W. H. Coulter, Means for counting particles suspended in a fluid, 1953.

B. Sakmann and E. Neher, Patch Clamp Techniques for Studying Ionic Channels in Excitable Membranes, Annu. Rev. Physiol, vol.46, issue.1, pp.455-472, 1984.

J. J. Kasianowicz, E. Brandin, D. Branton, and D. W. Deamer, Characterization of individual polynucleotide molecules using a membrane channel, Proc. Natl. Acad. Sci, vol.93, issue.24, pp.13770-13773, 1996.

D. Branton, The potential and challenges of nanopore sequencing, Nat. Biotechnol, vol.26, issue.10, pp.1146-1153, 2008.

B. M. Venkatesan and R. Bashir, Nanopore sensors for nucleic acid analysis, Nat. Nanotechnol, vol.6, issue.10, pp.615-624, 2011.

J. J. Kasianowicz, J. W. Robertson, E. R. Chan, J. E. Reiner, and V. M. Stanford, Nanoscopic porous sensors, Annu. Rev. Anal. Chem. Palo Alto Calif, vol.1, pp.737-766, 2008.

A. Oukhaled, L. Bacri, M. Pastoriza-gallego, J. Betton, and J. Pelta, Sensing Proteins through Nanopores: Fundamental to Applications, ACS Chem. Biol, vol.7, issue.12, pp.1935-1949, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02006503

L. Auvray, B. Duplantier, and C. Sykes, Physique des polymères et membranes biologiques: majeures de physique et chimie du vivant, 2004.

M. Daoud and P. G. Gennes, Statistics of macromolecular solutions trapped in small pores, J. Phys, vol.38, issue.1, pp.85-93, 1977.
URL : https://hal.archives-ouvertes.fr/jpa-00208565

M. Muthukumar, Polymer Translocation, 2016.

M. Muthukumar, Polymer translocation through a hole, J. Chem. Phys, vol.111, issue.22, pp.10371-10374, 1999.

W. Sung and P. J. Park, Polymer Translocation through a Pore in a Membrane, Phys. Rev. Lett, vol.77, issue.4, pp.783-786, 1996.

E. A. Di-marzio and A. J. Mandell, Phase transition behavior of a linear macromolecule threading a membrane, J. Chem. Phys, vol.107, issue.14, pp.5510-5514, 1997.

S. Daoudi and F. Brochard, Flows of Flexible Polymer Solutions in Pores, Macromolecules, vol.11, issue.4, pp.751-758, 1978.

L. Béguin, B. Grassl, F. Brochard-wyart, M. Rakib, and H. Duval, Suction of hydrosoluble polymers into nanopores, Soft Matter, vol.7, issue.1, pp.96-103, 2010.

T. D. Long and J. L. Anderson, Flow-dependent rejection of polystyrene from microporous membranes, J. Polym. Sci. Polym. Phys. Ed, vol.22, issue.7, pp.1261-1281, 1984.

P. De-gennes, Flexible Polymers in Nanopores, Polymers in Confined Environments, pp.91-105, 1999.

T. Auger, Zero-Mode Waveguide Detection of Flow-Driven DNA Translocation through Nanopores, Phys. Rev. Lett, vol.113, issue.2, p.28302, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02112333

L. Gu, S. Cheley, and H. Bayley, Electroosmotic enhancement of the binding of a neutral molecule to a transmembrane pore, Proc. Natl. Acad. Sci, vol.100, issue.26, pp.15498-15503, 2003.

L. Mereuta, Slowing down single-molecule trafficking through a protein nanopore reveals intermediates for peptide translocation, Sci. Rep, vol.4, 2014.

M. Soskine, A. Biesemans, and G. Maglia, Single-Molecule Analyte Recognition with ClyA Nanopores Equipped with Internal Protein Adaptors, J. Am. Chem. Soc, vol.137, issue.17, pp.5793-5797, 2015.

A. Asandei, I. Schiopu, M. Chinappi, C. H. Seo, Y. Park et al., Electroosmotic Trap Against the Electrophoretic Force Near a Protein Nanopore Reveals Peptide Dynamics During Capture and Translocation, ACS Appl. Mater. Interfaces, vol.8, issue.20, pp.13166-13179, 2016.

