. Buchalska, Cette propriété permet d'utiliser le TiO2 comme filtre UV dans les crèmes solaires, 2010.

C. De-la, 2017) ou comme agent photocatalytique dans les peintures, 2016.

, 1 mV) while the other conditions provide absolute ZP value of > 30 mV. In the case of SDS based elution, the membrane is probably insufficiently electrostatically charged and hence NPs repulsion is scarce. Therefore, low ionic strength allows to obtain high AF4 membrane ZP hence providing efficient electrostatic repulsion of NPs leading to satisfactory AF4 recovery yields, absolute ZP value

N. Bendixen, S. Losert, and C. Adlhart, Membrane-particle interactions in an asymmetric flow field flow fractionation channel studied with titanium dioxide nanoparticles, J Chromatogr A, vol.1334, pp.92-100, 2014.

M. A. Benincasa and J. C. Giddings, Separation and Molecular Weight Distribution of Anionic and Cationic WaterSoluble Polymers by Flow Field-Flow Fractionation, Anal Chem, vol.64, pp.790-798, 1992.

S. Bettini, E. Boutet-robinet, and C. Cartier, Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon, Sci Rep, vol.7, p.40373, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01508951

S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers, J Am Chem Soc, vol.60, pp.309-319, 1938.

Q. Chen, C. Boothroyd, A. M. Soutar, and X. T. Zeng, Sol-gel nanocoating on commercial TiO2 nanopowder using ultrasound, J Sol-Gel Sci Technol, vol.53, pp.115-120, 2010.

X. X. Chen, B. Cheng, and Y. X. Yang, Characterization and preliminary toxicity assay of nano-titanium dioxide additive in sugar-coated chewing gum, Small, vol.9, pp.1765-1774, 2013.

K. M. Chin, S. Ting, S. Ong, H. L. Omar, and M. , Surface functionalized nanocellulose as a veritable inclusionary material in contemporary bioinspired applications: A review, J Appl Polym Sci, vol.135, 2018.

C. Contado, Field flow fractionation techniques to explore the "nano-world, Anal and Bioanal Chem, vol.409, pp.2501-2518, 2017.

C. Contado and A. Pagnoni, TiO2in commercial sunscreen lotion: Flow field-flow fractionation and ICP-AES together for size analysis, Anal Chem, vol.80, pp.7594-7608, 2008.

S. Dubascoux, V. D. Kammer, F. , L. Hécho, and I. , Optimisation of asymmetrical flow field flow fractionation for environmental nanoparticles separation, J Chromatogr A, vol.1206, pp.160-165, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01505730

W. Dudefoi, H. Terrisse, and M. Richard-plouet, Criteria to define a more relevant reference sample of titanium dioxide in the context of food: a multiscale approach, Food Addit Contam -Part A Chem Anal Control Expo Risk Assess, vol.34, pp.653-665, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608565

J. J. Faust, K. Doudrick, and Y. Yang, A facile method for separating and enriching nano and submicron particles from titanium dioxide found in food and pharmaceutical products, PLoS One, vol.11, pp.1-15, 2016.

V. Freyre-fonseca, T. Di, and M. Ei, Morphological and Physicochemical Characterization of Agglomerates of Titanium Dioxide Nanoparticles in Cell Culture Media, J Nanomater, 2016.

M. J. Gázquez, J. P. Bolívar, R. Garcia-tenorio, and F. Vaca, A Review of the Production Cycle of Titanium Dioxide Pigment, Mater Sci Appl, vol.05, pp.441-458, 2014.

, Carbon Black, Titanium Dioxide, and Talc, IARC Monogr Eval Carcinog Risks to Humans, vol.93, pp.1-413, 2010.

K. A. Jensen, Y. Kembouche, and E. Christiansen, Final protocol for producing suitable manufactured nanomaterial exposure media, 2011.

B. Jovanovi?, G. Bezirci, and A. S. Ça?an, Food web effects of titanium dioxide nanoparticles in an outdoor freshwater mesocosm experiment, Nanotoxicology, vol.10, pp.902-912, 2016.

H. Kato, A. Nakamura, H. Banno, and M. Shimizu, Separation of different-sized silica nanoparticles using asymmetric flow field-flow fractionation by control of the Debye length of the particles with the addition of electrolyte molecules, Colloid Surf A, vol.538, pp.678-685, 2018.

. Kammer-f-von-der, S. Legros, and T. Hofmann, Separation and characterization of nanoparticles in complex food and environmental samples by field-flow fractionation, TrAC -Trends Anal Chem, vol.30, pp.425-436, 2011.

G. Kim and W. Choi, Charge-transfer surface complex of EDTA-TiO2 and its effect on photocatalysis under visible light, Appl Catal B Environ, vol.100, pp.77-83, 2010.

P. Krystek, J. Tentschert, and Y. Nia, Method development and inter-laboratory comparison about the determination of titanium from titanium dioxide nanoparticles in tissues by inductively coupled plasma mass spectrometry, Anal Bioanal Chem, pp.3853-3861, 2014.
URL : https://hal.archives-ouvertes.fr/ineris-01855499

Y. L. Lin, T. J. Wang, and Y. Jin, Surface characteristics of hydrous silica-coated TiO2 particles, Powder Technol, vol.123, pp.194-198, 2002.

K. Loeschner, J. Navratilova, and S. Legros, Optimization and evaluation of asymmetric flow field-flow fractionation of silver nanoparticles, J Chromatogr A, vol.1272, pp.116-125, 2013.

I. López-heras, Y. Madrid, and C. Cámara, Prospects and difficulties in TiO2 nanoparticles analysis in cosmetic and food products using asymmetrical flow field-flow fractionation hyphenated to inductively coupled plasma mass spectrometry, Talanta, vol.124, pp.71-78, 2014.

M. Thang, N. Geckeis, H. Kim, J. Beck, and H. , Application of the flow field flow fractionation (FFFF) to the characterization of aquatic humic colloids: evaluation and optimization of the method, Colloids Surfaces A Physicochem Eng Asp, vol.181, pp.289-301, 2001.

B. Meisterjahn, S. Wagner, V. Der-kammer, and F. , Silver and gold nanoparticle separation using asymmetrical flow-field flow fractionation: Influence of run conditions and of particle and membrane charges, J Chromatogr A, vol.1440, pp.150-159, 2016.

D. M. Mitrano, S. Motellier, S. Clavaguera, and B. Nowack, Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products, Environ Int, vol.77, pp.132-147, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01344057

V. Nischwitz and H. Goenaga-infante, Improved sample preparation and quality control for the characterisation of titanium dioxide nanoparticles in sunscreens using flow field flow fractionation on-line with inductively coupled plasma mass spectrometry, J Anal At Spectrom, vol.27, pp.1084-1092, 2012.

R. Peters, G. Van-bemmel, and Z. Herrera-rivera, Characterization of Titanium Dioxide Nanoparticles in Food Products: Analytical Methods To Define Nanoparticles, J Agric Food Chem, vol.62, pp.6285-6293, 2014.

K. Rasmussen, J. Mast, P. Temmerman, and . De, Titanium Dioxide, NM-100, NM-101, NM-102, NM-103, NM-104, NM-105: Characterisation and Physico-Chemical Properties, 2014.

R. Saenmuangchin and A. Siripinyanond, Flow field-flow fractionation for hydrodynamic diameter estimation of gold nanoparticles with various types of surface coatings, Anal and Bioanal Chem, vol.410, pp.6845-6859, 2018.

A. Teleki, M. K. Akhtar, and S. E. Pratsinis, The quality of SiO2-coatings on flame-made TiO2-based nanoparticles, J Mater Chem, vol.18, pp.3547-3555, 2008.

, Recommendation on the definition of a nanomaterial, /EU). In: Off. J. Eur. Union, 2011.

, REGULATION (EU) No 1169/2011 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council, an, Off. J. Eur. Union, 2011.

D. Truffier-boutry, B. Fiorentino, and V. Bartolomei, Characterization of photocatalytic paints: A relationship between the photocatalytic properties-release of nanoparticles and volatile organic compounds, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01682344

, Environ Sci Nano, vol.4, 1998.

A. Ulrich, S. Losert, and N. Bendixen, Critical aspects of sample handling for direct nanoparticle analysis and analytical challenges using asymmetric field flow fractionation in a multi-detector approach, J Anal At Spectrom, vol.27, 2012.

K. G. Wahlund and J. C. Giddings, Properties of an Asymmetrical Flow Field-Flow Fractionation Channel Having One Permeable Wall, Anal Chem, vol.59, pp.1332-1339, 1987.

