L. Novotny and B. Hecht, Principles of nano-optics, 2012.

K. Lieberman, S. Harush, A. Lewis, and R. Kopelman, A light source smaller than the optical wavelength, Science, vol.247, p.59, 1990.

D. W. Pohl and D. Courjon, Near field optics, 2012.

D. Courjon and C. Bainier, Near field microscopy and near field optics, Rep. Prog. Phys, vol.57, p.989, 1994.

M. Ohtsu, , 2012.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi et al., Scanning near-field optical microscopy with aperture probes: Fundamentals and applications, J. Chem. Phys, vol.112, p.7761, 2000.

S. Kawata, Near-field microscope probes utilizing surface plasmon polaritons, Near-Field Optics and Surface Plasmon Polaritons, p.15, 2001.

D. Courjon, Near-field microscopy and near-field optics, 2003.

L. Novotny and S. J. Stranick, Near-field optical microscopy and spectroscopy with pointed probes, Annu. Rev. Phys. Chem, vol.57, p.303, 2006.

S. Lal, S. Link, and N. J. Halas, Nano-optics from sensing to waveguiding, Nat. Photonics, vol.1, p.641, 2007.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He et al., Langmuir-blodgett silver nanowire monolayers for molecular sensing using surface-enhanced raman spectroscopy, Nano Lett, vol.3, p.1229, 2003.

G. Schatz, M. Young, and R. Van-duyne, Surface enhanced raman scattering: physics and applications, 2006.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van-duyne, Surfaceenhanced raman spectroscopy, Annu. Rev. Anal. Chem, vol.1, p.601, 2008.

E. Le-ru and P. Etchegoin, Principles of surface-enhanced Raman spectroscopy: and related plasmonic effects, 2008.

Y. Ozaki, K. Kneipp, and R. Aroca, Frontiers of surface-enhanced Raman scattering: single nanoparticles and single cells, 2014.

H. Raether, Surface plasmons on gratings, Surface plasmons on smooth and rough surfaces and on gratings, p.91, 1988.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, nature, vol.424, p.824, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00472360

S. A. Maier, Plasmonics: fundamentals and applications, 2007.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, Nano-optics of surface plasmon polaritons, Phys. Rep, vol.408, p.131, 2005.

E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions, science, vol.311, p.189, 2006.

M. L. Brongersma and P. G. Kik, Surface plasmon nanophotonics, vol.131, 2007.

S. Kawata, Y. Inouye, and P. Verma, Plasmonics for near-field nanoimaging and superlensing, Nat. Photonics, vol.3, p.388, 2009.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White et al., Plasmonics for extreme light concentration and manipulation, Nat. Mater, vol.9, p.193, 2010.

M. L. Juan, M. Righini, and R. Quidant, Plasmon nano-optical tweezers, Nat. Photonics, vol.5, p.349, 2011.

J. Zhang and L. Zhang, Nanostructures for surface plasmons, Adv. Opt. Photonics, vol.4, p.157, 2012.

M. Kauranen and A. V. Zayats, Nonlinear plasmonics, Nat. Photonics, vol.6, p.737, 2012.

L. Novotny, Nano-optics: Optical antennas tuned to pitch, Nature, vol.455, p.887, 2008.

P. Bharadwaj, B. Deutsch, and L. Novotny, Optical antennas, Adv. Opt. Photonics, vol.1, p.438, 2009.

L. Novotny, From near-field optics to optical antennas, Phys. Today, vol.64, p.47, 2011.

L. Novotny and N. Van-hulst, Antennas for light, Nat. Photonics, vol.5, p.83, 2011.

P. Biagioni, J. Huang, and B. Hecht, Nanoantennas for visible and infrared radiation, Rep. Prog. Phys, vol.75, p.24402, 2012.

M. Agio and A. Alù, Optical antennas, 2013.

N. Engheta and R. W. Ziolkowski, Metamaterials: physics and engineering explorations, 2006.

V. M. Shalaev, Optical negative-index metamaterials, Nat. Photonics, vol.1, p.41, 2007.

N. Liu, H. Guo, L. Fu, S. Kaiser, H. Schweizer et al., Threedimensional photonic metamaterials at optical frequencies, Nat. Mater, vol.7, p.31, 2008.

W. Cai and V. Shalaev, Optical metamaterials: fundamentals and applications, 2009.

F. Capolino, Theory and phenomena of metamaterials, 2009.

T. J. Cui, D. R. Smith, R. Liu, . Metamaterials, and . Springer, , 2010.

A. Boltasseva and H. A. Atwater, Low-loss plasmonic metamaterials, Science, vol.331, p.290, 2011.

M. A. Noginov and V. A. Podolskiy, Tutorials in metamaterials, 2011.

N. Yu and F. Capasso, Flat optics with designer metasurfaces, Nat. Mater, vol.13, p.139, 2014.

K. Yao and Y. Liu, Plasmonic metamaterials, Nanotechnol. Rev, vol.3, p.177, 2014.

P. Genevet and F. Capasso, Holographic optical metasurfaces: a review of current progress, Rep. Prog. Phys, vol.78, p.24401, 2015.

J. Kaschke and M. Wegener, Optical and infrared helical metamaterials. Nanophotonics, vol.5, p.510, 2016.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade et al., Gold helix photonic metamaterial as broadband circular polarizer, Science, vol.325, p.1513, 2009.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro et al., background-free quarter-wave plate based on plasmonic metasurfaces, Nano Lett, vol.12, p.6328, 2012.

J. Lin, J. B. Mueller, Q. Wang, G. Yuan, N. Antoniou et al., Polarization-controlled tunable directional coupling of surface plasmon polaritons, Science, vol.340, p.331, 2013.

L. Du, S. S. Kou, E. Balaur, J. J. Cadusch, A. Roberts et al., Broadband chirality-coded meta-aperture for photon-spin resolving, Nature Commun, vol.6, p.10051, 2015.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. Van-hulst, /4 resonance of an optical monopole antenna probed by single molecule fluorescence, Nano Lett, vol.7, p.28, 2007.

T. Taminiau, F. Stefani, F. B. Segerink, and N. Van-hulst, Optical antennas direct single-molecule emission, Nat. Photonics, vol.2, p.234, 2008.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant et al., Unidirectional emission of a quantum dot coupled to a nanoantenna, Science, vol.329, p.930, 2010.

J. N. Farahani, D. W. Pohl, H. Eisler, and B. Hecht, Single quantum dot coupled to a scanning optical antenna: a tunable superemitter, Phys. Rev. Lett, vol.95, p.17402, 2005.

A. M. Yao and M. J. Padgett, Orbital angular momentum: origins, behavior and applications, Adv. Opt. Photonics, vol.3, p.161, 2011.

K. Y. Bliokh and A. Aiello, Goos-hänchen and imbert-fedorov beam shifts: an overview, J. Opt, vol.15, p.14001, 2013.

K. Y. Bliokh, F. Rodríguez-fortuño, F. Nori, and A. V. Zayats, Spin-orbit interactions of light, Nat. Photonics, vol.9, p.796, 2015.

A. Aiello, P. Banzer, M. Neugebauer, and G. Leuchs, From transverse angular momentum to photonic wheels, Nat. Photonics, vol.9, p.789, 2015.

F. Cardano and L. Marrucci, Spin-orbit photonics, Nat. Photonics, vol.9, p.776, 2015.

Y. Zhao, J. S. Edgar, G. D. Jeffries, D. Mcgloin, and D. T. Chiu, Spinto-orbital angular momentum conversion in a strongly focused optical beam, Phys. Rev. Lett, vol.99, p.73901, 2007.

