K. Han, M. Sekikawa, K. Shimada, and M. Hashimoto, Anthocyanin-rich journal of nutrition, vol.96, pp.1125-1134, 2006.

P. J. Mink, C. G. Scrafford, L. M. Barraj, and L. Harnack, Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women-. The American journal of clinical nutrition, vol.85, pp.895-909, 2007.

S. D. Renaud and M. De-lorgeril, Wine, alcohol, platelets, and the French paradox for coronary heart disease, The Lancet, vol.339, pp.1523-1526, 1992.
URL : https://hal.archives-ouvertes.fr/hal-00395771

A. B. Santhakumar, A. R. Kundur, K. Fanning, and M. Netzel, Consumption of of Functional Foods, vol.12, pp.11-22, 2015.

B. H. Koeppen and K. Herrmann, Flavonoid glycosides and hydroxycinnamic acid esters of blackcurrants (Ribes nigrum), vol.164, pp.263-268, 1977.

R. Slimestad and H. Solheim, Anthocyanins from black currants (Ribes nigrum L.), Journal of Agricultural and Food Chemistry, vol.50, pp.3228-3231, 2002.

C. Auger, J. Kim, S. Trinh, and T. Chataigneau, Fruit juice-induced, vol.2, pp.245-250

C. Auger, B. Pollet, C. Arnold, C. Marx, and V. B. Schini-kerth, Great heterogeneity of Med Food, vol.18, pp.128-136, 2015.

J. Xu, K. Ikeda, and Y. Yamori, Cyanidin-3-glucoside regulates phosphorylation of endothelial nitric oxide synthase, FEBS letters, vol.574, pp.176-180, 2004.

S. Rashid, N. Idris-khodja, C. Auger, and C. Kevers, Polyphenol-Rich Blackcurrant Juice Prevents Endothelial Dysfunction in the Mesenteric Artery of Cirrhotic Rats with Portal Hypertension: Role of Oxidative Stress and the Angiotensin System, Journal of medicinal food, vol.21, pp.390-399, 2018.

I. Serraino, L. Dugo, P. Dugo, and L. Mondello, Protective effects of cyanidin-3

V. Neveu, J. Perez-jimenez, F. Vos, V. Crespy, L. Chaffaut et al., Phenol-Explorer: an online comprehensive database on polyphenol contents in foods, Database, 2010.

S. Renaud and M. De-lorgeril, Wine, alcohol, platelets, and the French paradox for coronary heart disease, Lancet, vol.339, pp.1523-1526, 1992.
URL : https://hal.archives-ouvertes.fr/hal-00395771

F. Sofi, C. Macchi, R. Abbate, G. F. Gensini, and A. Casini, Mediterranean diet and health status: an updated meta-analysis and a proposal for a literature-based adherence score, Public Health Nutr, vol.17, pp.2769-2782, 2014.

L. Dauchet, P. Amouyel, S. Hercberg, and J. Dallongeville, Fruit and vegetable Fig. 3. Several polyphenol-rich natural products and polyphenols have been shown to improve vascular ageing by reducing endothelial dysfunction, platelet activation, vascular oxidative stress, over-activation of the local angiotensin system and increased pro-thrombotic responses associated with cardiovascular risk factors in preclinical and clinical studies

M. Oak, consumption and risk of coronary heart disease: a meta-analysis of cohort studies, J. Nutr, vol.136, pp.2588-2593, 2006.

F. J. He, C. A. Nowson, and G. A. Macgregor, Fruit and vegetable consumption and stroke: meta-analysis of cohort studies, Lancet, vol.367, pp.320-326, 2006.

L. M. Griep, W. M. Verschuren, D. Kromhout, M. C. Ocke, and J. M. Geleijnse, Variety in fruit and vegetable consumption and 10-year incidence of CHD and stroke, Public Health Nutr, vol.15, pp.2280-2286, 2012.

A. Crozier, I. B. Jaganath, and M. N. Clifford, Dietary phenolics: chemistry, bioavailability and effects on health, Nat. Prod. Rep, vol.26, pp.1001-1043, 2009.

J. Rienks, J. Barbaresko, and U. Nothlings, Association of polyphenol biomarkers with cardiovascular disease and mortality risk: a systematic review and meta-analysis of observational studies, Nutrients, vol.9, 2017.

R. Micha, J. L. Penalvo, F. Cudhea, F. Imamura, C. D. Rehm et al., Association between dietary factors and mortality from heart disease, stroke, and type 2 diabetes in the United States, JAMA, vol.317, pp.912-924, 2017.

A. Scalbert, C. Manach, C. Morand, C. Remesy, and L. Jimenez, Dietary polyphenols and the prevention of diseases, Crit. Rev. Food Sci. Nutr, vol.45, pp.287-306, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00294418

J. G. Gormaz, N. Valls, C. Sotomayor, T. Turner, and R. Rodrigo, Potential role of polyphenols in the prevention of cardiovascular diseases: molecular bases, Curr. Med. Chem, vol.23, pp.115-128, 2016.

V. B. Schini-kerth, N. Etienne-selloum, T. Chataigneau, and C. Auger, Vascular protection by natural product-derived polyphenols: in vitro and in vivo evidence, Planta Med, vol.77, pp.1161-1167, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00667017

L. Marzocchella, M. Fantini, M. Benvenuto, L. Masuelli, I. Tresoldi et al., Dietary flavonoids: molecular mechanisms of action as anti-inflammatory agents, Recent Pat. Inflamm. Allergy Drug Discov, vol.5, pp.200-220, 2011.

M. G. Hertog, P. C. Hollman, and M. B. Katan, Content of potentially anticarcinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands, J. Agric. Food Chem, vol.40, pp.2379-2383, 1992.

K. Zaheer and M. H. Akhtar, An updated review of dietary isoflavones: nutrition, processing, bioavailability and impacts on human health, Crit. Rev. Food Sci. Nutr, vol.57, pp.1280-1293, 2017.

J. Fang, Classification of fruits based on anthocyanin types and relevance to their health effects, Nutrition, vol.31, pp.1301-1306, 2015.

R. Vidavalur, H. Otani, P. K. Singal, and N. Maulik, Significance of wine and resveratrol in cardiovascular disease: French paradox revisited, Exp. Clin. Cardiol, vol.11, pp.217-225, 2006.

R. Garcia-villalba, A. Carrasco-pancorbo, G. Zurek, M. Behrens, C. Bassmann et al., Nano and rapid resolution liquid chromatography-electrospray ionization-time of flight mass spectrometry to identify and quantify phenolic compounds in olive oil, J. Sep. Sci, vol.33, pp.2069-2078, 2010.

C. Manach, A. Scalbert, C. Morand, C. Remesy, and L. Jimenez, Polyphenols: food sources and bioavailability, Am. J. Clin. Nutr, vol.79, pp.727-747, 2004.

D. Rio, A. Rodriguez-mateos, J. P. Spencer, M. Tognolini, G. Borges et al., Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases, Antioxid. Redox Signal, vol.18, pp.1818-1892, 2013.

Y. Kawai, T. Nishikawa, Y. Shiba, S. Saito, K. Murota et al., Macrophage as a target of quercetin glucuronides in human atherosclerotic arteries: implication in the anti-atherosclerotic mechanism of dietary flavonoids, J. Biol. Chem, vol.283, pp.9424-9434, 2008.

Y. Kawai, H. Tanaka, K. Murota, M. Naito, and J. Terao, Epicatechin gallate accumulates in foamy macrophages in human atherosclerotic aorta: implication in the anti-atherosclerotic actions of tea catechins, Biochem. Biophys. Res. Commun, vol.374, pp.527-532, 2008.

C. Auger, A. Said, P. N. Nguyen, P. Chabert, N. Idris-khodja et al., Schini-Kerth, Potential of food and natural products to promote endothelial and vascular health, J. Cardiovasc. Pharmacol, vol.68, pp.11-18, 2016.

R. Andriantsitohaina, C. Auger, T. Chataigneau, N. Etienne-selloum, H. Li et al., Molecular mechanisms of the cardiovascular protective effects of polyphenols, Br. J. Nutr, vol.108, pp.1532-1549, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00783620

J. H. Kim, C. Auger, and V. B. Schini-kerth, Activation of eNOS by polyphenol-rich products and polyphenolic compounds, Curr. Pharm. Des, vol.20, pp.3521-3529, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01065071

P. M. Vanhoutte, H. Shimokawa, M. Feletou, and E. H. Tang, Endothelial dysfunction and vascular disease -a 30th anniversary update, Acta Physiol, vol.219, pp.22-96, 2017.

S. Moncada, R. M. Palmer, and E. A. Higgs, Nitric oxide: physiology, pathophysiology, and pharmacology, Pharmacol. Rev, vol.43, pp.109-142, 1991.

J. A. Vita and J. F. Keaney, Endothelial function: a barometer for cardiovascular risk?, Circulation, vol.106, pp.640-642, 2002.

A. G. Herman and S. Moncada, Therapeutic potential of nitric oxide donors in the prevention and treatment of atherosclerosis, Eur. Heart J, vol.26, pp.1945-1955, 2005.

M. E. Widlansky, N. Gokce, J. F. Keaney, and J. A. Vita, The clinical implications of endothelial dysfunction, J. Am. Coll. Cardiol, vol.42, pp.1149-1160, 2003.

T. Minamino, H. Miyauchi, T. Yoshida, Y. Ishida, H. Yoshida et al., Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction, Circulation, vol.105, pp.1541-1544, 2002.

J. Chen, X. Huang, D. Halicka, S. Brodsky, A. Avram et al., Contribution of p16INK4a and p21CIP1 pathways to induction of premature senescence of human endothelial cells: permissive role of p53, Am. J. Physiol. Heart Circ. Physiol, vol.290, pp.1575-1586, 2006.

C. S. Kim, S. B. Jung, A. Naqvi, T. A. Hoffman, J. Dericco et al., p53 Impairs endothelium-dependent vasomotor function through transcriptional upregulation of p66shc, Circ. Res, vol.103, pp.1441-1450, 2008.

