, Côté: L (left) -à gauche, R (right) -à droite, C (central) -au centre. A/V (Apprentissage/Validation) : base d'apprentissage / base de validation, Les dimensions des images sont de 512x512 pixels, vol.20

, Base d'images utilisées pour l'individualisation. De gauche à droite, de haut à bas : images de N°1 à N°58, vol.92

R. Adams and L. Bischof, Seeded region growing, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.16, pp.641-647, 1994.

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts et al., Molecular Biology of the Cell, 2002.

Y. Al-kofahi, W. Lassoued, W. Lee, and B. Roysam, Improved Automatic Detection and Segmentation of Cell Nuclei in Histopathology Images, IEEE Transactions on Biomedical Engineering, vol.57, pp.841-852, 2010.

Y. Amit and D. Geman, Shape Quantization and Recognition with Randomized Trees, Neural Computation, vol.9, pp.1545-1588, 1997.

P. Andersen, R. Morris, D. Amaral, T. Bliss, and J. O'keefe, The Hippocampus Book, 2016.

P. Andrey, K. Kiêu, C. Kress, G. Lehmann, L. Tirichine et al., Statistical Analysis of 3D Images Detects Regular Spatial Distributions of Centromeres and Chromocenters in Animal and Plant Nuclei, PLOS Computational Biology, vol.6, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01203864

F. A. Azevedo, L. R. Carvalho, L. T. Grinberg, J. M. Farfel, R. E. Ferretti et al., Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain, J. Comp. Neurol, vol.513, pp.532-541, 2009.

D. L. Bailey, D. W. Townsend, P. E. Valk, and M. N. Maisey, Positron Emission Tomography -Basic Sciences | Dale L, 2005.

X. Bai, C. Sun, and F. Zhou, Touching Cells Splitting by Using Concave Points and Ellipse Fitting, Presented at the Digital Image Computing: Techniques and Applications (DICTA), pp.271-278, 2008.

Y. Balbastre, D. Rivière, and N. Souedet, Primatologist: a modular segmentation pipeline for Macaque brain morphometry, NeuroImage, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02155739

C. Ballard, S. Gauthier, A. Corbett, C. Brayne, D. Aarsland et al., Alzheimer's disease, The Lancet, vol.377, issue.10, pp.61349-61358, 2011.

J. L. Barranco-quintana, M. F. Allam, A. S. Castillo, R. F. Navajas, and .. , Parkinson's disease and tea: a quantitative review, J Am Coll Nutr, vol.28, pp.1-6, 2009.

Y. Bazi, L. Bruzzone, and F. Melgani, Image thresholding based on the EM algorithm and the generalized Gaussian distribution, Pattern Recognition, vol.40, pp.619-634, 2007.

M. F. Bear, B. W. Connors, M. A. Nieoullon, and A. Et-adaptation-française, Neurosciences, 2016.

X. Bichat, Traité des membranes en général et de diverses membranes en particulier, 1799.

L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and Regression Trees, 1984.

K. Brodmann, Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues, 1909.

A. Burns and S. Iliffe, Alzheimer's disease, BMJ, vol.338, p.158, 2009.

H. Cai, Z. Yang, X. Cao, W. Xia, and X. Xu, A new iterative triclass thresholding technique in image segmentation, IEEE Trans Image Process, vol.23, pp.1038-1046, 2014.

N. R. Carlson, Physiology of Behavior, 11 edition, 2012.

L. J. Chareyron, P. Banta-lavenex, D. G. Amaral, and P. Lavenex, Stereological analysis of the rat and monkey amygdala, J. Comp. Neurol, vol.519, pp.3218-3239, 2011.

H. D. Cheng, X. H. Jiang, Y. Sun, and J. L. Wang, Color image segmentation: Advances and prospects, Pattern Recognition, vol.34, pp.2259-2281, 2001.

C. Chubb, Y. Inagaki, P. Sheu, B. Cummings, A. Wasserman et al., BioVision: an application for the automated image analysis of histological sections, Neurobiol. Aging, vol.27, pp.1462-1476, 2006.