A. Weir, P. Westerhoff, and L. Fabricius, Titanium dioxide nanoparticles in food and personal care products, Environ Sci {&} Technol, vol.46, pp.2242-2250, 2012.

Y. Yang, K. Doudrick, and X. Bi, Characterization of food-grade titanium dioxide: The presence of nanosized particles, Environ Sci Technol, vol.48, pp.6391-6400, 2014.

O. Akhavan, Lasting antibacterial activities of Ag-TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation, Journal of Colloid and Interface Science, vol.336, issue.1, pp.117-124, 2009.

A. Al-kattan, A. Wichser, and R. Vonbank, Characterization of materials released into water from paint containing nano-SiO 2, Chemosphere, vol.119, pp.1314-1321, 2015.

P. Aliberti, S. K. Shrestha, and R. Teuscher, Study of silicon quantum dots in a SiO2 matrix for energy selective contacts applications, Solar Energy Materials and Solar Cells, vol.94, issue.11, pp.1936-1941, 2010.

A. M. Alkilany, L. B. Thompson, and S. P. Boulos, Gold nanorods: Their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions, 2012.

, Advanced Drug Delivery Reviews, vol.64, issue.2, pp.190-199

N. S. Allen, N. Mahdjoub, and V. Vishnyakov, The effect of crystalline phase (anatase, brookite and rutile) and size on the photocatalytic activity of calcined polymorphic titanium dioxide, 2018.

, Polymer Degradation and Stability, vol.150, pp.31-36

H. Althues, J. Henle, and S. Kaskel, Functional inorganic nanofillers for transparent polymers, Chemical Society Reviews, vol.36, issue.9, p.1454, 2007.

. Anses, Avis de l'Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail, 2017.

. Anses, Dioxyde de titane sous forme nanoparticulaire : l'Anses définit une Valeur Toxicologique de Référence (VTR) pour l'exposition chronique par inhalation, 2019.

A. Arnould, Caractérisation de nanoparticules en milieux complexes -Applications à des nanoparticules organiques et métalliques, 2018.

J. Athinarayanan, A. A. Alshatwi, V. S. Periasamy, and A. A. Al-warthan, Identification of Nanoscale Ingredients in Commercial Food Products and their Induction of Mitochondrially Mediated Cytotoxic Effects on Human Mesenchymal Stem Cells, Journal of Food Science, vol.80, issue.2, pp.459-464, 2015.

J. Athinarayanan, V. S. Periasamy, and M. A. Alsaif, Presence of nanosilica (E551) in commercial food products: TNF-mediated oxidative stress and altered cell cycle progression in human lung fibroblast cells, Cell Biology and Toxicology, vol.30, issue.2, pp.89-100, 2014.

J. Auvinen and L. Wirtanen, The influence of photocatalytic interior paints on indoor air quality, Atmospheric Environment, vol.42, issue.18, pp.4101-4112, 2008.

R. Aznar, F. Barahona, and O. Geiss, Quantification and size characterisation of silver nanoparticles in environmental aqueous samples and consumer products by single particle-ICPMS, Talanta, vol.175, pp.200-208, 2017.

M. Babaa, Contribution à l'étude de l'adsorption physique de gaz sur les nanotubes de carbone mono-et multiparois, 2004.

K. Badalova, P. Herbello-hermelo, P. Bermejo-barrera, and A. Moreda-piñeiro, Possibilities of single particle-ICP-MS for determining/characterizing titanium dioxide and silver nanoparticles in human urine, Journal of Trace Elements in Medicine and Biology, vol.54, pp.55-61, 2019.

M. Bañobre-lópez, A. Teijeiro, and J. Rivas, Magnetic nanoparticle-based hyperthermia for cancer treatment, Reports of Practical Oncology & Radiotherapy, vol.18, issue.6, 2013.

J. B. Baxter and E. S. Aydil, Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires, Solar Energy Materials and Solar Cells, vol.90, issue.5, pp.607-622, 2006.

N. Bellotti, R. Romagnoli, and C. Quintero, Nanoparticles as antifungal additives for indoor water borne paints, Progress in Organic Coatings, vol.86, pp.33-40, 2015.

N. Bendixen, S. Losert, and C. Adlhart, Membrane-particle interactions in an asymmetric flow field flow fractionation channel studied with titanium dioxide nanoparticles, Journal of Chromatography A, vol.1334, pp.92-100, 2014.

M. A. Benincasa and J. C. Giddings, Separation and Molecular Weight Distribution of Anionic and Cationic Water-Soluble Polymers by Flow Field-Flow Fractionation, Analytical Chemistry, vol.64, issue.7, pp.790-798, 1992.

T. M. Benn and P. Westerhoff, Nanoparticle Silver Released into Water from Commercially Available Sock Fabrics, Environmental Science & Technology, vol.42, issue.18, pp.7025-7026, 2008.

S. Bettini, E. Boutet-robinet, and C. Cartier, Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon, Scientific Reports, vol.7, issue.1, p.40373, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01508951

D. S. Bhatkhande, V. G. Pangarkar, and A. Beenackers, Photocatalytic degradation for environmental applications -a review, Journal of Chemical Technology & Biotechnology, vol.77, issue.1, pp.102-116, 2002.

S. Bhattacharjee, DLS and zeta potential -What they are and what they are not, Journal of Controlled Release, vol.235, pp.337-351, 2016.

P. Bihari, M. Vippola, and S. Schultes, Optimized dispersion of nanoparticles for biological in vitro and in vivo studies, vol.5, pp.1-14, 2008.

G. Binnig, F. Quate, and C. Gerber, Atomic Force Microscope, Physical Review Letters, vol.56, issue.9, pp.930-934, 1986.

G. Binnig and H. Rohrer, Scanning Tunneling Microscopy, Surface Science, vol.126, issue.1, pp.90716-90717, 1983.

B. Bocca, S. Caimi, and O. Senofonte, ICP-MS based methods to characterize nanoparticles of TiO2 and ZnO in sunscreens with focus on regulatory and safety issues, Science of The Total Environment, vol.630, pp.922-930, 2018.

B. Bocca, E. Sabbioni, and I. Mi?eti?, Size and metal composition characterization of nano-and microparticles in tattoo inks by a combination of analytical techniques, J Anal At Spectrom, vol.32, issue.3, pp.616-628, 2017.

E. Bolea-fernandez, D. Leite, and A. Rua-ibarz, Characterization of SiO 2 nanoparticles by single particle-inductively coupled plasma-tandem mass spectrometry (SP-ICP-MS/MS), Journal of Analytical Atomic Spectrometry, vol.32, issue.11, pp.2140-2152, 2017.

C. Botta, J. Labille, and M. Auffan, TiO2-based nanoparticles released in water from commercialized sunscreens in a life-cycle perspective: Structures and quantities, Environmental Pollution, vol.159, issue.6, pp.1543-1550, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01426200

J. Bottero, M. Auffan, and J. Rose, Manufactured metal and metal-oxide nanoparticles: Properties and perturbing mechanisms of their biological activity in ecosystems, Comptes Rendus Geoscience, vol.343, issue.2-3, pp.168-176, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01426205

L. Brannon-peppas and J. O. Blanchette, Nanoparticle and targeted systems for cancer therapy, Advanced Drug Delivery Reviews, vol.64, pp.206-212, 2012.

S. Brunauer, P. H. Emmett, and E. Teller, Adsorption of Gases in Multimolecular Layers, Journal of the American Chemical Society, vol.60, issue.2, pp.309-319, 1938.

M. Buchalska, G. Kras, and M. Oszajca, Singlet oxygen generation in the presence of titanium dioxide materials used as sunscreens in suntan lotions, Journal of Photochemistry and Photobiology A: Chemistry, vol.213, issue.2-3, pp.158-163, 2010.

C. Buzea, I. Pacheco, and R. K. , Nanomaterials and nanoparticles : Sources and toxicity, Biointerphases, vol.2, issue.4, pp.17-71, 2007.

S. Candás-zapico, D. J. Kutscher, M. Montes-bayón, and J. Bettmer, Single particle analysis of TiO2 in candy products using triple quadrupole ICP-MS, Talanta, vol.180, pp.309-315, 2018.

P. Cervantes-avilés, Y. Huang, and A. A. Keller, Incidence and persistence of silver nanoparticles throughout the wastewater treatment process, Water Research, vol.156, pp.188-198, 2019.

G. Chan, G. Zhao, G. C. Schatz, and R. P. Van-duyne, Localized Surface Plasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms, Nano Letters, vol.112, issue.36, pp.13958-13963, 2008.

