C. , LB method for the 1D advection-di usion equation

C. , 3 Reinterpretation of the BGK collision term

C. ,

S. Adami, X. Hu, and N. Adams, A new surface-tension formulation for multi-phase SPH using a reproducing divergence approximation, Journal of Computational Physics, vol.229, issue.13, p.72, 2010.

O. Agertz, B. Moore, J. Stadel, D. Potter, F. Miniati et al., Lattice-Boltzmann simulations in reconstructed parametrized porous media, International Journal of Computational Fluid Dynamics, vol.380, issue.3, pp.369-377, 2006.

Z. I. Al-hashimy, H. H. Al-kayiem, R. W. Time, and Z. K. Kadhim, Numerical Characterisation Of Slug Flow In Horizontal Air/water Pipe Flow, International Journal of Computational Methods and Experimental Measurements, vol.4, issue.2, pp.114-130, 2016.

C. E. Alvarado-rodríguez, J. Klapp, L. D. Sigalotti, J. M. Domínguez, E. De-la et al., Ansumali and I. V. Karlin. Stabilization of the lattice Boltzmann method by the Htheorem: A numerical test, Computers & Fluids, vol.159, pp.7999-8003, 2000.

S. Ansumali, I. V. Karlin, ;. Antuono, A. Colagrossi, and S. Marrone, Numerical di usive terms in weaklycompressible SPH schemes, Computer Physics Communications, vol.107, issue.1-2, p.66, 2002.

S. N. Atluri and S. Shen, The basis of meshless domain discretization: the meshless local Petrov-Galerkin (MLPG) method, Advances in Computational Mathematics, vol.23, issue.1, pp.73-93, 2005.

Y. Ba, H. Liu, Q. Li, Q. Kang, and J. Sun, Multiple-relaxation-time color-gradient lattice Boltzmann model for simulating two-phase ows with high density ratio, Phys. Rev. E, vol.94, p.23310, 2016.

I. Babuska, J. M. Melenk, ;. Babu?ka, U. Banerjee, and J. E. Osborn, Survey of meshless and generalized nite element methods: a uni ed approach, International Journal of Numerical Methods in Engineering, vol.40, p.31, 1996.

O. S. Baker-;-d and . Balsara, Design of Pipelines for the Simultaneous Flow of Oil and Gas. In Fall Meeting of the Petroleum Branch of AIME, Journal of Computational Physics, vol.121, issue.2, pp.357-372, 1953.

A. Banari, C. F. Janssen, and S. T. Grilli, An improved two-phase Lattice Boltzmann model for high density ratios : application to wave breaking, p.140, 2012.

D. Barnea, A uni ed model for predicting ow-pattern transitions for the whole range of pipe inclinations, International Journal of Multiphase Flow, vol.13, issue.1, p.162, 1987.

M. Béchereau, ;. Belikov, V. Ivanov, V. Kontorovich, S. Korytnik et al., The non-Sibsonian interpolation: A new method of interpolation of the values of a function on an arbitrary set of points, Élaboration de méthodes Lattice Boltzmann pour les écoulements bi uides à ratio de densité arbitraire, vol.37, p.32, 1997.

R. Belt, E. Duret, D. Larrey, B. Djoric, S. Kalali et al., Comparison of Commercial Multiphase Flow Simulators with Experimental and Field Databases, 15th International Conference on Multiphase Production Technology, vol.37, pp.229-256, 1994.

T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl, Meshless methods: An overview and recent developments, Computer Methods in Applied Mechanics and Engineering, vol.139, issue.1-4, p.28, 1996.

T. Belytschko, N. Moes, S. Usui, and C. Parimi, Arbitrary discontinuities in nite elements, International Journal for Numerical Methods in Engineering, vol.50, issue.4, p.31, 2001.

]. K. Bendiksen, D. Maines, R. Moe, and S. Nuland, The Dynamic Two-Fluid Model OLGA: Theory and Application. SPE, vol.14, 1991.

R. Benzi, S. Succi, M. L. Vergassola-;-p, E. P. Bhatnagar, M. Gross et al., A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems, Physics Reports, vol.222, issue.3, pp.511-525, 1954.

B. M. Boghosian, J. Yepez, P. V. Coveney, and A. Wager, Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations, Boltzmann 1970] L. Boltzmann. Weitere studien über das wärmegleichgewicht unter gasmolekülen, vol.457, p.57, 1970.

J. Bonet and T. Lok, Variational and momentum preservation aspects of Smooth Particle Hydrodynamic formulations, Computer Methods in Applied Mechanics and Engineering, vol.180, issue.1, pp.97-115, 1999.

J. Bonet and S. Kulasegaram, Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations, International Journal for Numerical Methods in Engineering, vol.47, issue.6, pp.1245-1256, 2000.

J. Bonet, M. X. Rodrãguez-paz, ;. M. Bonizzi, P. Andreussi, S. Banerjee et al., Flow regime independent, high resolution multi-eld modelling of near-horizontal gas-liquid ows in pipelines, Regularized Smoothed Particle Hydrodynamics: A New Approach to Simulating Magnetohydrodynamic Shocks, vol.209, p.64, 2001.

M. Bouzidi, M. Firdaouss, and P. Lallemand, Momentum transfer of a Boltzmann-lattice uid with boundaries, Physics of Fluids, vol.13, issue.11, p.105, 2001.

J. Brackbill and H. Ruppel, FLIP: A method for adaptively zoned, Particle-In-Cell calculations of uid ows in two dimensions, Journal of Computational Physics, vol.65, issue.2, p.32, 1986.

J. Brackbill, D. Kothe, and C. Zemach, A continuum method for modeling surface tension, Buhmann 2003] M. D. Buhmann. Radial basis functions: theory and implementations, vol.100, p.33, 1992.

H. Bui, R. Fukagawa, K. Sako, and S. Ohno, Lagrangian meshfree particles method (SPH) for large deformation and failure ows of geomaterial using elastic-plastic soil constitutive model, International Journal for Numerical and Analytical Methods in Geomechanics, vol.32, issue.12, pp.1537-1570, 2008.

