W. R. Grove, On the electro-chemical polarity of gases, Philos. Trans. R. Soc, vol.142, p.87, 1852.

N. O. Young and J. Kowal, Optically Active Fluorite Films, Nature, vol.183, p.104, 1959.

D. O. Smith, Anisotropy in permalloy films, J. Appl. Phys, vol.30, p.264, 1959.

M. Faraday, Experimental relations of gold (and other metals) to light, Phil.Trans, vol.147, p.145, 1857.

A. Anders, A structure zone diagram including plasma-based deposition and ion etching, Thin Solid Films, vol.518, p.4087, 2010.

J. M. Nieuwenhuizen and H. B. Haanstra, Microfractography of thin films, Philips Tech. Rev., 620, vol.187, p.87, 1966.

R. N. Tait, T. Smy, and M. J. Brett, Modelling and characterization of columnar growth in evaporated films, Thin Solid Films, vol.226, p.196, 1993.

H. J. Leamy and A. G. Dirks, Microstructure and magnetism in amorphous rare-earth-transition-metal thin films. I. Microstructure, J. Appl. Phys, vol.49, p.3430, 1978.

K. Robbie and M. J. Brett, Sculptured thin films and glancing angle deposition: Growth mechanics and applications, J. Vac. Sci. Technol. Vac. Surf. Films, vol.15, p.1460, 1997.

M. Patel, K. Kim, M. Ivill, J. D. Budai, and D. P. Norton, Reactive sputter deposition of epitaxial (001) CeO2 on (001) Ge, Thin Solid Films, vol.468, p.1, 2004.

P. Basnyat, B. Luster, Z. Kertzman, S. Stadler, P. Kohli et al., Mechanical and tribological properties of CrAlN-Ag self-lubricating films, Surf. Coat. Technol, vol.202, p.1011, 2007.

W. D. Sproul, Reactive sputter deposition of polycrystalline nitride and oxide superlattice coatings, Surf. Coat. Technol, p.170, 1996.

R. D. Evans, G. L. Doll, W. J. Meng, F. Mei, and J. T. Glass, Effects of applied substrate bias during reactive sputter deposition of nanocomposite tantalum carbide/amorphous hydrocarbon thin films, Thin Solid Films, vol.515, p.5403, 2007.

N. Martin, R. Sanjinés, J. Takadoum, and F. Lévy, Enhanced sputtering of titanium oxide, nitride and oxynitride thin films by the reactive gas pulsing technique, Surf. Coat. Technol, p.615, 2001.

S. Seeger, R. Mientus, J. Röhrich, E. Strub, W. Bohne et al., Electrical and optical properties of highly (001) textured WSx films deposited by reactive magnetron sputtering, Surf. Coat. Technol, vol.200, p.218, 2005.

A. D. Glew, R. Saha, J. S. Kim, and M. A. Cappelli, Ion energy and momentum flux dependence of diamondlike carbon film synthesis in radio frequency discharges, Surf. Coat. Technol, vol.114, p.224, 1999.

S. Swann, Film thickness distribution in magnetron sputtering, Vacuum, vol.38, p.791, 1988.

T. Iseki, H. Maeda, and T. Itoh, Improved wide erosion nickel magnetron sputtering using an eccentrically rotating tilted center magnet, Vacuum, vol.82, p.1162, 2008.

G. Reiss, J. Vancea, and H. Hoffmann, Grain-Boundary Resistance in Polycrystalline Metals, Phys. Rev. Lett, vol.56, p.2100, 1986.

J. E. Mahan, Physical vapor deposition of thin films, 2000.

K. Van-aeken, S. Mahieu, and D. Depla, The metal flux from a rotating cylindrical magnetron: a Monte Carlo simulation, J. Phys. D: Appl. Phys, vol.41, p.205307, 2008.

A. Besnard, Relations structure -conductivité électrique dans des films de chrome architecturés, 2010.

J. F. Ziegler, J. P. Biersack, and M. D. Ziegler, SRIM -The Stopping and Range of ions in Matter, pp.69654207-69654208, 2008.

A. Brevet, Etude des premiers instants de la croissance de couches minces d'oxydes métalliques par MOCVD : caractérisation de l'interface couche-substrat par des techniques d'analyse de surfaces, 2006.

S. Andrieu and P. Müller, Les surfaces solides : concepts et méthodes, CNRS Editions et EDP Sciences, 2005.

B. Movchan and A. V. Demchishin, Structure and properties of thick condensates of nickel, titanium, tungsten, aluminium oxides, and zirconium dioxide in vacuum, Fiz. Metal. Metalloved, vol.28, p.653, 1969.

J. A. Thornton, High rate thick film growth, Ann. Rev. Mater. Sci, vol.7, p.239, 1977.

M. M. Hawkeye, M. T. Taschuk, and M. J. Brett, Glancing angle deposition of thin films: Engineering the nanoscale, 2014.

R. E. Beainou, R. Salut, L. Robert, J. Cote, V. Potin et al., Anisotropic conductivity enhancement in inclined W-Cu columnar films, Mater. Lett, vol.232, p.126, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02300045

S. V. Kesapragada and D. Gall, Two-component nanopillar arrays grown by glancing angle deposition, Thin Solid Films, vol.494, p.234, 2006.

G. D. Dice, M. J. Brett, D. Wang, and J. M. Buriak, Fabrication and characterization of an electrically variable, nanospring based interferometer, Appl. Phys. Lett, vol.90, p.253101, 2007.

H. Fujiwara, Columnar and textural structures in obliquely deposited iron films, Thin Solid Films, vol.163, p.379, 1988.

K. Okamoto, T. Hashimoto, K. Hara, M. Kamiya, and H. Fujiwara, Columnar structure and texture of iron films prepared at various pressures, Thin Solid Films, vol.129, p.299, 1985.

D. K. Pandya, A. C. Rastogi, and K. L. Chopra, Obliquely deposited amorphous Ge films. I. Growth and structure, J. Appl. Phys, vol.46, p.2966, 1975.

D. Vick, L. J. Friedrich, S. K. Dew, M. J. Brett, K. Robbie et al., Self-shadowing and surface diffusion effects in obliquely deposited thin films, Thin Solid Films, vol.339, p.88, 1999.

P. Pedrosa, A. Ferreira, J. Cote, N. Martin, M. A. Yazdi et al., Influence of the sputtering pressure on the morphological features and electrical resistivity anisotropy of nanostructured titanium films, Appl. Surf. Sci, vol.420, p.681, 2017.