T. Chauviré, Développement de systèmes photochimiques à base de Quantum Dots hydrosolubles de type coeur CdSe et coeur-coquille CdSe/ZnS, 2014.

A. Chebbi, V. Guipont, K. Elleuch, and M. Jeandin, Effects of 316SS addition on the properties of the coatings based on Al2O3 applied by plasma spraying, Journal of Composite Materials, vol.52, issue.19, pp.2597-2608, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01868955

Q. Chen, C. Boothroyd, A. M. Soutar, and X. T. Zeng, Sol-gel nanocoating on commercial TiO2 nanopowder using ultrasound, Journal of Sol-Gel Science and Technology, vol.53, issue.1, pp.115-120, 2010.

X. X. Chen, B. Cheng, and Y. X. Yang, Characterization and preliminary toxicity assay of nanotitanium dioxide additive in sugar-coated chewing gum, Small, vol.9, issue.9, 2013.

J. Y. Choi, G. Ramachandran, and M. Kandlikar, The impact of toxicity testing costs on nanomaterial regulation, Environmental Science and Technology, vol.43, issue.9, pp.3030-3034, 2009.

, Recommandation de la commision du 18 octobre 2011 relative à la définition des nanomatériaux, Commision européenne, 2011.

, Réglement (UE) N° 257/2010 de la Commission du 25 mars, Commission européenne, 2010.

C. Contado and A. Pagnoni, TiO2 in commercial sunscreen lotion: Flow field-flow fractionation and ICP-AES together for size analysis, Analytical Chemistry, vol.80, issue.19, pp.7594-7608, 2008.

C. Corinaldesi, F. Marcellini, and E. Nepote, Impact of inorganic UV filters contained in sunscreen products on tropical stony corals (Acropora spp.). Science of The Total Environment 637-638 1279-1285, 2018.

G. Cornelis and M. Hassellöv, A signal deconvolution method to discriminate smaller nanoparticles in single particle ICP-MS, J Anal At Spectrom, vol.29, issue.1, pp.134-144, 2014.

M. Correia, T. Uusimäki, P. A. Loeschner, and K. , Challenges in Determining the Size Distribution of Nanoparticles in Consumer Products by Asymmetric Flow Field-Flow Fractionation Coupled to Inductively Coupled Plasma-Mass Spectrometry: The Example of Al2O3, TiO2, and SiO2 Nanoparticles in Toothpaste. Separations, vol.5, pp.1-25, 2018.

M. B. Cortie and A. M. Mcdonagh, Synthesis and Optical Properties of Hybrid and Alloy Plasmonic Nanoparticles, Chemical Reviews, vol.111, issue.6, pp.3713-3735, 2011.

A. Dakhlaoui, M. Jendoubi, and L. S. Smiri, Synthesis, characterization and optical properties of ZnO nanoparticles with controlled size and morphology, Journal of Crystal Growth, vol.311, issue.16, pp.3989-3996, 2009.

P. Dallas, V. K. Sharma, and R. Zboril, Silver polymeric nanocomposites as advanced antimicrobial agents: Classification, synthetic paths, applications, and perspectives, Advances in Colloid and Interface Science, vol.166, issue.1-2, pp.119-135, 2011.

Y. Dan, H. Shi, C. Stephan, and X. Liang, Rapid analysis of titanium dioxide nanoparticles in sunscreens using single particle inductively coupled plasma-mass spectrometry, Microchemical Journal, vol.122, pp.119-126, 2015.

C. Dazon, O. Witschger, and S. Bau, Nanomaterial identification of powders: comparing volume specific surface area, X-ray diffraction and scanning electron microscopy methods, Environmental Science: Nano, vol.6, issue.1, pp.152-162, 2019.

L. De-broglie, Recherches sur la théorie des Quanta, 1924.

. De-la-calle-i-de, M. Menta, M. Klein, and F. Séby, Screening of TiO2 and Au nanoparticles in cosmetics and determination of elemental impurities by multiple techniques (DLS, SP-ICP-MS, ICP-MS and ICP-OES), Talanta, vol.171, pp.291-306, 2017.

I. De-la-calle, M. Menta, and M. Klein, Towards routine analysis of TiO2 (nano-)particle size in consumer products: Evaluation of potential techniques, Spectrochimica Acta -Part B: Atomic Spectroscopy, vol.147, pp.28-42, 2018.

I. De-la-calle, M. Menta, M. Klein, and F. Séby, Study of the presence of micro-and nanoparticles in drinks and foods by multiple analytical techniques, Food Chemistry, vol.266, pp.133-145, 2018.

C. Degueldre and P. Y. Favarger, Thorium colloid analysis by single particle inductively coupled plasmamass spectrometry, Talanta, vol.62, issue.5, pp.1051-1054, 2004.

C. Degueldre and P. Y. Favarger, Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: A feasibility study, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.217, issue.1-3, pp.137-142, 2003.

C. Degueldre, P. Y. Favarger, and C. Bitea, Zirconia colloid analysis by single particle inductively coupled plasma-mass spectrometry, Analytica Chimica Acta, vol.518, issue.1-2, 2004.

C. Degueldre, P. Y. Favarger, and S. Wold, Gold colloid analysis by inductively coupled plasma-mass spectrometry in a single particle mode, Analytica Chimica Acta, vol.555, issue.2, pp.263-268, 2006.

S. Dekkers, P. Krystek, and R. Peters, Presence and risks of nanosilica in food products, Nanotoxicology, vol.5, issue.3, pp.393-405, 2011.

M. Delay, T. Dolt, and A. Woellhaf, Interactions and stability of silver nanoparticles in the aqueous phase: Influence of natural organic matter (NOM) and ionic strength, Journal of Chromatography A, vol.1218, issue.27, pp.4206-4212, 2011.

Y. Deng, E. J. Petersen, and K. E. Challis, Multiple Method Analysis of TiO 2 Nanoparticle Uptake in Rice, Oryza sativa L.) Plants. Environmental Science & Technology, vol.51, issue.18, pp.10615-10623, 2017.

S. P. Deshmukh, S. M. Patil, S. B. Mullani, and S. D. Delekar, Silver nanoparticles as an effective disinfectant: A review, Materials Science and Engineering: C, vol.97, pp.954-965, 2019.

S. Dubascoux, V. D. Kammer, F. , L. Hécho, and I. , Optimisation of asymmetrical flow field flow fractionation for environmental nanoparticles separation, Journal of Chromatography A, vol.1206, issue.2, pp.160-165, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01505730

W. Dudefoi, H. Terrisse, and A. F. Popa, Evaluation of the content of TiO2 nanoparticles in the coatings of chewing gums, Food Additives & Contaminants: Part A, vol.35, issue.2, pp.211-221, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01718003

W. Dudefoi, H. Terrisse, and M. Richard-plouet, Criteria to define a more relevant reference sample of titanium dioxide in the context of food: a multiscale approach, Food Additives & Contaminants: Part A, vol.34, issue.5, pp.1-13, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608565

, Re-evaluation of titanium dioxide (E 171) as a food additive, EFSA Journal, vol.14, issue.9, p.4545, 2016.

, Evaluation of four new studies on the potential toxicity of titanium dioxide used as a food additive (E 171), EFSA Journal, vol.16, issue.7, p.27, 2018.

R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope, 2011.

C. Engelhard, Inductively coupled plasma mass spectrometry: recent trends and developments, Analytical and Bioanalytical Chemistry, vol.399, issue.1, pp.213-219, 2011.

S. W. Fage, J. Muris, S. S. Jakobsen, and J. P. Thyssen, Titanium: a review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity, Contact Dermatitis, vol.74, issue.6, pp.323-345, 2016.

X. Fan, W. Zheng, and D. J. Singh, Light scattering and surface plasmons on small spherical particles, Light: Science & Applications, vol.3, issue.6, pp.179-179, 2014.

J. J. Faust, K. Doudrick, and Y. Yang, Food grade titanium dioxide disrupts intestinal brush border microvilli in vitro independent of sedimentation, Cell Biology and Toxicology, vol.30, issue.3, pp.169-188, 2014.

J. J. Faust, K. Doudrick, and Y. Yang, A facile method for separating and enriching nano and submicron particles from titanium dioxide found in food and pharmaceutical products, PLoS ONE, vol.11, issue.10, pp.1-15, 2016.

R. P. Feynman, Plenty of Room at the Bottom -Talk to the, pp.1-7, 1959.

P. Fievet, A. Szymczyk, B. Aoubiza, and J. Pagetti, Evaluation of three methods for the characterisation of the membrane-solution interface: Streaming potential, membrane potential and electrolyte conductivity inside pores, Journal of Membrane Science, vol.168, issue.1-2, pp.302-308, 2000.

