. Sy, Function ( ' tau ' , real = True , positive = True ) ( s )

. Sy, Function ( ' kappa ' , real = True ) ( s )

N. Sy, Function ( 'N ' , real = True , positive = True ) ( s )

. Sy, Function ( 'b ' , real = True , positive = True ) ( s )

, On définit les séries formelles, quand h tend vers 0, associées à (1 + ??(s)h n(s,?h 2 ) n(s,?h 2 ) noté nxi

. Sy, Function ( ' n0 ' , real = True , positive = True )

, +3) //2+2) : 29 n . append (( -1) ** q * n [0]*( sy . factorial ( q ) * k ** q -eta [ q ]( s ) ) ) nbTerm +3) : 37 dxn += n, eta = sy . symbols ( ' eta0 : '+ str ( nbTerm +3) , cls = sy . Function , real = True ) 26 in range

, La matrice ME et les fonctions FtoVExp et VtoFExp permettent de résoudre l'équation différentielle en ? à s fixé ?? ?? ? + 4b(s)? ? ? = S dans R ne

, La solution est ? = VtoFExp(ME * FtoVExp(S))

. Ne-=-ne-+1,

. Mte-=-sy,

F. Def, vec = sy . zeros ( NE ,1) 56 for j in range ( NE ) : 57 vec [j ,0] = fct . coeff (r , j ) in range ( NE ) : 63 fct += vec, p.55

=. Dans-r-2na+1,

, NA = 2*( na +1)

. Mta-=-sy, zeros ( NA , NA )

, MTA [2* j -3 ,2* j +1] = -j *( j -1)

. Ma-=-mta, , vol.1

F. Def, vec = sy . zeros ( NA -1 ,1), p.81

, * z * t ) ) in range ( na +1) : 85 vec [2* j ,0] = fctAi . coeff (z , j ) 86 for j in range ( na ) : 87 vec [2* j +1 ,0] = fctAp . coeff (z , j ) in range ( na ) : 93 fct += vec

, Les définitions des fonctions pour dériver par rapport à s, ? et ? les fonctions ?(s, ?) exp (im?(s)) et ?(s, ?) exp (im?(s))

, ph : h **3* expr . diff ( s ) +2* sy . I * ph * expr 98 dzPhi = lambda expr : h * expr, p.99

, ph : h **3* expr . diff ( s ) +2* sy . I * ph * expr -h **3*2* r * b . diff ( s ) * expr

, drPsi = lambda expr : expr . diff ( r ) -2* b * expr Les premiers termes de l'asymptotique

. Sy,

. De-=-max, degree ( sy . Poly ( edPsi . coeff (h , q ) ,r ) , gen = r ) )

, Différentes vérifications que les termes de l'asymptotique on bien étaient calculé

. =-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=, # Check 167 print

, dap = " + str ( dap ) + " <= " + str ( na -1) ) ( ", p.-

, Verification a nbTerm " + str ( nbTerm ) )

, nbTerm +3) ) ) . expand (

, nbTerm +3) ) ) . expand (

, nbTerm +1) ) ) . expand (

, nbTerm +1) ) ) . expand () . removeO (, p.180

, Equation differentielle sur psi , O ( h^" + str ( nbTerm +1) + " ) " )

, Equation differentielle sur phi , O ( h^" + str ( nbTerm +3) + " ) " )

, Equation saut fonctions , O ( h^" + str ( nbTerm +1) + " ) " )

, saut0 += ( psi . subs (r ,0) -phi . subs (z ,0) . subs

, Equation saut derivees , O ( h^" + str ( nbTerm +1) + " ) " )

, saut1 += ( psir . subs (r ,0) -N * phiz . subs (z ,0) . subs, p.-

D. Remarque, 1. Ce script peut-être simplifié et ainsi accéléré dans les trois cas suivants : le cas générale 2D avec un indice constant
URL : https://hal.archives-ouvertes.fr/pasteur-01256155

, le cas radial 1D avec un indice variable

, le cas radial 1D avec un indice constant

. Sy,

. Sy, symbols ( 'x ' , real = True ) # x = tau * sigma 13 h , n0 , t = sy . symbols

, Hermite et on peut exprimer ? j (x) et x ? j (x) en fonction de ? j?1 et ? j+1 . La liste D défini comment remplacer ? j (x) et la liste X défini comment remplacer x ? j (x). La liste solveOH défini comment résoudre l

, diff ( x ) , sy . sqrt ( sy . Rational (i ,2) ) * GH [i -1]( x ) 15 -sy . sqrt ( sy . Rational ( i +1 ,2) ) * GH [ i +1]( x ) ) for i in range