K. Kuwahara and S. Shinzato, Resistivity anisotropy of nickel films induced by oblique incidence sputter deposition, Thin Solid Films, vol.164, p.165, 1988.

T. Yuangkaew, P. Jaroenapibal, M. Horprathum, P. Eimchai, and N. Triroj, Characterization of tungsten oxide nanorods fabricated by reactive DC magnetron sputtering with GLAD technique, Mater. Today Proc, vol.5, p.13886, 2018.

B. Wang, H. Qi, H. Wang, Y. Cui, J. Zhao et al., Morphology, structure and optical properties in TiO2 nanostructured films annealed at various temperatures, vol.5, p.1410, 2015.

S. Wang, G. Xia, X. Fu, H. He, J. Shao et al., Preparation and characterization of nanostructured ZrO2 thin films by glancing angle deposition, Thin Solid Films, vol.515, p.3352, 2007.

J. Lintymer, N. Martin, J. Chappé, P. Delobelle, and J. Takadoum, Nanoindentation of chromium zigzag thin films sputter deposited, Surf. Coat. Technol, vol.200, p.269, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00019720

R. Messier, T. Gehrke, C. Frankel, V. C. Venugopal, W. Otaño et al., Engineered sculptured nematic thin films, J. Vac. Sci. Technol. Vac. Surf. Films, vol.15, p.2148, 1997.

M. A. Summers, K. Tabunshchyk, A. Kovalenko, and M. J. Brett, Fabrication of 2D-3D photonic crystal heterostructures by glancing angle deposition, Photonics Nanostructures -Fundam. Appl, vol.7, p.76, 2009.

K. V. Tabunshchyk, M. M. Hawkeye, A. Kovalenko, and M. J. Brett, Three-dimensional simulation of periodically structured thin films with uniaxial symmetry, J. Phys.D: Appl. Phys, vol.40, p.4936, 2007.

Y. Zhao, D. Ye, G. Wang, and T. Lu, Designing nanostructures by glancing angle deposition, Nanotub. Nanowires, vol.5219, p.59, 2003.

S. R. Kennedy and M. J. Brett, Advanced techniques for the fabrication of square spiral photonic crystals by glancing angle deposition, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct, vol.22, p.1184, 2004.

D. Ye, Y. Zhao, G. Yang, Y. Zhao, G. Wang et al., Manipulating the column tilt angles of nanocolumnar films by glancing-angle deposition, Nanotechnology, vol.13, p.615, 2002.

D. A. Gish, M. A. Summers, and M. J. Brett, Morphology of periodic nanostructures for photonic crystals grown by glancing angle deposition, Photonics Nanostructures -Fundam. Appl, vol.4, p.23, 2006.

Y. He and Y. Zhao, Advanced multi-component nanostructures designed by dynamic shadowing growth, Nanoscale, vol.3, p.2361, 2011.

H. Vankranenburg and C. Lodder, Tailoring growth and local composition by oblique-incidence deposition: a review and new experimental data, Mater. Sci. Eng. R Rep, vol.11, p.295, 1994.

H. Van-kranenburg, J. C. Lodder, Y. Maeda, L. Toth, and T. J. Popma, Microstructure of coevaporated CoCr films with perpendicular anisotropy, IEEE Trans. Magn, vol.26, p.1620, 1990.

A. K. Kar, P. Morrow, X. Tang, T. C. Parker, H. Li et al., Epitaxial multilayered Co/Cu ferromagnetic nanocolumns grown by oblique angle deposition, Nanotechnology, vol.18, p.295702, 2007.

Y. He, Z. Zhang, C. Hoffmann, and Y. Zhao, Embedding Ag Nanoparticles into MgF2 Nanorod Arrays, Adv. Funct. Mater, vol.18, p.1676, 2008.

Y. Watanabe, S. Hyodo, T. Motohiro, T. Hioki, M. Sugiura et al., Catalytic properties of thin films by simultaneous oblique sputter deposition of two materials from different directions, Thin Solid Films, vol.256, p.68, 1995.

Y. He, J. Wu, and Y. Zhao, Designing catalytic nanomotors by dynamic shadowing growth, Nano Lett, vol.7, p.1369, 2007.

Y. He, B. Yang, K. Yang, C. Brown, R. Ramasamy et al., Designing Sibased nanowall arrays by dynamic shadowing growth to tailor the performance of Li-ion battery anodes, J. Mater. Chem, vol.22, p.8294, 2012.

Y. He, J. Fu, Y. Zhang, Y. Zhao, L. Zhang et al., Multilayered Si/Ni nanosprings and their magnetic properties, Small, vol.3, p.153, 2007.

C. Zhou and D. Gall, Two-Component Nanorod Arrays by Glancing-Angle Deposition, Small, vol.4, p.1351, 2008.

J. G. Gibbs and Y. Zhao, Self-Organized Multiconstituent Catalytic Nanomotors, Small, issue.6, p.1656, 2010.

P. Pedrosa, A. Ferreira, N. Martin, M. Arab-pour, A. Yazdi et al., Nanosculptured Janus-like TiAg thin films obliquely deposited by GLAD co-sputtering for temperature sensing, Nanotechnology, vol.29, p.355706, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02300047

A. Ferreira, P. Pedrosa, N. Martin, M. A. Yazdi, A. Billard et al., Nanostructured Ti1-xCux thin films with tailored electrical and morphological anisotropy, Thin Solid Films, vol.672, p.47, 2019.

K. D. Harris, D. Vick, M. J. Brett, and K. Robbie, Improved microstructures for thermal barrier coatings produced by glancing angle deposition, MRS Proc, vol.555, p.97, 1998.

B. Mohanty, B. D. Morton, A. Sinan-alagoz, T. Karabacak, and M. Zou, Frictional anisotropy of tilted molybdenum nanorods fabricated by glancing angle deposition, Tribol. Int, vol.80, p.216, 2014.

N. Martin, J. Sauget, and T. Nyberg, Anisotropic electrical resistivity during annealing of oriented columnar titanium films, Mater. Lett, vol.105, p.20, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00875683

C. Song, G. K. Larsen, and Y. Zhao, Anisotropic resistivity of tilted silver nanorod arrays: Experiments and modeling, Appl. Phys. Lett, vol.102, p.233101, 2013.