S. P. Bhamidimarri, J. D. Prajapati, B. Van-den, M. Berg, U. Winterhalter et al., Role of Electroosmosis in the Permeation of Neutral Molecules: CymA and Cyclodextrin as an Example, Biophys. J, vol.110, issue.3, pp.600-611, 2016.

G. Huang, K. Willems, M. Soskine, C. Wloka, and G. Maglia, Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores, Nat. Commun, vol.8, issue.1, p.935, 2017.

R. F. Probstein, Physicochemical Hydrodynamics: An Introduction, 2005.

O. V. Krasilnikov, R. Z. Sabirov, V. I. Ternovsky, P. G. Merzliak, and J. N. Muratkhodjaev, A simple method for the determination of the pore radius of ion channels in planar lipid bilayer membranes, FEMS Microbiol. Immunol, vol.5, issue.1-3, pp.93-100, 1992.

S. M. Bezrukov, I. Vodyanoy, and V. A. Parsegian, Counting polymers moving through a single ion channel, Nature, vol.370, issue.6487, pp.279-281, 1994.

S. M. Bezrukov, I. Vodyanoy, R. A. Brutyan, and J. J. Kasianowicz, Dynamics and Free Energy of Polymers Partitioning into a Nanoscale Pore, Macromolecules, vol.29, issue.26, pp.8517-8522, 1996.

P. G. Merzlyak, L. N. Yuldasheva, C. G. Rodrigues, C. M. Carneiro, O. V. Krasilnikov et al., Polymeric nonelectrolytes to probe pore geometry: application to the alpha-toxin transmembrane channel, Biophys. J, vol.77, issue.6, pp.3023-3033, 1999.

L. Song, M. R. Hobaugh, C. Shustak, S. Cheley, H. Bayley et al., Structure of Staphylococcal ?-Hemolysin, a Heptameric Transmembrane Pore, Science, vol.274, issue.5294, pp.1859-1865, 1996.

L. Movileanu, S. Cheley, and H. Bayley, Partitioning of Individual Flexible Polymers into a Nanoscopic Protein Pore, Biophys. J, vol.85, issue.2, pp.897-910, 2003.

O. V. Krasilnikov, C. G. Rodrigues, and S. M. Bezrukov, Single Polymer Molecules in a Protein Nanopore in the Limit of a Strong Polymer-Pore Attraction, Phys. Rev. Lett, vol.97, issue.1, p.18301, 2006.

J. W. Robertson, C. G. Rodrigues, V. M. Stanford, K. A. Rubinson, O. V. Krasilnikov et al., Single-molecule mass spectrometry in solution using a solitary nanopore, Proc. Natl

, Acad. Sci, vol.104, issue.20, pp.8207-8211, 2007.

C. G. Rodrigues, D. C. Machado, S. F. Chevtchenko, and O. V. Krasilnikov, Mechanism of KCl Enhancement in Detection of Nonionic Polymers by Nanopore Sensors, Biophys. J, vol.95, issue.11, pp.5186-5192, 2008.

G. Baaken, I. Halimeh, L. Bacri, J. Pelta, A. Oukhaled et al., High-Resolution SizeDiscrimination of Single Nonionic Synthetic Polymers with a Highly Charged Biological Nanopore, ACS Nano, vol.9, issue.6, pp.6443-6449, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02006475

C. Cao, Y. Ying, Z. Hu, D. Liao, H. Tian et al., Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore, Nat Nano, 2016.

M. F. Breton, F. Discala, L. Bacri, D. Foster, J. Pelta et al., Exploration of Neutral Versus Polyelectrolyte Behavior of Poly(ethylene glycol)s in Alkali Ion Solutions using SingleNanopore Recording, J. Phys. Chem. Lett, vol.4, issue.13, pp.2202-2208, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02006496

F. Piguet, F. Discala, M. Breton, J. Pelta, L. Bacri et al., Electroosmosis through ?-Hemolysin That Depends on Alkali Cation Type, J. Phys. Chem. Lett, vol.5, issue.24, pp.4362-4367, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02006492

S. E. Henrickson, M. Misakian, B. Robertson, and J. J. Kasianowicz, Driven DNA Transport into an Asymmetric Nanometer-Scale Pore, Phys. Rev. Lett, vol.85, issue.14, pp.3057-3060, 2000.

