S. Achard, R. Salvador, B. Whitcher, J. Suckling, and E. Bullmore, A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs, Journal of Neuroscience, vol.26, issue.1, pp.63-72, 2006.

H. Akaike, Factor analysis and aic, Selected Papers of Hirotugu Akaike, pp.371-386, 1987.

E. S. Allman, C. Matias, and J. A. Rhodes, Identifiability of parameters in latent structure models with many observed variables, The Annals of Statistics, vol.37, issue.6A, pp.3099-3132, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00591202

C. Asavathiratham, The influence model: A tractable representation for the dynamics of networked markov chains, 2001.

A. Barabâsi, H. Jeong, Z. Néda, E. Ravasz, A. Schubert et al., Evolution of the social network of scientific collaborations, Physica A: Statistical mechanics and its applications, vol.311, issue.3-4, pp.590-614, 2002.

A. Barbu and S. Zhu, Generalizing swendsen-wang to sampling arbitrary posterior probabilities, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.27, issue.8, pp.1239-1253, 2005.

V. Barbu and N. Limnios, Maximum likelihood estimation for hidden semimarkov models, Comptes Rendus Mathematique, vol.342, issue.3, pp.201-205, 2006.

V. S. Barbu and N. Limnios, Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis, vol.191, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00530330

A. Bashashati, M. Fatourechi, R. K. Ward, and G. E. Birch, A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals, Journal of Neural engineering, vol.4, issue.2, p.32, 2007.

D. S. Bassett and E. Bullmore, Small-world brain networks, The neuroscientist, vol.12, issue.6, pp.512-523, 2006.

S. Basu, T. Choudhury, B. Clarkson, and A. Pentland, Learning human interactions with the influence model, Advances in neural information processing systems, 2001.

D. Batra, P. Yadollahpour, A. Guzman-rivera, and G. Shakhnarovich, Diverse m-best solutions in markov random fields, European Conference on Computer Vision, pp.1-16, 2012.

L. E. Baum and T. Petrie, Statistical inference for probabilistic functions of finite state markov chains. The annals of mathematical statistics, vol.37, pp.1554-1563, 1966.

M. J. Beal, Variational algorithms for approximate Bayesian inference. university of London London, 2003.

S. Bengio, An asynchronous hidden markov model for audio-visual speech recognition, Advances in Neural Information Processing Systems, pp.1237-1244, 2003.

S. Bengio, Multimodal speech processing using asynchronous hidden markov models. Information Fusion, vol.5, pp.81-89, 2004.

S. Bengio and Y. Bengio, An em algorithm for asynchronous input/output hidden markov models, International Conference On Neural Information Processing, vol.78, pp.328-334, 1996.

Y. Bengio, Markovian models for sequential data, Neural computing surveys, vol.2, pp.129-162, 0199.

Y. Bengio and P. Frasconi, An input output hmm architecture, Advances in neural information processing systems, pp.427-434, 1995.

Y. Bengio and P. Frasconi, Input-output hmms for sequence processing, IEEE Transactions on Neural Networks, vol.7, issue.5, pp.1231-1249, 1996.

Y. Bengio, V. Lauzon, and R. Ducharme, Experiments on the application of iohmms to model financial returns series, IEEE Transactions on Neural Networks, vol.12, issue.1, pp.113-123, 2001.

J. Benzécri, L'analyse des données, vol.2, 1973.

C. Biernacki, G. Celeux, and G. Govaert, Assessing a mixture model for clustering with the integrated completed likelihood, IEEE transactions on pattern analysis and machine intelligence, vol.22, pp.719-725, 2000.

C. Biernacki, G. Celeux, and G. Govaert, Choosing starting values for the em algorithm for getting the highest likelihood in multivariate gaussian mixture models, Computational Statistics & Data Analysis, vol.41, issue.3-4, pp.561-575, 2003.

A. Bietti, F. Bach, and A. Cont, An online em algorithm in hidden (semi-) markov models for audio segmentation and clustering, Acoustics, Speech and Signal Processing, pp.1881-1885, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01115826

H. E. Blanchard and A. Iran-nejad, Comprehension processes and eye movement patterns in the reading of surprise-ending stories, Discourse Processes, vol.10, pp.127-138, 1987.

C. I. Bliss and R. A. Fisher, Fitting the negative binomial distribution to biological data, Biometrics, vol.9, issue.2, pp.176-200, 1953.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, Enriching word vectors with subword information, Transactions of the Association for Computational Linguistics, vol.5, pp.135-146, 2017.

X. Boyen and D. Koller, Tractable inference for complex stochastic processes, Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence, pp.33-42, 1998.