Y. Zhao, D. Shapiro, D. Mcgloin, D. T. Chiu, and S. Marchesini, Direct observation of the transfer of orbital angular momentum to metal particles from a focused circularly polarized gaussian beam, Opt. Express, vol.17, p.23316, 2009.

G. Biener, A. Niv, V. Kleiner, and E. Hasman, Formation of helical beams by use of pancharatnam-berry phase optical elements, Opt. Lett, vol.27, p.1875, 2002.

E. Brasselet, N. Murazawa, H. Misawa, and S. Juodkazis, Optical vortices from liquid crystal droplets, Phys. Rev. Lett, vol.103, p.103903, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00505933

N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, and E. Hasman, Optical spin hall effects in plasmonic chains, Nano Lett, vol.11, p.2038, 2011.

E. Brasselet, G. Gervinskas, G. Seniutinas, and S. Juodkazis, Topological shaping of light by closed-path nanoslits, Phys. Rev. Lett, vol.111, p.19, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00880432

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, Polarization tailored light driven directional optical nanobeacon, Nano Lett, vol.14, p.2546, 2014.

M. Neugebauer, T. Bauer, A. Aiello, and P. Banzer, Measuring the transverse spin density of light, Phys. Rev. Lett, vol.114, p.63901, 2015.

M. Neugebauer, J. S. Eismann, T. Bauer, and P. Banzer, Magnetic and electric transverse spin density of spatially confined light, Phys. Rev. X, vol.8, p.21042, 2018.

A. Yang, L. Du, F. Meng, and X. Yuan, Optical transverse spin coupling through a plasmonic nanoparticle for particle-identification and fieldmapping, Nanoscale, vol.10, p.9286, 2018.

F. J. Rodríguez-fortuño, G. Marino, P. Ginzburg, D. O'connor, A. Martínez et al., Near-field interference for the unidirectional excitation of electromagnetic guided modes, Science, vol.340, p.328, 2013.

D. O'connor, P. Ginzburg, F. Rodríguez-fortuño, G. Wurtz, and A. Zay-ats, Spin-orbit coupling in surface plasmon scattering by nanostructures, Nature Commun, vol.5, p.5327, 2014.

R. Mitsch, C. Sayrin, B. Albrecht, P. Schneeweiss, and A. Rauschenbeu-tel, Quantum state-controlled directional spontaneous emission of photons into a nanophotonic waveguide, Nature Commun, vol.5, p.5713, 2014.

J. Petersen, J. Volz, and A. Rauschenbeutel, Chiral nanophotonic waveguide interface based on spin-orbit interaction of light, Science, vol.346, p.67, 2014.

I. Söllner, S. Mahmoodian, S. L. Hansen, L. Midolo, A. Javadi et al., Deterministic photon-emitter coupling in chiral photonic circuits, Nat. Nanotechnol, vol.10, p.775, 2015.

B. Le-feber, N. Rotenberg, and L. Kuipers, Nanophotonic control of circular dipole emission, Nature Commun, vol.6, p.6695, 2015.

M. Wang, H. Zhang, T. Kovalevich, R. Salut, M. Kim et al., Magnetic spin-orbit interaction of light, Light Sci. Appl, vol.7, p.24, 2018.

V. I. Arnold, Mathematical methods of classical mechanics, vol.60, 2013.

R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman lectures on physics, 1963.

L. Allen, S. B. Padgett, and M. , Optical angular momentum, 2003.

L. Allen, M. W. Beijersbergen, R. Spreeuw, and J. Woerdman, Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes, Phys. Rev. A, vol.45, p.8185, 1992.

X. Ling, X. Zhou, K. Huang, Y. Liu, C. Qiu et al., Recent advances in the spin hall effect of light, Rep. Prog. Phys, vol.80, p.66401, 2017.

J. D. Jackson, Classical electrodynamics, 1999.

S. Van-enk and G. Nienhuis, Eigenfunction description of laser beams and orbital angular momentum of light, Opt. Commun, vol.94, p.147, 1992.

S. Huard, Polarization of light, 1997.

A. B. Constantine, Antenna theory: analysis and design, 2005.

T. Grosjean, I. Ibrahim, M. Suarez, G. Burr, M. Mivelle et al., Full vectorial imaging of electromagnetic light at subwavelength scale, Opt. Express, vol.18, p.5809, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00481451

A. Y. Bekshaev, K. Y. Bliokh, and F. Nori, Transverse spin and momentum in two-wave interference, Phys. Rev. X, vol.5, p.11039, 2015.

K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, Extraordinary momentum and spin in evanescent waves, Nature Commun, vol.5, p.3300, 2014.

K. Y. Bliokh, D. Smirnova, and F. Nori, Quantum spin hall effect of light, Science, vol.348, p.1448, 2015.

K. Y. Bliokh and F. Nori, Transverse and longitudinal angular momenta of light, Phys. Rep, vol.592, p.1, 2015.

F. Kalhor, T. Thundat, and Z. Jacob, Universal spin-momentum locked optical forces, Appl. Phys. Lett, vol.108, p.61102, 2016.

T. Van-mechelen and Z. Jacob, Universal spin-momentum locking of evanescent waves, Optica, vol.3, p.118, 2016.

M. Padgett, Light's twist, Proc. R. Soc. A, vol.470, p.2172, 2014.

M. Padgett, J. Courtial, and L. Allen, Light's orbital angular momentum, Phys. Today, vol.57, p.35, 2004.

L. Allen, M. Padgett, and M. Babiker, The orbital angular momentum of light, Progress in optics:IV, vol.39, p.291, 1999.

K. Y. Bliokh, J. Dressel, and F. Nori, Conservation of the spin and orbital angular momenta in electromagnetism, New J. Phys, vol.16, p.93037, 2014.

M. V. Berry, The adiabatic phase and pancharatnam's phase for polarized light, J. Mod. Opt, vol.34, p.1401, 1987.

M. Berry, Classical adiabatic angles and quantal adiabatic phase, J. Phys. A, vol.18, p.15, 1985.

K. Y. Bliokh, Y. Gorodetski, V. Kleiner, and E. Hasman, Coriolis effect in optics: unified geometric phase and spin-hall effect, Phys. Rev. Lett, vol.101, p.30404, 2008.

K. Y. Bliokh, A. Niv, V. Kleiner, and E. Hasman, Geometrodynamics of spinning light, Nat. Photonics, vol.2, p.748, 2008.

A. Y. Bekshaev, Spin-orbit interaction of light and diffraction of polarized beams, J. Opt, vol.19, p.85602, 2017.

R. Chiao and Y. Wu, Manifestations of berry's topological phase for the photon, Phys. Rev. Lett, vol.57, p.933, 1986.

A. Tomita and R. Y. Chiao, Observation of berry's topological phase by use of an optical fiber, Phys. Rev. Lett, vol.57, p.937, 1986.

K. Y. Bliokh and Y. P. Bliokh, Topological spin transport of photons: the optical magnus effect and berry phase, Phys. Lett. A, vol.333, p.181, 2004.

K. Y. Bliokh, Geometrodynamics of polarized light: Berry phase and spin hall effect in a gradient-index medium, J. Opt. A: Pure Appl. Opt, vol.11, p.94009, 2009.

O. Hosten and P. Kwiat, Observation of the spin hall effect of light via weak measurements, Science, vol.319, p.787, 2008.

Y. Gorodetski, K. Bliokh, B. Stein, C. Genet, N. Shitrit et al., Weak measurements of light chirality with a plasmonic slit, Phys. Rev. Lett, vol.109, p.13901, 2012.

