H. Liu, J. Zhang, X. Chen, X. Du, J. Zhang et al., Nanoscale, vol.8, p.7808, 2016.

H. Arami, A. Khandhar, D. Liggitt, and K. M. Krishnan, Chem. Soc. Rev, vol.44, p.8576, 2015.

N. Feliu, D. Docter, M. Heine, P. Pino, S. Ashraf et al., Chem. Soc. Rev, p.45, 2016.

F. Mazuel, A. Espinosa, N. Luciani, M. Reffay, R. L. Borgne et al., ACS Nano, vol.10, p.7627, 2016.

M. Levy, N. Luciani, D. Alloyeau, D. Elgrabli, V. Deveaux et al., 32, 3988; b), Biomaterials, vol.9, issue.5, 2011.

A. Ruiz, L. Gutierrez, P. R. Caceres-velez, D. Santos, S. B. Chaves et al., J. Controlled Release, vol.171, p.225, 2013.

J. Kolosnjaj-tabi, L. Lartigue, Y. Javed, N. Luciani, T. Pellegrino et al., Nano Today, vol.11, p.280, 2016.

R. Weissleder, D. D. Stark, B. L. Engelstad, B. R. Bacon, C. C. Compton et al., Magn. Reson. Imaging, vol.152, p.895, 1989.

E. Pawelczyk, A. S. Arbab, S. Pandit, E. Hu, J. A. Frank-;-b et al., NMR Biomed, vol.19, p.514, 2006.

E. C. Theil-;-r, R. J. Watt, D. M. Hilton, ;. Graff, B. Gálvez et al., 15, 304; b), Biochim. Biophys. Acta, Gen. Subj, 1800.

J. J. Calvino, O. Stéphan, J. M. Domínguez-vera, ;. C. Quintana, J. M. Cowley et al., J. Am. Chem. Soc, vol.130, p.166, 2004.

J. Joshi and A. Zimmerman, Toxicology, vol.48, p.21, 1988.

P. M. Harrison and P. Arosio, 1275, 161; b) N. Bresgen, Biochim. Biophys. Acta, vol.5, p.808, 1996.

N. D. Chasteen and P. M. Harrison, J. Struct. Biol, vol.126, p.182, 1999.

). Maraloiu, F. Appaix, A. Broisat, D. L. Guellec, V. S. Teodorescu et al., Nanomedicine, vol.12, 2011.

I. Lynch, K. A. Dawson-;-c, W. C. Walkey, and . Chan, Chem. Soc. Rev, vol.3, p.2780, 2008.

F. Bertoli, G. Davies, M. P. Monopoli, M. Moloney, Y. K. Gun'ko et al., Small, vol.10, p.3307, 2014.

S. J. Soenen, W. J. Parak, J. Rejman, and B. Manshian, Chem. Rev, vol.115, p.2109, 2015.

N. Liu, Y. Mu, Y. Chen, H. Sun, S. Han et al., Z. Sun, Part. Fibre Toxicol, issue.10, p.37, 2013.

A. M. Derfus, W. C. Chan, and S. N. Bhatia, Nano Lett, 2004.

R. P. Singh and P. Ramarao, Toxicol. Lett, p.249, 2012.

W. Cho, R. Duffin, S. E. Howie, C. J. Scotton, W. A. Wallace et al., Part. Fibre Toxicol, 2011.

M. Levy, F. Lagarde, V. A. Maraloiu, M. G. Blanchin, F. Gendron et al., Nanotechnology, vol.21, p.395103, 2010.

A. S. Arbab, L. B. Wilson, P. Ashari, E. K. Jordan, B. K. Lewis et al., , vol.18, 2005.

M. Ghosh, F. Carlsson, A. Laskar, X. Yuan, W. Li et al., , p.623, 2011.

T. Kurz, B. Gustafsson, and U. T. Brunk, Free Radical Biol. Med, p.389, 1647.

M. A. Krenn, M. Schürz, B. Teufl, K. Uchida, P. M. Eckl et al., Free Radical Biol. Med, vol.80, p.48, 2015.

J. D. Mancias, X. Wang, S. P. Gygi, J. W. Harper, and A. C. Kimmelman, Nature, vol.509, p.105, 2014.

Y. Javed, L. Lartigue, P. Hugounenq, Q. L. Vuong, Y. Gossuin et al., Small, vol.10, p.3325, 2014.

F. Gazeau, V. Shilov, J. Bacri, E. Dubois, F. Gendron et al., J. Magn. Magn. Mater, vol.202, p.535, 1999.

Y. Gossuin, P. Gillis, A. Hocq, Q. L. Vuong, and A. Roch, Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol, 2009.

Z. Yang, X. Wang, H. Diao, J. Zhang, H. Li et al., Chem. Commun, p.3453, 2007.

J. Kim, S. H. Choi, P. T. Lillehei, S. Chu, G. C. King et al., Chem. Commun, vol.32, p.4101, 2005.

F. C. Meldrum, V. J. Wade, D. L. Nimmo, B. R. Heywood, S. Mann et al., 349, 684; b), Mol. Pharmaceutics, vol.8, p.4705, 1991.

S. Pead, E. Durrant, B. Webb, C. Larsen, D. Heaton et al., J. Inorg. Biochem, p.15, 1995.

Y. Pan, G. Vaughan, R. Brydson, A. Bleloch, M. Gass et al., Ultramicroscopy, p.1020, 2010.

A. Luciani, S. Dechoux, V. Deveaux, M. Poirier-quinot, N. Luciani et al., Radiology, vol.263, p.786, 2012.

R. Massart, IEEE Trans. Magn, vol.17, p.1247, 1981.

L. Lartigue, C. Wilhelm, J. Servais, C. Factor, A. Dencausse et al., ACS Nano, vol.6, p.2665, 2012.

C. Ricolleau, J. Nelayah, T. Oikawa, Y. Kohno, N. Braidy et al., Microscopy, vol.62, p.283, 2013.

N. Feliu, In vivo degeneration and the fate of inorganic nanoparticles, Chem. Soc. Rev, vol.45, pp.2440-2457, 2016.

G. Caracciolo, O. C. Farokhzad, and M. Mahmoudi, Biological Identity of Nanoparticles In Vivo: Clinical Implications of the Protein Corona, Trends Biotechnol. sept, vol.20, 2016.