V. Freyre-fonseca, D. I. Téllez-medina, and E. I. Medina-reyes, Morphological and Physicochemical Characterization of Agglomerates of Titanium Dioxide Nanoparticles in Cell Culture Media, Journal of Nanomaterials, 2016.

J. Fuchs, M. Aghaei, and T. D. Schachel, Impact of the Particle Diameter on Ion Cloud Formation from Gold Nanoparticles in ICPMS, Analytical Chemistry, vol.90, issue.17, pp.10271-10278, 2018.

S. Galdiero, A. Falanga, and M. Vitiello, Silver Nanoparticles as Potential Antiviral Agents, Molecules, vol.16, issue.10, pp.8894-8918, 2011.

M. J. Gázquez, J. P. Bolívar, R. Garcia-tenorio, and F. Vaca, A Review of the Production Cycle of Titanium Dioxide Pigment, Materials Sciences and Applications, issue.07, pp.441-458, 2014.

M. Ge, C. Cao, and J. Huang, A review of one-dimensional TiO 2 nanostructured materials for environmental and energy applications, Journal of Materials Chemistry A, vol.4, issue.18, pp.6772-6801, 2016.

V. Geertsen, E. Barruet, and F. Gobeaux, Contribution to Accurate Spherical Gold Nanoparticles Size Determination by Single Particle Inductively Coupled Mass Spectrometry : a Comparison with Small Angle X-ray Scattering, Analytical Chemistry, vol.90, issue.16, pp.9742-9750, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01849061

G. Chaudhuri, R. Paria, and S. , Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications, Chemical Reviews, vol.112, issue.4, pp.2373-2433, 2012.

P. Ghosh, G. Han, and M. De, Gold nanoparticles in delivery applications, Advanced Drug Delivery Reviews, vol.60, issue.11, pp.1307-1315, 2008.

J. Giddings, Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials, Science, vol.260, issue.5113, pp.1456-1465, 1993.

J. C. Giddings, A New Separation Concept Based on a Coupling of Concentration and Flow Nonuniformities, Separation Science, vol.1, issue.1, pp.123-125, 1966.

J. Gigault, Développement de méthodes de Fractionnement par couplage Flux-Force (FFF) -multi-détection pour la caractérisation de nanotubes de carbone dispersés en milieu aqueux, 2011.

L. J. Gimbert, K. N. Andrew, P. M. Haygarth, and P. J. Worsfold, Environmental applications of flow field-flow fractionation (FIFFF), TrAC -Trends in Analytical Chemistry, vol.22, issue.10, pp.1103-1111, 2003.

H. Goesmann and C. Feldmann, Nanoparticulate Functional Materials, Angewandte Chemie International Edition, vol.49, issue.8, pp.1362-1395, 2010.

M. Gulzar, H. H. Masjuki, and M. A. Kalam, Tribological performance of nanoparticles as lubricating oil additives, Journal of Nanoparticle Research, vol.18, issue.223, pp.1-25, 2016.

A. Gundlach-graham, L. Hendriks, K. Mehrabi, and D. Günther, Monte Carlo Simulation of Low-Count Signals in Time-of-Flight Mass Spectrometry and Its Application to Single-Particle Detection, Analytical Chemistry, vol.90, issue.20, pp.11847-11855, 2018.

Z. Guo and L. Tan, Fundamentals and Applications of Nanomaterials, Artech Hou, 2009.

A. Gustavsson, The determination of some nebulizer characteristics, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.39, issue.5, pp.743-746, 1984.

H. Hagendorfer, R. Kaegi, and M. Parlinska, Characterization of silver nanoparticle products using asymmetric flow field flow fractionation with a multidetector approach -A comparison to transmission electron microscopy and batch dynamic light scattering, Analytical Chemistry, vol.84, issue.6, pp.2678-2685, 2012.

H. Hagendorfer, R. Kaegi, and J. Traber, Application of an asymmetric flow field flow fractionation multi-detector approach for metallic engineered nanoparticle characterization -Prospects and limitations demonstrated on Au nanoparticles, Analytica Chimica Acta, vol.706, issue.2, pp.367-378, 2011.

M. Hamandi, Élaboration et caractérisation d 'oxydes de Titane de Morphologie Contrôlée : application à la Photodégradation de Polluants Organiques, 2017.

C. Bernard-lyon,

I. M. Hamouda, Current perspectives of nanoparticles in medical and dental biomaterials, Journal of Biomedical Research, vol.26, issue.3, pp.143-151, 2012.

S. Hasegawa, M. Hirabayashi, and S. Kobayashi, Size Distribution and Characterization of Ultrafine Particles in Roadside Atmosphere, Journal of Environmental Science and Health, Part A, vol.39, issue.10, pp.2671-2690, 2004.

J. L. Hedrick, T. Magbitang, and E. F. Connor, Application of complex macromolecular architectures for advanced microelectronic materials, Chemistry -A European Journal, vol.8, issue.15, pp.3308-3319, 2002.

J. Helsper, R. Peters, and M. Van-bemmel, Physicochemical characterization of titanium dioxide pigments using various techniques for size determination and asymmetric flow field flow fractionation hyphenated with inductively coupled plasma mass spectrometry, Analytical and Bioanalytical Chemistry, vol.408, issue.24, pp.6679-6691, 2016.

L. Hendriks, A. Gundlach-graham, and D. Günther, Analysis of Inorganic Nanoparticles by Singleparticle Inductively Coupled Plasma Time-of-Flight Mass Spectrometry, CHIMIA International Journal for Chemistry, vol.72, issue.4, pp.221-226, 2018.

W. Hergert and T. Wriedt, The Mie Theory, 2012.

M. B. Heringa, R. Peters, and R. Bleys, Detection of titanium particles in human liver and spleen and possible health implications, Particle and Fibre Toxicology, vol.15, issue.15, pp.1-9, 2018.

J. Heroult, V. Nischwitz, D. Bartczak, and H. Goenaga-infante, The potential of asymmetric flow fieldflow fractionation hyphenated to multiple detectors for the quantification and size estimation of silica nanoparticles in a food matrix, Analytical and Bioanalytical Chemistry, vol.406, issue.16, pp.3919-3927, 2014.

A. Hineman and C. Stephan, Effect of dwell time on single particle inductively coupled plasma mass spectrometry data acquisition quality, J Anal At Spectrom, vol.29, issue.7, pp.1252-1257, 2014.

E. Houdeau, B. Lamas, D. Lison, and F. Pierre, Nanoparticles and food: An emerging risk for human health? Cahiers de Nutrition et de, Dietetique, vol.53, issue.6, pp.312-321, 2018.

D. Huber, Synthesis, Properties, and Applications of Iron Nanoparticles. Small, vol.1, issue.5, pp.482-501, 2005.

K. A. Huynh, E. Siska, and E. Heithmar, Detection and Quantification of Silver Nanoparticles at Environmentally Relevant Concentrations Using Asymmetric Flow Field-Flow Fractionation Online with Single Particle Inductively Coupled Plasma Mass Spectrometry, vol.88, pp.4909-4916, 2016.

A. P. Ingle, N. Duran, and M. Rai, Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: A review, Applied Microbiology and Biotechnology, vol.98, issue.3, pp.1001-1009, 2014.

, ISO (2015) Nanotechnologies -Vocabulary

P. Jain and T. Pradeep, Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter, Biotechnology and Bioengineering, vol.90, issue.1, pp.59-63, 2005.

Y. Jallouli, A. Paillard, and J. Chang, Influence of surface charge and inner composition of porous nanoparticles to cross blood-brain barrier in vitro, International Journal of Pharmaceutics, vol.344, issue.1-2, pp.103-109, 2007.

K. A. Jensen, Y. Kembouche, and E. Christiansen, Final protocol for producing suitable manufactured nanomaterial exposure media, 2013.

J. Jiménez-lamana, I. Abad-Álvaro, and K. Bierla, Detection and characterization of biogenic selenium nanoparticles in selenium-rich yeast by single particle ICPMS, Journal of Analytical Atomic Spectrometry, vol.33, issue.3, pp.452-460, 2018.

J. Jose and G. Netto, Role of solid lipid nanoparticles as photoprotective agents in cosmetics, Journal of Cosmetic Dermatology, vol.18, issue.1, pp.315-321, 2019.

B. Jovanovi?, G. Bezirci, and A. S. Ça?an, Food web effects of titanium dioxide nanoparticles in an outdoor freshwater mesocosm experiment, Nanotoxicology, vol.10, issue.7, pp.902-912, 2016.