, Rational ( nb -1 ,2) ) * GH

, ( x ) , sy . sqrt ( sy . Rational (i ,2) ) * GH, p.20

, Rational ( i +1 ,2) ) * GH [ i +1]( x ) ) for i in range

. Sy,

, ) ** q * n0 *( sy . factorial ( q ) -eta [q -3]) ) in range (1 , nbTerm +3) : 47 n10 += n [ q ]*( x * h / t ) ** q /( n0 * sy . factorial ( q ) ) in range, nbTerm +3) : 55 ina +=

, nbTerm +3) ) ) . expand () . removeO (

, ( x ) , sy . sqrt ( sy . Rational (i ,2) ) * GH

, Rational ( i +1 ,2) ) * GH [ i +1]( x ) ) for i in range

, Rational ( nb ,2) ) * GH, x ) ) ) ( ", p.-

, Equation differentielle sur phi , O ( h^" + str ( nbTerm +3) + " ) " ) ( ", p.-

, ne = nbTerm 9 nb = 2* j +1+3* nbTerm +1

. Gh-=-sy, symbols ( ' f0 : '+ str ( nb +1) , cls = sy . Function , real = True, p.11

. Sy,

. Sy, symbols ( 'x rho ' , real = True ) # x = tau * sigma 14 h , n0, p.15

. Ne-=-ne-+1,

. Mte-=-sy,

F. Def, vec = sy . zeros ( NE ,1) 26 for i in range ( NE ) : 27 vec, p.25

. Sy,

, ) ** q * n0 *( sy . factorial ( q ) -eta [q -3]) ) in range, nbTerm +3) : 96 n10 += n [ q ]*( x * h / t ) ** q /( n0 * sy . factorial ( q ) ) in range (1 , nbTerm +3) : 104 ina +=

, n20 = ((1+ n10 ) **2+ sy . O ( h **( nbTerm +3) ) ) . expand () . removeO (

, Equation differentielle sur psi , O ( h^" + str ( nbTerm +1) + " ) " )

, Equation differentielle sur phi , O ( h^" + str ( nbTerm +3) + " ) " )

, Equation saut fonctions , O ( h^" + str ( nbTerm +1) + " ) " )

, Equation saut derivees , O ( h^" + str ( nbTerm +1) + " ) " )

, saut1 += (( ps1 -b * psi ) . subs (r ,0) -h * N * phi . subs ( trace1 ) ) . expand (, p.-

.. .. Puits-d&apos;ordre-Élevé,

. Bibliographie,

M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, vol.55, 1964.

J. Aguilar and J. M. Combes, A class of analytic perturbations for onebody Schrödinger Hamiltonians, Communications in Mathematical Physics, vol.22, pp.269-279, 1971.

S. Ancey, A. Folacci, and P. Gabrielli, Exponentially improved asymptotic expansions for resonances of an elliptic cylinder, Journal of Physics. A. Mathematical and General, vol.33, issue.16, pp.3179-3208, 2000.

, Whispering-gallery modes and resonances of an elliptic cavity, Journal of Physics. A. Mathematical and General, vol.34, issue.7, pp.1341-1359, 2001.

J. C. Araujo-cabarcas and C. Engström, On spurious solutions in finite element approximations of resonances in open systems, Computers & Mathematics with Applications, vol.74, issue.10, pp.2385-2402, 2017.

J. C. Araujo-cabarcas, C. Engström, and E. Jarlebring, Efficient resonance computations for Helmholtz problems based on a Dirichlet-to-Neumann map, Journal of Computational and Applied Mathematics, vol.330, pp.177-192, 2018.

V. M. Babi? and V. S. Buldyrev, Short-wavelength diffraction theory, Springer Series on Wave Phenomena, vol.4, 1991.

I. Babu?ka and J. Osborn, Eigenvalue problems, Handbook of numerical analysis, vol.II, pp.641-787, 1991.

I. Babu?ka and B. Szabó, Finite element analysis, A Wiley-Interscience Publication, 1991.

E. Balslev and J. M. Combes, Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions, Communications in Mathematical Physics, vol.22, pp.280-294, 1971.

Y. Baryshnikov, P. Heider, W. Parz, and V. Zharnitsky, Whispering gallery modes inside asymmetric resonant cavities, Physical Review Letters, vol.93, p.133902, 2004.

J. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of Computational Physics, vol.114, issue.2, pp.185-200, 1994.

F. A. Berezin and M. A. Shubin, The Schrödinger equation, Mathematics and its Applications (Soviet Series), vol.66, 1991.

A. Bermúdez, L. Hervella-nieto, A. Prieto, and R. Rodríguez, An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems, Journal of Computational Physics, vol.223, issue.2, pp.469-488, 2007.