A. Cancelliere, C. Chang, E. Foti, D. H. Rothman, and S. Succi, The permeability of a random medium: Comparison of simulation with theory, Physics of Fluids A, vol.2, issue.12, pp.2085-2088, 1990.

S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, American Journal of Physics, vol.30, issue.5, p.86, 1962.

S. Chen and G. D. Doolen, Lattice Boltzmann Method for uid ows, Annual Review of Fluid Mechanics, vol.30, issue.1, p.111, 1998.

L. Chiron, Couplage et améliorations de la méthode SPH pour traiter des écoulements à multi-échelles temporelles et spatiales, p.69, 2017.

A. Colagrossi, M. Landrini, and M. Tulin, A Lagrangian meshless method for freesurface ows, Proceedings of the 4th Numerical Towing Tank Symposium, vol.126, 2001.

A. Colagrossi and M. Landrini, Numerical simulation of interfacial ows by smoothed particle hydrodynamics, Journal of Computational Physics, vol.191, issue.2, pp.448-475, 2003.

A. Colagrossi, B. Bouscasse, M. Antuono, and S. Marrone, Particle packing algorithm for SPH schemes, Computer Physics Communications, vol.183, issue.8, p.52, 2012.

A. Colagrossi, E. Rossi, S. Marrone, and D. L. Touzé, Particle Methods for Viscous Flows: Analogies and Di erences Between the SPH and DVH Methods. Communications in Computational Physics, vol.20, p.35, 2016.

;. P. Bibliography, ;. Cossins, W. Cullen, and . Dehnen, Inviscid smoothed particle hydrodynamics, Monthly Notices of the Royal Astronomical Society, vol.408, issue.2, p.66, 1999.

A. Das and P. Das, Bubble evolution through submerged ori ce using smoothed particle hydrodynamics: Basic formulation and model validation, Chemical Engineering Science, vol.64, issue.10, p.183, 2009.

R. Das and P. W. Cleary, Evaluation of Accuracy and Stability of the Classical SPH Method Under Uniaxial Compression, Journal of Scienti c Computing, vol.64, issue.3, p.64, 2015.

S. Das, R. Pramanik, T. Douillet-grellier, D. Deb, K. Pan et al., Numerical Study of Rock Failure Process in Indirect Tension, ARMA 50th US Rock Mechanics/Geomechanics Symposium, pp.26-29, 2016.

S. De and K. Bathe, The method of nite spheres, Computational Mechanics, vol.25, issue.4, pp.329-345, 2000.

W. Dehnen and H. Aly, Improving convergence in smoothed particle hydrodynamics simulations without pairing instability, Monthly Notices of the Royal Astronomical Society, vol.425, issue.2, pp.1068-1082, 2012.

P. J. Dellar, Two routes from the Boltzmann equation to compressible ow of polyatomic gases. Progress in Computational Fluid Dynamics, an International Journal, vol.8, issue.1-4, p.109, 2008.

D. Humières, Multiple-relaxation-time lattice Boltzmann models in three dimensions, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.360, issue.1792, p.104, 2002.

S. Diehl, G. Rockefeller, C. L. Fryer, D. Riethmiller, and T. S. Statler, Generating Optimal Initial Conditions for Smoothed Particle Hydrodynamics Simulations, p.52, 2012.

G. A. Dilts, Moving-least-squares-particle hydrodynamics, Consistency and stability. International Journal for Numerical Methods in Engineering, vol.44, issue.8, p.29, 1999.

G. A. Dilts, Moving least-squares particle hydrodynamics II: conservation and boundaries, International Journal for Numerical Methods in Engineering, vol.48, issue.10, p.29, 2000.

G. A. Dilts, A. Haque, and J. Wallin, Tuned Local Regression Estimators for the Numerical Solution of Di erential Equations, Meshfree Methods for Partial Di erential Equations, p.33, 2003.

S. Dong, G. Karniadakis, and C. Chryssostomidis, A robust and accurate out ow boundary condition for incompressible ow simulations on severely-truncated unbounded domains, Journal of Computational Physics, vol.261, pp.83-105, 2014.

T. Douillet-grellier, B. D. Jones, R. Pramanik, K. Pan, A. Albaiz et al., Development of stress boundary conditions in smoothed particle hydrodynamics (SPH) for the modeling of solids deformation, Computational Particle Mechanics, vol.79, issue.4, pp.451-471, 2016.

T. Douillet-grellier, R. Pramanik, K. Pan, A. Albaiz, B. D. Jones et al., In uence of the spurious interface fragmentation correction on the simulation of ow regimes, Proceedings of the International 13th SPHERIC Workshop, p.74, 2016.

T. Douillet-grellier, S. Leclaire, D. Vidal, F. Bertrand, and F. D. Vuyst, Comparison of multiphase SPH and LBM approaches for the simulation of intermittent ows, Computational Particle Mechanics, p.122, 2019.

C. A. Duarte, J. T. Oden, ;. Duarte, J. Oden, ;. Dubois et al., Taylor expansion method for analyzing bounce-back boundary conditions for lattice Boltzmann method, Computer Methods in Applied Mechanics and Engineering, vol.12, issue.6, p.105, 1996.

D. Enskog, Kinetische theorie der vorgänge in mässig verdünnten gasen, Almquist & Wiksell, p.86, 1917.

E. Erturk, Discussions on driven cavity ow, International Journal for Numerical Methods in Fluids, vol.60, issue.3, pp.275-294, 2009.

P. Español and M. Revenga, Smoothed dissipative particle dynamics, Physical Review E, vol.67, issue.2, 2003.

J. Fabre, C. Suzanne, and L. Masbernat, Part I: Local Structure. Multiphase Science and Technology, vol.3, issue.7, p.186, 1987.

R. Fatehi and M. Manzari, Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives, Computers & Mathematics with Applications, vol.61, issue.2, pp.482-498, 2011.

I. Federico, S. Marrone, A. Colagrossi, F. Aristodemo, and M. Antuono, Simulating 2D open-channel ows through an SPH model, European Journal of Mechanics -B/Fluids, vol.34, p.68, 2012.