L. Gu, O. Braha, S. Conlan, S. Cheley, and H. Bayley, Stochastic sensing of organic analytes by a pore-forming protein containing a molecular adapter, Nature, vol.398, issue.6729, pp.686-690, 1999.

J. Clarke, H. Wu, L. Jayasinghe, A. Patel, S. Reid et al., Continuous base identification for single-molecule nanopore DNA sequencing, Nat. Nanotechnol, vol.4, issue.4, p.265, 2009.

S. Howorka, S. Cheley, and H. Bayley, Sequence-specific detection of individual DNA strands using engineered nanopores, Nat. Biotechnol, vol.19, issue.7, pp.636-639, 2001.

D. Stoddart, A. J. Heron, E. Mikhailova, G. Maglia, and H. Bayley, Single-nucleotide discrimination in immobilized DNA oligonucleotides with a biological nanopore, Proc. Natl. Acad. Sci, vol.106, issue.19, pp.7702-7707, 2009.

N. Ashkenasy, J. Sánchez-quesada, H. Bayley, and M. R. Ghadiri, Recognizing a Single Base in an Individual DNA Strand: A Step Toward DNA Sequencing in Nanopores, Angew. Chem. Int. Ed, vol.44, issue.9, pp.1401-1404, 2005.

T. Z. Butler, M. Pavlenok, I. M. Derrington, M. Niederweis, and J. H. Gundlach, Single-molecule DNA detection with an engineered MspA protein nanopore, Proc. Natl. Acad. Sci, vol.105, issue.52, pp.20647-20652, 2008.

I. M. Derrington, Nanopore DNA sequencing with MspA, Proc. Natl. Acad. Sci, vol.107, issue.37, pp.16060-16065, 2010.

C. Cao, Mapping the sensing spots of aerolysin for single oligonucleotides analysis, Nat. Commun, vol.9, issue.1, p.2823, 2018.

J. Mathé, H. Visram, V. Viasnoff, Y. Rabin, and A. Meller, Nanopore Unzipping of Individual DNA Hairpin Molecules, Biophys. J, vol.87, issue.5, pp.3205-3212, 2004.

J. Mathé, A. Aksimentiev, D. R. Nelson, K. Schulten, and A. Meller, Orientation discrimination of single-stranded DNA inside the ?-hemolysin membrane channel, Proc. Natl. Acad. Sci. U. S. A, vol.102, issue.35, pp.12377-12382, 2005.

M. Wanunu, B. Chakrabarti, J. Mathé, D. R. Nelson, and A. Meller, Orientation-dependent interactions of DNA with an $\ensuremath{\alpha}$-hemolysin channel, Phys. Rev. E, vol.77, issue.3, p.31904, 2008.

J. Li, D. Stein, C. Mcmullan, D. Branton, M. J. Aziz et al., Ion-beam sculpting at nanometre length scales, Nature, vol.412, issue.6843, pp.166-169, 2001.

S. Garaj, W. Hubbard, A. Reina, J. Kong, D. Branton et al., Graphene as a subnanometre trans-electrode membrane, Nature, vol.467, issue.7312, pp.190-193, 2010.

C. A. Merchant, DNA Translocation through Graphene Nanopores, Nano Lett, vol.10, issue.8, pp.2915-2921, 2010.

G. F. Schneider, DNA Translocation through Graphene Nanopores, Nano Lett, vol.10, issue.8, pp.3163-3167, 2010.

A. R. Hall, A. Scott, D. Rotem, K. K. Mehta, H. Bayley et al., Hybrid pore formation by directed insertion of ?-haemolysin into solid-state nanopores, Nat. Nanotechnol, vol.5, issue.12, pp.874-877, 2010.

E. C. Yusko, Controlling protein translocation through nanopores with bio-inspired fluid walls, Nat. Nanotechnol, vol.6, issue.4, pp.253-260, 2011.

S. R. Wente and M. P. Rout, The Nuclear Pore Complex and Nuclear Transport, Cold Spring Harb. Perspect. Biol, vol.2, issue.10, p.562, 2010.

C. Strambio-de-castillia, M. Niepel, and M. P. Rout, The nuclear pore complex: bridging nuclear transport and gene regulation, Nat. Rev. Mol. Cell Biol, vol.11, issue.7, pp.490-501, 2010.

