative stabilizers, Coord. Chem. Rev, vol.251, issue.9, pp.1075-1100, 2007.

F. Bonet, V. Delmas, S. Grugeon, R. H. Urbina, P. Y. Silvert et al., Ru and Ir nanoparticles in ethylene glycol, Synthesis of monodisperse Au, vol.11, issue.8, pp.1277-1284, 1999.

R. M. Crooks, M. Zhao, L. Sun, V. Chechik, and L. K. Yeung, Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis, Acc. Chem. Res, vol.34, issue.3, pp.181-190, 2001.

C. M. Pleass and D. G. Schimmel, Kinetics of the Deposition from Solutions of Nickel Onto Powder Surfaces of Dicyclopentadienylnickel, J. Catal, vol.24, issue.3, pp.424-433, 1972.

M. Tschan, O. Diebolt, and P. W. Van-leeuwen, Ruthenium Metal Nanoparticles in Hydrogenation: Influence of Phosphorus-Ligands, Top. Catal, vol.57, issue.10-13, pp.1054-1065, 2014.

K. Philippot, P. Lignier, and B. Chaudret, Organometallic Ruthenium Nanoparticles and Catalysis, Topics in Organometallic Chemistry, pp.319-370, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02025986

S. D. Solomon, M. Bahadory, A. Jeyarajasingam, S. A. Rutkowsky, and C. Boritz, Synthesis and Study of Silver Nanoparticles, J. Chem. Educ, vol.84, issue.2, pp.322-325, 2007.

G. Salas, Influence of amines on the size control of in situ synthesized ruthenium nanoparticles in imidazolium ionic liquids, Dalt. Trans, vol.40, issue.17, pp.4660-4668, 2011.

P. Rempp, J. Herz, G. Hild, and C. Picot, Tailor-made networks: synthesis and properties, Pure Appl. Chem, vol.43, issue.1-2, pp.77-96, 1975.

J. M. Thomas and W. Thomas, Principle and Practice of Heterogeneous Catalysis, 1997.

J. K. Nørskov, T. Bligaard, J. Rossmeisl, and C. H. Christensen, Towards the computational design of solid catalysts, Nat. Chem, vol.1, issue.1, pp.37-46, 2009.

A. Nilsson, L. G. Pettersson, and J. K. Nørskov, Chemical Bonding at Surfaces and Interfaces, 2008.

B. H. Hammer, L. B. Hansen, and J. K. Nørskov, Improved adsorption energetics within density-functional theory using revised PerdewBurke-Ernzerhof functionals, Phys. Rev. B, vol.59, issue.11, pp.7413-7421, 1999.

P. Sautet and F. Delbecq, Catalysis and surface organometallic chemistry: a view from theory and simulations, Chem. Rev, vol.110, issue.3, pp.1788-1806, 2009.

G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, vol.54, issue.16, p.11169, 1996.

G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mater. Sci, vol.6, issue.1, pp.15-50, 1996.

L. H. Thomas, The calculation of atomic fields, Math. Proc. Cambridge Philos. Soc, vol.23, issue.5, pp.542-548, 1927.

E. Fermi, Zur Quantelung des idealen einatomigen Gases, Zeitschrift für Phys, vol.36, issue.11-12, pp.902-912, 1926.

W. Kohn and L. J. Sham, Quantum density oscillations in an inhomogeneous electron gas, Phys. Rev, vol.137, issue.6A, p.1697, 1965.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett, vol.77, issue.18, pp.3865-3868, 1996.

A. Stroppa, K. Termentzidis, J. Paier, G. Kresse, and J. Hafner, CO adsorption on metal surfaces: A hybrid functional study with plane-wave basis set, Phys. Rev. B, vol.76, issue.19, p.195440, 2007.

B. Hammer and J. K. Nørskov, Theoretical Surface Science and Catalysis-Calculations and Concepts, Adv. Catal, vol.45, pp.71-129, 2000.

S. T. Bromley, I. De, P. R. Moreira, K. M. Neyman, and F. Illas, Approaching nanoscale oxides: models and theoretical methods, Chem. Soc. Rev, vol.38, issue.9, pp.2657-2670, 2009.

K. Philippot and B. Chaudret, Organometallic approach to the synthesis and surface reactivity of noble metal nanoparticles, Comptes Rendus Chim, vol.6, issue.8-10, pp.1019-1034, 2003.

G. Wang, M. A. Van-hove, P. N. Ross, and M. I. Baskes, Monte Carlo simulations of segregation in Pt-Ni catalyst nanoparticles, J. Chem. Phys, vol.122, issue.2, p.24706, 2005.

R. L. Mcgreevy, Reverse Monte Carlo modelling, J. Phys. Condens. Matter, vol.13, issue.46, p.877, 2001.

K. Honkala, Ammonia synthesis from first-principles calculations, Science (80-. ), vol.307, issue.5709, pp.555-558, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02018508

F. Viñes, Methane activation by platinum: Critical role of edge and corner sites of metal nanoparticles, Chem. Eur. J, vol.16, issue.22, pp.6530-6539, 2010.

L. Cusinato, L. M. Martínez-prieto, B. Chaudret, I. , and R. Poteau, Theoretical Characterization of the Surface Composition of Ruthenium Nanoparticles in Equilibrium with Syngas, Nanoscale, vol.8, issue.21, pp.10974-10992, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01960027

E. A. Seddon and K. R. Seddon, The chemistry of ruthenium, 2013.

M. Muhler, E. Rosowski, O. Hinrichsen, A. Hornung, and G. Ertl, Ruthenium as Catalyst for Ammonia Synthesis, Stud. Surf. Sci. Catal, vol.101, pp.317-326, 1996.

J. Zhang, M. Cui, Q. Qian, and B. Han, Synthesis of acetic acid via methanol hydrocarboxylation with CO2 and H2, Nat. Commun, vol.7, p.11481, 2016.

T. Weskamp, W. C. Schattenmann, M. Spiegler, and W. A. Herrmann, A novel class of ruthenium catalysts for olefin metathesis

, Chemie Int. Ed, vol.37, issue.18, pp.2490-2493, 1998.

T. Naota, H. Takaya, and S. Murahashi, Ruthenium-Catalyzed Reactions for Organic Synthesis, Chem. Rev, vol.98, issue.7, pp.2599-2660, 1998.

Y. Nakao and K. Kaeriyama, Preparation of noble metal sols in the presence of surfactants and their properties, J. Colloid Interface Sci, vol.110, issue.1, pp.82-87, 1986.

G. Viau, Ruthenium Nanoparticles: Size, Shape, and Self-Assemblies, Chem. Mater, vol.15, issue.2, pp.486-494, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00017013

F. Fiévet, The polyol process: a unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions, Chem. Soc. Rev, vol.47, issue.14, pp.5187-5233, 2018.

C. E. Lee, P. B. Tiege, Y. Xing, J. Nagendran, and S. H. Bergens, Hydrogenation of Ru (1, 5-cyclooctadiene)(?3-C3H5) 2 over Black Platinum. A Low-Temperature Reactive Deposition of Submonolayer Quantities of Ruthenium Atoms on Platinum with Real Time Control over Surface Stoichiometry, J. Am. Chem. Soc, vol.119, issue.15, pp.3543-3549, 1997.

K. Kusada, Discovery of Face-Centered-Cubic Ruthenium Nanoparticles: Facile Size-Controlled Synthesis Using the Chemical Reduction Method, J. Am. Chem. Soc, vol.135, issue.15, pp.5493-5496, 2013.

L. M. Martínez-prieto and B. Chaudret, Organometallic Ruthenium Nanoparticles: Synthesis, Surface Chemistry, and Insights into Ligand Coordination, Acc. Chem. Res, vol.51, issue.2, pp.376-384, 2018.

B. K. Pelzer, O. Vidoni, K. Philippot, B. Chaudret, and V. Colli, Organometallic Synthesis of Size-Controlled Polycrystalline Ruthenium Nanoparticles in the Presence of Alcohols, Adv. Funct. Mater, vol.13, issue.2, pp.118-126, 2003.

