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Introduction

The present thesis is devoted to systematic study of physical properties of two
magnetic oxides, which both o�er a broad range of important applications in oxide
electronics.

Hole doped manganites La1� xMxMnO3, where M stands for either Ca, Sr
or Ba, are well known materials thanks to their unique combination of physical
properties. The colossal magnetoresistance (CMR) [1] together with high de-
gree of spin polarization is common for the whole family of hole doped mangan-
ites. The extensive research dedicated to the particular case of La2=3Sr1=3MnO3

(LSMO) has been initiated by its high Curie temperature (TC;bulk � 370 K) [2]
and almost 100 % spin polarization [3]. Such combination of physical proper-
ties makes LSMO an interesting candidate for various applications in the �eld
of spintronics.

The ferromagnetic ordering of LSMO originates in the presence of mixed va-
lence manganese ions Mn3+ and Mn4+ . It has been theoretically explained by C.
Zener [4] with a mechanism called double-exchange (DE) interaction. It arises
from eg electron transfer between Mn3+ and Mn4+ ions via O2� 2p state. The
probability of DE electron transitions strongly depends on Mn3+ -O-Mn4+ geom-
etry, i.e. on Mn-O bong length and Mn-O-Mn bond angle. As a result the main
factors responsible for changes in magnetic properties of LSMO are rotations and
distortions of MnO6 octahedra, which are induced in the �lms either by epitaxial
strain coming from lattice mismatched substrate or by coupling of octahedral
rotations at the LSMO/substrate interface [5].

While the interfacial nature of oxygen octahedra coupling (OOC) restricts
this e�ect to a distance of several monolayers, thin �lms of LSMO deposited
on mismatched substrate remains fully strained up to thicknesses of several tens
of nanometers. This makes the factor of strain even more important with respect
to magnetic properties, considering that the �rst few monolayers, which are most
likely to be in
uenced by OOC, are at the same time typically magnetically inert.

To a thin LSMO layer, strain can be transfered either in a static or a dynamic
way. While static approach by use of di�erent lattice mismatched substrates
provides a great background for basic research, the ability to tune the strain
dynamically is essential for following applications.

The presented work was motivated by dynamic control of domain wall motion
in a spin-valve structure, realized by use of underlaying piezoelectric layer [6].
As schematically shown in Fig. 1, magnetization reversal process was controlled
by external voltage application on the piezoelectric underlayer, as the voltage in-
duced strain created potential for domain wall pinning in the spin-valve nanowire.

In this work we try to elucidate the impact of epitaxial strain on magnetic
and magneto-optical properties of LSMO ultrathin �lms. We investigated LSMO
grown on four di�erent substrate materials, which induce a variaty of strains,
ranging from large compressive strain on LaAlO3 (LAO), through small com-
pressive strain on (LaAlO3)1=3(Sr2AlTaO 6)2=3 (LSAT) and small tensile strain
on SrTiO3 (STO), up to large tensile strain on DyScO3 (DSO). Subsequently we
try to achieve dynamical control of magnetization in patterned LSMO by use
of piezoelectric underlayer.
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Figure 1: Schematic representation of magnetization reversal process in spin valve
nanowire, dynamically controlled by strain via use of external voltage on piezo-
electric underlayer (taken from [6]).

SrRuO3 (SRO) is another well known ferromagnetic oxide (TC;bulk � 160 K
[7]), which o�ers a broad range of applications in oxide electronics. The com-
bination of good conducting properties and nearly ideal epitaxial growth has
made it the most popular material for electrodes fabrication in oxide heterostruc-
tures [8]. Furthermore, multilayer systems of SRO and other oxides as STO [9]
or LSMO [10, 11] exhibit suitable properties for fabrication of all-oxide magnetic
tunnel junctions.

Despite several decades of investigation, the exact nature of magnetic aniso-
tropy of SRO still remains a subject of scienti�c debate in both bulk SRO [8] as
well as in thin �lms [12]. However the importance of this knowledge is stressed
on as attempts of dynamical magnetization switching in SRO �lms are emerging.
After current induced domain wall nucleation [13] and domain wall motion [14]
has been introduced, temperature induced [15] as well as current induced [16, 17]
magnetization reversal in SRO �lms has been demonstrated. Even dynamical
control of magnetization by use of piezoelectric underlayer was reported by Zhou
et al. [18], yet magnetization reversal was not achieved this way. For proper
functioning of potential spintronic devices using the magnetization reversal pro-
cess in SRO, not only a precise description of magnetic anisotropy, but detailed
knowledge of dynamic behaviour of magnetic domains is essential, especially when
aiming at devices of fast operation.

Growth of SRO on the most commonly used substrate of STO is possible in six
di�erent crystallographic orientations, so called variants [19, 20]. Multi-variant
growth can be suppressed by proper choice of substrate miscut angle, yielding
single-variant SRO �lms of higher overall quality.

In this work we report on time evolution of magnetic domains in multi-variant
and almost single-variant SRO thin �lms. By means of magnetic and magneto-
optical methods we investigate the magnetization dynamics and magnetic domain
formation in both single and multi-variant SRO thin �lms. We observe signi�cant
di�erences in the magnetic domain wall motion behaviour. We argue that those
di�erences are related to defects emerging in the polycrystalline �lms as a result
of the multi-variant growth.
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Thesis outline

Structure of the work is organised as follows. The �rst chapter provides read-
ers with general introduction to the structural and magnetic properties of the
two investigated magnetic oxides - LSMO and SRO. We highlight the important
structural element of oxygen octahedra, and we describe the signi�cant changes
of physical properties of the materials when going from the bulk form to ultrathin
layers. These changes manifest essential in
uence of the epitaxial strain, which
is one of the main topics of this work. The end of this introductory chapter deals
brie
y with the in
uence of Barkhausen e�ect on magnetization dynamics, i.e.
on time evolution of domain wall motion mechanism, which is the second major
topic of the work.

The second chapter provides necessary theoretical background to the key
techniques used in this study. A combination of spectroscopic ellipsometry and
magneto-optical spectroscopy is a powerful tool for investigation of ultrathin lay-
ers. It allows us to determine spectral dependence of the full tensor of permit-
tivity, thus providing valuable information not only about material properties
of the sample, but also about its electronic structure. In the second chapter
we provide the theoretical aparatus for treating the optical, and especially the
magneto-optical phenomena, including procedures for extraction of the elements
of permittivity tensor from experimental data.

The third chapter gives a brief overview of the most important experimental
techniques used in this work. Functioning of the optical and magneto-optical
characterization methods is explained in detail with the use of the theoretical
aparatus developed in the second chapter.

The fourth chapter presents all the individual samples investigated in this
work. It includes LSMO single layers on various substrates, where the e�ect
of static epitaxial strain is studied. Then a heterostructure with LSMO on piezo-
electric underlayer, which serves for dynamic application of the strain. The last
material system consists of SRO single layers, in which the e�ect of substrate
miscut angle is investigated.

The �fth and the sixth chapter summarize the achieved results. First part
of the �fth chapter deals with the static application of strain to LSMO by use
of various substrates, the second part deals with the dynamic application of strain
via piezoelectric underlayer. Finally the sixth chapter presents the in
uence
of substrate miscut on magnetization dynamics of SRO.
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1. Structural and magnetic
properties of oxide ultrathin
layers
The �rst introductory chapter presents the principal topics of this work more
in detail. We familiarise the reader with the two investigated oxide materials. We
describe their basic structural and magnetic properties, starting from their bulk
form, and explaining the changes underwent during transition into the ultrathin
layers.

These changes originate in the deposition process, where the growing layer
adjusts its properties depending on the substrate. Such changes may pertain
across the whole thickness of the deposited layer, as for example composition
of variants induced by substrate miscut angle, or they may only be present in close
proximity of the layer/substrate interface, as for example strain induced changes
of the orbital ordering, which are relaxing with the thickness of the �lm as the
epitaxial strain is relaxing away from the interface.

We focus on the role of epitaxial strain, which is one of the key elements
in in
uencing structural and magnetic properties of ultrathin perovskite oxides.
We pay a special attention to the so called oxygen octahedra rotations. The
oxygen octahedra are an essential building element of the oxide materials, and
their strain induced rotations may have consequences that reach far beyond mere
changes in the crystallographic structure.

The last section of this chapter stands aside, covering another topic - mag-
netization dynamics. The magnetization reversal process is described on the
theoretical basis of pinning centers, as presented by H. Barkhausen, which pro-
vides necessary understanding of the magnetization dynamics phenomena that
will be studied later on in this thesis.

1.1 Bulk La 2=3Sr1=3MnO 3 and SrRuO 3

An ideal crystallographic structure of manganese oxides is cubic perovskite -
ABO3, such as shown in Fig. 1.1. A-site cation is located in the unit cell corner,
while B-site cation is in the center of the unit cell. Oxygen atoms are located
in between the B atoms, in the middle of their distance. In such a way the B
atoms are surrounded by six oxygen atoms, creating a BO6 octahedron. This
structure belongs to Pm3m space group (No. 221).

The structure of manganese oxides obeys the so called tolerance factor [22]

t =
rA + rOq
2(rB + rO)

; (1.1)

where rA , rB and rO are ionic radii of the A and B atoms and oxygen, respec-
tively. For the ideal cubic perovskitet = 1, while the structure remains stable
for 0:89 < t < 1:02 [21]. Typically, t signi�cantly di�ers from unity as a re-
sult of variations in cation ionic radii, which leads to a distorted rhombohedral
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Figure 1.1: Schematic view of ideal cubic perovskite structure ABO3 (taken
from [21]). Six oxygen atoms around the B-site cation create BO6 octahedron.

or orthorhombic structure. The orthorhombic crystal structure of LSMO parent
compound LaMnO3 is shown in Fig. 1.2(a).

Unit cell of bulk La2=3Sr1=3MnO3 can be described as rhombohedral with
lattice constants ar = 5:471 �A and � r = 60:43� [23]. This structure belongs
to R3c space group (No. 167).

Magnetic properties of manganites are driven by manganese ion spins and
their mutual exchange interactions, which are given by the overlap of manganese
d-orbitals and oxygenp-orbitals. The superexchange interaction leads to antifer-
romagnetic behaviour in case of Mn4+ -O-Mn4+ , while for Mn3+ -O-Mn3+ it can be
both ferromagnetic and antiferromagnetic [26]. In LSMO, the presence of mixed
valence manganese ions Mn3+ /Mn 4+ leads to ferromagnetic ordering, which was
explained by C. Zener [4] by a di�erent mechanism, so called double exchange
(DE) interaction. It originates in eg electron transfer between Mn3+ and Mn4+

ions via O2� 2p state, as schematically depicted in Fig. 1.3(a).
In bulk LSMO, the easy axis of magnetization lies in the pseudocubic [111]

direction [27, 28]. Concerning the Curie temperature, Jonker and van Santen [2]
grew La1� xSrxMnO3 oxides of various values of Sr doping. They found that for

(a) (b)

Figure 1.2: Schematic view of orthorhombic structure of: (a) LSMO parent com-
pound LaMnO3 (taken from [24]), (b) SrRuO3, the highlighted cube represents
pseudocubic unit cell (taken from [25]).
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(a) (b)

Figure 1.3: (a) Schematic diagram of double exchange interaction. (b) Depen-
dence of Curie temperature of La1� xSrxMnO3 on Sr doping (taken from [2]).

x = 1=3 the La2=3Sr1=3MnO3 has the highest Curie temperatureTC � 370 K, see
Fig. 1.3(b).

SrRuO3 is a member of the Ruddlesden-Popper [29] series of Sr ruthenates
Srn+1 RunO3n+1 , with n = 1 . Unit cell of SRO is of the GdFeO3 type. At
room temperature, it can be described as orthorhombic with lattice constants
ao = 5:567 �A, bo = 5:530 �A and co = 7:845 �A [30]. This structure belongs
to Pbnm space group (No. 62). It is schematically depicted in Fig. 1.2(b).

Transport and magnetic properties of the Ruddlesden-Popper series members
di�er signi�cantly as a function of n. For example, forn = 1 we get Sr2RuO4,
which is the �rst known perovskite superconductor without copper [31]. The
in�nity case ( n = 1 ) of SRO is an itinerant ferromagnet withTC � 160 K [7].
Magnetocrystalline anisotropy of bulk SRO remains an unresolved issue, as dif-
ferent directions of the easy axis of magnetization (in (001)o plane and h110i c

directions) as well as di�erent anisotropy �eld values were reported [8].

1.2 Oxygen octahedra rotations and Glazer
notation system

In previous section we have introduced an important structural element of per-
ovskite materials - the BO6 octahedron (see Fig. 1.1). If we imagine the B-site
cation as an origin of Cartesian coordinate system, in which the oxygen atoms
lie on its principal axes, we say that the BO6 octahedron is not tilted, which is
the case of ideal cubic perovskite structure. If the octahedra are departed from
this ideal position while remaining rigid, i.e. with no distortion, we say they
underwent oxygen octahedra rotations (OOR).

An example of such OOR can be seen in Fig. 1.2(b), where the orthorhombic
SRO structure is introduced. Several RuO6 octahedra are highlighted and their
mutual tilt is clearly visible.
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The OOR patterns can have signi�cant impact on resulting physical properties
of magnetic oxides. In order to classify the OOR patterns, Glazer introduced a
notation system [33], which was later extended by Woodward [34, 35]. In this
system, the OOR are expressed as a combination of three independent rotations
around three Cartesian coordinate axes, which are given by the three pseudocubic
axes [100]c, [010]c and [001]c. Relative magnitudes of the rotations are denoted
by letters a, b and c for each of the pseudocubic directions. Rotations of two
adjacent octahedra can be either in phase or out of phase, which is denoted by +
or � sign in the superscript. When 0 occurs in the superscript, there is no rotation
around the respective axis.

Few of the simplest examples are shown in Fig. 1.4. The cubic structure, which
possesses no OOR, is denoted asa0a0a0. This means that relative magnitudes
of rotations around all three pseudocubic axes are equal, which is obvious as they
are all absent. The Glazer notation for tetragonal structure isa0a0c+ . We can see
that rotations around [100]c and [010]c axes are still absent, but rotations around
the [001]c axis, which points out from the picture, take place. The + sign indicates
in phase rotations of adjacent octahedra, which means that the octahedra rotate
in the same direction, keeping the oxygen atoms aligned along the rotational
[001]c axis. Note that the last letter c is di�erent from the �rst two, indicating
di�erent rotation magnitude. The example of rhombohedral structure is denoted
by a� a� a� . This means that rotations around all three axes are present, same
in magnitude and all out of phase. The out of phase rotations represent two
adjacent octahedra rotating in opposite direction, so that the oxygen atoms are
no longer aligned along the rotational axis. In all the cases we can see that
the oxygen octahedra retain corner connectivity, which is a simple geometric
constraint forcing two adjacent octahedra to maintain a common oxygen atom.
When thin layer of oxide material is being deposited on a substrate, one of the
possible ways to accommodate the imposed epitaxial strain is via OOR, which
help to maintain the corner connectivity accross the interface.

As shown by Glazer [33], there are 23 possible tilt systems. The rhombohedral

Figure 1.4: Schematic diagram of BO6 octahedra rotation patterns in cubic,
tetragonal and rhombohedral perovskite structure (taken from [32]). The Glazer
notation is given assuming [001] pseudocubic axis pointing out of the image plane,
[100] and [010] pseudocubic axes lie in the image plane and are aligned along the
horizontal and vertical direction.
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structure of bulk LSMO is sorted as system #14, noted asa� a� a� . Such a system
we introduced in Fig. 1.4. The orthorhombic structure of bulk SRO belongs
to system #10: a+ b� b� . Here the two rotations around [010]c and [001]c axes are
both out of phase and of the same magnitude, while the rotation around [100]c

axis is in phase and of a di�erent magnitude than the latter two.

1.3 Strain modi�cations of crystallographic
structure

Initial crystallographic structure of a bulk material is modi�ed when we grow such
material as a thin layer. The di�erence between lattice parameters of substrate
and deposited layer is quanti�ed by lattice mismatch

m =
al � as

as
; (1.2)

where al and as are initial bulk values of in-plane lattice constants of the layer
and substrate material. The lattice mismatch induces epitaxial strain in the layer.
For al > a s, i.e. positive value ofm, the layer is grown under compressive strain.
The opposite case of negativem is called tensile strain.

Growth of magnetic oxide layers is typically realized on cubic oxide substrates
such as SrTiO3 or LaAlO3. The strained layer deposited on (001) oriented cubic
substrate can be usually described as monoclinic with (110) orientation, but it
is often treated as pseudocubic. In our case, for description of LSMO and SRO
unit cells, both these approaches can be used. Relations between the main cu-
bic (pseudocubic) and monoclinic crystallographic directions of a substrate and
deposited layer are shown in Fig. 1.5.

The monoclinic unit cell is characterized by lattice parametersam ; bm ; cm ; � m ;
� m and 
 m , where � m = � m = 90� . They are related to the pseudocubic lattice

[001]c
[110]m

[100]c
[1-10]m

[010]c
[00-1]m

[-101]c
[010]m

[101]c
[100]m

Figure 1.5: Relations between the main cubic (pseudocubic) and monoclinic crys-
tallographic directions in a (001) oriented cubic substrate and (110) oriented
monoclinic (pseudocubic) growing layer.
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parametersac; bc; cc and � c via

ac =

q
a2

m + b2
m � 2ambm cos
 m

2
; (1.3)

bc =
cm

2
�

amp
2

�
bmp

2
; (1.4)

cc =

s
a2

m + b2
m � 2a2

c

2
; (1.5)

� c = arccos

 
a2

c + c2
c � a2

m

2accc

!

: (1.6)

Typical distortion of pseudocubic and monoclinic crystallographic structure
under compressive and tensile strain is shown in Fig. 1.6. It has been found
that compressively stressed LSMO [36, 23] and SRO [23] accommodate the strain
di�erently along di�erent crystallographic in-plane axes. Periodic lattice modu-
lations were observed along the [001]m direction, while lattice distortions occur
in the [1-10]m direction. We can imagine the lattice modulations as relative dis-
placements of the unit cells in [110]m direction [23]. They have certain amplitude
and they are periodic in the [001]m direction. Di�erent stress relief mechanism
was observed along the [1-10]m direction. The unit cell becomes distorted, accom-
modating the strain by reduction of the
 m angle, as shown in Fig. 1.6(b). In the
monoclinic unit cellam < bm and 
 m < 90� , in the pseudocubic descriptionac < cc

and � c < 90� . The tensile strain in LSMO and SRO was studied as well [23].
Similar mechanism leading to distortion of the unit cell was observed as shown
in Fig. 1.6(c). In this case the unit cell becomes tetragonal witham = bm and

 m > 90� , in the pseudocubic descriptionac > cc and � c = 90� . Such behaviour
of lattice distortions was observed in coherently strained LSMO and SRO thin
�lms, but it is assumed to be of general character among perovskite oxides [23].

Imposing strain, either compressive or tensile, on perovskite crystal structure
results in its distortion, as we have just described and as we can see in Fig. 1.6.
Such distortion obviously leads to changes in crystal symmetry and related al-
ternations of the OOR pattern. It has been shown [23] that despite exhibiting

[010]c
[00-1]m

[100]c
[1-10]m

[001]c
[110]m

ac

cc

��c
am bm

��m

ac

cc

��c

am

bm

��m
ac

cc

��c
ambm

��m

(a) (b) (c)

Figure 1.6: Schematic projection of monoclinic and pseudocubic unit cell, when
it is (a) not distorted, (b) distorted under compressive strain, (c) distorted under
tensile strain; am ; bm and 
 m are monoclinic lattice parameters,ac; cc and � c are
pseudocubic lattice parameters.
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di�erent OOR patterns in their bulk form, both LSMO and SRO possess the
same Glazer tilt system #9: a+ a� c� , when grown on a cubic substrate under
compressive strain. The OOR pattern slightly changes if the substrate is not per-
fectly cubic, i.e. ac 6= bc, but it still remains the same for both LSMO and SRO.
The presence and phase of the rotations is preserved, but all three rotations now
have di�erent magnitudes. It is the tilt system #8: a+ b� c� . However, both these
tilt systems are very similar and they both correspond to P21/m space group
(No. 11). In the case of tensile strain, elongation of the pseudocubic in-plane
lattice parameters results in suppression of OOR around the out-of-plane axis.
Rotations around the latter two axes are maintained. The situation is again the
same for both LSMO and SRO, it is tilt system #18:a+ a� c0, which corresponds
to Cmcm space group (No. 63).

1.4 Strain in
uence on physical properties
of magnetic oxides

In previous section we described changes arising in crystal structure of perovskite
oxides when being deposited as thin �lms on susbstrates, which impose epitaxial
strain. Such changes, which are related to modi�cations of OOR pattern and
crystal symmetry, may be expected to lead to changes in other physical proper-
ties of the materials. Distortion of the perfectly cubic perovskite unit cell leads
to symmetry lowering, which lifts the degeneracy ofd energy levels. Such changes
in electron structure then inevitably result in modi�cations of transport and mag-
netic properties of perovskite oxides.

1.4.1 Orbital ordering

Schematic diagram of manganese 3d energy levels is shown in Fig. 1.7. In a
spherical �eld of isolated Mn atom, all �ve energy levels are degenerated. In a
crystal �eld of perfect cubic symmetry, the levels split into 2eg and 3 t2g levels.
The degeneracy is further lifted as the symmetry of the cubic �eld is lowered.
Compressive or tensile strain leads to distortion of MnO6 octahedra, which leads
to stabilization of the out-of-plane or in-planeeg and t2g orbitals.

Fig. 1.7 also shows, that the MnO6 distortion is strongly supported by Mn3+ ,
while Mn4+ prefers to keep its energy unchanged. This is known as Jahn-Teller ef-
fect. Even if the content of Mn4+ is increased, the remainingeg electrons of Mn3+

do not occupy theeg orbitals at random and an orbital order is achieved [21].
Stabilization of the eg orbitals, as it is shown in Fig. 1.7, was con�rmed by sev-
eral independent studies. Arutaet al. showed by means of linear dichroism
(LD) in X-ray absorption spectroscopy (XAS), that LSMO �lms grown under
compressive strain on LAO substrates stabilize the out-of-plane (3z2 � r 2) eg

orbitals [37], while preferential in-plane (x2 � y2) orbital ordering is achieved
in LSMO �lms grown under tensile strain on STO substrates [37, 38]. Tebanoet
al. [39] also demonstrated by LD-XAS preferential (3z2 � r 2) ordering for LSMO
grown under compressive strain on LAO and NdGaO3 (NGO) substrates. Their
further results of tensilely strained LSMO on STO revealed (x2 � y2) orbital
ordering in agreement with Arutaet al., but below a critical thickness of approx-
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Figure 1.7: Schematic diagram of Mn 3d energy levels. Their degeneracy is
partially lifted in cubic crystal �eld, where they split into 2 eg and 3 t2g levels.
Further stabilization of out-of-plane and in-plane orbitals is achieved in a crystal
�eld of lower symmetry, resulting from epitaxial strain. Occupation of the energy
levels shows that the octahedra distortion is supported by Mn3+ presence via
Jahn-Teller e�ect.

imately 6 unit cells, orbital reconstruction was observed, favouring in contrast
the (3z2 � r 2) orbitals. They explain these results as a consequence of symmetry
breaking at the interface. They further con�rm these �ndings by means of angle-
resolved photoemission spectroscopy [40]. In contradiction, Huijbenet al. [41]
reported on (3z2 � r 2) orbitals stabilization in tensilely strained LSMO on STO
up to �lm thicknesses of 70 unit cells. However, Pesqueraet al. [42, 43] also
reported studies of LSMO grown on various substrate materials providing both
compressive and tensile strain. Their XAS results are in agreement with previous
�ndings of the groups of Aruta and Tebano.