D. A. Doyle, The Structure of the Potassium Channel: Molecular Basis of K+ Conduction and Selectivity, vol.280, pp.69-77, 1998.

S. Choe, Ion channel structure: Potassium channel structures, Nat. Rev. Neurosci, vol.3, issue.2, pp.115-121, 2002.

K. Ribbeck and D. Görlich, Kinetic analysis of translocation through nuclear pore complexes, EMBO J, vol.20, issue.6, pp.1320-1330, 2001.

W. H. Roos, I. L. Ivanovska, A. Evilevitch, and G. J. Wuite, Viral capsids: Mechanical characteristics, genome packaging and delivery mechanisms, Cell. Mol. Life Sci, vol.64, issue.12, p.1484, 2007.

P. Guo, Z. Zhao, J. Haak, S. Wang, and T. Weitao, Common Mechanisms of DNA translocation motors in Bacteria and Viruses Using One-way Revolution Mechanism without Rotation, Biotechnol. Adv, vol.32, issue.4, pp.853-872, 2014.

S. Howorka and Z. Siwy, Nanopore analytics: sensing of single molecules, Chem. Soc. Rev, vol.38, issue.8, pp.2360-2384, 2009.

S. Howorka, Building membrane nanopores, Nat. Nanotechnol, vol.12, issue.7, pp.619-630, 2017.

M. Lepoitevin, T. Ma, M. Bechelany, J. Janot, and S. Balme, Functionalization of single solid state nanopores to mimic biological ion channels: A review, Adv. Colloid Interface Sci, vol.250, pp.195-213, 2017.

B. J. Berube and J. Bubeck-wardenburg, Staphylococcus aureus ?-Toxin: Nearly a Century of Intrigue, Toxins, vol.5, issue.6, pp.1140-1166, 2013.

F. C. Los, T. M. Randis, R. V. Aroian, and A. J. Ratner, Role of Pore-Forming Toxins in Bacterial Infectious Diseases, Microbiol. Mol. Biol. Rev. MMBR, vol.77, issue.2, pp.173-207, 2013.

M. D. Peraro and F. G. Van-der-goot, Pore-forming toxins: ancient, but never really out of fashion, Nat. Rev. Microbiol, vol.14, issue.2, pp.77-92, 2016.

M. R. Gonzalez, M. Bischofberger, L. Pernot, F. G. Van-der-goot, and B. Frêche, Bacterial poreforming toxins: The (w)hole story?, Cell. Mol. Life Sci, vol.65, issue.3, pp.493-507, 2008.

S. Agah, M. Zheng, M. Pasquali, and A. B. Kolomeisky, DNA sequencing by nanopores: advances and challenges, J. Phys. Appl. Phys, vol.49, issue.41, p.413001, 2016.

J. E. Reiner, J. J. Kasianowicz, B. J. Nablo, and J. W. Robertson, Theory for polymer analysis using nanopore-based single-molecule mass spectrometry, Proc. Natl. Acad. Sci, vol.107, issue.27, pp.12080-12085, 2010.

A. E. Chavis, Single Molecule Nanopore Spectrometry for Peptide Detection, ACS Sens, vol.2, issue.9, pp.1319-1328, 2017.

E. Gouaux, ?-Hemolysin fromStaphylococcus aureus:An Archetype of ?-Barrel, Channel-Forming Toxins, J. Struct. Biol, vol.121, issue.2, pp.110-122, 1998.

C. G. Rodrigues, D. C. Machado, A. M. Silva, J. J. Júnior, and O. V. Krasilnikov, Hofmeister Effect in Confined Spaces: Halogen Ions and Single Molecule Detection, Biophys. J, vol.100, issue.12, pp.2929-2935, 2011.

C. T. Wong and M. Muthukumar, Polymer translocation through ?-hemolysin pore with tunable polymer-pore electrostatic interaction, J. Chem. Phys, vol.133, issue.4, 2010.

J. J. Kasianowicz and S. M. Bezrukov, Protonation dynamics of the alpha-toxin ion channel from spectral analysis of pH-dependent current fluctuations, Biophys. J, vol.69, issue.1, pp.94-105, 1995.

F. Piguet, High Temperature Extends the Range of Size Discrimination of Nonionic Polymers by a Biological Nanopore, Sci. Rep, vol.6, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02065255

M. W. Parker, Structure of the Aeromonas toxin proaerolysin in its water-soluble and membrane-channel states, Nature, vol.367, issue.6460, pp.292-295, 1994.