A. Aiello and J. Woerdman, Role of beam propagation in goos-hänchen and imbert-fedorov shifts, Opt. Lett, vol.33, p.1437, 2008.

K. Y. Bliokh and Y. P. Bliokh, Conservation of angular momentum, transverse shift, and spin hall effect in reflection and refraction of an electromagnetic wave packet, Phys. Rev. Lett, vol.96, issue.7, p.73903, 2006.

K. Y. Bliokh, E. A. Ostrovskaya, M. A. Alonso, O. G. Rodríguez-herrera, D. Lara et al., Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems, Opt. Express, vol.19, p.26132, 2011.

M. Mansuripur, A. R. Zakharian, and E. M. Wright, Spin and orbital angular momenta of light reflected from a cone, Phys. Rev. A, vol.84, p.33813, 2011.

Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, Space-variant pancharatnam-berry phase optical elements with computer-generated subwavelength gratings, Opt. Lett, vol.27, p.1141, 2002.

D. Lin, P. Fan, E. Hasman, and M. L. Brongersma, Dielectric gradient metasurface optical elements, Science, vol.345, p.298, 2014.

Y. Lefier, R. Salut, M. Suarez, and T. Grosjean, Directing nanoscale optical flows by coupling photon spin to plasmon extrinsic angular momentum, Nano Lett, vol.18, p.38, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02134470

L. Marrucci, C. Manzo, and D. Paparo, Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media, Phys. Rev. Lett, vol.96, p.163905, 2006.

N. Shitrit, I. Yulevich, E. Maguid, D. Ozeri, D. Veksler et al., Spin-optical metamaterial route to spin-controlled photonics, Science, vol.340, p.724, 2013.

X. Ling, X. Zhou, X. Yi, W. Shu, Y. Liu et al., Giant photonic spin hall effect in momentum space in a structured metamaterial with spatially varying birefringence, Light Sci. Appl, vol.4, p.290, 2015.

Y. Liu, X. Ling, X. Yi, X. Zhou, S. Chen et al., Photonic spin hall effect in dielectric metasurfaces with rotational symmetry breaking, Opt. Lett, vol.40, p.756, 2015.

Y. Lefier and T. Grosjean, Unidirectional sub-diffraction waveguiding based on optical spin-orbit coupling in subwavelength plasmonic waveguides, Opt. Lett, vol.40, p.2890, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02134461

F. J. Rodríguez-fortuño, G. Marino, P. Ginzburg, D. O'connor, A. Martínez et al., Near-field interference for the unidirectional excitation of electromagnetic guided modes, Science, vol.340, p.328, 2013.

L. Marrucci, Quantum optics: Spin gives direction, Nat. Phys, vol.11, p.9, 2015.

J. Petersen, J. Volz, and A. Rauschenbeutel, Chiral nanophotonic waveguide interface based on spin-orbit interaction of light, Science, vol.346, p.67, 2014.

R. Coles, D. Price, J. Dixon, B. Royall, E. Clarke et al., Chirality of nanophotonic waveguide with embedded quantum emitter for unidirectional spin transfer, Nature Commun, vol.7, p.11183, 2016.

S. Lee, I. Lee, J. Park, S. Oh, W. Lee et al., Role of magnetic induction currents in nanoslit excitation of surface plasmon polaritons, Phys. Rev. Lett, vol.108, p.213907, 2012.

F. J. Rodríguez-fortuño, I. Barber-sanz, D. Puerto, A. Griol, and A. Martínez, Resolving light handedness with an on-chip silicon microdisk, ACS Photonics, vol.1, p.762, 2014.

J. B. Mueller and F. Capasso, Asymmetric surface plasmon polariton emission by a dipole emitter near a metal surface, Phys. Rev. B, vol.88, p.121410, 2013.

S. Wang and C. Chan, Lateral optical force on chiral particles near a surface, Nature Commun, vol.5, p.4307, 2014.

F. J. Rodríguez-fortuño, N. Engheta, A. Martínez, and A. V. Zayats, Lateral forces on circularly polarizable particles near a surface, Nature Commun, vol.6, p.8799, 2015.

L. Liu, S. Kheifets, V. Ginis, . Di, A. Donato et al., Measuring the spin-dependent lateral force in evanescent fields, CLEO: QELS_Fundamental Science, pp.3-6, 2018.

A. Hayat, J. B. Mueller, and F. Capasso, Lateral chirality-sorting optical forces, Proceedings of the National Academy of Sciences, vol.112, p.13190, 2015.

J. B. Pendry and D. R. Smith, The quest for the superlens, Scientific American, vol.295, issue.1, p.60, 2006.

J. B. Pendry, Negative refraction makes a perfect lens, Phys. Rev. Lett, vol.85, p.3966, 2000.

G. Dolling, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Simultaneous negative phase and group velocity of light in a metamaterial, Science, vol.312, p.892, 2006.

V. M. Shalaev, Optical negative-index metamaterials, Nat. Photonics, vol.1, p.41, 2007.

M. Mivelle, T. Grosjean, G. W. Burr, U. C. Fischer, and M. F. Garcia-parajo, Strong modification of magnetic dipole emission through diabolo nanoantennas, ACS Photonics, vol.2, p.1071, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02138799

B. Rolly, B. Bebey, S. Bidault, B. Stout, and N. Bonod, Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless mie resonances, Phys. Rev. B, vol.85, p.245432, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00709761

S. M. Hein and H. Giessen, Tailoring magnetic dipole emission with plasmonic split-ring resonators, Phys. Rev. Lett, vol.111, p.26803, 2013.

E. Devaux, A. Dereux, E. Bourillot, J. Weeber, Y. Lacroute et al., Local detection of the optical magnetic field in the near zone of dielectric samples, Phys. Rev. B, vol.62, p.10504, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00473023

M. Burresi, D. Van-oosten, T. Kampfrath, H. Schoenmaker, R. Heideman et al., Probing the magnetic field of light at optical frequencies, Science, vol.326, p.550, 2009.

M. Suarez, T. Grosjean, D. Charraut, and D. Courjon, Nanoring as a magnetic or electric field sensitive nano-antenna for near-field optics applications, Opt. Commun, vol.270, p.447, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00175577

T. Grosjean, A. Fahys, M. Suarez, D. Charraut, R. Salut et al., Annular nanoantenna on fibre micro-axicon, J. Microsc, vol.229, p.354, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00323094

H. Kihm, S. Koo, Q. Kim, K. Bao, J. Kihm et al., Bethe-hole polarization analyser for the magnetic vector of light, Nature Commun, vol.2, p.451, 2011.

B. Le-feber, N. Rotenberg, D. M. Beggs, and L. Kuipers, Simultaneous measurement of nanoscale electric and magnetic optical fields, Nat. Photonics, vol.8, p.43, 2014.

M. Burresi, T. Kampfrath, D. Van-oosten, J. Prangsma, B. Song et al., Magnetic light-matter interactions in a photonic crystal nanocavity, Phys. Rev. Lett, vol.105, p.123901, 2010.

S. Vignolini, F. Intonti, F. Riboli, L. Balet, L. H. Li et al., Magnetic imaging in photonic crystal microcavities, Phys. Rev. Lett, vol.105, p.123902, 2010.

F. I. Baida and T. Grosjean, Double-way spectral tunability for the control of optical nanocavity resonance, Sci. Rep, vol.5, p.17907, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02134458

Z. Xi, Y. Lu, W. Yu, P. Wang, and H. Ming, Unidirectional surface plasmon launcher: rotating dipole mimicked by optical antennas, J. Opt, vol.16, p.105002, 2014.