A. H. Coons, H. J. Creech, and R. N. Jones, Immunological Properties of an Antibody Containing a Fluorescent Group, Proceedings of the Society for Experimental Biology and Medicine, vol.47, pp.200-202, 1941.

J. Cousty, G. Bertrand, L. Najman, and M. Couprie, Watershed Cuts: Minimum Spanning Forests and the Drop of Water Principle, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.31, pp.1362-1374, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00622410

O. Dan?k, P. Matula, C. Ortiz-de-solórzano, A. Muñoz-barrutia, M. Ma?ka et al., Segmentation of Touching Cell Nuclei Using a Two-Stage Graph Cut Model, Image Analysis, Lecture Notes in Computer Science. Presented at the Scandinavian Conference on Image Analysis, pp.410-419, 2009.

J. Dauguet, F. Condé, P. Hantraye, V. Frouin, and T. Delzescaux, Generation of a 3D atlas of the nuclear division of the thalamus based on histological sections of primate: Intra-and intersubject atlas-to-MRI warping. IRBM, NUMÉRO SPÉCIAL TECHNOLOGIES POUR L'AUTONOMIE, vol.30, pp.281-291, 2009.

M. Davies, The Neuron: size comparison. Neuroscience: A journey through the brain, 2002.

P. Dayalu and R. L. Albin, Huntington disease: pathogenesis and treatment, Neurol Clin, vol.33, pp.101-114, 2015.

P. D. Dodson, J. T. Larvin, J. M. Duffell, F. N. Garas, N. M. Doig et al., Distinct developmental origins manifest in the specialized encoding of movement by adult neurons of the external globus pallidus, Neuron, vol.86, pp.501-513, 2015.

F. Doetsch, The glial identity of neural stem cells, Nat. Neurosci, vol.6, pp.1127-1134, 2003.

S. K. Doke and S. C. Dhawale, Alternatives to animal testing: A review, Saudi Pharm J, vol.23, pp.223-229, 2015.

X. Dong, Y. Wang, and Z. Qin, Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases, Acta Pharmacol. Sin, vol.30, pp.379-387, 2009.

A. Dubois, A. Hérard, B. Delatour, P. Hantraye, G. Bonvento et al., Detection by voxel-wise statistical analysis of significant changes in regional cerebral glucose uptake in an APP/PS1 transgenic mouse model of Alzheimer's disease, Neuroimage, vol.51, pp.586-598, 2010.

S. S. Fan and Y. Lin, A multi-level thresholding approach using a hybrid optimal estimation algorithm, Pattern Recognition Letters, vol.28, pp.662-669, 2007.

E. J. Fine, C. C. Ionita, and L. Lohr, The history of the development of the cerebellar examination, Semin Neurol, vol.22, pp.375-384, 2002.

D. G. Flood and P. D. Coleman, Neuron numbers and sizes in aging brain: comparisons of human, monkey, and rodent data, Neurobiol. Aging, vol.9, pp.453-463, 1988.

S. Frank, Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study, GBD 2015 Disease and Injury Incidence and Prevalence Collaborators, vol.11, pp.31678-31684, 2014.

, Global, Regional, and National Life Expectancy, All-Cause Mortality, and Cause-Specific Mortality for 249 Causes of Death, 1980-2015: A Systematic Analysis for the Global Burden of Disease Study, GBD 2015 Mortality and Causes of Death, Collaborators, vol.388, pp.1459-1544, 2015.

P. Geurts, D. Ernst, and L. Wehenkel, Extremely randomized trees, Mach Learn, vol.63, pp.3-42, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00341932

R. Gittins and P. J. Harrison, Neuronal density, size and shape in the human anterior cingulate cortex: a comparison of Nissl and NeuN staining, Brain Research Bulletin, vol.63, pp.155-160, 2004.

H. Gray, Anatomy of the Human Body, 1918.

T. Guadalupe, S. R. Mathias, T. G. Vanerp, C. D. Whelan, M. P. Zwiers et al., Brain Imaging Behav, 2016.

H. J. Gundersen, Stereology of Arbitrarily Shaped Particles: Unbiased Estimation of Number and Sizes, Proceedings of the First International Symposium for Science on Form. Presented at the Proceedings of the First International Symposium for Science on Form, 1986.