M. Ferrand, D. R. Laurence, B. D. Rogers, D. Violeau, and C. Kassiotis, Uni ed semianalytical wall boundary conditions for inviscid, laminar or turbulent ows in the meshless SPH method, International Journal for Numerical Methods in Fluids, vol.71, issue.4, pp.446-472, 2012.

M. Ferrand, A. Joly, C. Kassiotis, D. Violeau, A. Leroy et al., Unsteady open boundaries for SPH using semi-analytical conditions and Riemann solver in 2D, Computer Physics Communications, vol.210, issue.1, pp.2140-2157, 1995.
URL : https://hal.archives-ouvertes.fr/hal-01376579

T. Fonty, M. Ferrand, A. Leroy, and D. Violeau, A rst air entrainment SPH model using a two-phase mixture formulation, Proceedings of the International 14th SPHERIC Workshop, vol.128, 2019.

T. Fonty, M. Ferrand, A. Leroy, A. Joly, and D. Violeau, Mixture model for two-phase ows with high density ratios: A conservative and realizable SPH formulation, International Journal of Multiphase Flow, vol.111, pp.158-174, 2014.

T. Franz and H. Wendland, Convergence of the Smoothed Particle Hydrodynamics Method for a Speci c Barotropic Fluid Flow: Constructive Kernel Theory, vol.50, pp.4752-4784, 2018.

L. Friedel, Improved friction pressure drop correlations for horizontal and vertical twophase pipe ow, European Two-Phase Flow Group Meeting, p.164, 1979.

T. Fries and H. Matthias, Classi cation and overview of meshfree methods, p.64, 2004.

U. Frisch, B. Hasslacher, and Y. Pomeau, Hasslacher and Y. Pomeau. Lattice-Gas Automata for the Navier-Stokes Equation, Phys. Rev. Lett, vol.56, p.111, 1986.

K. Fukagata, N. Kasagi, P. Ua-arayaporn, and T. Himeno, Numerical simulation of gas-liquid two-phase ow and convective heat transfer in a micro tube, Ganzenmuller 2015] G. C. Ganzenmuller, S. Hiermaier and M. May. On the similarity of meshless discretizations of Peridynamics and Smooth-Particle Hydrodynamics, vol.28, p.35, 2007.

C. Gauger, P. Leinen, and H. Yserentant, The Finite Mass Method, SIAM Journal on Numerical Analysis, vol.37, issue.6, pp.1768-1799, 2000.

A. Ghaitanellis, Modélisation du charriage sédimentaire par une approche granulaire avec SPH, Damien Mécanique des uides Paris Est, 2017.

U. Ghia, K. Ghia, and C. Shin, High-Re solutions for incompressible ow using the NavierStokes equations and a multigrid method, Journal of Computational Physics, vol.48, issue.3, p.131, 1982.

R. Gingold and J. Monaghan, Smoothed particle hydrodynamics-theory and application to non-spherical stars, Monthly Notices of the Royal Astronomical Society, vol.181, pp.375-389, 1977.

I. Ginzburg and D. Humières, Multire ection boundary conditions for lattice Boltzmann models, Phys. Rev. E, vol.68, p.105, 2003.

H. Gotoh, H. Ikari, T. Memita, and T. Sakai, Lagrangian Particle Method for Simulation of Wave Overtopping on a Vertical Seawall, Coastal Engineering Journal, vol.47, issue.02n03, p.29, 2005.

N. Grenier, M. Antuono, A. Colagrossi, D. L. Touzé, and B. Alessandrini, An Hamiltonian interface SPH formulation for multi-uid and free surface ows, Journal of Computational Physics, vol.228, issue.22, pp.8380-8393, 2009.

N. Grenier-;-d.-grunau, S. Chen, and K. Eggert, Modélisation numérique par la méthode SPH de la séparation eau-huile dans les séparateurs gravitaires, Physics of Fluids A: Fluid Dynamics, vol.5, issue.10, pp.2557-2562, 1993.

A. K. Gunstensen, D. H. Rothman, S. Zaleski, and G. Zanetti, Lattice Boltzmann model of immiscible uids, Phys. Rev. A, vol.43, pp.4320-4327, 1991.

Z. Guo and T. S. Zhao, Lattice Boltzmann model for incompressible ows through porous media, Phys. Rev. E, vol.66, p.36304, 2002.

Z. Guo, C. Zheng, B. Shi, ;. Halliday, S. P. Thompson et al., Macroscopic surface tension in a lattice Bhatnagar-Gross-Krook model of two immiscible uids, Physical Review E, vol.65, issue.1, p.114, 1998.

I. Halliday, A. P. Hollis, C. M. Care, ;. Hammani, G. Oger et al., Lattice Boltzmann algorithm for continuum multicomponent ow, Proceedings of the International 13th SPHERIC Workshop, vol.76, 2007.

S. Hao, H. S. Park, and W. K. Liu, Moving particle nite element method, International Journal for Numerical Methods in Engineering, vol.53, issue.8, pp.1937-1958, 2002.

F. H. Harlow and M. Evans, A machine calculation method for hydrodynamic problems. LAMS-1956, vol.32, 1955.

J. Harting, J. Chin, M. Venturoli, and P. V. Coveney, Large-scale lattice Boltzmann simulations of complex uids: advances through the advent of computational Grids, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol.363, issue.1833, pp.1895-1915, 2005.

X. He, Q. Zou, L. Luo, and M. Dembo, Analytic solutions of simple ows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model, Journal of Statistical Physics, vol.87, issue.1, p.107, 1997.

X. He, X. Shan, and G. D. Doolen, Discrete Boltzmann equation model for nonideal gases, Phys. Rev. E, vol.57, pp.13-16, 1998.

X. He, S. Chen, and R. Zhang, A Lattice Boltzmann Scheme for Incompressible Multiphase Flow and Its Application in Simulation of Rayleigh-Taylor Instability, Journal of Computational Physics, vol.152, issue.2, p.111, 1999.

Q. He and N. Kasagi, Phase-Field simulation of small capillary-number two-phase ow in a microtube, Fluid Dynamics Research, vol.40, issue.7-8, pp.497-509, 2008.

C. Hermange, Numerical simulation of the uid-structure interactions inside the aquaplaning problem. Theses, École centrale de Nantes, p.66, 2017.