J. B. Mueller, K. Leosson, and F. Capasso, Polarization-selective coupling to long-range surface plasmon polariton waveguides, Nano Lett, vol.14, p.5524, 2014.

K. Y. Bliokh and F. Nori, Transverse spin of a surface polariton, Phys. Rev. A, vol.85, p.61801, 2012.

K. Kim, I. Lee, J. Kim, J. Jung, and B. Lee, Time reversal and the spin angular momentum of transverse-electric and transverse-magnetic surface modes, Phys. Rev. A, vol.86, p.63805, 2012.

J. Kim, G. V. Naik, A. V. Gavrilenko, K. Dondapati, V. I. Gavrilenko et al., Optical properties of gallium-doped zinc oxide-a low-loss plasmonic material: firstprinciples theory and experiment, Phys. Rev. X, vol.3, p.41037, 2013.

M. F. Picardi, A. Manjavacas, A. V. Zayats, and F. J. Rodríguez-fortuño, Unidirectional evanescent-wave coupling from circularly polarized electric and magnetic dipoles: An angular spectrum approach, Phys. Rev. B, vol.95, p.245416, 2017.

P. Yeh, A. Yariv, and A. Y. Cho, Optical surface waves in periodic layered media, Appl. Phys. Lett, vol.32, p.104, 1978.

E. Descrovi, T. Sfez, L. Dominici, W. Nakagawa, F. Michelotti et al., Near-field imaging of bloch surface waves on silicon nitride one-dimensional photonic crystals, Opt. Express, vol.16, p.5453, 2008.

T. Kovalevich, P. Boyer, M. Suarez, R. Salut, M. Kim et al., Polarization controlled directional propagation of bloch surface wave, Opt. Express, vol.25, p.5710, 2017.

R. Dubey, B. V. Lahijani, M. Häyrinen, M. Roussey, M. Kuittinen et al., Ultra-thin bloch-surface-wave-based reflector at telecommunication wavelength, Photonics Res, vol.5, p.494, 2017.

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici et al., Guided bloch surface waves on ultrathin polymeric ridges, Nano Lett, vol.10, p.2087, 2010.

P. Munzert, N. Danz, A. Sinibaldi, and F. Michelotti, Multilayer coatings for bloch surface wave optical biosensors, Surf. Coatings Technol, vol.314, p.79, 2017.

D. A. Shilkin, E. V. Lyubin, I. V. Soboleva, and A. A. Fedyanin, Direct measurements of forces induced by bloch surface waves in a one-dimensional photonic crystal, Opt. Lett, vol.40, p.4883, 2015.

T. Kovalevich, Tunable Bloch surface waves devices, 2017.
URL : https://hal.archives-ouvertes.fr/tel-01802988

V. N. Konopsky, Plasmon-polariton waves in nanofilms on one-dimensional photonic crystal surfaces, New J. Phys, vol.12, p.93006, 2010.

J. Wang, J. Chen, K. Chen, W. Yi, and W. Zhang, Harmonically trapped quasi-two-dimensional fermi gases with synthetic spin-orbit coupling, Sci. China Physics, Mech. Astron, vol.59, p.693011, 2016.

A. Taflove and S. C. Hagness, Computational electrodynamics: the finitedifference time-domain method. Artech house, 2005.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, J. Zhang, and . Lukanchuk, B. Magnetic light. Sci. Rep, vol.2, p.492, 2012.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt et al., Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region, Nano Lett, vol.12, p.3749, 2012.

M. Schäferling, X. Yin, N. Engheta, and H. Giessen, Helical plasmonic nanostructures as prototypical chiral near-field sources, Acs Photonics, vol.1, p.530, 2014.

P. Wozniak, I. De-leon, K. Hoeflich, C. Haverkamp, S. Christiansen et al., Chiroptical response of a single plasmonic nanohelix, Opt. Express, vol.26, 2018.

A. Passaseo, M. Esposito, M. Cuscunà, and V. Tasco, Materials and 3d designs of helix nanostructures for chirality at optical frequencies, Adv. Opt. Mater, vol.5, p.1601079, 2017.

J. D. Kraus, R. J. Marhefka, and A. S. Khan, Antennas and wave propagation, 2006.

M. I. Stockman, Nanofocusing of optical energy in tapered plasmonic waveguides, Phys. Rev. Lett, vol.93, p.137404, 2004.

D. Garoli, P. Zilio, Y. Gorodetski, F. Tantussi, and F. De-angelis, Beaming of helical light from plasmonic vortices via adiabatically tapered nanotip, Nano Lett, vol.16, p.6636, 2016.

D. Garoli, P. Zilio, F. De-angelis, and Y. Gorodetski, Helicity locking of chiral light emitted from a plasmonic nanotaper, Nanoscale, vol.9, p.6965, 2017.

J. Huang, T. Feichtner, P. Biagioni, and B. Hecht, Impedance matching and emission properties of nanoantennas in an optical nanocircuit, Nano Lett, vol.9, p.1897, 2009.

P. Anger, P. Bharadwaj, and L. Novotny, Enhancement and quenching of single-molecule fluorescence, Phys. Rev. Lett, vol.96, p.113002, 2006.

P. Biagioni, J. Huang, L. Duò, M. Finazzi, and B. Hecht, Cross resonant optical antenna, Phys. Rev. Lett, vol.102, p.256801, 2009.

T. H. Taminiau, F. B. Segerink, R. J. Moerland, L. K. Kuipers, and N. F. Van-hulst, Near-field driving of a optical monopole antenna, J. Opt. A: Pure Appl. Opt, vol.9, p.315, 2007.

M. Mivelle, T. S. Van-zanten, and M. F. Garcia-parajo, Hybrid photonic antennas for subnanometer multicolor localization and nanoimaging of single molecules, Nano Lett, vol.14, p.4895, 2014.

A. Alu and N. Engheta, Tuning the scattering response of optical nanoantennas with nanocircuit loads, Nat. Photonics, vol.2, p.307, 2008.

A. Alù and N. Engheta, Wireless at the nanoscale: optical interconnects using matched nanoantennas, Phys. Rev. Lett, vol.104, p.213902, 2010.

P. Biagioni, M. Savoini, J. Huang, L. Duò, M. Finazzi et al., Near-field polarization shaping by a near-resonant plasmonic cross antenna, Phys. Rev. B, vol.80, p.153409, 2009.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen et al., Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna, Nat. Photonics, vol.3, p.654, 2009.

Z. Xie, Y. Lefier, M. A. Suarez, M. Mivelle, R. Salut et al., Doubly resonant photonic antenna for single infrared quantum dot imaging at telecommunication wavelengths, Nano Lett, vol.17, p.2152, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02134455

M. Mivelle, T. S. Van-zanten, L. Neumann, N. F. Van-hulst, and M. F. Garcia-parajo, Ultrabright bowtie nanoaperture antenna probes studied by single molecule fluorescence, Nano Lett, vol.12, p.5972, 2012.

V. Flauraud, T. S. Van-zanten, M. Mivelle, C. Manzo, M. F. Garcia-parajo et al., Large-scale arrays of bowtie nanoaperture antennas for nanoscale dynamics in living cell membranes, Nano Lett, vol.15, p.4176, 2015.

A. El-eter, N. M. Hameed, F. I. Baida, R. Salut, C. Filiatre et al., Fiber-integrated optical nano-tweezer based on a bowtie-aperture nano-antenna at the apex of a snom tip, Opt. Express, vol.22, p.10072, 2014.