E. Coffy, G. Dodane, S. Euphrasie, A. Mosset, P. Vairac et al., Anisotropic propagation imaging of elastic waves in oriented columnar thin films, J. Phys. D: Appl. Phys, vol.50, p.484005, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01657426

R. E. Beainou, A. Chargui, P. Pedrosa, A. Mosset, S. Euphrasie et al., Electrical resistivity and elastic wave propagation anisotropy in glancing angle deposited tungsten and gold thin films, Appl. Surf. Sci, vol.475, p.606, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02140275

M. Mansour, A. Keita, B. Gallas, J. Rivory, A. Besnard et al., Optical anisotropy of tilted columns thin films of chromium deposited at oblique incidence, Opt. Mater, vol.32, p.1146, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00346506

S. Keitoku and K. Nishioka, Grain structure and magnetic anisotropy of Fe film evaporated obliquely from two sources, Jpn. J. Appl. Phys, vol.20, p.1249, 1981.

K. Robbie, , 1998.

M. Wong, M. Lee, C. Chen, and C. Huang, Vapor deposited sculptured nano-porous titania films by glancing angle deposition for efficiency enhancement in dye-sensitized solar cells, Thin Solid Films, vol.519, p.1717, 2010.

G. K. Kiema, M. J. Colgan, and M. J. Brett, Dye sensitized solar cells incorporating obliquely deposited titanium oxide layers, Sol. Energy Mater. Sol. Cells, vol.85, p.321, 2005.

L. González-garcía, J. Idígoras, A. R. González-elipe, A. Barranco, and J. A. Anta, Charge collection properties of dye-sensitized solar cells based on 1-dimensional TiO2 porous nanostructures and ionicliquid electrolytes, J. Photochem. Photobiol. Chem, p.58, 2012.

C. W. Tang, Two-layer organic photovoltaic cell, Appl. Phys. Lett, vol.48, p.183, 1986.

N. Li and S. R. Forrest, Tilted bulk heterojunction organic photovoltaic cells grown by oblique angle deposition, Appl. Phys. Lett, vol.95, p.123309, 2009.

M. Thomas, B. J. Worfolk, D. A. Rider, M. T. Taschuk, J. M. Buriak et al., C60 Fullerene nanocolumns-polythiophene heterojunctions for inverted organic photovoltaic cells, ACS Appl. Mater. Interfaces, vol.3, p.1887, 2011.

M. Thomas, W. Li, Z. S. Bo, and M. J. Brett, Inverted photovoltaic cells of nanocolumnar C60 filled with solution processed small molecule 3-Q, Org. Electron, vol.13, p.2647, 2012.

J. G. Van-dijken, M. D. Fleischauer, and M. J. Brett, Controlled nanostructuring of CuPc thin films via glancing angle deposition for idealized organic photovoltaic architectures, J. Mater. Chem, vol.21, p.1013, 2011.

J. G. Van-dijken, M. D. Fleischauer, and M. J. Brett, Solvent effects on ZnPc thin films and their role in fabrication of nanostructured organic solar cells, Org. Electron, vol.12, p.2111, 2011.

N. J. Gerein, M. D. Fleischauer, and M. J. Brett, Effect of TiO2 film porosity and thermal processing on TiO2-P3HT hybrid materials and photovoltaic device performance, Sol. Energy Mater. Sol. Cells, vol.94, p.2343, 2010.

D. A. Rider, R. T. Tucker, B. J. Worfolk, K. M. Krause, A. Lalany et al., Indium tin oxide nanopillar electrodes in polymer/fullerene solar cells, Nanotechnology, vol.22, p.85706, 2011.

Y. Zhou, T. Taima, T. Miyadera, T. Yamanari, M. Kitamura et al., Glancing angle deposition of copper iodide nanocrystals for efficient organic photovoltaics, Nano Lett, vol.12, p.4146, 2012.

M. D. Gasda, R. Teki, T. Lu, N. Koratkar, G. A. Eisman et al., Sputter-deposited Pt PEM fuel cell electrodes: Particles vs Layers, J. Electrochem. Soc, vol.156, p.614, 2009.

W. J. Khudhayer, N. N. Kariuki, X. Wang, D. J. Myers, A. U. Shaikh et al., Oxygen reduction reaction electrocatalytic activity of glancing angle deposited platinum nanorod arrays, J. Electrochem. Soc, vol.158, p.1029, 2011.

P. G. Bruce, B. Scrosati, and J. Tarascon, Nanomaterials for rechargeable lithium batteries, vol.47, p.2930, 2008.

M. D. Fleischauer, J. Li, and M. J. Brett, Columnar thin films for three-dimensional microbatteries, J. Electrochem. Soc, vol.156, p.33, 2009.

Y. He, B. Yang, K. Yang, C. Brown, R. Ramasamy et al., Designing Sibased nanowall arrays by dynamic shadowing growth to tailor the performance of Li-ion battery anodes, J. Mater. Chem, vol.22, p.8294, 2012.

M. Au, Y. He, Y. Zhao, H. Ghassemi, R. S. Yassar et al., Silicon and silicon-copper composite nanorods for anodes of Li-ion rechargeable batteries, J. Power Sources, vol.196, p.9640, 2011.

P. R. Abel, A. M. Chockla, Y. Lin, V. C. Holmberg, J. T. Harris et al., Nanostructured Si(1-x) Gex for tunable thin film lithium-ion battery anodes, ACS Nano, vol.7, p.2249, 2013.

Y. Lin, P. R. Abel, D. W. Flaherty, J. Wu, K. J. Stevenson et al., Morphology dependence of the lithium storage capability and rate performance of amorphous TiO2 electrodes, J. Phys. Chem. C, vol.115, p.2585, 2011.

S. P. Berglund, D. W. Flaherty, N. T. Hahn, A. J. Bard, and C. B. Mullins, Photoelectrochemical oxidation of water using nanostructured BiVO4 films, J. Phys. Chem. C, vol.115, p.3794, 2011.

N. T. Hahn, H. Ye, D. W. Flaherty, A. J. Bard, and C. B. Mullins, Reactive ballistic deposition of ?-Fe 2O3 thin films for photoelectrochemical water oxidation, ACS Nano, vol.4, p.1977, 2010.

H. X. Dang, N. T. Hahn, H. S. Park, A. J. Bard, and C. B. Mullins, Nanostructured Ta3N5 films as visible-light active photoanodes for water oxidation, J. Phys. Chem. C, p.19225, 2012.