F. G. Van-der-goot, J. Ausio, K. R. Wong, F. Pattus, and J. T. Buckley, Dimerization stabilizes the pore-forming toxin aerolysin in solution, J. Biol. Chem, vol.268, issue.24, pp.18272-18279, 1993.

K. R. Hardie, A. Schulze, M. W. Parker, and J. T. Buckley, Vibrio spp. secrete proaerolysin as a folded dimer without the need for disulphide bond formation, Mol. Microbiol, vol.17, issue.6, pp.1035-1044

M. W. Parker, F. G. Goot, and J. T. Buckley, Aerolysin -the ins and outs of a model channel-forming toxin, Mol. Microbiol, vol.19, issue.2, pp.205-212

M. T. Degiacomi, Molecular assembly of the aerolysin pore reveals a swirling membraneinsertion mechanism, Nat. Chem. Biol, vol.9, issue.10, pp.623-629, 2013.

I. Iacovache, S. D. Carlo, N. Cirauqui, M. D. Peraro, F. G. Van-der-goot et al., Cryo-EM structure of aerolysin variants reveals a novel protein fold and the pore-formation process, Nat. Commun, vol.7, p.12062, 2016.

M. Pastoriza-gallego, Dynamics of Unfolded Protein Transport through an Aerolysin Pore, J. Am. Chem. Soc, vol.133, issue.9, pp.2923-2931, 2011.

B. Cressiot, E. Braselmann, A. Oukhaled, A. H. Elcock, J. Pelta et al., Dynamics and Energy Contributions for Transport of Unfolded Pertactin through a Protein Nanopore, ACS Nano, vol.9, issue.9, pp.9050-9061, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02065108

F. Piguet, H. Ouldali, M. Pastoriza-gallego, P. Manivet, J. Pelta et al., Identification of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore, Nat. Commun, vol.9, issue.1, p.966, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02110440

L. Payet, Temperature Effect on Ionic Current and ssDNA Transport through Nanopores, Biophys. J, vol.109, issue.8, pp.1600-1607, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01444203

M. Niederweis, Mycobacterial porins -new channel proteins in unique outer membranes, Mol. Microbiol, vol.49, issue.5, pp.1167-1177

P. J. Brennan and H. Nikaido, The Envelope of Mycobacteria, Annu. Rev. Biochem, vol.64, issue.1, pp.29-63, 1995.

H. Nikaido, Porins and specific channels of bacterial outer membranes, Mol. Microbiol, vol.6, issue.4, pp.435-442

H. Nikaido, Porins and specific diffusion channels in bacterial outer membranes, J. Biol. Chem, vol.269, issue.6, pp.3905-3908, 1994.

M. Faller, M. Niederweis, and G. E. Schulz, The Structure of a Mycobacterial Outer-Membrane Channel, Science, vol.303, issue.5661, pp.1189-1192, 2004.

E. A. Manrao, Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase, Nat. Biotechnol, vol.30, issue.4, p.349, 2012.

P. Mueller, D. O. Rudin, H. T. Tien, and W. C. Wescott, Reconstitution of Excitable Cell Membrane Structure in Vitro, Circulation, vol.26, issue.5, pp.1167-1171, 1962.

M. Montal and P. Mueller, Formation of Bimolecular Membranes from Lipid Monolayers and a Study of Their Electrical Properties, Proc. Natl. Acad. Sci, vol.69, pp.3561-3566, 1972.

K. Simons and J. L. Sampaio, Membrane Organization and Lipid Rafts, Cold Spring Harb. Perspect. Biol, vol.3, issue.10, 2011.

V. A. Frolov, A. V. Shnyrova, and J. Zimmerberg, Lipid Polymorphisms and Membrane Shape, Cold Spring Harb. Perspect. Biol, vol.3, issue.11, p.4747, 2011.

M. F. Brown, Curvature Forces in Membrane Lipid-Protein Interactions, Biochemistry (Mosc.), vol.51, issue.49, pp.9782-9795, 2012.

M. S. Bretscher, Asymmetrical Lipid Bilayer Structure for Biological Membranes, Nature. New Biol, vol.236, issue.61, pp.11-12, 1972.