T. Grosjean, M. Mivelle, F. Baida, G. Burr, and U. Fischer, Diabolo nanoantenna for enhancing and confining the magnetic optical field, Nano Lett, vol.11, p.1009, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00584209

Y. Yang, D. Zhao, H. Gong, Q. Li, and M. Qiu, Plasmonic sectoral horn nanoantennas, Opt. Lett, vol.39, p.3204, 2014.

J. Kern, R. Kullock, J. Prangsma, M. Emmerling, M. Kamp et al., Electrically driven optical antennas, Nat. Photonics, vol.9, p.582, 2015.

D. Dregely, R. Taubert, J. Dorfmüller, R. Vogelgesang, K. Kern et al., 3d optical yagi-uda nanoantenna array, Nature Commun, vol.2, p.267, 2011.

Y. Yang, Q. Li, and M. Qiu, Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas, Sci. Rep, vol.6, p.19490, 2016.

M. Klemm, Novel directional nanoantennas for single-emitter sources and wireless nano-links, Int. J. Opt, vol.2012, p.1, 2012.

Y. Ding, X. Song, P. Jiang, R. Jiao, L. Wang et al., Directional optical travelling wave antenna based on surface plasmon transmission line, Laser & Photon. Rev, vol.12, p.1700073, 2018.

Y. Tang and A. E. Cohen, Optical chirality and its interaction with matter, Phys. Rev. Lett, vol.104, p.163901, 2010.

N. Sobhkhiz and A. Moshaii, Silver conical helix broadband plasmonic nanoantenna, Journal of Nanophotonics, vol.8, p.83078, 2014.

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel et al., Tapered gold-helix metamaterials as improved circular polarizers, Appl. Phys. Lett, vol.100, p.101109, 2012.

Z. Yang, M. Zhao, P. Lu, and Y. Lu, Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures, Opt. Lett, vol.35, p.2588, 2010.

J. Kaschke, J. K. Gansel, and M. Wegener, On metamaterial circular polarizers based on metal n-helices, Opt. Express, vol.20, p.26012, 2012.

J. Kaschke and M. Wegener, Gold triple-helix mid-infrared metamaterial by sted-inspired laser lithography, Opt. Lett, vol.40, p.3986, 2015.

J. Kaschke, M. Blome, S. Burger, and M. Wegener, Tapered n-helical metamaterials with three-fold rotational symmetry as improved circular polarizers, Opt. Express, vol.22, 2014.

Z. Yang, M. Zhao, and P. Lu, A numerical study on helix nanowire metamaterials as optical circular polarizers in the visible region, IEEE Photonics Technol. Lett, vol.22, p.1303, 2010.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti et al., Programmable extreme chirality in the visible by helix-shaped metamaterial platform, Nano Lett, vol.16, p.5823, 2016.

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, D. Sanvitto et al., Three dimensional chiral metamaterial nanospirals in the visible range by vertically compensated focused ion beam induced-deposition, Adv. Opt. Mater, vol.2, p.154, 2014.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti et al., Nanoscale 3d chiral plasmonic helices with circular dichroism at visible frequencies, ACS Photonics, vol.2, p.105, 2014.

M. Esposito, V. Tasco, F. Todisco, M. Cuscunà, A. Benedetti et al., Triple-helical nanowires by tomographic rotatory growth for chiral photonics, Nature Commun, vol.6, p.6484, 2015.

V. Tasco, M. Esposito, F. Todisco, A. Benedetti, M. Cuscunà et al., Three-dimensional nanohelices for chiral photonics, Appl. Phys. A, vol.122, p.280, 2016.

J. H. Singh, G. Nair, A. Ghosh, and A. Ghosh, Wafer scale fabrication of porous three-dimensional plasmonic metamaterials for the visible region: chiral and beyond, Nanoscale, vol.5, p.7224, 2013.

A. G. Mark, J. G. Gibbs, T. Lee, and P. Fischer, Hybrid nanocolloids with programmed three-dimensional shape and material composition, Nat. Mater, vol.12, p.802, 2013.

J. M. Caridad, D. Mccloskey, J. F. Donegan, and V. Krsti?, Controllable growth of metallic nano-helices at room temperature conditions, Appl. Phys. Lett, vol.105, p.233114, 2014.

J. M. Caridad, D. Mccloskey, F. Rossella, V. Bellani, J. F. Donegan et al., Effective wavelength scaling of and damping in plasmonic helical antennae, ACS Photonics, vol.2, issue.6, p.675, 2015.

L. Novotny and C. Hafner, Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function, Phys. Rev. E, vol.50, p.4094, 1994.

L. Novotny, Effective wavelength scaling for optical antennas, Phys. Rev. Lett, vol.98, p.266802, 2007.

H. Hagemann, W. Gudat, and C. Kunz, Optical constants from the far infrared to the x-ray region: Mg, al, cu, ag, au, bi, c, and al 2 o 3, J. Opt. Soc. Am, vol.65, p.742, 1975.

S. S. Gao, Q. Luo, and F. Zhu, Circularly polarized antennas, 2013.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, A hybridization model for the plasmon response of complex nanostructures, science, vol.302, p.419, 2003.

Y. Li, R. Ho, and Y. Hung, Plasmon hybridization and dipolar interaction on the resonances of helix metamaterials, IEEE Photonics J, vol.5, p.2700510, 2013.

I. A. Ibrahim, M. Mivelle, T. Grosjean, J. Allegre, G. Burr et al., Bowtie-shaped nanoaperture: a modal study, Opt. Lett, vol.35, p.2448, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00517018

E. X. Jin and X. Xu, Enhanced optical near field from a bowtie aperture, Appl. Phys. Lett, vol.88, p.153110, 2006.

F. I. Baida, A. Belkhir, D. Van-labeke, and O. Lamrous, Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes, Phys. Rev. B, vol.74, p.205419, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00258571

Y. Chen, L. Yu, J. Zhang, and R. Gordon, Effective wavelength scaling of rectangular aperture antennas, Opt. Express, vol.23, p.10385, 2015.

J. Wenger, P. Lenne, E. Popov, H. Rigneault, J. Dintinger et al., Single molecule fluorescence in rectangular nano-apertures, Opt. Express, vol.13, p.7035, 2005.

K. Robbie and M. Brett, Sculptured thin films and glancing angle deposition: Growth mechanics and applications, J. Vac. Sci. Technol. A, vol.15, p.1460, 1997.

K. Robbie, G. Beydaghyan, T. Brown, C. Dean, J. Adams et al., Ultrahigh vacuum glancing angle deposition system for thin films with controlled three-dimensional nanoscale structure, Rev. Sci. Instrum, vol.75, p.1089, 2004.

Z. Ren and P. Gao, A review of helical nanostructures: growth theories, synthesis strategies and properties, Nanoscale, vol.6, p.9366, 2014.

L. Liu, L. Zhang, S. M. Kim, and S. Park, Helical metallic micro-and nanostructures: fabrication and application, Nanoscale, vol.6, p.9355, 2014.

K. Höflich, R. B. Yang, A. Berger, G. Leuchs, and S. Christiansen, The direct writing of plasmonic gold nanostructures by electron-beam-induced deposition, Adv. Mater, vol.23, p.2657, 2011.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti et al., Nanoscale 3d chiral plasmonic helices with circular dichroism at visible frequencies, ACS Photonics, vol.2, p.105, 2014.

J. Fischer and M. Wegener, Three-dimensional direct laser writing inspired by stimulated-emission-depletion microscopy, Opt. Mater. Express, vol.1, p.614, 2011.

J. Kaschke, L. Blume, L. Wu, M. Thiel, K. Bade et al., A helical metamaterial for broadband circular polarization conversion, Adv. Opt. Mater, vol.3, p.1411, 2015.

