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Abstract

Many systems that are somehow characterized by a degree of disorder share
a similar structure: the energy landscape has many sample-dependent local
energy minima. When a small external perturbation is applied to the system
at low temperature, it is reasonable to expect that the dynamics will lead
the system from a minimum to another, thus displaying a random and jerky
response. The discontinuous jumps that one observes are called avalanches,
and the focus of this work is the computation of their distribution. One

of the results is indeed the development of a framework that allows the
computation of this distribution in in nite-dimensional systems that can

be described within a replica symmetry breaking ansatz. We apply the
results to one of the simplest models of structural glasses, nhamely dense
packings of (harmonic) soft spheres, either at jamming or at larger densities,
subject to a shear transformation that induces jumps both in the total
energy and in the shear stress of the system. We argue that, when the
shear strain is small enough, the avalanche distribution develops a power-law
behavior, whose exponent can be directly related to the functional order
parameter of the replica symmetry breaking solution. This exponent is also
related to the distribution of contact forces (or at least of the contact forces
between some of the spheres), whose asymptotic behavior is known not to
depend strongly on the spatial dimension; for this reason, we compare the
in nite-dimensional prediction with three-dimensional simulations of the
same systems and, remarkably, we nd a good agreement. In the rest of the
thesis we compare our results with previous works, and we also discuss some
of the consequences that the avalanche distribution leads to, concerning the
statistical elastic properties of dense granular media.






Abstract (french)

Beaucoup de sysemes qui ont un certain dege de desordre ont des similaries
dans leur structure: le paysage energetique est akatoire et il a plusieurs
minima locaux de lenergie. Quand on ajoute une petite perturbation
externe au sysemea basse temperature, il est raisonnable d'attendre que
la dynamique conduira le syseme d'un minimuma l'autre, et ca donne
lieua une eponse akatoire et saccadce. Les sautes discontinus que l'on
observe sont appeks avalanches, et l'inerét de ce travail est le calcul de
leur distribution. Un des esultats est en e et le ceveloppement d'un cadre
pour calculer cette distribution dans des sysemes en dimension in nie qui
peuvent étre cecrits avec le replica symmetry breaking. Nous appliquons les
esultatsa lI'un des mockles les plus simples des verres structuraux, c'esta
dire les empilements denses de spteres molles avec epulsion harmonique,
avec une ceformation (shear strain) du volume comme perturbation. Nous
soutenons que, quand la ceformation est su samment petite, une portion de
la distribution des avalanches devient une loi de puissance, dont I'exposant
peut étre directement le au paranetre d'ordre de la brisure de synetrie de
replica. Cet exposant estegalement lea la distribution des forces de contact
(au moins entre certaines spreres), dont le comportement asymptotique on
sais que ne cepend pas fortement de la dimension spatiale; pour cette raison
nous comparons les pedictions de champ moyen en dimension in nie avec
des simulation du méme syseme en dimension trois et, remarquablement,
on trouve un bon accord. Dans le reste de la trese nous discutons aussi
les similaries avec des travaux pe@dents et quelques consquences que la
distribution des avalanches donne sur les propreeselastiques de la matere
granulaire dense.
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Disordered systems

The object of our interest are disordered systems withglassy behavior Glassi-
ness is a collection of phenomenological behaviors that characterize many
di erent systems endowed with some form of disorder. The most prominent
property is dynamical in nature, and it is an extreme slowing down of the
dynamics at low temperature. An important timescale is the relaxation time,
that is the time taken for a system to reach thermal equilibrium, or, equiva-
lently, a measure of the time taken by the system to explore the whole phase
space in an ergodic fashion; the relaxation time of glassy systems increases
several orders of magnitude as the temperature is lowered (see for instance
[Figure 1.1), and it soon becomes so large that it exceeds the experimental
times. By de nition, a system observed within a timescale smaller than
its relaxation time appears out of equilibrium | this can be veri ed, for
example, probing the uctuation-dissipation theorem | and therefore, when

the temperature is lowered below some empirically de nedglass transition
temperature Tg at which the relaxation time becomes too large to be actually
reached experimentally, the system appears to be gradually \freezing". Below
this point the system is no longer able to sample the phase space (at least
not within reasonable times), and it is therefore no longer ergodic.



Figure 1.1: This plot shows the extreme increase of the viscosity (several or-
ders of magnitude) as the temperature is lowered towards the glass transition
temperature Ty, for various supercooled liquids that are typical \glassform-
ers". The viscosity is related to the relaxation time via Maxwell's relation

= G1 , whereG; is the instantaneous shear modulus speci ¢ to the liquid
[Cavagna,| 2009]; althoughG; changes with the temperature, its variation
can be neglected in comparison to the variation of the relaxation time. Notice
that the temperature has been rescaled by the temperaturdy, de ned as the
temperature at which the liquid has viscosity = 102 Poise; this rescaled
plot is called Angell plot [Angell et al.; 1995].

Disordered systems are intimately related to some form ofrustration ; a
system is frustrated if some of its parts (whether they are particles, spins or
larger structures) feel con icting forces or con icting geometrical constraints.
In some systems the frustration results from a quenched disorder, that is,
each sample of the system has an intrinsic structure that is random and
di erent from the other samples; this is the case of spin glasses, that are
disordered magnets where some magnetic spins are quenched at random, xed
locations in space but are free to rotate and align in di erent directions. The
simplest model that has been used to analytically study these magnets is the
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Edwards-Anderson model, that is a disordered Ising model ird dimensions,
with Hamiltonian X

H(s;J) = Jij sisj; (1.1)

hijj i

where the sum is over the bonddi; j i on ad-dimensional lattice, the spinsf s;g
are Ising spins that can be either +1 or 1, and f Jj; g are Gaussian random
variables that mimic the disordered interaction between magnetic dipoles
in these magnetic systems. Since it is hard to solve the thermodynamics
of this model, the corresponding mean- eld version, called the Sherrington-
Kirkpatrick model, has been introduced. In this model the couplings, rather
than belonging to a nite dimensional lattice, couple all possible pairs of spins
i{j via a random interaction J;; | whose variance, now, has to scale asN 2
in order for the system to have an extensive free energy. All these models
are frustrated because there is a nite probability that any set of spins has
con icting couplings. For instance, a triangle in the Sherrington-Kirkpatrick
model made by the sping; j; k has, with nite probability, negative couplings
Jij 1 Jjk s ki < 0; these couplings tend to align each spin in the opposite
directions with respect to its neighbors, but in a triangle this is not possible
| two spins have to be parallel!

A generalization of this model to higher order interactions is the mean- eld
p-spin model, where the interactions involve all possible groups gb spins,
with random couplings fJi, i,0:

H(s)J) = Jiy ipSiy  Siy:

p*

(1.2)

It turns out that a slightly di erent version of the p-spin model (with p  3),
namely with spherical spins (not only 1) such that :\':1 s? = N, is easier
to study and is deeply connected with the physics of another class of systems:
the structural glasses [Kirkpatrick and Wolynes, 1987 Kirkpatrick and
Thirumalai, 1987alb; [Kirkpatrick et al.,[|1989]. Structural glasses are systems
of particles (atoms, molecules, ...) that interact through a pair potential.
Such systems usually display a liquid-crystal transition at somemelting
temperature Tr,, but in some cases it is possible to avoid the crystallization
by carefully lowering the temperature fast enough: when this happens, the
system is ametastable supercooled liquidJDebenedetti and Stillinger, |2001;
Cavagna,|2009]; it is metastable because there is always the crystal state
lying at a lower energy, but even though the crystal is somehow excluded
from the explored phase space (thus making the dynamics strictly speaking
not ergodic), the system nonetheless behaves as if it were at equilibrium
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(e.g. the uctuation-dissipation theorem holds true). When the temperature

is further lowered the relaxation time increases, and at some temperature
Ty it becomes so large that the supercooled liquid falls out of equilibrium
within the experimental timescale (Figure 1.1 and|Figure 1.2), and it becomes

a glass. Of course, other glasses can be made with more complex liquids,
composed for example of colloidal particles or polymers. The simplest models
for structural glasses that have been studied are systems of spherical particles

interacting via Lennard-Jones forces (theypair potential petween two particles

at distance r being of the formV(r)=4  — 12 T 6 ), or via short range

r

purely repulsive interactions as for hard spheres and soft spheres (these
systems will be introduced in[Systems of spheres and jammintater in this
chapter. It is interesting to notice that these structural glasses have no
intrinsic, quenched disorders, but nonetheless their con gurations appear
disordered and amorphous (one says that the disorder is self generated
[Charbonneau et al,,| 2014b]): the reason lies in the fact that such systems
are still (geometrically) frustrated, even without explicit disorder in the

Hamiltonian.

The thermodynamics of the Sherrington-Kirkpatrick model, of the p-spin
model and of systems of hard and soft spheres in in nite dimensions have
been solved analytically. The solution of all these systems involves a phase
transition; in the low temperature phase (or high density, for the systems
of spheres) the solution can be interestingly described in the framework of
the so-calledreplica symmetry breakingand results in a very complex energy
landscape, with the existence of a multitude of equilibrium states (more
details will be provided in the next section,|Replica symmetry breaking. Such

a landscape justi es many of the phenomenological properties of glasses, but
nonetheless, the actual existence of a true thermodynamic glass transition
in nite dimensional systems is still not entirely clear. In nite dimensions,
there are two main points of view [Berthier and Biroli) 2011]: one is the
landscape scenaripor Random First-Order Transition theory [Kirkpatrick
and Thirumalai) 2012,|2014], that, inspired by the mean- eld analysis, tries to
explain the glassy phenomenology as a true thermodynamic phase transition,
with a non-trivial energy landscape and an abundance of metastable states
that slow down the dynamics (although many concepts that are introduced
in mean- eld models become meaningless in nite dimensions). The other is
the idea of dynamic facilitation, that does not regard the thermodynamics as
the principal reason for the glassy behavior, but rather ascribes the cause of
the slowdown to the frustration in the system, for which at low temperature
the particles' movement are inhibited by their neighbors. There is a class of
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Figure 1.2: Volume of a glassformer liquid (similar plots hold for the entropy
or the enthalpy). At the melting temperature T, the system would crystallize,
but such a transition in some cases can be avoided by cooling the liquid
fast enough. The resulting supercooled liquid is metastable and falls out of
equilibrium when the temperature is further lowered below some temperature
Tg. The liquid might fall out of equilibrium at slightly di erent temperatures,
depending on how the preparation protocol and on the choice of the criterion
to determine Ty. Tg is the temperature of the Gardner transition that will
be introduced in[Chapter 1 -[Systems of spheres and jamminfdoelow Tg the
system enters themarginal glass phase

models, known as Kinetically Constrained Models, that try to explain the
glassy behavior within the dynamic facilitation scenario: they are typically
de ned as particles on some lattice, subject to dynamical rules for the allowed
moves. Of course, the two points of view are not mutually exclusive, and
they might even be describing di erent aspects of these complex systems.
Marginal models in between the two classes have also been studied. For
instance the models in/[Newman and Moore, 1999; Spigler, 2014; Franz etal.,
2016] have a trivial thermodynamics and display glassy properties (without
any transition) due to some dynamic facilitation, but, turning on a small
perturbation a nite temperature glass transition appears, showing that the
distinction between the two points of view is thinner than what it looks like.
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1.1 Replica symmetry breaking

In this section we want to brie y introduce the concept of replica symmetry
breaking and how it arises in physical problem. A thorough explanation can
be found in [Nishimori, 2001; Castellani and Cavagnga, 2005; De Dominicis
and Giardina, 2006; Mezard et al., (2008; Zamponi, 2010]. Let us consider a
spin system with a generic HamiltonianH (s; J), where s is a con guration;
this Hamiltonian depends on some quenched disordel | e.g. like in the
Sherrington-Kirkpatrick model | that is expressed as a random variable
with a given probability distribution. The disorder has been introduced
because di erent samples of this system have di erent structural, intrinsic
properties. In the case of a spin glass, the disorder is due to the fact that
di erent samples have the spins quenched in random locations, and this is
modeled with random couplingsJ. Then, the thermodynamics of a specic
sample, and thus of a speci c realization of the random variableJ, is given
by the usual free energy

f) im —— logZ; im —— Iogx e HEJ), (1.3)
N1 N N1 N s
Zj being the partition function of the sample. Of courselogZ; is in general
a random variable, and the statistical properties of the system are given by
the statistical properties of f ; (say, mean and variance). Unfortunately, even
for the simplest distribution of the disorder J, we are not able to compute
easily the sample-to-sample average of lag;, namely

1 1 X
= i — = i _ H(s;J)-
f Nll!lm N logZ; NIl!m1 N log e ; (1.4)

s

where the overline denotes averages over the disorder. The way this
problem has been overcome is the so-calle®plica trick, that is the limit
z" 1 _ . logz"

= lim
n n! 0 n

logZ = lim : (2.5)
nl 0

This trick is used as follows: we are usually able to comput& for integer

n, since this is actually the partition function of n non-interacting copies

(\replicas") of the same original system, H(s';J) + + H(s";J) | the

disorder J is the same in all the copies; then, performing some suitable

analytic continuation on n we can try to compute

e i — L 1 .
t= N“!rln n"zmoW(ZJ b= N“!rln rI]|!mOWIOgZJ. (1.6)
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In general, this method can e ectively be used for fully connected (mean- eld)
models; in these cases we might be able to cazt] as

_ X
7= e HED  HE) =
§1;:::;§”2 3
X £y 1
= 4 dQap Qa -—5* s° 5e HED  HEY
st;unsn a;b=1 N
Zy

dQape NARI T (1.7)
ab

where A[Q; ] is some functional of the matrix Qap, Whose elements are the
overlaps between replicaa and replicab: ggp = Ni§a sP. Therefore,

f lim lim ——— I ‘Y dQape NAIQ I (1.8)

N a0 Nn Y ab ’ '
ab

Of course the detailed form of the functional A[Q; ] changes from system to
system, but here we are only interested in the general approach. The integral
in (1.8)|for large N is dominated by the maximum of NAJ[Q; ], and thus
it can be computed via a saddle-point approximation (or Laplace method):

.1 .
f rI1|!m07mQ|nA[Q, I: (2.9)

The minimization is performed with respect to all n n matrices Q, in
the limit n! 0! This is, in general, a very di cult task. What we can
do, instead, is to minimize the functional A[Q; ] with respect to matrices
belonging to a restricted subset of matrices that can be easily parametrized.
This is nothing more than a variational method to estimate the true free
energy, and in order to solve the problem exactly we \just" have to guess the
(simplest) correct form of the matrix that minimizes the functional. Parisi
[Parisit (1979, 1980} 1983; Mezard et al., 1984a] came up with what turned out
to be the correct idea (as it would have been later proved by Talagrand for
the Sherrington-Kirkpatrick model and other systems [Talagrand,(2003]). For
many di erent systems (Sherrington-Kirkpatrick model, dense soft spheres,
...), in the \glassy phase" (i.e. the low temperature phase or high density)
the solution predicts that the matrix Q has a very complex, hierarchical
structure, and the system is said to display replica symmetry breaking.

The following interpretation can be derived from the solution with replica
symmetry breaking. At su ciently low temperature the Gibbs measure of
any sample is split into sample-dependent ergodic components, known as
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Figure 1.3: The free energy (1.9) has many local minima, in the phase with
replica symmetry breaking. The relative Gibbs measure has many pure states
that roughly correspond to these minima.

pure states (Figure 1.3), that can be thought of as the basins surrounding
the local minima of the free energy. Their statistical properties are contained

in the matrix Q that satis es the saddle-point minimization in To
describe the organization of the states in the phase-space we rst introduce
the notion of overlap q(s?;s?) between two con gurations s*;s?: this is
a co-distance that measures the similarity between two con gurations; its
absolute value is hormalized between 1 and 0 (for identical and maximally dif-
ferent con gurations, respectively). Di erent de nitions are used for di erent
systems: for instance, for a spin glass wittN spins (e.g. the Sherrington-
Kirkpatrick mode]) it can be de ned as qst:s?) = N 1s! s? for N spheres,
qshis?) = N 1 N W(ist s?), wheres;*? is the position of the i-th par-
ticle in the two con gurations and W (r) is a window function that vanishes
whenr is larger than some threshold and such thatw (0) = 1. The specic
choice is irrelevant for what follows, since proper de nitions are equivalent
[Parisi, [1998; Franz et al},| 1999; Parisi and Ricci-Tersengh|, 2000; Parisi, 2002].
Then, after de ning the overlap between con gurations, we de ne the overlap
between two states; as the averagg of the overlap between con gura-
tions belonging to the two states,q = = &, o2, W(sh )w(s% )q(sh;s?);
here w(s; ) is the Boltzmann weight Z;*exp( H(s;J)), and we con-
sider a con guration s belonging to a state if it lies in its basin (or,
operatively, if a steepest descent dynamics brings the con guration to the
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minimum of the basin, called the state's inherent structure). Since replica
symmetry breaking corresponds to the appearance of many disjoint states,
we can use as order parameter of such a symmetry breaking the sample-
averaged probabill'gy distribution of the overlap between pairs of states,
namely P(q; ) = w()w () (g g )[Mzard et al.| 2008], where

w ()= % is the Boltzmann weight of the state , and fF g are

the states' free energies, dened aexp( F ) = P s W(s; ). Equiva-
lently, we cap consider as order parameter the so-calleParisi function
x(q; )= gqu(q; ) (in the literature of replica symmetry breaking
the function x(q; ) is called the functional order parameter).

Loosely speaking, we can group the states ip Figure 1.3 into clusters such
that any two states in a cluster have a mutual overlap larger than some
threshold g, that plays the role of a coarse-graining scale; whemy, is large
enough then each cluster is formed by a single state (that has maximum
overlap with itself). As the threshold is decreased, di erent clusters merge
together, until there is only one cluster. A simple way to view how di erent
clusters merge is to draw a tree with all the states as leaves (s¢e Figure 1.4);
moving upwards along the tree corresponds to loweringy,, and when some
states are joined into the same cluster we draw a new node, until we reach
the root of the tree, that is associated with a maximal cluster containing all
the states | this cluster is found at a scale ¢ = Gmin , that is the minimum
possible overlap between any two states. In the gure we have drawn an
example of such a process, where every state starts in the smallest possible
clusters at an overlapgs that is de ned as the self overlapqg | this quantity
does not depend on the state , and it is called the Edwards-Anderson order
parameter gea. Then, we assume that at a scalep some states can be
grouped into distinct clusters, that eventually join at a scale ;.