M. Levy, Long term in vivo biotransformation of iron oxide nanoparticles, Biomaterials, vol.32, pp.3988-3999, 2011.
URL : https://hal.archives-ouvertes.fr/ineris-00963273

J. Kolosnjaj-tabi, The One Year Fate of Iron Oxide Coated Gold Nanoparticles in Mice, ACS Nano, vol.9, pp.7925-7939, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01398366

L. Lartigue, Biodegradation of Iron Oxide Nanocubes: High-Resolution In Situ Monitoring, ACS Nano, vol.7, pp.3939-3952, 2013.

R. Weissleder, Superparamagnetic iron oxide: pharmacokinetics and toxicity, AJR Am. J. Roentgenol, vol.152, pp.167-173, 1989.

D. Pouliquen, J. J. Le-jeune, R. Perdrisot, A. Ermias, and P. Jallet, Iron oxide nanoparticles for use as an MRI contrast agent: pharmacokinetics and metabolism, Magn. Reson. Imaging, vol.9, pp.275-283, 1991.

B. Freund, A Simple and Widely Applicable Method to 59Fe-Radiolabel Monodisperse Superparamagnetic Iron Oxide Nanoparticles for In Vivo Quantification Studies, ACS Nano, vol.6, pp.7318-7325, 2012.

E. Okon, Biodegradation of magnetite dextran nanoparticles in the rat. A histologic and biophysical study, Lab. Invest, vol.71, pp.895-903, 1994.

F. Mazuel, Massive Intracellular Biodegradation of Iron Oxide Nanoparticles Evidenced Magnetically at Single-Endosome and Tissue Levels, ACS Nano, vol.10, pp.7627-7638, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01472652

, Scientific RepoRts |, vol.7

R. Mejías, Long term biotransformation and toxicity of dimercaptosuccinic acid-coated magnetic nanoparticles support their use in biomedical applications, J. Control. Release, vol.171, pp.225-233, 2013.

E. Pawelczyk, A. S. Arbab, S. Pandit, E. Hu, and J. A. Frank, Expression of transferrin receptor and ferritin following ferumoxidesprotamine sulfate labeling of cells: implications for cellular magnetic resonance imaging, NMR Biomed, vol.19, pp.581-592, 2006.

R. Schafer, Transferrin receptor upregulation: in vitro labeling of rat mesenchymal stem cells with superparamagnetic iron oxide, Radiology, vol.244, pp.514-523, 2007.

V. Maraloiu, Multiscale investigation of USPIO nanoparticles in atherosclerotic plaques and their catabolism and storage in vivo, Nanomedicine NBM, vol.12, pp.191-200, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02290201

J. D. Lopez-castro, From synthetic to natural nanoparticles: monitoring the biodegradation of SPIO (P904) into ferritin by electron microscopy, Nanoscale, vol.3, pp.4597-4599, 2011.

V. Mameli, Studying the effect of Zn-substitution on the magnetic and hyperthermic properties of cobalt ferrite nanoparticles, Nanoscale, vol.8, pp.10124-10137, 2016.

J. Lee, Exchange-coupled magnetic nanoparticles for efficient heat induction, Nat. Nanotechnol, vol.6, pp.418-422, 2011.

J. P. Fortin, Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia, J. Am. Chem. Soc, vol.129, pp.2628-2635, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00162284

E. Fantechi, A Smart Platform for Hyperthermia Application in Cancer Treatment: Cobalt-Doped Ferrite Nanoparticles Mineralized in Human Ferritin Cages, ACS Nano, vol.8, pp.4705-4719, 2014.

S. Laurent, S. Dutz, U. O. Hafeli, and M. Mahmoudi, Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles, Adv. Colloid Interface Sci, vol.166, pp.8-23, 2011.

F. Ahmad, X. Liu, Y. Zhou, and H. Yao, An in vivo evaluation of acute toxicity of cobalt ferrite nanoparticles in larval-embryo Zebrafish (Danio rerio), Aquat. Toxicol, vol.166, pp.21-28, 2015.

F. Ahmad, H. Yao, Y. Zhou, and X. Liu, Toxicity of cobalt ferrite (CoFe2O4) nanobeads in Chlorella vulgaris: Interaction, adaptation and oxidative stress, Chemosphere, vol.139, pp.479-485, 2015.

L. Horev-azaria, Predictive Toxicology of cobalt ferrite nanoparticles: Comparative in-vitro study of different cellular models using methods of knowledge discovery from data, Part. Fibre Toxicol, vol.10, p.32, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00850245

T. Romih, Bioavailability of cobalt and iron from citric-acid-adsorbed CoFe2O4 nanoparticles in the terrestrial isopod Porcellio scaber, Sci. Total Environ, vol.508, pp.76-84, 2015.

M. L. López-moreno, Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants), Sci. Total Environ, vol.550, pp.45-52, 2016.

L. O. Simonsen, H. Harbak, and P. Bennekou, Cobalt metabolism and toxicology-A brief update, Sci. Total Environment, vol.432, pp.210-215, 2012.

S. Chattopadhyay, Cobalt oxide nanoparticles induced oxidative stress linked to activation of TNF-? /caspase-8/p38-MAPK signaling in human leukemia cells, J. Appl. Toxicol, vol.35, pp.603-613, 2015.