A. , Preparation of Organic Solutions or Solid Films of Small Particles of Ruthenium , Palladium , and Platinum from Organometallic Precursors in the Presence of Cellulose Derivatives, Chem. Mater, vol.5, issue.3, pp.341-347, 1993.

K. M. Koczkur, S. Mourdikoudis, L. Polavarapu, and S. E. Skrabalak, Polyvinylpyrrolidone (PVP) in nanoparticle synthesis, Dalt. Trans, vol.44, issue.41, pp.17883-17905, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01217114

C. Pan, Ligand-Stabilized Ruthenium Nanoparticles: Synthesis, Organization, and Dynamics, J. Am. Chem. Soc, vol.123, issue.31, pp.7584-7593, 2001.

P. Debouttière, Y. Coppel, A. Denicourt-nowicki, A. Roucoux, B. Chaudret et al., PTA-Stabilized Ruthenium and Platinum Nanoparticles: Characterization and Investigation in Aqueous Biphasic Hydrogenation Catalysis, Eur. J. Inorg. Chem, vol.8, pp.1229-1236, 2012.

J. García-antón, Reactions of olefins with ruthenium hydride nanoparticles: NMR characterization, hydride titration, and room-temperature, Angew. Chemie Int. Ed, vol.47, issue.11, pp.2074-2078, 2008.

P. Lara, O. Rivada-wheelaghan, S. Conejero, R. Poteau, K. Philippot et al., Ruthenium Nanoparticles Stabilized by N-Heterocyclic Carbenes: Ligand Location and Influence on Reactivity, Angew. Chemie, vol.123, issue.50, pp.12286-12290, 2011.

I. Favier, S. Massou, E. Teuma, K. Philippot, B. Chaudret et al., A new and specific mode of stabilization of metallic nanoparticles w, Chem. Commun, vol.28, pp.3296-3298, 2008.

F. Novio, K. Philippot, and B. Chaudret, Location and Dynamics of CO Co-ordination on Ru Nanoparticles: A Solid State NMR Study, Catal. Letters, vol.140, issue.1-2, pp.1-7, 2010.

K. Pelzer, New Ru Nanoparticles Stabilized by Organosilane Fragments, Chem. Mater, vol.16, issue.24, pp.4937-4941, 2004.

I. Favier, Hydrogenation Processes at the Surface of Ruthenium Nanoparticles : A NMR Study, Top. Catal, vol.56, pp.1253-1261, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00994521

F. Novio, Surface chemistry on small ruthenium nanoparticles: evidence for site selective reactions and influence of ligands, Chem. Eur. J, vol.20, issue.5, pp.1287-1297, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02023755

K. Tedsree, A. T. Kong, and S. C. Tsang, Formate as a surface probe for ruthenium nanoparticles in solution 13C NMR spectroscopy

, Chemie Int. Ed, vol.48, issue.9, pp.1443-1446, 2009.

F. Schröder, Ruthenium nanoparticles inside porous [Zn4O(bdc)3] by hydrogenolysis of adsorbed, J. Am. Chem. Soc, vol.130, issue.19, pp.6119-6130, 2008.

D. González-gálvez, P. Nolis, K. Philippot, B. Chaudret, and P. W. Van-leeuwen, Phosphine-Stabilized Ruthenium Nanoparticles: The Effect of the Nature of the Ligand in Catalysis, ACS Catal, vol.2, issue.3, pp.317-321, 2012.

A. P. Serp, Hexakis [ 60 ] Fullerene Adduct-Mediated Covalent Assembly of Ruthenium Nanoparticles and Their Catalytic Properties, Chem. Eur. J, vol.23, issue.54, pp.13379-13386, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01617280

P. Lara, K. Philippot, and B. Chaudret, Organometallic ruthenium nanoparticles: a comparative study of the influence of the stabilizer on their characteristics and reactivity, ChemCatChem, vol.5, issue.1, pp.28-45, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00995637

I. C. Gerber and R. Poteau, Nanomaterials in Catalysis," in Transition Metal Particles: Where are we now?, pp.443-471, 2013.

L. A. Truflandier, D. Rosal, B. Chaudret, R. Poteau, and I. C. Gerber, Where does Hydrogen Adsorb on Ru Nanoparticles? A Powerful Joint H MAS-NMR/DFT Approach, vol.10, pp.2939-2942, 2009.

T. Gutmann, Hydrido-Ruthenium Cluster Complexes as Models for Reactive Surface Hydrogen Species of Ruthenium Nanoparticles . SolidState 2H NMR and Quantum Chemical Calculations, J. Am. Chem. Soc, vol.132, issue.33, pp.11759-11767, 2010.

L. M. Martínez-prieto, Zwitterionic amidinates as effective ligands for platinum nanoparticle hydrogenation catalysts, Chem. Sci, vol.4, issue.8, pp.2931-2941, 2017.

C. Taglang, Enantiospecific C-H Activation Using Ruthenium Nanocatalysts, Angew. Chemie Int. Ed, vol.54, issue.36, pp.10474-10477, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01920824

G. H. Woehrle, L. O. Brown, and J. E. Hutchison, Thiol-functionalized, 1.5-nm gold nanoparticles through ligand exchange reactions: Scope and mechanism of ligand exchange, J. Am. Chem. Soc, vol.127, issue.7, pp.2172-2183, 2005.

E. C. Hurst, K. Wilson, I. J. Fairlamb, and V. Chechik, N-Heterocyclic carbene coated metal nanoparticles, New J. Chem, vol.33, issue.9, pp.1837-1840, 2009.

J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology, Chem. Rev, vol.105, issue.4, pp.1103-1170, 2005.

L. O. Brown and J. E. Hutchison, Controlled Growth of Gold Nanoparticles during Ligand Exchange, J. Am. Chem. Soc, vol.121, issue.4, pp.882-883, 1999.

R. Palma, Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible, Chem. Mater, vol.19, issue.7, pp.1821-1831, 2007.

R. A. Sperling and W. J. Parak, Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci, vol.368, pp.1333-1383, 1915.

M. Branca, M. Ibrahim, D. Ciuculescu, K. Philippot, and C. Amiens, Water Transfer of Hydrophobic Nanoparticles: Principles and Methods, Handbook of Nanoparticles, pp.1279-1311, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02042470

M. S. Nikolic, M. Krack, V. Aleksandrovic, A. Kornowski, S. Förster et al., Tailor-Made Ligands for Biocompatible Nanoparticles, Angew. Chemie Int. Ed, vol.45, issue.39, pp.6577-6580, 2006.

I. Favier, E. Teuma, and M. Gomez, Palladium and ruthenium nanoparticles: Reactivity and coordination at the metallic surface, Comptes Rendus Chim, vol.12, issue.5, pp.533-545, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00452117

M. V. Escárcega-bobadilla, Ruthenium and rhodium nanoparticles as catalytic precursors in supercritical carbon dioxide, Catal. Today, vol.148, issue.3-4, pp.398-404, 2009.

M. C. Schoenmaker-stolk, J. W. Verwijs, J. A. Don, and J. J. Scholten, The catalytic hydrogenation of benzene over supported metal catalysts: I. Gas-phase hydrogenation of benzene over ruthenium-on-silica, Appl. Catal, vol.29, issue.1, pp.73-90, 1987.

W. Chen, N. B. Zuckerman, X. Kang, D. Ghosh, J. P. Konopelski et al., Alkyne-Protected Ruthenium Nanoparticles, J. Phys. Chem. C, vol.114, issue.42, pp.18146-18152, 2010.

F. Zhang, Alkyne-Functionalized Ruthenium Nanoparticles: Impact of Metal-Ligand Interfacial Bonding Interactions on the Selective Hydrogenation of Styrene, ACS Catal, vol.9, issue.1, pp.98-104, 2018.

D. Gonzalez-galvez, NHC-stabilized ruthenium nanoparticles as new catalysts for the hydrogenation of aromatics, Catal. Sci. Technol, vol.3, issue.1, pp.99-105, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00995056

D. Astruc, Nanoparticles and catalysis, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02007965

L. M. Rossi and G. Machado, Ruthenium nanoparticles prepared from ruthenium dioxide precursor: Highly active catalyst for hydrogenation of arenes under mild conditions, J. Mol. Catal. A Chem, vol.298, issue.1-2, pp.69-73, 2009.