The fact that we can draw such a tree implies that the clusters at each scale
Gn are disjoint. This property is called ultrametricity and follows from the
properties of the matrix Q that satis es the saddle-point condition
an equivalent way to state it is to say that for any three states ; ; , the
mutual overlaps satisfy q minfg ;g g; moreover, if we assume without
loss of generality that g q g , then applying the inequality to all
possible permutations of the indices yieldsy = q g . This property

is manifest in[Figure 1.4 if we relate the mutual overlapg to the overlap
scaleqp at which the two states ; merge into a unique cluster.

The tree built in this way is a random structure, since it depends on the states
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Figure 1.4: The states can be arranged in a hierarchical structure, where
ultrametricity is manifest.

in a speci ¢ sample, and its distribution is related to the functional order
parameter x (qg; ), that in turn can be computed from the saddle-point
matrix Q in In principle the Parisi function could be any increasing
function; in particular, if the states can be organized in an ultrametric
structure as in [Figure 1.4, we might expect it to be a step function with a
number k of steps. It turns out that in practice the models that have been
studied either have a continuous x (q; ) (k = 1 , known as \full replica
symmetry breaking") or k = 1 (called \1-step replica symmetry breaking").
(There is the exception of the Derrida's Generalized Random Energy Model
[Derrida, 1980,/1981], that can have any numbek of steps, but it is somewhat
arti cial). In the following we will nonetheless regard x (g; ) as a step
function that takes discrete values 0 x 1 < < X K on intervals
separated by the points 0 @ < < gk+1 = 1. The number k is the
number of levels of replica symmetry breakingthat is the \depth" of the tree
of clusters shown inFigure 1.4 (in the examplek = 2). The numbers fgg
are a discretization of the possible values that the mutual overlap between
two states ;  can take; for instance, whenk = 1 there are only two possible
values: eitherq = g 0Oga for the self overlap, orq = q < gqga for
6 . The numbersf x ;g f X (g; )ginstead characterize the structure
of the tree. The details of this distribution can be found in[Appendix a The
stochastic process that describes the distribution of the tree is a branching
process: this means that, starting from a root node (the top of the tree),
the process generates a rst layer of child nodes, that we identify as the
clusters at the scaleq; in [Figure 1.4; the distribution according to which
are extracted the child nodes depends on a single parameter, that ix ;.
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Then, the branching process is iterated starting from each child node, thus
generating a second layer of child nodes, this time usingx » as the only
parameter of the distribution. In the example shown in the gure (where
k = 2), we stop after reaching this second level, and the last nodes that
have been generated at the bottom of the tree are identi ed as the states
of the sample; for a generick we would continue iterating the branching
process until we reach thek-th level. For a continuous Parisi function, a
suitable limit has to be taken in the end. This process allows us to compute
the distribution of the free energies of the states in a sample, and it will
be essential for computing the distribution of static avalanches in mean
eld systems (see Chapter 2). Normalizing the free energies one nds the
associated Boltzmann weightsw ( ); their distribution, induced by that of
the free energies, is known a®errida-Ruelle cascade

1.2 Systems of spheres and jamming

Granular materials are complex systems with a rich phenomenology. Varying
the external control parameters or the internal properties, these systems can
display characteristics that are typical of either liquids or solids. Among
the simplest models that can be studied, either numerically or analytically,
are those of spherical particles with short range, repulsive interaction: these
are systems made byN d-dimensional frictionless spheres of radiusRE] that
interact via a pair potential

r r
V(ir)= 1 R 1 R (2.10)
wherer is the distance between two particles' centers, > 0 is the intensity
of the repulsion and can be tuned to di erent values (typically one studies
harmonic spheres with = 2 or Hertzian spheres with = %). This
interaction is identically zero when the two particles are not overlapping
(r > 2R), and increases with the compenetration (for this reason we talk
about \soft spheres"); it is of course possible to take the limit ! 1 |
known as the hard sphere limit: in this case the potential isV(r) = 1

if the particles overlap (r < 2R) and O otherwise | that is, particles
cannot overlap. Notice that hard spheres behave similarly to soft spheres
at zero temperature, and are athermal systems, in the sense that their

thermodynamics is the same at any temperature: V is independent of ,

YIn d = 2 the system tends to crystalize very easily at high densities, and it is thus not
useful for studying disordered packings. Nonetheless, as one introduces some polydispersity
(i.e. particles with di erent radii) the crystallization can be avoided.
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Figure 1.5: Phase diagram showing the liquid, stable glass, marginal glass and
jamming phases of systems of hard spheres. Picture taken frorn [Charbonneau
et al., [2014Db].

since the energy only takes the values 0 ot ; the suitable control parameter

is then the pressure. The thermodynamics of systems of hard spheres has
been solved analytically in the limit of in nite spatial dimensions [Kurchan

et al., 2012, 2013} Charbonneau et &l|, 2014a], where they become mean eld
and can be solved within the replica symmetry breaking framework. The
solution predicts the following behavior (see als¢ Figure 1]5): at low pressure
the system is rst in the equilibrium liquid phase; increasing the pressure |
and avoiding the crystallization | one reaches the metastable supercooled
liquid and the dynamics slows down, and eventually the system falls out of
equilibrium and gets stuck in the basin of one state, thus forming a glass
(in the following we will refer to this as a simple glassor stable glas3. The
stable glass is described by a 1-step replica symmetry breaking ansatz, that
predicts the existence of many states (each corresponding to a di erent glass)
separated by large barriers. Then, it was discovered, rst by Gardner in the
spherical p-spin model [Gardner,| 1985], then by|[Charbonneau et all, 2014b]
for hard spheres, that at an even larger pressure the glass becomes unstable
and there is another transition (the Gardner transition) (see [Figure 1.3),
after which the system is described by a full (continuous) replica symmetry
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breaking ansatz. The physical meaning is that in this phase, that we will
refer to as the marginal glass while each state's basin remains well separated
from the others, its \bottom" breaks into a very rough, \fractal" energy
landscape with many smaller valleys separated by small energy barriers (see

for a pictorial representation). Finally, in the limit of in nite
pressure the system reaches a critical phase callgdmming.

Figure 1.6: Representation of the free energy landscape of a glass: the picture
on the top is for a stable glass, while the one on the bottom is for the marginal
glass, after the Gardner transition. See alsg [Charbonneau et al., 2014b].

The concept of jamming as a uni ed concept in the physics of disordered
media had been introduced in|[Liu and Nagel| 1998] noticing that many
di erent granular systems achieve mechanical stability as the density is
increased. Ad-dimensional system of hard spheres jams when an in nite
pressure is applied; this point ismarginally mechanically stablebecause it
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Figure 1.7: Average coordination number as a function of the packing fraction,
for one speci ¢ three-dimensional sample of 1000 soft spheres with harmonic
repulsion.

barely satis es the so-calledMaxwell's condition [Van Hecke,| 2009], namely
the fact that a system can be mechanically stable | no net force on any
particle | only if the number of forces (that is the number Z of pairs of
particles in contact in the systems) is larger than the number of degrees of
freedom (namely, thedN particles' coordinates). Since the numberZ can
be written as a function of the average coordination numberz per particle
(that is, its average number of contacts) asZ = %ZN, we have that a system
is mechanically stable only ifz  2d; the factor % avoids counting twice the
contacts. At jamming z = 2d, and the system is said to bdsostatic [Liu et al..
2011]. We can also study the jamming problem in systems of soft spheres,
where it is then possible to further increase the density of the packing. Of
course in these systems the jamming point is not found at in nite pressure,
but rather when the condition for marginal mechanical stability z = 2d is
met | the pressure is in fact zero for soft spheres at jamming; in
we plot the average number of contacts per particlez as a function of the
packing fraction , de ned as the total volume occupied by the particles
contained in a unit volume. For small packing fractions there are no particles
in contact and the energy is 0. As the density is increased (always allowing
the system to relax to a minimum of the energy landscape), at some point
the system jams with a sharp transition, where the coordination numberz
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jumps to a nite value, approximately equal to 2d. The packing fraction
at which the system jams uctuates (in d = 3 itis about ; 0:64) and
it depends on the speci c sample; in the thermodynamic limit when the
number of particle N tends to 1 all the samples jam at the same packing
fraction. Upon further compression the numberz increases, and close to the
jamming point one nds the scaling

;2 T (1.11)

(this scaling does not change varying the dimensiord or the exponent

in the interaction [O'Hern et al., 2003]. Notice that the Maxwell's
condition is not strictly satis ed in nite dimensions, because there is a
nite probability that in a jammed con guration there is a \cage" formed

by jammed particles and such that on the inside there is enough space to
accommodate another particle that does not interact with its surroundings
(see[Figure 1.8); theserattlers should not be counted in[(1.11). In three-
dimensional con gurations at jamming, approximately 1-5% of the particles
are rattlers [Atkinson et al.; 2013;/ Charbonneau et al.| 2016]; this percentage
vanishes quickly as the dimension is increased [Charbonneau et al., 2012].

Figure 1.8: A rattler in a two-dimensional con guration at jamming. The
surrounding cage is stable (jammed) and the rattler does not interact with
it. The lines represent contacts between the particles. Picture taken from
[Charbonneau et all, 2015].
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It turns out that the jamming point has critical properties that control

its neighborhood, in the sense that also other quantities show a critical
scaling when approaching this point from the denser phase (sometimes called
jammed, marginal glassor UNSAPhase), even though they might depend on
the force exponent [O'Hern et al.} 2002; Liu and Nagel, 2010]. For instance,
the pressure above jamming scales ag 3 for harmonic spheres
( =2)andasp ( 1) for Hertzian spheres ( = g), regardless of the
dimension; in general the scaling is consistent with saying thap  ( 7)
with = 1. A critical behavior is also found in the pair correlation
function and in the distribution of the contact forces between neighboring
particles. The \gap" hj between two particles atr;;r; is their distances
minus the particles' diameter, hj ri r; 2R. The distribution g(h) of
the gaps is related to the pair correlation functiong(r) = g(h + 2R), and it
behaves as a power law for small gaps:

gth) h (1.12)
Similarly, the force distribution has a pseudo-gap at small forces, that is
P(f) f: (1.13)

The two exponents and are predicted by the mean- eld theory (that is,

in in nite dimensions), where their value is 0:41269 and 0:42311.
The measured value for in nite dimensions (d 2) has been found to be
compatible with this value [Charbonneau et al!,|2012]. The distribution of
forces on the other hand is a little trickier, because di erent exponents have
been measured in nite dimensions. It turns out that there are two classes
of contacts, according to whether the breaking/opening of the contact gives
rise to an extended or localized rearrangement of particles; the distribution
of forces restricted to forces belonging to any of the two groups also has a
power-law behavior for small forces, and one nds di erent exponents in
the two cases: \localized" forces have an exponent; 0:17 and \extended"
forces have an exponente, 0:42 (regardless of the spatial dimension) [Char-
bonneau et all, 2015]. The patrticles that are involved in local rearrangements
are calledbucklers and their number decreases with the spatial dimension; for
this reason one nds that the exponent in the total distribution of the forces
interpolates between the two exponents |, tendingto ¢ whend!1 . In
[Wyart, 2012; [Lerner et al,|2013; Mdller and Wyart| 2015] it has been shown
that mechanical stability, or rather the fact that the jammed system of hard
spheres cannot be further compressed, implies two bounds on the exponents,
namely that 1—2' and ﬁ; quite remarkably the predicted and
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measured data satisfy these bounds, but only marginally, in the sense that

( 0:413) 1—2'( 0:415) 2+1 -( 0:413) assume almost the same value.
In their analysis the authors also argue that the rearrangements found in
these systems when some temperature is introduced or when the system is
sheared will typically be extended, and thus the relevant exponent should be
the force exponent .. In the following chapter we are going to study the
response of systems of soft spheres under shear strain, and we are going to
argue that the distribution of the avalanchesinduced by the rearrangements
at jamming are indeed governed by a power law with an exponent strictly

related to .
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Athermal response to perturbations

In Chapter I|we have described the qualitative structure of the phase space
of disordered systems. This chapter is devoted to the description of the
behavior of these systems, and in particular of their ground state, when an
external perturbation is introduced. The chapter is organized as follows:
in the next section we de ne the the quantities that we are
interested in, namely the (static) avalanches In the section [Spheres anfi
shear-strain we present the systems that we focus on, that are dense systems
of harmonic soft spheres, whose con ning box is subject to a small shear
strain. Next we proceed with a discussion on the probability distribution of
the avalanches, summarizing the mean- eld framework that allows its compu-
tation in in nite-dimensional systems, shown in details in In the
end we compare these analytic mean- eld results (ifAsymptotic behaviol)
with three-dimensional numerical simulations (in[Numerical simulations)).

2.1 Avalanches

Disordered systems have complexugged free-energy landscapes, with many
sample-dependent local minima, as shown schematically in Figure 2.1 | the
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picture shows the free energy of the con gurations, for instance through a
\section" of the phase space. When we introduce a small perturbation, the
energy of each con guration is shifted by some amount that depends on the
con guration itself: for instance when a magnetic system is embedded into
a rln_)agnetic eld h, the energy of any spin con guration fs;g is shifted by
h  ,s;. In general we may want to study the e ects of some perturbation
with di erent protocols or di erent evolution dynamics. For instance, the
perturbation can be increased constantly at a nite rate, while the system
undergoes some dynamics; as a limiting case we can study a perturbation
with a vanishingly small rate, such that the system has time to equilibrate
in an almost constant eld. At zero temperature the latter is equivalent to
saying that the system always lies in its instantaneous ground state, namely
the con guration that reaches the global energy minimum. Of course, the
response is in general sensitive to the details of the protocol, and for the
moment we are going to focus on the limiting case at zero temperature, with
a perturbation that is increased instantly and in a stepwise fashion: we will
refer to this as the athermal quasi-static protocol

When the perturbation is small enough, we might expect that no state (i.e.
the valleys in[Figure 2.1) disappears or is created, and that the only e ect is a
small, state-dependent shift of their energies (red arrows in the same picture).
Of course, also the energy of the barriers in between valleys is modi ed,
but in the framework of the athermal quasi-static protocol the barriers are
irrelevant, since we are only looking for the true, absolute ground state of
the system. If the intensity of the perturbation is increased step by step and
always in a quasi-static fashion and at zero temperature, the systenumps
from a state to another as soon as the latter has a lowetotal energy (namely
the unperturbed energy plus the energy shift). The jumps happen at random
times because the energy landscape is random and sample-dependent, and
in general the new ground state can be in a con guration very di erent from
the previous one. For these reasons, the response of many disordered systems
(such as spin glasses, structural glasses, elastic interfaces...) is random and
usually proceeds by discontinuous jumps ([Young et al., 1984; Young and
Kirkpatrick,|1982; Franz and Parisi| 2000;|Combe and Roux/ 2000; Sethna
et al., 2001; Krzakala and Martin|, [2002;|Rizzo and Yoshinb| 2006; Yoshirio
and Rizzg,[2008| Rosso et &ll, 2009; Yan et al., 2015; Msller and Wyalrt, 2015;
Jes|, 2015]), calledstatic avalanches(\static" refers to the fact that we are
always in the instantaneous ground state).
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Figure 2.1: A simpli ed picture of the rugged free-energy landscape of a
disordered system | along the horizontal axis there are the con gurations.
The valleys represent di erent phases of the system, and the ground stateqs)
is the global minimum. When a small perturbation is turned on, the energy
of the minima will be shifted by some con guration-dependent amount, and
it might happen that the new global minimum ( ) is no longer the previous
ground state (gs).

Since avalanches are random objects, we want to know what is their distri-
bution, averaged over several jumps and several samples. In some disordered
systems one nds apower-law behavior for the distribution of jumps; for
instance, in [Le Doussal et al., 2012] the authors nd a power law in the
density of magnetization jumps in spin glasses (with full replica symmetry
breaking), in [Combe and Roux,| 2000] a di erent power law is found for
strain jumps in systems of hard spheres under shear-stress, and in [Liu et al.,
2016] similar results are found for systems of spheres in thelasto-plastic
phase (at a large shear strain), for di erent perturbation rates. Interestingly,
often the same power-law exponent is found using di erent perturbation
protocols (JLe Doussal and Wiesg, 2009; Le Doussal et al., 2012; Liu et al.,
2016)); indeed, it has been conjectured that the various responses in some of
these disordered systems might lie in the same universality class, regardless
of the dynamics [Liu and Dahmen,|2009].
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2.2 Spheres and shear-strain

Our motivation to re-examine this problem in a general framework comes from
the physics of soft spheres, in particular the jamming transition introduced
in [Liu and Nagel, [1998; O'Hern et all, 2008f Biroli, 2007} Parisi
and Zamponi,|(2010; Charbonneau et al., 2012; DeGiuli et al|, 2014]. This
type of system is among the simplest models for liquids (and glassformers): it
is made ofN identical spherical particles of radiusR, in dimensiond > 2; two
particles at a distancer (from center to center) interact via a pair potential

r 2 r
R’ L R
that is, they repel elastically when in contact (r < 2R) and do not in-
Igzract when far away. The energy of the system is thereforeH (fr;g) =

i6] Voo ro. The particles' radius R is chosen in such a way that the
total volume occupied by the particles in a unit box is a xed value (the
packing fraction) : N 4RY , Where g is the volume of a sphere with

unit radius in dimension d.

Vi = 1 (2.1)

Figure 2.2: Shear transformation applied to a box of soft spheres. Each
particle with coordinates (x1;X2;:::) is translated to (X1 + X 2;X2;:::).

