Durabilité des matériaux composites dans un environnement Génie Civil : expérimentation multi-échelle et analyse statistique

Abstract : Our thesis is part of this MICRO project "Innovative Composite Materials for the Repair of Structures: Reliability approach of the dimensioning for their requalification and the prediction of their durability". Final objective of the thesis is to understand the problem of sustainability through a multi-scale phenomenological experimental approach and to propose probabilistic life-time models. So, we defined the methodology of our study, as well as the methods, materials and analysis techniques. The study material is a non-equilibrium (70% / 30%) unbalanced bidirectional carbon / epoxy that is crosslinked at room temperature and made by hand layup process. Six hygrothermal aging obtained by crossing between temperatures (20°C, 40°C and 60°C) and humidities (50%, 75% and immersion) at various times were carried out during the study. After identifying the various indicators, we carried out physicochemical analyzes (absorption-desorption, DSC, TMA, Infrared, DMA and Tomography) as well as a follow-up of the mechanical characteristics (tensile, interlaminar shear, pull-out and double shear). These indicators were analyzed statistically to more rigorously validate the trends that were observed. The monitoring of mechanical performance indicators by accelerated aging was carried out and then compared to 1 year of natural aging. The antagonism of the various mechanisms of damage has been demonstrated in the case of simple traction and interlaminar shear. It appears that plasticization is the mechanism that most affects the performance of carbon / epoxy composites. For high temperatures, it appears that post-cure by densifying the network has improved interfacial cohesion, which has inhibited the impact of thermal degradation on mechanical performance. Comparing with natural aging, it was noted that aging in an aqueous condition was more generally degrading and aqueous conditions accelerated well the degradation in a natural environment. In particular, the trends observed do not follow evolutions that permit to write simplified prediction models. The quality of the composite / concrete adhesion was evaluated by pull-out tests. The strong disparities between the results make the analysis delicate. But it has been shown that the post-cure seems to improve the cohesion whereas the plasticization is very harmful for the stability of the bonded joints accelerating excessively the degradation in comparison to the natural aging. This instability has also been proven by the double shear tests where the delamination was observed from the first maturities of aging. The anchor length is reduced and a time-sensitive model has been proposed for the selected aging condition (60°C-immersion). On the other hand, this plasticization softens the failure due to the increased deformability of the joint. In this environmental condition, the monitoring of the elastic limit stress seems to be a relevant indicator for the monitoring of the durability because it simulates the natural aging with reasonable differences. The last part of our work consisted in the proposal of a statistical treatment of the data in order to validate firstly the trends observed experimentally, to bring more information and to discuss on the choice of the models of prediction. Although, physical model is very appreciated by the community, it is not systematically applicable. Indeed, it assumes degenerative performance, which in practice is not the case. A physical approach has been proposed on the refined database in order to respect the writing conditions of the model (degenerative trends). The model chosen to predict the ultimate tensile strength is conservative but applicable for reliability studies. Bayesian enrichment can be used to demonstrate the advantage it can confer in reliability studies
Document type :
Complete list of metadatas

Contributor : Abes Star <>
Submitted on : Friday, October 11, 2019 - 10:39:06 AM
Last modification on : Saturday, October 12, 2019 - 1:25:55 AM


Version validated by the jury (STAR)


  • HAL Id : tel-02312031, version 1



Wendlamita Zombré. Durabilité des matériaux composites dans un environnement Génie Civil : expérimentation multi-échelle et analyse statistique. Matériaux. Université de Lyon, 2019. Français. ⟨NNT : 2019LYSE1106⟩. ⟨tel-02312031⟩



Record views


Files downloads