The strain dependent orbital ordering has further consequences on resulting
magnetic properties of LSMO. Fig. 1.8(a) shows phase diagram of La1� xSrxMnO3

in the plane of epitaxial strain represented by pseudocubicc=aratio and doping
level x. Figs. 1.8(b)-(d) explain the relations between strain induced orbital or-
dering and related ferromagnetic or antiferromagnetic (AF) order. It has been re-
ported [44] that the preferential (3z2 � r 2) orbital ordering favours chain-type (C-
type) AF ordering, while stabilization of (x2 � y2) orbitals leads to layer-type (A-
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C-type DE A-type

(b) (c) (d)(a)

Figure 1.8: (a) Phase diagram of La1� xSrxMnO3 in the plane of epitaxial strain
and Sr doping levelx (taken from [47]). Strain is represented by pseudocubicc=a
ratio. The letters A, F and C denote A-type antiferromagnetic ordering, ferro-
magnetic ordering and C-type antiferromagnetic ordering, respectively. (b)-(d)
Schematic representation of strain induced changes in magnetic ordering (taken
from [39]); (b) C-type antiferromagnetic ordering, (c) ferromagnetic ordering with
enabled double-exchange, (d) A-type antiferromagnetic ordering.

type) AF order. The ferromagnetic double-exchange mechanism is most strongly
manifested in undistorted structure with strongly degeneratedeg levels. The
strain induced suppression of DE mechanism has been revealed as the most plau-
sible explanation for the so called magnetically inert layer at the LSMO/substrate
interfaces of epitaxially strained LSMO thin �lms [39, 40, 45, 46].

1.4.2 Magnetic anisotropy

Magnetic anisotropy of LSMO exhibits strong dependence on epitaxial strain.
Easy axis of magnetization, which for bulk LSMO lies along the pseudocubic
[111]c direction [27, 28], shifts typically into the sample plane of thin �lms1.
LSMO grown under tensile strain on STO substrate shows in-plane magnetic
anisotropy [48, 49, 50, 51, 21], which further depends on temperature. Above
250 K, the two in-plane directionsh100i c and h110i c are equivalent easy axes
of magnetization [48, 50, 51]. Below 250 K, the easy axis alongh100i c direction
remains, but the easy axis behaviour is more pronounced in theh110i c direc-
tions [50, 21]. Such behaviour corresponds to prevailing contribution to magnetic
anisotropy coming from the substrate symmetry, while additional contribution is
introduced along the direction of epitaxial strain. This can even lead to perpendic-
ular magnetic anisotropy, which was reported below 200 K on LSMO �lms grown
under compressive strain on LAO substrates [49, 50]. LSMO �lms grown un-
der small compressive strain on LSAT and NGO exhibit temperature dependent
combination of uniaxial anisotropy alongh100i c direction and biaxial anisotropy
alongh110i c directions [50]. The easy axis always remains in-plane as compressive
strain is here not strong enough to induce perpendicular magnetic anisotropy.

Magnetic anisotropy of SRO is also in
uenced by epitaxial strain. Easy axis
of magnetization, which is not clearly understood in bulk SRO [8], being reported
in both (001)o plane and h110i c directions, turns into [010]m direction in SRO
thin �lms grown under tensile strain on the most common substrate of STO [52,

1See Fig. 1.5 for de�nition of basic crystallographic directions.

15



53]. However, it exhibits peculiar temperature dependence. BelowTC , the easy
axis of magnetization, while remaining in the (001)m plane, it rotates from the
surface normal from� 45� , i.e. the [010]m direction, to � 30� with decreasing
temperature [54].

1.4.3 Interplay of OOR and epitaxial strain

In section 1.3 we have described the strain modi�cations of crystallographic struc-
ture and related changes in OOR patterns. The OOR can be induced not only
by epitaxial strain, but by the substrate symmetry as well. Moreover the oxy-
gen octahedra can not only be rotated, but distorted as well, as we have shown
sooner in this section. Interplay of epitaxial strain, substrate symmetry, oxygen
octahedra rotations and distortions is a complex topic undergoing extensive re-
search, which reveals signi�cant impact of oxygen octahedra related phenomena
on physical properties of magnetic oxides.

Fundamental research in this domain investigates origin and possible control
of OOR and its relation to epitaxial strain and crystallographic structure of the
substrates [23, 55, 56]. More complex studies are trying to explain the exact
impact of OOR on resulting magnetic and transport properties and to suggest
possibilities of direct tuning of the physical properties by OOR engineering [57,
58, 59, 60].

The �rst group of research is focused on the basic structural properties. As
we have already shown in section 1.3, the group of Vailioniset al. [23] revealed
di�erent OOR pattern in LSMO �lms grown under compressive and tensile strain.
They further report on OOR evolution accross the LSMO/STO interface in thin
LSMO �lms [55]. Moon et al. [61] try to isolate the e�ect of epitaxial strain
from OOR by growing LSMO on two substrates of similar lattice constants and
di�erent crystal symmetries. They �nd that the transport and magnetic proper-
ties di�er signi�cantly when grown on cubic LSAT or orthorhombic NGO, which
both impose small compressive strain on LSMO, but both induce di�erent OOR
pattern. By means of scanning transmission electron microscopy, Liaoet al. [60]
con�rm presence of OOR at the LSMO/NGO interface. They further observe
that OOR can be supressed using STO bu�er layer in between the NGO sub-
strate and LSMO layer on top. The suppression of OOR is observable after use
of even one monolayer of the STO. Similar behaviour was observed in LSMO
single layers grown on STO substrates [57] and even in LSMO/STO superlat-
tices [59]. The OOR in LSMO are suppressed at the LSMO/STO interface, but
they evolve slowly to their bulk value with the distance from the interface in both
LSMO single layers and superlattices.

Concerning the in
uence of OOR on other physical properties, the presence
of OOR in LSMO thin �lms is mostly argued to signi�cantly a�ect the transport
and magnetic properties [57, 59]. However, the exact nature of these phenomena
has not yet been satisfactorily explained, as some reports, for example, reveal
deterioration of magnetic properties with increasing octahedral tilt [57], and other
reports, on the contrary, demonstrate deterioration of magnetism with decreasing
octahedra tilt angle [59]. Liaoet al. [60] try to be even more speci�c, describing
a precise impact of OOR on magnetic anisotropy.

In general, the behaviour and in
uence of OOR in LSMO is in agreement with
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results observed in SRO. Vailioniset al. [23] reports the same OOR pattern for
LSMO and SRO under compressive and tensile strain. Theoretical study of He
et al. [56] reports on OOR in both LSMO and SRO. They conclude that OOR
in SRO are suppressed near the SRO/substrate interface and with distance from
the interface evolve towards their bulk value. Thomaset al. [62] study SRO layers
grown on DSO substrate and covered with an STO capping layer. The use of STO
capping layer suppresses OOR in the SRO layer, leading to an enhancement of its
magnetic properties. Tuning of the magnetic anisotropy of SRO by use of a bu�er
layer was achieved by group of Kanet al. [58].

In contrast to the research presenting importance of OOR on resulting phys-
ical properties stands the study of Souza-Netoet al. [63], reporting an X-ray ab-
sorption spectroscopy study of LSMO �lms on STO and LAO substrates. They
emphasize the importance of MnO6 octahedra distortion rather than the OOR.
Thus we can see that altough the impact of OOR and oxygen octahedra dis-
tortions is unequivocal, the exact nature of these phenomena and their relation
to the epitaxial strain and substrate symmetry remains an open question.

1.5 Magnetization dynamics and Barkhausen
e�ect

A ferromagnetic material can react on external magnetic �eld in two possible
ways. One of them is coherent rotation, i.e. rotation of magnetization direction
of magnetic domains or even of the whole sample. Another way uses domain wall
(DW) motion to change the sample magnetization. As coherent rotation requires
movement of magnetization away from easy axis in large volume of the sample,
it is typically energeticaly less favourable.

The DW motion process consists of two mechanisms. First it is the domain
nucleation, i.e. creation of new magnetic domains, and second the actual DW
motion or DW propagation. It has been already observed by H. Barkhausen [64]
in 1919, when he detected the so called Barkhausen noise, that this process is
not continuous, which is caused by its energy requirements. Formation of do-
mains demands activation energy, which is needed to overcome a critical domain
size. DW motion costs in principle no energy, because the DW energy required
at given position is released at its previous location. However, no crystal material
is perfect and presence of crystallographic defects is inevitable. These defects act
as pinning centers for the DWs and to release DWs from such pinning centers, ac-
tivation energy is needed as well. Fig. 1.9(a) shows schematic visualization of the
magnetization reversal process in a sample, where the black dots visible on sample
surface represent the crystallographic defects acting as pinning centers for DWs.
Release of DW from such pinning center is accompanied by so called Barkhausen
jump, which is a step-like increment of overall sample magnetization. Fig. 1.9(b)
shows part of a magnetization hysteresis loop, where the Barkhausen jumps are
highlighted in the zoomed inset of the �gure. Visualisation of the magnetization
reversal process can be realized not only by measurements of Barkhausen noise,
but also by direct techniques. Especially when the dynamics is slow enough, mag-
netic domains can be observed, e.g. by Kerr microscopy [65] or magnetic force
microscopy [66].
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Figure 1.9: (a) Schematic visualization of magnetization reversal process (taken
from [67]). Black dots on sample surface act as pinning centers for DW motion.
(b) Part of a magnetization hysteresis loop (taken from [68]). Zoomed inset shows
individual Barkhausen jumps.

Exact knowledge of the magnetization reversal process in magnetic oxides
gains importance with increased interest in magnetization switching of these ma-
terials. In SRO thin �lms, phenomena of current induced DW nucleation [13]
and DW motion [14] have recently been demonstrated, as well as temperature in-
duced [15] and current induced [16, 17] magnetization reversal and even periodic
control of magnetization with use of piezoelectric substrate [18]. Investigating the
magnetization dynamics, which as we have just seen is closely related to presence
of crystallographic defects, may help us to better understand the related physical
phenomena and to improve functioning of future device applications.
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2. Basic theory of light
polarization and magneto-optical
e�ects
The second chapter provides theoretical introduction to optical, and especially
magneto-optical phenomena, which are the essence of the key techniques used
in this work - spectroscopic ellipsometry and magneto-optical spectroscopy.

In order to deal with the magneto-optical phenomena, �rst we need to develop
tools to treat the light itself. Therefore at the beginning of this chapter we intro-
duce polarized light, which is the starting element of any magneto-optical experi-
ment. Next we present a simple mathematical way how to treat the light propaga-
tion through an arbitrary optical system, i.e. the Jones calculus. At this point we
are ready to quantify the magneto-optical e�ects, i.e. de�ne the magneto-optical
angles.

The investigated material comes into play via its permittivity tensor, which
is de�ned in the following section. Then we present a way how to obtain spec-
tral dependence of the elements of the permittivity tensor in both the microscopic
and the macroscopic approach. The microscopic theory provides us with essential
understanding of the origin of magneto-optical phenomena, furthermore it gives
us the mathematical description of the experimental spectra in terms of contri-
butions from the individual electron transitions. The macroscopic theory of Yeh
formalism gives us a strong mathematical apparatus for calculation of magneto-
optical response in an arbitrary multilayer structure. It can be used either to cal-
culate magneto-optical e�ects when we know material properties of the investi-
gated system, or on the contrary, it can be used to determine unknown elements
of the permittivity tensor from experimentally measured spectral dependence
of the magneto-optical e�ects.

2.1 Light polarization and Jones calculus

Light is an electromagnetic wave, therefore we can describe some of its properties
by simple description of the wave motion. Electric component is dominating
in the interaction of light with matter, thus we use the vector of electric �eld
strength to de�ne the polarization of light. It is given by time evolution of the
vector of electric �eld strength at a given point in space. If we assume the light
as a time-harmonic plane wave consisting of three independent oscillations along
the Cartesian axes, we can write it as

E = Exx + Eyy + Ezz; E i = A0i cos (!t + � i ); i = x; y; z; (2.1)

where x ; y and z are unit vectors alongside the respective Cartesian axes,A0i

and � i are amplitudes and phase shifts of the individual components, and! is the
angular frequency. It can then be shown [69] that the electric �eld strength vector
traces an ellipse. In other words, the most general case of light polarization is
an elliptic polarization. Fig. 2.1 shows the ellipse of polarization in a plane
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Figure 2.1: Ellipse of polarization when looking against the propagation direction
of a light wave. The semi-majora and semi-minor axesb, amplitudes A0x and
A0y, as well as the azimuth� and ellipticity angle � are shown.

perpendicular to the wave vector. It is an example of a wave travelling along the
z axis when looking against the propagation direction. The ellipse is uniquely
determined by four parameters, however for complete description of an arbitrary
polarization state only two of them are necessary. They are

� the azimuth � - an oriented angle between the major axis of the ellipse and
positive x half-axis, it determines the orientation of the ellipse in its plane
and it ranges from� �= 2 to �= 2, and

� the ellipticity e - a ratio of the lengths of the semi-minor and the semi-major
axes,e = b=a. It ranges from� 1 to 1. According to the sign of the ellipticity
we assign a handedness to the polarization state. Positive sign corresponds
to a right-handed polarization, while negative sign to a left-handed polar-
ization. When looking against the propagation direction, what we actually
see is a clockwise motion of the electric �eld vector in case of the right-
handed polarization and anti-clockwise motion in case of the left-handed
polarization. A quantity � de�ned by e = tan � is called ellipticity angle
and according to the ellipticity range it spreads from� �= 4 to �= 4.

The latter two quantities, which are not necessary for de�ning the polarization
state, are the amplitudeA and the absolute phase� 0. The amplitude is given
by the lengths of the axes of the ellipse asA =

p
a2 + b2. It is related to the

intensity I by I = E yE = A2 = a2 + b2, whereE is the electric �eld strength and
y denotes a Hermitian conjugate. The absolute phase provides information about
the initial state. It is an angle between the electric �eld vector in timet = 0 and
the major axis of the ellipse, thus it ranges from� � to � .

The simplest, yet powerful description of polarized light in optical system is
Jones calculus [69], which deals with completely polarized light, i.e. light that can
be considered as consisting of only one polarization state. The light is represented
by Jones vectors and optical elements by Jones matrices. This allows us to easily
calculate the polarization outcome of light passed through an optical system.
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In order to work with Jones calculus, we �rst introduce the Jones vector.
Let us have a completely polarized monochromatic plane wave, which propagates
along the z axis as in Fig. 2.1. It can be expressed as a superposition of two
components, which oscillate in the directions ofx and y axes, as

E (z; t) = [ A0xei (!t � kz z+ � x ) ]x + [ A0yei (!t � kz z+ � y ) ]y : (2.2)

The two components have amplitudesA0x ; A0y and absolute phases� x ; � y; kz

denotes thez-component of the wave vector. The Jones vector can now be de�ned
as

J =

"
A0xei� x

A0yei� y

#

=

"
E0x

E0y

#

; (2.3)

whereE0x and E0y are complex amplitudes of the light wave. As we have already
mentioned, the ellipse of polarization is fully described by four real parameters,
therefore the two complex amplitudesE0x and E0y provide complete information
about the polarization state of the light wave. However, we typically do not need
to know magnitude of the ellipse, only the shape and handedness of the polarized
light is important for us. We can therefore normalize the Jones vector to unitary
intensity

I = E yE = a2 + b2 = A2
0x + A2

0y = 1: (2.4)

If we further introduce tan � = A0y=A0x and phase shift� = � y � � x , the normal-
ized Jones vector can be de�ned as

J =

"
cos�

sin (� )ei�

#

= cos� J x + sin ( � )ei� J y; (2.5)

where the Cartesian basis of linear polarizationsJ x and J y is given as

J x =

"
1
0

#

; J y =

"
0
1

#

(2.6)

and relations of� and � to the azimuth � and ellipticity � are [69]

tan 2� = tan 2 � cos�; (2.7)

sin 2� = sin 2� sin�: (2.8)

Having described the polarized light wave, next we need to �nd out the polar-
ization change while passing through the optical system. In Jones calculus, any
re
ection or transmission element, which a�ects the light wave polarization, can
be characterized by 2� 2 matrix.

In order to describe response of a re
ection element, we consider two co-
ordinate systems S(I ) and S(R) as shown in Fig. 2.2(a). Direction ofx axes is
perpendicular to the plane of incidence. Light, which is linearly polarized in this
direction, is calleds-polarized (from Germansenkrecht- perpendicular). Direc-
tion of y axes is parallel to the plane of incidence. Light linearly polarized in this
direction is calledp-polarized. In case of normal light incidence this distinction
becomes irrelevant.

In the system S(I ) , polarization of the incident wave is characterized by Jones
vector J (I ) . In the system S(R) , re
ected wave is described by Jones vectorJ (R) .
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Figure 2.2: (a) Re
ection optical element characterized by Jones re
ection matrix
R sp in coordinate system of incident S(I ) and re
ected wave S(R) . (b) Transmis-
sion optical element characterized by Jones transmission matrixT sp in coordinate
system of incident S(I ) and transmitted wave S(T ) .

Both vectors are related by transformation, which can be written in a matrix
form

J (R) = R sp � J (I ) ; (2.9)

whereR sp is the Jones re
ection matrix

R sp =

"
r ss r sp

rps rpp

#

; (2.10)

which characterizes change of polarization state of the light wave re
ected on an
arbitrary structure. Meaning of the matrix elements follows from the de�ning
equation (2.9). If we denote complex amplitudes of both incident and re
ected
wave E0x = E0s and E0y = E0p, we get

r ss =

0

@E (R)
0s

E (I )
0s

1

A

E ( I )
0p =0

; (2.11)

r sp =

0

@E (R)
0s

E (I )
0p

1

A

E ( I )
0s =0

; (2.12)

rps =

0

@
E (R)

0p

E (I )
0s

1

A

E ( I )
0p =0

; (2.13)

rpp =

0

@
E (R)

0p

E (I )
0p

1

A

E ( I )
0s =0

: (2.14)

In order to describe response of a transmission element, we use two Cartesian
coordinate systems S(I ) and S(T ) as de�ned in Fig. 2.2(b). Axesx(I ) and x(T )

are parallel,y(I ) and y(T ) are also parallel,z(I ) and z(T ) are identical. In analogy
to the previous case of re
ection, Jones vectorJ (I ) describes polarization of the
incident wave in the system S(I ) and Jones vectorJ (T ) characterizes the re
ected
light in the system S(T ) . Their relation can be then written in a matrix form

J (T ) = T sp � J (I ) ; (2.15)

where T sp stands for Jones transmission matrix of a given optical element. It
can be expressed as

T sp =

"
tss tsp

tps tpp

#

: (2.16)
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Meaning of the matrix elements is analogically to the re
ection case determined
by eq. (2.15). We can write

tss =

0

@E (T )
0s

E (I )
0s

1

A

E ( I )
0p =0

; (2.17)

tsp =

0

@E (T )
0s

E (I )
0p

1

A

E ( I )
0s =0

; (2.18)

tps =

0

@
E (T )

0p

E (I )
0s

1

A

E ( I )
0p =0

; (2.19)

tpp =

0

@
E (T )

0p

E (I )
0p

1

A

E ( I )
0s =0

: (2.20)

Now we have de�ned all necessary elements and we can describe response
of the whole optical system. Let us have a system consisting ofN optical ele-
ments, which are described by Jones matricesX 1, X 2, . . . , X N , whereX stands
for either re
ection or transmission matrix. If we assume that light passes through
the elements in consecutive order 1; 2; : : : ; N , then the relation between the inci-
dent and �nal Jones vectorsJ (I ) and J (X ) is given as

J (X ) = X N � X N � 1 � � � X 1 � J (I ) : (2.21)

2.2 Magneto-optical angles

Having introduced basic theory of polarized light, we will now be de�ning magne-
to-optical (MO) quantities with use of the Jones formalism. In section 2.1 we ex-
plained that in order to describe polarization state, neither the amplitude nor the
absolute phase of the light wave are necessary. We need the two real parameters
(�; � ) or (�; � ). It is therefore convenient to further work with the complex polar-
ization parameter � , which is given by ratio of the second and �rst component
of Jones vector. As then follows from eq. (2.5), one can write

� =
E0y

E0x
= tan ( � )ei� : (2.22)

The parameters (�; � ) are then related to the complex polarization parameter�
simply by

j� j = tan �; (2.23)

arg� = �: (2.24)

If we now take a Jones vector of arbitrary elliptical polarization, given by its
azimuth � and ellipticity angle � in Cartesian representation, we can further relate
the complex polarization parameter� to � and � by [70]

� =
sin� cos� + i cos� sin�
cos� cos� � i sin� sin�

=
tan � + i tan �

1 � i tan � tan �
: (2.25)
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Assuming small angles� and � , we can approximate tangents by their arguments:
tan � � �; tan � � � . If we also neglect the second order term in denominator
of eq. (2.25), it simpli�es into

� � � + i�: (2.26)

Before we �nally relate the complex polarization parameter to magneto-optical
angles, we need to introduce the coordinate system of our experiment. Typically
we work in the Cartesian basis ofs-polarized andp-polarized wave as de�ned
in Fig. 2.2.

Let us have in such system an optically isotropic sample, which is characterized
by diagonal Jones re
ection matrix. If ans-polarized incident wave, which comes
from optically isotropic medium (typically air), is re
ected upon this sample, its
polarization state remains unchanged due to diagonality of the Jones re
ection
matrix. The same situation occurs in case of ap-polarized wave. Its polarization
does not change when re
ecting upon optically isotropic sample.