We want to study the static avalanches induced by a shear strain applied

quasi-statically to the packing of spheres. Ashear strain is a deformation
of the system: in the quasi-static framework, applying a nite strain
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translated by times the second coordinate, or equivalently the system is
tilted in the Xx1-X2 plane as shown ir Figure 2.p. Keep in mind that in the
thermodynamic limit, the free-energy of these systems does not depend on
the shape of the container, and thus it cannot depend on the shear, whatever
are the boundary conditions [Yoshino and Mezard,[2010]. Nonetheless the
response of the system is well de ned even in that limit, and the reason is
that the limits N !'1 and ! 0 do not commute | the same happens
every time there is some symmetry breaking. For small shear strain ,
the energyH(fr;g; ) can be expanded in a Taylor series and it becomes
H(fr;0) ( fr;g), where H(fr;g) is the unperturbed energy and (fr;Q)
is the shear stressof the con guration frg, that is equal to

1 X 1
(figg 5 VA5 ) o o @ gl )=
i6]

1 X
=5 (ri rFi2 (2.2

i6]
The subscripts 1,2 stand for the spatial directions along the axisxj; X2,
Fij; » is the second component of the force between particlesand j and
(r; Lj)l Xi;1 Xj;1isthe rstcomponent of the displacement vector between
the two particles. This shear stress is actually a part of the symmetricstress

tensor, whose components  (fr;g) (; =1;:::;d) are

1 X 1 .
(frg 5 V(o n)o g "o @ o @3
i6]

The stress tensor is a measure of the interactions between the particles
in the system. In general, a shear strain in the planex -x couples with
the corresponding stress component , while the other o -diagonal terms
remain small; the diagonal terms on the other hand are related to the pressure
of the system via

1 1
p= WTF = W( 11t o+ 4d); (2.4)

Tr being the trace of the tensor.

Mean- eld analytical computation

These systems of spheres have been recently analyzed and solved in the
limit of in nite dimensions [Kurchan et al.,|2012| 2013; |Charbonneau et al|,
2014a]. As explained in| Chapter 1L, athermal systems of soft spheres at
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su ciently large densities fall into the marginal glass phase, and are therefore
characterized by a full replica symmetry breaking ansatz RSB. Inside this
phase, at a packing fraction j;, we nd the jamming point, that is the point
where the system attains marginal mechanical stability and the particles
barely touch each other (thus they have zero energy); at larger packing
fractions the soft particles start to compenetrate and overlap with each other
(increasing the energy), and if the density is not too large the system remains
in the marginal glass phase: we call this portion of the phase space above
the jamming point the UNSAPhase. The name stands for \unsatis ed": the
term is borrowed from the literature of Constrained Satisfaction Problems
and in particular from the non-convex perceptron introduced in [Franz and
Parisi, [2016; Altieri et al.| 2016; Franz et all,|2017]; the space occupied by
a sphere can be interpreted as a constraint for the other particles, and the
jamming point can then be viewed as the maximum density at which it is
still possible to satisfy all the constraints. The portion of phase space below
the jamming point, where the spheres can be accommodated without forming
any contacts, is called theSATphase and stands for \satis ed"; the jamming
point is therefore a so-calledSAT UNSATransition. It turns out that both
the jamming point and the UNSAPhase are endowed with a hierarchy of
states described by a full replica symmetry breaking ansatz, but the Parisi
function x (qg; ; ) depends on the specic phase.

In Chapter 1] - [Replica symmetry breakingand in we explain

that this functional order parameter plays an important role in the energy
landscape, because it determines the branching process that de nes the ultra-
metric tree of the states. At zero temperature the limit lim 1 x (q; ; )
y(q; ) is well de ned. SinceyYq; ) dyg‘g ) is essentially the distribution
of the overlap between any two states, its behavior neaq = 1 is directly
linked to the density of states \close" to a reference state (that can be
for example the ground state). It has been shown that the derivative of
the Parisi function diverges nearg = 1 both at jamming and in the UNSAT
phase; at jamming, the divergence is characterized by an exponent; ﬁ:
yda; 53) Y8(@ (1 g ° ! (inthe jamming literature this exponent is
usually called ; % [Kurchan etal.|2012,2013; Charbonneau et dl|, 2014a]);

quite remarkably, in the whole UNSAPhase the Parisi function diverges with

a constant exponent unsa= 3: YAa; > 3) (1 @) WA yOusad

[Franz et al., [2017]. When a small perturbation is introduced, the distribution
of the new ground state is related to a joint probability of nding a state at
some overlapg with respect to the unperturbed ground state and that this
new state is a global minimum of the energy: it is then reasonable to expect
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the distribution of the new ground state to be heavily a ected by the excess
of states close to the unperturbed ground stateq 1). Indeed, we are going
to show that, for su ciently small external perturbations, the distribution

of the energy di erence between the new ground state and the unperturbed
one develops power-law regime, whose exponent is strictly related to the
exponents j; UNSAT

In order to study athermal quasi-static avalanches we have to nd the ground
state of the unperturbed system and the ground state after that a small
perturbation is applied. The former is the con guration that minimizes the
unperturbed system's energyH, while the latter is found, in the case of a
shear strain , by minimizing the total energy H , at a xed value of
Then, we want to compute the distribution of the di erence of the energies
of the two ground states, and average them over several samples. In in nite
dimensions the states of these systems are described by a mean- eRISB
ansatz, that asserts the existence of in nitely many thermodynamic states
f g, each characterized by an intrinsic free energy (that at zero temperature
becomes the state's energy) ) and an intrinsic stress . The states depend
on the speci c sample, and in[Appendix & we review the joint distribution of
all the energiesf U g and stressed  g; in systems of soft spheres one expects
the stresses and the energies to be independent one from the other [Yoshino
and Mezard| 2010;|Yoshino and Zamponi| 2014], and the distribution for the
energies is given by thebranching processintroduced in [Chapter 1] - [Replicd
Ssymmetry breaking that de nes the ultrametric structure of the phase space.
This process is a cascade of Poisson point processes, and it depends on the
speci ¢ RSBsystem only via its Parisi functional order parameter y(q; )
[Mezard et al.| 1985; |Ruelle, | 1987; Mezard and Parisi,| 2001, Panchenko and
Talagrand, 2007; Mezard et al.,|2008]. The stresses on the other hand are
sums of local variables (se)) that one expects to be \simply correlated":
their distribution is modeled as a di usion process on the same tree, that
starting from an initial value in the root node at the top of the tree (that
was identi ed as the cluster containing all the states), reaches the leaves
of the tree (identi ed with the states). Once we have the distribution of
all the states' variablesfU ; g we can nd the probability distribution

of the total energy di erence between the unperturbed ground state and
the perturbed one; the former is simply the minimum Egs = Ugs among the
states' energiesf U g (irrespective of the corresponding stress s in that
state, since = 0), and the latter is the minimum EgJs = U Js among
the states' total energiesfU g. Being the full derivation of such a
distribution quite involved, for the sake of clarity we chose not to present it
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here; it can be found in[Appendix B.

In principle we would like to nd the distribution of the di erence between the

total energy of the unperturbed ground state and that of the new ground state
inan external eld ,thatis EJ; Egs (U 39 Ugs. Onthe other hand,
in the calculations it is clear that the relevant variable, whose distribution
can be computed easily, is E U (U Ugs) (3 o=

Ed Egs+ s Thequantity E is actually the di erence between the
total energy of the new ground state and that that the unperturbed one has
under a shear : E = (U 39 (Ugs gs)- The dierence between

E and Eg; Egs is shown in[Figure 2.3.

Figure 2.3: The level crossing between the unperturbed ground state (whose
total energy is | by chance | increasing because of a negative shear stress
gs) and the state that is going to be the new ground state at shear strain
(whose total energy is decreasing because of a positive shear stre%).
The di erence between E andEJ; Egsis also shown.

After performing all the calculations we arrive at the probability %istribution
of the jumps E in the total energy induced by a shear strain’® N 1

PCEI) (BRO) (E<0@eR( Ej); (2.5)

z
. P P E
R( Ej )=exp Njj dago’ 1 9 p——p—— ; (26)
Njj T q
x) 2(4) ze ¥+ xH p% : @2.7)

2 . . .
where Hx) ’1‘ p‘%e 7 is a complementary error function. Keep in mind

that by de niton  E 0, since the new ground state has to be at a lower
total energy than the unperturbed one. Formula[(2.5) shows manifestly that
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the distribution is normalized and invariant under ! ; this symmetry
arises naturally from the computations and suggests the presence of a cusp
in =0, butin principle, it does not necessarily hold for di erent kinds of
perturbations.

The validity of equations [2.5)[{(2.6)]is not restricted only to spheres, either at
jamming or in the UNSAPhase. The approach that we have used is based on
the distribution of the states' free energies, that depends only on a system's
Parisi function. On the other hand the distribution of the states' variables
that couple with the perturbation (that in our case is the shear strain) needs
not be a di usion on the ultrametric tree; furthermore, those variables might
as well be correlated with the states' energies. Nonetheless, if

a system is described by a (continuousRSBansatz, and thus by some
functional order parameter y(q);

the system is subject to any perturbation h that couples to some states'
variables fY g (that is, when the eld h is turned on the energy of
each stateY is shifted by hY );

the variablesfY g are independent from the energiesfU g;

the variablesfY g are distributed as a di usion process on the ultra-
metric tree of the states (just like the stresses in the case of dense
spheres);

then the equations| (2.5)[(2.6]) correctly describe the distribution of avalanches,
apart from a rescaling of the eld h that comes from the variance of the
di usion process. Of course not all perturbations satisfy these assumptions
(in particular the one regarding the independence from the states' energies).
Interestingly, the Sherrington-Kirkpatrick model for mean- eld spin glasses,
embedded in a magnetic eldh that couples to the states' magnetizations
M , satis es all the hypotheses.

2.3 Asymptotic behavior

In the previous section we have recalled that the increasing functioryqq)
is related to the distribution of the overlap between pairs of states at zero
temperature, and that in the models that we are interested in this function
diverges nearq = 1, signalling an abundance of states close to each other.
It is clear that the integral in depends heavily on the derivative of
the Parisi function, yYq). In this section we are going to show that the
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probability distribution of static avalanches develops a power-law behavior
for su ciently small jumps  E when the applied perturbation is small,
and the exponent of the power law is directly linked to the exponent found
in the functional order parameter y(q).

In order to study the asymptotic behavior, let us introduce the func-
tion C( Ej ) logR( Ej ), where R is the function in Then,
neglecting the probability of not jumping, that is the term R(0j ), the
probabili&/ density of jumps is P( Ej ) = R( Ej ) @eC( Ej ); for

i Ej Njj 1andassuming a generic scaling(g) (1 g 1, we
have
@eC Ej)= dgWo °p—p— =
0 Njj 1 q
2 2, r— 2
- p o awu Y s E T 2
N pE ° 2 N . .

The last scaling comes from x) = H p% and the fact that the integral is
_ 1
nite for E pNj ] I 0.

Integrating and exponentiating we nd also the behavior of R( Ej ) =
exp C ( Ej ), and, in the end, the asymptotic behavior of P( Ej ):

P( 8EJ' )
_ 2 +1 2
2 exp constIDijpWL pWL ; for > I
> g ltconst pﬂj i 1. (2.9)
P : for = 3:
. 1 . . . pi . 1+2 1 1 . .
yotlcehow,for > 5,P( Ej )isapowerlawif = Nj j ] Ej
Nj j 1 | the lower cuto is given by the exponential. Therefore in
this range we have
. E
P( Ej) FT ; (2.10)
where the avalanche exponentis 2 . For = %( nd small eld ij i)

there is a small correction to the exponent, of order N j j, due to the fact
that the integration of | Ej Lin (2.8)|gives rise to logarithmic corrections. In

and in[Figure 2.5 are shown the plots of the probability distribution

related to two di erent functions y(q) (corresponding to jamming and the
UNSATPDhase), for some small values of the eld.
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Figure 2.4: Plot of the distribution for a tentative function y(q) that diverges
with an exponent = ; i, for several values of the shear strain
(from the left to the right, with values 10 ;10 #;10 3;10 2): notice the

development of the power-law region as the eld is lowered.

Figure 2.5: b. Plot for a function y(q) that diverges with = gk =
UNSAT= % for several perturbations (from the left to the right, with =
10 5;10 #;10 3;10 2;10 Y); here, the exponent of the power law displays

minor corrections for larger eld.
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Comparison with previous works

It turns out that the Sherrington-Kirkpatrick spin glass model has a Parisi
function with the same zero temperature behavior as for soft spheres in the
UNSATDhase: it diverges neag=1asy(q) (1 Q) S sk= uUNSAF %
Furthermore, when the system is embedded in a magnetic eld, the variables
that couple to the external eld are the magnetizations: the total energy
of a state is indeedU hM , U being its intrinsic energy and M its
magnetization; the distribution of the magnetizations is independent from the
states' energies and can be written as a di usion process along the ultrametric
tree [Mezard et al.| 1985; Mezard and Virasoro, [1985; Mezard et al., |2008].
Therefore, as stated iNfMean- eld analytical computation] the distribution of
avalanches in this system can be derived within the same framework that
we used to study systems of soft spheres. We can compare then our result
with [Le Doussal et al/,2012]: in that article the authors studied the static
avalanches in the Sherrington-Kirkpatrick model in a magnetic eld. They
nd via a di erential equation approach based on replica symmetry breaking
that the density of static avalanches M per unit in the magnetization is
given by

Z _m?2
e e

1
P( M)= ( M) M daW@p—=: (2.11)
0 4 (1 9
If y(g) diverges, then the integral is dominated byg 1 and the probability
of small jumps M displays a power-law behavior for small jumps, with an
exponent =2 gk=1 like for the jumps in the total energy:
Z,

P( M) M 1 Mzdtet M L (2.12)

In our framework we can recover the same result starting from Equa-
tion the detailed calculations can be found in[ Appendix B -[Disq
tribution of other observables equations|(b.44) to|(b.46). In|(b.28) we have
computed the probability distribution P( U; ;q ), that is the joint
distribution of the dierences U; in energy and stress between the
unperturbed and perturbed ground states;q is their mutual overlap. If we
keep only the rst order in the Taylor expansion for small elds > 0, then
integrate out the energy jump U and the overlap g, and divide by the
eld strength , we nd the density of stress jumps per unit strain, a result
identical to

P() 2. (2.13)
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Analogously, integrating out U and and dividing by we can nd the
density P(q) of jumps at a given overlap q (for a generic exponent ):

r
P@ N9 @ o9 ¢ (2.14)

In [Le Doussal et al|,/2012] the authors found this result as well, that
in the case of the Sherrington-Kirkpatrick model is expressed a$ (q)

a1 9 L Since for small displacements we can link the overlap between two
con gurations to their mutual mean square displacement 2viagq e 2,
we nd that the distribution of the mean square displacement found during

a jump is (for small jumps and small elds)
d
P()= P(g) di 2, (2.15)

For completeness, with the same approach (expanding for small, integrating
out and @, and dividing by ), we nd the density of jumps in internal
energy per unit eld,

pu Y . (2.16)

Notice that we have to perform the Taylor expansion in order to compute
these distributions, because they cannot be computed as easily as the one
for the jumps in the total energy | their distribution cannot be written in a
simple form as in[(2.5}{(2.6). Performing the Taylor expansion we lose the
lower cuto of these probability densities, and without such cuto , for any

%, they would not be integrable (x 2 is not integrable around x = 0).
The reason of this has to be ascribed to the fact that the cuto is given by
an essential singularity, which kills every power law and is not analytic; this,
at least, is what happens in, where the cuto is of the forme Az * ™

E

for z = P 1.

Frequency of jumps

It is interesting to discuss what is the behavior of the probability of not
jumping, associated with the delta term in equation . Let us assume
that the perturbing eld = Nj j scales asN  for some exponent 0
(because we need Nj j 1 for our approach to be valid). If =0 (i.e.

35



iJ N %) then the probability of not jumping is (see
P z P —
P(E=0=R(Oj) exp Njj (0 dayfg 1 g !
Z
| exp const dqyo(q)pﬁq =0: (2.17)

Therefore in the thermodynamic limit the system jumps with any pertur-
bation, however small it might be. Moreover, the distribution of jumps

E tends to a well de ned limit, and the power-law behavior is suppressed
beyond the nite region

P 1+ P

(0 Eminj;J] Emaxj) = ’L'Inf Njj ; WJ j o (2.18)
In particular, in this case the typical jump is of order j Ej N©,

There is, possibly, another interesting regime, that is the one that leads to a
nite probability of not jumping when a small shear strain is applied, even in
the thermodynamic limit N !'1 . The zero-temperature maximum overlap
between two states | the Edwards-Anderson order parameter gea | is 1 in
the thermodynamic limit, and it might, in principle, scale as 1 const N
with some exponent (that is not known). In IBiS case, all the diverging
integrals in dg would have a cut-0 at gea. If N | j scales adN then
the probability of not jumping becomes

z

P( E=0)= R(0j ) exp pﬁj j (0) dqyo(Q)p 1 q
( Z 1 const N p )
P ON dgy{e) 1 ¢
n (6}

exp const N N ( 2) gconstN e - (5109

where we have introduc%d the exponent % (2 1); Therefore in the
thermodynamic limit, if = Njj N with < thenP( E=0)! O
and the systems always jumps, whereas if > then P( E)! 1 and
it never jumps. In the marginal case where = . the probability of not
jumping is nite (i.e. strictly between 0 and 1) even in the thermodynamic
limit. Notice that with this scaling we nd that the typical jump is naturally
smaller and scales a3 Ej N @ 1. Notice that remarkably in the
case of soft spheres in the&JNSAPhase under shear, or in a Sherrington-
Kirkpatrick model in a magnetic eld, =0, regardless of the value of the

exponent . In this case for > 0 the perturbation is too small and the
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system never jumps, while for =0 we ndthat P( E =0) N ¢onst
(i.e. the system always jumps, forN !'1 ) due to logarithmic terms in the
integral over dg; in order B) have a nite probability of not jumping in the
UNSAPhase forN !'1 ,  Nj j must scale as (logN) L

2.4 Numerical simulations

In this section we are going to compare the mean- eld predictions with
numerical simulations in three dimensions. As stated in the previous sections,
at zero temperature one nds that in nite-dimensional systems of soft spheres
are characterized by di erent critical scalings at jamming and in the UNSAT
regime. As described in|[Charbonneau et all, 2014a] the jamming solution
is characterized by a singular Parisi functiony;(gq) (1 q) * forqg! 1.
The exponent ; is related to the pseudo-gap exponent . in the distribution
of small contact forces at jamming[(1.13), according to

3+ ¢ |

=y (2.20)

J
In in nite dimensions one nds out that . 0:42311 and, consequently,
J 0:70634639. Accordingly, denoting ; the value of the avalanche
exponent at jamming, we have ;=2 ;= g: ¢ 1:41269. On the other
hand the UNSAPphase above jamming is characterized by another algebraic
behavior of the Parisi function close toq = 1 [Franz et al.| 2017], that is
yunsaf@ (1 g  U™Awith  ynsa= %regardless of the packing fraction.
Therefore, the corresponding avalanche exponentynsatin this region is
UNSATE 2 unsa™= 1. Quite remarkably, the physics at jamming appears to
be mean- eld like also in low dimensions; for instance, the critical power-law
distribution of small forces related to extended rearrangements does not
seem to depend on the spatial dimension: numerically, one nds the same
exponent . in dimensions from 2 to 12, and its value is the same as the
mean- eld prediction. Since ; depends only on ¢, it is natural to wonder
whether the avalanche distribution at jamming in low dimensions has also a
power-law behavior, and whether the exponent (if any) coincides with the

predicted value in the in nite-dimensional model.