M. S. Goligorsky, J. Chen, and S. Patschan, Stress-induced premature senescence of endothelial cells: a perilous state between recovery and point of no return, Curr. Opin. Hematol, vol.16, pp.215-219, 2009.

M. Abbas, L. Jesel, C. Auger, L. Amoura, N. Messas et al., Endothelial microparticles from acute coronary syndrome patients induce premature coronary artery endothelial cell aging and thrombogenicity: role of the Ang II/AT1 receptor/NADPH oxidase-mediated activation of MAPKs and PI3-kinase pathways, Circulation, vol.135, pp.280-296, 2017.

S. Khemais-benkhiat, N. Idris-khodja, T. P. Ribeiro, G. C. Silva, M. Abbas et al., The redox-sensitive induction of the local angiotensin system promotes both premature and replicative endothelial senescence: preventive effect of a standardized crataegus extract, J. Gerontol, vol.71, pp.1581-1590, 2016.

G. C. Silva, M. Abbas, S. Khemais-benkhiat, M. Burban, T. P. Ribeiro et al., Replicative senescence promotes prothrombotic responses in endothelial cells: role of NADPH oxidase-and cyclooxygenase-derived oxidative stress, Exp. Gerontol, vol.93, pp.7-15, 2017.

C. M. Warboys, A. De-luca, N. Amini, L. Luong, H. Duckles et al., Disturbed flow promotes endothelial senescence via a p53-dependent pathway, Arterioscler. Thromb. Vasc. Biol, vol.34, pp.985-995, 2014.

T. Minamino, H. Miyauchi, T. Yoshida, K. Tateno, T. Kunieda et al., Vascular cell senescence and vascular aging, J. Mol. Cell. Cardiol, vol.36, pp.175-183, 2004.

H. Matsui-hirai, T. Hayashi, S. Yamamoto, K. Ina, M. Maeda et al., Dose-dependent modulatory effects of insulin on glucoseinduced endothelial senescence in vitro and in vivo: a relationship between telomeres and nitric oxide, J. Pharmacol. Exp. Ther, vol.337, pp.591-599, 2011.

D. F. Fitzpatrick, S. L. Hirschfield, T. Ricci, P. Jantzen, and R. G. Coffey, Endotheliumdependent vasorelaxation caused by various plant extracts, J. Cardiovasc. Pharmacol, vol.26, pp.90-95, 1995.

E. Andriambeloson, A. L. Kleschyov, B. Muller, A. Beretz, J. C. Stoclet et al., Nitric oxide production and endothelium-dependent vasorelaxation induced by wine polyphenols in rat aorta, Br. J. Pharmacol, vol.120, pp.1053-1058, 1997.

C. Auger, M. Chaabi, E. Anselm, A. Lobstein, and V. B. Schini-kerth, The red wine extract-induced activation of endothelial nitric oxide synthase is mediated by a great variety of polyphenolic compounds, Mol. Nutr. Food Res, vol.54, pp.171-183, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00508398

E. Anselm, M. Chataigneau, M. Ndiaye, T. Chataigneau, and V. B. Schini-kerth, Grape juice causes endothelium-dependent relaxation via a redox-sensitive Src-and Aktdependent activation of eNOS, Cardiovasc. Res, vol.73, pp.404-413, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00139149

M. Ndiaye, M. Chataigneau, I. Lobysheva, T. Chataigneau, and V. B. Schini-kerth, Red wine polyphenol-induced, endothelium-dependent NO-mediated relaxation is due to the redox-sensitive PI3-kinase/Akt-dependent phosphorylation of endothelial NO-synthase in the isolated porcine coronary artery, FASEB J, vol.19, pp.455-457, 2005.

M. Ndiaye, T. Chataigneau, R. Andriantsitohaina, J. C. Stoclet, and V. B. Schini-kerth, Red wine polyphenols cause endothelium-dependent EDHF-mediated relaxations in porcine coronary arteries via a redox-sensitive mechanism, Biochem. Biophys. Res. Commun, vol.310, pp.371-377, 2003.

S. V. Madeira, C. Auger, E. Anselm, M. Chataigneau, T. Chataigneau et al., Schini-Kerth, eNOS activation induced by a polyphenol-rich grape skin extract in porcine coronary arteries, J. Vasc. Res, vol.46, pp.406-416, 2009.

J. A. Kim, G. Formoso, Y. Li, M. A. Potenza, F. L. Marasciulo et al., Epigallocatechin gallate, a green tea polyphenol, mediates NO-dependent vasodilation using signaling pathways in vascular endothelium requiring reactive oxygen species and Fyn, J. Biol. Chem, vol.282, pp.13736-13745, 2007.

J. H. Kim, C. Auger, I. Kurita, E. Anselm, L. O. Rivoarilala et al., Aronia melanocarpa juice, a rich source of polyphenols, induces endothelium-dependent relaxations in porcine coronary arteries via the redoxsensitive activation of endothelial nitric oxide synthase, Nitric Oxide: Biol. Chem./ Off. J. Nitric Oxide Soc, vol.35, pp.54-64, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00860190

C. Auger, J. H. Kim, P. Chabert, M. Chaabi, E. Anselm et al., The EGCg-induced redox-sensitive activation of endothelial nitric oxide synthase and relaxation are critically dependent on hydroxyl moieties, Biochem. Biophys. Res. Commun, vol.393, pp.162-167, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00508018

I. Kurita, J. H. Kim, C. Auger, Y. Kinoshita, T. Miyase et al., Hydroxylation of (-)-epigallocatechin-3-O-gallate at 3'', but not 4'', is essential for the PI3-kinase/Akt-dependent phosphorylation of endothelial NO synthase in endothelial cells and relaxation of coronary artery rings, Food Funct, vol.4, pp.249-257, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00783151

M. Alhosin, E. Anselm, S. Rashid, J. H. Kim, S. V. Frota-madeira et al., Redox-sensitive Up-regulation of eNOS by purple grape juice in endothelial cells: role of PI3-kinase/Akt, p38 MAPK, JNK, FoxO1 and FoxO3a, PLoS One, vol.8, p.57883, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00841230

S. Martin, E. Andriambeloson, K. Takeda, and R. Andriantsitohaina, Red wine polyphenols increase calcium in bovine aortic endothelial cells: a basis to elucidate signalling pathways leading to nitric oxide production, Br. J. Pharmacol, vol.135, pp.1579-1587, 2002.

M. O. Kane, E. Anselm, Y. D. Rattmann, C. Auger, and V. B. Schini-kerth, Role of gender and estrogen receptors in the rat aorta endothelium-dependent relaxation to red wine polyphenols, Vasc. Pharmacol, vol.51, pp.140-146, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00438830

M. Chalopin, A. Tesse, M. C. Martinez, D. Rognan, J. F. Arnal et al., Estrogen receptor alpha as a key target of red wine polyphenols action on the endothelium, PLoS One, vol.5, p.8554, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00504826

D. Leonetti, R. Soleti, N. Clere, L. Vergori, C. Jacques et al., Estrogen receptor alpha participates to the beneficial effect of red wine polyphenols in a mouse model of obesity-related disorders, Front. Pharmacol, vol.7, p.529, 2016.

M. O. Kane, M. Sene, E. Anselm, S. Dal, V. B. Schini-kerth et al., Role of ampactivated protein kinase in NO-and EDHF-mediated endothelium-dependent relaxations to red wine polyphenols, Indian J. Physiol. Pharmacol, vol.59, pp.369-379, 2015.

X. Cui, X. Liu, H. Feng, S. Zhao, and H. Gao, Grape seed proanthocyanidin extracts enhance endothelial nitric oxide synthase expression through 5'-AMP activated protein kinase/Surtuin 1-Krupple like factor 2 pathway and modulate blood pressure in ouabain induced hypertensive rats, Biol. Pharm. Bull, vol.35, pp.2192-2197, 2012.

K. F. Burrig, The endothelium of advanced arteriosclerotic plaques in humans, Arterioscler. Thromb, vol.11, pp.1678-1689, 1991.

D. G. Harrison, H. Cai, U. Landmesser, and K. K. Griendling, Interactions of angiotensin II with NAD(P)H oxidase, oxidant stress and cardiovascular disease, J. ReninAngiotensin-Aldosterone Syst, vol.4, pp.51-61, 2003.

M. Sarr, M. Chataigneau, S. Martins, C. Schott, J. E. Bedoui et al., Red wine polyphenols prevent angiotensin IIinduced hypertension and endothelial dysfunction in rats: role of NADPH oxidase, Cardiovasc. Res, vol.71, pp.794-802, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00129978

H. Ota, M. Eto, S. Ogawa, K. Iijima, M. Akishita et al., SIRT1/eNOS axis as a potential target against vascular senescence, dysfunction and atherosclerosis, J. Atheroscler. Thromb, vol.17, pp.431-435, 2010.

H. Shan, D. Guo, X. Li, X. Zhao, W. Li et al., From autophagy to senescence and apoptosis in Angiotensin II-treated vascular endothelial cells, APMIS, vol.122, pp.985-992, 2014.

Y. Zu, L. Liu, M. Y. Lee, C. Xu, Y. Liang et al., SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells, Circ. Res, vol.106, pp.1384-1393, 2010.

T. Hayashi, H. Matsui-hirai, A. Miyazaki-akita, A. Fukatsu, J. Funami et al., Endothelial cellular senescence is inhibited by nitric oxide: implications in atherosclerosis associated with menopause and diabetes, Proc. Natl. Acad. Sci. USA, vol.103, pp.17018-17023, 2006.

M. Vasa, K. Breitschopf, A. M. Zeiher, and S. Dimmeler, Nitric oxide activates telomerase and delays endothelial cell senescence, Circ. Res, vol.87, pp.540-542, 2000.

Y. Sun, X. Hu, G. Hu, C. Xu, and H. Jiang, Curcumin attenuates hydrogen peroxideinduced premature senescence via the activation of SIRT1 in human umbilical vein endothelial cells, Biol. Pharm. Bull, vol.38, pp.1134-1141, 2015.