Di�erent situation occurs in case of an optically anisotropic sample. In our
experiment the anisotropy is induced by non-zero magnetic moment of magnetized
ferromagnetic material. The Jones re
ection matrix then acquires non-zero o�-
diagonal elements and a change of polarization state of incidents or p-polarized
wave can be observed upon re
ection on such sample.

Let us consider the case ofs-polarized wave. Using eqs. (2.11) and (2.13),
we can express ratio of the o�-diagonalrps to the diagonal r ss element of Jones
re
ection matrix as

rps

r ss
=

0

B
B
B
@

E ( R )
0p

E ( I )
0s

E ( R )
0s

E ( I )
0s

1

C
C
C
A

E ( I )
0p =0

=

0

@
E (R)

0p

E (R)
0s

1

A

E ( I )
0p =0

= � (R)

E ( I )
0p =0

= � (R)
s ; (2.27)

where we used de�nition (2.22) of the complex polarization parameter� to get
the third equality. We can therefore denote the ratio as complex polarization
parameter � (R)

s of the re
ected wave. In our case parameters� (R) and � (R) of the
re
ected wave are small enough to simplify eq. (2.25) and write expression ana-
logical to (2.26)

� (R)
s � � (R) + i� (R) : (2.28)

Now we can �nally de�ne the complex Kerr magneto-optical angle �Ks for inci-
dent s-polarized wave as

� Ks
def= �

rps

r ss
= � � (R)

s � � Ks � i� Ks ; (2.29)

where� Ks and � Ks are the magneto-optical angles called Kerr rotation and Kerr
ellipticity,

� Ks
def
� � � (R) ; (2.30)

� Ks
def
� � (R) : (2.31)

In case of incidentp-polarized wave we can proceed in analogical way. Using
eqs. (2.12) and (2.14) we �nd out that ratio of the o�-diagonal r sp to diagonal
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rpp element of Jones re
ection matrix equals to inverse value of the complex
polarization parameter� (R)

p of re
ected wave. We can further simplify the inverse
value of complex polarization parameter [70], thus the complex Kerr MO angle
for incident p-polarized wave can be de�ned as

� Kp
def=

r sp

rpp
= ( � (R)

p )� 1 � � Kp � i� Kp ; (2.32)

where Kerr rotation � Kp and Kerr ellipticity � Kp are given by

� Kp
def
� � � (R) +

�
2

; (2.33)

� Kp
def
� � (R) : (2.34)

In case of normal light incidence there is no plane of incidence and no dis-
tinction between s-polarized andp-polarized incident wave. Therefore we expect
both de�nitions to become equal with the same resulting complex Kerr MO an-
gles for both incident polarizations. It can be shown [71] that in case of normal
light incidence the diagonal and o�-diagonal elements of Jones re
ection matrix
are related by

rpp = � r ss; rps = r sp; (2.35)

therefore the de�nitions (2.29) and (2.32) give the same �nal expression of the
complex Kerr MO angle � K in case of normal light incidence,

� Ks = � Kp = � K = �
rps

r ss
� � K � i� K ; (2.36)

where� K and � K are the MO angles Kerr rotation and Kerr ellipticity.

2.3 Permittivity tensor

Main goal of the second chapter is to present mathematical apparatus for the-
oretical calculation of MO response. In order to do so, we need to introduce
the permittivity tensor, which provides the way to insert physical input into the
basic de�nition of MO angles presented in previous section. It provides informa-
tion about material properties of the investigated system. Knowledge of the full
permittivity tensor allows us to solve the wave equation, as we will show later
on in this chapter, and thus to obtain re
ectivity coe�cients needed to calculate
MO angles via eq. (2.36).

Material properties are usually described by either permittivity, optical con-
ductivity or susceptibility, which are all mutually related. Here we focus on the
permittivity. In general it is a second-order tensor

" =

2

6
4

" xx " xy " xz

" yx " yy " yz

" zx " zy " zz

3

7
5 ; (2.37)

but as we will show later, the general form can be signi�cantly simpli�ed in special
cases.

When a material is inserted into external magnetic �eldM = ( M x ; M y; M z),
the material and consequently its permittivity tensor becomes a�ected by this
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external �eld. However, the in
uence is typically small, so that it can be consid-
ered as a small perturbation of the system, and we can expand elements of the
permittivity tensor into MacLaurin series

" ij = " ij (0) +

 
@"ij
@Mk

!

M =0

M k +

 
@2" ij

@Mk@Ml

!

M =0

M kM l + : : : (2.38)

HereM k and M l are components of the magnetization vector,i; j; k; l are indeces
of the Cartesian axesx; y; z. The �rst term of eq. (2.38) " ij (0) determines the
tensor elements in case that no external magnetic �eld is applied. The next terms
are related to linear and quadratic MO e�ects. In this work we deal only with
magneto-optical Kerr e�ect (MOKE), which is linearly proportional to magneti-
zation, therefore restriction to �rst two terms in the series (2.38) is su�cient.

For investigation of the magneto-optical Kerr e�ect, there are three basic ge-
ometries. As shown in Fig. 2.3, distinction between the three con�gurations is
given by relative orientation of the magnetization vectorM to the plane of inci-
dence and sample surface. In polar geometry, the magnetization vector lies in the
plane of incidence and it is perpendicular to sample surface, i.e. it points against
the direction of z axis. In longitudinal geometry, the magnetization vector lies
in both the plane of incidence and the interface plane (it points along they axis).
Finally in transverse geometry, the magnetization vector lies in the surface plane
and it is perpendicular to the plane of incidence (it points against thex axis).
Here we are mostly interested in the case of polar geometry.

Let us now simplify the general form of the permittivity tensor (2.37). Typi-
cally, the diagonal elements are equal to each other and the o�-diagonal in com-
parison to the diagonal are negligibly small,

" ii � " jj ; " ij � " jj ; i; j = x; y; z and i 6= j: (2.39)

Permittivity tensor in magnetic �eld has to satisfy symmetry arguments [71].
Considering also speci�c geometry of the polar con�guration, as shown in Fig. 2.3,

x x x

y y y

z z zM M M

polar longitudinal transverse

Figure 2.3: Three basic con�gurations of magneto-optical Kerr e�ect given by di-
rection of the magnetization vectorM . The plane of incidence is schematically
indicated by arrows representing thek vector of incident and re
ected wave, it is
indentical with the yz plane.
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we can express the permittivity tensor as

" =

2

6
4

" xx " xy 0
� " xy " xx 0

0 0 " zz

3

7
5 �

2

6
4

"1 � i" 2 0
i" 2 "1 0
0 0 "1

3

7
5 ; (2.40)

where to get the second equality we used approximation (2.39) and introduced
notation

"1 = " xx � " zz; i" 2 = � " xy : (2.41)

The permittivity tensor in case of polar con�guration then has only two indepen-
dent complex elements: the diagonal element"1 and the o�-diagonal element"2.

2.4 Microscopic theory of magneto-optical
e�ects

Having introduced the permittivity tensor, next step is to calculate its elements.
In this section we present classical and semiclassical approach for calculation
of the diagonal and o�-diagonal elements of permittivity tensor. The classical
approach is suitable for description of the optical response of materials, and a
basic formula for the o�-diagonal elements can be also derived in the scope of this
model. However, the semiclassical theory is necessary for more precise description
of the magneto-optical e�ects.

2.4.1 Classical theory (Lorentz model)

Lorentz model is the classical microscopic approach, which describes interaction
of light wave with harmonically bounded electron. Let us have the magnetic 
ux
density of external magnetic �eld pointing against the direction of thez axis,
i.e. B = (0 ; 0; � Bz). As we have mentioned in section 2.1, electric component
of light wave dominates over the magnetic component in the interaction with
matter. Therefore neglecting contribution of the magnetic �eld component, the
equation of motion for electron in parabolic potential, interacting with a wave
propagating along thez axis, is given by

m
@2r
@t2

+ m�
@r
@t

+ m! 2
0r � e

@r
@t

� B = eE0ei!t ; (2.42)

where m and e is the electron mass and elementary charge,r and ! 0 stand for
electron's position vector and its natural frequency, � = 1=� is a damping con-
stant given by relaxation time� and E0ei!t is electric component of the interacting
wave. Eq. (2.42) can be decomposed into three components according to respec-
tive Cartesian axes, which consequently yields solution to all three components
of the r vector.

In order to relate ther vector to permittivity tensor, we introduce the average
dipole moment per unit volumeP as

P = Ner ; (2.43)
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where N stands for concentration of electrons. If we further realize that the
average dipole moment is identical with polarization densityP de�ned as

P = "0�E = "0(" � 1)E ; (2.44)

where "0 is the permittivity of vacuum, � is the susceptibility tensor andE is
external electric �eld of the light wave, then eqs. (2.43) and (2.44) bind together
the components of position vectorr with elements of the permittivity tensor " .

As the light wave propagates againstz axis, from symmetry of the problem
we would expect thez component of solution of eq. (2.42) to be di�erent from the
other two, yielding consequently di�erent diagonal components of the permittivity
tensor. However, as we have used (2.41) in order to simplify the tensor into (2.40),
we obtain the diagonal permittivity tensor elements resulting from Lorentz model
in identical form [71]

"1 = 1 + ! 2
p

1
! 2

0 � ! 2 + i � !
; (2.45)

where ! p = Ne2=m"0 is the so called plasma frequency. O�-diagonal elements
are then given by [71]

"2 = � ! 2
p

! c!

(! 2
0 � ! 2 + i � ! )2 � ! 2

c ! 2
; (2.46)

where frequency! c = � eBz=m is the cyclotron frequency of circular electron
motion in magnetic �eld.

2.4.2 Semiclassical theory

In the semiclassical theory of MO e�ects we still treat the light wave as a clas-
sical electromagnetic wave, the quantum description enters the problem on the
part of the matter. MO e�ects arise from splitting of energy levels involved
in given optical transitions. The splitting originates in spin-orbit coupling, which
enables the electrons to distinguish between two senses of circularly polarized
light. In absence of spin-orbit coupling, there is no contribution to o�-diagonal
permittivity tensor elements ("2 = 0) and therefore there are no MO e�ects.
Optical transitions, which form the spectral dependence of the o�-diagonal part
of permittivity tensor and hence are MO active, can be sorted into two types, as
presented in Fig. 2.4.

Type I are so called double transitions, which originate in spin-orbit splitting
of the �nal states. Let us consider a transition from singlet ground state to excited
state, which is split by spin-orbit interaction by � E given by [73]

� E = 2~� ! 0 = 2~(! 0+ � ! 0� ); (2.47)

where! 0� are resonant frequencies for left and right circular polarizations. Deri-
vation of the spectral behaviour of the o�-diagonal elements of permittivity tensor
for such transition can be found elsewhere [73]. Here we skip the procedure, and
assuming � ! 0 � � 0 we get the �nal formula in the form [74]

"2 = � 2
0("

0

2)max
(! � ! 0)2 � � 2

0 + 2i � 0(! � ! 0)

[(! � ! 0)2 + � 2
0]2

; (2.48)
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Figure 2.4: Spectral line shapes and mechanisms of two types of MO transitions;
! 0 is the resonant frequency,"

0

2 and "
00

2 denotes real and imaginary parts of"2.
(a) Type I, so called double or diamagnetic transitions. Inset shows spin-orbit
splitting of excited state. (b) Type II, so called single or paramagnetic transitions.
Inset shows di�erent oscillator strengthsf + and f � (taken from [72]).

where ! 0 and � 0 are the resonant frequency and half-width at half-maximum,
("

0

2)max stands for the maximum amplitude of the real part of"2, which occurs
for ! = ! 0. For historical reasons [75], optical transitions of this type are called
diamagnetic transitions. Real and imaginary parts of"2 are even and odd func-
tions of (! � ! 0), respectively. The real part has a simple dissipative line shape and
the imaginary part exhibits simple dispersive behaviour, as shown in Fig. 2.4(a).

Type II are so called single transitions. In this case there is no splitting of the
energy levels, the spin-orbit interaction causes a di�erence between oscillator
strengths f + and f � of respective circular polarizations. The di�erence can be
evaluated by quantity called the fractional dichroism� = ( f � � f + )=(f � + f + ).
Spectral dependence of these transitions can be derived analogically [73], the
o�-diagonal elements of permittivity tensor are given by [74]

"2 = 2� 0("
00

2)max
! (! 2 � ! 2

0 + � 2
0) � i � 0(! 2 + ! 2

0 � � 2
0)

(! 2 � ! 2
0 � � 2

0)2 + 4� 2
0! 2

; (2.49)

where ("
00

2)max is the maximum amplitude of the imaginary part of"2, which occurs
for ! = ! 0. For historical reasons [75], these transitions are called paramagnetic
transitions. Real and imaginary parts of"2 are odd and even functions of (! � ! 0),
respectivelly. For � 0 � ! 0, their spectral shapes are opposite to previous case.
The real part exhibits simple dispersive behaviour while the imaginary part has
a simple dissipative line shape, as shown in Fig. 2.4(b).

2.5 Macroscopic theory of magneto-optical
e�ects (Yeh formalism)

In this section we will crown the theory of MO e�ects. Earlier in section 2.2
we have de�ned MO angles by re
ection coe�cients. In previous section we
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have introduced microscopical models, which served us to derive both diagonal
and o�-diagonal elements of permittivity tensor. Here we will show how the
permittivity enters the basic de�nition of MO angles and we will derive �nal
expressions of MO angles, which allow us to calculate MO response of arbitrary
multilayer structure. The transfer matrix formalism, which we present here, was
initially developed by P. Yeh [76] and further extended for absorbing media by�S.
Vi�s�novsk�y [77].

First let us describe the sample, in which we want to calculate the MO re-
sponse. We consider a structure consisting ofN layers, as shown in Fig. 2.5. All
interfaces of the multilayer are mutually parallel and they are also perpendicular
to z axis. Surrounding half spaces 0 andN + 1 are isotropic media, which are
characterized by permittivity scalars" (0) and " (N +1) . Each of theN layers is char-
acterized by complex permittivity tensor" (n) and thicknesstn for n = 1; 2; : : : ; N .
Plane of incidence is perpendicular tox axis, making thex component of wave
vector equal to zero. Angle of incidence is denoted by' 0.

In order to calculate the MO response, we need to solve the wave equation
in all layers of the investigated sample. Let us consider the sample to be magne-
tized ferromagnetic (therefore optically anisotropic) medium without free charges,
which is impacted by monochromatic plane wave with de�ned polarization, com-

x 

y

z 

t1 

t2 

��0 

z0 

z1 

z2 

layer 1  

layer 2  

layer N 

half space 0 

half space  N  +  1 

��(1) 

��(2) 

��(N) 

��(N + 1) 

��(0) 

zN-1 

zN 

tN 

Figure 2.5: Multilayer structure consisting ofN optically anisotropic layers and
surrounded by two optically isotropic half spaces;" (0) and " (N +1) are permittivity
scalars of the half spaces," (n) and tn for n = 1; : : : ; N are complex permittivity
tensors and thicknesses of the layers,zn for n = 0; : : : ; N denotesz coordinates
of the interfaces and' 0 stands for the angle of incidence.
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ing from vacuum or air. Electromagnetic wave in such medium can be described
by Maxwell and constitutive equations. In general, the relative permittivity and
permeability are second-order tensors. For now we assume the permittivity ten-
sor in its general form (2.37), while it has been shown elsewhere [78] that the
relative permeability � = 1 is a suitable simpli�cation. Wave equation for the
electric component of the wave inn-th layer is then given in its well known form
as

� E (n) �
" (n)

c2

@2E (n)

@t2
� r

�
r � E (n)

�
= 0; (2.50)

wherec is the speed of light in vacuum. We assume solution of eq. (2.50) in form
of plane wave with frequency! and wave vectork (n) ,

E (n) = E (n)
0 ei (!t � k ( n ) �r ) ; (2.51)

where r is the position vector. We further introduce reduced wave vectorN (n)

as
N (n) =

c
!

k (n) = ( Nxx + Nyy + N (n)
z z): (2.52)

Choice of the Cartesian system as shown in Fig. 2.5 yields itsx component zero
throughout the whole structure, while they component is unchanged in all layers,
given by Snell law as

Ny = N0 sin' 0; (2.53)

where N0 is real refractive index of the isotropic front medium. Inserting such
plane wave into eq. (2.50), it can be rewritten in a matrix form as [70]

2

6
4

" (n)
xx � N 2

y � (N (n)
z )2 " (n)

xy " (n)
xz

" (n)
yx " (n)

yy � (N (n)
z )2 " (n)

yz + NyN (n)
z

" (n)
zx " (n)

zy + NyN (n)
z " (n)

zz � N 2
y

3

7
5

2

6
6
4

E (n)
0x

E (n)
0y

E (n)
0z

3

7
7
5 = 0; (2.54)

whereE (n)
0x ; E (n)

0y and E (n)
0z are components of the complex wave amplitude. Non-

trivial solution of eq. (2.54) is given by condition of zero determinant, which
leads to characteristic equation for four eigenvaluesN (n)

zj . The four solutions
describe four eigenmodes of light waves in a given layern. The modes are deter-
mined by four eigenvectorse(n)

j and four eigenvaluesN (n)
zj , giving general solution

of eq. (2.54) as their linear combination

E (n) =
4X

j =1

E (n)
0j (zn )e(n)

j e
i
n

!t � !
c

h
N y y+ N ( n )

zj (z� zn )
io

; (2.55)

wherezn is z component of the interface betweenn-th and n +1st layer. Relation
between electric and magnetic �eld component of electromagnetic wave follows
from Maxwell equations as

B (n) =
1
c
N (n) � E (n) : (2.56)

Therefore the magnetic component will be given as

B (n) =
1
c

4X

j =1

E (n)
0j (zn )b(n)

j e
i
n

!t � !
c

h
N y y+ N ( n )

zj (z� zn )
io

; (2.57)
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where the eigenvectorsb(n)
j are with respect to eq. (2.56) given by

b(n)
j = N (n) � e(n)

j : (2.58)

Having solution of the wave equation, next step will be application of bound-
ary conditions. As follows from Maxwell equations, tangential components of the
electric and magnetic �eld vectors are continuous at an interface between two
media. With the solutions (2.55) and (2.57), this requirement can be expressed
for n � 1st and n-th layer as [70]

4X

j =1

E (n� 1)
0j (zn� 1)e(n� 1)

j � x =
4X

j =1

E (n)
0j (zn )e(n)

j � x ei !
c N ( n )

zj tn ; (2.59)

4X

j =1

E (n� 1)
0j (zn� 1)b(n� 1)

j � y =
4X

j =1

E (n)
0j (zn )b(n)

j � yei !
c N ( n )

zj tn ; (2.60)

4X

j =1

E (n� 1)
0j (zn� 1)e(n� 1)

j � y =
4X

j =1

E (n)
0j (zn )e(n)

j � yei !
c N ( n )

zj tn ; (2.61)

4X

j =1

E (n� 1)
0j (zn� 1)b(n� 1)

j � x =
4X

j =1

E (n)
0j (zn )b(n)

j � x ei !
c N ( n )

zj tn : (2.62)

It can be further rewritten in a matrix form as

D (n� 1)E (n� 1)
0 (zn� 1) = D (n)P (n)E (n)

0 (zn ); (2.63)

where we introduced the so called dynamicalD (n) and propagationP (n) matrix
of n-th layer. The dynamical matrix characterizes transformation of the light
wave at interface. It consists ofx and y components of the eigenmodes as

D (n) =

2

6
6
6
6
6
4

e(n)
1 � x e (n)

2 � x e (n)
3 � x e (n)

4 � x
b(n)

1 � y b(n)
2 � y b(n)

3 � y b(n)
4 � y

e(n)
1 � y e (n)

2 � y e (n)
3 � y e (n)

4 � y
b(n)

1 � x b (n)
2 � x b (n)

3 � x b (n)
4 � x

3

7
7
7
7
7
5

: (2.64)

The propagation matrix describes propagation of the light wave inn-th layer. It
is given as

P (n) =

2

6
6
6
6
6
4

ei !
c N ( n )

z1 tn 0 0 0

0 ei !
c N ( n )

z2 tn 0 0

0 0 ei !
c N ( n )

z3 tn 0

0 0 0 ei
!
c N ( n )

z4 tn

3

7
7
7
7
7
5

: (2.65)

We can further rewrite the matrix form of continuity requirements (2.63) as

E (n� 1)
0 (zn� 1) =

�
D (n� 1)

� � 1
D (n)P (n)E (n)

0 (zn ) = T (n� 1;n)E (n)
0 (zn ); (2.66)

where we introduced the transfer matrixT (n� 1;n) . It binds the �eld components
in two adjacent layers. The �eld components are bound analogically at all inter-
faces forn = 1; : : : ; N + 1, except for the last interface. Propagation of the light
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wave after this interface cannot be characterized by propagation matrix, because
we �nd ourselves in the second half space with no de�ned thickness. The last
transfer matrix therefore consists of only the dynamical matrices

E (N )
0 (zN ) =

�
D (N )

� � 1
D (N +1) E (N +1)

0 (zN ) = T (N;N +1) E (N +1)
0 (zN ): (2.67)

If we then successively multiply all transfer matrices, we can express relation
between light waves in the two surrounding media as

E (0)
0 (z0) =

 N +1Y

n=1

T (n� 1;n)

!

E (N +1)
0 (zN ) = ME (N +1)

0 (zN ); (2.68)

where we introduced the matrixM , which characterizes an arbitrary anisotropic
multilayer.

In the last step we rewrite eq. (2.68) using two assumptions. We assume that
the incident wave in the front half space can be decomposed into two orthogonal
polarizations (eigenvectors)e(0)

1 and e(0)
3 with amplitudes E (0)

01 and E (0)
03 . Analog-

ically, the components of the re
ected wave in the front half space are described
by orthogonal polarizationse(0)

2 and e(0)
4 with amplitudes E (0)

02 and E (0)
04 . We next

take into account that there is no source of light in the back half space, therefore
E (N +1)

02 = E (N +1)
04 = 0. Eq. (2.68) can then be written as
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6
6
6
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E (0)
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7
7
7
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=
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5
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6
6
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6
4

E (N +1)
01

0
E (N +1)

03

0

3

7
7
7
7
5

: (2.69)

From eq. (2.69) we can �nally calculate the re
ection coe�cients in terms of com-
ponents of the matrix M . They are given by [79]

r21 =

0

@E (0)
02

E (0)
01

1

A

E (0)
03 =0

=
M 21M 33 � M 23M 31

M 11M 33 � M 13M 31
; (2.70)

r23 =

0

@E (0)
02

E (0)
03

1

A

E (0)
01 =0

=
M 11M 23 � M 21M 13

M 11M 33 � M 13M 31
; (2.71)

r41 =

0

@E (0)
04

E (0)
01

1

A

E (0)
03 =0

=
M 41M 33 � M 43M 31

M 11M 33 � M 13M 31
; (2.72)

r43 =

0

@E (0)
04

E (0)
03

1

A

E (0)
01 =0

=
M 11M 43 � M 41M 13

M 11M 33 � M 13M 31
: (2.73)

Assuming that the decomposition of incident and re
ected wave into two orthogo-
nal polarizations consists ofs-polarized andp-polarized component, the re
ection
coe�cients (2.70) - (2.73) are related to their previous de�nition via Jones re
ec-
tion matrix (2.10) as

R sp =

"
r ss r sp

rps rpp

#

=

"
r21 r23

� r41 � r43

#

: (2.74)
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Therefore we have all we need in order to calculate the MO response of arbi-
trary anisotropic multilayer. The matrix M contains information about optical
properties of all layers of the system. Its elements then express the re
ection
coe�cients via eqs. (2.70) - (2.73) and according to de�nition (2.36) the resulting
MO Kerr angle is given by ratio of the re
ection coe�cients.