C. Bernardi, M. Dauge, and Y. Maday, Spectral methods for axisymmetric domains, Éditions Scientifiques et Médicales Elsevier, vol.3, 1999.

A. Bonnet-ben-dhia, S. Fliss, and A. Tonnoir, The halfspace matching method : a new method to solve scattering problems in infinite media, Journal of Computational and Applied Mathematics, vol.338, pp.44-68, 2018.

J. H. Bramble and J. E. Pasciak, Analysis of a Cartesian PML approximation to acoustic scattering problems in R 2 and R 3, Journal of Computational and Applied Mathematics, vol.247, pp.209-230, 2013.

H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, 2011.

X. Cai, D. Huang, and X. Zhang, Numerical analysis of polarization splitter based on vertically coupled microring resonator, Optics Express, vol.14, issue.23, pp.11304-11311, 2006.

Y. Capdeboscq, On the scattered field generated by a ball inhomogeneity of constant index, Asymptotic Analysis, vol.77, issue.3-4, pp.197-246, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02083827

F. Cardoso, G. Popov, and G. Vodev, Asymptotics of the number of resonances in the transmission problem, Communications in Partial Differential Equations, vol.26, issue.9, pp.1811-1859, 2001.

K. S. Chiang, Analysis of rectangular dielectric waveguides : effective-index method with built-in perturbation correction, Electronics Letters, vol.28, issue.4, pp.388-390, 1992.

J. Cho, I. Kim, S. Rim, G. Yim, and C. Kim, Outer resonances and effective potential analogy in two-dimensional dielectric cavities, Physics Letters A, vol.374, issue.17, pp.1893-1899, 2010.

J. Cho, S. Rim, and C. Kim, Dynamics of morphology-dependent resonances by openness in dielectric disks for te polarization, Physics Letters A, vol.83, p.43810, 2011.

A. H. Choi, Handbook of optical microcavities, 2014.

R. Cimpeanu, A. Martinsson, and M. Heil, A parameter-free perfectly matched layer formulation for the finite-element-based solution of the Helmholtz equation, Journal of Computational Physics, vol.296, pp.329-347, 2015.

D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory, Applied Mathematical Sciences, vol.93, 2013.

M. Costabel and M. Dauge, Maxwell eigenmodes in product domains, Maxwell's Equations, Radon Series on Computational and Applied Mathematics, 2019.

K. Dadashi, H. Kurt, K. Üstün, and R. Esen, Graded index optical microresonators : analytical and numerical analyses, Journal of the Optical Society of America B, vol.31, issue.9, pp.2239-2245, 2014.

S. A. Degtyarev, V. V. Podlipnov, P. Verma, and S. N. Khonina, 3D simulation of silicon micro-ring resonator with comsol, International Conference on Micro-and Nano-Electronics, vol.10224, 2016.

L. M. Delves and J. N. Lyness, A numerical method for locating the zeros of an analytic function, Mathematics of Computation, vol.21, pp.543-560, 1967.

S. Dyatlo and M. Zworski, Mathematical theory of scattering resonances, vol.200, 2019.

J. Galkowski, The quantum Sabine law for resonances in transmission problems, Pure and Applied Analysis, vol.1, pp.27-100, 2019.

J. Gao, P. Heider, C. J. Chen, X. Yang, C. A. Husko et al., Observations of interior whispering gallery modes in asymmetric optical resonators with rational caustics, Applied Physics Letters, vol.91, issue.18, p.181101, 2007.

C. Geuzaine and J. Remacle, Gmsh : A 3-D finite element mesh generator with built-in pre-and post-processing facilities, International Journal for Numerical Methods in Engineering, vol.79, issue.11, pp.1309-1331, 2009.

I. S. Grudinin and N. Yu, Finite-element modeling of coupled optical microdisk resonators for displacement sensing, Journal of the Optical Society of America B, vol.29, issue.11, pp.3010-3014, 2012.

S. C. Hagness, D. Rafizadeh, S. T. Ho, and A. Taflove, FDTD microcavity simulations : design and experimental realization of waveguide-coupled singlemode ring and whispering-gallery-mode disk resonators, Journal of Lightwave Technology, vol.15, issue.11, pp.2154-2165, 1997.

T. Harayama and S. Shinohara, Two-dimensional microcavity lasers, Laser & Photonics Reviews, vol.5, issue.2, pp.247-271, 2011.

H. Haus, W. Huang, S. Kawakami, and N. Whitaker, Coupled-mode theory of optical waveguides, Journal of Lightwave Technology, vol.5, issue.1, pp.16-23, 1987.