M. Kaasalainen, V. Aseyev, and E. Von-haartman, Size, Stability, and Porosity of Mesoporous Nanoparticles Characterized with Light Scattering, Nanoscale Research Letters, vol.12, issue.74, pp.1-10, 2017.

M. Kaszuba, J. Corbett, F. M. Watson, and A. Jones, High-concentration zeta potential measurements using light-scattering techniques, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.368, pp.4439-4451, 1927.

A. A. Keller, Y. Huang, and J. Nelson, Detection of nanoparticles in edible plant tissues exposed to nanocopper using single-particle ICP-MS, Journal of Nanoparticle Research, vol.20, pp.1-13, 2018.

A. A. Keller and A. Lazareva, Predicted Releases of Engineered Nanomaterials: From Global to Regional to Local, Environmental Science and Technology Letters, vol.1, issue.1, pp.65-70, 2014.

A. A. Keller, S. Mcferran, A. Lazareva, and S. Suh, Global life cycle releases of engineered nanomaterials, Journal of Nanoparticle Research, vol.15, pp.1-17, 1692.

A. A. Keller, W. Vosti, H. Wang, and A. Lazareva, Release of engineered nanomaterials from personal care products throughout their life cycle, Journal of Nanoparticle Research, vol.16, pp.1-10, 2014.

I. Khan, K. Saeed, and I. Khan, Nanoparticles : Properties , applications and toxicities, Arab J Chem, 2017.

B. Khodashenas and H. R. Ghorbani, Synthesis of silver nanoparticles with different shapes, Arab J Chem, 2015.

G. Kim and W. Choi, Charge-transfer surface complex of EDTA-TiO2 and its effect on photocatalysis under visible light, Applied Catalysis B: Environmental, vol.100, 2010.

N. Kim, C. Kim, and S. Jung, Determination and identification of titanium dioxide nanoparticles in confectionery foods, marketed in South Korea, using inductively coupled plasma optical emission spectrometry and transmission electron microscopy. Food Additives and Contaminants -Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, vol.35, issue.7, pp.1238-1246, 2018.

M. W. Knight, L. Liu, and Y. Wang, Aluminum Plasmonic Nanoantennas, Nano Letters, vol.12, issue.11, pp.6000-6004, 2012.

B. Kollander, F. Widemo, and E. Ågren, Detection of lead nanoparticles in game meat by single particle ICP-MS following use of lead-containing bullets, Analytical and Bioanalytical Chemistry, vol.409, issue.7, pp.1877-1885, 2017.

S. Korposh, S. W. James, and S. Lee, Fiber optic long period grating sensors with a nanoassembled mesoporous film of SiO 2 nanoparticles, Opitcs Express, vol.18, issue.12, pp.13227-13238, 2010.

K. Kowal, P. Cronin, and E. Dworniczek, Biocidal effect and durability of nano-TiO2 coated textiles to combat hospital acquired infections, RSC Advances, vol.4, issue.38, 2014.

W. G. Kreyling, U. Holzwarth, and C. Schleh, Quantitative biokinetics of titanium dioxide nanoparticles after oral application in rats: Part 2, Nanotoxicology, vol.11, issue.4, pp.443-453, 2017.

H. F. Krug and P. Wick, Nanotoxicology: An Interdisciplinary Challenge, Angewandte Chemie International Edition, vol.50, issue.6, pp.1260-1278, 2011.

P. Krystek, P. S. Bäuerlein, and P. Kooij, Analytical assessment about the simultaneous quantification of releasable pharmaceutical relevant inorganic nanoparticles in tap water and domestic waste water, Journal of Pharmaceutical and Biomedical Analysis, vol.106, pp.116-123, 2015.

P. Krystek, J. Tentschert, and Y. Nia, Method development and inter-laboratory comparison about the determination of titanium from titanium dioxide nanoparticles in tissues by inductively coupled plasma mass spectrometry, Analytical and Bioanalytical Chemistry, vol.406, issue.16, pp.3853-3861, 2014.
URL : https://hal.archives-ouvertes.fr/ineris-01855499

T. K. Kundu, N. Karak, P. Barik, and S. Saha, Optical Properties of Zno Nanoparticles Prepared by Chemical Method Using Poly ( VinylAlcohol ) ( PVA ) as Capping Agent, International Journal of Soft Computing and Engineering, vol.1, pp.19-24, 2011.

D. Kutscher, J. Wils, M. Ducos, and S. , Nanoparticle Characterization Via Single Particle Inductively Coupled Plasma -Mass Spectrometry (spICP-MS) Using a Dedicated Plug-in for Qtegra ISDS Software, 2016.

Y. Kuznetsova and A. A. Rempel, Size and Zeta Potential of CdS Nanoparticles in Stable Aqueous Solution of EDTA and NaCl, Inorganic Materials, vol.51, issue.3, pp.215-219, 2015.

F. Laborda, J. Jiménez-lamana, E. Bolea, and J. R. Castillo, Selective identification, characterization and determination of dissolved silver(i) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry, Journal of Analytical Atomic Spectrometry, vol.26, issue.7, p.1362, 2011.

M. Landmann, E. Rauls, and W. G. Schmidt, The electronic structure and optical response of rutile, anatase and brookite TiO 2, Journal of Physics: Condensed Matter, vol.24, issue.19, pp.1-7, 2012.

I. Langmuir, . Glass, and . Platinum, Journal of the American Chemical Society, vol.40, issue.9, pp.1361-1403, 1918.

C. Larue, C. Baratange, and D. Vantelon, Influence of soil type on TiO2 nanoparticle fate in an agro-ecosystem, Science of The Total Environment, vol.630, pp.609-617, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01720395

S. S. Latthe, R. S. Sutar, and V. S. Kodag, Self -cleaning superhydrophobic coatings: Potential industrial applications, Progress in Organic Coatings, vol.128, pp.52-58, 2019.

L. Ouay, B. Stellacci, and F. , Antibacterial activity of silver nanoparticles: A surface science insight, Nano Today, vol.10, issue.3, pp.339-354, 2015.

L. Trequesser and Q. , Synthèse de nanoparticules de dioxyde de titane de morphologies contrôlées : localisation, quantification et aspects toxicologiques de la cellule à l'organisme pluricellulaire, 2014.

L. Trequesser, Q. Seznec, H. Delville, and M. , Functionalized nanomaterials : their use as contrast agents in bioimaging : mono-and multimodal approaches, Nanotechnology Reviews, vol.2, issue.2, pp.125-169, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00814288

A. J. Lecloux, R. Atluri, Y. Kolen'ko, and F. L. Deepak, Discussion about the use of the volume specific surface area (VSSA) as a criterion to identify nanomaterials according to the EU definition, Nanoscale, vol.9, issue.39, pp.14952-14966, 2017.

J. Lee, S. Mahendra, and P. Alvarez, Nanomaterials in the Construction Industry : A Review of Their Applications and Environmental Health and Safety Considerations, vol.4, pp.3580-3590, 2010.

S. Lee, X. Bi, and R. B. Reed, Nanoparticle size detection limits by single particle ICP-MS for 40 elements, Environmental Science & Technology, vol.48, pp.10291-10300, 2014.

W. Lee and W. Chan, Calibration of single-particle inductively coupled plasma-mass spectrometry (SP-ICP-MS), Journal of Analytical Atomic Spectrometry, vol.30, pp.1245-1254, 2015.

J. Li, S. Yang, and R. Lei, Oral administration of rutile and anatase TiO2 nanoparticles shifts mouse gut microbiota structure, Nanoscale, vol.10, issue.16, pp.7736-7745, 2018.

L. Li, Z. Gu, and W. Gu, Efficient drug delivery using SiO 2 -layered double hydroxide nanocomposites, Journal of Colloid and Interface Science, vol.470, pp.47-55, 2016.

J. Lim, D. Bae, and A. Fong, Titanium Dioxide in Food Products: Quantitative Analysis Using ICP-MS and Raman Spectroscopy, Journal of Agricultural and Food Chemistry, vol.66, issue.51, pp.13533-13540, 2018.

Y. L. Lin, T. J. Wang, and Y. Jin, Surface characteristics of hydrous silica-coated TiO2 particles, Powder Technology, vol.123, issue.2-3, 2002.

. Lne, Rapport d'essai -Dossier P156452 -Document DMSI/1 -Page 1/26, 2016.