Moreover a reverse procedure is also possible. Measuring �rst MO Kerr e�ect
of given sample, from known MO response of the material we can derive elements
of the permittivity tensor.
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3. Experimental techniques
The third chapter provides a brief overview of the most important experimental
methods that were used in this work. We start with pulsed laser deposition that
was employed to grow all the investigated samples. Concerning X-ray di�raction,
which is a standard characterization technique, we present here mainly the cal-
culations necessary to determine the whole monoclinic unit cell from measured
reciprocal space maps. Next we introduce the basic working principle of super-
conducting quantum interference device magnetometry that was used to char-
acterize magnetic properties of our samples. The most important optical and
magneto-optical techniques - spectroscopic ellipsometry, MO Kerr spectroscopy
and microscopy - are presented in detail in terms of the Jones calculus, which
was introduced in previous chapter. Last method is magnetic force microscopy
that can provide complementary information about magnetic properties of the
investigated samples.

3.1 Pulsed laser deposition

Discovery of laser in the 1960s was soon afterwards followed by �rst attempts
to use it for thin �lms fabrication [80, 81]. At �rst however, quality of laser
deposited �lms used to be inferior compared to other conventional methods
as molecular beam epitaxy (MBE) or metalorganic chemical vapour deposition
(MOCVD). In the late 1980s situation began to change, when groups of Dijkkamp
et al. [82] and Inamet al. [83] by means of pulsed laser deposition (PLD) suc-
ceeded in high quality growth of superconducting Y-Ba-Cu-O thin �lms. Since
then PLD has become widely spread method for fabrication of thin �lms of var-
ious materials, including metals, semiconductors, insulators, polymers and even
biological materials [84].

Fig. 3.1 shows typical experimental set-up of PLD. The material we want
to deposit as thin layer is placed in vacuum chamber in form of dense ceramic
target. A laser pulse of short duration (� ns) and high energy (� J/cm 2) impacts
on the ceramic target and ablates small amount of the material, which creates a
plasma plume. After few microseconds, the plume hits a substrate placed in the
chamber on a heater. The heater maintains the substrate at high temperature,
typically hundreds of degrees Celsius. As reaching the substrate, the plume con-
denses contributing to volume of the growing �lm. Analogically to MBE, re
ec-
tion high-energy electron di�raction (RHEED) can be utilized to monitor proper
epitaxial growth of the �lms.

Concerning epitaxial (i.e. ordered oriented) growth, PLD has proven to be
remarkably e�cient when fabricating multicomponent inorganic materials [84].
The epitaxial growth can be achieved when the ablation plume consists mostly
of atomic, diatomic and other low-mass components. This can be realized by na-
nosecond laser pulses of ultraviolet light, which cause strong absorption in small
volume of the ceramic target. For other materials, such as polymers or organic
materials, di�erent conditions are applied. In addition to good epitaxial growth,
PLD is of high interest for thin �lm growth due to other reasons, such as stoi-
chiometric transfer of material between target and substrate or compatibility with
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Figure 3.1: Schematic depiction of typical pulsed laser deposition system. The
chamber is kept at high vacuum by turbomolecular pump (TP). Ultraviolet laser
pulses are led to the chamber by a system of lenses (L) and other optical elements.
Then the pulses ablate a ceramic target (T), and created plasma plume (P) hits
a substrate placed on a heater (H).

backgroung pressures ranging from ultrahigh vacuum (� 10� 7 Pa) up to circa 102

Pa. In contrast to MOCVD, which works at almost atmospheric pressure, it is
however necessary to have at least medium vacuum.

PLD process requires presence of a background gas, which serves two purposes.
In case of oxide �lms, oxygen atmosphere helps to provide proper stoichiometry
of the fabricated �lms. The second reason is due to relatively high energy of the
ablated species, which according to plasma plume dynamics studies could reach
several hundred electron volts [85]. However, already from energy� 50 eV the
�lm structure could be damaged. The background gas can decrease energy of the
species in the plume down below 1 eV and therefore prevent undesirable disruption
of the growth process.

Post-deposition treatment might further improve quality of the �lms. In case
of oxide materials, post-deposition oxygen annealing can either help to addition-
ally oxidize the grown �lm or in contrary to remove extra oxygen. It has been
shown that such treatment in oxide �lms leads to essential improvements ofTC

and CMR [86].

3.2 X-ray di�raction

X-ray di�raction (XRD) is a basic characterization technique, which provides in-
formation about crystallographic structure and crystalline quality of investigated
material. It is based on detection of X-rays di�racted on lattice planes of the in-
vestigated sample. Peak position of di�racted radiation is determined by Bragg
law

2dhkl sin� = �; (3.1)
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where dhkl is distance between two lattice planes given by Miller indeceshkl , �
is the wavelength of X-ray radiation and� is the angle of incidence, at which the
di�raction peak occurs.

Fig. 3.2(a) shows basic XRD experimental set-up, where several rotation an-
gles of the sample are de�ned. The sample can be rotated in the plane of inci-
dence, as denoted by angle! , which is measured between surface plane of the
sample and incident X-ray beam. The angle 2� is measured between incident and
detected X-ray beam. The sample can be further rotated outside of the plane
of incidence, as denoted by angles' and  .

Basic XRD scan is a symmetric� -2� scan. In such scan the X-ray source is
kept at �xed position. The sample and detector are then adjusted so that = 0
and ! = 2�=2, i.e. the di�racted intensity is always measured under the double
of the angle of incidence 2� . As a result, signal detected during this scan comes
from di�raction on lattice planes parallel with sample surface, which provides
information about the out-of-plane lattice parameter of the sample.

In order to describe the whole unit cell of the investigated sample, it is nec-
essary to measure asymmetric scans, which can provide information about the
in-plane lattice parameters. Asymmetric� -2� scan is performed similarly to the
symmetric scan with one substantial di�erence, which is initial o�set of the sam-
ple position given by the! angle, which now! 6= 2�=2. The detected signal then
comes from lattice planes which are no longer parallel to surface plane, i.e. given
by arbitrary Miller indeces (hkl ). When properly adjusting the azimuth ' , we
can separate contributions of the two in-plane lattice parameters by measuring
di�raction signal on the (h0l) or (0kl) lattice planes, respectively.

Set of multiple asymmetric scans for di�erent values of! o�set is known as
reciprocal space map (RSM) and it allows us to obtain complete information
about unit cell of the investigated sample. As we have shown in section 1.3,
epitaxial LSMO unit cell can be described as monoclinic. Therefore we now show
how to calculate lattice parameters from RSMs in case of monoclinic unit cell.

X-ray
source

D

S

��2��

��

��

��1 ��2

��

x

y

z

ba

f g
e

(a) (b)

Figure 3.2: (a) Schematic diagram of basic X-ray di�raction experimental set-up;
D - detector, S - sample, angles!; ' and  de�ne rotation of the sample, 2�
de�nes the detection angle. (b) Schematic representation of monoclinic unit cell
with introduction of complementary quantities e; f; g and 
 1; 
 2.
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We begin the calculation of monoclinic lattice parametersa; b; cand 
 with
introduction of basic quantities in both real and reciprocal space. Unit cell vectors
a; b and c in real space are related to reciprocal unit cell vectorsa � ; b� and c� as

a � = 2�
b � c

V
; b� = 2�

c � a
V

; c� = 2�
a � b

V
; (3.2)

whereV stands for unit cell volume in real space

V = ( a � b) � c: (3.3)

Di�raction peak described by Miller indeceshkl is then given by reciprocal space
vector Q as

Q = ( Qx ; Qy; Qz) = ha � + kb� + lc� : (3.4)

Fig. 3.2(b) shows monoclinic unit cell, in which we introduce several com-
plementary quantities e; f; g and 
 1; 
 2. Their relation to unit cell parameters is
apparent from the picture, they are given as

a =
q

e2 + f 2; b=
q

e2 + g2; (3.5)


 = 
 1 + 
 2 = arctan

 
f
e

!

+ arctan
� g

e

�

: (3.6)

The unit cell vectors in real space can be expressed in terms of the complementary
quantities as

a = ( � f; 0; e); b = ( g;0; e); c = (0 ; c;0); (3.7)

which inserted into eq. (3.3) yields the unit cell volumeV as

V = ( f + g)ec: (3.8)

Inserting the unit cell vectors in the form (3.7) into eq. (3.2) and using the unit
cell volume (3.8) gives us the reciprocal unit cell vectors as

a � =
2�

f + g

�

� 1; 0;
g
e

�

; b� =
2�

f + g

 

1; 0;
f
e

!

; c� =
2�
c

(0; 1; 0): (3.9)

Using now eq. (3.9) yields the components of reciprocal space vectorQ (3.4) as

Qx =
2�

f + g
(k � h); (3.10)

Qy =
2�
c

l; (3.11)

Qz =
2�

f + g

 

h
g
e

+ k
f
e

!

: (3.12)

If we know coordinates of the reciprocal space vectorQ from measured RSM, we
can directly obtain lattice parameterc from eq. (3.11) for an arbitrary di�raction
with non-zero Miller index l. Lateral periodicity (f + g), which is usually known
as the (ab) distance

(ab) =
q

a2 + b2 � 2abcos
; (3.13)
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can be obtained from eq. (3.10) for a di�raction withh 6= k. To calculate the
remaining parametersa; band 
 , we combine eqs. (3.10) and (3.12), which yields
an equation with two unknown complementary quantitiese and g

Qze+ Qxg = 2�k: (3.14)

As we have only one equation for two unknown quantities, we need to use two
di�ractions with non-colinear reciprocal space vectorsQ, which gives us set of two
linear equations for two unknown quantitiese and g. As we already know the
lateral distance (f + g), f can be afterwards easily calculated and the lattice
parametersa; band 
 are �nally given by eqs. (3.5) and (3.6).

3.3 Superconducting quantum interference
device magnetometry

Superconducting quantum interference device (SQUID) is a highly sensitive me-
thod designed for measurements of extremely weak magnetic signals down to 10� 8

emu. Its working principle is based on application of Josephson e�ect [87, 88]. We
distinguish two kinds of SQUID, based on number of employed Josephson junc-
tions. The so called radio frequency (RF) SQUID contains only one Josephson
junction, while direct current (DC) SQUID consists of two Josephson junctions.
We will focus on DC-SQUID, which is more sensitive and it is employed in our
experimental set-up.

Fig. 3.3(a) shows Quantum design commercial Magnetic Properties Measure-
ment System (MPMS), which is a magnetometer of DC-SQUID type. Schematic

S

M M

C1

C2
C3

C4

(b)(a)

Figure 3.3: (a) Commercial Quantum design SQUID magnetometer MPMS XL
7T (taken from [89]). (b) Basic diagram of SQUID magnetometer; C1, C2, C3,
C4 - pickup coils, M - superconducting electromagnet, S - sample.
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diagram of its basic working principle is shown in Fig. 3.3(b). Measurement cham-
ber contains superconducting electromagnet M, which provides external magnetic
�eld in vertical direction, up to 7 T in case of the MPMS. Inside of the electro-
magnet M, there are four pickup coils C1 - C4, through which the sample S is
moved during the measurement process. When moving sample through a pickup
coil, positive or negative current is induced in the coil depending on sense of the
coil winding and direction of the sample movement. Winding sense of coils C1
and C4 is opposite to that of coils C2 and C3, which results in bell shaped
curve of the induced current. Two measurement modes are possible. During DC
mode, sample is moved in one direction by discrete steps, recording the induced
current at each position. The more precise reciprocating sample option (RSO)
mode performs sinusoidal oscillations through the whole measuring space, while
recording the induced current pro�le. The induced current is further brought
to key element of the DC-SQUID, which are two Josephson junctions in parallel
con�guration. They allow to measure change of magnetic 
ux by the current in-
duced in pickup coils. Fitting the space dependence of induced current by model
function, combined with conversion via Josephson junctions allows eventually for
presice determination of the sample magnetic moment.

The measuring chamber is typically placed in liquid helium, which allows
proper functioning of the superconducting electromagnet. High temperature su-
perconductors enabled construction of SQUID systems working with liquid nitro-
gen. Such systems are apparently more cost e�ective, however less sensitive as
well. MPMS works with liquid helium in temperature range between 1.9 K and
400 K.

3.4 Spectroscopic ellipsometry

In previous chapter we learned how to calculate MO response of arbitrary multi-
layer. We have seen that the MO description requires detailed knowledge about
optical properties of investigated materials, i.e. about diagonal elements of per-
mittivity tensor. That is where spectroscopic ellipsometry (SE) plays an impor-
tant role, providing information about the complex index of refraction, which is
directly linked to the diagonal permittivity tensor elements. The SE is suitable
for optical characterization of bulk crystals as well as thin �lms.

Fig. 3.4 shows basic experimental set-up of spectroscopic ellipsometer. Light
coming out of the source passes through polarizer P, which makes the light wave
linearly polarized. The light further re
ects on the investigated sample S, passes
through compensator C and analyzer A and �nally it is measured by the detector
D. Such sequence of optical elements is often re�ered to as PSCA con�guration.

Polarization plane de�ned by the polarizer P is given by angle� measured
with respect to x axis, which is perpendicular to both wave vector and plane
of incidence as de�ned in Fig. 2.2. In terms of Jones calculus, we can express
Jones transmission matrix of the polarizerTP as

TP =

"
cos2 � cos� sin�

cos� sin� sin2 �

#

: (3.15)

Re
ection upon sample S is characterized by Jones re
ection matrix as de�ned
by eq. (2.10). Typically we deal with optically isotropic materials, in which case
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Figure 3.4: Basic experimental set-up of spectroscopic ellipsometry known as
PSCA con�guration; A - analyzer, C - compensator, D - detector, P - polarizer,
S - sample.

the Jones re
ection matrix R sp has a simpli�ed diagonal form

R sp =

"
r s 0
0 rp

#

: (3.16)

Typical SE set-up involves compensator C. It is usually a phase retarder,
which allows to measure how much of the re
ected light became unpolarized,
e.g. due to non-uniformity of the sample or as a result of backside re
ection
at the �lm/substrate interface. Jones transmission matrix of the compensator
TC characterized by phase shift� is given as

TC =

"
ei �

2 0
0 e� i �

2

#

: (3.17)

The analyzer A is a polarizer, which transmits linearly polarized light in plane
given by angle � measured tox axis. Then analogically to eq. (3.15) Jones
transmission matrix of the analyzerTA is given as

TA =

"
cos2 � cos� sin�

cos� sin� sin2 �

#

: (3.18)

Relation between incidentJ (I ) and �nal J (X ) Jones vector, which determines
light polarization state after passing through an arbitrary system of optical el-
ements, is given by eq. (2.21). Knowing Jones matrices of all elements of SE
system, we can then using eqs. (3.15) - (3.18) express the relation between inci-
dent and detected light as

J (X ) = TA � TC � R sp � TP � J (I ) =

"
cos2 � cos� sin�

cos� sin� sin2 �

#

�

�

"
ei �

2 0
0 e� i �

2

#

�

"
r s 0
0 rp

#

�

"
cos2 � cos� sin�

cos� sin� sin2 �

#

� J (I ) ; (3.19)

which allows us to calculate the detected intensityI as

I =
�
J (X )

� y
J (X ) : (3.20)

SE works via investigation of change betweens and p-polarized wave compo-
nent upon re
ection on the sample. This change can be expressed by complex
re
ectance ratio � as

� = rp=rs = tan (	)e i � ; (3.21)
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where we introduced the ellipsometric angles 	 and �. We will not present
here the full calculation of intensity according to eq. (3.20), it can be found
elsewhere [69]. It can be shown that the detected intensity contains overall infor-
mation, from which the ellipsometric angles 	 and � can be extracted. Spectra
of the ellipsometric angles then allow us to calculate optical properties of the
sample, i.e. index of refractionn and extinction coe�cient k. The complex index
of refraction ~n = n + ik is related to diagonal element of permittivity tensor
"1 = "

0

1 + i"
00

1 as
"1 = (~n)2: (3.22)

In addition to optical properties, we can also obtain re�ned values of layers thick-
nesses. In data processing procedure we consider model structure of the investi-
gated sample and numerically adjust desired parameters by repeated comparison
with experimental data. Typically we want to determine optical properties in one
layer of multilayer structure, where optical properties of other layers as well as
these of the substrate are known. Then in the layer of unknown properties, opti-
cal transitions in spectra of diagonal elements of permittivity tensor are modelled
with corresponding line shapes, e.g. as Lorentz transitions as presented in sec-
tion 2.4. Fitting such model to experimental data yields optimized parameters
of the optical transitions and re�ned values of nominal layers thicknesses, which
are also included in the initial model.

3.5 Magneto-optical Kerr spectroscopy

MO Kerr spectroscopy is a highly sensitive technique for measuring magnetic
properties of materials. Its ability to detect MO angles with precision of millide-
grees makes it suitable for probing weak signals of ultrathin �lms and multilayer
systems. There are two basic classes of MO experimental methods. The sim-
ple class employs direct intensity detection, the more sophisticated methods are
based on azimuth or ellipticity modulation combined with synchronic detection.
The modulation techniques generally provide higher signal to noise ratio, however
we have recently demonstrated that it is possible to achieve similar or even higher
precision using one of the intensity methods [90, 91, 92].

Basic principle of MO spectroscopy is essentially identical to SE, which is why
it is often referred to as generalized MO ellipsometry [79]. It is also based on in-
vestigation of light polarization change upon re
ection on a sample. The main
di�erence is introduced by magnetic �eld application, which makes the sample
optically anisotropic. Figure 3.5 shows the experimental set-up of generalized
MO ellipsometry with rotating analyzer. We can notice that it is very similar
to basic set-up of SE, which we introduced in Fig. 3.4. Light coming out of the
source passes through polarizer P, which de�nes linear polarization of the light
wave. The light further re
ects on the investigated sample S, which is placed
in magnetic �eld. Then it optionally passes through compensator C and arrives
at the key element of the system, which is the rotating analyzer A. Finally the
light is measured by detector D.

Analogically to the case of SE, we can express the optical elements in terms
of Jones calculus. Polarizer P de�nes linear polarization in plane given by angle�
measured with respect tox axis, its Jones transmission matrixTP is then given
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Figure 3.5: Schematic representation of magneto-optical Kerr spectrometer with
rotating analyzer; A - rotating analyzer, C - compensator, D - detector, L1, L2 -
lenses, P - polarizer, S - sample in magnetic �eld.

by eq. (3.15). Re
ection upon sample S is now characterized by general form
of Jones re
ection matrix R sp (2.10), as the sample becomes optically anisotropic
in magnetic �eld. If we consider the case of almost normal light incidence, the
re
ection coe�cients are related to each other according to eq. (2.35). Using then
the de�nition of complex Kerr MO angle � K (2.36) via re
ection coe�cients,
general form of the Jones re
ection matrixR sp can be rewritten as

R sp =

"
1 � � K

� � K � 1

#

: (3.23)

Compensator C is a phase retarder characterized by phase shift� , its Jones
transmission matrix TC is therefore given by eq. (3.17). Rotating analyzer A
transmits linearly polarized light in plane determined by angle� measured tox
axis, its Jones transmission matrixTA is then given by eq. (3.18). Relation be-
tween incident J (I ) and �nal J (X ) Jones vector can be expressed analogically
to eq. (3.19), where the only di�erence is made by replacement of Jones re
ection
matrix by eq.(3.23). Therefore we can write

J (X ) = TA � TC � R sp � TP � J (I ) =

"
cos2 � cos� sin�

cos� sin� sin2 �

#

�

�

"
ei �

2 0
0 e� i �

2

#

�

"
1 � � K

� � K � 1

#

�

"
cos2 � cos� sin�

cos� sin� sin2 �

#

� J (I ) : (3.24)

Let us now consider the polarizer P transmittingp-polarized light, i.e. � = 90�

(cf. Fig. 2.2). Further we assume that the analyzer A is initially in crossed
position with polarizer P, which means that angle� is now measured from the
crossed position. In such case the �nal Jones vector is given as

J (X ) =

"
� � K ei �

2 cos2 � � e� i �
2 cos� sin�

� e� i �
2 sin2 � � � K ei �

2 cos� sin�

#

: (3.25)

Intensity I measured by detector D is given by eq. (3.20). If we use Jones vector
in the form (3.25), the intensity can be calculated as

I = sin2 � + j� K j2 cos2 � + sin (2� )Re
n
� K ei�

o
: (3.26)
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The quadratic term in � K in eq. (3.26) can be neglected as a consequence of typ-
ically weak MOKE signal. Expressing further the complex Kerr MO angle �K
in terms of Kerr rotation � K and Kerr ellipticity � K according to eq. (2.36), the
intensity can be rewritten as

I = sin2 � + ( � K cos� + � K sin� ) sin (2� ) + I dark ; (3.27)

whereI dark is a constant term representing dark current in the detector.
From eq. (3.27) the MO angles can be calculated. We see that with no phase

retarder in the experimental set-up (� = 0), Kerr rotation � K could be directly
measured for known value of the analyzer angle� , if no dark current were present.
However, the presence of dark current and other noise factors requires measuring
of the intensity for several values of the angle� . Then the intensity can be �tted
as a function of angle� and Kerr rotation � K is extracted as constant parameter
for each wavelength. Looking at eq. (3.27), theoretically we could measure Kerr
ellipticity � K directly as well, using phase retarder with phase shift� = �= 2.
However, no real phase retarder has constant phase shift in a broad spectral
range. The phase retarder used in the system has known but varying phase
shift (0 < � < �= 2). The intensity is then again �tted as function of angle�
according to eq.(3.27). Knowing for each wavelength the phase shift� as well as
the parameter of Kerr rotation � K extracted from previous measurement without
phase retarder, now it is Kerr ellipticity � K being calculated from the �t.