J. E. Rothman and J. Lenard, Membrane asymmetry, Science, vol.195, issue.4280, pp.743-753, 1977.

T. Heimburg, Lipid ion channels, Biophys. Chem, vol.150, issue.1, pp.2-22, 2010.

C. G. Siontorou, G. Nikoleli, D. P. Nikolelis, and S. K. Karapetis, Artificial Lipid Membranes: Past, Present, and Future, Membranes, vol.7, issue.3, 2017.

H. Lindsey, N. O. Petersen, and S. I. Chan, Physicochemical characterization of 1,2-diphytanoyl-snglycero-3-phosphocholine in model membrane systems, Biochim. Biophys. Acta BBA -Biomembr, vol.555, issue.1, pp.147-167, 1979.

S. H. White, D. C. Petersen, S. Simon, and M. Yafuso, Formation of planar bilayer membranes from lipid monolayers. A critique, Biophys. J, vol.16, issue.5, pp.481-489, 1976.

J. M. Del-rio, E. Martinez, S. Zaitseva, G. Petersen, J. C. Baaken et al., Automated Formation of Lipid Membrane Microarrays for Ionic Single-Molecule Sensing with Protein Nanopores, Small, vol.11, issue.1, pp.119-125, 2015.

G. Baaken, M. Sondermann, C. Schlemmer, J. Rühe, and J. C. Behrends, Planar microelectrodecavity array for high-resolution and parallel electrical recording of membrane ionic currents, Lab. Chip, vol.8, issue.6, pp.938-944, 2008.

G. Baaken, N. Ankri, A. Schuler, J. Rühe, and J. C. Behrends, Nanopore-Based Single-Molecule Mass Spectrometry on a Lipid Membrane Microarray, ACS Nano, vol.5, issue.10, pp.8080-8088, 2011.

J. Roman, B. Le-pioufle, L. Auvray, J. Pelta, and L. Bacri, From current trace to the understanding of confined media, Eur. Phys. J. E, vol.41, issue.9, p.99, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01882378

F. J. Sigworth and S. M. Sine, Data transformations for improved display and fitting of singlechannel dwell time histograms, Biophys. J, vol.52, issue.6, pp.1047-1054, 1987.

D. Colquhoun and F. J. Sigworth, Fitting and Statistical Analysis of Single-Channel Records, Single-Channel Recording, pp.483-587, 1995.

C. T. Wong and M. Muthukumar, Polymer capture by electro-osmotic flow of oppositely charged nanopores, J. Chem. Phys, vol.126, issue.16, p.164903, 2007.

M. Firnkes, D. Pedone, J. Knezevic, M. Döblinger, and U. Rant, Electrically Facilitated Translocations of Proteins through Silicon Nitride Nanopores: Conjoint and Competitive Action of Diffusion, Electrophoresis, and Electroosmosis, Nano Lett, vol.10, issue.6, pp.2162-2167, 2010.

V. Van-meervelt, Real-Time Conformational Changes and Controlled Orientation of Native Proteins Inside a Protein Nanoreactor, J. Am. Chem. Soc, vol.139, issue.51, pp.18640-18646, 2017.

C. Cao, J. Yu, Y. Wang, Y. Ying, and Y. Long, Driven Translocation of Polynucleotides Through an Aerolysin Nanopore, Anal. Chem, vol.88, issue.10, pp.5046-5049, 2016.

K. Knop, R. Hoogenboom, D. Fischer, and U. S. Schubert, Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives, Angew. Chem. Int. Ed, vol.49, issue.36, pp.6288-6308, 2010.

L. L. Lee and J. C. Lee, Thermal stability of proteins in the presence of poly(ethylene glycols), Biochemistry (Mosc.), vol.26, issue.24, pp.7813-7819, 1987.

S. N. Timasheff, The Control of Protein Stability and Association by Weak Interactions with Water: How Do Solvents Affect These Processes?, Annu. Rev. Biophys. Biomol. Struct, vol.22, issue.1, pp.67-97, 1993.

K. C. Ingham, Polyethylene glycol in aqueous solution: Solvent perturbation and gel filtration studies, Arch. Biochem. Biophys, vol.184, issue.1, pp.59-68, 1977.