J. Jamal, M. R. Mustafa, and P. F. Wong, Paeonol protects against premature senescence in endothelial cells by modulating Sirtuin 1 pathway, J. Ethnopharmacol, vol.154, pp.428-436, 2014.

C. J. Wang, C. P. Hu, K. P. Xu, G. S. Tan, and Y. J. Li, Effects of selaginellin on homocysteine-induced senescence in human umbilical vein endothelial cells, J. Cardiovasc. Pharmacol, vol.55, pp.560-566, 2010.

E. Zhang, Q. Guo, H. Gao, R. Xu, S. Teng et al., Metformin and resveratrol inhibited high glucose-induced metabolic memory of endothelial senescence through SIRT1/p300/p53/p21 pathway, PLoS One, vol.10, p.143814, 2015.

R. G. Feresin, J. Huang, D. S. Klarich, Y. Zhao, S. Pourafshar et al., Blackberry, raspberry and black raspberry polyphenol extracts attenuate angiotensin II-induced senescence in vascular smooth muscle cells, Food Funct, vol.7, pp.4175-4187, 2016.

H. Tachibana, K. Koga, Y. Fujimura, and K. Yamada, A receptor for green tea polyphenol EGCG, Nat. Struct. Mol. Biol, vol.11, pp.380-381, 2004.

D. D. Schramm, H. E. Collins, and J. B. German, Flavonoid transport by mammalian endothelial cells, J. Nutr. Biochem, vol.10, pp.193-197, 1999.

X. Jin, L. Yi, M. L. Chen, C. Y. Chen, H. Chang et al., Delphinidin-3-glucoside protects against oxidized low-density lipoprotein-induced mitochondrial dysfunction in vascular endothelial cells via the sodium-dependent glucose transporter SGLT1, PLoS One, vol.8, p.68617, 2013.

R. Busse and I. Fleming, Regulation of endothelium-derived vasoactive autacoid production by hemodynamic forces, Trends Pharmacol. Sci, vol.24, pp.24-29, 2003.

C. Bleakley, P. K. Hamilton, R. Pumb, M. Harbinson, and G. E. Mcveigh, Endothelial function in hypertension: victim or culprit?, J. Clin. Hypertens, vol.17, pp.651-654, 2015.

R. Lopez-sepulveda, R. Jimenez, M. Romero, M. J. Zarzuelo, M. Sanchez et al., Wine polyphenols improve endothelial function in large vessels of female spontaneously hypertensive rats, Hypertension, vol.51, pp.1088-1095, 2008.

K. Mizutani, K. Ikeda, Y. Kawai, and Y. Yamori, Extract of wine phenolics improves aortic biomechanical properties in stroke-prone spontaneously hypertensive rats (SHRSP), J. Nutr. Sci. Vitaminol, vol.45, pp.95-106, 1999.

S. Chan, C. Capdeville-atkinson, and J. Atkinson, Red wine polyphenols improve endothelium-dependent dilation in rat cerebral arterioles, J. Cardiovasc. Pharmacol, vol.51, pp.553-558, 2008.

N. Peng, J. T. Clark, J. Prasain, H. Kim, C. R. White et al., Antihypertensive and cognitive effects of grape polyphenols in estrogen-depleted, female, spontaneously hypertensive rats, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.289, pp.771-775, 2005.

H. Negishi, J. W. Xu, K. Ikeda, M. Njelekela, Y. Nara et al., Black and green tea polyphenols attenuate blood pressure increases in stroke-prone spontaneously hypertensive rats, J. Nutr, vol.134, pp.38-42, 2004.

K. S. Shaughnessy, I. A. Boswall, A. P. Scanlan, K. T. Gottschall-pass, and M. I. Sweeney, Diets containing blueberry extract lower blood pressure in spontaneously hypertensive stroke-prone rats, Nutr. Res, vol.29, pp.130-138, 2009.

Y. Mukai and S. Sato, Polyphenol-containing azuki bean (Vigna angularis) extract attenuates blood pressure elevation and modulates nitric oxide synthase and caveolin-1 expressions in rats with hypertension, Nutr. Metab. Cardiovasc. Dis, vol.19, pp.491-497, 2009.

E. Cienfuegos-jovellanos, M. Quinones-mdel, B. Muguerza, L. Moulay, M. Miguel et al., Antihypertensive effect of a polyphenol-rich cocoa powder industrially processed to preserve the original flavonoids of the cocoa beans, J. Agric. Food Chem, vol.57, pp.6156-6162, 2009.

S. Reagan-shaw, M. Nihal, and N. Ahmad, Dose translation from animal to human studies revisited, FASEB J, vol.22, pp.659-661, 2008.

R. S. De-moura, D. Z. Miranda, A. C. Pinto, R. F. Sicca, M. A. Souza et al., Mechanism of the endothelium-dependent vasodilation and the antihypertensive effect of Brazilian red wine, J. Cardiovasc. Pharmacol, vol.44, pp.302-309, 2004.

I. Bernatova, O. Pechanova, P. Babal, S. Kysela, S. Stvrtina et al., Wine polyphenols improve cardiovascular remodeling and vascular function in NO-deficient hypertension, Am. J. Physiol. Heart Circ. Physiol, vol.282, pp.942-948, 2002.

O. Pechanova, I. Bernatova, P. Babal, M. C. Martinez, S. Kysela et al., Red wine polyphenols prevent cardiovascular alterations in L-name-induced hypertension, J. Hypertens, vol.22, pp.1551-1559, 2004.

R. Jimenez, R. Lopez-sepulveda, M. Kadmiri, M. Romero, R. Vera et al., Polyphenols restore endothelial function in DOCA-salt hypertension: role of endothelin-1 and NADPH oxidase, Free Radic, Biol. Med, vol.43, pp.462-473, 2007.

N. Andres, A. Tesse, V. Regnault, H. Louis, V. Cattan et al., Increased microparticle production and impaired microvascular endothelial function in aldosterone-salttreated rats: protective effects of polyphenols, PLoS One, vol.7, p.39235, 2012.

S. L. Chan, A. Tabellion, D. Bagrel, C. Perrin-sarrado, C. Capdeville-atkinson et al., Impact of chronic treatment with red wine polyphenols (RWP) on cerebral arterioles in the spontaneous hypertensive rat, J. Cardiovasc. Pharmacol, vol.51, pp.304-310, 2008.

C. J. Kwak, E. Kubo, K. Fujii, Y. Nishimura, S. Kobuchi et al., Antihypertensive effect of French maritime pine bark extract (Flavangenol): possible involvement of endothelial nitric oxide-dependent vasorelaxation, J. Hypertens, vol.27, pp.92-101, 2009.

S. Dal-ros, J. Zoll, A. L. Lang, C. Auger, N. Keller et al., Chronic intake of red wine polyphenols by young rats prevents aging-induced endothelial dysfunction and decline in physical performance: role of NADPH oxidase, Biochem. Biophys. Res. Commun, vol.404, pp.743-749, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00666971

S. Dal-ros, C. Bronner, C. Auger, and V. B. Schini-kerth, Red wine polyphenols improve an established aging-related endothelial dysfunction in the mesenteric artery of middle-aged rats: role of oxidative stress, Biochem. Biophys. Res. Commun, vol.419, pp.381-387, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00705029

N. Khodja, T. Chataigneau, C. Auger, and V. B. Schini-kerth, Grape-derived polyphenols improve aging-related endothelial dysfunction in rat mesenteric artery: role of oxidative stress and the angiotensin system, PLoS One, vol.7, p.32039, 2012.

N. Idris-khodja, C. Auger, E. Koch, and V. B. Schini-kerth, Crataegus special extract WS ((R))1442 prevents aging-related endothelial dysfunction, Phytomedicine, vol.19, pp.699-706, 2012.

F. De-nigris, M. L. Balestrieri, S. Williams-ignarro, F. P. D'armiento, C. Fiorito et al., The influence of pomegranate fruit extract in comparison to regular pomegranate juice and seed oil on nitric oxide and arterial function in obese Zucker rats, Nitric Oxide: Biol. Chem./Off. J. Nitric Oxide Soc, vol.17, pp.50-54, 2007.

A. Suzuki, N. Yamamoto, H. Jokura, M. Yamamoto, A. Fujii et al., Chlorogenic acid attenuates hypertension and improves endothelial function in spontaneously hypertensive rats, J. Hypertens, vol.24, pp.1065-1073, 2006.

M. A. Potenza, F. L. Marasciulo, M. Tarquinio, E. Tiravanti, G. Colantuono et al., EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR, Am. J. Physiol. Endocrinol. Metab, vol.292, pp.1378-1387, 2007.

R. Vera, M. Sanchez, M. Galisteo, I. C. Villar, R. Jimenez et al., Chronic administration of genistein improves endothelial dysfunction in spontaneously hypertensive rats: involvement of eNOS, caveolin and calmodulin expression and NADPH oxidase activity, Clin. Sci, vol.112, pp.183-191, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00479335

M. Sanchez, M. Galisteo, R. Vera, I. C. Villar, A. Zarzuelo et al., Quercetin downregulates NADPH oxidase, increases eNOS activity and prevents endothelial dysfunction in spontaneously hypertensive rats, J. Hypertens, vol.24, pp.75-84, 2006.

M. F. Garcia-saura, M. Galisteo, I. C. Villar, A. Bermejo, A. Zarzuelo et al., Effects of chronic quercetin treatment in experimental renovascular hypertension, Mol. Cell. Biochem, vol.270, pp.147-155, 2005.

M. Galisteo, M. F. Garcia-saura, R. Jimenez, I. C. Villar, R. Wangensteen et al., Effects of quercetin treatment on vascular function in deoxycorticosterone acetate-salt hypertensive rats. Comparative study with verapamil, Planta Med, vol.70, pp.334-341, 2004.

J. Duarte, R. Jimenez, F. O'valle, M. Galisteo, R. Perez-palencia et al., Protective effects of the flavonoid quercetin in chronic nitric oxide deficient rats, J. Hypertens, vol.20, pp.1843-1854, 2002.