3.6 Magneto-optical Kerr microscopy

MO Kerr microscopy is a technique for measuring magnetic properties with spa-
tially resolved information, i.e. it allows observation of magnetic domains. The
spatial information can be obtained either in a scanning regime or detected all
at once with use of charge-coupled device (CCD) detector. It is typically used
for recording of static images, but advanced techniques of time resolved Kerr
microscopy have also been demonstrated [93].

Fig. 3.6 shows basic experimental set-up of MO Kerr microscope. Light com-
ing out of the source passes through polarizer P, which makes the light wave
linearly polarized. The light further passes through beam splitter BS, which en-
sures normal incidence on the sample surface. After being re
ected on sample S
placed in a magnetic �eld, the light passes through beam splitter BS and analyzer
A and it is detected by detector D.

We can notice that the set-up of Kerr microscope is similar to MOKE spec-
trometer presented in previous section, however there are two apparent di�er-
ences. First is the additional use of beam splitter, which ensures perfectly nor-
mal light incidence on sample surface. This prevents unwished image distortion,
which would occur in con�guration of almost normal light incidence as introduced
in case of the spectrometer in Fig. 3.5. Second is the absence of compensator
in sequence of the optical elements. As we already know from previous section,
MOKE set-up with crossed polarizers and no compensator in the system allows
us to directly measure Kerr rotation� K . In case of Kerr microscopy we are only
interested in obtaining the spatial information, which can be provided by either
Kerr rotation or Kerr ellipticity, knowledge of both quantities is now redundant.
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Figure 3.6: Basic experimental set-up of MO Kerr microscope; A - analyzer,
BS - beam splitter, D - detector, L1, L2, L3 - lenses, P - polarizer, S - sample
in magnetic �eld.

As measuring Kerr rotation is technically easier, the microscope is designed for
this type of measurement with no additional phase retarding element in the sys-
tem.

As the experimental set-up is analogical to that of MO spectrometer, the
intensity arriving at the detector can be derived in terms of Jones calculus the
same way as presented in previous section. Final expression of the intensityI
measured by CCD detector is given by eq. (3.27), where� = 0 as there is no
phase retarder in the system.

3.7 Magnetic force microscopy

Magnetic force microscopy (MFM) is a technique for measuring magnetic proper-
ties of materials, which enables direct visualisation of magnetic domains. Unlike
Kerr microscopy it is not an optical technique, therefore its resolution is not lim-
ited by optical di�raction limit and it can be several orders of magnitude higher.
The technique is akin to classical atomic force microscopy (AFM), which serves
for surface topography measurements.

The principle of AFM is based on scanning with a sharp tip. When the
tip is moved close above the surface, it is a�ected by intermolecular van der
Waals forces. The forces result in bending of a cantilever, on which the tip is
placed. Movement of the cantilever is further tracked by laser light, which allows
to extract pro�le of the sample surface.

Fig. 3.7(a) shows commercial low temperature atomic force microscope at-
toAFM/MFM Ixs, which can perform measurements of both AFM and MFM.
Magnetic information about the sample can be obtained in a way analogical
to AFM via scanning movement of a sharp tip. The key di�erence is magnetic
coating of the tip, which enables the tip to sense direction of magnetization in the
sample. The intermolecular van der Waals forces are however still present and
they are acting on the tip as well, therefore we need to isolate their e�ect in or-
der to obtain pure information about magnetic properties of the sample. This
can be done in two di�erent ways. In lift mode, the topography is measured
�rst by classical AFM when scanning a line in one direction. This is done close
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Figure 3.7: (a) Scanning probe of commercial low temperature atomic force mi-
croscope attoAFM/MFM Ixs (taken from [89]); C - piezoelectric crystals allowing
movement of the scanner, S - sample. (b) Schematic representation of MFM scan-
ning process; F - force acting on scanning tip above sample surface, S - sample,
T - tip with magnetic coating. Arrows represent magnetization direction of the
sample domains and tip coating.

enough to the surface, where the intermolecular forces are signi�cantly stronger
than the magnetic forces. Then for scanning the same line in opposite direction,
the tip is lifted and kept at constant distance above the surface due to move-
ment along the topography pro�le obtained during the �rst scan. This way the
in
uence of topography is eliminated and the tip is a�ected only by magnetic
forces. In constant height mode, we �rst determine overall tilt of sample surface
in both in-plane directions. Then we adjust the scanner movement so that the tip
is always scanning (in both directions) at a constant distance above the average
surface plane. This distance is large enough so that the intermolecular forces are
negligible. As the lift mode is in reality rather complicated, for samples which
are reasonably 
at and their tilt can be easily determined the constant height
mode is a suitable option.

It is worth noting that MFM does not provide absolute, but only relative
information about the magnetization direction in the sample. Fig. 3.7(b) shows
schematic depiction of scanning movement of the tip T above surface of sample
S. Arrows represent magnetization direction in the tip coating and in magnetic
domains of the sample. Observing the resulting force F acting on the tip above the
surface, we can see that we can clearly distinguish domains with magnetization
parallel and antiparallel compared to the tip coating. These areas will appear with
maximum contrast, i.e. black and white on a grey scale. However domains with
magnetization perpendicular to the tip coating always a�ect the tip in exactly
same way, therefore they cannot be distinguished even when having opposite
direction to each other. Such areas will appear with the same grey contrast
on the grey scale. Therefore we cannot obtain complete information about the
magnetization direction in the sample, but we can clearly visualise individual
magnetic domains.
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4. Investigated samples
In this chapter we present technical details of the samples fabrication process and
we provide their brief overview. All the samples were fabricated at Centre for
Nanoscience and Nanotechnology in Orsay.

4.1 La 2=3Sr1=3MnO 3 �lms on various oxide
substrates

In order to impose static epitaxial strain on LSMO, we fabricated set of thin �lms
on various oxide materials. The �lms were grown using a homemade PLD set-up
with KrF ultraviolet laser operating at wavelength � = 248 nm. Pulse repetition
rate was 2 Hz and maximum energy 
uence 3 J/cm2. Background oxygen pressure
was 120 mTorr during the deposition process, post-deposition oxygen annealing
was performed at 75 Torr. The substrate temperature was maintained at 620� C.

We used four di�erent substrate materials, either (001) oriented cubic (LAO,
LSAT and STO) or (110) oriented orthorhombic (DSO) single crystals. They are
all twinfree with exception of LAO, which exhibits microtwins parallel to (001).
These substrates provide di�erent type and range of in-plane induced epitaxial
strains, from large compressive strain on LAO, through small compressive strain
on LSAT and small tensile strain on STO, up to large tensile strain on DSO.
Fig. 4.1 illustrates number line with indicated values of bulk cubic or pseudocubic
lattice parameters of all four substrates together with LSMO.

LAO LSAT STO DSO

LSMO
3.7 3.8 3.9 4.0

Lattice parameter a [Å]

Figure 4.1: Schematic representation of number line with bulk cubic or pseudocu-
bic lattice parameters of all substrates used for deposition of LSMO �lms.

Pseudocubic lattice parameter of bulk LSMO isaLSMO = 3:876 �A [94], the
substrates are characterized by cubic or pseudocubic lattice parametersaLAO =
3:790 �A, aLSAT = 3:868 �A, aST O = 3:905 �A and aDSO = 3:942 �A. Corresponding
lattice mismatch can thus be calculated using eq. (1.2), it is listed for all substrates
in Table 4.1.

Material LAO LSAT LSMO STO DSO
Lattice parameter a [�A] 3.790 3.868 3.876 3.905 3.942
Lattice mismatch m [%] 2.27 0.21 -0.74 -1.67

Table 4.1: Summary of bulk lattice parametersa and lattice mismatchesm for
all substrates used for deposition of LSMO �lms.
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We grew set of four LSMO �lms, one on each type of substrate, all with the
same nominal thicknesses of 20 nm. Growth of LSMO on (001) oriented cubic
or (110) oriented orthorhombic substrates results in single-crystalline LSMO �lms
with (110) monoclinic unit cell, which can be described as (001) pseudocubic as
well. Detailed description of the crystallographic properties will be provided
in the following chapter.

4.2 Patterned La 2=3Sr1=3MnO 3 on piezoelectric
underlayer

In order to dynamically control the strain imposed on LSMO, we fabricated a
device of patterned LSMO on piezoelectric underlayer. The initial multilayer was
grown by PLD and further processed by means of optical lithography, ion beam
etching (IBE) and DC sputtering.

The device is schematically depicted in Fig. 4.2. The initial multilayer struc-
ture consists of STO substrate, on top of which we subsequently grew 30 nm
of SRO bottom electrode, 130 nm of PbZr0:52Ti 0:48O3 (PZT) piezoelectric layer
and �nally 20 nm of LSMO on top. The SRO and LSMO layers were deposited
using same deposition parameters as described in previous section. The PZT
layer required di�erent conditions, we used nitrous oxide as background gas and
higher repetition rate of 10 Hz. Rest of the parameters remained the same.

Combination of optical lithography, IBE and DC sputtering were used to pat-
tern the LSMO �lm on top and fabricate contacts to both top and bottom elec-
trodes. In order to provide su�ciently large area for investigation by optical and
MO methods, 300� 300� m2 large LSMO pads were fabricated. The bottom SRO
electrode was accessed by further etching through the PZT layer and contacted
by Ti/Au via DC sputtering. The top LSMO electrode was contacted by Ti/Au
as well, using an auxiliary deposition of insulating Si3N4 next to the LSMO pads

STO

SRO
PZT PZT

LSMO Si3N4 Ti/Au

Ti/Au
+ -

PZT

SRO

LSMO

+
-

Ti/Au

Ti/Au

Si3N4

(a) (b)

Figure 4.2: (a) Schematic cross section and (b) top view of device used for dy-
namic application of strain to LSMO; 300� 300� m2 LSMO pads were fabricated
on top of piezoelectric PZT layer. The voltage was applied in direction perpendic-
ular to sample surface via top (LSMO) and bottom (SRO) electrodes contacted
by Ti/Au. Additional Si 3N4 pads allow to keep the LSMO pads accessible for
further measurements via optical methods.
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(as shown in Fig. 4.2), while keeping the LSMO pads uncovered and suscepti-
ble to subsequent optical and MO characterization. This approach also allows
to limit problem of leakage current. When applying voltage between the top and
bottom electrodes, the PZT layer is electrically polarized in direction perpendic-
ular to sample surface. The whole sample area consists of array of 20 identical
LSMO pads and 4 contacts to the bottom electrode, so that malfunctioning due
to pattern processing errors and �lms inhomogeneities can be avoided choosing
properly working device components.

4.3 SrRuO 3 �lms on SrTiO 3 substrates

Growth of SRO on the most commonly used substrate of (001) oriented STO is
possible in six di�erent crystallographic orientations, so called variants [19, 20],
as shown in Fig. 4.3(a). They can be sorted into three pairs - X (X'), Y (Y') and

surface normal

90°

��

(a)

(b)

X

X'

Y

Y'

0° 90° 180° 270°

(620)o

(444)o

(260)o

(c)

Figure 4.3: (a) Schematic representation of six di�erent crystallographic variants
of SRO growing on (001) oriented STO substrate (taken from [19]). Note that
the SRO variants are represented as pseudocubic unit cells, while the crystallo-
graphic directions are given for orthorhombic structure. (b) Schematic illustra-
tion of (260)o, (444)o and (620)o Bragg re
ections in RSMs measured on multi-
variant SRO �lm with X (X') and Y (Y') variants, around four azimuth angles
' = 0 � ; 90� ; 180� and 270� . (c) Schematic cross section of vicinal substrate with
de�nition of the miscut angle � .
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Z (Z'). By means of conventional XRD, we can distinguish among variants from
these three pairs, but we cannot distinguish between the two variants in one pair,
unless they are both present in the �lm. It is illustrated in Fig. 4.3(b), which
shows schematic representation of RSMs measured around four values of the
azimuth angle ' = 0 � ; 90� ; 180� and 270� . Here the relative positions of (260)o,
(444)o and (620)o Bragg re
ections are indicated at each azimuth, when four
variants from two pairs X (X') and Y (Y') are present in the SRO �lm. We can
see, for example, that if only X and Y variants were present, this situation would
appear the same as presence of only X' and Y' variants. The resulting pattern
of Bragg re
ections would be a mirror image of one another, but as we have
no �xed point, we cannot determine which one would be which. The important
information that can be determined, however, is the lone presence or absence
of multiple crystallographic variants.

It has been demonstrated [95, 19, 20] that use of vicinal STO substrate leads
to supression of formation of several di�erent SRO variants during the deposition
and therefore to improvement of overall crystalline quality of the �lms. Vicinal
substrate is characterized by small deviation of its surface normal from one of the
major crystallographic axes. This deviation is known as miscut and it is quanti�ed
by miscut angle� , as shown in Fig. 4.3(c). Even very small miscut angle (� < 1� )
was demostrated to suppress formation of the Z (Z') variants growth [95], leading
to presence of only X (X') and Y (Y') variants in the �lms. Larger values of the
miscut angle (� & 1� ) can then allow growth of purely single-variant SRO �lms
with only one crystallographic orientation.

Presence of multiple crystallographic variants, related to crystalline quality
of the material, naturally in
uences its magnetic properties, such as magne-
tocrystalline anisotropy or parameters of the magnetization reversal process [96].
In order to investigate in
uence of the crystalline quality on magnetization dy-
namics in SRO �lms, we fabricated a set of two SRO �lms on (001) oriented
STO substrates with di�erent values of the miscut angle. We deposited one
�lm on substrate of low miscut angle� = 0:1� to achieve multivariant growth.
In contrary, to suppress the multivariant growth we used vicinal substrate with
� = 1 � for the second sample. Both �lms were deposited by means of PLD, under
same experimental conditions as described in section 4.1. We denote the sample
on vicinal substrate SRO1, the sample on low miscut substrate SRO2.
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5. Strain impact on electronic
structure of La 2=3Sr1=3MnO 3

The �fth chapter presents all the results achieved during investigation of the
LSMO samples, whose physical properties were tried to be in
uenced by both
static and dynamic strain.

5.1 Static application of strain

The �rst part of this chapter covers in detail the investigation process for LSMO
samples deposited on di�erent substrates, i.e. having di�erent values of static
epitaxial strain. We begin with basic structural characterization by XRD, and
morphological study by AFM, which give us basic estimate of the samples qual-
ity. The strain state is evaluated more in detail by advanced XRD measure-
ments - reciprocal space maps. Magnetic properties of the samples are determined
by SQUID magnetometry. Full tensor of permittivity is determined by combina-
tion of spectroscopic ellipsomentry and MO Kerr spectroscopy. Some transitions
in the MOKE spectra exhibit dependence on the epitaxial strain, which is further
interpreted with the help of ab initio calculations. These �ndings belong to main
conclusions of this work.

5.1.1 Basic structural characterization and morphology

Proper crystallinity and surface morphology of the LSMO �lms was veri�ed
by means of XRD and AFM. The XRD measurements were carried out us-
ing PANanalytical X'Pert PRO Di�ractometer. The AFM images were taken
by Veeco/Bruker diInnova AFM Microscope.

Crystallinity of the samples was investigated by symmetric� � 2� scans around
(002) Bragg re
ection of LSMO. In order to estimate the �lm thickness and
pseudocubic out-of-plane lattice parameter, the di�racted intensityI was �tted
by classical interference formula

I = I 0

"
sin(2�

� t sin� )
sin(2�

� cc sin� )

#2

; (5.1)

where � = 1:5406 �A is the X-ray wavelength, t is the �lm thickness, cc is the
out-of-plane lattice parameter,� is the Bragg di�raction angle and I 0 is a con-
stant. As shown later this approach reproduces the thickness fringes but neglects
interference with substrate peak (so called kinematic approximation). Root mean
square (RMS) roughnessRRMS was evaluated from the AFM images by Gwyd-
dion software [97]. All the extracted parameters of the investigated �lms are
summarized at the end of this section in Table 5.1.

Fig. 5.1 shows surface AFM images of all four substrates before the LSMO
deposition. Presence of micro twins in LAO (Fig. 5.1(a)) is clearly visible and it
results in the highest surface roughness among all substrates,RLAO = 0:71 nm.
LSAT (Fig. 5.1(b)) on the other hand exhibits remarkably 
at surface as a result
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Figure 5.1: 2� 2 � m2 AFM images of (a) LAO, (b) LSAT, (c) STO and (d) DSO
substrates. Micro twins are visible in LAO. Atomic steps can be clearly seen in all
substrates except for LSAT.

of high crystalline quality and low miscut angle,RLSAT = 0:19 nm. Presence
of atomic steps can be seen in STO (Fig. 5.1(c)), resulting inRST O = 0:38 nm.
The last substrate of DSO (Fig. 5.1(d)) exhibits very smooth atomic steps and
the lowest surface roughness,RDSO = 0:11 nm.

Fig. 5.2(a) shows� � 2� scan of LSMO/LAO sample. The measured intensity
is �tted by formula (5.1), which yields the �lm thickness t = 20:0 nm and pseu-
docubic out-of-plane lattice parametercc = 4:002 �A. The substrate peak clearly
exhibits multiple maxima corresponding to di�erent crystallographic twins (see

(a) (b)

Figure 5.2: (a) Symmetric� � 2� XRD scan and (b) surface AFM image (2� 2 � m2)
of LSMO �lm deposited on LAO substrate.

52



(a) (b)

Figure 5.3: (a) Symmetric� � 2� XRD scan and (b) surface AFM image (2� 2 � m2)
of LSMO �lm deposited on LSAT substrate.

Fig. 5.1(a)). Due to the lower crystalline quality of the substrate and the high
lattice mismatch (2.27 %) the resulting quality of deposited LSMO layer is lower
compared to other �lms in the set, as can be seen from smaller overall intensity
of the LSMO (002) peak as well as from low visibility of the interference fringes.
The surface roughness is also the highest among all the samples,RRMS = 1:3 nm.
Fig. 5.2(b) shows AFM image of the surface, where no signature of atomic steps
can be recognized anymore (cf. Fig 5.1(a)).

Fig. 5.3(b) shows� � 2� scan of LSMO/LSAT sample. The �t according
to eq. (5.1) gives �lm thicknesst = 23:6 nm and lattice parametercc = 3:876 �A.
Due to high crystalline quality of the nearly lattice matched (0.21 % mismatch)
substrate the resulting LSMO �lm is of high quality. The interference fringes are
well visible and the �lm is atomically 
at with surface roughnessRRMS = 0:29 nm.
Fig. 5.3(b) shows AFM image of the surface with no clear signature of the atomic
steps, similarly as in case of the bare substrate (see Fig. 5.1(b)).

(a) (b)

Figure 5.4: (a) Symmetric� � 2� XRD scan and (b) surface AFM image (2� 2 � m2)
of LSMO �lm deposited on STO substrate.
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Figure 5.5: (a) Symmetric� � 2� XRD scan and (b) surface AFM image (2� 2 � m2)
of LSMO �lm deposited on DSO substrate.

Fig. 5.4(a) shows� � 2� scan of the LSMO/STO sample. The �t according
to eq. (5.1) gives �lm thicknesst = 21:9 nm and lattice parametercc = 3:840 �A.
We can clearly see that the �tted interference fringes are slightly shifted with
respect to the experimental curve, especially for values of 2� smaller than the
Bragg peak. This demonstrates limitations of the kinematic approximation, i.e.
formula (5.1), and it shows that dynamic theory [98] is needed for more pre-
cise description of the experimental data. More complex calculation including
interference of both the �lm-di�racted and the substrate-di�racted beam is de-
scribed elsewhere [99] for the case of LSMO on STO substrate. It shows excellent
agreement with the experimental data and therefore improved precision of the
�tted parameters. Fig. 5.4(b) shows AFM image of the smooth �lm surface with
RRSM = 0:30 nm, revealing clearly the atomic steps (cf. Fig. 5.1(c)). High quality
of the STO substrate and low lattice mismatch (-0.74 %) results in high quality
of the deposited �lm.

Fig. 5.5(a) shows� � 2� of the LSMO/DSO sample. The �t according to eq.
(5.1) gives �lm thicknesst = 20:9 nm and lattice parametercc = 3:793 �A. Large
lattice mismatch (-1.67 %) again results in lower quality of the deposited �lm,
which can be seen in less pronounced visibility of the interference fringes. The
clear atomic steps of the substrate (see Fig. 5.1(d)) are almost invisible in the

Substrate m [%] t [nm] cc [�A] RRMS [nm] cc=ac

LAO 2.27 20.0 4.002 1.3 1.056
LSAT 0.21 23.6 3.876 0.29 1.002
STO -0.74 21.9 3.840 0.30 0.983
DSO -1.67 20.9 3.793 0.51 0.962

Table 5.1: Structural parameters of LSMO �lms grown on four di�erent sub-
strates. We list lattice mismatch m, �lm thickness t, pseudocubic out-of-plane
lattice parameter cc, surface roughnessRRMS and cc=ac ratio evaluated while as-
suming that the �lms are fully strained, i.e. the in-plane lattice parameterac

of the �lm corresponds to bulk lattice parameter of the substrate.
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surface morphology of the �lm, as demonstrated in Fig. 5.5(b). The surface rough-
ness however remains relativly low,RRMS = 0:51 nm. The structural parameters
of all four LSMO �lms are summarized in Table 5.1.

5.1.2 Strain state determination by reciprocal space
maps

Measurement of a proper set of reciprocal space maps allows us to describe the
whole unit cell of investigated thin �lm, as shown previously in section 3.2. This
knowledge also provides information about strain state of the �lm. In order
to determine strain states of our samples, we measured RSMs around the (260),
(444), (620) and (44-4) Bragg re
ections for each sample. The measurements were
carried out using the same equipment as for the symmetric� � 2� scans presented
in previous section, PANanalytical X'Pert PRO Di�ractometer. The RSMs for
all samples are shown in Figs. 5.6-5.9. The out-of-plane component of reciprocal
space vectorQ? is given asQ? = 1

� [sin (2� � ! ) + sin ( ! )], where � is the Bragg
di�raction angle, ! is one of the sample rotation angles and� = 1:5406 �A.
The RSMs revealed fully strained �lms on all four substrates and allowed us via
formulae derived in section 3.2 to completely describe the unit cell of all the
LSMO �lms. The extracted lattice parameters are summarized in Table 5.2 and
plotted in Fig. 5.10 as a function of the epitaxial strain.