G. F. Hewitt, Two-Phase Flows, A-to-Z Guide to Thermodynamics, Heat and Mass Transfer, and Fluids Engineering, vol.13, 2010.

D. Hietel, K. Steiner, and J. Struckmeier, A Finite Volume Particle Method for Compressible Flows, Mathematical Models and Methods in Applied Sciences, vol.10, issue.09, p.32, 2000.

D. J. Holdych, D. Rovas, J. G. Georgiadis, and R. O. Buckius, An Improved Hydrodynamics Formulation for Multiphase Flow Lattice-Boltzmann Models, International Journal of Modern Physics C, vol.09, issue.08, p.113, 1998.

Y. Hou, H. Deng, Q. Du, and K. Jiao, Multi-component multi-phase lattice Boltzmann modeling of droplet coalescence in ow channel of fuel cell, Journal of Power Sources, vol.393, p.122, 2018.

X. Hu and N. Adams, A multi-phase SPH method for macroscopic and mesoscopic ows, Journal of Computational Physics, vol.213, issue.2, pp.844-861, 2006.

X. Hu and N. Adams, An incompressible multi-phase SPH method, Journal of Computational Physics, vol.227, issue.1, pp.264-278, 2007.

H. Huang, J. Huang, X. Lu, and M. C. Sukop, On simulations of high-density ratio ows using color-gradient multiphase lattice Boltzmann models, International Journal of Modern Physics C, vol.24, issue.04, p.1350021, 2013.

J. Huang, F. Xiao, and X. Yin, Lattice Boltzmann simulation of pressure-driven two-phase ows in capillary tube and porous medium, Computers & Fluids, vol.155, pp.134-145, 2017.

S. R. Idelsohn, E. Oñate, N. Calvo, and F. Del-pin, The meshless nite element method, International Journal for Numerical Methods in Engineering, vol.58, issue.6, p.32, 2003.

M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, and M. Teschner, SPH uids in computer graphics. The Eurographics Association, p.40, 2014.

T. Inamuro, M. Yoshino, F. Ogino, ;. S. Inutsuka-;-i, A. N. Karlin et al., Reformulation of Smoothed Particle Hydrodynamics with Riemann Solver, Journal of Computational Physics, vol.7, issue.12, p.6, 1995.

S. Khorasanizade and J. M. Sousa, An innovative open boundary treatment for incompressible SPH, International Journal for Numerical Methods in Fluids, vol.80, issue.3, pp.161-180, 2016.

, Leda ow -the new multiphase simulator: User guide, vol.14, 2014.

Y. Krongauz and T. Belytschko, A Petrov-Galerkin Di use Element Method (PG DEM) and its comparison to EFG, Computational Mechanics, vol.19, issue.4, pp.327-333, 1997.

P. Kunz, I. M. Zarikos, N. K. Karadimitriou, M. Huber, U. Nieken et al., Study of Multi-phase Flow in Porous Media: Comparison of SPH Simulations with Micro-model Experiments, Transport in Porous Media, vol.114, issue.2, pp.581-600, 2015.

P. Kunz, M. Hirschler, M. Huber, and U. Nieken, In ow/out ow with Dirichlet boundary conditions for pressure in ISPH, Journal of Computational Physics, vol.326, pp.171-187, 2016.

A. J. Ladd, R. Verberg-;-b.-lafaurie, C. Nardone, R. Scardovelli, S. Zaleski et al., Modelling Merging and Fragmentation in Multiphase Flows with SURFER, Journal of Computational Physics, vol.104, issue.5, pp.134-147, 1994.

D. Lakehal, C. Narayanan, D. Caviezel, J. Rickenbach, and S. Reboux, Progress in computational micro uidics using TransAT. Micro uidics and Nano uidics, vol.15, p.189, 2013.

P. Lallemand and L. Luo, Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E, vol.61, p.105, 2000.

P. Lancaster and K. Sakauskas, Surfaces generated by moving least squares methods, p.26, 1979.

L. Landau, E. Lifchitz, and L. Pitaevskii, Cine'tique physique, The address, vol.10, p.91, 1990.

O. E. Lanford, Time evolution of large classical systems, p.91, 1975.

N. Lanson, J. Vila-;-m.-lastiwka, M. Basa, and N. J. Quinlan, Permeable and non-re ecting boundary conditions in SPH, Meshless methods for conservation laws. Mathematics and Computers in Simulation, vol.55, pp.709-724, 2001.

J. Latt, B. Chopard, ;. Latt, ;. Latt, ;. Latt et al., Lattice Boltzmann Method with regularized non-equilibrium distribution functions, SIAM Journal on Scienti c and Statistical Computing, vol.72, issue.153, p.62, 1986.

M. Latva-kokko and D. H. Rothman, Di usion properties of gradient-based lattice Boltzmann models of immiscible uids, Physical Review E, vol.71, issue.5, p.115, 2005.

S. Leclaire, M. Reggio, and J. Trépanier, Isotropic color gradient for simulating very high-density ratios with a two-phase ow lattice Boltzmann model, Computers & Fluids, vol.48, issue.1, pp.98-112, 2011.

S. Leclaire, M. Reggio, and J. Trépanier, Numerical evaluation of two recoloring operators for an immiscible two-phase ow lattice Boltzmann model, Applied Mathematical Modelling, vol.36, issue.5, pp.2237-2252, 2012.

S. Leclaire, M. El-hachem, J. Trépanier, and M. Reggio, High Order Spatial Generalization of 2D and 3D Isotropic Discrete Gradient Operators with Fast Evaluation on GPUs, Journal of Scienti c Computing, vol.59, issue.3, p.114, 2013.

;. S. Bibliography, N. Leclaire, M. Pellerin, J. Reggio, and . Trépanier, Enhanced equilibrium distribution functions for simulating immiscible multiphase ows with variable density ratios in a class of lattice Boltzmann models, International Journal of Multiphase Flow, vol.57, pp.159-168, 2013.

S. Leclaire, N. Pellerin, M. Reggio, J. Trépanier, ;. S. Leclaire et al., An approach to control the spurious currents in a multiphase lattice Boltzmann method and to improve the implementation of initial condition, International Journal for Numerical Methods in Fluids, vol.47, issue.10, pp.732-746, 2014.