E. M. Valle, Cyclodextrins and their uses: a review, Process Biochem, vol.39, issue.9, pp.1033-1046, 2004.

L. Q. Gu and H. Bayley, Interaction of the noncovalent molecular adapter, beta-cyclodextrin, with the staphylococcal alpha-hemolysin pore, Biophys. J, vol.79, issue.4, 1967.

, Cyclodextrins, p.11, 2018.

Y. Marcus, Ionic radii in aqueous solutions, Chem. Rev, vol.88, issue.8, pp.1475-1498, 1988.

Y. Marcus, Thermodynamics of solvation of ions

, J. Chem. Soc. Faraday Trans, vol.87, issue.18, pp.2995-2999, 1991.

S. Varma and S. B. Rempe, Coordination numbers of alkali metal ions in aqueous solutions, Biophys. Chem, vol.124, issue.3, pp.192-199, 2006.

J. Mähler and I. Persson, A Study of the Hydration of the Alkali Metal Ions in Aqueous Solution, Inorg. Chem, vol.51, issue.1, pp.425-438, 2012.

J. N. Israelachvili, Intermolecular and Surface Forces, 2015.

K. Tasaki, Poly(oxyethylene)?Water Interactions: A Molecular Dynamics Study, J. Am. Chem. Soc, vol.118, issue.35, pp.8459-8469, 1996.

D. Ray, D. Feller, M. B. More, E. D. Glendening, and P. B. Armentrout, Cation?Ether Complexes in the Gas Phase: Bond Dissociation Energies and Equilibrium Structures of Li+(1,2-dimethoxyethane)x, x = 1 and 2, and Li+(12-crown-4), J. Phys. Chem, vol.100, issue.40, pp.16116-16125, 1996.

A. V. Skolunov, Solubility of alkali metal chlorides and hydroxides in water, Fibre Chem, vol.25, issue.6, pp.463-467, 1994.

P. J. Bond, A. T. Guy, A. J. Heron, H. Bayley, and S. Khalid, Molecular Dynamics Simulations of DNA within a Nanopore: Arginine?Phosphate Tethering and a Binding/Sliding Mechanism for Translocation, Biochemistry (Mosc.), vol.50, issue.18, pp.3777-3783, 2011.

J. Lutz, Defining the Field of Sequence-Controlled Polymers, Macromol. Rapid Commun, vol.38, issue.24, p.1700582

J. Lutz, J. Lehn, E. W. Meijer, and K. Matyjaszewski, From precision polymers to complex materials and systems, Nat. Rev. Mater, vol.1, issue.5, p.16024, 2016.

J. Lutz, M. Ouchi, D. R. Liu, and M. Sawamoto, Sequence-Controlled Polymers, Science, vol.341, issue.6146, p.1238149, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01657091

A. Ouahabi, L. Charles, and J. Lutz, Synthesis of Non-Natural Sequence-Encoded Polymers Using Phosphoramidite Chemistry, J. Am. Chem. Soc, vol.137, issue.16, pp.5629-5635, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01460528

A. Ouahabi, M. Kotera, L. Charles, and J. Lutz, Synthesis of Monodisperse Sequence-Coded Polymers with Chain Lengths above DP100, ACS Macro Lett, vol.4, issue.10, pp.1077-1080, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01460530

I. E. Franco, J. Combet, and F. Schosseler, CNTb, a set of scripts for batch processing and statistical analysis of photon correlation spectroscopy data via CONTIN inversion, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00665367

C. D. Putnam, M. Hammel, G. L. Hura, and J. A. Tainer, X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution, Q. Rev. Biophys, vol.40, issue.3, pp.191-285, 2007.

A. Guinier, La diffraction des rayons X aux très petits angles : application à l'étude de phénomènes ultramicroscopiques, Ann. Phys, vol.11, issue.12, pp.161-237, 1939.

A. Y. Sim, J. Lipfert, D. Herschlag, and S. Doniach, Salt dependence of the radius of gyration and flexibility of single-stranded DNA in solution probed by small-angle x-ray scattering, Phys. Rev. E, vol.86, issue.2, p.21901, 2012.

M. Muthukumar, Double screening in polyelectrolyte solutions: Limiting laws and crossover formulas, J. Chem. Phys, vol.105, issue.12, pp.5183-5199, 1996.