We therefore study the distribution of quasi-static jumps in numerical simu-
lations of systems of three-dimensional soft spheres under shear strain. We
consider the standard frictionless harmonic soft sphere model with a potential
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between spheres at distance

r 2 r
2R 2R
where R is the radius of the particles and (x) is the step function. We
prepare the samples either in theUNSAPhase at a speci ¢ packing fraction

, Or at jamming, at a packing fraction ; that is found numerically and
varies slightly from sample to sample due to the nite size of the system (in
three dimensions ; 0:64). Of course in the former case we take> j,
in particular we simulate systems in the UNSAPphase at a packing fraction

0:75. The jamming con gurations are found recurring to the fact that

close to (above) jamming, the excess packing fraction 3 is proportional
to the pressurep | see Chapter 1} [Systems of spheres and jammingThus,
generating two UNSAToN gurations at packing fractions = 0:9;1:0 and
minimizing their energies we nd two points ( 1 =1:0;p1) and ( 2 = 0:9; p2),
p1:2 being the corresponding pressures. Performing a linear t on these points
we nd an estimate ( 3;p3 = 0) for the jamming point ( j;p = 0); then,
changing the radius in such a way that the system has a packing fraction 3,
we minimize the energy and nd the pressureps | that in general is not
exactly pz3 = 0. In practice we target a pressure range (usually we require
that the pressurep. 10 °); if ps is outside the target pressure range, we
add it to the list of points ( i;p;) that is going to be used once again to
nd another estimate for the jamming point. Incase pp Oand ; < g,
we repeatedly replace ; with %( i + i 1) and minimize until we nd a
pressurep; > 0. If the target pressure is low enough, in the end we reach
con gurations where the average number of contacts per particle is close
to twice the space dimensiond (as prescribed by the Maxwell's isostatic
condition) and 0:64. All the con gurations (both UNSA&nd at jamming)
are generated via a quench from in nite temperature to zero temperature
(that is, we start from random coordinates, drawn uniformly in the simulation
box), and the minimizations end up all in di erent local minima. Every
minimization is performed via a dissipative molecular dynamics, called the
FIRE algorithm [Bitzek et al., 2006]; loosely speaking, we use the \Velocity
Verlet" algorithm [Verlet,|1967] to discretize Newton's equations of motion,
and we add an inertial term that depends on the velocity and acceleration
of the particles in the whole system; the minimization is stopped when the
sum of all the forces squared is less then some threshold.

V)= 1 (2.21)

Each sample is then sheared according to the athermal quasi-static protocol,
that is, the system is sheared with a small strain  and then a minimization
is performed, letting the system relax to a local minimum; we repeat the

38



process until the sum of all the strain steps (called theaccumulated strain)
reaches a maximum value nax. This is done because we expect the rst
jumps (at small shear strains) to me independent and identically distributed;
nding the jamming point is usually computationally expensive and with
this protocol we don't have to throw away a sample after a single step; on
the other hand the accumulated strain cannot be too large, for a reason
that will be explained in the next section (the so-calledyielding transition ).
The simulation of a system under a shear strain in a simulation box is
not entirely trivial, because we have to tilt the system's coordinates (e.g.
[Figure 2.7). Instead of tilting the axes and changing the coordinate system
of the whole box, the shear strain can be introduced using the.ees-Edwards
boundary conditions [Lees and Edwards, 1972; Kobayashi and Yamamoto,
2011]: to introduce such conditions, we can imagine that the whole system
is divided into smaller cells, arranged on a regular cubic lattice [(Figure 2.5,
left). When a shear is imposed in thex1-x, plane, rather than tilting each
cell we can simply tilt the particles inside each cell, keeping the coordinate
system orthogonal | the particles that exit a cell will enter the neighboring
one. In practice we only simulate one elementary cell, endowed with suitable
periodic boundary conditions: to do so we have to shift each \layer" of
cells along thex; direction (i.e. horizontally, in right), and the
amount each cell is shifted by is proportional to the shear strain  and to
the position of the cell along thex, direction (say, with respect to a reference
xed cell). In order to enforce the shifting of the layers, when a particle
exits the reference simulation box from the faces along the, direction (top
and bottom faces in the gure), it has to be put back from the opposite face
(as usual with periodic boundary conditions), but it has to be translated
by along x1; the sign has to be di erent for particles crossing the top
face or the bottom one, but it can be chosen freely within the simulation,
because the two possible choices correspond to shearing the system towards
the positive x; direction or towards the negative one, and such a choice is
physically irrelevant. The other faces are endowed with the usual periodic
boundary conditions: when a particle crosses one of such faces, it is put back
into the system from the opposite one. Of course, when some kind of periodic
conditions are imposed on a system, the distance between two particles is
not uniquely de ned, because any particle has an in nite number ofimages
through the periodic boundaries (Figure 2.7); we use the convention that
the distance between two particlesi;j is the smallest distance between and
any of the images ofj (or vice-versa, equivalently).
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Figure 2.6: Pictorial representation of Lees-Edwards periodic boundary
conditions. The red dots are all images of the same particle, in di erent
repetitions of the periodic unit. The other colored particles are those that
belonged to the same unit box before the perturbation is applied. On the

right, the particles have been tilted, but the coordinate system remains
orthogonal.

Numerical results

To test our mean- eld predictions in three dimensions, we simulate systems
of soft spheres at various packing fractions | at jamming and in the UNSAT
region ( = 0:64;0:75;0:8;0:9) | and for di erent system sizes | N =
500, 100Q 2000 4000 particles. We generate several hundreds of con gurations
(about 300 at jamming and 1000 at higher packing fractions) for each value of
N and ; then, every sample is sheared for 1000 steps with strain increment
=10 °, up to a maximum accumulated strain max = 0:01. We detect

Figure 2.7: The blue particle is any particle belonging to the simulation box

(that is the box in the center). The red particles are images of the blue one
in di erent \periodic units".
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Figure 2.8: Total energy E (top, lighter curve) and stress (bottom, darker
curve) as a function of the accumulated shear strain for a system di = 4000
particles at jamming ( 0:64). Every step is made with =10 5. We
are interested in the distribution of jumps Emin( + ) Emin( ), Emin( )
being the instantaneous ground state when subject to a perturbation .

the avalanches in the systems by measuring the energy as a function of strain
as in[Figure 2.8; in our simulations the strain step is chosen to be =10 5,
and the accumulated strain at which we stop the simulation of the sample is
max = 0:01; every point in the gure corresponds to a shear strain step (after
the minimization has been carried out). In order to measure the avalanche
distribution we compute the energy jumpsE;+1 E; from a step to the next
one (adding the shear stress ; | which is always small in any case |
as explained inSpheres and shear-straijand in [Figure 2.3), and discard all
the positive jumps that correspond to perturbations that did not lead to a
change of state.

In we present the histogram of the energy jumps in a log-log plot,
showing that a power law regime exists both at jamming and for the jammed

con gurations in the UNSAPhase. In Table[2.] we compare the predicted
exponents with the measured ones. The results show some agreement with
the mean- eld predictions; it is manifest that the exponent in the jammed
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phase is smaller than the one at jamming, and that it does not depend
strongly on the speci c packing fraction > ;. Although some deviations
from the theoretical, in nite-dimensional exponents (Figure 2.41Figure 2.5)
are clearly observed, we manage to somehow describe the distribution of
avalanches. It is not clear whether these deviations are physical, and therefore
the nite dimensional exponents are slightly di erent from the predicted
values in in nite dimensions, or they are due to the numerics. The theoretical
predictions are strictly valid for in nite dimensional systems, and even though
we can argue that some properties do not vary with the dimension, there
are features that surely do: for instance, in nite dimensions, there are
localized excitations (the so-called bucklers) that are not captured by the
mean- eld description and might be responsible for the di erences in the
response (especially in small systems).

(a) (b)

(©) (d)

Figure 2.9: Avalanche distribution in systems of several sizesN =
500 100Q 200Q 4000), with = 10 °. Histograms of the avalanches for
systems in the UNSAPhase, prepared at packing fractionga) =0:75 and
(b) =0:8. (c) Jamming, at 0:64. (d) Comparison of all the data:
from top to bottom, = ;3;0:750:8;0:9. The distribution at jamming
has been shifted by 4 orders of magnitude along th¢ Ej axis, and all the
histograms have been arranged vertically for a simpler comparison. The
predicted power laws with ; ﬁ 1:42 and ynsae 1 are also shown in
all the plots.
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Figure 2.10: Cumulative distribution functions (CDF) for the avalanches
in samples of N = 1024 particles at jamming; the one on left is for the
energy jumps E (P;(j Ej)), and the one on the right is for stress jumps
(P37 ()). The predicted power laws are also shown, with an exponent
2 3+1 0:41269. These distributions have been found after removing
the non power-law part for small jumps.

In we also show the cumulative distributions of jumps in the
total energy j Ej and stress at jamming. Even though we only have
an explicit formula for the former, we know from [Comparison with previj
bus works$that the rst term in the Taylor expansion (for small elds )
for the probability distribution function of the stress jumps has a power
law behavior, and that if the exponent is smaller than 1 there must be
a lower cuto (otherwise the distribution is not integrable in 0). It is
plausible to assume that the cuto is governed by a behavior similar to
that found in the distribution of total energy jumps, where the cumulative
distribution is P7(j Ej) Prob[jump > E] exp constj Ej 29+l
(see equation[ (2.9)); therefore, we assume that the cumulative distribu-
tion of stress jumps also has a cuto of the same form, and it behaves as
PI() exp 23*1 |in particular, the derivative of this distri-
bution gives the correct power law for the probability distribution function.

For this reason in|Figure 2.10 we plot logP7 (j Ej)and logP; ()

predicted measured

0.64 1.42 1.52 0.08

0.75 1 1.11 0.03
0.8 1 1.12 0.03
0.9 1 1.08 0.03

Table 2.1: Comparison of predicted and measured exponents.
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on a log-log scale, alongside with the predicted power laws with exponent
2 3 +1.

In conclusion we have con rmed that the mean- eld description is able to
capture, at least with some approximation, the response of three-dimensional
systems of spheres either at jamming or in the densddNSAPphase. This is not
surprising in the former phase, because we have already stated that it has been
observed that, at jamming, some critical exponents do not to vary with the
spatial dimension, and hence are equal to the in nite-dimensional prediction.
It is remarkable, on the other hand, that another critical behavior is found in
the UNSADhase, regardless of the packing fraction and characterized by an
exponent close to the mean- eld value. Of course it would be very interesting
to study the response of similar systems also in higher dimensions, providing
a stronger proof for this thesis.

There is another type of universality that arises from the comparison of the
numerical study with the mean- eld analytical result. In [Avalanche$we
have said that, in principle, the response depends on the speci ¢ protocol
with which the system is perturbed, but in the end we nd a match between

a static calculation (in in nite dimensions) and a quasi-static response (in
three dimensions). The former assumes that the system always lies in its
instantaneous ground state, at any value of the perturbation and whatever
was the previous state. In the latter, instead, the system is perturbed slightly
starting from a given con guration (a local minimum) and is then locally
minimized (via a modi ed Newtonian dynamics): therefore, the state reached
after a perturbation is not, in general, the new global instantaneous ground
state, but it will reasonably be the closest local minimum found by the
algorithm. As a minor remark, we have to keep in mind that the initial
state found numerically, too, is never | for large systems | the true global
ground state. This unexpected agreement had previously been observed in
other systems [[Le Doussal and Wiese, 2009; Le Doussal et|al., 2012; [Liu
et al., |2016], and it has been ascribed to a universal response characterizing
the slow response of some disordered systems [Liu and Dahmen, 2009]. A
possible justi cation is found straightforwardly in our theoretical framework;
the distribution of the states that de nes the ultrametric tree
enters into the probability density of the avalanches[(2.5)f(2.6) through the
derivative of the Parisi function y{q), that acts as a weight for the overlap

g at which the new ground state is found. What allows us to compute
the asymptotic power law for small external elds is precisely the
algebraic divergence of this function close tay = 1: without this divergence,
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there would not be a power law. In[Replica symmetry breakingwe have
introduced the Parisi ftf:gction, and at zero temperature we have de ned it
asyqq) = @@qlim 1 o daP(q; ), where P(q; ) is the distribution of the
mutual overlap between any pair of states in the system. We can try and
associate such a divergence near= 1 to an abundance of states close to
each other (that is, at overlap g 1), that dominate the density P(q; ) at
zero temperature. With a hand-waving argument we might say that this
divergence implies that it is su cient to look at the states close to the initial
one in order to capture the statistical properties of the response; moreover,
we expect that the local energy landscape of a local energy minimum that is
\deep enough" should not be distinguishable from the neighborhood of the
\true" ground state (i.e. the deepest local minimum). Therefore, for these
reasons, a local minimization should lead to a jump distribution that is not
far from the true, \static" one.
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Consequences on elastic moduli

Systems compressed at or above jamming attain mechanical stability due to
the extended network of contacts that form between particles (seg Chapter|1,
[Figure 1.7). Consequently, they acquire some rigidity in the sense that above
jamming they develop a nite resistance to deformations, namely nite bulk
and shear moduli The bulk modulus K is a measures the resistance of the
system to compressions and it is de ned a¥ = Vg—\'j, V being the volume
and P the pressure; the shear moduluss is the susceptibility with respect to

a shear strain, G = % A question that arises naturally is whether such
dense amorphous systems display mechanical properties similar to those of
crystalline solids. There are undoubtedly major di erences between them;
among the main ones is that in three dimensions the latter display a Debye
distribution of soft (low energy) modes D(!) ! 2 (! being the modes'
frequency), whereas the former have an excess of low-energy excitations that
gives rise to a so-calledboson peakwhen the system is close to jamming
[Wyart et al., 2005; Van Hecke, 2009| Liu and Nagel, 2010; Charbonneau
et al, 2016] (seg Figure 3]1). The excess soft modes are due to the marginal
nature of the jamming point. This marginality is twofold: rst, the mean- eld
theory predicts that in the whole surrounding Gardner phase there exists of
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Figure 3.1: Density of statesD (! ) for systems at di erent packing fractions
(far away from jamming on the left, and closer to jamming on the right).
From [O'Hern et al.| 2003].

a continuous hierarchy of states and energy levels separated by small energy
barriers. Then, close to jamming there are even further soft modes due to the
isostaticity of the packing [Franz et al., 2015], because tweaking a contact in
the isostatic (and therefore barely stable) network leads to a very low-energy
rearrangement.

3.1 Stress-strain curves

Nonetheless, the response of amorphous systems to an imposed quasi-static
shear strain shares some characteristics with ordered matter. Ip Figure 32 we
plot the stress-strain curve (dark blue curve), which shows the dependence
of the shear stress ( ) on the applied shear strain , increased quasi-
statically; the curve has been computed averaging 200 di erent samples with
256 harmonic spheres, quasi-statically sheared up to an accumulated strain
max = 0:5 with steps = 10 4. This average response is qualitatively
similar to that of crystals: initially they respond elastically and the shear
stress () increases linearly with the applied strain, but at some point
(called the yielding point or yielding transition [Lin et al.| 2014; |Dubey
et al., 2016]), that for this system is found approximately at 0:01, the
response saturates and the shear stress becomes stationary. In ordered solids
the phenomenology behind this behavior is due to the rearrangement of
the dislocations in the medium, that after the yielding becomes \plastic"
(i.e. irreversible) and cause the crystal to break. This, however, is not the
complete description of the response of athermal amorphous systems; in
the red curve is the stress-strain curve for a single sample: it has
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Figure 3.2: Average stress-strain curve for a system of 256 soft spheres
(average over 200 samples); the shaded area shows the associated sample-to-
sample variance, and superimposed is also shown the stress-strain curve of
typical sample. After the yielding, the system is in the so-calledelasto-plastic
phase, because the continuous response is piecewise linear and punctuated
with intermittent plastic drops in the shear stress that are, on average, larger
than the avalanches found in the linear, elastic regime. Notice that the jumps
shown in[Figure 2.8 are computed up to an accumulated strain = 0:01 and
therefore correspond to the elastic region in this picture.

nothing to do with its average! It seems then that the average response of
the system is not su cient to characterize the properties of each curve, and
previous works already studied whether it is even meaningful to apply the
elastic theory to the average behavior of these singular systems ([Hentschel
et al., [2011;| Dubey et al., 2016; Biroli and Urbani, 2015]). Each point along
the curve ( n ) corresponds to a di erent quasi-static step with a small
strain , and the discontinuities are the irreversible stress avalanches that
we have been studying. If we consider a point at a speci ¢ shear strain, the
point () along the random curve is a random variable whose statistics is
given by the avalanche distribution P( = ( ) (0) j ), with (0) being
the initial shear stress found at zero shear strain. Therefore, the expectation
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value of the curve at that point h( )i can be written as
h( )i=h@)i+h ji=h ji; (3.1)

where we have kept into account the fact that the sample average of the
initial stress (0) is zero (as found numerically) and we have de ned the
average 7

() ji d PC j)fC) (3.2)

Strictly speaking is valid only in the theoretical framework, where the
state found at a given strain = n is the true unique ground state and is
thus independent of the number of stepan used to reach it. In the numerical
quasi-static simulations we never nd the true minimum of the total energy,
and therefore we expect the state at = n  to depend on the numbern
and on the size  of the steps. However, in the following we assume that if

and are su ciently small then we can neglect this dependence, at least
in a statistical sense | i.e. in computing the average in (3.1)

The curve|(3.1) is a perfectly regular functions, and as such it can be expanded
in a power series with respect to the strain around zero:

. 1 1
h( )i Gat > 2G‘a;z"‘ 3 3Ga;3 (3.3)
The coe cient G, is called the (linear) shear modulus, and all the higher
order terms G2, Ga3 and so on are the nonlinear shear moduli. The
\a" stands for \annealed", since this expansion is for the sample-averaged

stress-strain curve. These moduli are de ned as
Gam = @ h( )i :Oz@‘h jioo: (3.4)

In particular, the linear elastic modulus Ga = @h j i _, isa nite positive
quantity and it can be interpreted as the slope of the average stress-strain
curve at zero strain.