A. , Diphosphite ligands derived from carbohydrates as stabilizers for ruthenium nanoparticles: promising catalytic systems in arene hydrogenation, Chem. Commun, vol.24, pp.2759-2761, 2008.

K. P. , B. L. Martínez-prieto, C. Urbaneja, P. Palma, J. Cámpora et al., A betaine adduct of N-heterocyclic carbene and carbodiimide, an efficient ligand to produce ultra-small ruthenium nanoparticles, Chem. Commun, vol.22, issue.51, pp.4647-4650, 2015.

E. Bonne, Tin-decorated ruthenium nanoparticles: a way to tune selectivity in hydrogenation reaction, Nanoscale, vol.6, issue.16, pp.9806-9816, 2014.

L. M. Martinez-prieto, Organometallic ruthenium nanoparticles as model catalysts for CO hydrogenation: A nuclear magnetic resonance and ambient-pressure X-ray photoelectron spectroscopy study, ACS Catal, vol.4, issue.9, pp.3160-3168, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02023339

S. H. Joo, J. Y. Park, J. R. Renzas, D. R. Butcher, W. Huang et al., Size Effect of Ruthenium Nanoparticles in Catalytic Carbon Monoxide Oxidation, Nano Lett, vol.10, issue.7, pp.2709-2713, 2010.

A. J. Creus, Ruthenium Nanoparticles Supported onto Carbon Microfibers for Hydrogen Evolution Electrocatalysis, Eur. J. Inorg. Chem

W. J. Parak, L. Manna, C. F. Simmel, D. Gerion, and P. Alivisatos, Quantum Dots, Nanoparticles: From Theory to Application, pp.3-47, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00429364

M. Ismail, S. Gul, M. A. Khan, and M. I. Khan, Plant Mediated Green Synthesis of Anti-Microbial Silver Nanoparticles -A Review on Recent Trends, Rev. Nanosci. Nanotechnol, vol.5, pp.119-135, 2016.

T. K. Sau and A. L. Rogach, Complex-shaped metal nanoparticles: bottom-up syntheses and applications, 2012.

H. Hosseini-monfared, H. Meyer, and C. Janiak, Dioxygen oxidation of 1-phenylethanol with gold nanoparticles and N-hydroxyphthalimide in ionic liquid, J. Mol. Catal. A Chem, vol.372, pp.72-78, 2013.

G. Schmid, Conclusions and Prespectives, Nanoparticles: From Theory to Application, pp.513-515, 2005.

L. Wang, J. Li, Q. Jiang, and L. Zhao, Water-soluble Fe3O4nanoparticles with high solubility for removal of heavy-metal ions from waste water, Dalt. Trans, vol.41, issue.15, pp.4544-4551, 2012.

P. D. Howes, R. Chandrawati, and M. M. Stevens, Colloidal nanoparticles as advanced biological sensors, Science (80-. ), vol.346, issue.6205, 2014.

S. K. Murthy, Nanoparticles in modern medicine: state of the art and future challenges, Int. J. Nanomedicine nanomedicine, vol.2, issue.2, pp.129-170, 2007.

J. Palomo and M. Filice, Biosynthesis of Metal Nanoparticles: Novel Efficient Heterogeneous Nanocatalysts, Nanomaterials, vol.6, issue.5, p.84, 2016.

M. J. Yoon, Surface modifications and optoelectronic characterization of TiO2-nanoparticles: Design of new photo-electronic materials, J. Chinese Chem. Soc, vol.56, issue.3, pp.449-454, 2009.

E. Serrano, G. Rus, and J. García-martínez, Nanotechnology for sustainable energy, Renew. Sustain. Energy Rev, vol.13, issue.9, pp.2373-2384, 2009.

C. Amiens, D. Ciuculescu-pradines, and K. Philippot, Controlled metal nanostructures: Fertile ground for coordination chemists, Coord. Chem. Rev, vol.308, pp.409-432, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01930475

H. University, Alloy noble metal nanoparticles and their structures, p.19, 2019.

M. Grasemann and G. Laurenczy, Environmental Science Formic acid as a hydrogen source -recent developments and future trends, Energy Environ. Sci, vol.5, pp.8171-8181, 2012.

P. Mars, J. J. Scholten, and P. Zwietering, The catalytic decomposition of formic acid, Advances in Catalysis, pp.35-113, 1963.

H. Häkkinen, Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts, Chem. Soc. Rev, vol.37, issue.9, pp.1847-1859, 2008.

I. Chorkendorff and J. W. Niemantsverdriet, Surface Reactivity, Concepts of Modern Caralysis and Kinetics, pp.215-266, 2005.

L. Porri, P. Pertici, G. Vitulli, and M. Paci, A New Synthetic Method for the Preparation of Cyclo-olefin Ruthenium Complexes, J. Chem. Soc., Dalt. Trans, vol.3, pp.1961-1964, 1980.

B. Chaudret, G. Commenges, and R. Poilblanc, The use of (cyclo-octadiene)(cyclo-octatriene) ruthenium (0) as the starting material for the synthesis of mono-and poly-nuclear ruthenium polyhydride phosphine complexes, J. Chem. Soc. Chem. Commun, vol.24, pp.1388-1390, 1982.

A. Kraynov and T. E. Müller, Concepts for the stabilization of metal nanoparticles in ionic liquids, Applications of Ionic Liquids in Science and Technology, pp.235-260, 2011.

O. Vidoni, Novel, Spongelike Ruthenium Particles of Controllable Size Stabilized Only by Organic Solvents, Angew. Chemie Int. Ed, vol.38, issue.24, pp.3736-3738, 1999.

A. Roucoux, A. Nowicki, and K. Philippot, Rhodium and Ruthenium Nanoparticles in Catalysis, Nanoparticles and Catalysis, pp.349-338, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00403409

S. Li, Y. Wu, J. Wang, Q. Zhang, and S. Zhang, Double-responsive polyampholyte as a nanoparticle stabilizer : application to reversible dispersion of gold nanoparticles, J. Mater. Chem, vol.20, issue.21, pp.4379-4384, 2010.

N. Liakakos, The Big Impact of a Small Detail: Cobalt Nanocrystal Polymorphism as a Result of Precursor Addition Rate during Stock Solution Preparation, J. Am. Chem. Soc, vol.134, issue.43, pp.17922-17931, 2012.

C. I. Lynch, An overview of first-principles calculations of NMR parameters for paramagnetic materials, Mater. Sci. Technol, vol.32, issue.2, pp.181-194, 2016.

A. Badia, S. Singh, L. Demers, L. Cuccia, G. R. Brown et al., Self-Assembled Monolayers on Gold Nanoparticles, Chem. Eur. J, vol.2, issue.3, pp.359-363, 1996.

X. Liu, M. Yu, H. Kim, M. Mameli, and F. Stellacci, Determination of monolayer-protected gold nanoparticle ligand-shell morphology using NMR, Nat. Commun, vol.3, pp.1182-1189, 2012.

L. Foppa, K. Yamamoto, W. C. Liao, A. Comas-vives, and C. Copéret, Electronic Structure-Reactivity Relationship on Ruthenium Step-Edge Sites from Carbonyl 13C Chemical Shift Analysis, J. Phys. Chem. Lett, pp.3348-3353, 2018.

I. Rosal, F. Jolibois, L. Maron, K. Philippot, B. Chaudret et al., Ligand effect on the NMR , vibrational and structural properties of tetra-and hexanuclear ruthenium hydrido clusters : a theoretical investigation, Dalt. Trans, vol.12, pp.2142-2156, 2009.