A. Wolcott, W. A. Smith, T. R. Kuykendall, Y. Zhao, and J. Z. Zhang, Photoelectrochemical study of nanostructured ZnO thin films for hydrogen generation from water splitting, Adv. Funct. Mater, vol.19, p.1849, 2009.

W. D. Chemelewski, N. T. Hahn, and C. B. Mullins, Effect of Si doping and porosity on hematite's (?-Fe2O3 ) photoelectrochemical water oxidation performance, J. Phys. Chem. C, p.5255, 2012.

J. J. Steele, G. A. Fitzpatrick, and M. J. Brett, Capacitive humidity sensors with high sensitivity and subsecond response times, IEEE Sens. J, vol.7, p.955, 2007.

J. J. Steele, J. P. Gospodyn, J. C. Sit, and M. J. Brett, Impact of morphology on high-speed humidity sensor performance, IEEE Sens. J, vol.6, p.24, 2006.

J. J. Steele, M. T. Taschuk, and M. J. Brett, Response time of nanostructured relative humidity sensors, Sens. Actuators B Chem, vol.140, p.610, 2009.

S. Hwang, H. Kwon, S. Chhajed, J. W. Byon, J. M. Baik et al., A near single crystalline TiO2 nanohelix array: Enhanced gas sensing performance and its application as a monolithically integrated electronic nose, The Analyst, vol.138, p.443, 2013.

N. A. Beckers, M. T. Taschuk, and M. J. Brett, Selective room temperature nanostructured thin film alcohol sensor as a virtual sensor array, Sens. Actuators B Chem, vol.176, p.1096, 2013.

X. Xu, M. Arab-pour, J. Yazdi, A. Sanchez, F. Billard et al., Exploiting the dodecane and ozone sensing capabilities of nanostructured tungsten oxide films, Sens. Actuators B Chem, vol.266, p.773, 2018.

F. Maudet, Elaboration de nouveaux traitements optiques hautes performances grâce à l'utilisation de la croissance à incidence rasante du visible au proche infrarouge, basse réflectivité, 2000.

Q. Wu, Circular polarization filters made of chiral sculptured thin films: Experimental and simulation results, Opt. Eng, vol.39, p.1863, 2000.

V. Leontyev, N. G. Wakefield, K. Tabunshchyk, J. C. Sit, M. J. Brett et al., Selective transmittance of linearly polarized light in thin films rationally designed by FDTD and FDFD theories and fabricated by glancing angle deposition, J. Appl. Phys, vol.104, p.104302, 2008.

A. C. Van-popta, K. R. Van-popta, J. C. Sit, and M. J. Brett, Sidelobe suppression in chiral optical filters by apodization of the local form birefringence, J. Opt. Soc. Am. A, vol.24, p.3140, 2007.

K. D. Harris, A. C. Van-popta, J. C. Sit, D. J. Broer, and M. J. Brett, A birefringent and transparent electrical conductor, Adv. Funct. Mater, vol.18, p.2147, 2008.

S. R. Kennedy and M. J. Brett, Porous broadband antireflection coating by glancing angle deposition, Appl. Opt, vol.42, p.4573, 2003.

J. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen et al., Optical thinfilm materials with low refractive index for broadband elimination of Fresnel reflection, Nat. Photonics, vol.1, p.176, 2007.

K. Kaminska, T. Brown, G. Beydaghyan, and K. Robbie, Vacuum evaporated porous silicon photonic interference filters, Appl. Opt, vol.42, p.4212, 2003.

M. M. Hawkeye and M. J. Brett, Narrow bandpass optical filters fabricated with one-dimensionally periodic inhomogeneous thin films, J. Appl. Phys, vol.100, p.44322, 2006.

X. Yan, F. W. Mont, D. J. Poxson, J. Cho, E. F. Schubert et al., Electrically conductive thin-film color filters made of single-material indium-tin-oxide, J. Appl. Phys, vol.109, p.103113, 2011.

P. Hajireza, K. Krause, M. Brett, and R. Zemp, Glancing angle deposited nanostructured film Fabry-Perot etalons for optical detection of ultrasound, Opt. Express, vol.21, p.6391, 2013.

K. D. Harris, D. Vick, E. J. Gonzalez, T. Smy, K. Robbie et al., Porous thin films for thermal barrier coatings, Surf. Coat. Technol, vol.138, p.185, 2001.

S. R. Kennedy, M. J. Brett, O. Toader, and S. John, Fabrication of tetragonal square spiral photonic crystals, Nano Lett, vol.2, p.59, 2002.

O. Albrecht, R. Zierold, C. Patzig, J. Bachmann, C. Sturm et al., Tubular magnetic nanostructures based on glancing angle deposited templates and atomic layer deposition, Phys. Status Solidi B, vol.247, p.1365, 2010.

L. W. Bezuidenhout, N. Nazemifard, A. B. Jemere, D. J. Harrison, and M. J. Brett, Microchannels filled with diverse micro-and nanostructures fabricated by glancing angle deposition, p.1671, 2011.

D. R. Lide, CRC Handbook of Chemistry and Physics, Internet Version, 2005.

S. D. Sartale and C. D. Lokhande, Growth of copper sulphide thin films by successive ionic layer adsorption and reaction (SILAR) method, Mater. Chem. Phys, vol.65, p.63, 2000.

S. Lindroos, A. Arnold, and M. Leskelä, Growth of CuS thin films by the successive ionic layer adsorption and reaction method, Appl. Surf. Sci, vol.158, p.75, 2000.

I. Grozdanov and M. Najdoski, Optical and electrical properties of copper sulfide films of variable composition, J. Solid State Chem, vol.114, p.469, 1995.

O. Savadogo, Chemically and electrochemically deposited thin films for solar energy materials, Sol. Energy Mater. Sol. Cells, vol.52, p.361, 1998.

Z. Abdullaeva, E. Omurzak, and T. Mashimo, Synthesis of copper sulfide nanoparticles by pulsed plasma in liquid method, Inter. J. Chem. Mol. Ing, vol.7, p.4, 2013.

M. T. Nair and P. K. Nair, SnS-CuxS thin film combination: A desirable solar control coating for architectural and automobile glazings, J. Phys. D: Appl. Phys, vol.24, p.450, 1991.

I. Grozdanov, Electroconductive copper selenide films on transparent polyester sheets, Synth. Met, vol.63, p.213, 1994.

X. Feng, Y. Li, H. Liu, Y. Li, S. Cui et al., Controlled growth and field emission properties of CuS nanowalls, vol.18, p.145706, 2007.