3.2 Quenched elastic moduli

On the other hand we see that the average does not tell us all the information
about the response of the system, that is actually extremely jerky and
random. We have already stated inf Chapter 2 {Numerical simulations| that
we expect the rst jumps, those in the elastic regime at small shear strains
(before yielding), to be almost independent and identically distributed | in
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particular, ( ) (©)and ( 9 ( ) are uncorrelated when °> . In
Appendix b| (equations|(b.48)1(b.51)) we have computed the moments of
their distribution and we have found that they scale with the strain step as

D E
K (3.5)

for every k-th moment (with k 6 0). This behavior is reminiscent of a
Brownian motion, where in particular the second moment scales linearly
with the time interval (here represented by ); indeed, the assumption of
independent jumps distributed according to the avalanche distribution is
equivalent to stating that the elastic portion of the stress-strain curve is
exactly a random walk with independent increments, whose distribution
is slightly more complex than the Gaussian case of the Brownian motion.
Keeping this analogy in mind, we can now try to study the \quenched"
behavior of the stress-strain curve in a single sample. A way to do that is to
de ne the linear and nonlinear shear moduli using limits of nite di erences;
for instance, we can de ne the quenched linear modulus as

Gy ) L2 O, (3.6)

for a small strain step . This is, of course, a random variable. To
characterize its distribution we can compute the average and the second
moment:

hGgi = —2—2 (3.7)
2
2= L) O . (3.8)

Using equation|(3.5) we nd the correct scaling for a small strain step

h i

’]
Gy = ——— L (3.10)
If we take the limit for I 0 we see that the rst equation tends to

limhGqi = @h( )i oy = Ga, that is the annealed linear shear modulus,
which is a nite quantity. The second equation, instead, tells us that the

second moment diverges, Gg = 1. If we recall the analogy with the

Brownian motion, this result is not unexpected: it simply means that these
random walks are not di erentiable.
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We can also study the statistics of the \quenched" nonlinear shear moduli
Ggm, with m > 1, that we can de ne as

X' m
Gam S O QLI (3.11)
n=0

We de ne the quenched moduli as higher-order nite di erences of the stress-
strain curve, in such a way that the small  limit of their average can be
easily calculated, yielding

im tGgmi = @ ()= Gam; (3.12)

that is the corresponding annealed nonlinear shear modulus. Equatio)
comes from the fact that higher order nite di erences tend to di erential
operators when the step is small [Milne-Thomson, 2000]. We can show that
the second moment of all higher moduli diverges even faster thanG?2 ; for
the purpose of proving it, let us callD™ () the m-th order nite di erence
operator that appears in{(3.11), namely

xn
D" ()= T (™M own ) (3.13)
n=0 n
notice that then Ggqm = MD™M (0). Just like for di erential operators,

this operator satis es the relationship D™*1 = DD™ = D™D?! and we can
thus write

D E D E
Ggm = " (™) * = ™ (D" DY) ° =
*1 #2+
) 1
= om Ml pmiopi(n ) 319
n=0 n
At this point we notice that D*(n )= (( n+1) ) (n ) n

is just an increment along the stress-strain curve; we put a subscripn to
mark the fact that the dierences ( +(ny+1) ) ( +n; )and
( +(nx+1) ) ( + ny )areuncorrelated whenn; 6 ny, because of
the assumption of independence of the jumps. Then, writing explicitly the
square, and separating the two contributions with identical (n, = n,) and
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distinct (n1 6 ny) increments,

2 _
Ggim . +
1
_ om X m 1 m 1 ( 1)(n1+n2) -
ni no n n
ni;ny=0
8
2y 1 2
_ om X7 m o1 2 4
na
z n1=0 nl
9
2
Xt m 1 m 1 =
+ i . ( DM ih ] iB: (3.15)
ni;n2=0 1 2 ;
n16n2

We can neglect the second sum (that withn, 6 nj) because (3.5) implies
that eachtermh ,,j ih p,j i is of order 2 while in the rst sum

each term 2j isoforder ;inthe end,
Rt m 12
G(Z]'m 1 2m 1 2m; (316)
; Ny
n1=0
this quantity diverges when ! 0. Therefore we found that the variance

of all quenched moduli diverges! Consequently, the annealed shear moduli
are not a representative measure of the physical behavior of a single sample.
This result follows directly from the fact that the stress-strain curve in the
elastic regime behaves as a random walk, and we assumed that the jumps
were independently distributed; the consequent result is then independent
of the packing fraction of the system: the same divergence should be found
either at jamming or in the surrounding marginal glass phase, where the
system is always (in in nite dimensions, at least) described by a continuous
replica symmetry breaking. Moreover, it has been proven in|[Biroli and
Urbani) 2016] that also at the Gardner transition introduced in

- [Systems of spheres and jammingvhere the system passes from a stable
glass to the marginally stable phase with full replica symmetry breaking, the
elastic response exhibits a singular behavior. At the transition they found
that the averages of the shear modulus and of all the higher nonlinear moduli
are nite; the variances, on the other hand, diverge in the thermodynamic
limit, with the sole exception of the variance of the shear modulusG, whose
uctuations are subleading.
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(b)

(©)

(d)

Figure 3.3: Behavior of the rst two moments of the shear modulusG as a
function of , for di erent system sizesN = 128; 256 512. The averages have
been performed on the jumps of di erent samples found up to a maximum
accumulated strain 0:01. (&) and (c) show the average shear modulus

(at jamming and at = 0:75, respectively), that is nite in the I 0 limit.
(b) and (d) show the sample-to-sample variance of the shear modulus (again
at jamming and at = 0:75); both diverge inthe ! 0 limit as 1 as

predicted. Log scale on the axis in both gures; log scale on the vertical
axis only in the pictures to the right.

Numerical results

The theoretical predictions that we have shown here are, strictly speaking,
only valid for in nite dimensional systems satisfying the assumption of
stationarity in the elastic regime of the stress-strain curve, namely that
consecutive jumps are independent and identically distributed. In order to
test the validity of our results, we conclude this section with a comparison
with some numerical simulations. The results are presented if Figure 3]3;
in the picture we plotted both the average and the second moment of the
guenched shear modulusGq, namely hGq4i and Gg , as a function of the
nite strain step  ; comparing how these quantities scale with the step
allows us to extrapolate the limiting behavior. The numerical results show
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that indeed the average values remain always nite even for small steps,
and that the second moments diverge as Gg Lin both phases, at
jamming and in the UNSATPhase, as predicted.

3.3 Elastic moduli under di erent scalings

However, one has to be careful when interpreting these results. In order
to properly study the elastic response of a system one should, in principle,
rst take the thermodynamic limit, computing the statistics of jumps at
a xed strain step , and only in the end take the limit I 0. This
is not what we do here; in the theoretical frbamework we need to assume
that the perturbation is small, namely that = N 1. this assumption
prevents us from taking the limit N '1  at a xed strain step . In the
previous paragraphs we have analyzed what happens when the two limits
are inverted, that is when the strain step becomes smaller and smaller while
keeping constant the ( nite) system sizeN. We can nd some further insight
by taking other (allowed) limits: in particular we have the instruments to
study the behavior of the quenclged shear moduli when bottN !'1  and
I 0 at the same time, with = N N 0. We recall that we

introduced this scaling in[Chapter 2 -[Frequency of jump$ when we studied
the probability that the system does not jump when a strain  is applied.
In particular, we found that the asymptotic behavior of the probability of
not jumping depends on two exponents, and .= % (2 1); isthe
usual exponent that governs the divergence of the Parisi functiory(q), and

is the tentative exponent that describes how this function scales with the
system sizeN (its numerical value is not known). We have then argued that
the probability of not jumping P( E =0) scales as

P( E=0) e ®™N*® (3.17)

and in particular the system always jumps (in the thermodynamic limit) if <
¢ (\strong" perturbation), it never jumps if > . (\weak" perturbation)
and it has a nite probability non not jumping when = . The UNSAT
case is somewhat marginal, since = % and . =0 lead to a logarithmic
extra term:
P( E = 0) e const; N log(const N): (3.18)

In particular, if =0 toothen P( E =0) N "t (The constants
appearing in the last equations depend on how the Parisi function scale with
respect toN and on its behavior close tog = 1). We will now assume that
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the probability of not jumping with respect to the total energy is the same
as for the shear stressP( E =0)= P( =0); this is true, because both
probabilities arise from the very same term in equation (b.28) inf Appendix h.
The reason why we have recalled the scalings of the probability that the
system does not jump is because now that N N , the averages
over jumps should take into account a possibly large probability of not
jumping; they should therefore be written as

() j i1=P(C=0 f0O+@ P (=0) H() j i=
=@ P (=0) H() j i; (319
where the expectationshf ( ) | i is the average over the positive jumps

only. We can now compute the average and second moment of the quenched
linear shear modulus. Now that we are interested in the scalings with respect
to the system sizeN we are going to de ne the \intensive modulus” gq as
the shear modulusG4 normalized by N; its rst moments are

Mggi N HGgi = H;l i =(1 P ( =0)) % (3.20)
2 2
% N ? Gj = W:(1 P ( =0) NERRE (3.21)

In order to get the right scalings with respect to N we also need to consider
the N dependance that has been neglected jn (3.6); explicitly (see equation

(b.54)), D E " k
Kj N 2 N2 (3.22)

Plugging this scaling, the pasymptotic behavior of the probability of not
jumping, and the fact that = N N  in equations|(3.21) and|(3.21) we
nd (for > 0)

1
. c N 2z c
ngl 1 e const N N i =1 e const N : (3.23)
2
2 1 e const N ¢ N ! = 1 e const N ¢ N : (3 24)
Y N1 2 : :

This means that when the applied perturbation is \strong" ( < (), then

Hyqi  1is nite and the second moment g3 N !'1 diverges. If on

the contrary the perturbation is \weak" ( > ¢),thenhggi N ¢ ! 0
and gg N ¢11 : therefore even though the system tends to jump
less and less as its size increases, the second moment of the shear modulus
diverges. The only case where the second moment is nite is for = 0

(or equivalently when N %), and then hugi gg 1. The only
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dependence on the exponent and therefore on the speci ¢ phase the system
is in (namely, whether it is at jamming or in the UNSAPhase) comes from
the exponent . = % (2 1). In the UNSAPhase this exponent becomes
particularly simple ( ¢ =0) because = %; in this phase the probability
of not jumping is described by a di erent asymptotic behavior, and the
resulting moments for the linear shear modulus are

ngi 1 e const; N Iog(constzN); (3.25)

gé 1 e consty N log(constaN) N : (3.26)

When > 0 (that means for su ciently small perturbations) we nd that
g N log(const N)! 0O and gg log(const N)!1 . When on
the other hand = 0 then huyi gg 1. All the results have been
summarized in Table[31.

With these calculations we have shown that the elastic behavior of amorphous
systems is not at all trivial in the marginal glass phase after the Gardner
transition, at jamming and in the UNSAPphase. Apart from the case where
=0 (regardless of ), the second moment of the shear modulus diverges,
and therefore its mean is not representative of a typical samples' stress-strain
curve. Of course all the scalings presented in Tablp 3|1 and derived from the
mean- eld theory should be studied numerically to see what is the extent
of their validity. It would be extremely interesting also to see whether a
nite size scaling of the response of these systems would allow the retrieval

>0 hoggi 1 Hoggi 1 hogd N ¢
gé N gg N ¢ gg N ¢
=0 hgg 1 hggi N log(cN)

o7 1 9 log(cN)

Table 3.1: Scaling behavior for the rst moments huyi | gé of the quenched
linear shear modulus, as a function of the two exponents; ., when the
system is sheared with a strain step that scales as N N . The case

¢ = 0 corresponds to the UNSAPhase where = % and the characterc is
just some constant | not necessarily equal in the two cases.
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of the exponent ., and thus of the exponent that describes how the
Edwards-Anderson parametergea scales withN, 1 gea N . Of course,
one should compare all these results with the elastic response of system where
the relevant limits have been taken in the proper order, namelyN ! 1 rst
and then ! O.
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Reconstruction of the order parameter

Athermal mean- eld disordered systems that can are described by a replica
symmetry breaking ansatz are characterized by a functional order parameter,
that is the Parisi function y(g). In the previous chapters we have shown
how this function governs the distribution of quasi-static avalanches at zero
temperature induced by a class of perturbations, and in particular we have
argued that if it diverges algebraically near g = 1, then the avalanche
distribution develops a power-law behavior. This is for instance the case of
in nite-dimensional dense systems of soft particles, either at jamming or in
the denserUNSAPhase. The fact that the mean- eld predictions are in good
agreement with the nite-dimensional numerical simulations is not a general
feature and it might be a peculiar property of these speci ¢ systems, that, as
already suggested in previous works, seem to be mean- eld-like even in low
dimensions | at least at jamming. Scope of this chapter is to introduce a
way to de ne and measure the functiony(q) in numerical simulations, for an
arbitrary system. Inverting the problem that we have treated in the previous
sections, we will argue that it is possible to de ne the Parisi function via the
avalanche distribution associated with a new perturbation. It is not clear to
us, for the moment, whether this quantity might be meaningful for systems
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that are not described within the replica symmetry breaking framework;
nonetheless, this approach can be applied to any system, and the resulting
tentative function y(qg) might give some insights on the disordered nature of
the energy landscape. In particular, we expect the result to be valid for dense
systems of spheres, and an interesting application would be, for instance, to
compute how the functional order parameter evolves as a function of the
accumulated shear strain in a quasi-static perturbation; in particular, we
would like to nd the exponent  with which the Parisi function diverges

near g =1, for a system at or after the yielding point, that in FFigure 3.2]is
located approximately at 0:02.

4.1 Mean- eld framework
The zero-temperature Parisi function y(q) is de ned as
z
q
lim dgP(q; ); 4.1)
n 0

where P(q; ) is the distribution of overlaps g between pairs of states: clearly,
in systems with an exponentially large number of states we cannot even
attempt at computing such a distribution by a direct enumeration of the
energy minima. Furthermore, in nite-dimensional systems there are other
complications that hinder the search for the states, such as the existence
of many metastable statesthat do not exist in the mean- eld counterpart.

In principle, we can perturb a system in such a way that its response is
described by the distribution of avalanches that we have already found; as
we have shown, from such a distribution it is then possible to measure the
exponent that appears in the asymptotic behavior of the Parisi function
closetog=1, namely yg) (1 q) I Inorderto do so, the perturbation
and the associated conjugate variable have to abide by the rules listed in
[Chapter 2 -[Mean- eld analytical computation} for instance, the conjugate
variables have to be Gaussian distributed and independent from the energies
of the states. A problem then arises when, for a generic system, it is not
easy to nd such a perturbation. Another issue is due to the fact that the
distribution of avalanches found in does not allow for a complete
reconstruction of the full order parameter y(q), but only of its exponent
(and only when the perturbation is small enough).

In [Franz and Parisi, 2000] the authors have found analytically the distribu-
tion of athermal, quasi-static avalanches in systems described by the replica
symmetry breaking ansatz and subject to a perturbation that acts as arepul-
sion with respect to the the ground state if the ground state con guration
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Figure 4.1: Representation of the perturbation on the ultrametric tree of
the states of a system described by a replica symmetry breaking ansatz with
k levels | as described in Chapter 1]- [Replica symmetry breakingand in
[Appendix a|, [Appendix bl The leftmost leaf represents the ground state,
at overlap g = 1 with itself, whose perturbed energy isUgs+ , Ugs being
its unperturbed energy. Each state in the rst cluster (marked by the
dashed lines) has overlapy with the ground state, and its energy is thus
shifted by qx, which is smaller than . The same holds for all the other
clusters of states at a given overlap: for instance, in the next clusters, where
all the states lie at overlap gk 1, all the energies are shifted bygx 1. The
terms fy;g are the discretization of the Parisi function y(qg) used to de ne
the cascade of Poisson point processes for the distribution of the states, as

in [Appendix a|

is sy, the unperturbed energy H(s) of a con guration s is shifted by a term
proportional to the overlap q(s; sy) betweens and s;:

H(s)'H (s)+ a(s;so): (4.2)

This is a repulsion from the ground state, because the perturbation is
maximum when q(s; sg) = 1, which happens at s = s;: therefore, the ground
state is lifted by ; all the other states, lying at a smaller overlap, are shifted
by a smaller quantity (a graphical representation on the ultrametric tree
is shown in[Figure 4.1). To study the avalanches one has to nd the new
ground state when 6 0: equivalently, one has to nd the state  such that
the total energy E U + g is minimal. With a calculation entirely based
on elementary probabilistic methods, and assuming an ultrametric structure
of states described by a functional order parametery(q), the authors have
computed the probability distribution P( Ej ) for the di erence of total
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energy E between the new and unperturbed ground states. Its formula

P( Ej)=

= =1 e Wy _E_y y e (), @3
R

where (Q) qdq y(0). Let Ugs bet the energy of the unperturbed ground
state, UO that of the perturbed one, and let g be the overlap between them.
Since Ugs is the ground-state energy, it is smaller than the energy of all the
other states, and in particular Ugs < U . On the other hand, U+ g is, by

de nition, the total energy of the new ground state, and it is therefore smaller

than the total energy of all the other states: therefore, U0 + <Ugs+ 1.