M. Guerrero, Efficient Ruthenium Nanocatalysts in Liquid -Liquid Biphasic Hydrogenation Catalysis : Towards a Supramolecular Control through a Sulfonated Diphosphine -Cyclodextrin Smart Combination, ChemCatChem, vol.5, issue.12, pp.3802-3811, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01089767

J. Durand, DOSY technique applied to palladium nanoparticles in ionic liquids, Magn. Reson. Chem, vol.46, issue.8, pp.739-743, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00345121

T. C. Farrar and E. D. Becker, Pulse and Fourier transform NMR: introduction to theory methods, 2012.

Y. Cohen, L. Avram, and L. Frish, Diffusion NMR Spectroscopy in Supramolecular and Combinatorial Chemistry : An Old Paramete r -New Insights, Angew. Chemie Int. Ed, vol.44, issue.4, pp.520-554, 2005.

A. Herron, J. Scaranto, P. Ferrin, S. Li, and M. Mavrikakis, Trends in Formic Acid Decomposition on Model Transition Metal Surfaces : A Density Functional Theory study, ACS Catal, vol.4, issue.12, pp.4434-4445, 2014.

B. Hammer and J. K. Nørskov, Electronic factors determining the reactivity of metal surfaces, Surf. Sci, vol.343, issue.3, pp.211-220, 1995.

D. Mott, J. Luo, P. N. Njoki, Y. Lin, L. Wang et al., Synergistic activity of gold-platinum alloy nanoparticle catalysts, Catal. Today, vol.122, issue.3-4, pp.378-385, 2007.

S. J. Blanksby and G. B. Ellison, Bond Dissociation Energies of Organic Molecules, Acc. Chem. Res, vol.36, issue.4, pp.255-263, 2003.

B. Y. Leiserowitz, Molecular Packing Modes. Carboxylic Acids, Acta Crystallogr. Sect. B, vol.32, issue.3, pp.775-802, 1976.

S. Da and . Pereira, Elucidating the real-time Ag nanoparticle growth on a -Ag 2 WO 4 during electron beam irradiation: experimental evidence and theoretical insights, Phys. Chem. Chem. Phys, vol.17, issue.7, pp.5352-5359, 2015.

P. Raveendran, J. Fu, and S. L. Wallen, Completely ' Green ' Synthesis and Stabilization of Metal Nanoparticles, J. Am. Chem. Soc, vol.125, issue.46, pp.13940-13941, 2003.

P. Liu and J. K. Nørskov, Ligand and ensemble effects in adsorption on alloy surfaces, Phys. Chem. Chem. Phys, vol.3, issue.17, pp.3814-3818, 2001.

J. W. Hennel and J. Klinowski, Magic-Angle Spinning : a Historical Perspective, New techniques in solid-state NMR, pp.1-14, 2005.

H. J. , Relaxation in NMR Spectroscopy, 2017.

M. J. Duer, Solid-State NMR Spectroscopy Principles and Applications, 2001.

G. R. Fulmer, NMR chemical shifts of trace impurities: Common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist, Organometallics, vol.29, issue.9, pp.2176-2179, 2010.

L. H. Jones and E. Mclaren, Infrared Spectra of CH3COONa and CD3COONa and Assignments of Vibrational Frequencies, J. Chem. Phys, vol.22, issue.11, pp.1796-1800, 1954.

K. Ito and H. J. Bernstein, The vibrational spectra of the formate, acetate, and oxalate ions, Can. J. Chem, vol.34, issue.2, pp.170-178, 1956.

H. Noma, Y. Miwa, I. Yokoyama, and K. Machida, Infrared and Raman intensity parameters of sodium acetate and their intensity distributions, J. Mol. Struct, vol.242, pp.207-219, 1991.

J. K. Wilmshurst, Infrared Investigation of Acetic Acid and Acetic Acid-d Vapors and a Vibrational Assignment for the Monomeric Acids, J. Chem. Phys, vol.25, issue.6, pp.1171-1173, 1956.

J. Zhong, Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution, Nat. Nanotechnol, vol.12, issue.2, p.132, 2017.

H. Cui, D. Li, and C. Wang, Infrared Spectrum Analysis of Perfluoro Polyethers (PFPE) of Fluorocarbon-based Magnetic Fluid's Base Liquid

, Mater. Res, vol.391, pp.1311-1314, 2012.

D. W. Mayo, F. A. Miller, and R. W. Hannah, Course notes on the interpretation of infrared and Raman spectra, 2004.

H. Deng, Z. Shen, L. Li, H. Yin, and J. Chen, Real-time monitoring of ring-opening polymerization of tetrahydrofuran via in situ Fourier Transform Infrared Spectroscopy, J. Appl. Polym. Sci, vol.131, issue.15, pp.1-7, 2014.

L. Van-lokeren, Characterization of Titanium Dioxide Nanoparticles Dispersed in Organic Ligand Solutions by Using a Diffusion-Ordered Spectroscopy-Based Strategy, Chem. Eur. J, vol.13, issue.24, pp.6957-6966, 2007.

G. Canzi, A. A. Mrse, and P. Kubiak, Diffusion-Ordered NMR Spectroscopy as a Reliable Alternative to TEM for Determining the Size of Gold Nanoparticles in Organic Solutions, J. Phys. Chem. C, vol.16, issue.115, pp.7972-7978, 2011.

A. Lu, E. L. Salabas, and F. Schüth, Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chemie Int. Ed, vol.46, issue.8, pp.1222-1244, 2007.

Y. Zhang, Bimetallic Nanostructures: Shape-Controlled Synthesis for Catalysis, Plasmonics, and Sensing Applications, 2018.

T. Ayval?, P. Lecante, P. F. Fazzini, A. Gillet, K. Philippot et al., Facile synthesis of ultra-small rhenium nanoparticles, Chem. Commun, vol.50, issue.74, pp.10809-10811, 2014.

I. Cano, M. J. Tschan, L. M. Martínez-prieto, K. Philippot, B. Chaudret et al., Enantioselective hydrogenation of ketones by iridium nanoparticles ligated with chiral secondary phosphine oxides, Catal. Sci. Technol, vol.6, issue.11, pp.3758-3766, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01930474

W. Li, C. Stampfl, and M. Scheffler, Insights into the function of silver as an oxidation catalyst by ab initio atomistic thermodynamics, Phys. Rev. B, vol.68, issue.16, p.165412, 2003.

K. Reuter and M. Scheffler, Composition, structure, and stability of RuO 2 (110) as a function of oxygen pressure, Phys. Rev. B, vol.65, issue.3, pp.1-11, 2001.

K. Reuter, C. Stamp, and M. Scheffler, ab initio atomistic thermodynamics and statistical mechanics of surface properties and functions, Handbook of Materials Modeling, pp.149-194, 2005.

I. Rosal, L. Tru, R. Poteau, and I. C. Gerber, A density functional theory study of spectroscopic and thermodynamic properties of surfacic hydrides on Ru (0001) model surface: The influence of the coordination modes and the coverage, J. Phys. Chem. C, vol.115, issue.5, pp.2169-2178, 2010.

A. Comas-vives, Predictive morphology, stoichiometry and structure of surface species in supported Ru nanoparticles under H2 and CO atmospheres from combined experimental and DFT studies, Phys. Chem. Chem. Phys, vol.18, issue.3, pp.1969-1979, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01546478

L. Cusinato, I. D. Rosal, and R. Poteau, Shape, electronic structure and steric effects of organometallic nanocatalysts: relevant tools to improve the synergy between theory and experiment, Dalt. Trans, vol.46, issue.2, pp.378-395, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01961183

N. Lopez, On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation, J. Catal, vol.223, issue.1, pp.232-235, 2004.

P. M. Arnal, M. Comotti, and F. Schüth, High-temperature-stable catalysts by hollow sphere encapsulation, Angew. Chemie Int. Ed, vol.45, issue.48, pp.8224-8227, 2006.

E. Ramirez, S. Jansat, K. Philippot, P. Lecante, A. M. Masdeu-bulto et al., Influence of organic ligands on the stabilization of palladium nanoparticles, J. Organomet. Chem, vol.689, issue.24, pp.4601-4610, 2004.

A. Rodriguez, C. Amiens, B. Chaudret, P. Lecante, J. S. Bradley et al., Synthesis and Isolation of Cuboctahedral and Icosahedral Platinum Nanoparticles . Ligand-Dependent Structures, vol.4756, pp.1978-1986, 1996.