A. A. Sagade and R. Sharma, Copper sulphide (CuxS) as an ammonia gas sensor working at room temperature, Sens. Actuators B Chem, vol.133, p.135, 2008.

P. K. Nair, M. T. Nair, A. Fernandez, and M. Ocampo, Prospects of chemically deposited metal chalcogenide thin films for solar control applications, J. Phys. D: Appl. Phys, vol.22, p.829, 1989.

X. Shen, H. Zhao, H. Shu, H. Zhou, and A. Yuan, Self-assembly of CuS nanoflakes into flowerlike microspheres: Synthesis and characterization, J. Phys. Chem. Solids, p.422, 2009.

M. J. O'keefe, J. T. Grant, and J. S. Solomon, Magnetron sputter deposition of A-15 and bcc crystal structure tungsten thin films, J. Electron. Mater, vol.24, p.961, 1995.

I. Djerdj, A. M. Tonejc, A. Tonejc, and N. Radi?, XRD line profile analysis of tungsten thin films, Vacuum, vol.80, p.151, 2005.

A. Cros, R. Pierrisnard, F. Pierre, J. M. Layet, and F. Meyer, Low-temperature reaction in tungsten layers deposited on Si (100) substrates, Appl. Phys. Lett, vol.55, p.226, 1989.

S. M. Rossnagel, I. C. Noyan, and C. Cabral, Phase transformation of thin sputter-deposited tungsten films at room temperature, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct, vol.20, p.2047, 2002.

M. Itoh, The origin of stress in sputter-deposited tungsten films for x-ray masks, J. Vac. Sci. Technol. B Microelectron. Nanometer Struct, vol.9, p.149, 1991.

I. A. Weerasekera, S. I. Shah, D. V. Baxter, and K. M. Unruh, Structure and stability of sputter deposited betatungsten thin films, Appl. Phys. Lett, vol.64, p.3231, 1994.

N. Radi?, A. Tonejc, J. Ivkov, P. Dub?ek, S. Bernstorff et al., Sputter-deposited amorphous-like tungsten, Surf. Coat. Technol, p.66, 2004.

L. C. Agudelo-morimitsu, J. De-la-roche, A. Ruden, D. Escobar, and E. Restrepo-parra, Effect of substrate temperature on the mechanical and tribological properties of W/WC produced by DC magnetron sputtering, Ceram. Int, vol.40, p.7037, 2014.

B. Gr?eta, N. Radi?, D. Gracin, T. Do?li?, and T. Car, Crystallization of Cu50W50 and Cu66W34 amorphous alloys, J. Non-Cryst. Solids, vol.170, p.101, 1994.

M. Nastasi, F. W. Saris, L. S. Hung, and J. W. Mayer, Stability of amorphous Cu/Ta and Cu/W alloys, J. Appl. Phys, vol.58, p.3052, 1985.

E. Gaffet, C. Louison, M. Harmelin, and F. Faudot, Metastable phase transformations induced by ball-milling in the Cu W system, Mater. Sci. Eng. A, vol.134, p.1380, 1991.

A. Elsayed, W. Li, O. A. Kady, W. M. Daoush, E. A. Olevsky et al., Experimental investigations on the synthesis of W-Cu nanocomposite through spark plasma sintering, J. Alloys Compd, vol.639, p.373, 2015.

W. T. Qiu, Y. Pang, Z. Xiao, and Z. Li, Preparation of W-Cu alloy with high density and ultrafine grains by mechanical alloying and high pressure sintering, Int. J. Refract. Met. Hard Mater, vol.61, p.29, 2016.

X. Zhang, J. A. Beach, M. Wang, P. Bellon, and R. S. Averback, Precipitation kinetics of dilute Cu-W alloys during low-temperature ion irradiation, Acta Mater, vol.120, p.46, 2016.

A. G. Dirks and J. J. Van-den-broek, Metastable solid solutions in vapor deposited Cu-Cr, Cu-Mo, and Cu-W thin films, J. Vac. Sci. Technol. Vac. Surf. Films, vol.3, p.2618, 1985.

R. Zhang, Z. Li, and B. Liu, Metastable phase formed in immiscible Cu-W multilayers by ion mixing, Jpn. J. Appl. Phys, vol.42, p.7009, 2003.

H. F. Rizzo, T. B. Massalski, and M. Nastasi, Metastable crystalline and amorphous structures formed in the Cu-W system by vapor deposition, Metall. Trans. A, vol.24, p.1027, 1993.

L. Zhou, M. Wang, K. Peng, J. Zhu, Z. Fu et al., Structure characteristic and its evolution of Cu-W films prepared by dual-target magnetron sputtering deposition, Trans. Nonferrous Met. Soc. China, vol.22, p.2700, 2012.

E. Ma, Alloys created between immiscible elements, Prog. Mater. Sci, vol.50, p.413, 2005.

K. Chang, D. Music, M. Baben, D. Lange, H. Bolvardi et al., Modeling of metastable phase formation diagrams for sputtered thin films, Sci. Technol. Adv. Mater, vol.17, p.210, 2016.

T. Xie, L. Fu, W. Qin, J. Zhu, W. Yang et al., Self-assembled metal nano-multilayered film prepared by co-sputtering method, Appl. Surf. Sci, vol.435, p.16, 2018.

J. T. Zhao, J. Y. Zhang, Z. Q. Hou, K. Wu, X. B. Feng et al., The W alloying effect on thermal stability and hardening of nanostructured Cu-W alloyed thin films, vol.29, p.195705, 2018.

D. Gu and Y. Shen, Effects of processing parameters on consolidation and microstructure of W-Cu components by DMLS, J. Alloys Compd, vol.473, p.107, 2009.

A. Herrmann, H. Greuner, M. Balden, and H. Bolt, Design and evaluation of an optimized W/Cu interlayer for W monoblock components, Fusion Eng. Des, vol.86, p.27, 2011.

A. Caillard, Thèse de Doctorat, Université d'Orléans, Elaboration d'électrodes de piles a combustible par plasma, 2006.

H. L. Bay, J. Bohdansky, W. O. Hofer, and J. Roth, Angular distribution and differential sputtering yields for low-energy light-ion irradiation of polycrystalline nickel and tungsten, Appl. Phys, vol.21, p.327, 1980.