M. Brand, Coupled hidden markov models for modeling interacting processes, 1997.

M. Brand, Structure learning in conditional probability models via an entropic prior and parameter extinction, Neural Computation, vol.11, issue.5, pp.1155-1182, 1999.

M. Brand, N. Oliver, and A. Pentland, Coupled hidden markov models for complex action recognition, Computer vision and pattern recognition, pp.994-999, 1997.

P. T. Brandt and J. T. Williams, A linear poisson autoregressive model: The poisson ar (p) model, Political Analysis, vol.9, issue.2, pp.164-184, 2001.

P. T. Brandt, J. T. Williams, B. O. Fordham, and B. Pollins, Dynamic modeling for persistent event-count time series, American Journal of Political Science, vol.44, issue.4, pp.823-843, 2000.

G. D. Brushe, R. E. Mahony, and J. B. Moore, A soft output hybrid algorithm for ml/map sequence estimation, IEEE Transactions on Information Theory, vol.44, issue.7, pp.3129-3134, 1998.

K. P. Burnham and D. R. Anderson, Practical use of the information-theoretic approach, Model Selection and Inference, pp.75-117, 1998.

D. Burshtein, Robust parametric modeling of durations in hidden markov models, IEEE Transactions on Speech and Audio Processing, vol.4, issue.3, pp.240-242, 1996.

O. Cappé, Online em algorithm for hidden markov models, Journal of Computational and Graphical Statistics, vol.20, issue.3, pp.728-749, 2011.

O. Cappé, E. Moulines, and T. Ryden, Inference in Hidden Markov Models, 2006.

O. Cappé, E. Moulines, and T. Rydén, Inference in hidden markov models, Proceedings of EUSFLAT Conference, pp.14-16, 2009.

R. P. Carver, Reading rate: A review of research and theory, 1990.

R. P. Carver, Reading rate: Theory, research, and practical implications, Journal of Reading, vol.36, issue.2, pp.84-95, 1992.

R. P. Carver, The causes of high and low reading achievement, 2000.

G. Celeux and J. Diebolt, A probabilistic teacher algorithm for iterative maximum likelihood estimation, Conference of the International Federation of Classification Societies, vol.1, pp.617-624, 1987.

G. Celeux and J. Durand, Selecting hidden markov model state number with cross-validated likelihood, Computational Statistics, vol.23, issue.4, pp.541-564, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00193098

G. Celeux and G. Govaert, A classification em algorithm for clustering and two stochastic versions, Computational statistics & Data analysis, vol.14, issue.3, pp.315-332, 1992.
URL : https://hal.archives-ouvertes.fr/inria-00075196

F. Chaubert-pereira, Combinaisons markoviennes et semi-markoviennes de modèles de régression. Application à la croissance d'arbres forestiers, 2008.

F. Chaubert-pereira, Y. Guédon, C. Lavergne, and C. Trottier, Estimating markov and semi-markov switching linear mixed models with individual-wise random effects, Computational Statistics, COMPSTAT'2008, 18th Symposium of IASC, vol.2, pp.11-18, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00831807

F. Chaubert-pereira, Y. Guédon, C. Lavergne, and C. Trottier, Markov and semi-markov switching linear mixed models used to identify forest tree growth components, Biometrics, vol.66, issue.3, pp.753-762, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00488100

M. Chen, A. Kundu, and S. N. Srihari, Variable duration hidden markov model and morphological segmentation for handwritten word recognition, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.600-601, 1993.

S. Chiappa and S. Bengio, Hmm and iohmm modeling of eeg rhythms for asynchronous bci systems, 2003.

T. Chuk, A. B. Chan, and J. H. Hsiao, Understanding eye movements in face recognition using hidden markov models, Journal of vision, vol.14, issue.11, pp.8-8, 2014.

F. Cincotti, A. Scipione, A. Timperi, D. Mattia, A. Marciani et al., Comparison of different feature classifiers for brain computer interfaces, First International IEEE EMBS Conference on Neural Engineering, pp.645-647, 2003.

S. J. Clark and J. N. Perry, Estimation of the negative binomial parameter ? by maximum quasi-likelihood, Biometrics, pp.309-316, 1989.

G. F. Cooper, The computational complexity of probabilistic inference using bayesian belief networks, Artificial intelligence, vol.42, issue.2-3, pp.393-405, 1990.

A. Coutrot, J. H. Hsiao, and A. B. Chan, Scanpath modeling and classification with hidden markov models. Behavior research methods, vol.50, pp.362-379, 2018.

T. Dean and K. Kanazawa, A model for reasoning about persistence and causation, Computational intelligence, vol.5, issue.2, pp.142-150, 1989.