Fig. 5.6 shows the RSMs of LSMO deposited on cubic LAO substrate. Four
RSMs around (260), (444), (620) and (44-4) Bragg re
ections of the LSMO were

X X X X

Figure 5.6: RSMs around (260), (444), (620) and (44-4) Bragg re
ections
of LSMO on cubic LAO substrate, which provides large compressive strain.
LSMO peak positions are indicated by red crosses. Colour scale of the di�racted
intesity is logarithmic.
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Figure 5.7: RSMs around (260), (444), (620) and (44-4) Bragg re
ections
of LSMO on cubic LSAT substrate, which provides small compressive strain.
LSMO peak positions are indicated by red crosses.

measured for four values of the azimuth angle,' = 0 � ; 90� ; 180� and 270� , re-
spectively. The substrate peaks, especially for (204) and (-204) Bragg re
exion,
clearly exhibit multiple maxima, as expected in presence of several crystallo-
graphic twins. The same lateral position of layer peak and substrate peak, which
is well visible in all four RSMs, indicates fully strained LSMO with no relaxation.
The LAO substrate is cubic, all the RSMs are therefore aligned to have the same
Q? coordinate of the substrate peak. TheQ? coordinate of the LSMO peak
varies only a little for di�erent azimuths, which justi�es possible pseudocubic
description of the LSMO unit cell. However we do not use it and as introduced
in section 1.3 we describe the unit cell rigorously as monoclinic in further analysis.
We can also note that the substrate peaks are elongated in horizontal direction,
which is related to low resolution settings of the XRD experiment that were
chosen in order to enhance visibility of the weak LSMO peaks.

LSMO

X X X X

Figure 5.8: RSMs around (260), (444), (620) and (44-4) Bragg re
ections
of LSMO on cubic STO substrate, which provides small tensile strain. LSMO
peak positions are indicated by red crosses.
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X X X X

Figure 5.9: RSMs around (260), (444), (620) and (44-4) Bragg re
ections
of LSMO on orthorhombic DSO substrate, which provides large tensile strain.
LSMO peak positions are indicated by red crosses.

Fig. 5.7 shows the RSMs of LSMO deposited on cubic LSAT substrate, mea-
sured for four azimuths analogically to the previous sample. Due to the very
small compressive strain (0.21 % mismatch), the LSMO peak is partially merged
with the substrate peak, similarly to the preliminary� � 2� scan (see. Fig 5.3(a)).
Precise position of the peaks was determined using MATLAB software, which was
also used to create the RSM plots. Same lateral position of substrate and layer
peaks indicates once again fully strained �lms.

Fig. 5.8 shows the RSMs of LSMO deposited on cubic STO substrate, mea-
sured analogically to previous samples. The LSMO peaks are now displayed above
the substrate peaks, with largerQ? values, corresponding to smaller out-of-plane
lattice parameters resulting from the tensile strain.

Fig. 5.9 shows the RSMs of LSMO deposited on orthorhombic DSO substrate,
in four azimuths analogically to previous samples. As for all investigated samples,
the LSMO is clearly fully strained. The Q? values of substrate peak vary due
to the orthorhombic structure of the substrate.

Lattice parameters extracted from the RSMs are summarized in Table 5.2 and
Fig. 5.10. General behaviour of the lattice parameters with strain is in agreement
with previously published structural investigations of thin LSMO layers [23].
Distance (ab) =

q
a2

m + b2
m � 2ambm cos
 m represents lateral periodicity in the

[1 � 10]m monoclinic direction. In Table 5.2 we can see that values of theab
distance andcm lattice parameter are almost identical for all samples, con�rm-

Substrate am [�A] bm [�A] cm [�A] ab [�A] 
 m [deg]
LAO 5.510 5.512 7.582 7.581 86.92
LSAT 5.475 5.481 7.743 7.743 89.94
STO 5.474 5.475 7.807 7.808 90.97
DSO 5.474 5.475 7.891 7.890 92.24

Table 5.2: Lattice parameters of LSMO �lms grown on four di�erent substrates.
Calculated from RSMs measured by XRD.
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am bm
cm
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��m

Figure 5.10: Structural parameters of LSMO �lms as functions of epitaxial strain
along [1-10]m direction: am and bm lattice parameters and orthorhombicity de-
�ned as bm=am (top panel), 
 m angle and unit cell volume (bottom panel). Lines
represent guides to the eye. The inset shows monoclinic unit cell, in which the
lattice parameters are de�ned. The in-plane strain along [1-10]m direction was
calculated from bulk value of LSMOab distance (ab)bulk = 7:787 �A [23] and
measuredab values in Tab. 5.2 as (ab� (ab)bulk )=(ab)bulk .

ing that the LSMO is coherently strained in both monoclinic in-plane directions
[1-10]m and [001]m . Figure 5.10 shows theam and bm lattice parameters together
with so called orthorhombicity factor de�ned as a ratiobm=am . In agreement
with Vailionis et al. [23] we observe that �lms under compressive strain exhibit
unit cell with am < bm and 
 m < 90� , while in �lms under tensile strain am = bm

and 
 m > 90� . In the [001]m in-plane direction, both the compressive and tensile
strain are accommodated by change of thecm lattice parameter, that is strained
accordingly to the respective substrate. In the [1-10]m direction, the orthorhom-
bicity value, that is very close to unity for samples grown on STO and DSO, shows
that accommodation of the tensile strain is reached only by increment of the
 m

angle. On the other hand, the compressive strain accommodates by both the
decrease of the
 m angle and by relative change of theam and bm lattice param-
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eters, which can be also seen as increment of the orthorhombicity. However the
orthorhombicity does not change proportionaly to the strain in contrast to the
 m

angle and unit cell volume, which both increase almost linearly from the largest
compressive to the largest tensile strain.

As the epitaxial strain changes crystal structure of LSMO, it also consequently
changes the OOR pattern. It can be shown [23] that such distinction of structural
properties of �lms grown under compressive and tensile strain, as described in this
section and shown in Fig. 5.10, leads to di�erent OOR behaviour. LSMO �lms
under compressive strain can be described by tilt system #9 (a+ a� c� ), while
under tensile strain the OOR corresponds to tilt system #18 (a+ a� c0). Both
systems include in phase rotations around the [100]c pseudocubic axis and out
of phase rotations around the [010]c pseudocubic axis. Di�erence arises from the
in-plane elongation under tensile strain. It results in suppression of rotations
around the [001]c pseudocubic axis, that are initially present in both bulk LSMO
and �lms under compressive strain.

5.1.3 Magnetic characterization

Magnetic properties of the samples were investigated by means of SQUID mag-
netometry. The LAO, LSAT and STO substrates are diamagnetic. Magnetic
moment of LSMO �lms deposited on these substrates can be easily measured
by purely magnetic methods, such as SQUID, as the magnetic signal of the sub-
strate is signi�cantly lower than that of the LSMO �lm and the resulting signal
can be corrected to the substrate diamagnetic contribution. However the DSO
substrate is paramagnetic with strong magnetic anisotropy [100], which makes
characterization of magnetic properties of �lms grown upon its surface by purely
magnetic methods nearly impossible. That is why we infer for magnetic prop-
erties of the LSMO �lm on DSO indirectly from results of MOKE spectroscopy
presented in one of the following sections 5.1.5.

Fig. 5.11(a) shows temperature dependence of magnetic moment of LSMO
on LAO measured by SQUID. The sample was �rst demagnetized at 10 K with
oscillating �eld and then the magnetic moment was measured at magnetic �eld
of 20 mT applied parallel to the [110]LAO in-plane direction while heating the
sample up to 370 K. The results are in agreement with previously published in-
vestigations of magnetic properties of thin LSMO layers [50]. Tsuiet al. [50]
investigated 25 nm thick LSMO grown on (001) oriented LAO substrate, which
showed almost identical temperature dependence of magnetization. The striking
feature occurs around 200 K. This peak is associated with spin reorientation tran-
sition, at which the magnetic anisotropy of the sample is changed. The in-plane
anisotropy, which is typical for LSMO, changes into out-of-plane anisotropy below
the temperature of 200 K. This behaviour is demonstrated in Fig. 5.11(b) which
shows hysteresis loops of magnetization measured along the [110]LAO direction
at 10 K and 300 K. The low temperature hysteresis loop apparently saturates
at higher value of the applied magnetic �eld than the room temperature loop,
which is nearly squared and saturates around 0.5 T.

Curie temperature and magnetic moment in saturation at low temperatures
are TC � 370 K [2] and MS � 3:7 � B =Mn [101] in case of bulk LSMO. From
Fig. 5.11(a) we determinedTC � 308 K for the sample deposited on LAO and
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Figure 5.11: SQUID magnetometry results of the LSMO �lm deposited on LAO
substrate. All data are corrected to the LAO diamagnetic contribution. (a) Tem-
perature dependence of magnetic moment measured at magnetic �eld of 20 mT
applied along the [110]LAO direction, measured from low temperatures while heat-
ing the sample. (b) Low temperature hysteresis loop along [110]LAO direction.
The inset shows room temperature hysteresis loop along the same direction.

from Fig. 5.11(b) we get the low temperature magnetic momentMS � 2:0� B =Mn.
The observed suppression of ferromagnetic ordering in this sample is caused by the
large value of lattice mismatch and therefore large epitaxial strain. Two mech-
anisms are responsible for this behaviour. First, the strain leads to distortion
of the LSMO unit cell, which increasingly deviates from the bulk structure with
optimized magnetic properties. Second, it has been previously shown that at the
LSMO/substrate interface the DE interaction is suppressed as a result of pref-
erential orbital ordering under epitaxial strain. This consequently leads to anti-
ferromagnetic ordering near the interface, which is known as magnetically inert
layer [39, 45, 46]. Combination of these e�ects further results inTC decrease and
lower magnetic moment of the �lm.

Fig. 5.12(a) shows temperature dependence of magnetic moment of LSMO
on LSAT. The measurement was carried out at magnetic �eld of 0.2 T applied
parallel to the [100]LSAT in-plane direction while heating the sample from 10 K
to 370 K. The easy axis of magnetization was reported [50] in-plane, approx-
imately 20� from [100]LSAT direction towards the [110]LSAT direction at high
temperatures. This angle changes to 30� below � 50 K. From Fig. 5.12(a) we
determinedTC of the sample on LSAT asTC � 361 K, which is very close to the
bulk value of 370 K. It demonstrates high quality of the LSMO �lm on LSAT
substrate, which corresponds to the smallest lattice mismatch among substrates
used in this study.

Fig. 5.12(b) shows hysteresis loops of magnetization measured along the in-
plane [100]LSAT direction at 10 K and 300 K. They con�rm the slight deviation
of magnetization easy axis at low temperatures, as the loop at 10 K is almost
nearly squared, while the room temperature loop is apparently perfectly squared.
From the loop at 10 K we also determined the low temperature magnetic moment
in saturation MS � 3:7 � B =Mn, which is basically the same value as that of bulk
LSMO, con�rming high quality of the �lms prepared on the nearly lattice matched
LSAT substrate.
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(a) (b)

Figure 5.12: SQUID magnetometry results of the LSMO �lm deposited on LSAT
substrate. All data are corrected to the LSAT diamagnetic contribution. (a)
Temperature dependence of magnetic moment measured at magnetic �eld of 0.2 T
applied along [100]LSAT direction, measured from low temperatures while heating
the sample. (b) Low temperature hysteresis loop along [100]LSAT direction. The
inset shows room temperature hysteresis loop along the same direction.

Fig. 5.13(a) shows temperature dependence of magnetic moment of LSMO
on STO. The measurement was carried out at 0.2 T applied along the [100]ST O

in-plane direction while heating the sample from 10 K to 370 K. For this sub-
strate, both [100]ST O and [110]ST O in-plane directions are equivalent easy axes
of magnetization betweenTC and 250 K, while at low temperatures the [110]ST O

direction becomes magnetically easier [50, 21]. This behaviour is in agreement
with hysteresis loops of magnetization presented in Fig. 5.13(b), measured at dif-
ferent temperatures along the [100]ST O direction. While at room temperature
the hysteresis loop is perfectly squared, it slightly deviates from the square shape

(a) (b)

Figure 5.13: SQUID magnetometry results of the LSMO �lm deposited on STO
substrate. All data are corrected to the STO diamagnetic contribution. (a)
Temperature dependence of magnetic moment measured at magnetic �eld of 0.2 T
applied along [100]ST O direction, measured from low temperatures while heating
the sample. (b) Low temperature hysteresis loop along [100]ST O direction. The
inset shows room temperature hysteresis loop along the same direction.
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at 10 K. From Fig. 5.13(a) we determined Curie temperature of the sample de-
posited on STO asTC � 340 K and from Fig. 5.13(b) we determined the low
temperature magnetic moment in saturation asMS � 2:2 � B =Mn. These val-
ues are lower than those of bulk LSMO due to higher lattice mismatch, compared
to �lms grown on nearly lattice matched LSAT. Curie temperatures and magnetic
moments in saturation for all samples are summarized in Table 5.3.

Substrate � 0H k TC [K] MS [� B =Mn]
LAO [110]LAO 308 2.0
LSAT [100]LSAT 361 3.7
STO [100]ST O 340 2.2

Table 5.3: Curie temperatureTC and magnetic moment in saturationMS at low
temperature (10 K) for LSMO samples grown on three di�erent substrates, mea-
sured by SQUID magnetometry. Direction of the external magnetic �eld� 0H is
indicated.

Figs. 5.14 and 5.15 show temperature dependence of magnetic moment of bare
DSO substrate, measured for three di�erent crystallographic directions. The DSO
substrate is orthorhombic, in the notation corresponding to orthorhombic unit cell
the chosen directions are [110]DSO in-plane (Fig. 5.14(a)), [-110]DSO out-of-plane
(Fig. 5.14(b)) and [001]DSO in-plane direction (Fig. 5.15). The [110]DSO in-plane
and [-110]DSO out-of-plane directions exhibit similar behaviour with same order
of magnitude of the magnetic moment at the same value of external magnetic
�eld. However the [001]DSO in-plane direction shows di�erent behaviour with
an order of magnitude lower magnetic moment in comparison to the other two
directions. It suggests that the DSO substrate exhibits magnetic anisotropy with
the [-110]DSO direction being the magnetization hard axis. These results are
in agreement with previous �ndings of Keet al. [100], who reported on DSO
paramagnetism with strong magnetic anisotropy. They performed more detailed
measurements, including also the [100]DSO and [010]DSO crystallographic direc-
tions, and they found that the easy axis of magnetization lies in the [100]DSO

(a) (b)

Figure 5.14: SQUID magnetometry results of bare DSO substrate. Temperature
dependence of magnetic moment measured at magnetic �eld of 20 mT along the
orthorhombic (a) [110]DSO direction and (b) [-110]DSO direction. The insets show
temperature dependence of inverse susceptibility with a �t according to eq. (5.2).
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Figure 5.15: SQUID magnetometry results of bare DSO substrate. Temperature
dependence of magnetic moment measured at magnetic �eld of 20 mT along
the orthorhombic [001]DSO direction. The inset shows temperature dependence
of inverse susceptibility with a �t according to eq. (5.2).

direction, i.e. the direction of orthorhombica axis.
The temperature dependences in Figs. 5.14 and 5.15 were further �tted ac-

cording to Curie-Weiss law

� =
C

T � � W
; (5.2)

where � = M=H is magnetic susceptibility,C is a constant and� W is the Weiss
temperature. The �ts were performed as linear �ts of temperature dependence
of the inverse value of magnetic susceptibility 1=� , as shown in the insets of re-
spective Figures. Obtained values of the Weiss temperature� W are in principal
agreement with values provided by Keet al. [100], as shown in Tab. 5.4.

It was therefore not possible to characterize magnetic properties of LSMO
grown on DSO by means of SQUID magnetometry due to the strong param-
agnetic contribution of the substrate. The magnetic anisotropy of DSO makes
it extremely di�cult or essentially impossible to correct the overall magnetic
signal to the substrate contribution and extract the extremely weak magnetic
signal of the LSMO �lm. We therefore demonstrate the room temperature fer-
romagnetism of LSMO on DSO by means of MOKE spectroscopy, which will be
presented later in section 5.1.5.

Crystallographic � W [K] � W [K]
direction (Ke et al. [100])

[110] 11.9 13.1
[� 110] 0.5 10.2
[001] -649 -850

Table 5.4: Weiss temperatures� W of DSO substrate for di�erent crystallographic
directions, compared to values reported by Keet al. [100].
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5.1.4 Optical characterization

Optical properties of the samples were characterized by means of spectroscopic
ellipsometry. The measurements were carried out on a high precision Woollam
VASE ellipsometer for three di�erent angles of incidence (60� , 65� and 70� ). Both
bare substrates and samples with deposited LSMO �lms were characterized in a
spectral range from 0.7 to 6.4 eV.

Measured spectra of ellipsometric angles were �tted in order to determine the
diagonal elements"1 of permittivity tensor. The data were analyzed assuming a
model structure of a homogeneous single layer on the corresponding substrate, us-
ing optical properties of the substrates extracted from measurements on the bare
commercially provided substrates. This analysis was performed using the Com-
pleteEASE software and it yielded the diagonal elements of permittivity tensor
of the LSMO �lms and their thicknesses. The values of thicknesses were in prin-
cipal agreement with results obtained by XRD, con�rming that �lms on all four
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Figure 5.16: Spectra of real and imaginary part of the diagonal elements of per-
mittivity tensor of LSMO �lms on four di�erent substrates. The spectra were
extracted from SE measurements.

64



substrates are of similar thicknesses of approximately 20 nm. The spectra of di-
agonal elements were parametrized as a sum of �ve damped Lorentz oscillators
and one damped Cody-Lorentz oscillator, which served to determine energy of the
pseudo bandgapE �

g . The Lorentz oscillator is described by the basic eq. (2.45)
introduced in section 2.4.1, here we use it in a slightly di�erent form, which can be
found in the CompleteEASE Manual [102]. Cody-Lorentz dispersion function was
initially developed to describe optical response of amorphous materials [103]. It
allows us to calculate the pseudo band gap energyE �

g . We use it in the form [102]

"1C� L (E) = "
0

1C� L + i"
00

1C� L ; (5.3)

where the real part "
0

1C� L is determined by Kramers-Kronig relations from the
imaginary part "

00

1C� L described as

"
00

1C� L (E) =

8
<

:

(E �
g + E t )G(E �

g + E t )"
00
1L (E �

g + E t )
E exp

�
E � E �

g � E t

Eu

�
for 0 < E < E �

g + E t

G(E)"
00

1L (E) for E > E �
g + E t :

(5.4)
In eq. (5.4) we use energy dependent functionsG(E) and "

00

1L (E); "
00

1L (E) is imag-
inary part of Lorentz oscillator function, G(E) is near-bandgap function de�ned
as

G(E) =
(E � E �

g)2

(E � E �
g)2 + E 2

p
: (5.5)

In eqs. (5.4) and (5.5) we introduced parametersEp; Et and Eu; Ep denotes
energy, at which Lorentzian behaviour described by"

00

1L (E) transitions to Cody
behaviour described byG(E), E t then denotes energy, at which the absorption
behaviour changes from Cody to Urbach, andEu is the slope of Urbach tail.

Amplitude An , energyEn and broadening �n of each oscillator (n = 1; : : : ; 6)
as well as the nondispersive term"11 and pseudo bangap energyE �

g were adjusted
by least square method. The obtained parameters are displayed in Tab. 5.5 and

Substrate A1 E1 � 1 A2 E2 � 2 A3 E3 � 3 E �
g

[eV] [eV] [eV] [eV] [eV] [eV] [eV]
LAO 6.9 0.9 1.6 0.2 2.2 0.4 8.7 3.7 2.0 2.0
LSAT 14.1 0.6 1.4 0.2 2.2 0.4 5.2 3.8 1.8 1.7
STO 14.1 0.6 1.7 0.5 2.0 1.4 2.4 3.5 1.2 1.4
DSO 7.3 1.2 2.0 0.1 2.3 0.4 4.6 3.8 1.8 1.7

Substrate A4 E4 � 4 A5 E5 � 5 A6 E6 � 6 "11

[eV] [eV] [eV] [eV] [eV] [eV]
LAO 1.3 4.6 1.5 1.7 5.9 1.8 0.9 7.3 0.9 1.5
LSAT 1.8 4.4 1.6 0.6 5.3 1.0 2.0 6.7 1.2 1.4
STO 1.4 4.3 1.0 2.0 6.1 3.1 1.1 6.6 0.4 1.5
DSO 1.8 4.5 1.7 1.2 5.6 1.5 2.5 6.7 0.4 1.3

Table 5.5: Parameters of the six electron transitions used to describe the optical
response of LSMO �lms on four di�erent substrates;An , En and � n for n = 1; :::; 6
stand for the amplitude, energy and broadening of the oscillators,"11 is the
nondispersive term andE �

g is energy of the pseudo bandgap determined from the
third (Cody-Lorentz) oscillator.
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the corresponding spectra of the diagonal elements of permittivity tensor are
shown in Fig. 5.16 for all �lms.

The �ts revealed six electronic transitions centered around approximately 0.8,
2.2, 3.7, 4.4, 5.6 and 6.8 eV. Main spectral features are the two transitions around
3.7 and 4.4 eV. They have already been reported in bulk LSMO [104] and poly-
crystalline �lms on silicon [105], as well as in single crystalline thin �lms grown
on STO [106] and LAO [107, 108] substrates. They are however most often
described as one transition centered around 4 eV. Such description is common
in both optical [108] and magneto-optical [104, 106] studies and the transition
is assumed to be a charge transfer between O 2p and Mn 3d energy levels. One
magneto-optical study of LSMO on LAO [107] also supports presence of two
transitions at approximately 3.6 and 4.1 eV and our theoretical approach using
two transitions around the critical energy of 4 eV shows better agreement with
experimental ellipsometric data as well. In spectra of �lms deposited on STO
and LAO, the two transitions can be clearly distinguished. This model is further
supported by our magneto-optical investigation, which is presented in the next
section.

In order to facilitate visualisation of contributions of the individual transitions
we present Fig. 5.17. It shows a spectrum of imaginary part of the diagonal
elements of permittivity tensor "1 for the LSMO sample deposited on LSAT
substrate. It is an example of the convolution of individual contributions to the
overall spectrum, where each of the transitions is easily visible.
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Figure 5.17: Spectrum of imaginary part of the diagonal elements of permittivity
tensor "1 of LSMO �lm grown on LSAT substrate, depicted as a sum of the
individual transitions.

5.1.5 Magneto-optical spectroscopy

Magneto-optical Kerr e�ect spectroscopy was used to determine the o�-diagonal
elements of permittivity tensor"2. Room temperature MOKE measurements were
carried out using generalized magneto-optical ellipsometry with rotating analyzer
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on a homemade MO spectrometer. The data were recorded in polar con�guration
at 1 T of applied magnetic �eld, in spectral range from 1.5 to 5.0 eV. The applied
magnetic �eld was veri�ed to be su�cient for complete saturation of the �lms.