S. Reyntjens and R. Puers, A review of focused ion beam applications in microsystem technology, J. Micromech. Microeng, vol.11, p.287, 2001.

S. Matsui, Three-dimensional nanostructure fabrication by focused ion beam chemical vapor deposition, Springer Handbook of Nanotechnology, p.179, 2007.

S. Randolph, J. Fowlkes, and P. Rack, Focused, nanoscale electronbeam-induced deposition and etching, Crit. Rev. Solid State Mater. Sci, vol.31, issue.3, p.55, 2006.

W. Van-dorp and C. W. Hagen, A critical literature review of focused electron beam induced deposition, J. Appl. Phys, vol.104, p.10, 2008.

M. M. Shawrav, P. Taus, H. D. Wanzenboeck, M. Schinnerl, M. Stöger-pollach et al., Highly conductive and pure gold nanostructures grown by electron beam induced deposition, Sci. Rep, vol.6, p.34003, 2016.

C. Haverkamp, K. Höflich, S. Jäckle, A. Manzoni, and S. Christiansen, Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits, Nanotechnology, vol.28, p.55303, 2016.

G. K. Larsen, Y. He, J. Wang, and Y. Zhao, Scalable fabrication of composite ti/ag plasmonic helices: controlling morphology and optical activity by tailoring material properties, Adv. Opt. Mater, vol.2, p.245, 2014.

, a) schematic showing the helicity-dependent trajectories for LCP and RCP lights, and (b) measured transverse splitting of LCP and RCP lights with respect to the propagation distance. Helicity-dependent lateral shift of a paraxial beam occurs while deflecting at optical interfaces [104]: (c) schematic showing the transverse shift attached to a RCP light during reflection. (d) Measured Spin-Hall splitting of the LCP and RCP components when a linearly polarized Gaussian beam refracts at air-glass interface, Spin-orbit interactions in paraxial regime. Spin-Hall effect occurs when light travels along a helical pathway in a glass cylinder, vol.55

, Tightly focused LG modes with = 1 and ? = ±1. An optical vortex appears in the longitudinal electric component when ? and have the same sign (top panel), evidenced by a faster orbiting speed of the trapped nanoparticles (middle panel) than that with ? and of opposite sign, Spin-orbit interactions in nonparaxial regime: (a) Schematic showing the optical vortex generated by tightly focusing circularly polarized light [55] (b)

, azimuthal PB phase gradients, leading to a helicity-dependent light splitting and optical vortices with charge numbers = 2q, respectively. (c) Polychromatic optical vortex generation with a single nematic liquid crystal droplet whose anisotropy directs radially in three dimensions. The numbered photos show the intensity profile of the polychromatic vortex and its RGB components, respectively. [61] (d) A 100-nm thick silicon metamaterial splits lights of opposite handedness [111]. (e) Closed-path nano-slits convert CP light into optical vortices, Spin-orbit interactions due to Pancharatnam-Berry (PB) phase. Spacevariant wave plates induce (a) linear [110] and (b)

, A simple subwavelength arch leads to tunable helicity-controlled directional excitation of nanoscale surface plasmons. The orange, blue and pink halos indicate the positions of incident light and those from the right and left nanoantenna out-couplers, respectively

, Simulation snapshots of the transverse magnetic component of a spinning electric dipole (a) in air and (b) coupled to surface plasmons [118]. (c,d) Experimental demonstration of the spin-locked directional launching of surface plasmons with a subwavelength groove: (c) schematic of the experimental setup and (d) measured coupling ratios of the left and right SPs (solid lines), in comparison with simulation results (dash lines), Spin-locked unidirectional excitation of surface plasmons (SPs). (a,b), vol.118

, Simulation by FDTD of the coupling of (a) an ED oriented along the x axis, and (b,c), a spinning MD, to a TE-polarized BSW. All three results show, in false colors, the absolute value of the real part of the electric field (|Re(E x )|).The MD rotates either (b) anti-clockwise or (c) clockwise. (d) Directionality factor (ratio of the electric intensities for the left and right BSWs) for various MD polarizations. The MD polarization ellipticity is changed along the path shown in red in the Poincaré sphere (see inset). The MD moment is also expressed at specific values of the ellipticity angle 2? related to the Poincaré sphere, TE-polarized Bloch surface waves excited with linear ED and spinning MD

, In these figures, the field around the dipoles has been saturated in order to provide a better view of the light distributions across the structure. The field distribution in (b) is multiplied by 0.53 j. By adding/subtracting the results of (a) and (b), we achieve the field distributions across the 1D photonic crystal, produced by two spinning MDs of opposite handedness, which are described by dipole moments m proportional to (e y ± 0.53 je z ). (c) Electric field profiles (Re(E x )) along the dashed lines of (a) and (b), respectively, (a) and (b) Snapshots (FDTD simulations) of the optical electric field produced in the (yz) plane by two MDs oriented along y and z axis, respectively

, 34 2.9 Schematic diagrams of the excitation process of the BSW mode with (a) a linear ED and (b) spinning MD source, which corresponds to the scenarios shown in 2.7(a) and (b), respectively. The schematics compare the polarization states of the excitation dipole sources and the corresponding electric or magnetic components of the BSW mode, Electric field profiles with a spinning MD moment of e y ?0.53 je z (the field plotted in (b) is inverted, leading to a clockwise rotating MD). (c) and (d) show that the BSW coupling process is unidirectional and tunable with the helicity of light

. .. , 37 2.12 Schematic diagrams for the polarization state of the incident light after passing through a LP and a QWP: (a) the QWP is fixed and the LP is rotated. (b) the LP is fixed and the QWP is rotated. The green arrow in (a) and (b) show the immediate linear polarization state after the LP. The red ellipse (with handedness indication) in (a) and (b) show the final polarization state after the QWP, Images of the 1D PC surface obtained by illuminating the subwavelength groove with light of various polarization states: (a) linear

, Schematic diagram of the electric field projection and corresponding global and local coordinate frames. e r and e l (in red) represent the unit vectors parallel to the electric field components of the right and left BSWs, p.38

, Plot of the coupling rates R r and R l of the incident light into the right and left BSWs, calculated from Eqs. 2.9 and 2.10, respectively

, 15 (a) Schematic diagram of the magnetic field handedness in the helicity planes of the left and right BSWs for an incident right-handed polarization. (b) Ellipticity 2? of the incident magnetic field in the helicity planes (y L , z L ) and (y R , z R ) of the left and right TE-polarized BSWs, vol.2

, Screen print of the 3D FDTD model built with Fullwave software to simulate the scenario of a BSW excitation with the configuration depicted in Figs

, The two results show, in false colors, the absolute value of the real part of the electric field (|Re(Ey)|). The white lines show the profile of the subwavelength groove, which has a cross-section of 400 nm × 400 nm. The blue and red arrows in (a), which have a angle of 33.8 ? with respect to the groove, indicate the BSW propagation directions on the left and right sides, Simulation snapshots of the TE-polarized BSWs excited by a groove under the illumination with (a) left circular polarization and (b) right circular polarization

, The curves related to the right and left BSWs are represented in red and blue, respectively. (b) and (c) Fourier spectra (amplitude) of the experimental blue and red curves of (a), obtained by Fourier transformation. Coefficient u defines the harmonic orders for the Fourier series. (d) and (e) Representation, in the real space, of the non-null harmonics for the two Fourier series shown in (b) and (c): (d) second harmonics and (e) fourth harmonics. Experimental and numerical curves are shown by solid and dash lines, respectively, Magnetic spin-orbit interaction steers Bloch surface waves. (a) detected signals (circles) and simulated intensities by FDTD (solid lines), on the right and left BSWs, as a function of the angle ? between the QWP and the LP, vol.50