R. Dechter, Bucket elimination: A unifying framework for reasoning, Artificial Intelligence, vol.113, issue.1-2, pp.41-85, 1999.

R. Dechter and J. Pearl, Network-based heuristics for constraint-satisfaction problems, Search in artificial intelligence, pp.370-425, 1988.

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, Indexing by latent semantic analysis, Journal of the American society for information science, vol.41, issue.6, pp.391-407, 1990.

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the em algorithm, Journal of the royal statistical society. Series B (methodological), pp.1-38, 1977.

P. A. Devijver, Baum's forward-backward algorithm revisited, Pattern Recognition Letters, vol.3, issue.6, pp.369-373, 1985.

O. Dimigen, W. Sommer, A. Hohlfeld, A. M. Jacobs, and R. Kliegl, Coregistration of eye movements and eeg in natural reading: analyses and review, Journal of experimental psychology: General, vol.140, issue.4, p.552, 2011.

R. Douc, E. Moulines, J. Olsson, and R. Van-handel, Consistency of the maximum likelihood estimator for general hidden markov models. the Annals of Statistics, vol.39, pp.474-513, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00442774

A. Doucet, N. De-freitas, K. Murphy, R. , and S. , Rao-blackwellised particle filtering for dynamic bayesian networks, Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence, pp.176-183, 2000.

J. Durand and Y. Guédon, Quantifying and localizing state uncertainty in hidden markov models using conditional entropy profiles, COMPSTAT 2014-21st International Conference on Computational Statistics, pp.213-221, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01058278

J. Durand and Y. Guédon, Localizing the latent structure canonical uncertainty: entropy profiles for hidden markov models, Statistics and Computing, vol.26, issue.1-2, pp.549-567, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01090836

R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological sequence analysis: probabilistic models of proteins and nucleic acids, 1998.

S. R. Eddy, Profile hidden markov models, Bioinformatics, vol.14, issue.9, pp.755-763, 1998.

K. Ehrlich and K. Rayner, Pronoun assignment and semantic integration during reading: Eye movements and immediacy of processing, Journal of verbal learning and verbal behavior, vol.22, issue.1, pp.75-87, 1983.

R. Engbert, A. Nuthmann, E. M. Richter, and R. Kliegl, Swift: a dynamical model of saccade generation during reading, Psychological review, vol.112, issue.4, p.777, 2005.

Y. Ephraim and N. Merhav, Hidden markov processes, IEEE Transactions on information theory, vol.48, issue.6, pp.1518-1569, 2002.

J. Fan, Y. Liao, and H. Liu, An overview of the estimation of large covariance and precision matrices, The Econometrics Journal, vol.19, issue.1, pp.1-32, 2016.

M. Farid and J. Grainger, How initial fixation position influences visual word recognition: A comparison of french and arabic, Brain and Language, vol.53, issue.3, pp.351-368, 1996.

Y. Feng, G. Cheung, W. Tan, J. , and Y. , Hidden markov model for eye gaze prediction in networked video streaming, 2011 IEEE International Conference on Multimedia and Expo, pp.1-6, 2011.

J. Ferguson, variable duration models for speech, Proc. of the Symposium on the applications of hidden Markov models to text and speech, JD Ferguson, pp.143-179, 1980.

R. Ferri, F. Rundo, O. Bruni, M. G. Terzano, and C. J. Stam, Small-world network organization of functional connectivity of eeg slow-wave activity during sleep, Clinical neurophysiology, vol.118, issue.2, pp.449-456, 2007.

S. Fine, Y. Singer, and N. Tishby, The hierarchical hidden markov model: Analysis and applications, Machine learning, vol.32, pp.41-62, 1998.

L. Finesso, Estimation of the order of a finite markov chain. In Recent Advances in the Mathematical Theory of Systems, Control, and Network Signals, Proc. MTNS-91, pp.643-645, 1992.

R. A. Fisher, The negative binomial distribution, Annals of Eugenics, vol.11, issue.1, pp.182-187, 1941.

K. Fokianos, A. Rahbek, and D. Tjøstheim, Poisson autoregression, Journal of the American Statistical Association, vol.104, issue.488, pp.1430-1439, 2009.

L. A. Foreman, Generalisation of the viterbi algorithm, IMA Journal of Management Mathematics, vol.4, issue.4, pp.351-367, 1992.

A. M. Fraser, Hidden Markov models and dynamical systems, vol.107, 2008.

L. Frazier and K. Rayner, Making and correcting errors during sentence comprehension: Eye movements in the analysis of structurally ambiguous sentences, Cognitive psychology, vol.14, issue.2, pp.178-210, 1982.