A. Hanbury, Constructing cylindrical coordinate colour spaces, Pattern Recognition Letters, vol.29, pp.494-500, 2008.

J. A. Hartigan and M. A. Wong, Algorithm AS 136: A K-Means Clustering Algorithm, Journal of the Royal Statistical Society. Series C (Applied Statistics), vol.28, pp.100-108, 1979.

S. Herculano-houzel, The Human Brain in Numbers: A Linearly Scaled-up Primate Brain, Front Hum Neurosci, vol.3, 2009.

Y. He, H. Gong, B. Xiong, X. Xu, A. Li et al., iCut: an Integrative Cut Algorithm Enables Accurate Segmentation of Touching Cells, Sci Rep, vol.5, 2015.

D. M. Holtzman, J. C. Morris, and A. M. Goate, Alzheimer's disease: the challenge of the second century, Sci Transl Med, vol.3, 2011.

R. Hooke, Micrographia: Or, Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses, with Observations and Inquiries Thereupon, Science Heritage, 1667.

N. Ishizuka, W. M. Cowan, and D. G. Amaral, A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus, J. Comp. Neurol, vol.362, pp.17-45, 1995.

J. Jelsing, R. Nielsen, A. K. Olsen, N. Grand, R. Hemmingsen et al., The postnatal development of neocortical neurons and glial cells in the Göttingen minipig and the domestic pig brain, J. Exp. Biol, vol.209, pp.1454-1462, 2006.

M. Joliot, N. Tzourio-mazoyer, and B. Mazoyer, Intra-hemispheric intrinsic connectivity asymmetry and its relationships with handedness and language Lateralization, Neuropsychologia, vol.93, pp.437-447, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01382601

P. Kainz, M. Urschler, S. Schulter, P. Wohlhart, and V. Lepetit, You Should Use Regression to Detect Cells, Medical Image Computing and Computer-Assisted Intervention -MICCAI 2015, Lecture Notes in Computer Science. Presented at the International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.276-283, 2015.

L. V. Kalia and A. E. Lang, Parkinson's disease, Lancet, vol.386, issue.14, pp.61393-61396, 2015.

A. S. Karlsen and B. Pakkenberg, Total numbers of neurons and glial cells in cortex and basal ganglia of aged brains with Down syndrome--a stereological study, Cereb. Cortex, vol.21, pp.2519-2524, 2011.

M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active Contour Models, International Journal of Computer Vision, pp.321-331, 1988.

H. Kolb and E. Fernandez, Webvision: The Organization of the Retina and Visual System, 1995.

S. Kothari, Q. Chaudry, and M. D. Wang, Automated cell counting and cluster segmentation using concavity detection and ellipse fitting techniques, IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009. ISBI '09. Presented at the IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.795-798, 2009.

C. C. Larsen, K. Bonde-larsen, N. Bogdanovic, H. Laursen, N. Graem et al., Total number of cells in the human newborn telencephalic wall, Neuroscience, vol.139, pp.999-1003, 2006.

G. Li, T. Liu, J. Nie, L. Guo, J. Chen et al., Segmentation of touching cell nuclei using gradient flow tracking, J Microsc, vol.231, pp.47-58, 2008.

N. Loménie and D. Racoceanu, Point set morphological filtering and semantic spatial configuration modeling: Application to microscopic image and bio-structure analysis, Pattern Recognition, vol.45, pp.2894-2911, 2012.

X. Lou, U. Koethe, J. Wittbrodt, and F. A. Hamprecht, Learning to segment dense cell nuclei with shape prior, 2012 IEEE Conference on Computer Vision and Pattern Recognition. Presented at the 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.1012-1018, 2012.

S. Maingault, N. Tzourio-mazoyer, B. Mazoyer, and F. Crivello, Regional correlations between cortical thickness and surface area asymmetries: A surface-based morphometry study of 250 adults, Neuropsychologia, vol.93, pp.350-364, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01382643

X. Mao, M. T. Ou, S. S. Karuppagounder, T. Kam, X. Yin et al., , p.151

, Pathological ?-synuclein transmission initiated by binding lymphocyte-activation gene 3, Science, vol.353, 2016.