These two inequalities imply that

0
0<qg< Ugst @) (Ugs*0 1) E . 1; (4.4)

where E UO + g Ugs is the total energy di erence between the two
ground states. The bound state that— is a quantity similar to an
overlap (between 0 and 1), and therefore there is no problem if it appears as
an argument of the functionsy(q) and (q) in The expression of the
distribution simpli es a little if we de ne a scaling variable w = —E:

Pwj)= (w=1)e WD+ (w<yw)e ™) (4.5)

Notice some vague similarity with the avalanche distribution found in |(2.5)
the delta contribution corresponds to the probability that the system
does not jumpto a new ground state when the perturbation is turned on;
the second term is the derivative of an exponential that depends on the
functional order parameter y(q). Fr?__gn (4.5)|it is then possible to derive the
cumulative distribution R(wj ) va dwP(wj) |1 * inthe extreme of
integration stands to remind that we are integrating over the Dirac delta

in w = 1 too. This function corresponds to the function R in and its
form is particularly simple:

Rwj)=e M (4.6)

Notice that this is the inverse cumulative function (that is, the probabil-

that the variable is larger than w) mdeed ROj)=1 R1 j)

D dwPwj)=e ®andR(@*j) ; dwP(wj)=0]|the dierence

1For the sake of clarity, we are using again the notation (A = B) (A B)and
(A<B) (B A).
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between the latter quantities being whether we include or not of the delta
function in the integration.

Equation |(4.6)| allows us to infer the Parisi function, either from the cumula-
tive distribution of avalanches R (wj ) or from the probability distribution
P (wj ); recalling the de nition of (w) we have that

Z w
day(@= = logR(Wj ); (.7)
1 2y _ 1 P(q)
y(@= -@log dwP(wj )= -Rz7————! (4.8)
q dw P (wj )

q
R

Of course, the functionsy(q) and " dqy(q) in equations|(4.7) and[(4.8] do

not depend on the value of the coupling , even though the distributions

P(wj ) and R(wj ) surely do.

4.2 Numerical simulations

The numerical simulation of this perturbation is not entirely straightforward,
because computing the overlap between a given con guration and the unper-
turbed ground state is neither easy nor fast. In principle we would like to use
the formula introduced in Chapter 1| - [Replica symmetry breakingy namely

X
qshsH=N ' W(s sfj (4.9)
ihj =1

where s'2 are two con gurations of N particles, and W (r) is a window
function with W(0) = 1 and such that it vanishes when the argument
is large enough. This de nition allows for a proper comparison between
two con gurations and, most importantly, is di erentiable | if it were not

di erentiable, it would be much more di cult to minimize the total energy
[(4.2) Since its computation is quite slow, we tried using the fact that the
overlap q between two con gurations is approximately equalto1 2 e ?

( 2 being the mean squared displacementwhenq 1 and 2 0; the
computation of the mean squared displacement is much faster, therefore we
used the following perturbation:

H() 'H (s)+ e “(%0); (4.10)

We then went on with the usual athermal quasi-static protocol, according
to which the system is rst initialized in its unperturbed ground state s,
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Figure 4.2: First numerical simulations for systems ofN = 1024 harmonic
spheres at di erent packing fractions, with a coupling =10 3. We plot

llog[1 R (1 ¢q)] q' . The packing fractions and tentative power-
law exponents are:(a) =0:65 =0:71;(b) =0:65 0:6, with an
accumulated shear =0:01, reached with steps =10 4. (c) =0:75 =
0:5;(d) =0:90, =0:5.

and then system's energy is minimized with a nite perturbation with > 0,

thus nding the new ground state.

The results of the simulations are presented iff Figure 4J2, where we plot the
quantity

CZ. #
1 . 1 ! .
—logll R (1 g)]= -log 1 dwP(wj )
n l q
L Z # Z
—log 1 const dw y(w) const dw y(w)
1q 1gq

qt : (4.11)

The rst approximation comes from (4.8)/for q 1, since the denominator
tends to e @; the second one is valid for small (we developed the
logarithm in powers of , and kept the rst term only). This quantity
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therefore is a measure of the integraIR11+q dw y(w), or, alternatively, of the
exponent . Even with a low accuracy (due to the fact that, especially in the
jammed UNSAPhase, we need many more samples, since big jumps are rare
at small ), we manage to nd some agreement between the numerical results
and the theoretical (mean- eld) value of the exponent found in previous
works, namely 0:71 at jamming and = % at larger packing fractions.
We nd it also remarkable that systems at jamming, at an accumulated
shear strain = 0:01 | reached by small quasi-static steps with =10 ¢

| also display a power-law behavior in their response, with an exponent that
is de nitely di erent (it is approximately 0:6). In the plots the power
law does not continue down tog =1 | as it should. This could be ascribed

to two di erent reasons (that have yet to be tested): one is a nite-size
e ect due to the coupling (in [4.11)|we took the limit ! 0); the other is
the fact that the delta peak in g=1 in the cumulative distribution R(qj )
is numerically smoothed out, and therefore the power-law behavior is only
approximate in that region.

Unfortunately, the perturbation (4.10) |[does not induce the desired behavior:
this is becauseq e ° only when the mean squared displacement is small;
the perturbation that we introduced destabilizes the initial ground state, and
the dynamics tends to reach a con guration that has low intrinsic energy and
that is furthest from it (that is, it tries maximizing the Euclidean distance
between the two con gurations).E] The main problem lies in the fact that
the proper overlap de nition (4.9) fis invariant under a permutation of the
spheres (keeping all the positions xed): if we compare a con gurations;

is a permutation | then we nd an overlap q(s;;s,) = 1. On the contrary,
the mean squared displacement ifi (4.10) is not invariant under shu ing of
the particles' labels, because it is computed as the sum of squared distances
between corresponding particles in the two con gurations: if two particles
i and j are exchanged in one of the two, the Euclidean distance changes.
The di erence between the dynamics induced by (4.10) and by (4.2) can be
understood with a one-dimensional example (sefe Figure 4.3). The rst row
in the picture shows the initial ground state of a dense packing (the red dots
represent the position of the particles): in one dimension this is a regular

2Moreover, we simulate the spheres in a unit box with periodic boundary conditions,
and this results in a discontinuity at the borders of the box (it is possible to avoid this
issue by adding a cut-o to the term e 2, such that it decays to zero su ciently fast
when 2 increases).
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lattice. The former dynamics would simply translate the system, in such a
way to minimize the extra term e * and therefore maximizing the mean
squared displacement 2 with the initial con guration (the energy term
H(s) is already minimized, because the initial con guration is the ground
state). Conversely, the true dynamics does not allow such behavior.
Let us assume that the initial con guration is sy and thats sy+ s isa
shifted con guration, where each particle is translated by the same amount
Si  s; then, the overlap q(s; sp) is a periodic function of the displacement
s, with period the particles' diameter. The periodicity comes from the fact
that the overlap does not depend on the speci ¢ order of the patrticles: it
simply measures the amount ofsimilarity between the two packings; when
the displacement is equal to a particle's diameter, the two con gurations end
up being identical, apart from a relabeling of the particles' indices.

Figure 4.3: Repulsion from the ground state in one dimension. The red curve
is a representation of the overlapg between the initial ground state and an
identical con guration that is shifted horizontally, with a window function
W(r)= 3+ itanh(K(a r)); we have choserK =10=R and ap = 0:3R,
R being the spheres' radius. Red dots represent the initial ground state |
drawn in the rst row. Each of the lower rows show the new ground state
(yellow dots), for di erent values of the coupling =10 2;1;10% 10*. The
system is at a packing fraction =1:17.
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In the red curve represent the overlapy(s; sy) as a function of the
displacement s, for a speci c choice of the window function W (r). Each
row corresponds to a di erent value of the coupling (that increases from
the top to the bottom), and the yellow dots are the positions of the particles
in the perturbed ground state, that can be compared easily with the initial
positions, marked with the red dots. In all the di erent samples, one of the
particles (the third one, in the picture) has been quenched: this way it is
simpler to observe how a con guration evolves with di erent perturbations.
When is small (as in the second row, where = 10 2), the system barely
moves, because the harmonic repulsion between neighboring spheres is much
stronger; as is increased the particles nd new equilibrium positions. When
the perturbation is strong enough to overcome the harmonic contact forces,
the particles tend to \fall" into the basins de ned by the potential q(s;sp),
that are the valleys of the red curve in the picture.

Figure 4.4: Repulsion from the ground state in two dimensions. Even
though The overlap | not shown here | is still a periodic function, the
particles can move in a higher dimensional space that allows for more complex
displacements. The gray circles are the initial con guration, and the orange
ones are the new ground state when the coupling is= 102. On the right
we show the displacement eld between the two con gurations; of course,
the quenched particles did not move. The system is at a packing fraction
=1:17.
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Figure 4.5: Repulsion from the ground state in three dimensions. The blue
and red spheres are the initial con guration and the perturbed ground state,
respectively. On the right, we show the displacement eld, where the arrow
size is proportional to the magnitude of the displacement.

Of course the one-dimensional example does not capture the complete nature
of the jammed packings, since it is ordered. In Figure 4}4 and Figure 4]5 we
present a comparison between the initial and the perturbed ground states
in two- and three-dimensional systems, and we also draw the displacement
eld between the two con gurations. In order to compute reliably the
overlap between two con gurations, we followed the prescription presented
in [Karmakar and Parisi| 2013] according to which about 9% of the particles
are quenched in space | in the two-dimensional example shown i Figure 4.4
it is easy to spot the frozen particles: they are those that did not move. The
main reason to quench some particles is that otherwise the system would
be invariant to translations and rotations (and not only to a relabeling of
the particles' indices). Therefore, two con gurations s; and s, linked by a
combination of such transformations should be regarded as identical, and in
particular their overlap should be q(s;;s,) = 1. The overlap though, is
not invariant, as can be deduced from the red curve ifj Figure 4]3. However,
quenching some particles solves this issue, because it breaks the rotational
and translational invariance of the system.
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We still do not have enough statistics from the results of the numerical
simulations for the repulsion from the ground state with quenched particles
and the correct de nition of the overlap In any case, we expect to
recover results similar to those presented irj Figure 4]2 | perhaps with
some improvements. What strikes the most in the previous simulations,
where there is evidence suggesting that the perturbation did not perform as
expected, is that we still managed to recover the exponents predicted by the
(mean- eld) theory of in nite-dimensional spheres. A possible justi cation
would be that the Parisi function y(q) is strictly related to the distribution of
the states at overlapq with respect to the ground state (actually, with respect
to any state), and in the systems that we studied we already know that
this function diverges nearq = 1. This suggests that there is a humongous
number of states that are close to the initial minimum, and we might expect
that numerical simulations nd the closest \acceptable minimum", whatever
(non-pathological) perturbation is applied. It seems reasonable then that the
distribution of such a minimum is somehow in uenced by the function y(q)
in a much more general setting, and when the applied perturbation is weak
we can expect to be able to see some trace of its divergence.
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Conclusions

In this thesis we have re-examined the problem of avalanches in glassy
disordered systems described within the framework of replica symmetry
breaking. We have computed the avalanche distribution for systems perturbed
by a class of perturbations that includes, for instance, the spin glass (the
Sherrington-Kirkpatrick model) in a magnetic eld and dense systems of soft
spheres under a shear strain. We have shown how such a distribution, within
the hypothesis on the external forces, depends on the speci ¢ system only
through the functional order parameter that describes the replica symmetry
breaking, namely the Parisi function y(q). In particular, systems of soft
spheres at jamming and in theUNSAPhase (at larger packing fractions) are
characterized by di erent functions y(q), and in both phases they diverge at
g=1lasy(q (1 q ,withdierentexponents ; this divergence turns
out to be governing the response of the system to a small quasi-static external
driving, and for this reason the corresponding avalanche distribution develops
a power-law behavior, that is therefore described by two di erent exponents
according to the packing fraction of the system. We have then compared the
in nite-dimensional predictions with three-dimensional numerical simulations
of harmonic soft spheres. Rather interestingly we have found that the results
are in agreement with the mean- eld predictions, that is that the response
displays a power-law region when the external perturbation is su ciently
small and that such a power law has di erent exponents when the system
is at jamming or in the denser phase, where the exponent is remarkably
constant. As a consequence of the properties of the avalanche distribution we
have also shown that the elastic properties of these granular systems (in the
linear regime) are critical at jamming and in the UNSAPhase, in the sense
that all the elastic moduli have a divergent variance, and thus the average
behavior of a sample is not, in general, the typical one.

The last chapter of this thesis has been devoted to the discussion of our
ongoing work, where we argue that it is possible to compute the Parisi
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function y(q) by measuring the avalanche statistics induced by a specic
perturbation that acts as a repulsion of the states from the ground state.
Ideally we would like to use this approach to compute how the Parisi function
evolves when we increase the accumulated shear strain in a sheared system:
in this way we could nd, for instance, what is its exponent at the yielding
point, or even after that, in the so-called elasto-plastic phase, where the
response of the system becomes stationary. This would allow us to compare
our results on the avalanches with all the works that have been published
in the eld, for example [Maloney and Lemaitre, |2004;|Fiocco et al.| 2013;
Aevalo and Ciamarra, 2014} |Regev et all [ 2015} Lin et al.] 2015; Puosi et &l.,
2016;| Leishangthem et al.| 2016; Jaiswal et al,, 2016].
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Derrida-Ruelle cascades

In this appendix we describe the picture of the ergodicity breaking that
emerges from the solution of mean- eld disordered models described by
replica symmetry breaking. At su ciently low temperature the Gibbs mea-
sure of these systems is split in sample-dependent ergodic components, known
as pure states To describe the organization of the states in the phase-space
we rst introduce the notion of overlap q(st; s?) between two con gurations
st; s?: this is a co-distance that measures the similarity between two con gu-
rations; its absolute value is normalized between 1 and O (for identical and
maximally di erent con gurations, respectively). Di erent de nitions are
used for di erent systems: for instance, for a spin glass withN spins (e.g. the
Sherrington-Kirkpatrick model) i can be de ned as qsh;s?)= N 1st g%
for N spheres,q(st;s?) = N 1 i'?'jzl W (js! s?j), where st is the posi-
tion of the i-th particle in the two con gurations and W (r) is a window
function that vanishes whenr is larger than some threshold and such that
w(0) = 1. The speci c choice is irrelevant for what follows, since proper
de nitions are equivalent [Parisi, |1998;| Franz et al},| 1999 Parisi and Ricci-
Tersengh|,|2000; Parigi, 2002]. Then, after de ning the overlap between
con gurations, we de ne the overlap between two states ; as the av-
erage of the overlap between con gurations belonging to the two states,
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P
d =  gps22 W(SY )w(s? )q(sh;s?); here w(s; ) is the Boltzmann

weight Z lexp( H(s;J)) at inverse temperature , and we consider a
con guration s belonging to a state if it lies in its basin (or, operatively, if
a zero temperature steepest descent dynamics brings the con guration to
the minimum of the basin, called the state'sinherent structure). A good
choice as order parameter for replica symmetry breaking turns out to be
the sample-averag%d probability distribution of the overlap between pairs
of states,P(q; )= . w ()w () (g g )|[Mezard et al., 2008], where

w ()= Pe:—F is the Boltzmann weight of the state , and fF g are

the states' Eee energies; equivalently, we can consider tharisi function
x(q; )= gqu(q; ). The free energiesf F g of the states are in full
generality the sum of an extensive, sample-independent parfy, a subleading
sample-dependent partFy (that is the same for each state in a given sample)
and an O(N ©) state-dependent termf . The latter are random variables
whose distribution is almost universal, in the sense that it depends on the
speci ¢ system only through its Parisi function x (qg; ), and it can be de ned

as the suitable limit of a hierarchical sequence of Poisson point processes.
The induced probability distribution for the normalized weights fw ( )g

is then called Derrida-Ruelle cascade[Mezard and Virasoro| 1985;|Mezard

et al., [1985,/1984b| 2008, 1984¢; Ruelle, 1887; Aizenman et al., 2006; Arduin,
2007].

Before introducing the hierarchical construction, we will brie y describe the
continuous Poisson point processes, restricted to the scope of our interest, with
the aim of xing a clear notation. The Poisson point process [Streit,|2010] is a

an event is then de ned as the object = (ffq;:::;fhg;n)  (fq;:::;fa;n),
where the n points ff;g are considered unordered. The probability distribu-
tion P( ) of a Poisson point process is parametrized by aintensity function

(f) de ned on the same space that the pointsf f;g belong to, i.e. the reals.
Then, the distribution of any event is decomposed into the product of the
probability of the number n of points (that is a Poisson variable), and the
conditional probability of those points:

1 z n R
Pn(n)= = Rdf (f) e r9 0 (a.1)
o i o ()
L]N( 1,100 fajn) (a.2)

_ Rdf (f)
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variance RR df (f), and P¢jn (f1;:::;fnjn) is a product of conditionally
independent distributions for the value of each point. One simple calculation
that will be useful in the next appendix is to compute the distribution of the
minimum value f generated by a Poisson point process; this is the probability
that some point has valuef and that all the other points have larger values,

namely]

X ¥n
Pmin(f) E (f i) (f;>f)=
i i6i
X 1X 2
=e o (f) dfj (fj) =
n>oh' i jsii f
R 1
X fl df® () ” i gro (f9
= (f)e n 1) = (fe 1 © (a4)
n>1

Notice that RR df Pmin(f)=1 e < 1if < 1, because with probability
e there are no points. On the other hand, there is no problem in de ning a
Poisson point process with = 1 : this simply means that on average there
is an in nite number of points in each realization of the process, scattered
all over the space R); indeed, this happens for the distributions of free
energies in systems with replica symmetry breaking, since they have an
in nite number of states. Keep in mind that if = 1 then the integrals
in should be regularized in order to be nite and one can take
the suitable limits after performing the calculations, for instance in[(a.4).
Formally, thingan be done by substituting (f ) with a truncated ~(f ; ¢), such
that ~(c) rdf 7(f;c)is nite when c< 1 ,andlimeg; ~(f;c)= (f),
but the speci c calculations need not be performed.