S. Leclaire, K. Abahri, R. Belarbi, and R. Bennacer, Modeling of static contact angles with curved boundaries using a multiphase lattice Boltzmann method with variable density and viscosity ratios, International Journal for Numerical Methods in Fluids, vol.82, issue.8, pp.451-470, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01684856

S. Leclaire, A. Parmigiani, B. Chopard, and J. Latt, Three-dimensional lattice Boltzmann method benchmarks between color-gradient and pseudo-potential immiscible multi-component models, International Journal of Modern Physics C, vol.28, issue.07, p.1750085, 2017.

T. Lee and L. Liu, Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces, Journal of Computational Physics, vol.229, issue.20, p.118, 2010.

A. Leroy, D. Violeau, M. Ferrand, and C. Kassiotis, Uni ed semi-analytical wall boundary conditions applied to 2-D incompressible SPH, Journal of Computational Physics, vol.261, p.67, 2014.

S. Li, B. Ca, and W. K. Liu, Meshfree and particle methods and their applications, Applied Mechanics Reviews, vol.55, issue.1, p.28, 2002.

S. Li, H. Lu, W. Han, W. K. Liu, and D. C. Simkins, Reproducing kernel element method Part II: Globally conforming Im/Cn hierarchies, Meshfree Methods: Recent Advances and New Applications. (Cited on, vol.193, p.32, 2004.

Q. Li, K. H. Luo, Y. L. He, Y. J. Gao, and W. Q. Tao, Coupling lattice Boltzmann model for simulation of thermal ows on standard lattices, Phys. Rev. E, vol.85, p.114, 2012.

J. Li, Appendix: Chapman-Enskog Expansion in the Lattice Boltzmann Method, p.78, 2015.

Q. Li, K. Luo, Q. Kang, Y. He, Q. Chen et al., Lattice Boltzmann methods for multiphase ow and phase-change heat transfer, Progress in Energy and Combustion Science, vol.52, issue.11, pp.62-105, 2016.

L. Li, X. Jia, and Y. Liu, Modi ed Outlet Boundary Condition Schemes for Large Density Ratio Lattice Boltzmann Models, Journal of Heat Transfer, vol.139, issue.5, p.122, 2017.

L. D. Libersky and A. G. Petschek, Advances in the Free-Lagrange Method Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method: Proceedings of the Next Free-Lagrange Conference Held at, pp.248-257, 1990.

S. Lind, R. Xu, P. Stansby, and B. Rogers, Incompressible smoothed particle hydrodynamics for free-surface ows: A generalised di usion-based algorithm for stability and validations for impulsive ows and propagating waves, Journal of Computational Physics, vol.231, issue.4, pp.1499-1523, 2012.

W. K. Liu, S. Jun, S. Li, J. Adee, and T. Belytschko, Reproducing kernel particle methods for structural dynamics, International Journal for Numerical Methods in Engineering, vol.38, issue.10, p.27, 1995.

G. Liu and M. B. Liu, Smoothed particle hydrodynamics: a meshfree particle method, World Scienti c, 2003.

M. Liu, G. Liu, and K. Lam, Constructing smoothing functions in smoothed particle hydrodynamics with applications, Journal of Computational and Applied Mathematics, vol.155, issue.2, p.44, 2003.

W. K. Liu, W. Han, H. Lu, S. Li, and J. Cao, Reproducing kernel element method. Part I: Theoretical formulation, Meshfree Methods: Recent Advances and New Applications. (Cited on, vol.193, p.32, 2004.

G. Liu, Meshfree methods: moving beyond the nite element method, p.22, 2009.

H. Liu, A. J. Valocchi, and Q. Kang, Three-dimensional lattice Boltzmann model for immiscible two-phase ow simulations, Phys. Rev. E, vol.85, p.113, 2012.

H. Liu, Q. Kang, C. R. Leonardi, S. Schmieschek, A. Narváez et al., Multiphase lattice Boltzmann simulations for porous media applications, Computational Geosciences, vol.20, issue.4, p.111, 2015.

E. Lizarraga-garcía, A study of Taylor bubbles in vertical and inclined slug ow using multiphase CFD with level set, vol.14, 2016.

R. W. Lockhart and R. C. Martinelli, Proposed correlation of data for isothermal twophase, two-component ow in pipes, Chemical Engineering Progress, vol.45, issue.1, pp.39-48, 1949.

G. Lodato and D. J. Price, On the di usive propagation of warps in thin accretion discs, Monthly Notices of the Royal Astronomical Society, vol.405, issue.2, p.62, 2010.

Q. Lou, Z. Guo, and B. Shi, Evaluation of out ow boundary conditions for two-phase lattice Boltzmann equation, Physical Review E, vol.87, issue.6, p.122, 2013.

Y. Lu, T. Belytschko, and L. Gu, A new implementation of the element free Galerkin method, Computer Methods in Applied Mechanics and Engineering, vol.113, issue.3-4, pp.397-414, 1994.

H. Lu, S. Li, D. C. , W. K. Liu, and J. Cao, Reproducing kernel element method Part III: Generalized enrichment and applications, Meshfree Methods: Recent Advances and New Applications. (Cited on, vol.193, p.32, 2004.

M. Lu, Experimental and computational study of two-phase slug ow, vol.13, 2015.

L. B. Lucy, A numerical approach to the testing of the ssion hypothesis, The astronomical journal, vol.82, pp.1013-1024, 1977.

L. Luo, Some recent results on discrete velocity models and rami cations for lattice Boltzmann equation, Computer Physics Communications, vol.129, issue.1, pp.63-74, 2000.

J. Marongiu, F. Leboeuf, J. Caro, and E. Parkinson, Free surface ows simulations in Pelton turbines using an hybrid SPH-ALE method, Journal of Hydraulic Research, vol.48, issue.sup1, p.66, 2010.

S. Marrone, M. Antuono, A. Colagrossi, G. Colicchio, D. L. Touzé et al., An accurate SPH modeling of viscous ows around bodies at low and moderate Reynolds numbers, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.13-16, p.68, 2011.