J. Heebner, R. Grover, and T. Ibrahim, Optical microresonators : Theory, fabrication, and applications, Optical Sciences, vol.138, 2008.

P. Heider, Computation of scattering resonances for dielectric resonators, Computers & Mathematics with Applications, vol.60, issue.6, pp.1620-1632, 2010.

B. Helffer, Spectral theory and its applications, vol.139, 2013.

B. Helffer and J. Sjöstrand, Résonances en limite semi-classique, pp.24-25, 1986.

K. R. Hiremath, R. Stoffer, and M. Hammer, Modeling of circular integrated optical microresonators by 2-d frequency domain coupled mode theory, Optics Communications, vol.257, issue.2, pp.277-297, 2006.

P. D. Hislop and I. M. Sigal, Introduction to spectral theory, with applications to schrödinger operators, Applied Mathematical Sciences, vol.113, 1996.

T. Hohage and L. Nannen, Hardy space infinite elements for scattering and resonance problems, SIAM Journal on Numerical Analysis, vol.47, issue.2, pp.972-996, 2009.

L. Hörmander, The analysis of linear partial differential operators. I, second ed, Grundlehren der Mathematischen Wissenschaften, vol.256, 1990.

J. D. Hunter, Matplotlib : A 2D graphics environment, Computing in Science & Engineering, vol.9, issue.3, pp.90-95, 2007.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, Dispersion compensation in whispering-gallery modes, Journal of the Optical Society of America A, vol.20, issue.1, pp.157-162, 2003.

B. R. Johnson, Theory of morphology-dependent resonances : shape resonances and width formulas, Journal of the Optical Society of America A, vol.10, issue.2, pp.343-352, 1993.

E. Jones, T. Oliphant, and P. Peterson, SciPy : Open source scientific tools for Python, 2001.

I. Kim, J. Cho, Y. Kim, B. Min, J. Ryu et al., Husimi functions at gradient index cavities designed by conformal transformation optics, Optics Express, vol.26, issue.6, pp.6851-6859, 2018.

S. Kim, Cartesian PML approximation to resonances in open systems in R 2, Applied Numerical Mathematics, vol.81, pp.50-75, 2014.

S. Kim and J. E. Pasciak, The computation of resonances in open systems using a perfectly matched layer, Mathematics of Computation, vol.78, issue.267, pp.1375-1398, 2009.

, Analysis of a Cartesian PML approximation to acoustic scattering problems in R 2, Journal of Mathematical Analysis and Applications, vol.370, issue.1, pp.168-186, 2010.

, Analysis of the spectrum of a Cartesian perfectly matched layer (PML) approximation to acoustic scattering problems, Journal of Mathematical Analysis and Applications, vol.361, issue.2, pp.420-430, 2010.

Y. Kim, S. Lee, J. Ryu, I. Kim, J. Han et al., Designing whispering gallery modes via transformation optics, Nature Photonics, vol.10, p.647, 2016.

C. C. Lam, P. T. Leung, and K. Young, Explicit asymptotic formulas for the positions, widths, and strengths of resonances in mie scattering, Journal of the Optical Society of America B, vol.9, issue.9, pp.1585-1592, 1992.

J. Lanzoni, Numerical computation of resonances and pseudospectra in acoustic scattering, 2016.

V. F. Lazutkin, Asymptotic analysis of the eigenvalues of the Laplace operator, and quasimodes. A series of quasimodes that corresponds to a system of caustics, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, vol.37, pp.437-465, 1973.

R. B. Lehoucq, D. C. Sorensen, and C. Yang, ARPACK users' guide, Software, Environments, and Tools, vol.6, 1998.

B. E. Little and W. P. Huang, Coupled-mode theory for optical waveguides, Progress In Electromagnetics Research, vol.10, pp.217-270, 1995.

W. Mclean, Strongly elliptic systems and boundary integral equations, 2000.

A. Meurer and O. ?ertík, SymPy : symbolic computing in python, PeerJ Computer Science, vol.3, p.103, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01645958

A. Moiola and E. A. Spence, Acoustic transmission problems : wavenumberexplicit bounds and resonance-free regions, Mathematical Models and Methods in Applied Sciences, vol.29, issue.2, pp.317-354, 2019.

Z. Najafi, M. Vahedi, and A. Behjat, The role of refractive index gradient on sensitivity and limit of detection of microdisk sensors, Optics Communications, vol.374, pp.29-33, 2016.

L. Nannen, T. Hohage, A. Schädle, and J. Schöberl, Exact sequences of high order Hardy space infinite elements for exterior Maxwell problems, SIAM Journal on Scientific Computing, vol.35, issue.2, pp.1024-1048, 2013.