We are also going to need a straightforward generalization of Poisson point
processes, namelymarked Poisson point processes, that are de ned by
associating a random object (i.e. amark, or random labels) to each point

I Throughout this book, for the sake of clarity, we use the notaton (A>B ) (A B)
and (A<B) (B A), () being the step function.
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of the underlying process. Let d ( ) be a probability density de ned on R,

(f); then, we mark this realization with n -distributed points

e Y
=7 () () @6
i=1
. R R : : .
Noting that = df (f)= .dfd (f) () ( isanormalized distri-
bution), it is easy to observe that this marked Poisson point process is just a
Poisson point process de ned on the Cartesian producR? of the pairs (f; ),
with intensity function ~(f; ) (f) () (this is the essence of themarking
theorem). We can nd the distribution of the \minimum™ of such a marked
process, too, provided we de ne an order for the pairsf(1; 1) < (f2; 2)
according tof; 1<f> 2 (anticipating that the f's are going to be
the free energies and the 's the stresses of the states, with being a shear

strain). Thanks to the marking theorem, we need not redo the calculations:

Pmin(f; 1) P minl(f; )]
= ~(f; )e redf’ O L% < (%O

o

) ()e Rdede 0 (f0 O« ) (9 (9. @.7)

This is the distribution of the free energy f and stress of the point (f; )
that minimizes the \total energy" f

We will now describe the hierarchical structure of the states and the distri-
bution of their free energies and stresses. The free energies can be generated
via a stochastic branching process starting from a root reference node. It is
usually described considering rst a tree of nite depth k, and then taking

the suitable limit for k! 1 : the process is fully characterized by R + 1
parameters q < < Qk+1; X1 < < X g that can be thought of as

a step-wise function x (q; ) = v; in (G;g+1); the function y(q; ) is the
Parisi function x (qg; ), and in the limit k!1 it becomes continuous. For
the systems that we are dealing with, the function x (q; ) is known from
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previous analytical works [Kurchan et al.,|2012, 2013; Charbonneau et al.,
2014a; Franz et al., 201], and is de ned as the solution to a variational
problem; for large inverse temperature , x (q; ) y(g)+ O( 1) where
y(q) is the zero-temperature limit of x (qg; ), which will be needed later to
study the zero-temperature distribution of the states.

Figure a.1: A realization of the cascade of Poisson point processes folka= 2
tree; three generic states; ; are explicitly shown.

In order to describe the branching process, we start with an example of a

system with k = 2 levels of replica symmetry breaking, as in Figure a.l. We
start from a reference free energy»: f» in principle might be absorbed in

the subextensive, sample dependent part of the free enerdy , but we prefer

to keep it here as a reminder that all this distribution concerns the states of
a single sample. The rst level of the tree is extracted from a Poisson point
process with intensity function

W(F)  a(fat f)  exaf o). (a.8)

and it de nes the M1 branchesf! fq;:::;fm,; M1 . Keep in mind that
this function is such that 1 i df 1(f) = 1 : indeed, the expected
number of nodes generated at each step is in nite. Then, for each node

another Poisson point process with intensity
of)  of 1 f) ex2(f T (2.9)

This branch is made of the nodes f ,.1;:::;f ..m i;M ., Jjoining all the
sub-branches corresponding to di erent nodes ; at the rst level, we have
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generated the free energie$f |, ,g f f g of all the states. We can also
associate each overlag to the i-th level, as shown in the gure: then, the
overlap between two states (i.e. leaves) is simply the valug at the level

of the closest common ancestor node; for instance, for the states; in
[Figure al,qg =g = aqandqg = g, while the self-overlaps are all
identical to g = gz (g3 Oea is known as the Edwards-Anderson order

parameter in spin glasses, and at zero temperature it becomes 1). At this
point the ultrametric structure is manifest: it states that for any choice
of the statesf ; ; g, the two smallest overlaps between them are equal;
alternatively, one can say that the triangle with sidesfq ;q ;g gis always
isosceles.

The general process for a tree withk levels is a straightforward iteration of
the Poisson point process for alk levels; for each node ; i 1 atthe i-th
level, with free energyf its sub-branch is a realization of a Poisson
point process with intensity

103 JRRNTCA N S BN LR GRS (a.10)

i 17

We label theM , | , elements of the realization 1 i 1 (with ;=
1;:::;M ). Inthe end, i.e. after generating all the nodes k, the
free-energies of the statesf g f f |, |, g are generated as the leaves of
the tree.

In the literature [Mezard et al.,|1985] Mezard and Parisi,| 2001] Mezard
et al., |2008] this ultrametric tree is often generated via a dierent pro-
cess. Starting from a nodef, = 0 (in order to simplify the notation),

identically distributed, with probability P f = x e*t(f fo) f. f |
wheref. is a cuto. In the end the true distribution is found in the limit
fc!ll ;M 1!1 ; Me Xifel const The two approaches are equiva-
lent [Ruelle, |[1987]. After de ning the distribution of all the free energies
ff g, we can write down the distribution for the corresponding normalized
Boltzmann weights, w = %; for a k =1 RSB system, the resulting

distribution is a Poisson-Dirichlet process, and the generalization for anyk
is called Derrida-Ruelle probability cascade. In the literature (e.g. in [Ruelle,
1987; Panchenko and Talagrand, 2007]) it is possible to nd a more detailed
study of the properties of such processes; notice that often it is customary
to change variables, from free-energy-like variable$ to x = € .

When we apply a small perturbation to a system, we are introducing an
additional term in the energy. If we shear a system of spheres, the free
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energy of a single state is shifted ag ! f , Where is the shear
strain and  is an intrinsic state-dependent shear stress. The situation for a
magnetic system (e.g. the Sherrington-Kirkpatrick model) in a magnetic eld

is similar: the magnetic eld plays the role of the shear and the magnetizations
correspond to the stresses. Both the Sherrington-Kirkpatrick model and the
systems of spheres share the property that these conjugate variables (the
stresses and magnetizations) are uncorrelated [Yoshino and Mezard, 2010]
with the energy, and it can be shown [Mezard and Virasoro, 1985] that they
are correlated Gaussian variables, the correlation between two di erent states
being related to their mutual overlap only. It is possible to generate the
stresses with the followingdi usion process on the same ultrametric tree
generated by the previous branching proceds (a.B)-(a.10): we start from some
reference stress -, related to the sample | just like for the free energy; then,
the stress , , of each node ; i in the tree is Gaussian distributed
with average the stress , , , of its parent node and variance proportional
tog g 1;its distribution is thus

( 1 i 1 i 1)2

e 2N (gi 9 1)
P
2N (4 g 1)

Again, we continue the process until we reach the states, located on the
leaves of the tree. Notice that, since we are attaching a random variable (the
stress) to each point of a realization of some Poisson point process, we can
also think that the process of all the energies and stressdd ; g in the
states is a cascade of marked Poisson point processes.

(a.11)

1 iJ 1 il:

In the end we, we are interested in systems with full replica symmetry
breaking; to study the structure of their states we have to take the continuous
limit k!1 . Without loss of generality we can setg = i q, such that in
the limit k!'1 wehaveqg! O,kq! 1,and x; x(g)! x(q; ).
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Distribution of athermal avalanches

In this Appendix we show how to compute the exact distribution of static
avalanches, via an approach based entirely on elementary probabilistic meth-
ods. Our goal is to study the static avalanches in systems of spheres under
shear strain, and therefore we are going to consider only systems whose struc-
ture is given by the Derrida-Ruelle construction presented inAppendix &,
namely systems with replica symmetry breaking whose response to the
external perturbation is described by Gaussian distributed conjugate vari-
ables (that in the case of spheres are the states' stresses and, for instance,
in the Sherrington-Kirkpatrick model in a magnetic eld are the states'
magnetizations).

Suppose that the system is in its unperturbed ground state. When the
perturbation is turned on and set to some small value , we expect the

structure of the states not to change a lot, in the sense that there are no
minima that disappear and that no new minimum is created; the only e ect

of such a perturbation is to shift the energies by some random amount.
For spheres under a shear strain , the total free energies of the states are
F , with F and being the free energy and stress distributed
according to the processes described a. In particular the free
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energiesf F g of a system ofN spheres are the sum of some higher order
terms (that in the thermodynamic limit tend to the extensive contribution

to the free energy of the system and are the same for all the states) and
O(1) terms ff g that are in general di erent for each state. In this appendix
we want to study the distribution of the instantaneous ground state as a
function of the external eld ; when comparing the total energy of two
states we are only concerned with theirenergy di erence: for this reason, we
are going to keep only the termsff g, sinceF F =f f when the
two states ;  belong to the same sample In order to %thher simplify the
notation, we are going to rescale the stresses as N , so that the
stresses' variance is independent of the system size; tlbe dependenceMrcan
then be absorbed into the shear strain , calling ~ N . Keep in mind
that, in general, we might want to scale with N in the thermodynamic
limit, and di erent scalings will give rise to di erent behaviors (see

- [Asymptotic behavior - Frequency of jumps.

The goal of this Appendix is to compute the probability distribution of

the new ground state, that is the state that minimizes the total energy
e u ~ among all the possible states§ being the energy of the
state, i.e. the zero-temperature free energy ), that are random realizations
of the process described ifi AppendixJa, taken at ! 1  and thus governed
by the Parisi function x (q; )! y(q). The object that we are interested
in is the joint probability distribution Pumin( u; ;qj~) that the perturbed

ground state (at a shear~) has energyugs+ u and stress gs+ , relative
to the unperturbed ground state with energy and stressugs; gs, and that
the overlap between the two ground states igg. We would like to compute
this distribution as an average over the possible states that minimize the

total energyft

X
Pmin( U, ;qj~)=E (U =ugs+ u) ( = gst )
Y
(d; gs= 0) u ~ >u ~ ) (b1
6

In this formula q. 4s stands for the overlap between the state and the
unperturbed ground state \gs'. The expectation is taken over the whole
ultrametric tree, marked with the stresses' Gaussian process, conditional on
the unperturbed ground state. The computation of this distribution is not
straightforward when we want to deal with the case of arbitrary number k

IHere we are using the following notations: (A = B) (A B)and (A>B)
(A B).
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of RSB levels, but it is nonetheless possible to perform the calculations by
exploiting the ultrametric, tree-like structure of the states.

Introducing clusters and their joint probability

Even though in the end we want to describe systems with a continuous replica
symmetry breaking, it is easier to deal with a nite number k of levels of
replica symmetry breaking, and to take only in the end the limit k' 1 . The
structure of the states is then completely described by a discretized Parisi
function y(qg), de ned by the discrete points ou;:::;0k+1 andy; y(g). We

states at overlap g with the unperturbed ground state; by de nition, the
cluster Gi+1 contains only the ground state, becauseay+; is the overlap of a
state with itself, atfor !'1 ;k!1 we will have, in the end, gk+1 ! 1.

Figure b.1: A portion of an ultrametric tree for a k-RSBsystem. The
dashed boxes enclose th€ and G 1 clusters; the cluster Gi+1 contains the
unperturbed ground state only. The minima in each cluster are also shown,
and the corresponding states can be tracked along the tree following the
thick lines.

In it is shown a portion of an ultrametric tree with k levels, with
the rst clusters explicitly shown. The original, unperturbed ground state
has been put arbitrarily to the left of the picture: it is the only node in the
rst cluster, Gc+1. Each cluster G can be easily visualized as the set of nodes
whose closest common ancestor nodeli( ;) with the ground state lies at
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overlap g. In this way, we can climb the ultrametric tree starting from the
ground state, and for each ancestor node there will be an associated cluster
spawning from it. The idea to compute the distribution (b.1)|is to, rst, nd

the conditional distribution of the minima inside each cluster. namely, the
energies and stressefu;; g, such thatu; ~ ; is the minimum total energy
found among the nodes inG, conditional on the ancestor node (; ;) of
the whole cluster, at the scaleg. In for instance, the conditional
ancestor nodes for the clustersl and G; ; are the ones marked with (y; «)
and (ux 1; k 1), respectively. Let us call these conditional distributions for
each cluster's minimump;(ui; iju;; i;~). Introducing these quantities, we
are e ectively integrating out all the nodes that are not minima inside their
clusters, and in the end we are left with thefactor graph shown in[Figure b.2,
where there is a single node per cluster, and a backbone of the tree that
can be thought of as the thick lines in[Figure b.]1. We call it a factor graph
because, when integrated over the intermediate (ancestor) nodefa;; g, it
represents the joint distribution Pgster [fU; gj ~] of the minima in all the
clusters. Indeed:

z" KL #
Peuster [fU; _gj~Uz; »]= duid
i=2
" #" #
YK Kl _
Tilluis i)Y (Uisns i)l pi(ui; ijui; i;~) ;5 (b.2)
i=1 i=1
Notice that the the rst product starts from i =2, because the ancestor node

(u1; 1) is the reference root node of the tree (see Appendix|a): it depends
on the speci c sample, but it is not, in principle, Poisson distributed. In the

following, when it will be important to distinguish this term from the other
ancestor variables over which we are integrating, we will call its variables
u, and - for the sake of clarity. Of course, this means that the whole
probability distribution Pguster depends on such variables, and this is why
we have written the explicit dependence inPgster [fU; _Qj~ U2 2]

The functions ~; that appear in are the intensity functions that com-
pletely de ne the marked Poisson point processes for the branching at each
level. The intensity 7 [(ui; i) ! (uj+1; i+1)] can also be interpreted as
exactly the probability that, among the points of the Poisson point process,
there is at least one branch going from the ancestor nodeu(; ;) to the
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Figure b.2: The tree after the integration of the states that are not minima

of any cluster, leaving only the relevant branches (thick ones i
left); this tree can be thought of as the factor graph of the joint probability

Pcuster [fU; _gj~] of the minima in each cluster.

ancestor node (lj+1; j+1):

TilCuis i)t (Ui i+1)] i(Ui! uiv) (0! )=
(i 0)?

= eyi(Ui+1 ui) e " : (b 3)

(Without loss of generality, we have choseng+1 G g for all levels;

compare this formula with |(a.10){(a.11)).

Distribution of the minimum in a cluster

Let us assume that all the backbone in[ Figure b.2 has been generated,
sampling from the product of the distributions 7 in At this point
we have to nd an expression for the distributions p;, conditional on the
ancestor nodes in the backbone. The probability of the minimum insideG+1

is trivial, since such a cluster contains only one state:

Pe+1 (Uis Uiy ;=)= (Ui ) (i ) (b.4)

In Figure b.TI]we see that the clusters are somehow self-similar, in the sense
that a cluster G is the union of several (in nite, actually) subclusters that
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are statistically equivalent to the cluster G.1 E]

Figure b.3: The initial (near ) part of cluster G. The rst level generated
from the associated Poisson point process with intensity function ; is the set
of nodesf g, and from each node there is a subcluster that is statistically
equivalent to the cluster G.1 .

Let us consider the clusterG, shown in some detail in[Figure b.3, sprouting
from the backbone of the factor graph. The rst level of its descendent nodes,
called f g in what follows, has been generated with a Poisson point process
with intensity function ~[(ui; i)! (u ; )]. The subclusters rooted in
each node are statistically equivalent to the cluster G.1, since the cor-
responding cascades of Poisson point processes have the same intensities
at each level. For this reason we can proceed recursively, the main idea
being that the minimum of G has to be the minimum of one of the smaller
subclusters equivalent toG., . Given the distribution p;j+; of the minimum

in G+1, we can write

Zstrictly speaking, the statistical equivalence only holds if the average number of
branches sprouting from a node is in nite, which is the case here since du (u)= 1 |
see[ Appendix g. If the number of child nodes were nite, than one would need be more
careful, because one of the branches of the clusteiG belongs to the backbone in[Figure b.J]

and in
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W
pi (u; jui; is~=fu s gM)= paa (U ju ;o)
v Z l
dud %pizs u® Gu; ;~ W ~%u ~ : (b5)
=1
6
The meaning of this formula is that we are looking for the probability that
(u; ) is the minimum of a subcluster rooted in some node (this is what pj+1
is there for), with the constraint that the minimum in any other subcluster
has larger total energy. The distribution is conditional on the realization
(fu ; g;M) of the rst Poisson point process spawned from (i;; i) (M
stands for the number of points in the set). Next, we take the expectation
over such a marked branching process:

pi (U; jui; ;) Eru . ogm Ri(u juis ii=fu s giM): (b.6)
Using equation[(a.3) we can easily show that equatiofi (b.5) can be cast as
pi (s jui i;"')Z: i (s juis i57)
exp dud °p u® Yui; i;~ W0 ~O%u ~ ; (b7
where
B (U, Juis 37) =
duiszd iez Ti[(Uis )1 (Uisas ie)] Pisa (U jUiszs iea): (D.8)

Compare these formulae with (a.7) in[Appendix a: the distribution of the
minimum in the cluster has the same form, but in this case the corresponding
intensity function, instead of being = = ; i, is the average of™; weighted
with pj+1 .

Luckily, this recursion on the distributions fp;pg can be solved exactly,
because the functions; are simple exponentials and Gaussian distributions.
The following results can be proven by induction starting from px+1 (de ned

piui; ijuis ;)=
= Di(ui; ijui; i5~) exp ;i_eyi(“i R N (X)
|
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and

Bi(uis ijui; 7)) =, 2 4
. U u Gi i) PIVEE
=cexp Vi(ui ui) 2k+1 i) q fi( i i) 1 (b.10)
Py _
Where we have dened yi Vi Vi 1,fi <52 i, and
Yi+1l
Gi+1 Yi+1 Yi+1
C . b.11
o Yi+1 Yi+1 ( )

with ¢« 1. In the computation we have neglected quadratic terms in
~2, because we are only interested in the leading behavior for smat. We
have written the value of the constants ¢ for completeness, but in the end
they will not be relevant). Notice that all these functions depend only on
up U i (since this property was shared by all the processes involved).