S. Mas-gallic and P. A. Raviart, A particle method for rst-order symmetric systems, Numerische Mathematik, vol.51, issue.3, pp.323-352, 1987.

M. E. Mccracken and J. Abraham, Multiple-relaxation-time lattice-Boltzmann model for multiphase ow, Phys. Rev. E, vol.71, p.109, 2005.

J. Melenk and I. Babuska, The partition of unity nite element method: Basic theory and applications, Computer Methods in Applied Mechanics and Engineering, vol.139, issue.1-4, p.31, 1996.

J. Minier, Simulation of two-phase ow patterns with a new approach based on smoothed particle hydrodynamics, 2016.

A. Mokos, B. D. Rogers, and P. K. Stansby, A multi-phase particle shifting algorithm for SPH simulations of violent hydrodynamics with a large number of particles, Journal of Hydraulic Research, vol.55, issue.2, pp.143-162, 2016.

D. Molteni and A. Colagrossi, A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH, Computer Physics Communications, vol.180, issue.6, p.66, 2009.

J. Monaghan, Particle Methods for Hydrodynamics, Computer Physics Reports, vol.3, pp.71-124, 1985.

J. Monaghan, Smoothed particle hydrodynamics, Annu, Rev, Astron. Astrophys, vol.30, p.61, 1992.

J. Monaghan, Simulating free surface ows with SPH, Journal of Computational Physics, vol.110, pp.399-399, 1994.

J. Monaghan and A. Kocharyan, SPH simulation of multi-phase ow, Computer Physics Communications, vol.87, issue.1, pp.225-235, 1995.

J. Monaghan, SPH and Riemann Solvers, Journal of Computational Physics, vol.136, issue.2, p.61, 1997.

J. Monaghan, SPH without a Tensile Instability, Journal of Computational Physics, vol.159, issue.2, pp.290-311, 2000.

J. J. Monaghan, Smoothed particle hydrodynamics, Reports on Progress in Physics, vol.68, issue.8, p.67, 2005.

J. Monaghan, Smoothed particle hydrodynamic simulations of shear ow, Monthly Notices of the Royal Astronomical Society, vol.365, issue.1, pp.199-213, 2006.

J. Monaghan, A turbulence model for Smoothed Particle Hydrodynamics, European Journal of Mechanics -B/Fluids, vol.30, issue.4, p.164, 2011.

J. Monaghan, Smoothed Particle Hydrodynamics and Its Diverse Applications, Annual Review of Fluid Mechanics, vol.44, issue.1, p.40, 2012.

J. P. Morris, A Study of the Stability Properties of SPH, vol.52, 1995.

J. Morris, Analysis of smoothed particle hydrodynamics with applications, p.64, 1996.

J. Morris, P. Fox, and Y. Zhu, Modeling low Reynolds number incompressible ows using SPH, Journal of Computational Physics, vol.136, issue.1, p.62, 1997.

]. J. Morris and J. Monaghan, A switch to reduce SPH viscosity, Journal of Computational Physics, vol.136, issue.1, pp.41-50, 1997.

J. P. Morris, Simulating surface tension with smoothed particle hydrodynamics, International Journal for Numerical Methods in Fluids, vol.33, issue.3, pp.333-353, 2000.

B. B. Moussa and J. P. Vila, Convergence of SPH Method for Scalar Nonlinear Conservation Laws, SIAM Journal on Numerical Analysis, vol.37, issue.3, pp.863-887, 2000.

H. Müller-steinhagen and K. Heck, A simple friction pressure drop correlation for two-phase ow in pipes, Chemical Engineering and Processing: Process Intensi cation, vol.20, issue.6, p.164, 1986.

J. R. Murray, SPH simulations of tidally unstable accretion discs in cataclysmic variables, Monthly Notices of the Royal Astronomical Society, vol.279, issue.2, p.62, 1996.

B. Nayroles, G. Touzot, and P. Villon, Generalizing the nite element method: Di use approximation and di use elements, Computational Mechanics, vol.10, issue.5, p.29, 1992.

V. P. Nguyen, T. Rabczuk, S. Bordas, and M. Du, Meshless methods: A review and computer implementation aspects, Mathematics and Computers in Simulation, vol.79, issue.3, pp.763-813, 2008.

E. Oñate, S. Idelsohn, O. C. Zienkiewicz, and R. L. Taylor, A Finite Point Method In Computational Mechanics. Applications to convective Transport and Fluid Flow, International Journal for Numerical Methods in Engineering, vol.39, issue.22, p.29, 1996.

J. T. Oden, C. Duarte, and O. C. Zienkiewicz, A new cloud-based hp nite element method, Computer methods in applied mechanics and engineering, vol.153, issue.1, p.31, 1998.

G. Oger, M. Doring, B. Alessandrini, and P. Ferrant, Two-dimensional SPH simulations of wedge water entries, Journal of Computational Physics, vol.213, issue.2, p.67, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00699477

G. Oger, M. Doring, B. Alessandrini, and P. Ferrant, An Improved SPH Method: Towards Higher Order Convergence, J. Comput. Phys, vol.225, issue.2, p.57, 2007.

G. Oger, S. Marrone, D. L. Touzé, and M. De-le-e, SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms, Journal of Computational Physics, vol.313, pp.76-98, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01636003

K. Pan, R. H. Ijzermans, B. D. Jones, A. Thyagarajan, B. W. Beest et al., Application of the SPH method to solitary wave impact on an o shore platform, Computational Particle Mechanics, pp.1-12, 2015.

K. Pan, R. Pramanik, B. D. Jones, T. Douillet-grellier, A. Albaiz et al., Development of uid-solid coupling for the study of hydraulic fracturing using SPH, Proceedings of the International 11th SPHERIC Workshop, 2018.

S. Park and S. Youn, The least-squares meshfree method, International Journal for Numerical Methods in Engineering, vol.52, issue.9, pp.997-1012, 2001.

S. Pedersen, P. Durdevic, and Z. Yang, Challenges in slug modeling and control for o shore oil and gas productions: A review study, International Journal of Multiphase Flow, vol.88, pp.270-284, 2017.