J. Joshi and A. Zimmerman, Ferritin: an expanded role in metabolic regulation, Toxicol, vol.48, pp.21-29, 1988.

N. Bresgen and P. Eckl, Oxidative Stress and the Homeodynamics of Iron Metabolism, Biomolecules, vol.5, p.808, 2015.

W. Niederer, Ferritin: iron incorporation and iron release, Experientia, vol.26, pp.218-220, 1970.

S. Pead, Metal ion binding to apo, holo, and reconstituted horse spleen ferritin, J. Inorg. Biochem, vol.59, pp.15-27, 1995.

D. Price and J. G. Joshi, Ferritin: a zinc detoxicant and a zinc ion donor, Proc. Nat. Acad. Sci, vol.79, pp.3116-3119, 1982.

J. Fleming and J. G. Joshi, Ferritin: isolation of aluminum-ferritin complex from brain, Proc. Nat. Acad. Sci, vol.84, pp.7866-7870, 1987.

R. Lindenschmidt, Ferritin and in vivo beryllium toxicity, Toxicol. Appl. Pharmacol, vol.82, pp.344-350, 1986.

F. C. Meldrum, V. J. Wade, D. L. Nimmo, B. R. Heywood, and S. Mann, Synthesis of inorganic nanophase materials in supramolecular protein cages, Nature, vol.349, pp.684-687, 1991.

N. Galvez, Apoferritin-encapsulated Ni and Co superparamagnetic nanoparticles, J. Mat. Chem, vol.16, pp.2757-2761, 2006.

J. Kim, Cobalt oxide hollow nanoparticles derived by bio-templating, Chem. Comm, pp.4101-4103, 2005.

J. C. Cutrin, S. G. Crich, D. Burghelea, W. Dastrù, and S. Aime, Curcumin/Gd Loaded Apoferritin: A Novel "Theranostic" Agent To Prevent Hepatocellular Damage in Toxic Induced Acute Hepatitis, Mol. Pharmaceutics, vol.10, pp.2079-2085, 2013.

T. Harada and H. Yoshimura, Synthesis of rare earth doped yttrium-vanadate nanoparticles encapsulated within apoferritin, Phys. Chem. Chem. Phys, vol.16, pp.14947-14952, 2014.

X. Liu, Apoferritin-camouflaged Pt nanoparticles: surface effects on cellular uptake and cytotoxicity, J. Mat. Chem, vol.21, pp.7105-7110, 2011.

F. K. Kálmán, S. Geninatti-crich, and S. Aime, Reduction/Dissolution of a ? -MnOOH Nanophase in the Ferritin Cavity To Yield a Highly Sensitive, Biologically Compatible Magnetic Resonance Imaging Agent, Angewandte Chem, vol.49, pp.612-615, 2010.

M. Levy, Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties, Nanotechnology, vol.21, p.395103, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01236823

A. S. Arbab, A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: implications for cellular magnetic resonance imaging, NMR Biomed, vol.18, pp.383-389, 2005.

S. J. Soenen, Intracellular Nanoparticle Coating Stability Determines Nanoparticle Diagnostics Efficacy and Cell Functionality. Small, vol.6, pp.2136-2145, 2010.

Y. Javed, Biodegradation Mechanisms of Iron Oxide Monocrystalline Nanoflowers and Tunable Shield Effect of Gold Coating, Small, vol.10, pp.3325-3337, 2014.

Z. Yang, Encapsulation of platinum anticancer drugs by apoferritin, Chem. Comm, pp.3453-3455, 2007.

I. G. Macara, T. G. Hoy, and P. M. Harrison, The formation of ferritin from apoferritin. Kinetics and mechanism of iron uptake, Biochem. J, vol.126, pp.151-162, 1972.

A. Luciani, Adipose Tissue Macrophages: MR Tracking to Monitor Obesity-associated Inflammation, Radiology, vol.263, pp.786-793, 2012.
URL : https://hal.archives-ouvertes.fr/inserm-00710895

T. Kurz, A. Terman, B. Gustafsson, and U. T. Brunk, Lysosomes in iron metabolism, ageing and apoptosis, Histochem. Cell Biol, vol.129, pp.389-406, 2008.

T. Kurz, B. Gustafsson, and U. T. Brunk, Cell sensitivity to oxidative stress is influenced by ferritin autophagy. Free Radic, Biol. Med, vol.50, pp.1647-1658, 2011.

R. Massart, Preparation of aqueous magnetic liquids in alkaline and acidic media, IEEE Trans. Magn, vol.17, pp.1247-1248, 1981.

C. Ricolleau, Performances of an 80-200 kV microscope employing a cold-FEG and an aberration-corrected objective lens, Microscopy, vol.62, pp.283-293, 2013.

M. Levy, Long term in vivo biotransformation of iron oxide nanoparticles, Biomaterials, vol.32, p.3999, 2011.
URL : https://hal.archives-ouvertes.fr/ineris-00963273

L. Lartigue, Biodegradation of Iron Oxide Nanocubes: High-Resolution In Situ Monitoring

, ACS Nano, vol.7, p.3952, 2013.

F. Mazuel, Massive Intracellular Biodegradation of Iron Oxide Nanoparticles Evidenced Magnetically at Single-Endosome and Tissue Levels, ACS Nano, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01472652

M. D. Garrick and L. M. Garrick, Cellular iron transport, Biochim. Biophys. Acta BBA -Gen. Subj, vol.1790, p.325, 2009.

M. E. Conrad and J. N. Umbreit, Iron absorption and transport An update, Am. J. Hematol, vol.64, p.298, 2000.

T. Moos and E. H. Morgan, The Metabolism of Neuronal Iron and Its Pathogenic Role in Neurological Disease, Review. Ann. N. Y. Acad. Sci, vol.1012, p.26, 2004.

C. Quintana, J. M. Cowley, and C. Marhic, Electron nanodiffraction and high-resolution electron microscopy studies of the structure and composition of physiological and pathological ferritin, J. Struct. Biol, vol.147, p.178, 2004.

C. Quintana, Contribution of Analytical Microscopies to Human Neurodegenerative Diseases Research (PSP and AD), Mini Rev. Med. Chem, vol.7, p.975, 2007.