J. Duarte, R. Perez-palencia, F. Vargas, M. A. Ocete, F. Perez-vizcaino et al.,

J. Tamargo, Antihypertensive effects of the flavonoid quercetin in spontaneously hypertensive rats, Br. J. Pharmacol, vol.133, pp.117-124, 2001.

L. Rivera, R. Moron, A. Zarzuelo, and M. Galisteo, Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats, Biochem. Pharmacol, vol.77, pp.1053-1063, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00531849

M. Galleano, I. Bernatova, A. Puzserova, P. Balis, N. Sestakova et al., Epicatechin reduces blood pressure and improves vasorelaxation in spontaneously hypertensive rats by NO-mediated mechanism, IUBMB Life, vol.65, pp.710-715, 2013.

M. Gomez-guzman, R. Jimenez, M. Sanchez, M. J. Zarzuelo, P. Galindo et al., Epicatechin lowers blood pressure, restores endothelial function, and decreases oxidative stress and endothelin-1 and NADPH oxidase activity in DOCA-salt hypertension, Free Radic, Biol. Med, vol.52, pp.70-79, 2012.

A. Machha and M. R. Mustafa, Chronic treatment with flavonoids prevents endothelial dysfunction in spontaneously hypertensive rat aorta, J. Cardiovasc. Pharmacol, vol.46, pp.36-40, 2005.

S. Benito, D. Lopez, M. P. Saiz, S. Buxaderas, J. Sanchez et al., A flavonoid-rich diet increases nitric oxide production in rat aorta, Br. J. Pharmacol, vol.135, pp.910-916, 2002.

M. Roghani and T. Baluchnejadmojarad, Chronic epigallocatechin-gallate improves aortic reactivity of diabetic rats: underlying mechanisms, Vasc. Pharmacol, vol.51, pp.84-89, 2009.

M. O. Kane, N. Etienne-selloum, S. V. Madeira, M. Sarr, A. Walter et al., Endothelium-derived contracting factors mediate the Ang II-induced endothelial dysfunction in the rat aorta: preventive effect of red wine polyphenols, Pflug. Arch, vol.459, pp.671-679, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00508221

P. Mladenka, L. Zatloukalova, T. Filipsky, and R. Hrdina, Cardiovascular effects of flavonoids are not caused only by direct antioxidant activity, Free Radic, Biol. Med, vol.49, pp.963-975, 2010.

H. Negishi, J. W. Xu, K. Ikeda, M. Njelekela, Y. Nara et al., Black and green tea polyphenols attenuate blood pressure increases in stroke-prone spontaneously hypertensive rats, J. Nutr, vol.134, pp.38-42, 2004.

E. Ferrannini and W. C. Cushman, Diabetes and hypertension: the bad companions, Lancet, vol.380, pp.601-610, 2012.

A. Pende and F. Dallegri, Renin-angiotensin antagonists: therapeutic effects beyond blood pressure control?, Curr. Pharm. Des, vol.18, pp.1011-1020, 2012.

A. Durante, G. Peretto, A. Laricchia, F. Ancona, M. Spartera et al., Role of the renin-angiotensin-aldosterone system in the pathogenesis of atherosclerosis, Curr. Pharm. Des, vol.18, pp.981-1004, 2012.

E. S. Jones, M. J. Black, and R. E. Widdop, Influence of Angiotensin II subtype 2 receptor (AT(2)R) antagonist, PD123319, on cardiovascular remodelling of aged spontaneously hypertensive rats during chronic Angiotensin II subtype 1 receptor

. R)-blockade, Int. J. Hypertens, vol.2012, p.543062, 2012.

S. Conti, P. Cassis, and A. Benigni, Aging and the renin-angiotensin system, Hypertension, vol.60, pp.878-883, 2012.

Y. Kansui, K. Fujii, K. Goto, I. Abe, and M. Iida, Angiotensin II receptor antagonist improves age-related endothelial dysfunction, J. Hypertens, vol.20, pp.439-446, 2002.

K. Goto, K. Fujii, U. Onaka, I. Abe, and M. Fujishima, Angiotensin-converting enzyme inhibitor prevents age-related endothelial dysfunction, Hypertension, vol.36, pp.581-587, 2000.

K. Goto, K. Fujii, U. Onaka, I. Abe, and M. Fujishima, Renin-angiotensin system blockade improves endothelial dysfunction in hypertension, Hypertension, vol.36, pp.575-580, 2000.

S. Nemoto, T. Kobayashi, K. Taguchi, T. Matsumoto, and K. Kamata, Losartan improves aortic endothelium-dependent relaxation via proline-rich tyrosine kinase 2/Src/ Akt pathway in type 2 diabetic Goto-Kakizaki rats, Am. J. Physiol. Heart Circ. Physiol, vol.301, pp.2383-2394, 2011.

S. Matsumoto, M. Shimabukuro, D. Fukuda, T. Soeki, K. Yamakawa et al., Azilsartan, an angiotensin II type 1 receptor blocker, restores endothelial function by reducing vascular inflammation and by increasing the phosphorylation ratio Ser(1177)/Thr(497) of endothelial nitric oxide synthase in diabetic mice, Cardiovasc. Diabetol, vol.13, p.30, 2014.

J. Yeboah, J. R. Crouse, F. C. Hsu, G. L. Burke, and D. M. Herrington, Brachial flowmediated dilation predicts incident cardiovascular events in older adults: the Cardiovascular Health Study, Circulation, vol.115, pp.2390-2397, 2007.

M. Boban, D. Modun, I. Music, J. Vukovic, I. Brizic et al., Red wine induced modulation of vascular function: separating the role of polyphenols, ethanol, and urates, J. Cardiovasc. Pharmacol, vol.47, pp.695-701, 2006.

S. Agewall, S. Wright, R. N. Doughty, G. A. Whalley, M. Duxbury et al., Does a glass of red wine improve endothelial function?, Eur. Heart J, vol.21, pp.74-78, 2000.

M. Hashimoto, S. Kim, M. Eto, K. Iijima, J. Ako et al., Effect of acute intake of red wine on flow-mediated vasodilatation of the brachial artery, Am. J. Cardiol, vol.88, pp.1457-1460, 1459.

S. M. Hampton, C. Isherwood, V. J. Kirkpatrick, A. C. Lynne-smith, and B. A. Griffin, The influence of alcohol consumed with a meal on endothelial function in healthy individuals, J. Hum. Nutr. Diet, vol.23, pp.120-125, 2010.

M. B. Engler, M. M. Engler, C. Y. Chen, M. J. Malloy, A. Browne et al., Flavonoidrich dark chocolate improves endothelial function and increases plasma epicatechin concentrations in healthy adults, J. Am. Coll. Nutr, vol.23, pp.197-204, 2004.

H. Schroeter, C. Heiss, J. Balzer, P. Kleinbongard, C. L. Keen et al., Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans, Proc. Natl. Acad. Sci. USA, vol.103, pp.1024-1029, 2006.

A. Rodriguez-mateos, C. Rendeiro, T. Bergillos-meca, S. Tabatabaee, T. W. George et al., Intake and time dependence of blueberry flavonoid-induced improvements in vascular function: a randomized, controlled, double-blind, crossover intervention study with mechanistic insights into biological activity, Am. J. Clin. Nutr, vol.98, pp.1179-1191, 2013.

K. Nishioka, T. Hidaka, S. Nakamura, T. Umemura, D. Jitsuiki et al., Pycnogenol, French maritime pine bark extract, augments endothelium-dependent vasodilation in humans, Hypertens. Res, vol.30, pp.775-780, 2007.

E. A. Boon, K. D. Croft, S. Shinde, J. M. Hodgson, and N. C. Ward, The acute effect of coffee on endothelial function and glucose metabolism following a glucose load in healthy human volunteers, Food Funct, 2017.

R. M. Alqurashi, L. A. Galante, I. R. Rowland, J. P. Spencer, and D. M. Commane, Consumption of a flavonoid-rich acai meal is associated with acute improvements in vascular function and a reduction in total oxidative status in healthy overweight men, Am. J. Clin. Nutr, vol.104, pp.1227-1235, 2016.

D. Taubert, R. Berkels, R. Roesen, and W. Klaus, Chocolate and blood pressure in elderly individuals with isolated systolic hypertension, JAMA, vol.290, pp.1029-1030, 2003.

A. Rostami, M. Khalili, N. Haghighat, S. Eghtesadi, F. Shidfar et al., High-cocoa polyphenol-rich chocolate improves blood pressure in patients with diabetes and hypertension, ARYA Atheroscler, vol.11, pp.21-29, 2015.

D. Mastroiacovo, C. Kwik-uribe, D. Grassi, S. Necozione, A. Raffaele et al., Cocoa flavanol consumption improves cognitive function, blood pressure control, and metabolic profile in elderly subjects: the Cocoa, Cognition, and Aging (CoCoA) study -a randomized controlled trial, Am. J. Clin. Nutr, vol.101, pp.538-548, 2015.

M. Aviram and L. Dornfeld, Pomegranate juice consumption inhibits serum angiotensin converting enzyme activity and reduces systolic blood pressure, Atherosclerosis, vol.158, pp.195-198, 2001.

S. Asgary, A. Sahebkar, M. R. Afshani, M. Keshvari, S. Haghjooyjavanmard et al., Clinical evaluation of blood pressure lowering, endothelial function improving, hypolipidemic and anti-inflammatory effects of pomegranate juice in hypertensive subjects, Phytother. Res, vol.28, pp.193-199, 2014.

Y. K. Park, J. S. Kim, and M. H. Kang, Concord grape juice supplementation reduces blood pressure in Korean hypertensive men: double-blind, placebo controlled intervention trial, Biofactors, vol.22, pp.145-147, 2004.

M. M. Dohadwala, N. M. Hamburg, M. Holbrook, B. H. Kim, M. A. Duess et al., Effects of concord grape juice on ambulatory blood pressure in prehypertension and stage 1 hypertension, Am. J. Clin. Nutr, vol.92, pp.1052-1059, 2010.