L. Nannen and A. Schädle, Hardy space infinite elements for Helmholtz-type problems with unbounded inhomogeneities, Wave Motion, An International Journal Reporting Research on Wave Phenomena, vol.48, issue.2, pp.116-129, 2011.

L. Nannen and M. Wess, Computing scattering resonances using perfectly matched layers with frequency dependent scaling functions, BIT. Numerical Mathematics, vol.58, issue.2, pp.373-395, 2018.

J. Niegemann, W. Pernice, and K. Busch, Simulation of optical resonators using DGTD and FDTD, Journal of Optics A : Pure and Applied Optics, vol.11, issue.11, p.114015, 2009.

E. Travis and . Oliphant, A guide to NumPy, vol.1, 2006.

F. W. Olver-;-akp-classics and L. Peters, Asymptotics and special functions, 1997.

F. W. Olver, D. W. Lozier, and R. F. Boisvert, NIST handbook of mathematical functions, 2010.

M. Oxborrow, Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators, IEEE Transactions on Microwave Theory and Techniques, vol.55, issue.6, pp.1209-1218, 2007.

R. Parini, Cxroot : Find all the roots (zeros) of a complex analytic function within a given contour in the complex plane, 2017.

M. H. Pfeiffer, J. Liu, M. Geiselmann, and T. J. Kippenberg, Coupling ideality of integrated planar high-Q microresonators, Physical Review Applied, vol.7, p.24026, 2017.

G. Popov and G. Vodev, Resonances for transparent obstacles, Journées "Équa-tions aux Dérivées Partielles, p.13, 1999.

, Resonances near the real axis for transparent obstacles, Communications in Mathematical Physics, vol.207, issue.2, pp.411-438, 1999.

J. W. Rayleigh and C. , The problem of the whispering gallery, The London, Journal of Science, vol.20, issue.120, pp.1001-1004, 1910.

I. X. , Further applications of Bessel's functions of high order to the Whispering Gallery and allied problems, The London, Edinburgh, and Dublin Philosophical Magazine, Journal of Science, vol.27, issue.157, pp.100-109, 1914.

M. Reed and B. Simon, Methods of modern mathematical physics. I, 1980.

G. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. Conti et al., Whispering gallery mode microresonators : Fundamentals and applications, La Rivista del Nuovo Cimento, vol.34, p.435, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00637767

C. Rivière, Resonances for the transmission problem and in linear elasticity, 2005.

S. Schiller, Asymptotic expansion of morphological resonance frequencies in Mie scattering, Applied Optics, vol.32, issue.12, pp.2181-2185, 1993.

N. Schlömer, , 2015.

C. Schwab, p-and hp-finite element methods, Numerical Mathematics and Scientific Computation, 1998.

E. L. Silakov, Application of the ray method to the computation of complex eigenvalues, Journal of Soviet Mathematics, vol.9, issue.4, pp.612-619, 1978.

J. Sjöstrand, A trace formula and review of some estimates for resonances, Microlocal analysis and spectral theory, Adv. Sci. Inst. Ser. C Math. Phys. Sci, vol.490, pp.377-437, 1996.

J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering poles, Journal of the American Mathematical Society, vol.4, issue.4, pp.729-769, 1991.

P. Stefanov, Quasimodes and resonances : sharp lower bounds, Duke Mathematical Journal, vol.99, issue.1, pp.75-92, 1999.

, Resonances near the real axis imply existence of quasimodes, Comptes Rendus de l, Académie des Sciences. Série I. Mathématique, vol.330, issue.2, pp.105-108, 2000.

O. Steinbach and G. Unger, Combined boundary integral equations for acoustic scattering-resonance problems, Mathematical Methods in the Applied Sciences, vol.40, issue.5, pp.1516-1530, 2017.

S. Tang and M. Zworski, From quasimodes to resonances, Mathematical Research Letters, vol.5, issue.3, pp.261-272, 1998.

L. N. Trefethen, Spectral methods in MATLAB, Software, Environments, and Tools, vol.10, 2000.

J. Wiersig, Boundary element method for resonances in dielectric microcavities, Journal of Optics A : Pure and Applied Optics, vol.5, issue.1, pp.53-60, 2002.

. Xlife++, F. Librairie, and . C++, devellopée conjointement par les laboratoires IRMAR et POems, 2014.

A. Yariv, Coupled-mode theory for guided-wave optics, IEEE Journal of Quantum Electronics, vol.9, issue.9, pp.919-933, 1973.

M. Zworski, Resonances in physics and geometry, vol.46, pp.319-328, 1999.