A. R. Freese, Reading rate and comprehension: Implications for designing computer technology to facilitate reading comprehension, Computer Assisted Language Learning, vol.10, issue.4, pp.311-319, 1997.

A. Frey, G. Ionescu, B. Lemaire, F. López-orozco, T. Baccino et al., Decision-making in information seeking on texts: an eye-fixation-related potentials investigation, Frontiers in systems neuroscience, vol.7, p.39, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00864104

A. Frey, B. Lemaire, L. Vercueil, and A. Guérin-dugué, An eye fixation-related potential study in two reading tasks: reading to memorize and reading to make a decision, Brain topography, vol.31, issue.4, pp.640-660, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01741895

J. Friedman, T. Hastie, and R. Tibshirani, Sparse inverse covariance estimation with the graphical lasso, Biostatistics, vol.9, issue.3, pp.432-441, 2008.

R. Fung and K. Chang, Weighing and integrating evidence for stochastic simulation in bayesian networks, Machine Intelligence and Pattern Recognition, vol.10, pp.209-219, 1990.

Z. Ghahramani, An introduction to hidden markov models and bayesian networks, International journal of pattern recognition and artificial intelligence, vol.15, issue.01, pp.9-42, 2001.

Z. Ghahramani and G. E. Hinton, Variational learning for switching state-space models, Neural computation, vol.12, issue.4, pp.831-864, 2000.

Z. Ghahramani and M. I. Jordan, Factorial hidden markov models, Advances in Neural Information Processing Systems, pp.472-478, 1996.

W. R. Gilks, S. Richardson, and D. Spiegelhalter, Markov chain Monte Carlo in practice, 1995.

P. Giudici, T. Ryden, and P. Vandekerkhove, Likelihood-ratio tests for hidden markov models, Biometrics, vol.56, issue.3, pp.742-747, 2000.

A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier et al., Meg and eeg data analysis with mne-python, Frontiers in neuroscience, vol.7, p.267, 2013.

A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier et al., Mne software for processing meg and eeg data, Neuroimage, vol.86, pp.446-460, 2014.

R. Grandchamp and A. Delorme, Single-trial normalization for event-related spectral decomposition reduces sensitivity to noisy trials, Frontiers in psychology, vol.2, p.236, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00633169

E. Grave, P. Bojanowski, P. Gupta, A. Joulin, and T. Mikolov, Learning word vectors for 157 languages, 2018.

Y. Guédon, Computational methods for discrete hidden semi-markov chains, Applied Stochastic Models in Business and Industry, vol.15, issue.3, pp.195-224, 1999.

Y. Guédon, Estimating hidden semi-markov chains from discrete sequences, Journal of Computational and Graphical Statistics, vol.12, issue.3, pp.604-639, 2003.

Y. Guédon, Exploring the state sequence space for hidden markov and semimarkov chains, Computational Statistics & Data Analysis, vol.51, issue.5, pp.2379-2409, 2007.

Y. Guedon and C. Cocozza-thivent, Explicit state occupancy modelling by hidden semi-markov models: application of derin's scheme, Computer Speech & Language, vol.4, issue.2, pp.167-192, 1990.

S. Hanslmayr, J. Gross, W. Klimesch, and K. L. Shapiro, The role of alpha oscillations in temporal attention, Brain research reviews, vol.67, issue.1-2, pp.331-343, 2011.

M. Hayashi, Hidden markov models to identify pilot instrument scanning and attention patterns, SMC'03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme-System Security and Assurance (Cat. No. 03CH37483), vol.3, pp.2889-2896, 2003.

J. Hyönä, R. F. Lorch, and J. K. Kaakinen, Individual differences in reading to summarize expository text: Evidence from eye fixation patterns, Journal of Educational Psychology, vol.94, issue.1, p.44, 2002.

M. Jas, D. Engemann, F. Raimondo, Y. Bekhti, and A. Gramfort, Automated rejection and repair of bad trials in meg/eeg, 6th International Workshop on Pattern Recognition in Neuroimaging (PRNI), 2016.
URL : https://hal.archives-ouvertes.fr/hal-01313458

M. Jas, D. A. Engemann, Y. Bekhti, F. Raimondo, and A. Gramfort, Autoreject: Automated artifact rejection for meg and eeg data, NeuroImage, vol.159, pp.417-429, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01562403

M. J. Johnson and A. Willsky, The hierarchical dirichlet process hidden semi-markov model, 2012.

M. J. Johnson and A. S. Willsky, Bayesian nonparametric hidden semi-markov models, Journal of Machine Learning Research, vol.14, pp.673-701, 2013.