G. Chiva-blanch, M. Urpi-sarda, E. Ros, S. Arranz, P. Valderas-martinez et al., Dealcoholized red wine decreases systolic and diastolic blood pressure and increases plasma nitric oxide: short communication, Circ. Res, vol.111, pp.1065-1068, 2012.

D. W. Droste, C. Iliescu, M. Vaillant, M. Gantenbein, N. De et al., A daily glass of red wine and lifestyle changes do not affect arterial blood pressure and heart rate in patients with carotid arteriosclerosis after 4 and 20 weeks, Cerebrovasc. Dis. Extra, vol.3, pp.121-129, 2013.

E. Park, I. Edirisinghe, Y. Y. Choy, A. Waterhouse, and B. Burton-freeman, Effects of grape seed extract beverage on blood pressure and metabolic indices in individuals with pre-hypertension: a randomised, double-blinded, two-arm, parallel, placebocontrolled trial, Br. J. Nutr, vol.115, pp.226-238, 2016.

W. L. Hall, N. L. Formanuik, D. Harnpanich, M. Cheung, D. Talbot et al., A meal enriched with soy isoflavones increases nitric oxide-mediated vasodilation in healthy postmenopausal women, J. Nutr, vol.138, pp.1288-1292, 2008.

C. E. Marsh, H. H. Carter, K. J. Guelfi, K. J. Smith, K. E. Pike et al., Brachial and cerebrovascular functions are enhanced in postmenopausal women after ingestion of chocolate with a high concentration of cocoa, J. Nutr, vol.147, pp.1686-1692, 2017.

J. Barona, J. C. Aristizabal, C. N. Blesso, J. S. Volek, and M. L. Fernandez, Grape polyphenols reduce blood pressure and increase flow-mediated vasodilation in men with metabolic syndrome, J. Nutr, vol.142, pp.1626-1632, 2012.

J. Balzer, T. Rassaf, C. Heiss, P. Kleinbongard, T. Lauer et al., Sustained benefits in vascular function through flavanol-containing cocoa in medicated diabetic patients a double-masked, randomized, controlled trial, J. Am. Coll. Cardiol, vol.51, pp.2141-2149, 2008.

E. Y. Choi, H. Lee, J. S. Woo, H. H. Jang, S. J. Hwang et al., Effect of onion peel extract on endothelial function and endothelial progenitor cells in overweight and obese individuals, Nutrition, vol.31, pp.1131-1135, 2015.

S. R. Coimbra, S. H. Lage, L. Brandizzi, V. Yoshida, and P. L. Da-luz, The action of red wine and purple grape juice on vascular reactivity is independent of plasma lipids in hypercholesterolemic patients, Braz. J. Med. Biol. Res, vol.38, pp.1339-1347, 2005.

R. H. Wong, P. R. Howe, J. D. Buckley, A. M. Coates, I. Kunz et al., Acute resveratrol supplementation improves flow-mediated dilatation in overweight/ obese individuals with mildly elevated blood pressure, Nutr. Metab. Cardiovasc. Dis.: NMCD, vol.21, pp.851-856, 2011.

A. P. Whelan, W. H. Sutherland, M. P. Mccormick, D. J. Yeoman, S. A. Jong et al., Effects of white and red wine on endothelial function in subjects with coronary artery disease, Intern. Med. J, vol.34, pp.224-228, 2004.

K. Karatzi, C. Papamichael, K. Aznaouridis, E. Karatzis, J. Lekakis et al., Constituents of red wine other than alcohol improve endothelial function in patients with coronary artery disease, Artery Dis, vol.15, pp.485-490, 2004.

M. E. Widlansky, N. M. Hamburg, E. Anter, M. Holbrook, D. F. Kahn et al., Acute EGCG supplementation reverses endothelial dysfunction in patients with coronary artery disease, J. Am. Coll. Nutr, vol.26, pp.95-102, 2007.

J. Lekakis, L. S. Rallidis, I. Andreadou, G. Vamvakou, G. Kazantzoglou et al., Polyphenolic compounds from red grapes acutely improve endothelial function in patients with coronary heart disease, Working Groups on Epidemiology & Prevention and Cardiac Rehabilitation and Exercise Physiology), vol.12, pp.596-600, 2005.

S. J. Duffy, J. F. Keaney, M. Holbrook, N. Gokce, P. L. Swerdloff et al., Short-and long-term black tea consumption reverses endothelial dysfunction in patients with coronary artery disease, Circulation, vol.104, pp.151-156, 2001.

M. M. Dohadwala, M. Holbrook, N. M. Hamburg, S. M. Shenouda, W. B. Chung et al., Effects of cranberry juice consumption on vascular function in patients with coronary artery disease, Am. J. Clin. Nutr, vol.93, pp.934-940, 2011.

H. , S. Park, E. Belcastro, C. Auger, M. Oak et al., SCHINI-KERTH, Glucose-conjugated blackcurrant anthocyanins activate the endothelial NO synthase pathway following uptake via sodium-glucose cotransporter 1 and 2, (Molecular nutrition & Food research

H. Kushal, *. Sharma, H. Hasan, D. Kong, and M. Oak, Particulate matter 10 induces endothelial senescence by the activation of redox sensitive local angiotensin system (Environmental health perspectives

E. Hira-hasan, H. -. Belcastro, L. Ho, P. Ohlmann, F. Valérie et al., Laurence jesel morel, Thrombin promotes premature atrial endothelial cell senescence leading to the induction of pro-infiltrative and pro-fibrotic responses: Role of the local angiotensin II/AT 1 receptor system

M. Oak, C. Auger, E. Belcastro, S. Park, H. -. Ho et al., Potential mechanisms underlying cardiovascular protection by polyphenols: Role of the endothelium (Free Radical Biology and Medicine, 2018.

M. Sene, H. -. Modou-oumy-kane, L. Ho, and C. Auger,

A. Sall-diallo, .. B. Valérie, and . Schini-kerth, Endothelium-dependent relaxation by a hydroethanolic extract of Adansonia digitata leaves in porcine coronary artery rings and rat thoracic aorta, mesenteric, carotid artery rings: Role of NO and EDH

L. Hyunho, An anthocyanin-rich blackcurrant extract induced NO-mediated relaxation in coronary artery rings and eNOS phosphorylation in cultured endothelial cells: Role of sodium-glucose cotransporters 1 and 2, (ICMAN-IUPHAR Natural Products, 2017.

L. Hyunho, An anthocyanin-rich blackcurrant extract induced NO-mediated relaxation in coronary artery rings and eNOS phosphorylation in cultured endothelial cells: Role of sodium-glucose cotransporters 1 and 2

L. Hyunho, S. Khemais-benkhiat, and P. Chabert,

. Schini-kerth, An anthocyanin-rich black currant extract prevents high glucose-induced senescence and dysfunction in cultured coronary artery endothelial cells, (Achieves of cardiovascular diseases, Nantes and JCI, 2017.

H. Lee, S. Khemais-benkhiat, and P. Chabert,

M. Pincemail, . Oak, .. B. Valérie, and . Schini-kerth, An anthocyanin-rich blackcurrant extract induced NOmediated relaxation in coronary artery rings and eNOS phosphorylation in cultured endothelial cells: Role of sodium-glucose cotransporters 1 and 2, (ICMAN-IUPHAR Natural Products, 2017.

M. Sene, H. -. Modou-oumy-kane, L. Ho, and C. Auger,

A. Sall-diallo, .. B. Valérie, and . Schini-kerth, Endothelium-dependent relaxation by a hydroethanolic extract of Adansonia digitata leaves in porcine coronary artery rings and rat thoracic aorta, mesenteric, carotid artery rings: Role of NO and EDH (ICMAN-IUPHAR Natural Products, 2017.

D. Abraham and O. Distler, How does endothelial cell injury start? The role of endothelin in systemic sclerosis, Arthritis research & therapy, vol.9, p.2, 2007.

S. K. Aghababaee, M. Vafa, F. Shidfar, A. Tahavorgar, M. Gohari et al., Effects of blackberry (Morus nigra L.) consumption on serum concentration of lipoproteins, 2015.

A. I. , and high-sensitivity-C-reactive protein and blood pressure in dyslipidemic patients, Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences, vol.20, p.684

B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts et al., Blood vessels and endothelial cells, 2002.

J. M. Alvarez-suarez, F. Giampieri, S. Tulipani, T. Casoli, . Di et al., Onemonth strawberry-rich anthocyanin supplementation ameliorates cardiovascular risk, oxidative stress markers and platelet activation in humans, The Journal of nutritional biochemistry, vol.25, pp.289-294, 2014.

F. Alzaid, H. Cheung, V. R. Preedy, and P. A. Sharp, Regulation of glucose transporter expression in human intestinal Caco-2 cells following exposure to an anthocyanin-rich berry extract, PLoS One, vol.8, p.78932, 2013.

H. P. Amin, C. Czank, S. Raheem, Q. Zhang, N. P. Botting et al., Anthocyanins and their physiologically relevant metabolites alter the expression of IL-6 and VCAM-1 in CD40L and oxidized LDL challenged vascular endothelial cells. Molecular nutrition & food research, vol.59, pp.1095-1106, 2015.

A. M. Amorini, G. Lazzarino, F. Galvano, G. Fazzina, B. Tavazzi et al., Cyanidin-3-O-?-glucopyranoside protects myocardium and erythrocytes from oxygen radical-mediated damages, 2003.

, Free radical research, vol.37, pp.453-460

C. Auger, J. Kim, S. Trinh, T. Chataigneau, A. M. Popken et al., Fruit juice-induced endothelium-dependent relaxations in isolated porcine coronary arteries: evaluation of different fruit juices and purees and optimization of a red fruit juice blend, Food & function, vol.2, pp.245-250, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00666932

D. Bagchi, C. Sen, M. Bagchi, and M. Atalay, Anti-angiogenic, antioxidant, and anti-carcinogenic properties of a novel anthocyanin-rich berry extract formula, Biochemistry (Moscow), vol.69, pp.75-80, 2004.