K. Loeschner, M. Correia, and C. L. Chaves, Detection and characterisation of aluminiumcontaining nanoparticles in Chinese noodles by single particle ICP-MS, Food Additives & Contaminants: Part A, vol.35, issue.1, pp.86-93, 2018.

I. López-heras, Y. Madrid, and C. Cámara, Prospects and difficulties in TiO2 nanoparticles analysis in cosmetic and food products using asymmetrical flow field-flow fractionation hyphenated to inductively coupled plasma mass spectrometry, Talanta, vol.124, pp.71-78, 2014.

C. Lorenz, L. Windler, V. Goetz, and N. , Characterization of silver release from commercially available functional (nano)textiles, Chemosphere, vol.89, issue.7, pp.817-824, 2012.

M. Lorenzetti, A. Drame, S. ?turm, and S. Novak, TiO 2 (Nano)Particles Extracted from Sugar-Coated Confectionery, Journal of Nanomaterials, pp.1-14, 2017.

C. Lu, B. Willner, I. Willner, and L. Al, DNA Nanotechnology : From Sensing and DNA Machines to Drug-Delivery Systems, ACS Nano, vol.7, issue.10, pp.8320-8332, 2013.

P. Lu, S. Huang, and Y. Chen, Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics, Journal of Food and Drug Analysis, vol.23, issue.3, pp.587-594, 2015.

T. Luxbacher, The ZETA Guide -Principle of the streaming potential technique, 2014.

A. Mackevica, E. Olsson, M. , F. Hansen, and S. , Quantitative characterization of TiO2 Nanoparticle Release from textiles by conventional and Single Particle ICP-MS, Journal of Nanoparticle Research, vol.20, issue.6, pp.1-11, 2018.

A. G. Magdalena, I. Silva, and R. Marques, EDTA-functionalized Fe 3 O 4 nanoparticles, Journal of Physics and Chemistry of Solids, vol.113, pp.5-10, 2018.

M. Mahmoudi, S. Sant, and B. Wang, Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy, Advanced Drug Delivery Reviews, vol.63, issue.1-2, pp.24-46, 2011.

M. Instrument, , 2017.

M. Instrument, Dynamic Light Scattering: An introduction in 30 minutes, 2012.

M. Thang, N. Geckeis, H. Kim, J. Beck, and H. , Application of the flow field flow fractionation (FFFF) to the characterization of aquatic humic colloids: evaluation and optimization of the method, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.181, issue.1-3, pp.289-301, 2001.

L. Marques, F. U. Hernandez, and S. W. James, Highly sensitive optical fibre long period grating biosensor anchored with silica core gold shell nanoparticles, Biosensors and Bioelectronics, vol.75, pp.222-231, 2016.

M. Martin and F. Feuillebois, Onset of sample concentration effects on retention in field-flow fractionation, Journal of Separation Science, vol.26, issue.6-7, pp.471-479, 2003.

J. M. Martinez-andrade, M. Avalos-borja, and A. R. Vilchis-nestor, Dual function of EDTA with silver nanoparticles for root canal treatment -A novel modification, PLoS ONE, vol.13, issue.1, pp.1-19, 2018.

J. Mast, E. Verleysen, P. Temmerman, and . De, Advanced Transmission Electron Microscopy, 2015.

N. Maximous, G. Nakhla, W. Wan, and K. Wong, Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration, Journal of Membrane Science, vol.341, issue.1-2, 2009.

A. Maynard and E. Michelson, The Nanotechnology Consumer Products Inventory, 2014.

J. F. Mcaleer and L. M. Peter, Instability of Anodic Oxide Films on Titanium, Journal of The Electrochemical Society, vol.129, issue.6, pp.1252-1260, 1982.

B. Meermann and V. Nischwitz, ICP-MS for the analysis at the nanoscale -a tutorial review, Journal of Analytical Atomic Spectrometry, vol.33, issue.9, pp.1432-1468, 2018.

B. Meisterjahn, S. Wagner, V. Der-kammer, and F. , Silver and gold nanoparticle separation using asymmetrical flow-field flow fractionation: Influence of run conditions and of particle and membrane charges, Journal of Chromatography A, vol.1440, pp.150-159, 2016.

D. Minetto, G. Libralato, A. Marcomini, and V. Ghirardini, Potential effects of TiO 2 nanoparticles and TiCl 4 in saltwater to Phaeodactylum tricornutum and Artemia franciscana, Science of The Total Environment, vol.579, pp.1379-1386, 2017.

, Communiqué de presse N°298, 2018.

, Communique De Presse N°956, 2019.

D. M. Mitrano, A. Barber, and A. Bednar, Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICP-MS), Journal of Analytical Atomic Spectrometry, vol.27, issue.7, p.1131, 2012.

D. M. Mitrano, S. Motellier, S. Clavaguera, and B. Nowack, Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products, Environment International, vol.77, pp.132-147, 2015.
URL : https://hal.archives-ouvertes.fr/cea-01344057

M. D. Montaño, H. R. Badiei, S. Bazargan, and J. F. Ranville, Improvements in the detection and characterization of engineered nanoparticles using spICP-MS with microsecond dwell times, Environmental Science Nano, vol.1, issue.4, pp.338-346, 2014.

P. Mukerjee and K. J. Mysels, Critical Micelle Concentrations of Aqueous Surfactant Systems, Journal of Pharmaceutical Sciences, vol.61, issue.2, pp.1-319, 1972.

N. Peikam, E. Jalali, and M. , Application of three nanoparticles (Al2O3, SiO2 and TiO2) for metalcontaminated soil remediation (measuring and modeling), Int J Environ Sci Technol, 2018.

A. Nel, Toxic Potential of Materials at the Nanolevel, Science, vol.311, issue.5761, pp.622-627, 2006.

J. Nicolas and P. Couvreur, Les nanoparticules polymères pour la délivrance de principes actifs anticancéreux. médecine/sciences, vol.33, pp.11-17, 2017.

V. Nischwitz and H. Goenaga-infante, Improved sample preparation and quality control for the characterisation of titanium dioxide nanoparticles in sunscreens using flow field flow fractionation on-line with inductively coupled plasma mass spectrometry, Journal of Analytical Atomic Spectrometry, vol.27, issue.7, pp.1084-1092, 2012.

B. Nowack and T. D. Bucheli, Occurrence, behavior and effects of nanoparticles in the environment, Environmental Pollution, vol.150, issue.1, pp.5-22, 2007.

S. Nunez, H. Goenaga, and M. Yamanaka, Application note -Analysis of 10 nm gold nanoparticles using the high sensitivity of the Agilent, p.8900, 2016.

G. Oberdörster, E. Oberdörster, and J. Oberdörster, Review Nanotoxicology : An Emerging Discipline Evolving from Studies of Ultrafine Particles, Environmental Health Perspectives, vol.113, issue.7, pp.823-839, 2005.

B. Ohtani, O. O. Prieto-mahaney, D. Li, and R. Abe, What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test, Journal of Photochemistry and Photobiology A: Chemistry, vol.216, issue.2-3, pp.179-182, 2010.

J. W. Olesik and P. J. Gray, Considerations for measurement of individual nanoparticles or microparticles by ICP-MS: determination of the number of particles and the analyte mass in each particle, Journal of Analytical Atomic Spectrometry, vol.27, issue.7, p.1143, 2012.

J. Omar, A. Boix, G. Kerckhove, V. Holst, and C. , Optimisation of asymmetric flow field-flow fractionation for the characterisation of nanoparticles in coated polydisperse TiO2 with applications in food and feed. Food Additives and Contaminants -Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, vol.33, issue.12, pp.1775-1784, 2016.

, Open Food Facts Open Food Facts -France, 2019.

H. E. Pace, N. J. Rogers, and C. Jarolimek, Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry, Analytical Chemistry, vol.83, issue.24, pp.9361-9369, 2011.

H. E. Pace, N. J. Rogers, and C. Jarolimek, Single Particle Inductively Coupled Plasma-Mass Spectrometry: A Performance Evaluation and Method Comparison in the Determination of Nanoparticle Size, Environmental Science & Technology, vol.46, issue.22, pp.12272-12280, 2012.

S. Pardis, Synthèse de nanoparticules d'oxydes de titane par pyrolyse laser -Etude des propriétés optiques et de la structure électronique, 2012.

N. Park, Perovskite solar cells : an emerging photovoltaic technology, Biochemical Pharmacology, vol.18, issue.2, pp.65-72, 2015.

. Parlement-européen, Règlement (CE) 528/2012, relatif à la mise sur le marché des substances et produits biocides, 2012.

. Parlement-européen, Réglement (CE) N° 1223/2009 du Parlement européen et du Conseil du 30 novembre, 2009.