S. Waldvogel-abramowski, Physiology of Iron Metabolism. Transfus. Med. Hemotherapy, vol.41, p.221, 2014.

L. Blanc, S. Garrick, M. D. Arredondo, and M. , Heme carrier protein 1 transports heme and is involved in heme-Fe metabolism, Am. J. Physiol. Cell Physiol, vol.302, pp.1780-1785, 2012.

N. Bresgen and P. M. Eckl, Oxidative stress and the homeodynamics of iron metabolism, Biomolecules, vol.5, p.847, 2015.

M. L. Wallander, E. A. Leibold, and R. S. Eisenstein, Molecular control of vertebrate iron homeostasis by iron regulatory proteins, Biochim. Biophys. Acta, vol.1763, p.689, 2006.

C. P. Anderson, M. Shen, R. S. Eisenstein, and E. A. Leibold, Mammalian iron metabolism and its control by iron regulatory proteins, Biochim. Biophys. Acta, vol.1823, pp.1468-1483, 2012.

A. S. Arbab, A model of lysosomal metabolism of dextran coated superparamagnetic iron oxide (SPIO) nanoparticles: implications for cellular magnetic resonance imaging, NMR Biomed, vol.18, p.389, 2005.

J. Wang and K. Pantopoulos, Regulation of cellular iron metabolism, Biochem. J, vol.434, p.381, 2011.

M. Patel and D. V. Ramavataram, Non Transferrin Bound Iron: Nature, Manifestations and Analytical Approaches for Estimation, Indian J. Clin. Biochem, vol.27, p.332, 2012.

R. K. Watt, R. J. Hilton, and D. M. Graff, Oxido-reduction is not the only mechanism allowing ions to traverse the ferritin protein shell, Biochim. Biophys. Acta, vol.1800, p.759, 2010.

J. Kolosnjaj-tabi,

, Aujourdhui, vol.208, p.190, 2014.

R. Weissleder, Superparamagnetic iron oxide: pharmacokinetics and toxicity, Am. J. Roentgenol, vol.152, p.173, 1989.

A. J. Mieszawska, W. J. Mulder, Z. A. Fayad, and D. P. Cormode, Multifunctional Gold Nanoparticles for Diagnosis and Therapy of Disease, Mol. Pharm, vol.10, p.847, 2013.

G. Xu, New Generation Cadmium-Free Quantum Dots for Biophotonics and Nanomedicine, Chem. Rev, vol.116, p.12327, 2016.

D. Price and J. G. Joshi, Ferritin: a zinc detoxicant and a zinc ion donor, Proc. Natl. Acad. Sci. U. S. A, vol.79, p.3119, 1982.

J. Fleming and J. G. Joshi, Ferritin: isolation of aluminum-ferritin complex from brain., Ferritin: isolation of aluminum-ferritin complex from brain, Proc. Natl. Acad. Sci. U. S. Am. Proc. Natl

. Acad, . U. Sci, and . Am, , vol.84, p.7870, 1987.

R. C. Lindenschmidt, Ferritin and in vivo beryllium toxicity, Toxicol. Appl. Pharmacol, vol.82, p.350, 1986.

Y. Jun, Nanoscale Size Effect of Magnetic Nanocrystals and Their Utilization for Cancer Diagnosis via Magnetic Resonance Imaging, J. Am. Chem. Soc, vol.127, p.5733, 2005.

R. Di-corato, Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs, Biomaterials, vol.35, p.6411, 2014.

, Properties in Magnetite and Cobalt Ferrite Spinel Nanocrystals, J. Phys. Chem. B, vol.110, pp.11205-11209, 2006.

J. Fortin, Size-Sorted Anionic Iron Oxide Nanomagnets as Colloidal Mediators for Magnetic Hyperthermia, J. Am. Chem. Soc, vol.129, p.2635, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00162284

S. Amiri and H. Shokrollahi, The role of cobalt ferrite magnetic nanoparticles in medical science

, Mater. Sci. Eng. C, vol.33, pp.1-8, 2013.

E. Fantechi, A Smart Platform for Hyperthermia Application in Cancer Treatment: CobaltDoped Ferrite Nanoparticles Mineralized in Human Ferritin Cages, ACS Nano, vol.8, p.4719, 2014.

L. Horev-azaria, Predictive Toxicology of Cobalt Nanoparticles and Ions: Comparative In Vitro Study of Different Cellular Models Using Methods of Knowledge Discovery from Data

, Toxicol. Sci, vol.122, p.501, 2011.

Y. Liu, Toxicity and bioactivity of cobalt nanoparticles on the monocytes, Orthop. Surg, vol.7, p.173, 2015.

A. Hahn, J. Fuhlrott, A. Loos, and S. Barcikowski, Cytotoxicity and ion release of alloy nanoparticles, J. Nanoparticle Res, vol.14, p.686, 2012.

T. Romih, Bioavailability of cobalt and iron from citric-acid-adsorbed CoFe2O4 nanoparticles in the terrestrial isopod Porcellio scaber, Sci. Total Environ, vol.508, p.84, 2015.

L. O. Simonsen, H. Harbak, and P. Bennekou, Cobalt metabolism and toxicology A brief update

, Sci. Total Environ, vol.432, p.215, 2012.

V. P. Shilov, Y. L. Raikher, J. Bacri, F. Gazeau, and R. Perzynski, Effect of unidirectional anisotropy on the ferromagnetic resonance in ferrite nanoparticles, Phys. Rev. B, vol.60, pp.11902-11905, 1999.

P. E. Tannenwald, Multiple Resonances in Cobalt Ferrite, Phys. Rev, vol.99, p.464, 1955.

M. Allen, D. Willits, M. Young, and T. Douglas, Constrained Synthesis of Cobalt Oxide Nanomaterials in the 12-Subunit Protein Cage from Listeria innocua, Inorg. Chem, vol.42, p.6305, 2003.