E. Bell, Innate immunity: Endothelial cells as sentinels, Nature reviews immunology, vol.9, p.532, 2009.

K. Bian, M. F. Doursout, and F. Murad, Vascular system: role of nitric oxide in cardiovascular diseases, The journal of clinical hypertension, vol.10, pp.304-310, 2008.

A. Bishayee, T. Mbimba, R. J. Thoppil, E. Háznagy-radnai, P. Sipos et al., Anthocyanin-rich black currant (Ribes nigrum L.) extract affords chemoprevention against diethylnitrosamine-induced hepatocellular carcinogenesis in rats, The Journal of nutritional biochemistry, vol.22, pp.1035-1046, 2011.

G. Borges, M. E. Lean, S. A. Roberts, and A. Crozier, Bioavailability of dietary (poly) phenols: a study with ileostomists to discriminate between absorption in small and large intestine, Food & function, vol.4, pp.754-762, 2013.

M. Brownlee, Biochemistry and molecular cell biology of diabetic complications, Nature, p.813, 2001.

G. G. Camici, M. Schiavoni, P. Francia, M. Bachschmid, I. Martin-padura et al., Genetic deletion of p66Shc adaptor protein prevents hyperglycemia-induced endothelial dysfunction and oxidative stress, Proceedings of the National Academy of Sciences, vol.104, pp.5217-5222, 2007.

A. Cassidy, M. Bertoia, S. Chiuve, A. Flint, J. Forman et al., Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men, 2. The American journal of clinical nutrition, vol.104, pp.587-594, 2016.

A. Castaneda-ovando, L. De, M. Pacheco-hernández, M. E. Páez-hernández, J. A. Rodríguez et al., Chemical studies of anthocyanins: A review, Food chemistry, vol.113, pp.859-871, 2009.

C. Chen and D. B. Khismatullin, Oxidized low-density lipoprotein contributes to atherogenesis via coactivation of macrophages and mast cells, PloS one, vol.10, 2015.

J. Chen, S. Williams, S. Ho, H. Loraine, D. Hagan et al., Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members, Diabetes Therapy, vol.1, pp.57-92, 2010.

N. R. Council, Diet and health: implications for reducing chronic disease risk, 1989.

D. C. Crossman and A. C. Morton, Pathophysiology of Ischemic Heart Disease. Heart Disease and the Surgical Patient, 2007.

L. Dai, X. Dong, and H. Ma, Antioxidative and chelating properties of anthocyanins in Azolla imbricata induced by cadmium, Polish Journal of Environmental Studies, p.21, 2012.

C. Dalgård, F. Nielsen, J. D. Morrow, H. Enghusen-poulsen, T. Jonung et al., Supplementation with orange and blackcurrant juice, but not vitamin E, improves inflammatory markers in patients with peripheral arterial disease, British journal of nutrition, vol.101, pp.263-269, 2008.

S. Danese, E. Dejana, and C. Fiocchi, Immune regulation by microvascular endothelial cells: directing innate and adaptive immunity, coagulation, and inflammation, The Journal of Immunology, vol.178, pp.6017-6022, 2007.

M. S. Davis, C. K. Miller, and D. C. Mitchell, More favorable dietary patterns are associated with lower glycemic load in older adults, Journal of the American Dietetic Association, vol.104, pp.1828-1835, 2004.

C. A. Desouza, P. P. Jones, and D. R. Seals, Physical activity status and adverse age-related differences in coagulation and fibrinolytic factors in women, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.18, pp.362-368, 1998.

H. Du, L. Li, D. Bennett, Y. Guo, T. J. Key et al., Fresh fruit consumption and major cardiovascular disease in China, New England Journal of Medicine, vol.374, pp.1332-1343, 2016.

G. J. Dusting, S. Moncada, and J. R. Vane, Prostacyclin (PGX) is the endogeneous metabolite responsible for relaxation of coronary arteries induced by arachidonic acid, Prostaglandins, vol.13, pp.3-15, 1977.

I. Edirisinghe, K. Banaszewski, J. Cappozzo, D. Mccarthy, and B. M. Burton-freeman, Effect of black currant anthocyanins on the activation of endothelial nitric oxide synthase (eNOS) in vitro in human endothelial cells, Journal of agricultural and food chemistry, vol.59, pp.8616-8624, 2011.

I. Erlund, R. Koli, G. Alfthan, J. Marniemi, P. Puukka et al., Favorable effects of berry consumption on platelet function, 2008.

, The American journal of clinical nutrition, vol.87, pp.323-331

N. J. Farpour-lambert, Y. Aggoun, L. M. Marchand, X. E. Martin, F. R. Herrmann et al., Physical activity reduces systemic blood pressure and improves early markers of atherosclerosis in pre-pubertal obese children, Journal of the American College of Cardiology, vol.54, pp.2396-2406, 2009.

M. Félétou and P. M. Vanhoutte, Third pathway: Endothelium-dependent hyperpolarization, Drug development research, vol.58, pp.18-22, 2003.

M. Félétou and P. M. Vanhoutte, Endothelium-dependent hyperpolarizations: past beliefs and present facts, Annals of medicine, vol.39, pp.495-516, 2007.

C. Felgines, S. V. Talavéra, M. Gonthier, O. Texier, A. Scalbert et al., Strawberry anthocyanins are recovered in urine as glucuro-and sulfoconjugates in humans, The Journal of nutrition, vol.133, pp.1296-1301, 2003.

R. Feng, H. Ni, S. Y. Wang, I. L. Tourkova, M. R. Shurin et al., Cyanidin-3-rutinoside, a natural polyphenol antioxidant, selectively kills leukemic cells by induction of oxidative stress, Journal of Biological Chemistry, vol.282, pp.13468-13476, 2007.

I. Fleming, Molecular mechanisms underlying the activation of eNOS, Pflügers Archiv-European Journal of Physiology, vol.459, pp.793-806, 2010.

I. Fleming, The pharmacology of the cytochrome P450 epoxygenase/soluble epoxide hydrolase axis in the vasculature and cardiovascular disease, Pharmacological reviews, vol.66, pp.1106-1140, 2014.

K. Fukami, S. Yamagishi, and S. Okuda, Role of AGEs-RAGE system in cardiovascular disease, Current pharmaceutical design, vol.20, pp.2395-2402, 2014.

W. T. Gerthoffer, Mechanisms of vascular smooth muscle cell migration, Circulation research, vol.100, pp.607-621, 2007.

C. Ghezzi, D. D. Loo, and E. M. Wright, Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2, Diabetologia, pp.1-11, 2018.

R. Ghosh, A. Alajbegovic, and A. V. Gomes, NSAIDs and cardiovascular diseases: role of reactive oxygen species. Oxidative medicine and cellular longevity, 2015.

A. Goldin, J. A. Beckman, A. M. Schmidt, and M. A. Creager, Advanced glycation end products: sparking the development of diabetic vascular injury, Circulation, vol.114, pp.597-605, 2006.

R. Grempler, L. Thomas, M. Eckhardt, F. Himmelsbach, A. Sauer et al., Empagliflozin, a novel selective sodium glucose cotransporter-2 (SGLT-2) inhibitor: characterisation and comparison with other SGLT-2 inhibitors, 2012.

, Diabetes, Obesity and Metabolism, vol.14, pp.83-90

X. Guo, M. Oldham, M. Kleinman, R. Phalen, and G. Kassab, Effect of cigarette smoking on nitric oxide, structural, and mechanical properties of mouse arteries, American Journal of Physiology-Heart and Circulatory Physiology, vol.291, pp.2354-2361, 2006.

H. A. Hadi, C. S. Carr, and J. Al-suwaidi, Endothelial dysfunction: cardiovascular risk factors, therapy, and outcome. Vascular health and risk management, vol.1, p.183, 2005.

G. K. Hansson, Inflammation, atherosclerosis, and coronary artery disease, New England Journal of Medicine, vol.352, pp.1685-1695, 2005.

G. K. Hansson and A. Hermansson, The immune system in atherosclerosis, Nature immunology, vol.12, p.204, 2011.

N. Harada and N. Inagaki, Role of sodium-glucose transporters in glucose uptake of the intestine and kidney, Journal of diabetes investigation, vol.3, pp.352-353, 2012.

D. J. Hausenloy and D. M. Yellon, Myocardial ischemia-reperfusion injury: a neglected therapeutic target, The Journal of clinical investigation, vol.123, pp.92-100, 2013.

M. G. Hertog, D. Kromhout, C. Aravanis, H. Blackburn, R. Buzina et al., Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study, Archives of internal medicine, vol.155, pp.381-386, 1995.

K. Iwasaki-kurashige, R. Y. Loyaga-rendon, H. Matsumoto, T. Tokunaga, and H. Azuma, Possible mediators involved in decreasing peripheral vascular resistance with blackcurrant concentrate (BC) in hind-limb perfusion model of the rat, Vascular pharmacology, vol.44, pp.215-223, 2006.

S. Jaldappagari, N. Motohashi, M. P. Gangeenahalli, and J. H. Naismith, Bioactive mechanism of interaction between anthocyanins and macromolecules like DNA and proteins. Bioactive Heterocycles VI, 2008.

A. Jennings, A. A. Welch, S. J. Fairweather-tait, C. Kay, A. Minihane et al., Higher anthocyanin intake is associated with lower arterial stiffness and central blood pressure in women, The American journal of clinical nutrition, vol.96, pp.781-788, 2012.

J. Y. Jeremy, D. Rowe, A. M. Emsley, and A. C. Newby, Nitric oxide and the proliferation of vascular smooth muscle cells, Cardiovascular research, vol.43, pp.580-594, 1999.

X. Jin, L. Yi, M. Chen, C. Chen, H. Chang et al., Delphinidin-3-glucoside protects against oxidized low-density lipoprotein-induced mitochondrial dysfunction in vascular endothelial cells via the sodium-dependent glucose transporter SGLT1, PloS one, vol.8, p.68617, 2013.

C. Johnson and Z. S. Galis, Matrix metalloproteinase-2 and? 9 differentially regulate smooth muscle cell migration and cell-mediated collagen organization. Arteriosclerosis, thrombosis, and vascular biology, vol.24, pp.54-60, 2004.