, Dispositifs expérimentaux et outils de caractérisation « Une vague s'échoue sur une plage de galets

. .. Paramètres-expérimentaux,

, 42 4.1. Préparation lame mince pour observation MET en vue plane

. .. Spectroscopie-de-fluorescence-x-(frx),

.. .. Résistivité-Électrique,

.. .. Anisotropie-Électrique,

. .. Gravure-chimique-humide,

N. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kazumata et al., Energy dependence of the ion-induced sputtering yields of monatomic solids, At. Data Nucl. Data Tables, vol.31, p.1, 1984.

J. Orloff, M. Utlaut, and L. Swanson, High resolution focused ions beams, Plenum publishes, 2003.

J. C. Spence, High resolution electron microscopy, Oxford science publication, 1980.

D. B. Williams and C. B. Carter, Transmission electron microscopy, 1996.

P. A. Stadelmann, EMS -A software package for electron diffraction analysis and HREM image simulation in materials science, Ultramicroscopy, vol.21, p.131, 1987.

N. D. Browning, M. F. Chisholm, and S. J. Pennycook, Atomic-resolution chemical analysis using a scannning transmission electron microscope, Nature, vol.366, p.143, 1993.

J. Ruste, Microanalyse X par sonde électronique -principe et instrumentation, Techniques de l'ingénieur, 2009.

C. Esnouf, Caractérisation microstructurale des matériaux : annalyse par des rayonnements X et électronique, Presse polytechnique et universitaire romande, 2011.

H. Czichos, T. Saito, and L. Smith, Springer handbook of materials measurement methods, 2006.

J. P. Eberhart, Analyse structurale et chimique des matériaux, 1989.

L. J. Van-der-pauw, A method of measuring specific resistivity and hall effect of discs of arbitrary shape, Philips Res. Rep, vol.13, p.1, 1958.

O. Bierwagen, R. Pomraenke, S. Eilers, and W. T. Masselink, Mobility and carrier density in materials with anisotropic conductivity revealed by van der Pauw measurements, Phys. Rev. B, p.165307, 2004.

J. A. Thornton, The microstructure of sputter-deposited coatings, J. Vac. Sci. Technol. Vac. Surf. Films, vol.4, p.3059, 1986.

R. Messier, A. P. Giri, and R. A. Roy, Revised structure zone model for thin film physical structure, J. Vac. Sci. Technol. Vac. Surf. Films, vol.2, p.500, 1984.

I. Petrov, P. B. Barna, L. Hultman, and J. E. Greene, Microstructural evolution during film growth, J. Vac. Sci. Technol. Vac. Surf. Films, vol.21, p.117, 2003.

S. Mahieu, P. Ghekiere, D. Depla, and R. De-gryse, Biaxial alignment in sputter deposited thin films, Thin Solid Films, vol.515, p.1229, 2006.

T. Karabacak, C. R. Picu, J. J. Senkevich, G. Wang, and T. Lu, Stress reduction in tungsten films using nanostructured compliant layers, J. Appl. Phys, vol.96, p.5740, 2004.

P. Petroff, T. T. Sheng, A. K. Sinha, G. A. Rozgonyi, and F. B. Alexander, Microstructure, growth, resistivity, and stresses in thin tungsten films deposited by rf sputtering, J. Appl. Phys, vol.44, p.2545, 1973.

A. Palmero, H. Rudolph, and F. H. Habraken, One-dimensional analysis of the rate of plasma-assisted sputter deposition, J. Appl. Phys, vol.101, p.83307, 2007.

A. Palmero, H. Rudolph, and F. H. Habraken, Study of the gas rarefaction phenomenon in a magnetron sputtering system, Thin Solid Films, vol.515, p.631, 2006.

M. M. Hawkeye, M. T. Taschuk, and M. J. Brett, Glancing angle deposition of thin films: Engineering the nanoscale, 2014.

D. Vick, T. Smy, and M. J. Brett, Growth behavior of evaporated porous thin films, J. Mater. Res, vol.17, p.2904, 2002.

J. M. Nieuwenhuizen and H. B. Haanstra, Microfractography of thin films, Philips Tech. Rev, vol.27, p.85, 1966.

R. Alvarez, C. Lopez-santos, J. Parra-barranco, V. Rico, A. Barranco et al., Nanocolumnar growth of thin films deposited at oblique angles: Beyond the tangent rule, J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom, vol.32, p.41802, 2014.

R. N. Tait, T. Smy, and M. J. Brett, Modelling and characterization of columnar growth in evaporated films, Thin Solid Films, vol.226, p.196, 1993.

K. V. Aeken and . Www,

J. Dervaux, P. Cormier, P. Moskovkin, O. Douheret, S. Konstantinidis et al., Synthesis of nanostructured Ti thin films by combining glancing angle deposition and magnetron sputtering: A joint experimental and modeling study, Thin Solid Films, vol.636, p.644, 2017.

D. P. Singh, P. Goel, and J. P. Singh, Revisiting the structure zone model for sculptured silver thin films deposited at low substrate temperatures, J. Appl. Phys, vol.112, p.104324, 2012.

J. M. García-martín, R. Alvarez, P. Romero-gómez, A. Cebollada, and A. Palmero, Tilt angle control of nanocolumns grown by glancing angle sputtering at variable argon pressures, Appl. Phys. Lett, vol.97, p.173103, 2010.

P. Pedrosa, A. Ferreira, J. Cote, N. Martin, M. A. Yazdi et al., Influence of the sputtering pressure on the morphological features and electrical resistivity anisotropy of nanostructured titanium films, Appl. Surf. Sci, vol.420, p.681, 2017.

S. Tamulevi?ius, Stress and strain in the vacuum deposited thin films, Vacuum, vol.51, p.127, 1998.

F. T. Vüllers and R. Spolenak, Alpha-vs. beta-W nanocrystalline thin films: A comprehensive study of sputter parameters and resulting materials' properties, Thin Solid Films, vol.577, p.26, 2015.

T. Karabacak, G. Wang, and T. Lu, Physical self-assembly and the nucleation of three-dimensional nanostructures by oblique angle deposition, J. Vac. Sci. Technol. Vac. Surf. Films, vol.22, p.1778, 2004.

T. Karabacak, J. P. Singh, Y. Zhao, G. Wang, and T. Lu, Scaling during shadowing growth of isolated nanocolumns, Phys. Rev. B, p.125408, 2003.

T. Brown and K. Robbie, Observations of self-assembled microscale triangular-shaped spikes in copper and silver thin films, Thin Solid Films, vol.531, p.103, 2013.