C. Pan, A New Synthetic Method toward Bimetallic Ruthenium Platinum Nanoparticles ; Composition Induced Structural Changes, pp.10098-10101, 1999.

K. Kim, D. Demberelnyamba, and H. Lee, Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids, Langmuir, vol.20, issue.3, pp.556-560, 2004.

A. U. Nilekar, S. Alayoglu, B. Eichhorn, and M. Mavrikakis, Preferential CO oxidation in hydrogen: reactivity of core? shell nanoparticles, J. Am. Chem. Soc, vol.132, issue.21, pp.7418-7428, 2010.

P. Sabatier, How I Have Been Led to the Direct Hydrogenation Method by Metallic Catalysts, Ind. Eng. Chem, vol.18, issue.10, pp.1005-1008, 1926.

J. N. Bronsted, Acid and Basic Catalysis, Chem. Rev, vol.5, issue.3, pp.231-338, 1928.

M. G. Evans and M. Polanyi, Inertia and driving force of chemical reactions, Trans. Faraday Soc, vol.34, pp.11-24, 1938.

A. A. Balandin, Modern State of the Multiplet Theory of Heterogeneous Catalysis, Advances in Catalysis, pp.1-210, 1969.

L. Wang and Q. Ge, Studies of rhodium nanoparticles using the first principles density functional theory calculations, Chem. Phys. Lett, vol.366, issue.3-4, pp.368-376, 2002.

M. E. Gruner, G. Rollmann, P. Entel, and M. Farle, Multiply twinned morphologies of FePt and CoPt nanoparticles, Phys. Rev. Lett, vol.100, issue.8, p.87203, 2008.

T. O. Wehling, Molecular doping of graphene, Nano Lett, vol.8, issue.1, pp.173-177, 2008.

I. Rosal, M. Mercy, I. C. Gerber, and R. Poteau, Ligand-Field Theory-Based Analysis of the Adsorption Properties of Ruthenium Nanoparticles, ACS Nano, vol.7, issue.11, pp.9823-9835, 2013.

M. T. Gorzkowski and A. Lewera, Probing the Limits of d-Band Center Theory: Electronic and Electrocatalytic Properties of Pd-Shell-Pt-Core Nanoparticles, J. Phys. Chem. C, vol.119, issue.32, pp.18389-18395, 2015.

J. K. Nørskov, T. Bligaard, J. Rossmeisl, and C. H. Christensen, Towards the computational design of solid catalysts, Nat. Chem, vol.1, issue.1, p.37, 2009.

L. Cusinato, Chimie de Surface de Nanoparticules de Ruthenium: Approches Théoriques, 2016.

R. F. Bader, A Quantum Theory of Molecular Structure and Its Applications, Chem. Rev, vol.91, issue.5, pp.893-928, 1991.

H. Group, Bader Charge Analysis

D. Lim and J. Wilcox, Mechanisms of the Oxygen Reduction Reaction on Defective Graphene-Supported Pt Nanoparticles from First-Principles, J. Phys. Chem. C, vol.116, issue.5, pp.3653-3660, 2012.

M. Okumura, Y. Kitagawa, T. Kawakami, and M. Haruta, Theoretical investigation of the hetero-junction effect in PVP-stabilized Au13 clusters. The role of PVP in their catalytic activities, Chem. Phys. Lett, vol.459, issue.1-6, pp.133-136, 2008.

A. E. Reed, R. B. Weinstock, and F. Weinhold, Natural population analysis, J. Chem. Phys, vol.83, issue.2, pp.735-746, 1985.

I. C. Gerber and R. Poteau, Critical assessment of charge transfer estimates in non-covalent graphene doping, Theor. Chem. Acc, vol.137, issue.11, p.156, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02131734

S. Ghosh, M. Ghosh, and C. N. Rao, Nanocrystals, Nanorods and other Nanostructures of Nickel, Ruthenium, Rhodium and Iridium prepared by a Simple Solvothermal Procedure, J. Clust. Sci, vol.18, issue.1, pp.97-111, 2007.

A. Ishiguro, Nanoparticles of Amorphous Ruthenium Sulfide Easily Obtainable from a TiO2-Supported Hexanuclear Cluster Complex [Ru6C(CO)16]2?: A Highly Active Catalyst for the Reduction of SO2 with H2, Chem. Eur. J, vol.8, issue.14, pp.3260-3268, 2002.

D. Lamey, I. Prokopyeva, F. Cárdenas-lizana, and L. Kiwi-minsker, Impact of organic-ligand shell on catalytic performance of colloidal Pd nanoparticles for alkyne gas-phase hydrogenation, Catal. Today, vol.235, pp.79-89, 2014.

M. Yamamoto, Y. Kashiwagi, and M. Nakamoto, Size-controlled synthesis of monodispersed silver nanoparticles capped by long-chain alkyl carboxylates from silver carboxylate and tertiary amine, Langmuir, vol.22, issue.20, pp.8581-8586, 2006.

N. Zheng, J. Fan, and G. D. Stucky, One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals, J. Am. Chem. Soc, vol.128, issue.20, pp.6550-6551, 2006.

A. Centrone, The role of nanostructure in the wetting behavior of mixed-monolayer-protected metal nanoparticles, Proc. Natl. Acad. Sci, vol.105, pp.9886-9891, 2008.

A. M. Jackson, J. W. Myerson, and F. Stellacci, Spontaneous assembly of subnanometre-ordered domains in the ligand shell of monolayerprotected nanoparticles, Nat. Mater, vol.3, issue.5, p.330, 2004.

T. J. Woehl, J. E. Evans, I. Arslan, W. D. Ristenpart, and N. D. Browning, Direct in Situ Determination of the Mechanisms Controlling Nanoparticle Nucleation and Growth, ACS Nano, vol.6, issue.10, pp.8599-8610, 2012.

N. T. Thanh, N. Maclean, and S. Mahiddine, Mechanisms of nucleation and growth of nanoparticles in solution, Chem. Rev, vol.114, issue.15, pp.7610-7630, 2014.

R. H. Terrill, Monolayers in Three Dimensions: NMR, SAXS, Thermal, and Electron Hopping Studies of Alkanethiol Stabilized Gold Clusters, J. Am. Chem. Soc, vol.117, issue.50, pp.12537-12548, 1995.

U. S. Of-commerce, NIST Standard Reference Database Number, vol.69, 2018.

H. Bonnernann and B. Korall, Ether-Soluble Ti0 and Bis (?6-arene) titanium (0) Complexes from the Reduction of TiCl4 with Triethylhydroborate, Angew. Chemie Int. Ed. English, vol.31, issue.11, pp.1490-1492, 1992.

H. Bonnemann and W. Brijoux, The preparation, characterization and application of organosols of early transition metals, MRS Online Proc. Libr. Arch, vol.351, pp.1-5, 1994.

E. Matito-i-gras, P. S. Sedano, and J. Styszy?ski, Benchmark calculations of metal carbonyl cations: Relativistic vs. electron correlation effects, Phys. Chem. Chem. Phys, vol.15, issue.46, 2013.

S. Carenco, C. Boissière, L. Nicole, C. Sanchez, P. L. Floch et al., Controlled design of Size-tunable monodisperse nickel nanoparticles, Chem. Mater, vol.22, issue.4, pp.1340-1349, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00457516

C. Barrière, Ligand effects on the air stability of copper nanoparticles obtained from organometallic synthesis, J. Mater. Chem, vol.22, issue.5, pp.2279-2285, 2012.

W. W. Yu, Y. A. Wang, and X. Peng, Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals, Chem. Mater, vol.15, issue.22, pp.4300-4308, 2003.

M. J. Thrippleton, N. M. Loening, and J. Keeler, A fast method for the measurement of diffusion coefficients: One-dimensional DOSY, Magn. Reson. Chem, vol.41, issue.6, pp.441-447, 2003.

Y. Zhao, Y. Luo, X. Yang, Y. Yang, and Q. Song, Tunable preparation of ruthenium nanoparticles with superior size-dependent catalytic hydrogenation properties, J. Hazard. Mater, vol.332, pp.124-131, 2017.