G. Phillips and J. Monaghan, A numerical method for three-dimensional simulations of collapsing, isothermal, magnetic gas clouds, Monthly Notices of the Royal Astronomical Society, vol.216, issue.4, pp.883-895, 1985.

C. M. Pooley, H. Kusumaatmaja, J. M. Yeomans-;-r.-pramanik, T. Douillet-grellier, K. Pan et al., A SPH Approach to the Simulation of Hydraulic Fracture Propagation in Naturally Fractured Rock Medium, ARMA 50th US Rock Mechanics/Geomechanics Symposium, vol.78, pp.26-29, 2008.

D. J. Price, Modelling discontinuities and Kelvin-Helmholtz instabilities in SPH, Journal of Computational Physics, vol.227, issue.24, p.52, 2008.

D. J. Price, Smoothed particle hydrodynamics: things I wish my mother taught me, vol.60, 2011.

D. J. Price, Smoothed particle hydrodynamics and magnetohydrodynamics, Special Issue: Computational Plasma PhysicsSpecial Issue: Computational Plasma Physics, vol.231, pp.759-794, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01983030

A. Prosperetti and G. Tryggvason, Computational methods for multiphase ow, p.119, 2009.

Y. H. Qian, D. D'humières, and P. Lallemand, Lattice BGK Models for Navier-Stokes Equation, Europhysics Letters), vol.17, issue.6, p.479, 1992.

N. J. Quinlan, M. Basa, and M. Lastiwka, Truncation error in mesh-free particle methods, International Journal for Numerical Methods in Engineering, vol.66, issue.13, p.48, 2006.

T. Reis and T. N. Phillips, Lattice Boltzmann model for simulating immiscible two-phase ows, Journal of Physics A: Mathematical and Theoretical, vol.40, issue.14, p.4033, 2007.

G. Renaut, Schémas d'ordre élevé pour la méthode SPH-ALE appliquée à des simulations sur machines hydrauliques, p.66, 2015.

M. Robinson, Turbulence and viscous mixing using smoothed particle hydrodynamics, vol.64, 2009.

B. D. Rogers and R. A. Dalrymple, SPH modeling of tsunami waves, Advances in Coastal and Ocean Engineering, p.164, 2008.

F. Sánchez-silva, I. Carvajal-mariscal, M. Toledo-velázquez, D. Libreros, M. Toledovelázquez et al., Experiments in a combined up stream downstream slug ow, EPJ Web of Conferences, vol.45, p.1082, 2013.

S. Sarangi, A. Thyagarajan, K. Pan, J. Williams, ;. Sarica et al., Modeling the multiphase ow characteristics in randomly packed bed reactor with complex shapes of catalyst pellets using adaptive SPH, New Technologies in the Oil and Gas Industry, vol.46, pp.11-34, 1991.

X. Shan and H. Chen, Lattice Boltzmann model for simulating ows with multiple phases and components, Physical Review E, vol.47, issue.3, pp.1815-1819, 1993.

X. Shan, X. Yuan, and H. Chen, Kinetic theory representation of hydrodynamics: A way beyond the Navier-Stokes equation, Journal of Fluid Mechanics, vol.550, p.114, 2006.

S. Shao and H. Gotoh, Turbulence particle models for tracking free surfaces, Journal of Hydraulic Research, vol.43, issue.3, p.164, 2005.

R. D. Sibson-;-l, J. Sigalotti, O. Klapp, C. A. Rendón, F. Vargas et al., A vector identity for the Dirichlet tessellation, On the kernel and particle consistency in smoothed particle hydrodynamics, vol.87, pp.242-255, 1980.

]. J. Simpson and M. A. Wood, Classical kinetic theory simulations using smoothed particle hydrodynamics, Physical Review E, vol.54, issue.2, pp.2077-2083, 1996.

P. Spedding, E. Benard, and G. Donnelly, Prediction of pressure drop in multiphase horizontal pipe ow, International Communications in Heat and Mass Transfer, vol.33, issue.9, p.164, 2006.

V. Springel, Smoothed Particle Hydrodynamics in Astrophysics, Annual Review of Astronomy and Astrophysics, vol.48, issue.1, p.40, 2010.

T. Strouboulis, K. Copps, and I. Babuska, The generalized nite element method, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.32-33, p.31, 2001.

N. Sukumar, B. Moran, and T. Belytschko, The natural element method in solid mechanics, International Journal for Numerical Methods in Engineering, vol.43, issue.5, p.32, 1998.

D. Sulsky, Z. Chen, and H. Schreyer, A particle method for history-dependent materials, Computer Methods in Applied Mechanics and Engineering, vol.118, issue.1-2, p.32, 1994.

P. Sun, A. Colagrossi, S. Marrone, M. Antuono, and A. Zhang, A consistent approach to particle shifting in the ?-Plus-SPH model, Computer Methods in Applied Mechanics and Engineering, vol.348, p.66, 2019.

C. Suzanne, Structure de l'écoulement strati é de gaz et de liquide en canal rectangulaire, vol.187, p.186, 1985.

J. Swegle, D. Hicks, and S. Attaway, Smoothed particle hydrodynamics stability analysis, Journal of Computational Physics, vol.116, issue.1, pp.123-134, 1995.

M. R. Swift, W. R. Osborn, and J. M. Yeomans, Lattice Boltzmann Simulation of Nonideal Fluids, Physical Review Letters, vol.75, issue.5, pp.830-833, 1995.

M. R. Swift, W. R. Osborn, and J. M. Yeomans, Lattice Boltzmann Simulation of Nonideal Fluids, Phys. Rev. Lett, vol.75, p.118, 1995.

K. Szewc, Développement d'une approche particulaire de type SPH pour la modélisation des écoulements multiphasiques avec interfaces variables, 2013.

K. Szewc and M. T. Lewandowski, Further investigation of the spurious interface fragmentation in multiphase Smoothed Particle Hydrodynamics, 2016.

A. Tafuni, J. Domínguez, R. Vacondio, and A. Crespo, A versatile algorithm for the treatment of open boundary conditions in Smoothed particle hydrodynamics GPU models, Computer Methods in Applied Mechanics and Engineering, 2018.