R. Alvarez, J. M. Garcia-martin, M. C. Lopez-santos, V. Rico, F. J. Ferrer et al., On the deposition rates of magnetron sputtered thin films at oblique angles: deposition rates at oblique angles, Plasma Process. Polym, vol.11, p.571, 2014.

S. Dew, T. Smy, and M. Brett, Step coverage, uniformity and composition studies using integrated vapour transport and film-deposition models, Jpn. J. Appl. Phys, vol.33, p.1140, 1994.

J. C. Sit, D. Vick, K. Robbie, and M. J. Brett, Thin film microstructure control using glancing angle deposition by sputtering, J. Mater. Res, vol.14, p.1197, 1999.

M. M. Hawkeye and M. J. Brett, Glancing angle deposition: Fabrication, properties, and applications of micro-and nanostructured thin films, J. Vac. Sci. Technol. Vac. Surf. Films, vol.25, p.1317, 2007.

R. Alvarez, J. M. Garcia-martin, A. Garcia-valenzuela, M. Macias-montero, F. J. Ferrer et al., Nanostructured Ti thin films by magnetron sputtering at oblique angles, J. Phys D: Appl. Phys, vol.49, p.45303, 2016.

K. Salamon, O. Milat, N. Radi?, P. Dub?ek, M. Jer?inovi? et al., Structure and morphology of magnetron sputtered W films studied by x-ray methods, J. Phys. D: Appl. Phys, vol.46, p.95304, 2013.

K. R. Khedir, G. K. Kannarpady, H. Ishihara, J. Woo, C. Ryerson et al., Morphology control of tungsten nanorods grown by glancing angle RF magnetron sputtering under variable argon pressure and flow rate, Phys. Lett. A, vol.374, p.4430, 2010.

D. R. Lide, CRC Handbook of Chemistry and Physics, Internet Version, 2005.

D. Gall, Electron mean free path in elemental metals, J. Appl. Phys, vol.119, p.85101, 2016.

O. Bierwagen, R. Pomraenke, S. Eilers, and W. T. Masselink, Mobility and carrier density in materials with anisotropic conductivity revealed by van der Pauw measurements, Phys. Rev. B, p.165307, 2004.

K. Robbie and M. J. Brett, Sculptured thin films and glancing angle deposition: Growth mechanics and applications, J. Vac. Sci. Technol. Vac. Surf. Films, vol.15, p.1460, 1997.

.. .. Films-À-base-de-w-cu,

, Influence des différents paramètres sur la structure

.. .. Ajout-d'un-Écran, 125 3.1. Influence de différents paramètres sur la structure des colonnes

.. .. Conclusion,

. Références,

N. Matsunami, Y. Yamamura, Y. Itikawa, N. Itoh, Y. Kazumata et al., Energy dependence of the ion-induced sputtering yields of monatomic solids, At. Data Nucl. Data Tables, vol.31, p.1, 1984.

D. Vick, L. J. Friedrich, S. K. Dew, M. J. Brett, K. Robbie et al., Self-shadowing and surface diffusion effects in obliquely deposited thin films, Thin Solid Films, vol.339, p.88, 1999.

A. Besnard, N. Martin, C. Millot, J. Gavoille, and R. Salut, Effect of sputtering pressure on some properties of chromium thin films obliquely deposited, IOP Conf. Ser. Mater. Sci. Eng, vol.12, p.12015, 2010.

T. Karabacak, C. R. Picu, J. J. Senkevich, G. Wang, and T. Lu, Stress reduction in tungsten films using nanostructured compliant layers, J. Appl. Phys, vol.96, p.5740, 2004.

T. Aboud, B. Weiss, and R. Chaim, Mechanical alloying of the immiscible system W-Cu, vol.6, p.405, 1995.

U. Holzwarth and N. Gibson, The Scherrer equation versus the "Debye-Scherrer equation, Nat. Nanotechnol, vol.6, p.534, 2011.

H. Vankranenburg and C. Lodder, Tailoring growth and local composition by oblique-incidence deposition: a review and new experimental data, Mater. Sci. Eng. Rep, vol.11, p.295, 1994.

V. Figueiredo, E. Elangovan, G. Gonçalves, P. Barquinha, L. Pereira et al., Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper, Appl. Surf. Sci, vol.254, p.3949, 2008.

L. Valladares, D. H. Salinas, A. B. Dominguez, D. A. Najarro, S. I. Khondaker et al., Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates, vol.520, p.6368, 2012.

M. M. Hawkeye, M. T. Taschuk, and M. J. Brett, Glancing angle deposition of thin films: Engineering the nanoscale, 2014.

C. M. Zhou, H. F. Li, and D. Gall, Multi-component nanostructure design by atomic shadowing, Thin Solid Films, vol.517, p.1214, 2008.

S. Mukherjee and D. Gall, Anomalous scaling during glancing angle deposition, Appl. Phys. Lett, vol.95, p.173106, 2009.

S. Mukherjee and D. Gall, Power law scaling during physical vapor deposition under extreme shadowing conditions, J. Appl. Phys, vol.107, p.84301, 2010.

D. O. Smith, M. S. Cohen, and G. P. Weiss, Oblique-incidence anisotropy in evaporated permalloy films, J. Appl. Phys, vol.31, p.1755, 1960.

J. Dervaux, P. Cormier, P. Moskovkin, O. Douheret, S. Konstantinidis et al., Synthesis of nanostructured Ti thin films by combining glancing angle deposition and magnetron sputtering: A joint experimental and modeling study, Thin Solid Films, vol.636, p.644, 2017.

P. Meakin and J. Krug, Columnar microstructure in three-dimensional ballistic deposition, Europhys. Lett, vol.11, p.7, 1990.

M. Kardar, G. Parisi, and Y. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett, vol.56, p.889, 1986.

L. Zhou, M. Wang, R. Wang, Z. Li, J. Zhu et al., Enhanced adhesion of Cu-W thin films by ion beam assisting bombardment implanting, Trans. Nonferrous Met. Soc. China, vol.18, p.372, 2008.

A. Palmero, H. Rudolph, and F. H. Habraken, One-dimensional analysis of the rate of plasmaassisted sputter deposition, J. Appl. Phys, vol.101, p.83307, 2007.

M. S. Aouadi, R. R. Parsons, P. C. Wong, and K. A. Mitchell, Characterization of sputter deposited tungsten films for x-ray multilayers, J. Vac. Sci. Technol. Vac. Surf. Films, vol.10, p.273, 1992.