R. Tsukamoto, K. Iwahori, M. Muraoka, and I. Yamashita, Synthesis of Co3O4 Nanoparticles Using the Cage-Shaped Protein, Apoferritin. Bull. Chem. Soc. Jpn, vol.78, p.2081, 2005.

U. Sakulkhu, M. Mahmoudi, L. Maurizi, J. Salaklang, and H. Hofmann, Protein Corona Composition of Superparamagnetic Iron Oxide Nanoparticles with Various Physico-Chemical Properties and, Coatings. Sci. Rep, vol.4, p.5020, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02132125

C. Sacchetti, Surface Polyethylene Glycol Conformation Influences the Protein Corona of Polyethylene Glycol-Modified Single-Walled Carbon Nanotubes: Potential Implications on Biological Performance, ACS Nano, vol.7, 2013.

P. Aggarwal, J. B. Hall, C. B. Mcleland, M. A. Dobrovolskaia, and S. E. Mcneil, Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy, Adv. Drug Deliv. Rev, vol.61, p.437, 2009.

P. P. Karmali and D. Simberg, Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems, Expert Opin. Drug Deliv, vol.8, p.357, 2011.

C. D. Walkey and W. C. Chan, Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment, Chem. Soc. Rev, vol.41, p.2799, 2012.

I. Lynch and K. A. Dawson, Protein-nanoparticle interactions, Nano Today, vol.3, p.47, 2008.

I. Lynch, A. Salvati, and K. A. Dawson, Protein-nanoparticle interactions: What does the cell see?, Nat. Nanotechnol, vol.4, p.547, 2009.

, Bionanoscience. J. Am. Chem. Soc, vol.132, p.5768, 2010.

F. Bertoli, Magnetic Nanoparticles to Recover Cellular Organelles and Study the Time Resolved Nanoparticle-Cell Interactome throughout Uptake, Small, vol.10, p.3315, 2014.

M. Lundqvist, The Evolution of the Protein Corona around Nanoparticles: A Test Study

, ACS Nano, vol.5, p.7509, 2011.

F. Wang, The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes

, Nanomedicine Nanotechnol. Biol. Med, vol.9, p.1168, 2013.

D. Bargheer, The fate of a designed protein corona on nanoparticles in vitro and in vivo, Beilstein J. Nanotechnol, vol.6, p.46, 2015.

L. Lartigue, Nanomagnetic Sensing of Blood Plasma Protein Interactions with Iron Oxide Nanoparticles: Impact on Macrophage Uptake, ACS Nano, vol.6, p.2678, 2012.

N. Feliu, In vivo degeneration and the fate of inorganic nanoparticles, Chem. Soc. Rev, vol.45, p.2457, 2016.

V. Sée, Cathepsin L Digestion of Nanobioconjugates upon Endocytosis, ACS Nano, vol.3, p.2468, 2009.

O. Lunov, Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes, Biomaterials, vol.31, p.9022, 2010.

H. Wang, Integrity of (111)In-radiolabeled superparamagnetic iron oxide nanoparticles in the mouse, Nucl. Med. Biol, vol.42, p.70, 2015.

B. Freund, A Simple and Widely Applicable Method to 59 Fe-Radiolabel Monodisperse

, Superparamagnetic Iron Oxide Nanoparticles for In Vivo Quantification Studies, ACS Nano, vol.6, p.7325, 2012.

W. G. Kreyling, In vivo integrity of polymer-coated gold nanoparticles, Nat. Nanotechnol, vol.10, p.623, 2015.

|. Bulte and |. Springer, Design and Applications of Nanoparticles in Biomedical Imaging

S. J. Soenen, W. J. Parak, J. Rejman, and B. Manshian, Intra)Cellular Stability of Inorganic Nanoparticles: Effects on Cytotoxicity, Particle Functionality, and Biomedical Applications

, Chem. Rev, vol.115, p.2135, 2015.

D. Bargheer, The distribution and degradation of radiolabeled superparamagnetic iron oxide nanoparticles and quantum dots in mice, Beilstein J. Nanotechnol, vol.6, p.123, 2015.

R. Weissleder, Superparamagnetic iron oxide: pharmacokinetics and toxicity, Am. J. Roentgenol, vol.152, p.173, 1989.

J. Kolosnjaj-tabi, The One Year Fate of Iron Oxide Coated Gold Nanoparticles in Mice
URL : https://hal.archives-ouvertes.fr/hal-01398366

, ACS Nano, vol.9, p.7939, 2015.

M. Levy, Long term in vivo biotransformation of iron oxide nanoparticles, Biomaterials, vol.32, p.3999, 2011.
URL : https://hal.archives-ouvertes.fr/ineris-00963273

N. Yin, E. D. Van-hullebusch, M. Benedetti, P. N. Lens, and Y. Sivry, Zn isotopes Chemosphere, vol.195, p.490, 2018.

. Chimique, , p.8, 2018.

F. Larner, Tracing Bioavailability of ZnO Nanoparticles Using Stable Isotope Labeling, Environ. Sci. Technol, vol.46, p.12145, 2012.

A. Bourgeault, The Challenge of Studying TiO2 Nanoparticle Bioaccumulation at Environmental Concentrations: Crucial Use of a Stable Isotope Tracer, Environ. Sci. Technol, vol.49, p.2459, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01157188

J. Park, Ultra-large-scale syntheses of monodisperse nanocrystals, Nat. Mater, vol.3, p.895, 2004.

V. K. Lamer, R. H. Dinegar, and . Theory, Production and Mechanism of Formation of Monodispersed Hydrosols, J. Am. Chem. Soc, vol.72, p.4854, 1950.

R. W. Dodson, G. J. Forney, and E. H. Swift, The Extraction of Ferric Chloride from Hydrochloric Acid Solutions by Isopropyl Ether, J. Am. Chem. Soc, vol.58, p.2577, 1936.