N. L. Johnson, A. W. Kemp, and S. Kotz, Univariate discrete distributions, vol.444, 2005.

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, An introduction to variational methods for graphical models, Machine learning, vol.37, issue.2, pp.183-233, 1999.

A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou et al., Fasttext. zip: Compressing text classification models, 2016.

A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, Bag of tricks for efficient text classification, 2016.

A. Juan, J. García-hernández, and E. Vidal, Em initialisation for bernoulli mixture learning, Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR), pp.635-643, 2004.

B. Juang and L. R. Rabiner, A probabilistic distance measure for hidden markov models, AT&T technical journal, vol.64, issue.2, pp.391-408, 1985.

D. Jurafsky and J. H. Martin, Speech and Language Processing, 2009.

D. Karlis and E. Xekalaki, Choosing initial values for the em algorithm for finite mixtures, Computational Statistics & Data Analysis, vol.41, issue.3-4, pp.577-590, 2003.

R. W. Katz, On some criteria for estimating the order of a markov chain, Technometrics, vol.23, issue.3, pp.243-249, 1981.

J. Kim and J. Pearl, A computational model for causal and diagnostic reasoning in inference systems, International Joint Conference on Artificial Intelligence, pp.0-0, 1983.

W. Klimesch, Memory processes, brain oscillations and eeg synchronization, International journal of psychophysiology, vol.24, issue.1-2, pp.61-100, 1996.

D. Koller, N. Friedman, and F. Bach, Probabilistic graphical models: principles and techniques, 2009.

S. Kolouri, S. R. Park, M. Thorpe, D. Slepcev, and G. K. Rohde, Optimal mass transport: Signal processing and machine-learning applications, IEEE Signal Processing Magazine, vol.34, issue.4, pp.43-59, 2017.

S. Kolouri, G. K. Rohde, and H. Hoffmann, Sliced wasserstein distance for learning gaussian mixture models, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.3427-3436, 2018.

A. Kulesza and B. Taskar, Determinantal point processes for machine learning. Foundations and Trends® in Machine Learning, vol.5, pp.123-286, 2012.

J. Kupiec, Robust part-of-speech tagging using a hidden markov model, Computer Speech & Language, vol.6, issue.3, pp.225-242, 1992.

J. Kwon and K. Murphy, Modeling freeway traffic with coupled hmms, 2000.

H. Lee and S. Choi, Pca+ hmm+ svm for eeg pattern classification, Seventh International Symposium on Signal Processing and Its Applications, vol.1, pp.541-544, 2003.

B. Lemaire, A. Guérin-dugué, T. Baccino, M. Chanceaux, and L. Pasqualotti, A cognitive computational model of eye movements investigating visual strategies on textual material, 33rd annual meeting of the Cognitive Science Society, pp.1146-1151, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00624905

B. G. Leroux, Maximum-likelihood estimation for hidden markov models. Stochastic processes and their applications, vol.40, pp.127-143, 1992.

D. J. Leu, E. Forzani, C. Rhoads, C. Maykel, C. Kennedy et al., The new literacies of online research and comprehension: Rethinking the reading achievement gap, Reading Research Quarterly, vol.50, issue.1, pp.37-59, 2015.

J. Liechty, R. Pieters, and M. Wedel, Global and local covert visual attention: Evidence from a bayesian hidden markov model, Psychometrika, vol.68, issue.4, pp.519-541, 2003.

A. Ljolje and S. E. Levinson, Development of an acoustic-phonetic hidden markov model for continuous speech recognition, IEEE Transactions on signal processing, vol.39, issue.1, pp.29-39, 1991.

S. J. Luck, An introduction to the event-related potential technique, 2014.

D. J. Mackay, Ensemble learning for hidden markov models, 1997.

J. G. Mackinnon, Bootstrap hypothesis testing. Handbook of computational econometrics, vol.183, p.213, 2009.

S. Mallat, A wavelet tour of signal processing, 1999.

E. Marhasev, M. Hadad, and G. A. Kaminka, Non-stationary hidden semi markov models in activity recognition, Proceedings of the AAAI Workshop on Modeling Others from Observations, p.6, 2006.

J. Marroquin, S. Mitter, and T. Poggio, Probabilistic solution of ill-posed problems in computational vision, Journal of the american statistical association, vol.82, issue.397, pp.76-89, 1987.

G. Mclachlan and T. Krishnan, The EM algorithm and extensions, vol.382, 2007.

M. Meil? and D. Heckerman, An experimental comparison of model-based clustering methods, Machine learning, vol.42, issue.1-2, pp.9-29, 2001.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of word representations in vector space, 2013.