T. M. Mayhew, A review of recent advances in stereology for quantifying neural structure, J. Neurocytol, vol.21, pp.313-328, 1992.

C. Molnar, I. H. Jermyn, Z. Kato, V. Rahkama, P. Östling et al., Accurate Morphology Preserving Segmentation of Overlapping Cells based on Active Contours, Sci Rep, vol.6, p.32412, 2016.

L. Mosconi, Brain glucose metabolism in the early and specific diagnosis of Alzheimer's disease. FDG-PET studies in MCI and AD, Eur. J. Nucl. Med. Mol. Imaging, vol.32, pp.486-510, 2005.

R. J. Mullen, C. R. Buck, and A. M. Smith, NeuN, a neuronal specific nuclear protein in vertebrates, Development, vol.116, pp.201-211, 1992.

A. Nedzved, S. Ablameyko, and I. Pitas, Morphological segmentation of histology cell images, 15th International Conference on Pattern Recognition, pp.500-503, 2000.

E. J. Nestler, S. E. Hyman, and R. C. Malenka, Molecular Neuropharmacology: A Foundation for Clinical Neuroscience, 2008.

A. Nishiyama, Z. Yang, and A. Butt, Astrocytes and NG2-glia: what's in a name?, J. Anat, vol.207, pp.687-693, 2005.

S. C. Noctor, V. Martínez-cerdeño, and A. R. Kriegstein, Contribution of intermediate progenitor cells to cortical histogenesis, Arch. Neurol, vol.64, pp.639-642, 2007.

T. Ojala, M. Pietikäinen, and D. Harwood, A comparative study of texture measures with classification based on featured distributions, Pattern Recognition, vol.29, pp.51-59, 1996.

T. Ojala, M. Pietikäinen, and T. Mäenpää, Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns, IEEE Trans. Pattern Anal. Mach. Intell, vol.24, pp.971-987, 2002.

K. D. Onos, S. J. Sukoff-rizzo, G. R. Howell, and M. Sasner, Toward more predictive genetic mouse models of Alzheimer's disease, Brain Res. Bull, vol.122, pp.1-11, 2016.

N. Otsu, A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on Systems, Man, and Cybernetics, vol.9, pp.62-66, 1979.

B. Pakkenberg and H. J. Gundersen, Neocortical neuron number in humans: effect of sex and age, J. Comp. Neurol, vol.384, pp.312-320, 1997.

, Parkinson's Disease Information Page, 2016.

R. Passingham, How good is the macaque monkey model of the human brain?, Curr Opin Neurobiol, vol.19, pp.6-11, 2009.

D. P. Pelvig, H. Pakkenberg, A. K. Stark, and B. Pakkenberg, Neocortical glial cell numbers in human brains, Neurobiol. Aging, vol.29, pp.1754-1762, 2008.

P. Perona and J. Malik, Scale space and edge detection using anisotropic diffusion, IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.629-639, 1990.

A. Petiet, B. Delatour, and M. Dhenain, Models of neurodegenerative disease -Alzheimer's Anatomical and amyloid plaque imaging, Methods Mol Biol, vol.771, 2011.

T. L. Platt, V. L. Reeves, and M. P. Murphy, Transgenic Models of Alzheimer's Disease: Better Utilization of Existing Models through Viral Transgenesis, Biochim Biophys Acta, vol.1832, pp.1437-1448, 2013.

E. Poulain, S. Prigent, E. Soubies, and X. Descombes, Cells detection using segmentation competition, 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), 2015.
URL : https://hal.archives-ouvertes.fr/hal-01113167

, IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp.1208-1211

G. K. Pyapali, A. Sik, M. Penttonen, G. Buzsaki, and D. A. Turner, Dendritic properties of hippocampal CA1 pyramidal neurons in the rat: intracellular staining in vivo and in vitro, J. Comp. Neurol, vol.391, pp.335-352, 1998.

J. Qi, Dense nuclei segmentation based on graph cut and convexity-concavity analysis, J Microsc, vol.253, pp.42-53, 2014.