L. Lartigue, Biodegradation of Iron Oxide Nanocubes: High-Resolution In Situ Monitoring

, ACS Nano, vol.7, p.3952, 2013.

W. Wang, Design of a Multi-Dopamine-Modified Polymer Ligand Optimally Suited for Interfacing Magnetic Nanoparticles with Biological Systems, Langmuir, vol.30, p.6208, 2014.

Y. Zhang, W. Wei, G. K. Das, and T. T. Yang-tan, Engineering lanthanide-based materials for nanomedicine, J. Photochem. Photobiol. C Photochem. Rev, vol.20, p.96, 2014.

U. Sakulkhu, M. Mahmoudi, L. Maurizi, J. Salaklang, and H. Hofmann, Protein Corona Composition of Superparamagnetic Iron Oxide Nanoparticles with Various Physico-Chemical Properties and, Coatings. Sci. Rep, vol.4, p.5020, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02132125

C. Sacchetti, Surface Polyethylene Glycol Conformation Influences the Protein Corona of Polyethylene Glycol-Modified Single-Walled Carbon Nanotubes: Potential Implications on Biological Performance, ACS Nano, vol.7, 2013.

P. Aggarwal, J. B. Hall, C. B. Mcleland, M. A. Dobrovolskaia, and S. E. Mcneil, Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy, Adv. Drug Deliv. Rev, vol.61, p.437, 2009.

P. P. Karmali and D. Simberg, Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems, Expert Opin. Drug Deliv, vol.8, p.357, 2011.

C. D. Walkey and W. C. Chan, Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment, Chem. Soc. Rev, vol.41, p.2799, 2012.

I. Lynch and K. A. Dawson, Protein-nanoparticle interactions, Nano Today, vol.3, p.47, 2008.

I. Lynch, A. Salvati, and K. A. Dawson, Protein-nanoparticle interactions: What does the cell see?, Nat. Nanotechnol, vol.4, p.547, 2009.

D. Walczyk, F. B. Bombelli, M. P. Monopoli, I. Lynch, and K. A. Dawson, What th in Bionanoscience, J. Am. Chem. Soc, vol.132, p.5768, 2010.

F. Bertoli, Magnetic Nanoparticles to Recover Cellular Organelles and Study the Time Resolved Nanoparticle-Cell Interactome throughout Uptake, Small, vol.10, p.3315, 2014.

M. Lundqvist, The Evolution of the Protein Corona around Nanoparticles: A Test Study

, ACS Nano, vol.5, p.7509, 2011.

F. Wang, The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes

, Nanomedicine Nanotechnol. Biol. Med, vol.9, p.1168, 2013.

D. Bargheer, The fate of a designed protein corona on nanoparticles in vitro and in vivo, Beilstein J. Nanotechnol, vol.6, p.46, 2015.

L. Lartigue, Nanomagnetic Sensing of Blood Plasma Protein Interactions with Iron Oxide Nanoparticles: Impact on Macrophage Uptake, ACS Nano, vol.6, p.2678, 2012.

N. Feliu, In vivo degeneration and the fate of inorganic nanoparticles, Chem. Soc. Rev, vol.45, p.2457, 2016.

V. Sée, Cathepsin L Digestion of Nanobioconjugates upon Endocytosis, ACS Nano, vol.3, p.2468, 2009.

O. Lunov, Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes, Biomaterials, vol.31, p.9022, 2010.

H. Wang, Integrity of (111)In-radiolabeled superparamagnetic iron oxide nanoparticles in the mouse, Nucl. Med. Biol, vol.42, p.70, 2015.

B. Freund, A Simple and Widely Applicable Method to 59 Fe-Radiolabel Monodisperse

, Superparamagnetic Iron Oxide Nanoparticles for In Vivo Quantification Studies, ACS Nano, vol.6, p.7325, 2012.

W. G. Kreyling, In vivo integrity of polymer-coated gold nanoparticles, Nat. Nanotechnol, vol.10, p.623, 2015.

|. Bulte and |. Springer, Design and Applications of Nanoparticles in Biomedical Imaging

S. J. Soenen, W. J. Parak, J. Rejman, and B. Manshian, Intra)Cellular Stability of Inorganic Nanoparticles: Effects on Cytotoxicity, Particle Functionality, and Biomedical Applications

, Chem. Rev, vol.115, p.2135, 2015.

D. Bargheer, The distribution and degradation of radiolabeled superparamagnetic iron oxide nanoparticles and quantum dots in mice, Beilstein J. Nanotechnol, vol.6, p.123, 2015.

R. Weissleder, Superparamagnetic iron oxide: pharmacokinetics and toxicity, Am. J. Roentgenol, vol.152, p.173, 1989.

J. Kolosnjaj-tabi, The One Year Fate of Iron Oxide Coated Gold Nanoparticles in Mice
URL : https://hal.archives-ouvertes.fr/hal-01398366

, ACS Nano, vol.9, p.7939, 2015.

M. Levy, Long term in vivo biotransformation of iron oxide nanoparticles, Biomaterials, vol.32, p.3999, 2011.
URL : https://hal.archives-ouvertes.fr/ineris-00963273

, Les nouveaux isotopes dans les sciences de, p.8, 2018.

N. Yin, E. D. Van-hullebusch, M. Benedetti, P. N. Lens, and Y. Sivry, Zn isotopes fract Chemosphere, vol.195, p.490, 2018.

. Chimique, , p.8, 2018.

F. Larner, Tracing Bioavailability of ZnO Nanoparticles Using Stable Isotope Labeling, Environ. Sci. Technol, vol.46, p.12145, 2012.

A. Bourgeault, The Challenge of Studying TiO2 Nanoparticle Bioaccumulation at Environmental Concentrations: Crucial Use of a Stable Isotope Tracer, Environ. Sci. Technol, vol.49, p.2459, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01157188

, Livechart -Table of Nuclides -Nuclear structure and decay data. Available at, p.10, 2018.