From clusters’ minima to global ground states

Once we have the joint probability for the minima in all the clusters we
can compute the distribution of the jumps in all the relevant observables
between the unperturbed ground state and the perturbed one. We can

rewrite equation |(b.1)|as
Pmm(zu; JqjimUz; 2) =
= dUgsdugsd gsd gspgs(ugs; gs;k"'l; Ugs; gs;jj"’; us; »2)
(Us Ugs= U) (& gs= )i (b.12)

In this formula we are integrating over all possible energies and stresses of the
unperturbed ground state (ugs and ¢s) and of the perturbed one (ugS and 83)
with a constraint on their di erences. We want to nd also the distribution

of the overlap between the two states. In order to do so, we recall that the
unperturbed minimum has been put arbitrarily and without loss of generality
inthe rst cluster Gc+1 | this is just a labeling of the leaves of the ultrametric
tree; constraining the new ground state to lie in the clusterC; is equivalent
to demand that the overlap between the two minima is the corresponding
overlap scaleg (see). Pgs(Ugs; gs K + 1; ugs; 8S;jj~; Ur; »)is
then the joint probability that among all the states of the system, the
minimum at ~= 0 is found in the cluster G., and takes the values (igs; gs).
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and that the minimum at ~> 0 is found in the cluster G, with energy ugs

and stress 85; explicitly, it can be written as

Pgs(ugs; ?;k"'l; Ugs; gsijj"';u?; 2)=

= dup dugs1d 1 d g1 Peuster [fU;_gj~uz; 2]

(Uk+1 = Ugs) ( k1 = gs) (Uj = ugs) (j= 85)
i i
(Ui > ugs) (U ~i> Ugs - 85): (b.13)
Ji=l i=1
i6k+1 i8]

In this equation we have integrated out all the clusters’ minima, constrained
in such a way that the minima in G+1 and G assume the desired values; the
last products are the conditions for the two states being global minima, at
di erent values of the perturbation ~: the rst asserts that the unperturbed
ground state has the lowest internal energyugs; the second asserts that at~
the total energy Uy, ~ Js is minimum.

Plugging this formula into the former one and integrating the delta functions
when possible we nd

Pmin ( U ;gjj=uUz; 2) =

= dup dugs1d 1 d ka1 Peuster [fU;_gj~uz; 2]

(U U+ = u) ( k+l = )
K K
(Ui >Uks1) (U ~i>uj ~j) (b.14)
6K Hy

We can simplify this expression a little by changing integration variables,
writing each variable relatively to the unperturbed ground state in G :
U ' Uk + U, ! k+1 T i. Of course the variablesug:+; and
k+1 are not shifted, but we introduce nonetheless the variables ug+; and
k+1; in this way, the set of all energies and stressebu; g can be written
asfugsr + _U; k1 + 0. Atthis point we use equation|(b.2)|to show that
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Peuster [fUk+1 + _U; k+1 + __gj~U2; 2] =

Z "\k #
= dup dugsrd 2 d ke Til(ui; i)Y (Uisr; ien)]
., i=1 "
K1
Pi(Uks1 + Ui ks + Ui i) =
i=1
Z
= duz dugsrd 2 d e T1(uz u2; 2 2)
" #
YK
Ti(Uis1 Ui e i) Pi(Uk+1 + UL U2; ket + 1 2)
i=2 " #
1
Pi(Uk+1 + Ui Ui k1t i §) =
i=2
Z
= doy  dOgsr d dM%qi1 T1(02 0 U F Uk N2 2+ k)
" #
K
TS0 0N+ N) pa( ur Us FUksr; 1 2t ke1)
i=2 ., "
K
pi( w0 ) =
i=2

= Pouster [f_U; ___gj~jU>  Uk+1; 2 k+1]: (b.15)

(At rst, we have shown the dependence of ™1 and p; on the root variables
u»; -, and we have explicitly shown the fact that all the functions depend on
the variables' di erences; then, we have shifted all the integration variables).
In practice equation says that we can set the ground state energy and

stress to zero by shifting the root energy and stress, which will turn out to
be irrelevant for the scope of our calculations.
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Performing the change of variablesu; ! ug+1 + Ui, ! ka1 + i, Intro-
ducing ( uk+1)and (  k+1), and using equation|(b.15), the distribution
(b.14)| becomes

Z
Pmin( U; ;qjj~u2; 2)= d up d urd 1 d g
Z
dug+1 d k+1 Pouster [f_U;_ gj~U2  Uks1; 2 k+1 ]
( uUk+r) (k1) (o u) ( )
Kl Kl
( u>0) (uy ~ > u ~ ) (b.16)
i=1 i=1
i6Kk+1 i6]

That, in the end, can be written as
P min ( U ;djj~) =

= du duerd 1 doker (Ukez) (0 ke1)
(Y u) ) (u ~ > u ~ )

P custer [f_U;__ 0gj~]; (b.17)

where we have de ned

Peluster [f__U; ng ~]

duk+1 d k+1 Pewster [f_ U5 9j~ Uks1;  k+1] (0.18)

Deriving equation we have proven what was already fairly intuitive; it
roughly says that the new ground state is the minimum among all the clusters'
minima. Notice that the distribution (p.17) #oes no longer depend on the
root variables u,; -, that vanish when integrating over Uyx+1; k+1 in
since in[(b.15]) they only appeared in the di erencesu,  Ux+1; 2 k+1-
In we have not written any of the functions ( u; > 0) that appeared
in this is because, to lighten the notation, from now on we are going
to assume that the variablesf u;g are always positive | they are indeed
the energy gapsabovethe unperturbed ground state.

Computation of the cluster probability

We can now computePguster [f__U;  gj ~] explicitly, starting from (b.2) and
(b.18); in the following computation we rename the integration variables
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Uk+1; k+1 1O Ugs; gs, t0 avoid confusion with the other indices:

Z Z
Peuster [f_U;__gj~]= dugsd gs dup dugsad 2 du
" #" #
YK Kl
iU Ui e i) i Ui ui; i)
i=2 i=2

T(uz+ Ugs; 2+ gg)P1( ULt Ugs;, 1+ gs): (0.19)

We can write explicitly px+1 as a product of two delta functions, as in[ (b.4).

If we rename ugs ! up and gs! 1, we can absorb the corresponding
terms inside the previous products of™'s and p's:
Z
Peuster [f_U; __gj~] = dup  dugs1d 1 d ke
" #" #
Y YK
Ti(Uier Ui e ) piC Ui Ui i i)
i=1 i=1

( Uk+1 Uksr) ( k+1 k1) (b.20)

Keeping in mind that our goal is to compute equation|(b.17), where everything
is multiplied by the two delta functions ( uk+1) ( k+1), we can simplify
(b.20)| and set those variables to O; then we can integrate also the term

( U1 Uks1) (k2 k1) = (0 Ukaa) (O ke1), Whose only
e ect is to set to O the variables ux+1; k+1 that appear in the intensity ~y:
Z
Peuster [f_U;__gj~] = dup  dugd 1 d g
" #" #

& YK
Ti(Uisr Ui e i) pi( uo u; i i) @ (b.21)

i=1 i=1

(The terms ug+1; k+1 inside  are both 0 and are kept just for ease of
notation).

It is easier to deal with this integral if we manage to decouple energies and
stresses. To achieve this we will split each functior into its exponential,
energy dependent intensity ; and its Gaussian, stress dependent component

, as in[(b.3). The functions fp;g can also be decomposed; frof (b.p) we
can de ne

pi(u; )= i) ()t iu ~ ) (b-22)
where ; is the usual exponential intensity, ;( ) is a zero-mean Gaussian
distribution with variance (k+1 i) g 1 g (in the large k limit), and
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h [
i(xX) = ¢ exp )C/—iieyiX . Consequently, the joint probability for the clusters'
minima becomes

Peuster [f W __0j ;;]"/ 4
Z ¥ A
/ d (ien e 0T D50 5 )
n #L,:l i=1 #
R Yo
dui i(Uier ) (Ui W) i ui u o~ it~ )
i=1 i=1
(b.23)
and, writing explicitly the exponential intensities ;:
Z "\k #
Peluster [f _U; __gj~]/ DX efiC i 0 i( i i)
i=1
Z
& Ui duje @i Vi Vu it u U ~ i+~ ) (b.24)

i=1
R
where we haye introduced a shosthand for the Gaussian integration, Dk
RYQ

:(:1 d !(:1 (i+1 i) , and we have denedyp, 0. Now the

integrals containing the functions ; can be evaluated exactly, yielding
#

Peluster [f _U; _gj~]/ e i Y1) u
i=1 4
Dk i( e ~2yi yi 1+fi)( i)y
i=1

" #
YK
/ e i yi1) u
i=1 4

DX i i it~Qyi vyi 1+ fi)(k+1 i) g @ (b.25)

Letuscallz; (2y; Vi 1+ fi)(k+1 i) q; plugging in the de nition of

fi|(b.9)} we have that

S

zp=(k+1 i)yi vi1) g+ g Vyi (1 qg) vi+tY(qg); (b.26)
j=i

R
where we have de nedY (q) ql dofy(c® (we recall that  yi = vyi Vi 1,
Yo 0). This formula of course is valid for largek.
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Therefore the normalized joint distribution is

z

VK
u;_gi-]= DX yie Y uo( i+~i): (b.27)
i=1

I:)cluster [f

Avalanche distribution for the total energy

After computing Pguster We want to go on with the calculation of the distribu-
tion Pmin of nding the new ground state at overlap g with the unperturbed

one, and with a di erence in energy and stress equal to u and , respec-
tively. We can now integrate [(b.17), nding

Pmin( U} ;qij~)
. 2

K1 °
4 d Ujd j ( uj ~ = u - )5
j=1;]6i
( Uk+1) ( k+1)Pouster [f_u;_ gj~]=
Z K
= e+ (W) () DX j0; +A ) (u o~ <0
j=1
z YK
DX yie ViU i( +-Zj) jiCu ~ ) (b.28)

i=1;j6i

where jx+1 is the Kronecker delta. Notice that contrary to (b.17)|we have

not written the delta functions xing u; = uand j = . this is
implicitly done when we skip the integration over u;; j in|(b.28)| The
auxiliary functions i(s; ) are de ned as (after neglecting O(~?) terms)
i(S; i)
é 1 Z,
d u d (u ~ >s) yie "%, +~7i)=
0 1
o P——  ssj~+ ; sign(0)+ j4Y
+p ST SOV IHYG) s signt) Y (@)l
1 g
(b.29)
We de ne the function Hx) as the complementary error function
Z, ,
H(x) }erfc px—, pd;e 7 (b.30)
2 2 1 2
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It is important that these functions ; essentially do not depend on the sign
of the perturbation ~. The only terms where the sigp of~ (sign(~)) appears
are those that multiply i, but since the integral DX is invariant if we
invert the signs of all the f ;g we can absorbsign(~) and regard the ; as
even functions of the perturbation.

From this object we can extract the distributions of jumps in the total energy;,

as the distribution of e u ~ ; this distribution is
P( g~)
5(*121 Z,
d u d (u ~ €) Pmin( U;  ;0ij~)
izt O 1
z LK Z LXK
(e D i(0; )+ (e<0) D iC e )
Zl Zl i=1 i j=1;j6i
d u d (u -~ e vie U (i +-Zj):
0 1

(b.31)

Since the last integral is exactly @ i( €; i) we can write the distribution
of the jump e between the new ground state and the unperturbed one as

P( &~) ( &R@O~) ( e<0)@R( €); (b.32)

The function R is de ned as

Z Y
.~ . k . . .
R( €-~) kl!llm D | (e )
k g 1 i=1
z X q P esidt i+iY(a)
im DX 1)~ g yY4) 1 g~ p—

[ 19
(b.33)

The last expression is found setting v yAq) qin the functions
and then expanding them for small g. We have also de ned ~(x)

2) Ze % + x Hx). We want to stress that the whole probability distribu-
tion does not depend on the sign of the shear strain- (this property
is inherited from the functions ; through R); for this reason, in general
there will be a cusp at~= 0. Since we are interested in the casg~j 1
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(andj € O (j~j) or smaller) we can write

R( (ej~)=
. . X p_“© .

=im 1j~5 g yYg) 1 g D¥ ~
i 7 o

exp j~ dgyg) 1 q

esji~j+ i+ Y(q)
Pl q
—J,,J+J~JY(q)
T ¢

(b.34)

The function (x) is the average of~(x) over the Gaussian process introduced
n (b.24)

Z
(x) dk di1 (k) (k 1) (ist i)

; *X+91i7q (i i) (2 1)=
= dyx di (kW (k «1) (i+1 i)~X+Pli77q=

2

Z i 7 2
e 2@ a) e 7
= d = d — ~(x+ ): (b.35
.972(1 ) P—q %2 ~ ). (b.35)

The last equality is due to the integration over k +1 i Gaussians with the
same variance q, resultlﬁg in aGaussmn with variance k+1 i) g 1 g.
Since@ (x)=(2 ) 2 d e 2 @~(x + ) and @~(x) = HXx) one can
show that (x) = 2(4 ) ze i + xH p% (see [Ng and Geller, 1969],
paragraph 4.3, equation (13)).

Asymptotic behavior

We have computed the distribution of total energy jumps when a small shear
strain ~ is applied to the system. The probability of not jumping (i.e. the
probability that the original ground state is still the global minimum in the
total energy landscape) is given by

. . - P—— 5
P( e=0j~)=R(Oj~) exp |~ dg¥9 1 q Py

(b.36)

and since the function (x) is positive and increasing and s (@ JY(Z) is positive
for any q,

z
: o P_——
P( e=0j~)<exp j~ (0 dagya 1 q : (b.37)
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This implies that whenever the exponent in the right hand side diverges, the
systemalways jumps For a more detailed discussion on the probability of
not jumping, seelAsymptotic behaviorin [Chapter 2|

When the function y(q) diverges as(1 q) nearq=1 (with %), the
jump distribution becomes critical. The probability of a jump is

P( §~)= @,d9R( D)= @clogR( €~) R( g~); (b.38)

and
z e=i~j + j~ Y (9
@clogR( €-)= dgy(q) ° p‘lq
Z
e
d O _p -  : (b.39
Ly dafa ° prr o (039)

This integral is dominated by the divergence inq = 1 of the function
yYq)" T q; the convergence is guaranteed by

0 pd =ZﬁdFe22H b P H p=—p—
I q 2 -1 q 2i~ 1 q

(b.40)
The last equality can be proven using formula (13) in|[Ng and Geller| 1969],
paragraph 4.3. This term is exponentially small whenq 1 because e<0
andHx)! Oasx!1 . Asj e=j gets smaller, the integrand develops
an increasing peak close taqq = 1; the leading behavior in e= can be
extracted as follows:

z o
. €]
@eclogR( €-~) da(l g H PTijpjliq
2 £ o 2
d 2 H p= — : (b4Y
~ je=~j 2 ~

Then, upon integration we nd the asymptotic behavior of R( €j~) and,
nally, of the whole distribution

P( g~)= @eclogR( €~) R( €-)

8 2 o 2 +1
3 exp const j~ —2 C>
2

NI

2 +const j~j e 1+const j~j

NI

(b.42)
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The distribution is di erent in the two cases = % and > % because in the
former the integration of logR( €~) gives rise to logarithmic corrections,
that in the end result in a linear contribution O(~) in the power-law exponent
2 1. Thanks to this correction, the power-law is integrable near
e=0. For > % the distribution is integrable in the origin as well, because

1
the exponential term suppresses the divergent power whep ¢ j ~j*"z 1.

We have thus proven that the distribution of jumps in the total energy e <0
. . 2 .1+ 1 . .
is a power lawP( e~) = whenj~z 1 j o j 4§ 1

In th% main text we have written these last formulae with the substitution
~1 N

Distribution of other observables

Starting from it is possible to compute the leading behavior of the
distribution of the jumps in the stress , in the energy u and in the
overlap g. We cannot compute these quantities exactly, but we can write
the Taylor expansion for small ~; in general the Taylor expansion will not
be valid for small jumps. For instance, Taylor expa2r1ding the distribution

(b.42)| (say, for > %), we ndthat P( €~) = , yielding the correct

power law exponent, but losing the information regarding the lower cuto .
This happens because in the point e = 0 the distribution has an essential
singularity and it is not analytic.

Working only with the probability density of nite jumps (that is, neglecting
the delta contribution of not jumping) in (b.28),|and for small ~, we can
write

PCu sa)= (u_~ < 0o
DX (q 1 QR(u ~; f g: (b43)

Integrating out the energy and the stress, and keeping only the rst order in
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~, we nd the leading behavior of the distribution of stress jumps:

y y z,
P( )= dgyla) D* (4 ;1 Q) dx R(x;f @)
y

~( ) dgya ( ;201 o)

- Zd 1 1p T _

() q( Q; pﬁ—

1
=~ () ?  del P o~ 2. (b4d)

With a similar reasoning we nd the distribution of the energy jumps  u:

z z z,
P( uy= dqylq DX dx (x+ q u=~1 QR(x;f g)
z z A
dgyX9 D¥_  dx (x+ ¢ u=~1 @)=
z Z, 0 z !
= dgyo Jodx (o u=2 ) da y{a)H P
u2ét p_ u 2
= — dtt 'H t) — : (b.45)
T -

Finally, the leading behavior of the distribution of overlaps between the
unperturbed ground state and the new one is

yA Z, Z,
P( u)=y%g D* d (q ;1 g dxR(x;f @)

2, o
vy 4 (20 )=y =9 (b.a6)

We can also compute the order of the moments | with respect to ~ | of
the jumps in all the observables. Starting from the formula|(b.28) we can
easily write (for n > 0)

z  z
hj ¢"i=~"* DX dgy{q)

Z, Z g

d (g ;1 0 dx ( X)"R(x;f g); (b.47)
0
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h "=~ DY dgqylo)
Z, Zy
d " (q 1 Q) dxR(x ;f g); (b.48)
0
z 4
fi=~ DX  dgylod"
d (q 710 dxR(x;f g): (b.49)

Recalling equation|(b.33), we see that in the end

hji ¢"i O (-"*1); (b.50)
h " O (~); (b.51)
i O (~): (b.52)
We can also writepthe moments of the observables with the correct factors
N, i.e. with ~= N, u= U (the extensive term does not contribute to
the jump), =N 2 and e= u ~ = U = E:
D E k+1
j Ej* O (Nz Ky (b.53)
D E k+1
K O (NN=z ) (b.54)
D E p_
d O ( N): (b.55)
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