T. Taha and Z. Cui, Hydrodynamics of slug ow inside capillaries, Chemical Engineering Science, vol.59, issue.6, pp.1181-1190, 2004.

Y. Taitel and A. E. Dukler, A model for predicting ow regime transitions in horizontal and near horizontal gas-liquid ow, AIChE Journal, vol.22, issue.1, pp.47-55, 1976.

Y. Taitel, D. Bornea, and A. E. Dukler, Modelling ow pattern transitions for steady upward gas-liquid ow in vertical tubes, AIChE Journal, vol.26, issue.3, pp.345-354, 1980.

V. W. Tarksalooyeh, G. Závodszky, B. J. Van-rooij, A. G. Hoekstra-;-a, N. Tartakovsky et al., In ow and out ow boundary conditions for 2D suspension simulations with the immersed boundary lattice Boltzmann method, Journal of Computational Physics, vol.172, issue.72, pp.1119-1146, 2015.

N. To and M. Yildiz, Numerical simulation of single droplet dynamics in three-phase ows using ISPH, Computers & Mathematics with Applications, vol.66, issue.4, pp.525-536, 2013.

J. Tolke, M. Krafczyk, M. Schulz, and E. Rank, Lattice Boltzmann simulations of binary uid ow through porous media, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.360, issue.1792, p.111, 2002.

P. M. Ujang, Studies of slug initiation and development in two-phase gas-liquid pipeline ow, p.235, 2003.

Y. Vidal, J. Bonet, and A. Huerta, Stabilized updated Lagrangian corrected SPH for explicit dynamic problems, International Journal for Numerical Methods in Engineering, vol.69, issue.13, p.66, 2007.

E. M. Viggen, The Lattice Boltzmann Method with Applications in Acoustics, p.78, 2009.

E. M. Viggen, The lattice Boltzmann method : Fundamentals and acoustics, vol.86, 2014.

M. Viggiani, O. Mariani, V. Battarra, A. Annunziato, and U. Bollettini, A Model to Verify the Onset of Severe Slugging, PSIG Annual Meeting, vol.14, 1988.

J. Vila, On particle weighted methods and smooth particle hydrodynamics. Mathematical models and methods in applied sciences, vol.9, p.49, 1999.

D. Violeau and R. Issa, Numerical modelling of complex turbulent free-surface ows with the SPH method: an overview, International Journal for Numerical Methods in Fluids, vol.53, issue.2, pp.277-304, 2007.

D. Violeau, C. Buvat, K. Abed-meraïm, and E. Nanteuil, Numerical modelling of boom and oil spill with SPH, Coastal Engineering, vol.54, issue.12, pp.895-913, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00375367

D. Violeau, Fluid mechanics and the SPH method theory and applications, vol.44, 2012.

D. Violeau, A. Leroy, ;. Violeau, and B. D. Rogers, Smoothed particle hydrodynamics (SPH) for free-surface ows: past, present and future, Journal of Computational Physics, vol.256, issue.1, pp.1-26, 2014.

D. Violeau and T. Fonty, Exact calculation of the SPH smoothing error, Proceedings of the International 14th SPHERIC Workshop, p.42, 2019.

F. D. Vuyst and T. Douillet-grellier, Entropic considerations on the LBGK model for advection-di usion, Proceedings of XXXIX Ibero-Latin American Congress on Computational Methods in Engineering (CILAMCE), 2018.

A. J. Wagner, Thermodynamic consistency of liquid-gas lattice Boltzmann simulations, Phys. Rev. E, vol.74, p.109, 2006.

E. Walther, Lattice Boltzmann Method applied to Building Physics, p.105, 2016.
URL : https://hal.archives-ouvertes.fr/tel-01281360

M. Wambsganss, J. Jendrzejczyk, and D. France, Two-phase ow and pressure drop in ow passages of compact heat exchangers, p.164, 1992.

Z. Wang, R. Chen, H. Wang, Q. Liao, X. Zhu et al., An overview of smoothed particle hydrodynamics for simulating multiphase ow, Applied Mathematical Modelling, vol.40, issue.23-24, pp.9625-9655, 2016.

H. Wendland, Piecewise polynomial, positive de nite and compactly supported radial functions of minimal degree, Advances in Computational Mathematics, vol.4, issue.1, pp.389-396, 1995.

S. Wolfram, Cellular automaton uids 1: Basic theory, Journal of Statistical Physics, vol.45, issue.3, p.203, 1986.

F. Xie, X. Zheng, M. S. Triantafyllou, Y. Constantinides, Y. Zheng et al., Direct numerical simulations of two-phase ow in an inclined pipe, Journal of Fluid Mechanics, vol.825, pp.189-207, 2017.

R. Xu, P. Stansby, and D. Laurence, Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach, Journal of Computational Physics, vol.228, issue.18, p.66, 2009.

Z. Xu, H. Liu, and A. J. Valocchi, Lattice Boltzmann simulation of immiscible two-phase ow with capillary valve e ect in porous media, Water Resources Research, vol.53, issue.5, p.111, 2017.

M. Yildiz, R. A. Rook, and A. Suleman, SPH with the multiple boundary tangent method, International Journal for Numerical Methods in Engineering, vol.77, issue.10, p.67, 2009.

Z. Yu, O. Hemminger, and L. Fan, Experiment and lattice Boltzmann simulation of twophase gas-liquid ows in microchannels, Chemical Engineering Science, vol.62, issue.24, pp.7172-7183, 2007.

A. Zhang, P. Sun, and F. Ming, An SPH modeling of bubble rising and coalescing in three dimensions, Computer Methods in Applied Mechanics and Engineering, vol.294, pp.189-209, 2015.

M. Zhang, L. Ming-pan, P. Ju, X. Yang, M. Ishii-;-t.-zhu et al., A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach, International Journal of Heat and Mass Transfer, vol.108, issue.3, pp.223-235, 1998.

I. Zisis, J. H. Evers, B. Van-der-linden, and M. H. Duong, Recent results in the systematic derivation and convergence of SPH, vol.60, 2016.

Q. Zou and X. He, On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Physics of Fluids, vol.9, issue.6, pp.1591-1598, 1997.