M. Croteau, S. N. Luoma, and B. Pellet, Determining metal assimilation efficiency in aquatic invertebrates using enriched stable metal isotope tracers, Aquat. Toxicol. Amst. Neth, vol.83, p.125, 2007.

T. W. May and R. H. Wiedmeyer, A table of polyatomic interferences in ICP-MS, At. Spectrosc, vol.19, p.6, 1998.

J. Park, Ultra-large-scale syntheses of monodisperse nanocrystals, Nat. Mater, vol.3, p.895, 2004.

V. K. Lamer, R. H. Dinegar, and . Theory, Production and Mechanism of Formation of Monodispersed Hydrosols, J. Am. Chem. Soc, vol.72, p.4854, 1950.

R. W. Dodson, G. J. Forney, and E. H. Swift, The Extraction of Ferric Chloride from Hydrochloric Acid Solutions by Isopropyl Ether, J. Am. Chem. Soc, vol.58, p.2577, 1936.

Y. Jun, J. Choi, and J. Cheon, Shape Control of Semiconductor and Metal Oxide Nanocrystals through Nonhydrolytic Colloidal Routes, Angew. Chem. Int. Ed, vol.45, p.3439, 2006.

L. Lartigue, Biodegradation of Iron Oxide Nanocubes: High-Resolution In Situ Monitoring

, ACS Nano, vol.7, p.3952, 2013.

W. Wang, Design of a Multi-Dopamine-Modified Polymer Ligand Optimally Suited for Interfacing Magnetic Nanoparticles with Biological Systems, Langmuir, vol.30, p.6208, 2014.

M. Rohrer, H. Bauer, J. Mintorovitch, M. Requardt, and H. Weinmann, Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths, Invest. Radiol, vol.40, p.724, 2005.

F. T. Kimura and V. L. Miller, Chromic Oxide Measurement, Improved Determination of Chromic Oxide in Cow Feed and Feces, J. Agric. Food Chem, vol.5, p.216, 1957.

A. Friedman, Magnetic studies of iron-entities in human tissues, J. Magn. Magn. Mater, vol.272, issue.276, p.2419, 2004.

N. Gálvez, Comparative Structural and Chemical Studies of Ferritin Cores with Gradual Removal of their Iron Contents, J. Am. Chem. Soc, vol.130, p.8068, 2008.

C. Wilhelm, F. Gazeau, and J. Bacri, Magnetophoresis and ferromagnetic resonance of magnetically labeled cells, Eur. Biophys. J, vol.31, p.125, 2002.

J. Kolosnjaj-tabi, HeatTumoral Microenvironment, ACS Nano, vol.8, p.4283, 2014.

W. Wang, Design of a Multi-Dopamine-Modified Polymer Ligand Optimally Suited for Interfacing Magnetic Nanoparticles with Biological Systems, Langmuir, vol.30, p.6208, 2014.

A. Joos, N. Löwa, F. Wiekhorst, B. Gleich, and A. Haase, Size-dependent MR relaxivities of magnetic nanoparticles, J. Magn. Magn. Mater, vol.427, p.126, 2017.

M. Levy, Long term in vivo biotransformation of iron oxide nanoparticles, Biomaterials, vol.32, p.3999, 2011.
URL : https://hal.archives-ouvertes.fr/ineris-00963273

J. Kolosnjaj-tabi, The One Year Fate of Iron Oxide Coated Gold Nanoparticles in Mice
URL : https://hal.archives-ouvertes.fr/hal-01398366

, ACS Nano, vol.9, p.7939, 2015.

L. Lartigue, Biodegradation of Iron Oxide Nanocubes: High-Resolution In Situ Monitoring

, ACS Nano, vol.7, p.3952, 2013.

W. G. Kreyling, In vivo integrity of polymer-coated gold nanoparticles, Nat. Nanotechnol, vol.10, p.623, 2015.

F. Wang, The biomolecular corona is retained during nanoparticle uptake and protects the cells from the damage induced by cationic nanoparticles until degraded in the lysosomes

, Nanomedicine Nanotechnol. Biol. Med, vol.9, p.1168, 2013.

N. Feliu, In vivo degeneration and the fate of inorganic nanoparticles, Chem. Soc. Rev, vol.45, p.2457, 2016.

P. Aggarwal, J. B. Hall, C. B. Mcleland, M. A. Dobrovolskaia, and S. E. Mcneil, Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy, Adv. Drug Deliv. Rev, vol.61, p.437, 2009.

P. P. Karmali and D. Simberg, Interactions of nanoparticles with plasma proteins: implication on clearance and toxicity of drug delivery systems, Expert Opin. Drug Deliv, vol.8, p.357, 2011.

J. Kreuter, Apolipoprotein-mediated Transport of Nanoparticle-bound Drugs Across the Blood-Brain Barrier, J. Drug Target, vol.10, p.325, 2002.

S. J. Soenen, Intracellular nanoparticle coating stability determines nanoparticle diagnostics efficacy and cell functionality, Small Weinh. Bergstr. Ger, vol.6, p.2145, 2010.

M. Barrow, A. Taylor, P. Murray, J. Rosseinsky, M. J. Adams et al., Design considerations for the synthesis of polymer coated iron oxide nanoparticles for stem cell labelling and tracking using MRI, Chem. Soc. Rev, vol.44, p.6748, 2015.

R. Weissleder, Superparamagnetic iron oxide: pharmacokinetics and toxicity, Am. J. Roentgenol, vol.152, p.173, 1989.

M. Lévy, Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties, Nanotechnology, vol.21, p.395103, 2010.

Y. Javed, Biodegradation Mechanisms of Iron Oxide Monocrystalline Nanoflowers and Tunable Shield Effect of Gold Coating, Small, vol.10, p.3337, 2014.