Obtained spectra of Kerr rotation and Kerr ellipticity are displayed in Fig.
5.18. For clarity, spectra of the �lms deposited on LAO and DSO substrates
are magni�ed by ten. The strong suppression of ferromagnetic ordering in these
two �lms results in lower amplitude of the MOKE signal and it is caused by the
large value of lattice mismatch and therefore large epitaxial strain, as already dis-
cussed in section 5.1.3. It was impossible to characterize the magnetic properties
of LSMO on DSO by SQUID magnetometry, but we can make several conclusions
about its magnetic properties based on the present MOKE spectra. The clear
MO signal at room temperature unambiguously demonstrates room temperature
ferromagnetism of this sample. Furthermore the lowest magnitude of the MOKE
in comparison to other �lms indicates that TC of LSMO on DSO is close to room
temperature. The MOKE amplitude of the other three �lms is in agreement with
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Figure 5.18: Spectra of Kerr rotation and Kerr ellipticity of LSMO �lms on four
di�erent substrates. For clarity, the spectra of �lms deposited on LAO and DSO
substrates are magni�ed by ten.
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the SQUID measurements presented in section 5.1.3. The largest MOKE ampli-
tude is observed in case of LSMO grown on LSAT, followed by LSMO on STO.
A strong suppression of MOKE signal is apparent in case of LSMO on LAO, cor-
responding toTC near room temperature as revealed by SQUID (TC � 308 K).

The o�-diagonal elements of permittivity tensor of the LSMO �lms were cal-
culated from MOKE spectra presented in Fig. 5.18 and from spectra of the di-
agonal elements of permittivity tensor presented in Fig. 5.16 and Tab. 5.5. The
calculations were based on transfer matrix formalism introduced in section 2.5.
Line shapes and parameters of diamagnetic and paramagnetic transitions were
described in section 2.4.2. Maximum amplitude ("

0

2)max or ("
00

2)max , respectively,
resonant frequency! 0 and broadening � of employed oscillators were adjusted
by least square method. The spectra were initially modeled as a sum of two
electronic transitions, whose presence has already ben reported in LSMO �lms
before. The most prominent spectral feature, which can be observed as a pro-
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Figure 5.19: Spectra of real (top panel) and imaginary (bottom panel) part of the
o�-diagonal elements of permittivity tensor of LSMO �lms on four di�erent sub-
strates. They are calculated from diagonal permittivity tensor elements and
MOKE spectra. For clarity, the spectra of �lms deposited on LAO and DSO
substrates are magni�ed by ten.
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nounced minimum around 3.6 eV in the Kerr rotation spectra (see top panel
of Fig. 5.18), has already been reported in bulk LSMO [104], polycrystalline �lms
on silicon [105], as well as in single crystalline thin �lms grown on STO [74] and
LAO [107] substrates. It is related to charge transfer diamagnetic transition from
O 2p into Mn t2g states in the minority spin channel. The second most promi-
nent spectral feature, visible as a maximum around 2.4 eV in the Kerr rotation
spectra, is represented by crystal �eld paramagnetic transition from Mnt2g into
Mn eg states in the majority spin channel. It has already been observed in LSMO
grown on silicon [105], STO [74] and LAO [107] substrates as well. These two
transitions were su�cient to describe spectra of the o�-diagonal elements of �lms
grown on STO and DSO substrates, i.e. grown under tensile strain. However,
presence of a third electronic transition was revealed around 4.3 eV in spectra
of LSMO deposited on LAO and LSAT substrates, i.e. grown under compressive
strain.

To identify presence of this transition in Kerr rotation spectra is rather di�cult
because the MOKE signal also contains optical response of the whole structure,
including substrate. As amplitude of this transition is relatively small, its contri-
bution to the Kerr rotation spectra is not so evident. Concerning the �lm grown
on DSO, the Kerr rotation spectrum crosses the zero line at around 4.3 eV (see
Fig. 5.18). In spectra of the �lms grown on LAO and LSAT substrates, presence
of the additional transition decreases spectral amplitude so that the zero cross-
ing at 4.3 eV is not visible. However, spectrum of the sample grown on STO
markedly di�eres from the others due to above mentioned complexity of MOKE
signal. In this spectral region, a combination of high penetration depth of LSMO
and high re
ectivity change of the STO substrate results in strong optical contri-
bution of the substrate to the overall MOKE signal. This e�ect has already been
described by previous research [109]. In order to correctly interpret MOKE spec-

Substrate LAO LSAT STO DSO
Transition 1 Crystal �eld transition Mn t2g ! eg

("
00

2)max 0.010 0.472 0.069 0.001
! 0 [eV] 2.45 2.50 2.38 2.49
� [eV] 0.43 0.66 0.38 0.42

Transition 2 Charge transfer transition O 2p ! Mn t2g

("
0

2)max 0.04 1.16 0.36 0.01
! 0 [eV] 3.63 3.51 3.55 3.64
� [eV] 0.87 1.14 0.97 0.73

Transition 3 Crystal �eld transition Mn t2g ! eg

("
00

2)max -0.03 -0.69 No such
! 0 [eV] 4.26 4.25 transition under
� [eV] 0.56 0.67 tensile strain

Table 5.6: Parameters of the three electron transitions used to describe the
magneto-optical response of LSMO �lms on four di�erent substrates; ("

0

2)max

or ("
00

2)max , ! 0 and � stand for the maximum amplitude, resonant frequency and
broadening of the oscillators. The parameters were �tted from MOKE spectra
presented in Fig. 5.18 with use of the diagonal permittivity tensor elements pre-
sented in Table 5.5 and Fig. 5.16.
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tra in terms of individual transitions, it is therefore necessary to perform a careful
analysis of spectra of the o�-diagonal elements of permittivity tensor, which are
directly related to the electronic structure. We present them in Fig. 5.19. Here
the optical contribution of the STO substrate is separated, and the di�erences
between compressively and tensilely strained �lms become clearer. Parameters
of the transitions are given in Tab. 5.6.

The di�erences between compressively and tensilely strained �lms can be un-
derstood even better with help of Figs. 5.20 and 5.21. They show spectra of imagi-
nary part of the o�-diagonal elements of permittivity tensor of all the investigated
samples. The spectra are illustrated as a sum of contributions from the individ-
ual transitions. All the spectra are dominated by the main contribution from the
diamagnetic transition, which is represented by the typical dispersive "S" shape
centered around 3.6 eV. The weaker paramagnetic transitions further modify this
dominant contribution. For the tensilely strained �lms (see Fig. 5.20), the re-
sulting spectrum is only slightly altered by the �rst transition around 2.4 eV,
and the global maximum and minimum, given by the diamagnetic transition, re-
main of approximately the same amplitude, i.e. when compared to each other.
On the other hand, spectra of compressively strained �lms (see Fig. 5.21) are
clearly a�ected by the presence of the additional paramagnetic transition around
4.3 eV, consequently exhibiting amplitude of the global maximum markedly lower
in comparison to the global minimum.

The exact origin of the third electronic transition around 4.3 eV has not been
satisfactorily explained so far. The transition was observed by Liuet al. [107]
in LSMO �lms grown on (001) LAO substrates, i.e. grown under compressive
strain, which is in agreement with our observations. According to Liuet al., this
transition occurs around 4.1 eV and it is associated with a charge transfer dia-
magnetic transition from O 2p into Mn t2g states in the minority spin channel.
This classi�cation seems unlikely given the temperature dependent MOKE spec-
troscopy investigations performed by Raueret al. [110]. They studied LSMO
grown on (100) STO substrate, i.e. grown under tensile strain. They pre-
sented o�-diagonal elements of permittivity tensor in temperature range from
75 K to 330 K. The spectra measured at room temperature are in full agreement

(a) (b)

Figure 5.20: Spectra of imaginary part of the o�-diagonal elements of permittivity
tensor of LSMO �lms grown on (a) STO and (b) DSO substrates, i.e. under tensile
strain. The spectra are depicted as a sum of the individual transitions.
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(a) (b)

Figure 5.21: Spectra of imaginary part of the o�-diagonal elements of permit-
tivity tensor of LSMO �lms grown on (a) LAO and (b) LSAT substrates, i.e.
under compressive strain. The spectra are depicted as a sum of the individual
contributions.

with our results, exhibiting two prominent spectral features around the same
respective energies of 2.3 and 3.6 eV. With decreasing temperature, not only
expected overall amplitude increment of the spectra is observed, but a clear sig-
nature of another spectroscopic feature is revealed around energy of 4.3 eV. The
shape and energy position of this transition is in agreement with the �ts of our
spectra measured on compressively strained LSMO, revealing this transition as
paramagnetic. The temperature dependence of this transition also supports its
classi�cation as paramagnetic, in contradiction to the suggestion of Liuet al.
We therefore assume that this paramagnetic transition originates in Mnt2g lev-
els in the majority spin channel. Occupation of these states can be in
uenced
by both temperature or epitaxial strain, resulting in partial of full suppression
of the observed electronic transition in MOKE spectra.

The work of Rauer et al. also allows us to make an important conclusion
concerning OOR in
uence on resulting MO properties. We have shown that
LSMO �lms exhibit di�erent OOR behaviour when grown under compressive and
tensile strain. The presence of the third electron transition in low temperature
spectra of �lms grown under tensile strain [110] therefore suggests that OOR
are not the key parameter. The temperature change does not induce structural
changes large enough to alter the octahedra tilt system. As the OOR remain
the same with temperature while the third transition is induced, it indicates that
OOR do not have a signi�cant in
uence on MO properties of LSMO.

The proposed classi�cation of the third electron transition can be further sup-
ported in view of a study on electronic structure of LSMO presented by Ubaet
al. [111]. Although their results about the exact electronic structure remained
inconclusive in case of LSMO, they reported an optical interband Mnt2g ! eg

transition around 4.5 eV in case of the LSMO parent compound LaMnO3. Even
though they did not �nd su�cient experimental evidence for this transition
in their MOKE spectra measured on LSMO, they did �nd presence of the corre-
sponding manganese orbitals at energies allowing this transition in spectra of den-
sity of states (DOS) of LSMO obtained byab initio calculations. Other previously
reported DOS calculations of LSMO would support occurance of this transition

71



as well [107, 112].
Last arguments in favour of the suggested electronic model consider magni-

tudes of the observed transitions and their optical activity. While the charge
transfer diamagnetic O 2p ! Mn t2g transition is the most prominent feature
in observed MOKE spectra, both paramagnetic transitions exhibit signi�cantly
smaller amplitude, which supports their classi�cation as Mnd � d transitions.
Next, the fact that we observed the third transition (around 4.3 eV) in opti-
cal response of all LSMO �lms, see Tab. 5.5, Fig. 5.16 and Fig. 5.17, regardless
their strain state, indicates that MO activity of this transition is governed via
occupation of the spin-orbit split Mn t2g ground states. The occupation can be
in
uenced by both temperature and epitaxial strain, leading either to enhance-
ment or suppression of its MO activity. The �rst paramagnetic transition (around
2.4 eV) originating in the same ground state exhibits similar behaviour regarding
both the temperature dependence [110] and the overall amplitude decrease under
tensile strain (see Tab. 5.6). Although it is not fully suppressed under tensile
strain, the amplitude is signi�cantly diminished. The suppression is especially
pronounced in the �lm grown on DSO substrate, i.e. under the largest tensile
strain, which indicates strong sensitivity of the Mnt2g levels on the epitaxial
strain.

5.1.6 Ab initio density of states calculations

In order to further investigate the in
uence of oxygen octahedra rotations and
distortions on electronic structure of LSMO we employedab initio calculations.
They were performed using the Vienna Ab initio Simulation Package [113, 114].
The LSMO unit cell used in the calculations was di�erent from real unit cell de-
scribed in sections 1.1 and 5.1.2 in case of bulk LSMO and thin �lms, respectively,
and they should not be confused. Here the bulk LSMO was decribed by a unit
cell with 15 atoms, which can be schematically represented as a [001]-ordered
(SrMnO3)1(LaMnO3)2 superlattice, similar to previous works [112, 115]. In order
to simulate epitaxial �lms, the pseudocubic in-plane lattice parametersa of bulk
unit cell were chosen according to LAO and DSO bulk values and pseudocu-
bic c parameters were relaxed using the external optimizer GADGET developed
by Bu�cko et al. [116]. To study the e�ect of OOR a 2� 2 � 2 supercell with
120 atoms was used. The calculated total density of states (TDOS) spectra are
displayed in Fig. 5.22.

Bottom panel of Fig. 5.22 shows a comparison of TDOS calculated for bulk
LSMO with rigid tilt system #23 (a 0a0a0) and bulk LSMO with tilt system
(a� a� c� ). This theoretical tilt system only slightly deviates from the real rhom-
bohedral tilt system #14 (a� a� c� ), regarding the tilt amplitude around [001]pc

axis, as a result of simpli�ed layered structure of LSMO used in the calculations.
There are almost no visible changes in the TDOS spectral behaviour except for
the highest energy band located around 3 eV above Fermi level. This band is asso-
ciated with La 4f states, which are not involved in observed MO transitions and
therefore it will be omitted in further discussion. This negligible change of TDOS
spectra suggests that MO transitions are not in
uenced by OOR. As shown previ-
ously in section 1.4.3, several studies have pointed out that OOR engineering can
be a successful way for tuning transport and magnetic properties of thin LSMO
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O 2p Mn t2g
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Mn t2g
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3 Mn eg

Figure 5.22: TDOS spectra obtained byab initio calculations. Top panel shows
unstrained bulk LSMO and strained LSMO corresponding to growth on LAO
and DSO substrates. Bottom panel shows bulk LSMO with no rotations of oxy-
gen octahedra and bulk LSMO with quasi-real tilt system (a� a� c� ). Up and
down arrows indicate majority and minority spin channel, respectively. The hor-
izontal arrows represent observed MO transitions labelled by numbers according
to Tab. 5.6.

layers [57, 59, 61]. Liaoet al. [60] even presented tuning of magnetic anisotropy
by means of OOR and Kanet al. [58] achieved similar e�ect in SRO thin �lms.
Despite this clear evidence in favour of importance of OOR engineering, especially
with respect to transport and magnetic properties of LSMO thin �lms, on the
other hand ourab initio calculations imply that in
uence of OOR on TDOS spec-
tra is negligible. This does not indicate an important role of OOR in in
uencing
the MO properties, in agreement with previous observations following from the
experimental results of Raueret al.

Based on the minor in
uence of OOR on TDOS spectra, the e�ect of strain
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was further studied in rigid oxygen octahedra system with no tilts. Top panel
of Fig. 5.22 shows TDOS of bulk LSMO compared to two cases of LSMO strained
in such a way that the pseudocubicc=aratio corresponds to growth on LAO and
DSO substrates. The results are in pricipal agreement with previous �ndings
of Ma et al. [112], i.e. there is no signi�cant change in spectral shape, however
there is a visible shift of the whole spectrum to higher energies when going from
compressive to tensile strain. Such shift itself would be insu�cient to explain
appearance of the third electronic transition in MOKE spectra of compressively
strained LSMO. As we have shown previously in section 1.4.1, it is nonetheless
well known that compressive or tensile strain leads via consequent octahedra
distortions to di�erent preferential orbital ordering in LSMO thin �lms [39, 40,
42, 43]. Although it is typically described as an interface e�ect explaining the DE
suppression in LSMO near the substrate, it clearly demonstrates the sensitivity
of Mn 3d levels to octahedra distortions. We therefore assume that the mechanism
responsible for appearance of the third electronic transition in MOKE spectra
of compressively strained LSMO is related to Mn 3d states. As Mn t2g states
in majority spin channel are the closest occupied states near the Fermi level,
which are therefore most likely to be in
uenced by temperature, we expect that
the observed transition originates from these energy levels.

Such �ndings are in agreement with arguments provided in previous sec-
tion 5.1.5. The presentedab initio calculations therefore further supports the
suggested electronic model. They showed that the Mnt2g levels are most likely
the ground states of the third electronic transition. Moreover they con�rmed
previous �ndings of other groups, which showed that location of Mneg bands is
such that an interband Mn t2g ! eg transition in the majority spin channel is
possible around energy of approximately 4.3 eV. We did not present the element
resolved DOS, however the position of Mneg band is indicated in the top panel
of Fig. 5.22. The Mn eg band partially overlaps with the La 4f band, but un-
like the lanthanum band the manganese band is not a�ected by OOR. Therefore
we show that the observed paramagnetic transitions can unlikely be in
uenced
by OOR engineering, but they can be suppressed or enhanced by changes in oc-
cupation of the Mn t2g states in the majority spin channel. These changes can be
induced by temperature, or strain induced octahedra distortions.

Last argument that gives a strong support for the suggested electronic model
follows from a direct comparison of experimental spectra of the o�-diagonal
elements of permittivity tensor presented in Fig. 5.19 with spectra of"2 ob-
tained by ab initio calculations. These spectra were calculated from joint density
of states, and they are shown together with the experimental values in Fig. 5.23
for two cases of the LAO and DSO substrates, which provide extreme values
of the epitaxial strain.

A very good spectral agreement is clearly visible for both samples, demon-
strating validity of the approximations made in description of LSMO unit cell
in the ab initio calculations. All the three discussed transitions can be recognized
in the theoretical spectra at energies corresponding to their experimental val-
ues. The only larher di�erence can be seen at lower energies in spectra of LSMO
on LAO. This is the region governed mainly by the �rst paramagnetic transition,
which is therefore likely to be in
uenced by temperature. As the experimental
spectra were obtained at room temperature, while theab initio calculations were
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Figure 5.23: Spectra of real and imaginary part of the o�-diagonal elements of per-
mittivity tensor of LSMO �lms deposited on LAO (top panel) and DSO (bottom
panel) substrates. Spectra obtained experimentally by means of spectroscopic
ellipsometry and MOKE spectroscopy are compared to spectra obtained theoret-
ically by ab initio calculations. The theoretical spectra were multiplied by factors
of 0.065 (LAO) and 0.020 (DSO) in order to compensate for the temperature in-
duced decrease of magnetization. The decrease is di�erent for both samples, for
which the factors also di�er.

performed at zero Kelvin, such disagreement could be expected. Region of the
most prominent diamagnetic transition, which is not in
uenced by temperature,
shows an excellent agreement with experimental spectra. It is easily seen on the
main minimum in the real part, and on the zero crossing near 3.6 eV in the imag-
inary part. High energies are governed by the third paramagnetic transition,
which is again in
uenced by temperature. While in the experimental spectra
the transition is visible only in LSMO/LAO (see suppressed amplitude of imagi-
nary part maximum, no zero crossing near 4.3 eV in real part), in the theoretical
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spectra it is apparent for LSMO on both the LAO and DSO substrates. This
clearly demonstrates that temperature is a key parameter for appearance of the
third electron transition. In agreement with experimental observations of Rauer
et al., our calculations show that the transition is visible at low temperatures
even in MOKE spectra of tensilely strained LSMO �lms.

On the other hand, as OOR were left out in these calculations, our results
in Fig. 5.23 demonstrate that the parameter of OOR is not necessary to be consid-
ered for description of MO response of LSMO. Its in
uence is likely to be minor
compared to the major role of octahedra distortions. Such conclusion can be
expected given the rotational symmetry of MnO6 octahedron with respect to the
manganese atoms. As can be seen from the TDOS spectra presented in Fig. 5.22,
the energy positions of Mn levels in DOS spectra do not change under OOR.
On the contrary, position of, for example, the La 4f states signi�cantly changes
as the OOR are not symmetrical with respect to the lanthanum atoms. As the
observed MO transitions are governed by crystal �eld of the Mn atoms, which
experience the rotational symmetry, it is then natural to expect no signi�cant
change of MO properties under OOR, leaving the octahedra distortions as sub-
stantially more important parameter. The theoretical spectra of the o�-diagonal
elements of permittivity tensor presented in Fig. 5.23 then fully justify this ex-
pectations, con�rming key role of temperature and oxygen octahedra distortions
in controlling MO properties of LSMO.
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5.2 Dynamic application of strain

The second part of this chapter deals with the dynamic way of strain applica-
tion to LSMO. It begins with evaluation of the device quality by basic mea-
surements of XRD, AFM and characterization of its electrical properties. After
demonstrating that the device is fully functional, we characterize its optical and
magneto-optical propeties. The experimentally measured optical properties are
used to calculate the MO response based on transfer matrix (Yeh) formalism. The
MO response measured under dynamic application of strain is then compared and
interpreted with use of the theoretical spectra. We �nd relatively small in
uence
on the MO response when the voltage is applied. Such a little amplitude of the
e�ect can be explained by factors other than the strain induced by the piezoelet-
ric layer, which shows that the strain transfer from PZT into the LSMO layer
requires further improvements.

5.2.1 Structural, morphological and electrical
characterization

The crystallinity and surface morphology of the LSMO/PZT heterostructure was
veri�ed before patterning by means of XRD and AFM, using the same exper-
imental equipment as described in section 5.1.1. Fig. 5.24 shows a symmetric
� � 2� scan and surface AFM image of the as grown multilayer. The� � 2� scan
in Fig.5.24(a) also contains a �t of the LSMO peak according to eq. (5.1), which
yielded the �lm thickness t = 20:0 nm and pseudocubic lattice parameterc =
3:847 �A. Such value con�rms expected in-plane tensile distortion of the LSMO,
based on pseudocubic lattice parameters of bulk LSMOaLSMO = 3:876 �A [94]
and PZT aP ZT = 4:036�A [117]. Fig. 5.24(b) shows a homogeneous surface of the
sample with RRMS = 1:2 nm, con�rming a good quality of the deposited LSMO
layer.

In order to check the ferroelectric properties of PZT, the capacitance versus

(a) (b)

Figure 5.24: (a) Symmetric � � 2� XRD scan and (b) surface AFM image
(2 � 2 � m2) of the LSMO/PZT/SRO heterostructure on STO substrate before
lithography processing.
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Figure 5.25: Capacitance versus voltage (C � V) characteristics of the PZT layer
measured at a frequency of 100 kHz.

voltage (C � V) characteristics of the PZT layer after lithography processing
was measured between two LSMO electrodes as shown in Fig. 5.25. TheC �
V curve exhibits expected butte
y shape with hysteretic behaviour typical for
ferroelectric �lms. When sweeping the voltage from -4 V to +4 V and vice
versa, the polarization switching occurs at coercive voltageV +

C = 1:1 V and
V �

C = � 0:2 V, respectively, where the capacitance curve exhibits its maxima.
At these points the strain is minimal, and then it increases with increasing voltage.
The maximum value of the capacitance atV �

C is Cmax = 1:6 nF, giving a value
of the relative dielectric constant of the PZT layer� 800 at 100 kHz. This is
in typical range for PZT �lms [118, 119], con�rming good quality of the deposited
heterostructure and full functionality of the device.