C. J. Murphy, Anisotropic metal nanoparticles: synthesis, assembly, and optical applications, J. Phys. Chem. B, vol.109, pp.13857-13870, 2005.

R. J. White, R. Luque, V. L. Budarin, J. H. Clark, and D. J. Macquarrie, Supported metal nanoparticles on porous materials. Methods and applications, Chem. Soc. Rev, vol.38, issue.2, pp.481-494, 2009.

R. B. Grubbs, Roles of polymer ligands in nanoparticle stabilization, Polym. Rev, vol.47, issue.2, pp.197-215, 2007.

Y. Lin, H. Skaff, T. Emrick, A. D. Dinsmore, and T. P. Russell, Nanoparticle assembly and transport at liquid-liquid interfaces, Science (80-. ), vol.299, issue.5604, pp.226-229, 2003.

V. Subramanian, H. Zhu, and B. Wei, Alcohol-assisted room temperature synthesis of different nanostructured manganese oxides and their pseudocapacitance properties in neutral electrolyte, Chem. Phys. Lett, vol.453, issue.4-6, pp.242-249, 2008.

H. Li, Ultrasound-assisted polyol method for the preparation of SBA-15-supported ruthenium nanoparticles and the study of their catalytic activity on the partial oxidation of methane, Langmuir, vol.20, issue.19, pp.8352-8356, 2004.

G. Arivazhagan, R. Shanmugam, and T. Thenappan, Dielectric, FT-IR and UV-vis spectroscopic studies on the fluid structure of diisopropyl ethercaprylic acid mixture, J. Mol. Struct, vol.990, issue.1-3, pp.276-280, 2011.

S. Grimme, J. Antony, S. Ehrlich, and S. Krieg, A consistent and accurate ab initio parametrization of density functional dispersion correction (dft-d) for the 94 elements H-Pu, J. Chem. Phys, vol.132, p.154104, 2010.

S. Grimme, S. Ehrlich, and L. Goerigk, Effect of the damping function in dispersion corrected density functional theory, J. Comp. Chem, vol.32, p.1456, 2011.

N. P. Niederberger, Metal Oxide Nanoparticles in Organic Solvents: Synthesis, Formation, Assembly and Application, 2009.

M. Niederberger and G. Garnweitner, Organic Reaction Pathways in the Nonaqueous Synthesis of Metal Oxide, Chem. Eur. J, vol.12, issue.28, pp.7282-7302, 2006.

M. Raymond and F. Rousset, An exact test for population differentiation, Evolution (N. Y), vol.49, issue.6, pp.1280-1283, 1995.
URL : https://hal.archives-ouvertes.fr/halsde-00186384

G. D. Ruxton, The unequal variance t -test is an underused alternative to Student's t -test and the Mann-Whitney U test, Behav. Ecol, vol.17, issue.4, pp.688-690, 2006.

E. Ramirez, L. Eradès, K. Philippot, P. Lecante, and B. Chaudret, Shape Control of Platinum Nanoparticles, Adv. Funct. Mater, vol.17, issue.13, pp.2219-2228, 2007.

J. M. Asensio, S. Tricard, Y. Coppel, R. Andrés, B. Chaudret et al., Knight Shift in 13C NMR Resonances Confirms the Coordination of N-Heterocyclic Carbene Ligands to Water-Soluble Palladium Nanoparticles, Angew. Chemie, vol.129, issue.3, pp.883-887, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01948258

L. E. Marbella and J. E. Millstone, NMR Techniques for Noble Metal Nanoparticles, Chem. Mater, vol.27, issue.8, pp.2721-2739, 2015.

E. A. Baquero, S. Tricard, J. C. Flores, E. D. Jesffls, and B. Chaudret, Highly Stable Water-Soluble Platinum Nanoparticles Stabilized by Hydrophilic N-Heterocyclic Carbenes, Angew. Chemie, vol.126, issue.48, pp.13436-13440, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02023113

B. M. Bank, Octanoic Acid (C8 H16 O2), p.27, 2019.

K. Tedsree, 13C NMR guides rational design of nanocatalysts via chemisorption evaluation in liquid phase, Science (80-. ), vol.332, issue.6026, pp.224-228, 2011.

J. A. Lopez-ruiz and R. J. Davis, Decarbonylation of heptanoic acid over carbon-supported platinum nanoparticles, Green Chem, vol.16, issue.2, pp.683-694, 2014.

H. H. Lamb, L. Sremaniak, and J. L. Whitten, Reaction pathways for butanoic acid decarboxylation on the (111) surface of a Pd nanoparticle, Surf. Sci, vol.607, pp.130-137, 2013.

Y. Coppel, G. Spataro, C. Pages, B. Chaudret, A. Maisonnat et al., Full Characterization of Colloidal Solutions of Long-Alkyl-Chain

, Amine-Stabilized ZnO Nanoparticles by NMR Spectroscopy: Surface State, Equilibria, and Affinity, vol.17, pp.5384-5393, 2012.

T. Pradeep, Noble metal nanoparticles for water purification : A critical review, Thin Solid Films, vol.517, issue.24, pp.6441-6478, 2009.

K. A. Nagashima, Stejskal -Tanner Equation Derived in Full, Concepts Magn. Reson. Part A, vol.40, issue.5, pp.205-214, 2012.

D. Li, Q. He, Y. Yang, H. Mo, and J. Li, Two-Stage pH Response of Poly (4-vinylpyridine) Grafted Gold Nanoparticles, Macromolecules, vol.41, issue.19, pp.7254-7256, 2008.

A. Mene, B. N. Chichkov, and S. Barcikowski, Influence of Water Temperature on the Hydrodynamic Diameter of Gold Nanoparticles from Laser Ablation, J. Phys. Chem. C, vol.11, issue.46, pp.2499-2504, 2010.

M. Neouze and U. Schubert, Surface Modification and Functionalization of Metal and Metal Oxide Nanoparticles by Organic Ligands, Monatshefte für Chemie-Chemical Mon, vol.139, issue.3, pp.183-195, 2008.

C. B. Post, Exchange-transferred NOE spectroscopy and bound ligand structure determination, Curr. Opin. Struct. Biol, vol.13, issue.5, pp.581-588, 2003.

M. P. Williamson, Applications of the NOE in Molecular Biology, vol.65, 2009.

J. W. Olesik, Elemental analysis using ICP-OES and ICP/MS, Anal. Chem, vol.63, issue.1, pp.12-21, 1991.

A. Desireddy, Ultrastable silver nanoparticles, Nature, vol.501, issue.7467, p.399, 2013.

S. Park and K. Hamad-schifferli, Evaluation of Hydrodynamic Size and Zeta-Potential of Surface-Modified Au Nanoparticle-DNA Conjugates via Ferguson Analysis, J. Phys. Chem. C, vol.112, issue.20, pp.7611-7616, 2008.

D. Tsai, T. J. Cho, F. W. Delrio, J. Taurozzi, M. R. Zachariah et al., Hydrodynamic Fractionation of Finite Size Gold Nanoparticle Clusters, J. Am. Chem. Soc, vol.133, issue.23, pp.8884-8887, 2011.

H. L. Abbott, CO Adsorption on Monometallic and Bimetallic Au -Pd Nanoparticles Supported on Oxide Thin Films, J. Phys. Chem. C, vol.114, issue.40, pp.17099-17104, 2010.

F. Vindigni, M. Manzoli, A. Chiorino, and F. Boccuzzi, Catalytically active gold sites: nanoparticles, borderline sites, clusters, cations, anions? FTIR spectra analysis of 12 CO and of 12 CO-13 CO isotopic mixtures, Gold Bull, vol.42, issue.2, 2009.

M. Walter, A unified view of ligand-protected gold clusters as superatom complexes, Proc. Natl. Acad. Sci, vol.105, pp.9157-9162, 2008.

C. M. Aikens, Electronic Structure of Ligand-Passivated Gold and Silver Nanoclusters, J. Phys. Chem. Lett, vol.2, issue.2, pp.99-104, 2010.