H. Schiessel and P. Pincus, Counterion-Condensation-Induced Collapse of Highly Charged Polyelectrolytes, Macromolecules, vol.31, issue.22, pp.7953-7959, 1998.

R. G. Winkler, M. Gold, and P. Reineker, Collapse of Polyelectrolyte Macromolecules by Counterion Condensation and Ion Pair Formation: A Molecular Dynamics Simulation Study, Phys. Rev. Lett, vol.80, issue.17, pp.3731-3734, 1998.

S. Liu, K. Ghosh, and M. Muthukumar, Polyelectrolyte solutions with added salt: A simulation study, J. Chem. Phys, vol.119, issue.3, pp.1813-1823, 2003.

P. Loh, Collapse of Linear Polyelectrolyte Chains in a Poor Solvent: When Does a Collapsing Polyelectrolyte Collect its Counterions?, Macromolecules, vol.41, issue.23, pp.9352-9358, 2008.

J. Y. Carrillo and A. V. Dobrynin, Polyelectrolytes in Salt Solutions: Molecular Dynamics Simulations, Macromolecules, vol.44, issue.14, pp.5798-5816, 2011.

A. H. Laszlo, Decoding long nanopore sequencing reads of natural DNA, Nat. Biotechnol, vol.32, issue.8, pp.829-833, 2014.

B. Jeon and M. Muthukumar, Determination of Molecular Weights in Polyelectrolyte Mixtures Using Polymer Translocation through a Protein Nanopore, ACS Macro Lett, vol.3, issue.9, pp.911-915, 2014.

R. M. Manara, A. T. Guy, E. J. Wallace, and S. Khalid, Free-Energy Calculations Reveal the Subtle Differences in the Interactions of DNA Bases with ?-Hemolysin, J. Chem. Theory Comput, vol.11, issue.2, pp.810-816, 2015.

N. F. König, A. Ouahabi, S. Poyer, L. Charles, and J. Lutz, A Simple Post-Polymerization Modification Method for Controlling Side-Chain Information in Digital Polymers, Angew. Chem. Int. Ed, vol.56, issue.25, pp.7297-7301, 2017.

C. R. Martinez and B. L. Iverson, Rethinking the term 'pi-stacking, Chem. Sci, vol.3, issue.7, pp.2191-2201, 2012.

V. Ramakrishnan, Histone Structure and the Organization of the Nucleosome, Annu. Rev. Biophys. Biomol. Struct, vol.26, issue.1, pp.83-112, 1997.

L. Mariño-ramírez, M. G. Kann, B. A. Shoemaker, and D. Landsman, Histone structure and nucleosome stability, Expert Rev. Proteomics, vol.2, issue.5, pp.719-729, 2005.

N. M. Luscombe, S. E. Austin, H. M. Berman, and J. M. Thornton, An overview of the structures of protein-DNA complexes, Genome Biol, vol.1, issue.1, p.1, 2000.

W. H. Hudson and E. A. Ortlund, The structure, function and evolution of proteins that bind DNA and RNA, Nat. Rev. Mol. Cell Biol, vol.15, issue.11, pp.749-760, 2014.

U. F. Keyser, Controlling molecular transport through nanopores, J. R. Soc. Interface, vol.8, issue.63, pp.1369-1378, 2011.

H. Chen, S. P. Meisburger, S. A. Pabit, J. L. Sutton, W. W. Webb et al., Ionic strengthdependent persistence lengths of single-stranded RNA and DNA, Proc. Natl. Acad. Sci, vol.109, issue.3, pp.799-804, 2012.

M. C. Murphy, I. Rasnik, W. Cheng, T. M. Lohman, and T. Ha, Probing Single-Stranded DNA Conformational Flexibility Using Fluorescence Spectroscopy, Biophys. J, vol.86, issue.4, pp.2530-2537, 2004.

M. Boukhet, F. Piguet, H. Ouldali, M. Pastoriza-gallego, J. Pelta et al., Probing driving forces in aerolysin and ?-hemolysin biological nanopores: electrophoresis versus electroosmosis, Nanoscale, vol.8, issue.43, pp.18352-18359, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02065260

M. Boukhet, N. F. König, A. A. Ouahabi, G. Baaken, J. Lutz et al., Translocation of Precision Polymers through Biological Nanopores, Macromol. Rapid Commun, vol.38, issue.24, p.1700680, 2017.