T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, J. et al., Advances in pre-training distributed word representations, Proceedings of the International Conference on Language Resources and Evaluation (LREC, 2018.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, Distributed representations of words and phrases and their compositionality, Advances in neural information processing systems, pp.3111-3119, 2013.

C. Mitchell, M. Harper, and L. Jamieson, On the complexity of explicit duration hmm's. IEEE transactions on speech and audio processing, vol.3, pp.213-217, 1995.

C. D. Mitchell and L. H. Jamieson, Modeling duration in a hidden markov model with the exponential family, Acoustics, Speech, and Signal Processing, vol.2, pp.331-334, 1993.

D. Mochihashi and E. Sumita, The infinite markov model, Advances in neural information processing systems, pp.1017-1024, 2008.

K. Murphy and Y. Weiss, The factored frontier algorithm for approximate inference in dbns, Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence, pp.378-385, 2001.

K. P. Murphy, Hidden semi-markov models (hsmms). unpublished notes, vol.2, 2002.

K. P. Murphy and S. Russell, Dynamic bayesian networks: representation, inference and learning, 2002.

K. P. Murphy, Y. Weiss, J. , and M. I. , Loopy belief propagation for approximate inference: An empirical study, Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence, pp.467-475, 1999.

R. Nagarajan, M. Scutari, and S. Lèbre, Bayesian networks in r, vol.122, pp.125-127, 2013.

B. J. Nagel, M. M. Herting, E. C. Maxwell, R. Bruno, and D. Fair, Hemispheric lateralization of verbal and spatial working memory during adolescence, Brain and cognition, vol.82, issue.1, pp.58-68, 2013.

P. Natarajan and R. Nevatia, Coupled hidden semi markov models for activity recognition, p.10, 2007.

A. V. Nefian, L. Liang, X. Pi, X. Liu, M. et al., Dynamic bayesian networks for audio-visual speech recognition, EURASIP Journal on Advances in Signal Processing, issue.11, p.783042, 2002.

C. Neuper and W. Klimesch, Event-related dynamics of brain oscillations, vol.159, 2006.

H. D. Nguyen, F. Forbes, and G. J. Mclachlan, Mini-batch learning of exponential family finite mixture models, 2019.

D. Nilsson and J. Goldberger, Sequentially finding the n-best list in hidden markov models, Proceedings of the 17th international joint conference on Artificial intelligence, vol.2, pp.1280-1285, 2001.

B. Obermaier, C. Guger, C. Neuper, and G. Pfurtscheller, Hidden markov models for online classification of single trial eeg data, Pattern recognition letters, vol.22, issue.12, pp.1299-1309, 2001.

B. Obermaier, C. Munteanu, A. Rosa, and G. Pfurtscheller, Asymmetric hemisphere modeling in an offline brain-computer interface, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol.31, issue.4, pp.536-540, 2001.

B. Obermaier, C. Neuper, C. Guger, and G. Pfurtscheller, Information transfer rate in a five-classes brain-computer interface, IEEE Transactions on neural systems and rehabilitation engineering, vol.9, issue.3, pp.283-288, 2001.

J. O'regan, A. Lévy-schoen, J. Pynte, and B. É. Brugaillère, Convenient fixation location within isolated words of different length and structure, Journal of Experimental Psychology: Human Perception and Performance, vol.10, issue.2, p.250, 1984.

J. O'connell and S. Højsgaard, Hidden semi markov models for multiple observation sequences: The mhsmm package for r, Journal of Statistical Software, vol.39, issue.4, pp.1-22, 2011.

T. Park, I. A. Eckley, and H. C. Ombao, Estimating time-evolving partial coherence between signals via multivariate locally stationary wavelet processes, IEEE Transactions on Signal Processing, vol.62, issue.20, pp.5240-5250, 2014.

J. Pearl, Causality, 2009.

D. B. Percival and A. T. Walden, Wavelet methods for time series analysis, vol.4, 2006.

J. Peyhardi, C. Trottier, and Y. Guédon, Partitioned conditional generalized linear models for categorical responses, Statistical Modelling, vol.16, issue.4, pp.297-321, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01361041

J. Porway and S. Zhu, C?4: Exploring multiple solutions in graphical models by cluster sampling, IEEE transactions on pattern analysis and machine intelligence, vol.33, pp.1713-1727, 2011.

L. R. Rabiner, A tutorial on hidden markov models and selected applications in speech recognition, Proceedings of the IEEE, vol.77, issue.2, pp.257-286, 1989.

P. Ramesh and J. G. Wilpon, Modeling state durations in hidden markov models for automatic speech recognition, Acoustics, Speech, and Signal Processing, vol.1, pp.381-384, 1992.