P. Kanninen, C. Johans, J. Merta, and K. Kontturi, Influence of ligand structure on the stability and oxidation of copper nanoparticles, J. Colloid Interface Sci, vol.318, issue.1, pp.88-95, 2008.

D. Astruc, F. Lu, and J. R. Aranzaes, Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous cata lysis, Angew. Chemie Int. Ed, vol.44, issue.48, pp.7852-7872, 2005.

K. Okitsu and Y. Mizukoshi, Catalytic Applications of Noble Metal Nanoparticles Produced by Sonochemical Reduction of Noble Metal Ions, Handbook of Ultrasonics and Sonochemistry, 2016.

T. Mokrane, A. Boudjahem, and M. Bettahar, Benzene hydrogenation over alumina-supported nickel nanoparticles prepared by polyol method, RSC Adv, vol.6, issue.64, pp.59858-59864, 2016.

W. Alsalahi, W. Tylus, and A. M. Trzeciak, Green Synthesis of Rhodium Nanoparticles that are Catalytically Active in Benzene Hydrogenation and 1-Hexene Hydroformylation, ChemCatChem, vol.10, issue.9, pp.2051-2058, 2018.

E. T. Silveira, The Partial Hydrogenation of Benzene to Cyclohexene by Nanoscale Ruthenium Catalysts in Imidazolium Ionic Liquids, Chem. Eur. J, vol.10, issue.15, pp.3734-3740, 2004.

X. Liu, C. Meng, and Y. Han, Substrate-mediated enhanced activity of Ru nanoparticles in catalytic hydrogenation of benzene, Nanoscale, vol.4, issue.7, pp.2288-2295, 2012.

C. Hydrogenation, Ru nanoparticles immobilized on montmorillonite by ionic liquids: a highly efficient heterogeneous catalyst for the hydrogenation of benzene, Angew. Chemie, vol.118, issue.2, pp.272-275, 2006.

X. Cui, Highly selective hydrogenation of arenes using nanostructured ruthenium catalysts modified with a carbon-nitrogen matrix, Nat. Commun, vol.7, p.11326, 2016.

, Carboxylic Acids, p.28, 2019.

. Sigma-aldrich,

S. Meng, E. G. Wang, and S. Gao, Water adsorption on metal surfaces: A general picture from density functional theory studies, Phys. Rev. B, vol.69, issue.19, p.195404, 2004.

J. Nishigaki, A New Binding Motif of Sterically Demanding Thiolates on a Gold Cluster, J. Am. Chem. Soc, vol.134, issue.35, pp.14295-14297, 2012.

J. Y. Rempel, B. L. Trout, M. G. Bawendi, and K. F. Jensen, Density functional theory study of ligand binding on CdSe (0001) ,(0001), and (1120) single crystal relaxed and reconstructed surfaces: implications for nanocrystalline growth, J. Phys. Chem. B, vol.110, issue.36, pp.18007-18016, 2006.

F. H. Lima, Catalytic Activity -d-Band Center Correlation for the O2 Reduction Reaction on Platinum in Alkaline Solutions, J. Phys. Chem. C, vol.111, issue.1, pp.404-410, 2007.

Z. D. Pozun, A Systematic Investigation of p-Nitrophenol Reduction by Bimetallic Dendrimer Encapsulated Nanoparticles, J. Phys. Chem. C, vol.117, issue.15, pp.7598-7604, 2013.

A. J. Barker, B. Cage, S. Russek, and C. R. Stoldt, Ripening during magnetite nanoparticle synthesis: Resulting interfacial defects and magnetic properties, J. Appl. Phys, vol.98, issue.6, p.63528, 2005.

S. Bian, I. A. Mudunkotuwa, T. Rupasinghe, and V. H. Grassian, Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid, Langmuir, vol.27, issue.10, pp.6059-6068, 2011.

P. An, Fast synthesis of dopamine-coated Fe3O4 nanoparticles through ligand-exchange method, Chinese Chem. Lett, vol.23, issue.9, pp.1099-1102, 2012.

S. A. Difranco, N. A. Maciulis, R. J. Staples, R. J. Batrice, and A. L. Odom, Evaluation of Donor and Steric Properties of Anionic Ligands on High Valent Transition Metals, Inorg. Chem, vol.51, issue.2, pp.1187-1200, 2011.

P. Ranjan, Metallic Nanocrystal Ripening on Inorganic Surfaces, ACS Omega, vol.3, issue.6, pp.6533-6539, 2018.

P. Fiurasek and L. Reven, Phosphonic and Sulfonic Acid-Functionalized Gold Nanoparticles: A Solid-State NMR Study, Langmuir, vol.23, issue.5, pp.2857-2866, 2007.

R. R. Allison, G. H. Downie, R. Cuenca, X. Hu, C. J. Childs et al., Photosensitizers in clinical PDT, Photodiagnosis Photodyn. Ther, vol.1, issue.1, pp.27-42, 2004.

D. Bechet, P. Couleaud, C. Frochot, M. Viriot, F. Guillemin et al., Nanoparticles as vehicles for delivery of photodynamic therapy agents, Trends Biotechnol, vol.26, issue.11, pp.616-621, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00323569

D. Kumar, L. Shan, and Y. Zhang, Nanoparticles in photodynamic therapy: An emerging paradigm, Adv. Drug Deliv. Rev, vol.60, issue.15, pp.1627-1637, 2008.

P. Huang, Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magneto fluorescent imaging and targeting therapy, Biomaterials, vol.32, issue.13, pp.3447-3458, 2011.

M. Lahav, Photoelectrochemistry with Integrated Photosensitizer-Electron Acceptor and Au-Nanoparticle Arrays, J. Am. Chem. Soc, vol.122, issue.46, pp.11480-11487, 2000.

R. Bakalova, H. Ohba, Z. Zhelev, M. Ishikawa, and Y. Baba, Quantum dots as photosensitizers?, Nat. Biotechnol, vol.22, issue.11, pp.1360-1361, 2004.

S. Ferrere and B. A. Gregg, Photosensitization of TiO2 by [FeII(2, 2'-bipyridine-4, 4 '-dicarboxylic acid)2(CN)2]: band selective electron injection from ultra-short-lived excited states, J. Am. Chem. Soc, vol.120, issue.4, pp.843-844, 1998.

S. M. Zakeeruddin, Design, synthesis, and application of amphiphilic ruthenium polypyridyl photosensitizers in solar cells based on nanocrystalline TiO2 films, Langmuir, vol.18, issue.3, pp.952-954, 2002.

F. Number, New photosensitizer. Tris (2,2'-bipyridine) ruthenium (II) chloride, J. Am. Chem. Soc, vol.93, issue.7, pp.1800-1801, 1971.

C. A. Bignozzi, C. Chiorboli, M. T. Indelli, M. A. Scandola, G. Varani et al., Simple poly (pyridine) ruthenium (II) photosensitizer:(2, 2'-bipyridine) tetracyanoruthenate (II), J. Am. Chem. Soc, vol.108, issue.24, pp.7872-7873, 1986.

G. Carrone, F. Gantov, L. D. Slep, and R. Etchenique, Fluorescent Ligands and Energy Transfer in Photoactive Ruthenium-Bipyridine Complexes, J. Phys. Chem. A, vol.118, issue.45, pp.10416-10424, 2014.

S. M. Ponder, Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants, Chem. Mater, vol.13, issue.2, pp.479-486, 2001.

A. Kathiravan and R. Renganathan, Effect of anchoring group on the photosensitization of colloidal TiO2 nanoparticles with porphyrins, J. Colloid Interface Sci, vol.331, issue.2, pp.401-407, 2009.

R. M. Donnell, R. N. Sampaio, G. Li, P. G. Johansson, C. L. Ward et al., Photoacidic and Photobasic Behavior of Transition Metal Compounds with Carboxylic Acid Group(s), J. Am. Chem. Soc, vol.138, issue.11, pp.3891-3903, 2016.

E. Schzab, W. Franck, and . Wichers, Preparation of benzoic acid of high purity, J. Res. Natl. Bur. Stand, vol.25, pp.747-757, 1934.