J. Kolosnjaj-tabi, HeatTumoral Microenvironment, ACS Nano, vol.8, p.4283, 2014.

M. Levy, Long term in vivo biotransformation of iron oxide nanoparticles, Biomaterials, vol.32, p.3999, 2011.
URL : https://hal.archives-ouvertes.fr/ineris-00963273

M. Lévy, Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties, Nanotechnology, vol.21, p.395103, 2010.

L. Lartigue, Biodegradation of Iron Oxide Nanocubes: High-Resolution In Situ Monitoring

, ACS Nano, vol.7, p.3952, 2013.

Y. Javed, Biodegradation Mechanisms of Iron Oxide Monocrystalline Nanoflowers and Tunable Shield Effect of Gold Coating, Small, vol.10, p.3337, 2014.

J. Kolosnjaj-tabi, The One Year Fate of Iron Oxide Coated Gold Nanoparticles in Mice
URL : https://hal.archives-ouvertes.fr/hal-01398366

, ACS Nano, vol.9, p.7939, 2015.

J. Volatron, Ferritin Protein Regulates the Degradation of Iron Oxide Nanoparticles, Small, vol.13, 2017.

J. Kolosnjaj-tabi,

, Aujourdhui, vol.208, p.190, 2014.

J. Volatron, Physiological Remediation of Cobalt Ferrite Nanoparticles by Ferritin. Sci. Rep, vol.7, p.40075, 2017.

S. T. Stern, P. P. Adiseshaiah, and R. M. Crist, Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity, Part. Fibre Toxicol, vol.9, p.20, 2012.

R. Weissleder, Superparamagnetic iron oxide: pharmacokinetics and toxicity, Am. J. Roentgenol, vol.152, p.173, 1989.

J. Kolosnjaj-tabi, HeatTumoral Microenvironment, ACS Nano, vol.8, p.4283, 2014.

, Lors de la montée en température, une baisse abrupte de température est observée vers 315°C, allant 10°C, la solution noircit. Cette baisse de température correspond à la dissociation des deux derniers ligands oléates du complexe. La croissance des nanoparticules est alors initiée et e de température

, Synthèse du polymère Dopa-PIMA-PEG (chapitre 2 & 3)

, Dans un ballon tricol de 100 mL, 0,308 g (2 mmol) de poly(isobuthylene-alt-maleic-anhydride

, La solution est ensuite purgée sous latérale à robinet, de poly(ethylene glycol)bis(3-aminopropyl) (Mw = 1500 g/mol, Sigma Aldrich) (0,3 mmol) sont dissous dans 2 mL de DMF et ajoutés goutte à goutte à la solution de Dopa-PIMA-PEG. La solution est agitée pendant une nuit à 70°C sous vide formant une huile jaune contenant le polymère Dopa-PIMA-PEG. Cette huile est ensuite dispersée dans 22 mL de THF, Sigma Aldrich) sont dissous dans 8 mL de DMF

, g (71,5 µmoles) de polymère Dopa-PIMA-PEG précédemment synthétisé sont dissous dans 13 mL de THF. A cette solution est ajouté 10 µL de triéthylamine (1 eq. en lanthanide, de relaxation T1 et T2 sont déduit de la courbe mono exponentielle représentant le signal magnétique en fonction de TR et TE, respectivement, par le logiciel ParaVision. ICP-MS Les solutions de 57 NPOFs et LT 57 NPOFs (pour les deux doses) ont été analysées en ICP-MS (HRété sacrifiées 1h (groupes 1a à 5a), 1 jour (groupes 1b à 5b), 1 semaine (groupes 1c à 5c), un mois (groupes 1d à 5d), trois mois (groupes 1e à 5e) et six mois (groupes 1f à 5f) après injection, Dans un erlenmeyer de 50 mL, 29,4 mg (35,7 µmoles) du complexe Tm-p-SCN-Bn-DOTA (Mw : 831,6 g/mol, Macrocyclics, USA) et 29,8 mg (35,7 µmoles) du complexe Gd-p-SCN-DOTA (Mw : un ballon bicol de 100 mL, vol.2

, Les souris sont ensuite sacrifiées par ponction cardiaque, permettant de prélever le sang. Les organes foie, rate, reins et poumons sont ensuite prélevés

, Chaque organe prélevé est ensuite minutieusement pesé et divisé en plusieurs morceaux (Figure

, afin de réaliser les analyses nécessaires présentées ci-dessous

, Figure 2.3 : Courbe de calibration représentant l'intensité d'un isotope en fonction de la concentration de cet isotope pour les solutions étalons. Les courbes de calibration sont tracées pour les isotopes 54

F. ,

F. ,

, Fe (D)

, Etude pilote (chapitre 2)

, 1 : Clichés de coupes de foie des souris âgées de six semaines avant, une heure et un jour après injection d'une dose de 50 µg en fer après coloration PEARLS. Clichés pris avec un grandissement 4x (haut) et 20 x (bas). Les vaisseaux sanguins sont indiqués par une flèche rouge

, Figure 3.13 : Clichés de coupes de foie (A & C) et de rate (B & D) des souris contrôles. Clichés pris avec un grandissement 4x (haut) et 20 x (bas). -dessus, il est nécessaire de réaliser n

, Tm est réalisée en haute résolution (HR)

. Enfin,

, Pol : masse molaire du polymère PIMA MPIMA,mono : masse molaire du monomère constituant le PIMA NPIMA,mono : nombre de monomère par brin de polymère PIMA NPIMA,mono-to-NPs : nombre de monomère par NPOFs, Calcul du nombre de dopamine par LT 57 NPOFs Notations MPIMA

. Npol-to-nps, Nombre de brins de polymère par LT 57 NPOFs (Eq. 6.6) xdopa : fraction de réactif dopamine initiale Ndopa-to-NPs : nombre de dopamines par NPOFs SNPOFs : surface des NPOFs dopa : densité surfacique de la dopamine sur les NPOFs

. Npofs, Nous avons fait une première approximation en transposant les valeurs relatives

. Npofs, En effet, les synthèses ont été réalisées selon le même protocole et la différence de taille entre