. Parlement-européen, Directive 94/36/CE du Parlement européen et du Conseil du 30 juin 1994 concernant les colorants destinés à être employés dans les denrées alimentaires, 1994.

R. Pecora, Dynamic Light Scattering Measurement of Nanometer Particles in Liquids, Journal of Nanoparticle Research, vol.2, issue.2, pp.123-131, 2000.

P. Pedata, L. Malorni, and N. Sannolo, Characterization and Inflammatory Potential of sub-10nm Particles from Gas Cooking Appliances, Chemical Engineering Transactions, vol.47, pp.433-438, 2016.

L. C. Pele, V. Thoree, and S. Bruggraber, Pharmaceutical/food grade titanium dioxide particles are absorbed into the bloodstream of human volunteers, Particle and Fibre Toxicology, vol.12, issue.26, pp.1-6, 2015.

F. Peng, M. I. Setyawati, and J. K. Tee, Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness, Nature Nanotechnology, vol.14, issue.3, pp.279-286, 2019.

V. S. Periasamy, J. Athinarayanan, and A. M. Al-hadi, Identification of titanium dioxide nanoparticles in food products: Induce intracellular oxidative stress mediated by TNF and CYP1A genes in human lung fibroblast cells, Environmental Toxicology and Pharmacology, vol.39, issue.1, pp.176-186, 2015.

R. Peters, Z. Herrera-rivera, and A. Undas, Single particle ICP-MS combined with a data evaluation tool as a routine technique for the analysis of nanoparticles in complex matrices, Journal of Analytical Atomic Spectrometry, vol.30, issue.6, pp.1274-1285, 2015.

R. Peters, Z. H. Rivera, and G. Van-bemmel, Development and validation of single particle ICP-MS for sizing and quantitative determination of nano-silver in chicken meat, Analytical and Bioanalytical Chemistry, vol.406, pp.3875-3885, 2014.

R. Peters, G. Van-bemmel, and Z. Herrera-rivera, Characterization of Titanium Dioxide Nanoparticles in Food Products: Analytical Methods To Define Nanoparticles, Journal of Agricultural and Food Chemistry, vol.62, issue.27, pp.6285-6293, 2014.

R. Peters, G. Van-bemmel, and N. Milani, Detection of nanoparticles in Dutch surface waters, Science of the Total Environment, vol.621, pp.210-218, 2018.

S. Podzimek, Light Scattering, Size Exclusion Chromatography and Asymmetric Flow Field Flow Fractionation, 2011.

A. Praetorius, A. Gundlach-graham, and E. Goldberg, Single-particle multi-element fingerprinting (spMEF) using inductively-coupled plasma time-of-flight mass spectrometry (ICP-TOFMS) to identify engineered nanoparticles against the elevated natural background in soils, Environmental Science Nano, vol.4, issue.2, pp.307-314, 2017.

H. Proquin, C. Rodríguez-ibarra, and C. Moonen, Titanium dioxide food additive (E171) induces ROS formation and genotoxicity: contribution of micro and nano-sized fractions, Mutagenesis, vol.32, issue.1, pp.139-149, 2017.

R. , Déclaration de substances à l'état nanoparticulaire, 2013.

R. , Éléments issus des déclarations des substances à l'état nanoparticulaire Rapport, 2017.

K. Rasmussen, J. Mast, P. Temmerman, and . De, Titanium Dioxide, NM-100, NM-101, NM-102, NM-103, NM-104, NM-105: Characterisation and Physico-Chemical Properties, 2014.

J. O. Rawlings, S. G. Pantula, and D. A. Dickey, Applied Regression Analysis: A Research Tool, Second Edition, 1998.

K. R. Reddy, M. Hassan, and V. G. Gomes, Hybrid nanostructures based on titanium dioxide for enhanced photocatalysis, Applied Catalysis A: General, vol.489, pp.1-16, 2015.

. Regulations and . Gov, Proposed TSCA Reporting and Recordkeeping Requirements for Chemical Substances When Manufactured or Processed as Nanoscale Materials, 2017.

G. Ren, D. Hu, and E. Cheng, International Journal of Antimicrobial Agents Characterisation of copper oxide nanoparticles for antimicrobial applications, International Journal of Antimicrobial Agents, vol.33, pp.587-590, 2009.

. Rikilt-wageningen, Single Particle Calculation tool, 2015.

E. Roduner, Size matters: why nanomaterials are different, Chemical Society Reviews, vol.35, issue.7, p.583, 2006.

M. Rossano, Utilisation des nanoparticules de dioxyde de titane dans les émulsions cosmétiques : impact sur la santé humaine et l'environnement, 2014.

R. Rowe, P. Sheskey, and M. Quinn, Summary for Policymakers, Intergovernmental Panel on Climate Change (ed) Climate Change 2013 -The Physical Science Basis, pp.1-30, 2009.

O. Rubilar, M. Rai, and G. Tortella, Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications, Biotechnology Letters, vol.35, issue.9, pp.1365-1375, 2013.

L. A. Rubio, M. Rovira, M. M. Sanz, and L. G. Goméz-mascaraque, Nanomaterials for Food Applications, 2019.

R. Saleh, A. Taufik, and S. P. Prakoso, Fabrication of Ag2O/TiO2 composites on nanographene platelets for the removal of organic pollutants: Influence of oxidants and inorganic anions, Applied Surface Science, vol.480, pp.697-708, 2019.

R. Saravanan, M. Khan, M. Gupta, and V. K. , ZnO/Ag/CdO nanocomposite for visible lightinduced photocatalytic degradation of industrial textile effluents, Journal of Colloid and Interface Science, vol.452, pp.126-133, 2015.

D. Schaming, C. Colbeau-justin, and H. Remita, Photocatalyse : des matériaux nanostructurés aux réacteurs photocatalytiques Photocatalyse : des mate ´ s aux re ´ acteurs nanostructure photocatalytiques par, Ingénieur NM, vol.3, pp.600-601, 2017.

M. E. Schimpf, K. Caldwell, and J. C. Giddings, Field-Flow Fractionation Handbook, p.1, 2000.

B. Schmidt, K. Loeschner, and N. Hadrup, Quantitative Characterization of Gold Nanoparticles by Field-Flow Fractionation Coupled Online with Light Scattering Detection and Inductively Coupled Plasma Mass Spectrometry, Analytical Chemistry, vol.83, issue.7, pp.2461-2468, 2011.

. Sénat-;-amendement-n°734, , 2018.

L. Registre, , 2014.

M. Shakeel, F. Jabeen, and S. Shabbir, Toxicity of Nano-Titanium Dioxide (TiO2-NP) Through Various Routes of Exposure: a Review, Biological Trace Element Research, vol.172, issue.1, pp.1-36, 2016.

V. Sharma, . Tarachand, C. Chotia, and G. S. Okram, Effect of additive on Zeta potential and particle size of nickel nanoparticles, p.50085, 2017.

Z. Sheng and Y. Liu, Effects of silver nanoparticles on wastewater biofilms, Water Research, vol.45, issue.18, pp.6039-6050, 2011.

P. Sikora, A. Augustyniak, and K. Cendrowski, Antimicrobial Activity of Al2O3, CuO, Fe3O4, and ZnO Nanoparticles in Scope of Their Further Application in Cement-Based Building Materials, Nanomaterials, vol.8, issue.212, pp.1-15, 2018.

R. Singh and J. W. Lillard, Nanoparticle-based targeted drug delivery, Experimental and Molecular Pathology, vol.86, issue.3, pp.215-223, 2009.

T. Smijs and P. , Titanium dioxide and zinc oxide nanoparticles in sunscreens: focus on their safety and effectiveness, Nanotechnology, Science and Applications, vol.4, p.95, 2011.

D. D. Smith and R. F. Browner, Measurement of Aerosol Transport Efficiency in Atomic Spectrometry, Analytical Chemistry, vol.54, issue.3, pp.533-537, 1982.

V. Sogne, F. Meier, T. Klein, and C. Contado, Investigation of zinc oxide particles in cosmetic products by means of centrifugal and asymmetrical flow field-flow fractionation, Journal of Chromatography A, pp.1515-196, 2017.

Z. M. Song, N. Chen, and J. H. Liu, Biological effect of food additive titanium dioxide nanoparticles on intestine: An in vitro study, Journal of Applied Toxicology, vol.35, issue.10, pp.1169-1178, 2015.

Z. R. Stephen, F. M. Kievit, and M. Zhang, Magnetite nanoparticles for medical MR imaging, Materials Today, vol.14, issue.7-8, 2011.