M. A. Connell, Improving the accuracy of pulsed field gradient NMR diffusion experiments: Correction for gradient non-uniformity, J. Magn. Reson, vol.198, issue.1, pp.121-131, 2009.

C. M. Cruickshank, The Stokes-Einstein Law for Diffusion in Solution, Proc. R. Soc. Lond. A, vol.106, pp.724-749, 1924.

J. T. Edward, Molecular Volumes and the Stokes-Einstein Equation, J. Chem. Educ, vol.47, issue.4, pp.261-270, 1970.

E. Toolbox, Benzene Liquid -Thermal Properties, 2011.

, Benzene -Dynamic and Kinematic Viscosity, 2018.

B. Das, M. N. Roy, and D. K. Hazra, Densities and viscosities of the binary aqueous mixtures of tetrahydrofuran and 1,2-dimethoxyethane at 298, 308 and 318 K, Indian J. Chem. Technol, vol.1, pp.1-5, 1994.

T. Zheng, P. Cherubin, L. Cilenti, K. Teter, and Q. Huo, A simple and fast method to study the hydrodynamic size difference of protein disulfide isomerase in oxidized and reduced form using gold nanoparticles and dynamic light scattering, Analyst, vol.141, issue.3, pp.934-938, 2016.

B. K. Teo and N. J. Sloane, Magic Numbers in Polygonal and Polyhedral Clusters, Inorg. Chem, vol.24, issue.26, pp.4545-4558, 1985.

A. Radi, D. Pradhan, Y. Sohn, and K. T. Leung, Nanoscale shape and size control of cubic, cuboctahedral, and octahedral Cu? Cu2O core? shell nanoparticles on Si (100) by one-step, templateless, capping-agent-free electrodeposition, ACS Nano, vol.4, issue.3, pp.1553-1560, 2010.

S. V. Sokolov, C. Batchelor-mcauley, K. Tschulik, S. Fletcher, and R. G. Compton, Are Nanoparticles Spherical or Quasi-Spherical?, Chem. Eur. J, vol.21, issue.30, pp.10741-10746, 2015.

P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B, vol.50, issue.24, p.17953, 1994.

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B, vol.59, issue.3, p.1758, 1999.

J. Hafner, Ab-initio simulations of materials using VASP: Density-functional theory and beyond, J. Comput. Chem, vol.29, issue.13, pp.2044-2078, 2008.

H. J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, vol.13, issue.12, pp.5188-5192, 1976.

G. Henkelman, B. P. Uberuaga, and H. Jónsson, A climbing image nudged elastic band method for finding saddle points and mini mum energy paths, J. Chem. Phys, vol.113, issue.22, pp.9901-9904, 2000.

G. Henkelman and H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points minimum energy paths and saddle points, J. Chem. Phys, vol.113, issue.22, pp.9978-9985, 2000.

C. Adamo and V. Barone, Optimization methods for finding minimum energy paths Optimization methods for finding minimum energy paths, J. Chem. Phys, vol.128, issue.13, p.134106, 2008.

C. J. Pickard and F. Mauri, All-electron magnetic response with pseudopotentials: NMR chemical shifts, Phys. Rev. B, vol.63, issue.24, p.245101, 2001.

N. Marzari and F. Mauri, Spin and orbital magnetic response in metals: Susceptibility and NMR shifts, Phys. Rev. B, vol.76, issue.16, p.165122, 2007.

M. J. Frisch, Gaussian 09 Revison D.01, 2009.

M. Dolg, U. Wedig, H. Stoll, and H. Preuss, Energy-adjusted abinitio pseudopotentials for the first row transition elements, J. Chem. Phys, vol.86, issue.2, pp.866-872, 1987.

A. Bergner, M. Dolg, W. Küchle, H. Stoll, and H. Preuß, Ab initio energy-adjusted pseudopotentials for elements of groups 13-17, Mol. Phys, vol.80, issue.6, pp.1431-1441, 1993.

K. L. Schuchardt, Basis set exchange: A community database for computational sciences, J. Chem. Inf. Model, vol.47, issue.3, pp.1045-1052, 2007.

D. Feller, The role of databases in support of computational chemistry calculations, J. Comput. Chem, vol.17, issue.13, pp.1571-1586, 1996.

C. Adamo and V. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, J. Chem. Phys, vol.110, issue.13, pp.6158-6170, 1999.

F. London, Théorie quantique des courants interatomiques dans les combinaisons aromatiques, J. Phys. Radium, vol.8, issue.10, pp.397-409, 1937.

R. Mcweeny, Theory for the Fock-Dirac Density Matrix, Phys. Rev, vol.126, pp.1028-1034, 1962.

R. Ditchfield, Self-consistent perturbation theory of diamagnetism: I. A gauge-invariant LCAO method for NMR chemical shifts, Mol. Phys, vol.27, issue.4, pp.789-807, 1974.

J. L. Dodds, R. Mcweeny, and A. J. Sadlej, Self-consistent perturbation theory: Generalization for perturbation-dependent non-orthogonal basis set, Mol. Phys, vol.36, issue.4, pp.1779-1791, 1977.

K. Wolinski, J. F. Hinton, and P. Pulay, Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations, J. Am. Chem. Soc, vol.112, issue.23, pp.8251-8260, 1990.

M. W. Lodewyk, M. R. Siebert, and D. J. Tantillo, Computational Prediction of 1H and 13C Chemical Shifts: A Useful Tool for Natural Product, Mechanistic, and Synthetic Organic Chemistry, Chem. Rev, vol.112, issue.3, pp.1839-1862, 2012.

K. K. Baldridge and J. S. Siegel, Correlation of empirical ?(TMS) and absolute NMR chemical shifts predicted by ab initio computations, J. Phys. Chem. A, vol.103, issue.20, pp.4038-4042, 1999.

A. K. Jameson and C. J. Jameson, Gas-phase13C chemical shifts in the zero-pressure limit: refinements to the absolute shielding scale for13C, Chem. Phys. Lett, vol.134, issue.5, pp.461-466, 1987.

H. Widjaja, DFT + U and ab initio atomistic thermodynamics approache for mixed transitional metallic oxides: A case study of CoCu2O3surface terminations, Mater. Chem. Phys, vol.201, pp.241-250, 2017.

K. Duanmu, J. Friedrich, and D. G. Truhlar, Thermodynamics of metal nanoparticles: Energies and enthalpies of formation of magnesium clusters and nanoparticles as large as 1.3 nm, J. Phys. Chem. C, vol.120, issue.45, pp.26110-26118, 2016.

F. Khorasheh, R. Radmanesh, and M. Kazemeini, Mechanism discrimination in heterogeneous catalytic reactions: Fractal analysis, Ind. Eng. Chem. Res, vol.37, issue.2, pp.362-366, 1998.

G. Ertl, Reactions at well-defined surfaces, Surf. Sci, vol.299, pp.742-754, 1994.

D. A. Mcquarrie, Statistical Mechanics, 2000.

A. V. Marenich, C. J. Cramer, and D. G. Truhlar, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B, vol.113, issue.18, pp.6378-6396, 2009.

J. Tomasi, B. Mennucci, and R. Cammi, Quantum mechanical continuum solvation models, Chem. Rev, vol.105, issue.8, pp.2999-3094, 2005.

M. W. Chase, C. A. Davies, J. R. Downey, D. J. Frurip, R. A. Mcdonald et al., JANAF Thermochemical Tables, 1985.

, VTST Tools -Dymanical Matrix

S. Maintz, V. L. Deringer, A. L. Tchougrã©eff, and R. Dronskowski, LOBSTER: A tool to extract chemical bonding from plane-wave based DFT, J. Comput. Chem, vol.37, issue.11, pp.1030-1035, 2016.

V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets, J. Phys. Chem. A, vol.115, issue.21, pp.5461-5466, 2011.

S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids, J. Comput. Chem, vol.34, issue.29, pp.2557-2567, 2013.

R. W. Bader, Atoms in Molecules: A Quantum Theory, 1994.