K. Rayner, Eye movements in reading and information processing: 20 years of research, Psychological bulletin, vol.124, issue.3, p.372, 1998.

K. Rayner, A. Pollatsek, J. Ashby, C. Jr, and C. , Psychology of reading, 2012.

K. Rayner and A. D. Well, Effects of contextual constraint on eye movements in reading: A further examination, Psychonomic Bulletin & Review, vol.3, issue.4, pp.504-509, 1996.

E. D. Reichle, A. Pollatsek, D. L. Fisher, R. , and K. , Toward a model of eye movement control in reading, Psychological review, vol.105, issue.1, p.125, 1998.

E. D. Reichle, A. Pollatsek, R. , and K. , Using ez reader to simulate eye movements in nonreading tasks: A unified framework for understanding the eye-mind link, Psychological review, vol.119, issue.1, p.155, 2012.

E. D. Reichle, K. Rayner, and A. Pollatsek, The ez reader model of eyemovement control in reading: Comparisons to other models, Behavioral and brain sciences, vol.26, issue.4, pp.445-476, 2003.

E. D. Reichle and E. M. Reingold, Neurophysiological constraints on the eye-mind link, Frontiers in Human Neuroscience, vol.7, p.361, 2013.

I. Rezek, M. Gibbs, and S. J. Roberts, Journal of VLSI signal processing systems for signal, image and video technology, vol.32, pp.55-66, 2002.

I. Rezek and S. Roberts, A comparison of bayesian and maximum likelihood learning of coupled hidden markov models, IEE Proc. Sci. Technol. Measur, vol.147, issue.6, pp.345-350, 2000.

I. Rezek and S. J. Roberts, Estimation of coupled hidden markov models with application to biosignal interaction modelling, Neural Networks for Signal Processing X. Proceedings of the 2000 IEEE Signal Processing Society Workshop (Cat. No. 00TH8501), vol.2, pp.804-813, 2000.

L. Rezek, P. Sykacek, and S. J. Roberts, Coupled hidden markov models for biosignal interaction modelling, First International Conference Advances in Medical Signal and Information Processing, pp.54-59, 2000.

R. D. Rimey and C. M. Brown, Controlling eye movements with hidden markov models, International Journal of Computer Vision, vol.7, issue.1, pp.47-65, 1991.

G. Ross, R. Jones, R. Kempton, F. Laukner, R. Payne et al., MLP: maximum likelihood program, 1980.

G. Ross and D. Preece, The negative binomial distribution. The Statistician, pp.323-335, 1985.

J. Salojärvi, K. Puolamäki, and S. Kaski, Implicit relevance feedback from eye movements, International Conference on Artificial Neural Networks, pp.513-518, 2005.

D. D. Salvucci and J. H. Goldberg, Identifying fixations and saccades in eyetracking protocols, Proceedings of the 2000 symposium on Eye tracking research & applications, pp.71-78, 2000.

P. Sauseng, W. Klimesch, M. Schabus, and M. Doppelmayr, Fronto-parietal eeg coherence in theta and upper alpha reflect central executive functions of working memory, International journal of Psychophysiology, vol.57, issue.2, pp.97-103, 2005.

G. Schwarz, Estimating the dimension of a model. The annals of statistics, vol.6, pp.461-464, 1978.

R. Schwarz and Y. Chow, The n-best algorithm: An efficient and exact procedure for finding the n most likely hypotheses, Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, pp.81-84, 1990.

H. Seidkhani, A. R. Nikolaev, R. N. Meghanathan, H. Pezeshk, A. Masoudi-nejad et al., Task modulates functional connectivity networks in free viewing behavior, vol.159, pp.289-301, 2017.

S. C. Sereno and K. Rayner, Fast priming during eye fixations in reading, Journal of Experimental Psychology: Human Perception and Performance, vol.18, issue.1, p.173, 1992.

R. D. Shachter and M. A. Peot, Simulation approaches to general probabilistic inference on belief networks, Machine Intelligence and Pattern Recognition, vol.10, pp.221-231, 1990.

S. Shimojo, C. Simion, E. Shimojo, and C. Scheier, Gaze bias both reflects and influences preference, Nature neuroscience, vol.6, issue.12, p.1317, 2003.

J. Simola, J. Salojärvi, and I. Kojo, Using hidden markov model to uncover processing states from eye movements in information search tasks, Cognitive systems research, vol.9, issue.4, pp.237-251, 2008.