C. Sun, P. Tian, and J. Tian, Magnetic mesoporous ?-Al 2 O 3 /ZnFe 2 O 4 micro-bowls realizing enhanced adsorption, separation and recycle performance towards waste water, Microporous and Mesoporous Materials, vol.270, pp.120-126, 2018.

S. Suwanboon, P. Amornpitoksuk, A. Haidoux, and J. C. Tedenac, Structural and optical properties of undoped and aluminium doped zinc oxide nanoparticles via precipitation method at low temperature, Journal of Alloys and Compounds, vol.462, issue.1-2, pp.335-339, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00188419

M. S. Tame, K. R. Mcenery, and ?. K. Özdemir, Quantum plasmonics, Nature Physics, vol.9, issue.6, pp.329-340, 2013.

D. A. Taylor, Dust in the wind, Environmental Health Perspectives, vol.110, issue.2, pp.80-87, 2002.

A. Teleki, M. K. Akhtar, and S. E. Pratsinis, The quality of SiO2-coatings on flame-made TiO2-based nanoparticles, Journal of Materials Chemistry, vol.18, issue.30, pp.3547-3555, 2008.

J. Teulon, C. Godon, and L. Chantalat, On the Operational Aspects of Measuring Nanoparticle Sizes, Nanomaterials, vol.9, issue.18, pp.1-29, 2019.
URL : https://hal.archives-ouvertes.fr/cea-01968894

M. Tharaud, A. P. Gondikas, and M. F. Benedetti, TiO2 nanomaterial detection in calcium rich matrices by spICPMS. A matter of resolution and treatment, Journal of Analytical Atomic Spectrometry, vol.32, issue.7, pp.1400-1411, 2017.

T. Scientific, , 2016.

D. Truffier-boutry, B. Fiorentino, and V. Bartolomei, Characterization of photocatalytic paints: A relationship between the photocatalytic properties-release of nanoparticles and volatile organic compounds, Environmental Science: Nano, vol.4, issue.10, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01682344

J. Tuoriniemi, G. Cornelis, and M. Hassellöv, Size Discrimination and Detection Capabilities of SingleParticle ICPMS for Environmental Analysis of Silver Nanoparticles, Analytical Chemistry, vol.84, issue.9, pp.3965-3972, 2012.

J. Tuoriniemi, G. Cornelis, and M. Hassellöv, Improving the accuracy of single particle ICPMS for measurement of size distributions and number concentrations of nanoparticles by determining analyte partitioning during nebulisation, Journal of Analytical Atomic Spectrometry, vol.29, issue.4, pp.743-752, 2014.

C. S. Turchi and D. F. Ollis, Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack, Journal of Catalysis, vol.122, issue.1, p.90269, 1990.

A. Ulrich, S. Losert, and N. Bendixen, Critical aspects of sample handling for direct nanoparticle analysis and analytical challenges using asymmetric field flow fractionation in a multi-detector approach, Journal of Analytical Atomic Spectrometry, vol.27, issue.7, 2012.

B. A. Van-driel, P. J. Kooyman, and K. J. Van-den-berg, A quick assessment of the photocatalytic activity of TiO 2 pigments -From lab to conservation studio, ! Microchemical Journal, vol.126, pp.162-171, 2016.

. Veillenano, VeilleNanos -Les enjeux des nanosciences et nanotechnologies, 2010.

A. K. Venkatesan, R. B. Reed, and S. Lee, Detection and Sizing of Ti-Containing Particles in Recreational Waters Using Single Particle ICP-MS, Bulletin of Environmental Contamination and Toxicology, vol.100, issue.1, pp.120-126, 2018.

A. K. Venkatesan, B. T. Rodríguez, and A. R. Marcotte, Using single-particle ICP-MS for monitoring metal-containing particles in tap water, Environmental Science: Water Research and Technology, vol.4, issue.12, pp.1923-1932, 2018.

E. Verleysen, P. De-temmerman, and E. Van-doren, Quantitative characterization of aggregated and agglomerated titanium dioxide nanomaterials by transmission electron microscopy, Powder Technology, vol.258, pp.180-188, 2014.

E. Verleysen, E. Van-doren, and N. Waegeneers, TEM and SP-ICP-MS Analysis of the Release of Silver Nanoparticles from Decoration of Pastry, Journal of Agricultural and Food Chemistry, vol.63, issue.13, pp.3570-3578, 2015.

J. Vidmar, R. Mila?i?, and J. ??an?ar, Sizing and simultaneous quantification of nanoscale titanium dioxide and a dissolved titanium form by single particle inductively coupled plasma mass spectrometry, Microchemical Journal, vol.132, pp.391-400, 2017.

V. Indberet, , 2014.

K. G. Wahlund and J. C. Giddings, Properties of an Asymmetrical Flow Field-Flow Fractionation Channel Having One Permeable Wall, Analytical Chemistry, vol.59, issue.9, pp.1332-1339, 1987.

C. Wang and C. Yu, Detection of chemical pollutants in water using gold nanoparticles as sensors : a review, Reviews in Analytical Chemistry, vol.32, issue.1, pp.1-14, 2012.

J. Wang, G. Zhou, and C. Chen, Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration, Toxicology Letters, vol.168, issue.2, pp.176-185, 2007.

P. Wang, B. Huang, and Q. Zhang, Highly Efficient Visible Light Plasmonic Photocatalyst Ag@Ag(Br,I). Chemistry -A, European Journal, vol.16, issue.33, pp.10042-10047, 2010.

D. B. Warheit, S. C. Brown, and E. M. Donner, Acute and subchronic oral toxicity studies in rats with nanoscale and pigment grade titanium dioxide particles, Food and Chemical Toxicology, vol.84, pp.208-224, 2015.

D. B. Warheit and E. M. Donner, Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles: Recognizing hazard and exposure issues, Food and Chemical Toxicology, vol.85, pp.138-147, 2015.

A. Weir, P. Westerhoff, and L. Fabricius, Titanium Dioxide Nanoparticles in Food and Personal Care Products, Environmental Science & Technology, vol.46, issue.4, pp.2242-2250, 2012.

D. B. Williams and C. B. Carter, Transmission Electron Microscopy, 2009.

M. Witzler, F. Küllmer, and K. Günther, Validating a Single-Particle ICP-MS Method to Measure Nanoparticles in Human Whole Blood for Nanotoxicology, Analytical Letters, vol.51, issue.4, pp.587-599, 2018.

W. Wu, Z. Wu, and T. Yu, Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications, Science and Technology of Advanced Materials, vol.16, issue.2, p.23501, 2015.

P. J. Wyatt, Light scattering and the absolute characterization of macromolecules, Analytica Chimica Acta, vol.272, issue.1, 1993.

Z. Xiong, J. Ma, and W. J. Ng, Silver-modified mesoporous TiO2 photocatalyst for water purification, Water Research, vol.45, issue.5, pp.2095-2103, 2011.

P. Xu, G. M. Zeng, and D. L. Huang, Use of iron oxide nanomaterials in wastewater treatment: A review, Science of The Total Environment, vol.424, pp.1-10, 2012.

, Synthèse, caractérisations et fonctionnalisation de nanocristaux semiconducteurs luminescents, Yahia Ammar A, 2015.

Y. Yang, K. Doudrick, and X. Bi, Characterization of Food-Grade Titanium Dioxide: The Presence of Nanosized Particles, Environmental Science & Technology, vol.48, issue.11, pp.6391-6400, 2014.

Y. Yang, C. Long, and H. Li, Analysis of silver and gold nanoparticles in environmental water using single particle-inductively coupled plasma-mass spectrometry, Science of the Total Environment, vol.563, issue.392, pp.996-1007, 2016.

D. K. Yi, S. T. Selvan, and S. S. Lee, Silica-Coated Nanocomposites of Magnetic Nanoparticles and Quantum Dots, Journal of the American Chemical Society, vol.127, issue.14, pp.4990-4991, 2005.

W. Zhang, Nanoscale iron particles for environmental remediation : An overview, Journal of Nanoparticle Research, vol.5, pp.323-332, 2003.

Y. Zhang, Y. Leu, R. Aitken, and M. Riediker, Inventory of Engineered Nanoparticle-Containing Consumer Products Available in the Singapore Retail Market and Likelihood of Release into the Aquatic Environment, International Journal of Environmental Research and Public Health, vol.12, issue.8, pp.8717-8743, 2015.

B. H. Zimm, The Scattering of Light and the Radial Distribution Function of High Polymer Solutions, The Journal of Chemical Physics, vol.16, issue.12, pp.1093-1099, 1948.