K. Salamon, O. Milat, N. Radi?, P. Dub?ek, M. Jer?inovi? et al., Structure and morphology of magnetron sputtered W films studied by x-ray methods, J. Phys. D: Appl. Phys, vol.46, p.95304, 2013.

A. Palmero, H. Rudolph, and F. H. Habraken, Study of the gas rarefaction phenomenon in a magnetron sputtering system, Thin Solid Films, vol.515, p.631, 2006.

R. Alvarez, J. M. Garcia-martin, A. Garcia-valenzuela, M. Macias-montero, F. J. Ferrer et al., Nanostructured Ti thin films by magnetron sputtering at oblique angles, J. Phys. D: Appl. Phys, vol.49, p.45303, 2016.

P. Pedrosa, A. Ferreira, J. Cote, N. Martin, M. A. Yazdi et al., Influence of the sputtering pressure on the morphological features and electrical resistivity anisotropy of nanostructured titanium films, Appl. Surf. Sci, vol.420, p.681, 2017.

R. E. Beainou, N. Martin, V. Potin, P. Pedrosa, M. A. Yazdi et al., Correlation between structure and electrical resistivity of W-Cu thin films prepared by GLAD co-sputtering, Surf. Coat. Technol, vol.313, p.1, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02300407

T. Raghu, R. Sundaresan, P. Ramakrishnan, and T. R. Rama-mohan, Synthesis of nanocrystalline copper-tungsten alloys by mechanical alloying, Mater. Sci. Eng. A, p.438, 2001.

C. Xiong, Y. Xiong, H. Zhu, T. Sun, E. Dong et al., Synthesis and structural studies of the Cu-W alloys prepared by mechanical alloying, Nanostructured Mater, vol.5, p.425, 1995.

.. .. Propriétés-de-transport-Électronique,

.. .. Architectures, Conduction électrique avant et après attaque chimique

. .. Modèle-théorique-utilisé,

.. .. Conclusion,

. Références,

D. R. Lide, CRC Handbook of Chemistry and Physics, Internet Version, 2005.

A. Besnard, N. Martin, L. Carpentier, and B. Gallas, A theoretical model for the electrical properties of chromium thin films sputter deposited at oblique incidence, J. Phys. D: Appl. Phys, vol.44, p.215301, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00618210

L. Valladares, D. H. Salinas, A. B. Dominguez, D. A. Najarro, S. I. Khondaker et al., Crystallization and electrical resistivity of Cu2O and CuO obtained by thermal oxidation of Cu thin films on SiO2/Si substrates, vol.520, p.6368, 2012.

S. Kasap and P. Capper, Springer handbook of electronic and photonic materials, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02020292

G. Reiss, J. Vancea, and H. Hoffmann, Grain-boundary resistance in polycrystalline metals, Phys. Rev. Lett, vol.56, p.2100, 1986.

V. Collado, N. Martin, P. Pedrosa, J. Rauch, M. Horakova et al., Temperature dependence of electrical resistivity in oxidized vanadium films grown by the GLAD technique, Surf. Coat. Technol, vol.304, p.476, 2016.

N. Radi?, B. Gr?eta, D. Gracin, and T. Car, Preparation and structure of Cu-W thin films, Thin Solid Films, vol.228, p.225, 1993.

W. Ding, H. He, and B. Pan, Structural features and thermal properties of W/Cu compounds using tightbinding potential calculations, J. Mater. Sci, vol.51, p.5948, 2016.

I. Parsina and F. Baletto, Tailoring the structural motif of AgCo nanoalloys: Core/Shell versus Janus-like, J. Phys. Chem. C, vol.114, p.1504, 2010.

H. Vankranenburg and C. Lodder, Tailoring growth and local composition by oblique-incidence deposition: a review and new experimental data, Mater. Sci. Eng. R Rep, vol.11, p.295, 1994.

V. Figueiredo, E. Elangovan, G. Gonçalves, P. Barquinha, L. Pereira et al., Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper, Appl. Surf. Sci, vol.254, p.3949, 2008.

M. M. Hawkeye, M. T. Taschuk, and M. J. Brett, Glancing angle deposition of thin films: Engineering the nanoscale, 2014.

T. Raghu, R. Sundaresan, P. Ramakrishnan, and T. R. Rama-mohan, Synthesis of nanocrystalline coppertungsten alloys by mechanical alloying, Mater. Sci. Eng. A, p.438, 2001.

N. Dhar, P. Chelvanathan, M. Zaman, K. Sopian, and N. Amin, An investigation on structural and electrical properties of RF-sputtered molybdenum thin film deposited on different substrates, Energy Procedia, vol.33, p.186, 2013.

X. Sun, Z. Liu, and H. Cao, Effects of film density on electrochromic tungsten oxide thin films deposited by reactive dc-pulsed magnetron sputtering, J. Alloys Compd, vol.504, p.418, 2010.

S. Sanzaro, E. Smecca, G. Mannino, C. Bongiorno, G. Pellegrino et al., Multi-scale-porosity TiO2 scaffolds grown by innovative sputtering methods for high throughput hybrid photovoltaics, Sci. Rep, vol.6, p.15, 2016.

C. M. Zhou, H. F. Li, and D. Gall, Multi-component nanostructure design by atomic shadowing, Thin Solid Films, vol.517, p.1214, 2008.

F. T. Vüllers and R. Spolenak, Alpha-vs. beta-W nanocrystalline thin films: A comprehensive study of sputter parameters and resulting materials' properties, Thin Solid Films, vol.577, p.26, 2015.

M. Sahimi, Applications of percolation theory, 1993.

R. G. Chambers, The Conductivity of thin wires in a magnetic field, Proc. R. Soc. Lond. Ser. Math. Phys. Sci, vol.202, p.378, 1950.

J. Bernasconi, Conduction in anisotropic disordered systems: Effective-medium theory, Phys. Rev. B, vol.9, p.4575, 1974.

S. Kirkpatrick, Percolation and Conduction, Rev. Mod. Phys, vol.45, p.574, 1973.

C. Song, G. K. Larsen, and Y. Zhao, Anisotropic resistivity of tilted silver nanorod arrays: Experiments and modeling, Appl. Phys. Lett, vol.102, p.233101, 2013.

K. R. Khedir, G. K. Kannarpady, H. Ishihara, J. Woo, C. Ryerson et al., Morphology control of tungsten nanorods grown by glancing angle RF magnetron sputtering under variable argon pressure and flow rate, Phys. Lett. A, vol.374, pp.4430-4437, 2010.