K. J. Joshipura, A. Ascherio, J. E. Manson, M. J. Stampfer, E. B. Rimm et al., Fruit and vegetable intake in relation to risk of ischemic stroke, Jama, vol.282, pp.1233-1239, 1999.

A. Jurgo?ski, J. Ju?kiewicz, Z. Zdu?czyk, P. Matusevicius, and K. Ko?odziejczyk, Polyphenol-rich extract from blackcurrant pomace attenuates the intestinal tract and serum lipid changes induced by a high-fat diet in rabbits, European journal of nutrition, vol.53, pp.1603-1613, 2014.

B. B. Kahn, L. Rossetti, H. F. Lodish, and M. J. Charron, Decreased in vivo glucose uptake but normal expression of GLUT1 and GLUT4 in skeletal muscle of diabetic rats, The Journal of clinical investigation, vol.87, pp.2197-2206, 1991.

W. B. Kannel, D. Mcgee, and T. Gordon, A general cardiovascular risk profile: the Framingham Study, The American journal of cardiology, vol.38, pp.46-51, 1976.

P. G. Kapasakalidis, R. A. Rastall, and M. H. Gordon, Extraction of polyphenols from processed black currant (Ribes nigrum L.) residues, Journal of agricultural and food chemistry, vol.54, pp.4016-4021, 2006.

C. D. Kay, G. Mazza, B. J. Holub, and J. Wang, Anthocyanin metabolites in human urine and serum, British Journal of Nutrition, vol.91, pp.933-942, 2004.

C. L. Kerrigan and M. A. Stotland, Ischemia reperfusion injury: a review, Microsurgery, vol.14, pp.165-175, 1993.

A. E. Kitabchi, G. E. Umpierrez, J. M. Miles, and J. N. Fisher, Hyperglycemic crises in adult patients with diabetes, Diabetes care, vol.32, pp.1335-1343, 2009.

K. Komori, R. R. Lorenz, and P. M. Vanhoutte, Nitric oxide, ACh, and electrical and mechanical properties of canine arterial smooth muscle, American Journal of Physiology-Heart and Circulatory Physiology, vol.255, pp.207-212, 1988.

J. Kong, L. Chia, N. Goh, T. Chia, and R. Brouillard, Analysis and biological activities of anthocyanins, Phytochemistry, vol.64, pp.923-933, 2003.

A. C. Kurilich, B. A. Clevidence, S. J. Britz, P. W. Simon, and J. A. Novotny, Plasma and urine responses are lower for acylated vs nonacylated anthocyanins from raw and cooked purple carrots, Journal of Agricultural and Food Chemistry, vol.53, pp.6537-6542, 2005.

D. T. Lackland and M. A. Weber, Global burden of cardiovascular disease and stroke: hypertension at the core, Canadian Journal of Cardiology, vol.31, pp.569-571, 2015.

U. Laufs, N. Werner, A. Link, M. Endres, S. Wassmann et al., Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis, Circulation, vol.109, pp.220-226, 2004.

P. Libby, P. M. Ridker, and A. Maseri, Inflammation and atherosclerosis, Circulation, vol.105, pp.1135-1143, 2002.

Y. Lin, N. Hoffman, M. Aksoy, M. Muniswamy, and S. Kelsen, Cigarette smoke-induced reactive oxygen species (ROS) production in human airway epithelial cells is calcium and NADPH-oxidase (NOX) dependent. C53. COPD pathogenesis: in vitro and in vivo studies, 2012.

Y. Liu, D. Li, Y. Zhang, R. Sun, and M. Xia, Anthocyanin increases adiponectin secretion and protects against diabetes-related endothelial dysfunction, American Journal of Physiology-Endocrinology and Metabolism, vol.306, pp.975-988, 2014.

L. Luksha, S. Agewall, and K. Kublickiene, Endothelium-derived hyperpolarizing factor in vascular physiology and cardiovascular disease, Atherosclerosis, vol.202, pp.330-344, 2009.

B. H. Majed and R. A. Khalil, Molecular mechanisms regulating the vascular prostacyclin pathways and their adaptation during pregnancy and in the newborn, Pharmacological reviews, 2012.

M. Malik, C. Zhao, N. Schoene, M. M. Guisti, M. P. Moyer et al., Anthocyaninrich extract from Aronia meloncarpa E. induces a cell cycle block in colon cancer but not normal colonic cells, Nutrition and cancer, vol.46, pp.186-196, 2003.

S. R. Mallery, D. E. Budendorf, M. P. Larsen, P. Pei, M. Tong et al., Effects of human oral mucosal tissue, saliva and oral microflora on intraoral metabolism and bioactivation of black raspberry anthocyanins, Cancer Prevention Research, 2011.

G. E. Mann, D. L. Yudilevich, and L. Sobrevia, Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells, Physiological reviews, vol.83, pp.183-252, 2003.

A. J. Marcus, B. B. Weksler, E. A. Jaffe, and M. J. Broekman, Synthesis of prostacyclin from platelet-derived endoperoxides by cultured human endothelial cells, The Journal of clinical investigation, vol.66, pp.979-986, 1980.

B. A. Maron and T. Michel, Subcellular localization of oxidants and redox modulation of endothelial nitric oxide synthase, Circulation Journal, vol.76, pp.2497-2512, 2012.

J. T. Matus, R. Loyola, A. Vega, A. Peña-neira, E. Bordeu et al., Post-veraison sunlight exposure induces MYB-mediated transcriptional regulation of anthocyanin and flavonol synthesis in berry skins of Vitis vinifera, Journal of experimental botany, vol.60, pp.853-867, 2009.

G. Meeuwisse, Glucose-galactose malabsorption. Studies on renal glucosuria, Helvetica paediatrica acta, vol.25, pp.13-24, 1970.

K. J. Meyers, C. B. Watkins, M. P. Pritts, and R. H. Liu, Antioxidant and antiproliferative activities of strawberries, Journal of agricultural and food chemistry, vol.51, pp.6887-6892, 2003.

R. Minshall and A. Malik, Transport across the endothelium: regulation of endothelial permeability. The Vascular Endothelium I, 2006.

J. A. Mitchell, F. Ali, L. Bailey, L. Moreno, and L. S. Harrington, Role of nitric oxide and prostacyclin as vasoactive hormones released by the endothelium, Experimental physiology, vol.93, pp.141-147, 2008.

T. Miyazawa, K. Nakagawa, M. Kudo, K. Muraishi, and K. Someya, Direct intestinal absorption of red fruit anthocyanins, cyanidin-3-glucoside and cyanidin-3, 5-diglucoside, into rats and humans, Journal of agricultural and food chemistry, vol.47, pp.1083-1091, 1999.

A. E. Moran, M. H. Forouzanfar, G. Roth, G. A. Mensah, M. Ezzati et al., The global burden of ischemic heart disease in 1990 and 2010: the Global Burden of Disease, 2010.

I. Morita, Distinct functions of COX-1 and COX-2, Prostaglandins & other lipid mediators, vol.68, pp.165-175, 2002.

L. Mosca, E. Barrett-connor, and N. K. Wenger, Sex/gender differences in cardiovascular disease prevention: what a difference a decade makes, Circulation, vol.124, pp.2145-54, 2011.

M. Mueckler, Facilitative glucose transporters, European journal of biochemistry, vol.219, pp.713-725, 1994.

C. D. Murray, The physiological principle of minimum work: I. The vascular system and the cost of blood volume, Proceedings of the National Academy of Sciences, vol.12, pp.207-214, 1926.

N. Nanashima, K. Horie, H. Maeda, T. Tomisawa, M. Kitajima et al., Blackcurrant Anthocyanins Increase the Levels of Collagen, Elastin, and Hyaluronic Acid in Human Skin Fibroblasts and Ovariectomized Rats, Nutrients, vol.10, p.495, 2018.

K. M. Naseem, The role of nitric oxide in cardiovascular diseases. Molecular aspects of medicine, vol.26, pp.33-65, 2005.

M. Ng, T. Fleming, M. Robinson, B. Thomson, N. Graetz et al., Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study, The lancet, vol.384, pp.766-781, 2013.

. Nih, What is stroke?, 2014.

M. H. Oak, J. Bedoui, S. F. Madeira, K. Chalupsky, and V. Schini-kerth, Delphinidin and cyanidin inhibit PDGFAB-induced VEGF release in vascular smooth muscle cells by preventing activation of p38 MAPK and JNK, British journal of pharmacology, vol.149, pp.283-290, 2006.

M. A. Ozkor and A. A. Quyyumi, Endothelium-derived hyperpolarizing factor and vascular function. Cardiology research and practice, 2011.

J. Paixão, T. C. Dinis, and L. M. Almeida, Dietary anthocyanins protect endothelial cells against peroxynitrite-induced mitochondrial apoptosis pathway and Bax nuclear translocation: an in vitro approach, Apoptosis, vol.16, p.976, 2011.

S. Parthasarathy, E. Wieland, and D. Steinberg, A role for endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein, Proceedings of the National Academy of Sciences, vol.86, pp.1046-1050, 1989.

S. Pennathur and J. W. Heinecke, Mechanisms for oxidative stress in diabetic cardiovascular disease, 2007.

, Antioxidants & redox signaling, vol.9, pp.955-969

R. Piga, Y. Naito, S. Kokura, O. Handa, and T. Yoshikawa, Short-term high glucose exposure induces monocyte-endothelial cells adhesion and transmigration by increasing VCAM-1 and MCP-1 expression in human aortic endothelial cells, Atherosclerosis, vol.193, pp.328-334, 2007.

J. S. Pober and W. C. Sessa, Evolving functions of endothelial cells in inflammation, Nature Reviews Immunology, vol.7, p.803, 2007.

E. Pojer, F. Mattivi, D. Johnson, and C. S. Stockley, The case for anthocyanin consumption to promote human health: a review, Comprehensive Reviews in Food Science and Food Safety, vol.12, pp.483-508, 2013.