, 2 Schematics of (a) bowtie nanoantenna [179] (b) bowtie nanoaperture antenna fabricated at a fiber tip [180] (c) diabolo nanoantenna, p.50

, Note for helices with different wire radius, the total number of such optimal ? h values are different, which is one when R w ranges from 25 nm to 35 nm and two when R w ranges from 40 nm to 60 nm. According to their similar shapes, those AR spectra have been divided in two groups, i.e. (a) and (b) for a better view, Axial ratio spectra of HPAs with various wire radii (R w ranging from 25 nm to 60 nm) and optimal vertical pitches (S ) that enable an AR peak, p.67

, Dispersion relations of gold nano-wires with various radii ranging from 25 nm to 60 nm

, 20 (a) and (b) show the AR spectra for two sets of helices, whose wire thickness is fixed as 60 nm and 25 nm and pitch angle is 14 ? and 39 ? , respectively. Here, we only plot the axial ratio spectra around its peak to have a better view

, Other geometric parameters remain identical for all helices: R h = 180 nm, R w = 60 nm, S = 540 nm. The red dash line shows an axial ratio of 0.5, above which an antenna can be thought as circularly polarized antenna, Axial ratio spectra of HPAs with various N values ranging from 1 to 4, p.69

, 22 (a) Axial ratio spectra (on-axis calculations) of left and right-handed helices (b) Corresponding amplitude ratio (ln |E y |/|E x | ) and phase difference (?(E x ) ? ?(E y )) spectra of the two transverse electric components of the far-field emission. The helices have geometric parameters: R h = 180 nm, R w = 60 nm, S = 540 nm

, Aspect ratio spectra of a helix optimized for working at optical telecommunication wavelengths. The helix dimensions are: R h = 160 nm, R w = 60 nm, S = 495 nm

, Schematics of (a) circular nano aperture (b) bowtie nano aperture and (c) rectangular nano aperture. The red arrows show the linear polarization of the excitation light (E inc ), which leads to enhanced electric fields in the regions marked by the red halos

, 72 3.26 Design of the rectangular nano aperture (RNA) for working at optical telecommunication wavelength (? 0 = 1.55 µm). (a) Schematic of the RNA. (b) Normalized intensity spectra of RNAs with various side lengths (L) and widths (W). The gold layer in which the RNA resides has a fixed thickness of 100 nm, Schematics showing the FDTD model built for studying the optical prop

, Under curved trajectory along the helix, SPs acquire EOAM and are simultaneously released as freely propagating waves (white arrow). Part of the mode leakage re-excites the plasmon wire mode, thus participating in the plasmon swirling effect. (b) dispersion relations of the m = 0 and m = 1 modes of a gold-coated carbon wire (105-nm diameter carbon wire, 25-nm thick gold coating). Energy is plotted versus c? and c?, Helical plasmonic antenna as circularly polarized subwavelength source: (a) Schematics of the final TW-HPA and operation principle

S. P. Traveling and . Tw-hpa, The pseudo-color field maps show the simulation snapshots of the instantaneous electric field distribution at ?t = i ? 4 ( i = 0, 1, 2...7) and on two planes that cross the helix axis. The x0z and y0z plane field maps are shown on the upper and lower sides, respectively. These field maps are normalized with the same maximum amplitude value. The white dash line and red arrow indicate the axial advance of SP modes. The white thin solid lines show the gold layer and the nanoaperture on the substrate

, Schematic for the original DLW process where a positive-tone photoresist is used to form the mould with helical voids. (b) Cross-sectional SEM image of the polymer mould filled by electro-plated gold. (c) Side-view SEM image of the resulting monofilar gold helix array after mould removal. (d) Schematics of the modified DLW process where a negative-tone photoresist is patterned by stimulated-emission-depletion-DLW to form the mould. (b) SEM image of the written polymer mould after chemical development and (c) Side-view SEM image of the final triply-intertwined gold helix array. (a)?(c) and (d)?(f) are snapped from the Refs, DLW for the fabrication of gold helix arrays. (a)

, SEM images of the platinum helices fabricated by FIBID and FEBID, respectively. The helix geometry shown in (b) is: R h = 200nm, R w = 65 nm, S = 300 nm and in (c) are R h = 100nm, R w = 30 nm, S = 350 nm, respectively. (d) Triply inter-winded Pt helix array fabricated by tomographic rotatory FIBID growth. Dimensions of a single helix are: R h = 187, FIBID/FEBID fabrication of nano-helix structures: (a) Schematic depicting the FIBID fabrication process, vol.5

, Schematics of the GLAD fabrication process with (a) seeded substrate with grain sites prepared by nano-lithography, (b) structure growth under grazing-incidence particle flux and (c) resulting nano-helix arrays. (d-f): SEM images of the GLAD-fabricated nano-helices with (d) a nano-helix array attached on the substrate (e) and (f) a single left-and right-handed helix picked out from the nano-helix array, GLAD fabrication of nano-helix structures [205

, Glancing angle deposition (GLAD) equipment used in my thesis: (a) Schematic diagram and (b) a photo of the running machine. Inset of (b) shows the glowing plasma in the fabrication chamber, p.81

, 81 4.6 Photograph of the SEM/FIB dual-beam system (Helios Nanolab 600i, FEI) available at FEMTO-ST Institute. It is the workhorse for both structuring and characterizing HPAs, 5 SEM images of the nano-helix structure fabricated by GLAD: (a) crosssection and (b) top view

, Fabrication of the carbon helices on a gold coated glass substrate by FIBID. The FIB is used to induce the carbon wire deposition and the SEM is used to monitor the deposition process. (b) Metalization of carbon helices with gold by GLAD involving plasma sputtering approach. Direct current is applied between the substrate and gold target to generate argon plasma. (c) Fabrication of the rectangular aperture by FIB milling. The small angle is kept between ion flux and the helix to avoid side-cutting effect, Schematic diagrams of the fabrication process we develop for realizing the TW-HPA structures. (a)

. .. Nm, 85 4.10 SEM images of grouped carbon helices with opposite handedness. (a) Paired left and right helices. (b) Closely-packed four-helix system where helices with the same handedness are placed at the diagonal positions of a subwavelength square, SEM images of various 4-turn carbon helices fabricated by FIBID: (a) without pitch correction (b-d) with pitch correction. Scale bars, 0200.

, Cross-section SEM image of the helix, embedded in a FIBID-deposited platinum (Pt) block. The bright gray areas show the gold coating (Au) and the dark gray areas show the carbon core (C). (c) 3D tomographic image of the goldcoated carbon helix, which is reconstructed from a series of sliced SEM images of the HPA. The gold and carbon materials are represented in yellow and black, respectively. Scale bars: 200 nm. The green and red arrows in (c) show two representative regions with a thick and thin gold coating, Metal coating results of a carbon helix with R h ? 155 nm, S ? 350 nm. (a) Bird-view SEM image of the gold-coated carbon helix. (b), vol.87

, Scanning electron micrographs of the subwavelength structure after (a) fabrication of the carbon helix skeleton by FIBID, (b) metal deposition onto the helix skeleton, and (c) fabrication of rectangular nano-aperture antenna by FIB milling, Fabrication of the TW-HPA: three steps, vol.87