S. W. Ranson, The anatomy of the nervous system, from the standpoint of development and function, 1920.

C. Schmitz, B. S. Eastwood, S. J. Tappan, J. R. Glaser, D. A. Peterson et al., Current automated 3D cell detection methods are not a suitable replacement for manual stereologic cell counting, Front Neuroanat, vol.8, p.27, 2014.

J. Serra, Image Analysis and Mathematical Morphology, Presented at the ICASSP88 International Conference on Acoustics Speech and Signal Processing, 1982.

J. Shu, H. Fu, G. Qiu, P. Kaye, and M. Ilyas, Segmenting overlapping cell nuclei in digital histopathology images, Conf Proc IEEE Eng Med Biol Soc, pp.5445-5448, 2013.

T. Sørensen, A Method of Establishing Groups of Equal Amplitude in Plant Sociology Based on Similarity of Species Content and Ist Application to Analyses of the Vegetation on Danish Commons, 1948.

K. L. Spalding, O. Bergmann, K. Alkass, S. Bernard, M. Salehpour et al., Dynamics of hippocampal neurogenesis in adult humans, Cell, vol.153, pp.1219-1227, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00839513

D. Stucht, K. A. Danishad, P. Schulze, F. Godenschweger, M. Zaitsev et al., Highest Resolution In Vivo Human Brain MRI Using Prospective Motion Correction, PLOS ONE, vol.10, 2015.

E. M. Ullian, S. K. Sapperstein, K. S. Christopherson, and B. A. Barres, Control of synapse number by glia, Science, vol.291, pp.657-661, 2001.

M. Vandenberghe, 3D whole-brain quantitative histopathology : methodology and applications in mouse models of Alzheimer ' s disease, 2015.

M. E. Vandenberghe, Y. Balbastre, N. Souedet, A. Herard, M. Dhenain et al., Robust supervised segmentation of neuropathology whole-slide microscopy images, 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Presented at the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp.3851-3854, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02155732

M. E. Vandenberghe, A. Hérard, N. Souedet, E. Sadouni, M. D. Santin et al., High-throughput 3D whole-brain quantitative histopathology in rodents, Sci Rep, vol.6, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02155737

L. Vincent and P. Soille, Watersheds in digital spaces: an efficient algorithm based on immersion simulations, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.13, pp.583-598, 1991.

B. A. Vogt, E. A. Nimchinsky, L. J. Vogt, and P. R. Hof, Human cingulate cortex: Surface features, flat maps, and cytoarchitecture, J. Comp. Neurol, vol.359, pp.490-506, 1995.

S. Walløe, B. Pakkenberg, and K. Fabricius, Stereological estimation of total cell numbers in the human cerebral and cerebellar cortex, Front Hum Neurosci, vol.8, p.508, 2014.

L. Wang and D. He, Texture classification using texture spectrum, Pattern Recognition, vol.23, pp.905-910, 1990.

S. Wang, F. Chung, and F. Xiong, A novel image thresholding method based on Parzen window estimate, Pattern Recognition, vol.41, pp.117-129, 2008.

S. C. Warby, R. K. Graham, M. R. Hayden, R. A. Pagon, M. P. Adam et al., , 1993.

M. J. West, L. Slomianka, and H. J. Gundersen, Unbiased stereological estimation of the total number of neurons in thesubdivisions of the rat hippocampus using the optical fractionator, Anat. Rec, vol.231, pp.482-497, 1991.

R. W. Williams and K. Herrup, The control of neuron number, Annu. Rev. Neurosci, vol.11, pp.423-453, 1988.

C. Xu and J. L. Prince, Gradient vector flow: a new external force for snakes, Proceedings. Presented at the , 1997 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.66-71, 1997.

X. Yang, H. Li, and X. Zhou, Nuclei Segmentation Using Marker-Controlled Watershed, Tracking Using Mean-Shift, and Kalman Filter in Time-Lapse Microscopy, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.53, pp.2405-2414, 2006.

C. Zhang, C. Sun, and T. D. Pham, Segmentation of clustered nuclei based on concave curve expansion, J Microsc, vol.251, pp.57-67, 2013.

S. W. Zucker, Region Growing: childhood and adolescence, Computer Graphics and Image Processing, vol.5, pp.382-399, 1976.