B. Sin and J. H. Kim, Nonstationary hidden markov model, Signal Processing, vol.46, issue.1, pp.31-46, 1995.

D. J. Smit, C. J. Stam, D. Posthuma, D. I. Boomsma, D. Geus et al., Heritability of "small-world" networks in the brain: A graph theoretical analysis of resting-state eeg functional connectivity, Human brain mapping, vol.29, issue.12, pp.1368-1378, 2008.

P. Smyth, Clustering sequences with hidden markov models, Advances in neural information processing systems, pp.648-654, 1997.

P. Smyth, D. Heckerman, J. , and M. I. , Probabilistic independence networks for hidden markov probability models, Neural computation, vol.9, issue.2, pp.227-269, 1997.

S. Soheily-khah, A. Douzal-chouakria, and E. Gaussier, Generalized k-meansbased clustering for temporal data under weighted and kernel time warp, Pattern Recognition Letters, vol.75, pp.63-69, 2016.

D. J. Spiegelhalter and S. L. Lauritzen, Sequential updating of conditional probabilities on directed graphical structures, Networks, vol.20, issue.5, pp.579-605, 1990.

A. Stolcke and S. Omohundro, Hidden markov model induction by bayesian model merging, Advances in neural information processing systems, pp.11-18, 1993.

S. H. Strogatz, Exploring complex networks, nature, vol.410, issue.6825, p.268, 2001.

Z. Tu and S. Zhu, Image segmentation by data-driven markov chain monte carlo, IEEE Transactions, vol.24, issue.5, pp.657-673, 2002.

R. Van-handel, On the minimal penalty for markov order estimation. Probability theory and related fields, vol.150, pp.709-738, 2011.

A. Varga and R. Moore, Hidden markov model decomposition of speech and noise, Acoustics, Speech, and Signal Processing, pp.845-848, 1990.

S. Vaseghi, Hidden markov models with duration-dependent state transition probabilities (speech recognition), Electronics letters, vol.27, issue.8, pp.625-626, 1991.

S. Vaseghi, State duration modelling in hidden markov models. Signal processing, vol.41, pp.31-41, 1995.

T. Verma and J. Pearl, Causal networks: Semantics and expressiveness, Machine Intelligence and Pattern Recognition, vol.9, pp.69-76, 1990.

A. Viterbi, Error bounds for convolutional codes and an asymptotically optimum decoding algorithm, IEEE transactions on Information Theory, vol.13, issue.2, pp.260-269, 1967.

D. J. Watts and S. H. Strogatz, Collective dynamics of 'small-world'networks, nature, vol.393, issue.6684, p.440, 1998.

B. Whitcher, P. Guttorp, P. , and D. B. , Wavelet analysis of covariance with application to atmospheric time series, Journal of Geophysical Research: Atmospheres, vol.105, issue.D11, pp.14941-14962, 2000.

M. Wise, The use of the negative binomial distribution in an industrial sampling problem, Journal of the Royal Statistical Society, vol.8, issue.2, pp.202-211, 1946.

G. F. Woodman, A brief introduction to the use of event-related potentials in studies of perception and attention, Perception, & Psychophysics, vol.72, issue.8, pp.2031-2046, 2010.

A. Wutz, D. Melcher, and J. Samaha, Frequency modulation of neural oscillations according to visual task demands, Proceedings of the National Academy of Sciences, vol.115, pp.1346-1351, 2018.

S. Yang and G. W. Mcconkie, New directions in theories of eyemovement control during reading. Cognitive processes in eye guidance, pp.105-130, 2005.

S. Yu, Hidden semi-markov models, Artificial intelligence, vol.174, issue.2, pp.215-243, 2010.

S. Yu, Hidden Semi-Markov Models: Theory, Algorithms and Applications, 2015.

S. Yu and H. Kobayashi, An efficient forward-backward algorithm for an explicit-duration hidden markov model, IEEE signal processing letters, vol.10, issue.1, pp.11-14, 2003.

S. Yu and H. Kobayashi, Practical implementation of an efficient forwardbackward algorithm for an explicit-duration hidden markov model, IEEE Transactions on Signal Processing, vol.54, issue.5, pp.1947-1951, 2006.

N. L. Zhang and D. Poole, A simple approach to bayesian network computations, Proc. of the Tenth Canadian Conference on Artificial Intelligence, 1994.

S. Zhong and J. Ghosh, A new formulation of coupled hidden markov models, Dept. Elect. Comput. Eng., Univ. Austin, 2001.

S. Zhong and J. Ghosh, Hmms and coupled hmms for multi-channel eeg classification, proceedings of the IEEE international joint conference on neural networks, vol.2, pp.1254-1159, 2002.

G. Zweig, A forward-backward algorithm for inference in bayesian networks and an empirical comparison with hmms, 1996.