, Measurement of RNA's radiation property: simplified experimental set-up (left panel) and measured RNA polarization diagram (intensity), compared with the typical response of a dipole Malus's curve (right panel). Those measurements in (a) and (b) are enabled by rotating a linear polarizer inserted either in the input or output benches, respectively. The two insets, in both (a) and (b), show the optical and SEM images of the RNA, Experimental setup for measuring the polarization property of the antenna emission: (a) Schematic diagram and (b) photograph of the experimental bench. LP: linear polarizer, QWP: quarter wave plate, HWP: half wave plate, OBJ: objective, BS: beam splitter. The fiber used here is a polarization maintaining fiber, which transmits infrared light produced by a tunable laser (1470 ? 1650 nm)

. Tw-hpa, The left panel shows a simplified schematic depicting the experimental bench for characterizing the polarization properties of the helical antenna (inset shows a typical far-field optical image of the TW-HPA emission). The right panel shows a side-view SEM micrograph of the TW-HPA, whose central radius and vertical pitch are R h ? 155 nm and S ? 350 nm, respectively. (b) Measured antenna emission intensity with respect to the input linear polarization. (c) State-of-polarization analysis at ? = 1.55 µm and ? = 1.64 µm. (d) Experimental spectra of the AR and DOCP, compared with the simulation results considering a 10-nm thick homogeneous metal coating onto the carbon skeleton

, where a rotating quarter wave plate (QWP) and a fixed linear polarizer (LP2) are put in front of the camera to analyze the helicity of the antenna emission. Right panel: optical and SEM images of two HPAs of opposite handedness. (b) Measured transmission intensity for the two HPAs through the circular analyzer. Maximum helicities are obtained for angles between the QWP and LP of 45 ? and 135 ? . This resembles two circular polarizers of opposite handedness. We have ? = ±1 for the two HPAs, where ? stands for the helicity of light

, Circularly polarized emission originates from the excitation of a subdiffraction surface plasmon within the helix. AR spectrum of the TW-HPA emission for the RNA in contact to the helix pedestal (blues squares), 185 nm away from the helix pedestal (red circles), and turned by 90 ? regarding the two first cases (green diamonds), respectively

, Spectrum of the AR of the TW-HPA emission for a single structure with one turn (orange triangles), two turns (green diamonds), three turns (red circles), and four turns (blue squares)

, Schematics of the two operation modes of the TW-HPA, involving light wave propagation in two opposite directions along the antenna axis

, Schematics of the simulation model. (b,c) Simulated intensity distribution (x0z plane) of the TW-HPA under illumination with (b) left and (c) right-handed circularly polarized light, respectively. The intensity plots have been saturated equally for a better view of the TW-HPA wire mode. RNA: rectangular nanoaperture, 2 Simulation of the TW-HPA in detection mode: (a), p.98

, Schematic diagrams of the experimental setups for measuring the circular dichroism of the TW-HPA (a) in emission mode, and (b) in collection mode, OBJ: Objective, QWP: Quarter-wave plate

, Circular dichroism is defined as (I RCP ? I LCP )/(I RCP + I LCP ), where I RCP and I LCP stand for the emission intensity of the TW-HPA, with an illumination by right and left circularly polarized light, respectively. Emission intensity is measured either from the helix, in air (in emission mode), or from the rectangular nanoaperture antenna, through the substrate (in collection mode). Figure inset: helicity analysis in emission mode, at ?=1.55 µm. The measurement is realized by placing a circular analyzer, consisting of a rotating quarter-wave plate followed by a fixed polarizer, in front of a detector and measuring the transmitted power. RCP and LCP refer to right and left-handed circular polarization of the emitted light, Schematics of the two operation modes of the TW-HPA, involving light wave propagation in two opposite directions along the antenna axis, respectively. (b)

, Scanning electron micrograph of the CP-LSA, which consists of two couples of HPAs of opposite handedness and orthogonal aperture nanoantennas. The right and left-handed HPAs are identified with the letters R and L, respectively. The letters A, B, C and D show the arrangement configuration of these HPAs (cf. Fig. 5.5)

, Measurement on the tuning property of the spin-light array (cf. Fig. 5.6) with linearly polarized excitation light. (a) Left panel: schematic diagram of the experimental setup and right panel: far-field optical images of the four-HPA device at three input polarizations. (b) Emission intensities of the two HPAs of opposite handedness at various input polarization states, p.103

, (a) left panel: schematic diagram of the experimental setup, right panel: far-field optical images of the four-TW-HPA device with a (middle) right-handed and (bottom) a left-handed circular analyzer in front of the camera. (b) Helicity analysis of two HPAs of opposite handedness. The measurement is realized by placing a rotating quarter wave-plate and a fixed linear polarizer in front of a detector and measuring the transmitted power

, 105 5.10 Theoretical prediction of the polarization state of the four-coupled TW-HPA structure (i.e., the polarization angles |2?| and 2? on the Poincaré sphere), as a function of the polarization direction (angle ?) of an incident linearly polarized wave, 3D and (b) 2D top-view schematics of the four-coupled HPAs, p.105

, Angled view, (b) Top view. Figure inset shows the optical image of the structure on emission, exhibiting a single light spot (regardless of the input polarization), Scanning electron micrographs of the four-coupled TW-HPA structure: (a)

, Polarization angles 2? and 2? of the emitted field versus the polarization direction of an incident linearly polarized light (Poincaré sphere approach of polarization). The optical waves are impinging from the substrate at normal incidence, with (a) ?=1615 nm and (c) ?=1470 nm. (b,d) Polarization diagram of the antenna emission for incident polarization corresponding to ? equal to 45 ? and 135 ? , leading to the selective excitation of the two couples of HPAs of opposite handedness: (b) ?=1615 nm. (d) ?=1470 nm. Near-field coupling between the HPAs of opposite handedness ensures parallel outcoming polarization ellipses for orthogonal incident linear polarizations, Subwavelength scale manipulation of light polarization by four coupled HPAs

, due to the near-field coupling of SPs in the four-coupled TW-HPA device. (a) 3D schematic showing the nearfield coupling of surface plasmons (SPs) in the four TW-HPAs at ? = 45 ? . (b,c) Top-view schematics showing the coupling between SPs in such a system with (b) ? = 45 ? and (c) ? = 135 ? . The blue and red open circles with an arrow indicate the swirling SPs in the left-and right-handed TWHPAs, respectively. The green arrows indicate the parallel propagation directions of those SPs. The corresponding output polarization states are represented by the blue, Schematics illustrating the generation of parallel elliptical polarizations of opposite helicity at ? = 45 ? and 135 ?, vol.108

M. Wang, H. Zhang, T. Kovalevitch, R. Salut, M. Kim et al.,

H. Herzig, T. Lu, and . Grosjean, Magnetic spin-orbit interaction of light, Light: Science & Applications, vol.7, issue.1, pp.24-31, 2018.

M. Wang, R. Salut, H. Lu, M. A. Suarez, N. Martin et al., Controlling the polarization state of light by swirling surface plasmons

M. Wang, H. Zhang, T. Kovalevitch, R. Salut, M. Kim et al., Magnetic spin-orbit interaction of light, 2018.

M. Wang, H. Zhang, T. Kovalevitch, R. Salut, M. Kim et al., Magnetic spin-orbit interaction of light steers Bloch surface waves, p.227, 2018.

M. Wang, H. Zhang, T. Kovalevitch, R. Salut, M. Kim et al., Magnetic spin-orbit interaction of light steers Bloch surface waves, p.49, 2018.

M. Wang, H. Zhang, T. Kovalevitch, R. Salut, M. Kim et al., Tunable unidirectional coupling of Bloch surface waves controlled by the magnetic field of light, pp.10541-95, 2018.

M. Wang, H. Zhang, T. Kovalevitch, R. Salut, M. Kim et al., Poster) Document generated with L AT E X and: the L AT E X style for PhD Thesis, GDR Ondes-2017, p.9, 2017.