N. R. Poulter, D. Prabhakaran, and M. Caulfield, Hypertension. Lancet, vol.386, pp.801-813, 2015.

R. L. Prior and X. Wu, Anthocyanins: structural characteristics that result in unique metabolic patterns and biological activities, Free radical research, vol.40, pp.1014-1028, 2006.

Y. Qin, M. Xia, J. Ma, Y. Hao, J. Liu et al., Anthocyanin supplementation improves serum LDL-and HDL-cholesterol concentrations associated with the inhibition of cholesteryl ester transfer protein in dyslipidemic subjects-. The American journal of clinical nutrition, vol.90, pp.485-492, 2009.

M. Renis, L. Calandra, C. Scifo, B. Tomasello, V. Cardile et al., Response of cell cycle/stress-related protein expression and DNA damage upon treatment of CaCo2 cells with anthocyanins, British journal of nutrition, vol.100, pp.27-35, 2008.

D. C. Rizzo, Fundamentals of anatomy and physiology, 2015.

A. Sandoo, J. J. Van-zanten, G. S. Metsios, D. Carroll, and G. D. Kitas, The endothelium and its role in regulating vascular tone. The open cardiovascular medicine journal, vol.4, p.302, 2010.

S. L. Sandow, D. J. Gzik, and R. M. Lee, Arterial internal elastic lamina holes: relationship to function, Journal of anatomy, vol.214, pp.258-266, 2009.

J. Scott, Pathophysiology and biochemistry of cardiovascular disease. Current opinion in genetics & development, vol.14, pp.271-279, 2004.

C. M. Sena, A. M. Pereira, and R. Seiça, Endothelial dysfunction-a major mediator of diabetic vascular disease, Biochimica et Biophysica Acta, vol.1832, pp.2216-2231, 2013.

I. Serraino, L. Dugo, P. Dugo, L. Mondello, E. Mazzon et al., Protective effects of cyanidin-3-O-glucoside from blackberry extract against peroxynitriteinduced endothelial dysfunction and vascular failure, Life sciences, vol.73, pp.1097-1114, 2003.

H. Shimokawa, H. Yasutake, K. Fujii, M. K. Owada, R. Nakaike et al., The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium-dependent relaxations in rat mesenteric circulation, Journal of cardiovascular pharmacology, vol.28, pp.703-711, 1996.

J. Shipp and E. M. Abdel-aal, Food applications and physiological effects of anthocyanins as functional food ingredients, The Open Food Science Journal, p.4, 2010.

K. W. Singletary, K. Jung, and M. Giusti, Anthocyanin-rich grape extract blocks breast cell DNA damage, Journal of medicinal food, vol.10, pp.244-251, 2007.

S. Sitia, L. Tomasoni, F. Atzeni, G. Ambrosio, C. Cordiano et al., , 2010.

, Autoimmunity reviews, vol.9, pp.830-834

M. Spina, S. Garbisa, J. Hinnie, J. C. Hunter, and A. Serafini-fracassini, Age-related changes in composition and mechanical properties of the tunica media of the upper thoracic human aorta, Arteriosclerosis: An Official Journal of the American Heart Association, Inc, vol.3, pp.64-76, 1983.

S. Steven, M. Oelze, A. Hanf, S. Kröller-schön, F. Kashani et al., The SGLT2 inhibitor empagliflozin improves the primary diabetic complications in ZDF rats, Redox biology, vol.13, pp.370-385, 2017.

B. E. Sumpio, J. T. Riley, and A. Dardik, Cells in focus: endothelial cell. The international journal of biochemistry & cell biology, vol.34, pp.1508-1512, 2002.

C. Sun, S. Fan, X. Wang, J. Lu, Z. Zhang et al., Purple sweet potato color inhibits endothelial premature senescence by blocking the NLRP3 inflammasome, The Journal of nutritional biochemistry, vol.26, pp.1029-1040, 2015.

S. Talavéra, C. Felgines, O. Texier, C. Besson, A. Gil-izquierdo et al., Anthocyanin metabolism in rats and their distribution to digestive area, kidney, and brain, Journal of agricultural and food chemistry, vol.53, pp.3902-3908, 2005.

S. Talavera, C. Felgines, O. Texier, C. Besson, J. Lamaison et al., Anthocyanins are efficiently absorbed from the stomach in anesthetized rats, The Journal of nutrition, vol.133, pp.4178-4182, 2003.

Q. Tian, M. M. Giusti, G. D. Stoner, and S. J. Schwartz, Urinary excretion of black raspberry (Rubus occidentalis) anthocyanins and their metabolites, Journal of agricultural and food chemistry, vol.54, pp.1467-1472, 2006.

D. Tousoulis, A. Kampoli, . Tentolouris, C. Papageorgiou, and C. Stefanadis, The role of nitric oxide on endothelial function, Current vascular pharmacology, vol.10, pp.4-18, 2012.

T. Tsuda, Dietary anthocyanin-rich plants: biochemical basis and recent progress in health benefits studies. Molecular nutrition & food research, vol.56, pp.159-170, 2012.

T. Tsuda, F. Horio, and T. Osawa, Absorption and metabolism of cyanidin 3-O-?-D-glucoside in rats, FEBS letters, vol.449, pp.179-182, 1999.

T. Tsuda, F. Horio, K. Uchida, H. Aoki, and T. Osawa, Dietary cyanidin 3-O-?-D-glucoside-rich purple corn color prevents obesity and ameliorates hyperglycemia in mice, The Journal of nutrition, vol.133, pp.2125-2130, 2003.

E. Turk, M. G. Martín, and E. M. Wright, Structure of the human Na+/glucose cotransporter gene SGLT1, Journal of Biological Chemistry, vol.269, pp.15204-15209, 1994.

E. Turk and E. Wright, Membrane topology motifs in the SGLT cotransporter family, The Journal of membrane biology, vol.159, pp.1-20, 1997.

J. F. Turrens, Mitochondrial formation of reactive oxygen species, The Journal of physiology, vol.552, pp.335-344, 2003.

S. Y. Wang and H. Jiao, Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen, Journal of Agricultural and Food Chemistry, vol.48, pp.5677-5684, 2000.

P. K. Whelton, R. M. Carey, W. S. Aronow, D. E. Casey, K. J. Collins et al., , 2017.

, NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of

. Cardiology/american, Heart Association Task Force on Clinical Practice Guidelines, Journal of the American College of Cardiology, vol.71, pp.127-248

. Who, The top 10 global causes of deaths, 2018.

M. E. Widlansky, N. Gokce, J. F. Keaney, and J. A. Vita, The clinical implications of endothelial dysfunction, Journal of the American College of Cardiology, vol.42, pp.1149-1160, 2003.

B. Winkel-shirley, Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology, Plant physiology, vol.126, pp.485-493, 2001.

K. Witter, Z. Tonar, and H. Schöpper, How many layers has the adventitia?-Structure of the arterial tunica externa revisited, Anatomia, histologia, embryologia, vol.46, pp.110-120, 2017.

L. C. Wong and B. L. Langille, Developmental remodeling of the internal elastic lamina of rabbit arteries: effect of blood flow, Circulation research, vol.78, pp.799-805, 1996.

D. Woulfe, J. Yang, and L. Brass, ADP and platelets: the end of the beginning, The Journal of clinical investigation, vol.107, pp.1503-1505, 2001.

X. Xie, R. Zhao, and G. X. Shen, Influence of delphinidin-3-glucoside on oxidized low-density lipoproteininduced oxidative stress and apoptosis in cultured endothelial cells, Journal of agricultural and food chemistry, vol.60, pp.1850-1856, 2012.

K. Xing, S. Murthy, W. C. Liles, and J. M. Singh, Clinical utility of biomarkers of endothelial activation in sepsis-a systematic review, Critical Care, vol.16, p.7, 2012.

J. Xu, K. Ikeda, and Y. Yamori, Upregulation of endothelial nitric oxide synthase by cyanidin-3-glucoside, a typical anthocyanin pigment, Hypertension, vol.44, pp.217-222, 2004.

S. Zafra-stone, T. Yasmin, M. Bagchi, A. Chatterjee, J. A. Vinson et al., Berry anthocyanins as novel antioxidants in human health and disease prevention. Molecular nutrition & food research, vol.51, pp.675-683, 2007.

D. T. Zava and G. Duwe, Estrogenic and antiproliferative properties of genistein and other flavonoids in human breast cancer cells in vitro, 1997.

Y. Zhao, P. M. Vanhoutte, and S. W. Leung, Vascular nitric oxide: Beyond eNOS, Journal of pharmacological sciences, vol.129, pp.83-94, 2015.

L. Ziberna, F. Tramer, S. Moze, U. Vrhovsek, F. Mattivi et al., Transport and bioactivity of cyanidin 3-glucoside into the vascular endothelium. Free radical biology and medicine, vol.52, pp.1750-1759, 2012.

, Activation de la voie du monoxyde d'azote dans les cellules endothéliales par les anthocyanes du cassis : Caractérisation des molécules actives et

, Cependant, les mécanismes protecteurs du transport intracellulaire des anthocyanes dans la cellule endothéliale demeurent mal compris. L'objectif de cette thèse est d'évaluer la contribution de SGLT1 et SGLT2, les co-transporteurs majeurs du sodium et du glucose, dans l'entrée des anthocyanes issues du cassis et de ses dérivés du NO endothélial dans les cellules natives et en culture. Parmi les anthocyanes contenus dans le cassis, les dérivés glycosidiques comme la cyanidine et la delphinidine-3-O-glucoside, sont les anthocyanes les plus puissantes afin d'activer la voie du NO. En conclusion, les anthocyanes peuvent être particulièrement intéressantes afin de cibler précocement les sites à risque d, Résumé Depuis quelques décennies, de nombreuses données suggèrent que l'effet protecteur cardiovasculaire des anthocyanes implique vraisemblablement une amélioration de la fonction endothéliale par une augmentation de la formation de monoxyde d'azote (NO)

, Mots-clés : Cassis, sénescence endothéliale, co-transporteur sodium glucose