5.2.2 Optical and magneto-optical investigation

Optical properties of the heterostructure were studied by means of SE, using
the same experimental setup as described in section 5.1.4. The measurements
were carried out in spectral range from 0.7 to 6.4 eV. In order to characterize
optical properties of the PZT and SRO layers, we used additional reference sam-
ples of single SRO and PZT layers on STO substrate and LSMO/PZT bilayer
on STO substrate. The SE data were used to determine the diagonal elements
of permittivity tensor "1. When modelling the optical response of PZT, the spec-
tra were parametrized by a sum of three Lorentz oscillators, for SRO the spectra
were parametrized by three Lorentz oscillators and a Drude contribution of free
electrons. The resulting parameters were obtained from a combined �t of el-
lipsometric measurements on one PZT single layer, two SRO single layers, one
LSMO/PZT bilayer and one LSMO/PZT/SRO trilayer, all on STO substrate.

Fig. 5.26(a) shows the spectra of real and imaginary part of diagonal elements
of permittivity tensor of PZT calculated from SE measurements. The spectra are
compared to results of Czekajet al. [120], who grew PZT �lms on various sub-
strates, including Si, stainless steel and glass. The spectra shown in Fig. 5.26(a)
were obtained on the sample deposited on glass. Although the substrate used
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(a) (b)

Figure 5.26: Spectra of diagonal elements of permittivity tensor"1 calculated
from SE data in case of (a) PZT, compared to results of Czekajet al. [120], (b)
SRO, compared to results of Xuet al. [121].

in our study was di�erent, the principal agreement between results of Czekajet
al. and our results con�rms validity of our theoretical model used for description
of the PZT optical response. The spectral behaviour corresponds very well, while
there are some di�erences in the amplitude. Such small discrepancies of the op-
tical properties can be expected when growing a material on di�erent substrates.
However, the overall agreement further con�rms good quality of the deposited
PZT layer.

Fig. 5.26(b) shows the spectra of real and imaginary part of diagonal elements
of permittivity tensor of SRO calculated from SE measurements. The spectra are
compared to results of Xuet al. [121], who presented optical properties of SRO
layer on STO substrate, corresponding properly to our case. Both the spectral
behaviour and amplitude agrees well with our results. Small di�erences can be
visible in the infrared part, where Xuet al. described the spectra using a Lorentz
oscillator, while we used the Drude model as SRO exhibits very good conducting
properties. The principal agreement, however, con�rms validity of our theoretical
model as well as good quality of the SRO layer.

MO properties of the sample were �rst characterized before lithography pro-
cessing on the as grown LSMO/PZT/SRO/STO heterostructure. The measure-
ment was carried out using the same experimental setup as described in sec-
tion 5.1.5. Kerr rotation was measured in polar con�guration at nearly normal
light incidence under the applied magnetic �eld of 1 T, which is su�cient for
sample saturation. The spectrum of Kerr rotation is shown in Fig. 5.27. It is
similar to the spectra of LSMO single layers presented in Fig. 5.18, there is the
prominent spectral minimum around 3.5 eV preceded by the main spectral maxi-
mum. The peaks are however remarkably narrower and the maximum is located
at higher energy (� 3:2 eV) compared to 2.4 eV in case of the single layers. There
are also additional spectral features, which were not present in spectra of the sin-
gle layers. As demonstrated by theoretical calculations, these features in MOKE
spectra originate from optical interference in the PZT layer.

Fig. 5.27 shows theoretical model of Kerr rotation calculated by transfer ma-
trix formalism using optical properties of PZT and SRO presented in Fig. 5.26
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Figure 5.27: Kerr rotation spectrum measured on LSMO/PZT/SRO/STO het-
erostructure before lithography processing and theoretical Kerr rotation spectrum
calculated using spectra of"1 of PZT and SRO presented in Fig. 5.26 and spectra
of "1 and "2 of bulk-like LSMO taken from [106].

and both optical and MO properties of bulk-like LSMO taken from [106]. As will
be shown later, the resulting Kerr rotation spectrum exhibits strong dependence
on the PZT layer thickness, therefore it is possible to tune the value of the un-
known PZT thickness to describe properly the measured MOKE spectrum. Using
this approach we were able to re�ne the thickness of PZT layer tot = 130 nm.
The model curve presented in Fig. 5.27 shows an excellent agreement with the
experimental data, con�rming properly calculated optical properties of the PZT
and SRO layer as well as high quality of the LSMO layer.

MO investigation of the device after lithography processing was carried out
using focusing optics which allowed us to reduce the beam diameter to� 200� m,
therefore all re
ected and detected signal comes from one 300� 300� m2 LSMO
pad (see Fig. 4.2). Use of the focusing optics required measurement in polar
con�guration at 60� angle of incidence. The applied magnetic �eld was 0.5 T,
which is typically a su�cient �eld for full saturation of LSMO at room tempera-
ture, even along its hard axis of magnetization [51]. Fig. 5.28 shows Kerr rotation
spectrum in the ultraviolet region, without and with applied voltage of 4 V across
the PZT layer.

Several observations can be made. First, the spectral behaviour is slightly
di�erent compared to Fig. 5.27, which is due to di�erent angle of incidence.
While all the previous measurements were carried out under nearly normal light
incidence, here the experiment was performed under the angle of incidence� 60�

due to the focusing optics. We can also notice that the overall spectrum is shifted
to higher values of Kerr rotation, now exhibiting several zero crossings and much
larger value of the global maximum, compared to diminished value of the global
minimum. This is likely to be caused by contribution of Faraday e�ect of the
focusing optics to the overall MO signal. As we are here interested in di�erential
MO e�ect, we did not correct resulting signal for this parasitic contribution. The
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Figure 5.28: Kerr rotation spectrum on the LSMO/PZT device with no voltage
applied and with 4 V of voltage applied across the PZT layer, measured in polar
con�guration at 60� angle of incidence. Di�erence of both measurements is also
shown. At 4 V of applied voltage, the strain induced in LSMO layer is estimated
to be lower than 0.1 % [6].

di�erence of both measured spectra is also shown in Fig. 5.28, in most of the
spectrum the amplitude of the di�erence is smaller than the noise level, it only
exceeds the noise level between 3.5 to 3.8 eV. Even though the observed di�erence
may be related to strain induced changes of the MO properties of LSMO, the
amplitude is very small and there is an alternative explanation of the e�ect,
which seems to be more plausible.

As mentioned earlier, when modelling the KR spectrum of the as grown het-
erostructure, we investigated in
uence of the thicknesses of individual layers on re-
sulting MO response of the sample. Amplitude of the thickness change was pur-
posedly exaggerated to magnify the e�ect. Note that the calculations were made
for normal light incidence.

Top panel of Fig. 5.29 shows calculated KR signal in case of LSMO thickness
varying from 15 to 35 nm while keeping thicknesses of other layers constant. As
expected, with increasing LSMO thickness the overall MO signal also increases.
A shift of the whole spectrum to lower energies is also visible, it is however too
small to support explanation of the voltage induced changes in KR spectrum
via strain induced changes in the LSMO layer. At 4 V of applied voltage, the
estimated strain induced in LSMO layer is lower than 0.1 % (cf. Tab. 4.1), which
gives a theoretical estimate of the KR di�erence around 4�10� 5 degree. As we can
see in Fig. 5.28, such value is two orders of magnitude lower than the measured
di�erence.

Bottom panel of Fig. 5.29 shows KR in case of SRO thickness varying from 20
to 40 nm, having almost negligible in
uence on the resulting KR spectrum. There
is almost no spectral change and only very small increment of the KR signal with
increasing SRO thickness. These changes are even smaller than in the previous
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Figure 5.29: Theoretical models of MO response of LSMO/PZT/SRO het-
erostructure on STO substrate with varying thicknesses of individual layers:
LSMO (top panel), PZT (middle panel) and SRO (bottom panel). The num-
bers in each legend indicate thicknesses [nm] of the LSMO/PZT/SRO layers,
respectively.
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case, where the LSMO thickness was altered, therefore the in
uence of SRO layer
can be safely ruled out.

Middle panel of Fig. 5.29 shows KR for three di�erent thicknesses of the PZT
layer (110, 130 and 150 nm), demonstrating a signi�cant in
uence of the PZT
thickness on resulting MO response. Amplitude of the spectrum does not change
considerably, but there is a remarkable shift of the spectral features to lower en-
ergies with increasing thickness. That is clearly a result of optical interference
in the PZT layer. At 4 V of applied voltage, the thickness change of the PZT
layer can be estimated up to 1 nm, which gives a theoretical estimate of the KR
di�erence around 2� 10� 2 degree. Such value is three orders of magnitude higher
than the estimated in
uence of LSMO layer thickness variation, and it shows a
principal agreement with the measured KR di�erence (see Fig. 5.28). Therefore
even though we did not calculate the KR for corresponding angle of incidence (the
calculations were made for normal light incidence), from the general behaviour
of the MO signal we can deduce that the observed voltage induced change in KR
spectrum presented in Fig. 5.28 is most likely caused by voltage induced thick-
ness change of the piezolectric PZT layer. As we have demonstrated in �rst part
of this chapter, static strain can have signi�cant in
uence on resulting MO prop-
erties of LSMO. However, the typical amplitude of static epitaxial strain was
approximately one order of magnitude higher (see Tab. 4.1) compared to 0.1 %
achieved dynamically with use of the PZT underlayer. In order to increase mag-
nitude of the voltage induced control of MO response, we need to �nd a way how
to transfer strain from PZT into LSMO more e�ectively.
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6. In
uence of substrate miscut
on magnetization of SrRuO 3

The sixth chapter presents all the results achieved during investigation of the
SRO samples, whose physical properties were studied with respect to di�erent
substrate miscut angles (see section 4.3). The chapter begins with structural
characterization of the samples, where the basic di�erences in their crystallo-
graphic properties can be seen. The magnetization dynamics is then studied
by SQUID magnetometry and MFM. Magneto-optical Kerr microscopy is used
as well in order to provide additional information about magnetic domains. We
reveal several di�erences in the magnetization reversal process, and we attribute
these di�erences to the structural changes induced by the di�erent substrates.

6.1 Crystallographic properties and
morphology

Proper crystallinity and surface morphology of the SRO �lms was investigated
by means of XRD and AFM, respectively. The XRD measurements were carried
out using PANanalytical X'Pert PRO di�ractometer. The AFM images were
taken at room temperature by Bruker Dimension Edge AFM microscope.

Fig. 6.1(a) shows a symmetric� � 2� scan of the SRO1 sample (vicinal STO
substrate). The measured intensity was �tted by formula (5.1), which yielded
the SRO �lm thickness t = 27:7 nm and pseudocubic out-of-plane lattice param-
eter cc = 3:949 �A. Fig. 6.1(b) shows surface AFM image of the sample, clearly
revealing atomic steps with small step width as expected in case of the vicinal
substrate. The surface roughness isRRMS = 1:6 nm, con�rming good quality
of the deposited SRO layer. However the roughness is slightly higher compared

Figure 6.1: (a) Symmetric� � 2� XRD scan and (b) surface AFM image (5� 5� m2)
of SRO �lm deposited on vicinal STO substrate.
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Figure 6.2: (a) Symmetric� � 2� XRD scan and (b) surface AFM image (5� 5� m2)
of SRO �lm deposited on STO substrate of low miscut angle (� 0:1� ).

to SRO2 (cf. Tab. 6.1) due to the high miscut angle and step bunching during
SRO growth [122].

Fig. 6.2(a) shows� � 2� scan of the SRO2 sample (substrate of low miscut
angle). The �t according to eq. (5.1) gives �lm thicknesst = 45:5 nm andcc lattice
parameter cc = 3:953 �A. Fig. 6.2(b) shows AFM image of the surface with clear
signature of the atomic steps. As expected the step width is larger as the miscut
angle is smaller compared to SRO1. Several island-like features are clearly visible

Figure 6.3: RSMs around (-204) and (024) STO Bragg re
ections measured
on SRO �lm deposited on vicinal STO substrate.
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Figure 6.4: RSMs around (204) and (0-24) STO Bragg re
ections measured
on SRO �lm deposited on STO substrate of low miscut angle (� 0:1� ).

and indicate 3D growth at higher thicknesses of deposited SRO layer. Due to the
smaller miscut angle the surface roughness is also smaller compared to SRO1,
in this case it isRRMS = 0:3 nm, con�rming high quality of the SRO layer.

In order to investigate crystallinity of the samples in detail, we measured
RSMs around (204) family of STO Bragg re
ections (cf. Fig. 4.3(b)). The mea-
surements were carried out at two azimuths for each sample. The results are
shown in Figs. 6.3 and 6.4, respectively.

Fig. 6.3 shows the RSMs of SRO1. The same lateral position of both STO and
SRO peaks indicates that the �lms remain fully strained. Although we expected
a growth of only one crystallographic variant on vicinal STO substrate, the RSMs
show presence of a second SRO variant in this case as well. Above the main SRO
peak a blurred side peak is visible. From intensity maxima the ratio of SRO
peaks was roughly estimated as 1:9.

Fig. 6.4 shows the RSMs of SRO2. They reveal fully strained SRO even
at higher thickness of the deposited layer. A growth of the second crystallographic

Sample � [deg] t [nm] cc [�A] RRMS [nm] 2nd variant [%]
SRO1 1.0 27.7 3.949 1.6 10
SRO2 0.1 45.5 3.953 0.3 30

Table 6.1: Structural parameters of SRO �lms grown on STO substrates of two
di�erent miscut angles � . Film thickness t, pseudocubic out-of-plane lattice pa-
rameter cc, surface roughnessRRMS and estimated fraction of the second crys-
tallographic variant are listed.
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variant was expected in this case and indeed the SRO side peaks are clearly visible.
The volume of the second variant is signi�cantly higher, the ratio of SRO peaks
was estimated to approximately 1:2. This means that the second crystallographic
variant represents around 30% in case of SRO2 while it represents only 10% in case
of SRO1. The structural parameters of both samples are summarized in Tab. 6.1.

6.2 Magnetic properties

The magnetization process was studied by SQUID magnetometer (Quantum de-
sign, MPMS7 XL, RSO option). Fig. 6.5(a) shows hysteresis loop of SRO1 sample
measured at temperatureT = 20 K with external magnetic �eld applied perpen-
dicular to the sample surface. The �eld was ramped at 68µT=s. At this fast
rate the coercive �eld was determined as� 0HC1;fast = 145 mT. The measure-
ment temperature of 20 K was chosen as optimal value with respect to the Curie
temperature TC;bulk = 160 K [7] as well as with respect to the temperature de-
pendence curve of the SRO magnetic moment [12]. Magnetic moment of SRO
in saturation at low temperature is 1.6� B =Ru [123]. Saturation magnetization
determined from Fig. 6.5(a) reaches 1.5� B =Ru, demonstrating high quality of the
deposited SRO layer.

Fig. 6.5(b) shows a di�erence in the magnetization process when ramping
the magnetic �eld at di�erent rates. A zoomed part of the loop presented
in Fig. 6.5(a) is compared to a loop measured at a slower average rate of 1:1µT=s
in a region around the coercive �eld. In case of the slow loop a lower value of the
coercive �eld was found� 0HC1;slow = 140 mT, clearly demonstrating a di�erence
in the dynamics of magnetization reversal process. In Fig. 6.5(b) in case of the
slow �eld ramping, multiple data points for each �eld value are visible. That is
because in the vicinity of coercive �eld we kept the magnetic �eld at a constant
value for 27 minutes while measuring a set of one hundred data points. Therefore
for each value of the magnetic �eld time evolution of magnetization is clearly
visible. Lines in the �gure are guides to the eye, connecting the data points

Figure 6.5: (a) Hysteresis loop of magnetization of SRO �lm deposited on vici-
nal STO substrate, measured by SQUID magnetometry at 20 K with magnetic
�eld applied perpendicular to the sample surface. (b) Zoom of hysteresis loops
of magnetization near coercive �eld measured at two di�erent rates of 68 and
1:1µT=s.
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in chronological order of recording. The average ramping rate is then calculated
across the whole region around coercive �eld.

Fig. 6.6(a) shows hysteresis loop of SRO2 sample measured at 20 K with mag-
netic �eld applied perpendicular to the sample surface. The �eld was ramped
at 258µT=s, coercive �eld at this rate was found� 0HC2;fast = 185 mT. Similarly
to Fig. 6.5(a), the loop exhibits square-like behaviour with one noticeable dif-
ference. Around� 0:5 T a small but clearly remarkable drop of magnetization
can be observed. This shape of the hysteresis loop indicates two di�erent contri-
butions to the magnetic moment coming from the two di�erent crystallographic
variants. Here it is visible due to higher representation of the second SRO variant,
but the magnetization drop becomes indistinct in case of SRO1, where volume
of the second variant is almost negligible. The low temperature saturation mo-
ment determined from Fig. 6.6(a) is 1.2� B =Ru. This value is slightly lower than
in case of SRO1, which might be due to the presence of two SRO variants and
therefore lower crystalline quality of the sample. Presence of multiple crystallo-
graphic variants leads to intermediate areas among them, where the crystalline
structure is not exactly de�ned. However, we assume that the e�ect would be
very small as no signi�cant additional broadening is visible in the XRD measure-
ments. Unfortunately we are not aware of any previous research investigating
in
uence of presence/absence of multiple crystallographic variants on magnetic
properties of SRO more in detail.

Fig. 6.6(b) shows the di�erence in the magnetization process when ramping
the magnetic �eld at di�erent rates. Here the initial loop is compared to a loop
measured at a slower average rate of 2:6µT=s around the coercive �eld. In case
of the slow loop the coercive �eld was found lower� 0HC2;slow = 180 mT, exhibiting
similar behaviour in comparison to SRO1. Each set of data points at one value
of the magnetic �eld was recorded during 1 hour, clearly demonstrating evolution
of magnetization on the timescale of tens of minutes, similarly to the case of SRO1.
We will further compare this dynamic behaviour with the MFM measurements
presented in the following section.

Figure 6.6: (a) Hysteresis loop of magnetization of SRO �lm deposited on STO
substrate of low miscut angle (� 0:1� ), measured by SQUID magnetometry
at 20 K with magnetic �eld applied perpendicular to the sample surface. (b)
Zoom of hysteresis loops of magnetization near coercive �eld measured at two
di�erent rates of 258 and 2:6µT=s.
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6.3 Magnetic domains imaging

6.3.1 Magnetic force microscopy

In order to visualize the magnetic domains we employed low temperature atomic
force microscope attoAFM/MFM Ixs, which was inserted in PPMS 14 (cryo-
stat). The PPMS 14 does not allow a real zero-�eld cooling due to residual �eld
of the superconducting coil, so we only focused on the magnetization process from
fully magnetized state. The samples were magnetized at magnetic �eld of +3 T
or higher (a control MFM scan was performed back at zero �eld for each sam-
ple). After that two measurement modes were chosen: (i) small negative �eld
was applied and kept during the MFM measurement, (ii) small negative �eld was
applied, and the MFM measurement was then performed at zero �eld to avoid
further magnetization reversal process. MFM data were analyzed and plotted
using Gwyddion software [97].

Figure 6.7: MFM images (15� 15 � m2) of magnetization reversal in SRO �lm
deposited on vicinal STO substrate, measured at 20 K with �eld applied perpen-
dicular to sample surface. Slow scan direction was vertical, proceeding upwards,
as indicated by the black arrow. (a) Fully saturated state measured at +3 T,
(b) �rst scan at -119 mT, where beginning of the switching process can be seen,
(c) second scan at -119 mT measured right after the �rst scan, (d) last scan
at -119 mT after nearly 4 hours, where further magnetization switching is still
visible. White arrows in (b) and (c) point out horizontal division lines between
bright (initial) and dark (reversed) areas, that are just being switched during the
scan. Areas below these lines appear switched in following image. The time after
�eld application is indicated for the beginning (bottom) and the end (top) of each
scan.
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A typical series of MFM scans of SRO1, taken at 20 K, is shown in Fig. 6.7.
Duration of each scan was approximately 45 minutes. The slow scan direction is
indicated by a black arrow in the �gure. The �rst scan (shown in Fig. 6.7(a))
was taken after saturating the sample at +3 T. We can see a homogeneously
magnetized area of the sample with a signature of the atomic steps, coming from
the crosstalk of topography (cf. Fig. 6.1(b)). Then we applied small negative
�eld of -119 mT, that was kept during the measurement. The beginning of mag-
netization reversal process is shown in Fig. 6.7(b). Bright areas represent the
initial magnetization while the dark areas are reversed. The homogeneous bot-
tom half of the image is still fully saturated. After approximately 20 minutes the
large bright area abruptly ends as the �rst switching event is covered by the hor-
izontal movement of the scanner. As expected from the SQUID magnetization
measurements, the magnetization reversal process further continues in time as
shown in Fig. 6.7(c) taken right after the �rst scan while keeping the same �eld
of -119 mT. Further increase of the reversed (dark) area can be still observed
after nearly 4 hours at the same magnetic �eld as demonstrated in Fig. 6.7(d).
Such slow time evolution of the magnetic domain pattern is in agreement with
the magnetization relaxation observed by SQUID (cf. Fig. 6.5(b)).

Fig. 6.8 shows a series of MFM scans taken at 20 K in case of SRO2. Duration
of each scan was 45 minutes. Fig. 6.8(a) shows the remanent state after saturating
the sample at +5 T. We can see a homogeneously magnetized area with signature
of 3D islands in the top left corner, coming from the crosstalk on topography (cf.
Fig. 6.2(b)). Other bubble-like features with non regular shape can be visible
across the image. They clearly exhibit magnetic signal that cannot be erased
with magnetic �elds up to 14 T, which was the largest �eld in our experimental
setup. Origin of these features will be discussed later. Fig. 6.8(b) shows the
�rst scan taken after application of small negative �eld of -151 mT, that was
further kept during the measurement. The reversed parts of the image increase
with time as shown in Fig. 6.8(c), taken after more than 2 hours from the initial
�eld application. As demonstrated in Fig. 6.8(d), the magnetization pattern
still evolves after nearly 4 hours, exhibiting similar timescale of several hours as
in case of the magnetization relaxation in SRO1. The only apparent di�erence
of the magnetization reversal process then remains in the size of the magnetic
domains, that are notably smaller in case of SRO2. This observation suggests
that the density of pinning centers is higher in SRO2, leading to more indented
domain pattern.

The exact nature of the bubble-like features persisting in high magnetic �elds
was not unambiguously clari�ed, but we assume that they are related to crystal-
lographic defects, such as anti-phase boundaries (APB) [124], arising in the multi-
variant growth. Such defects may consequently lead to creation of small areas
with antiferromagnetic ordering, whose magnetic signal can persist up to high
magnetic �elds, as reported for example in magnetite [125]. Crystallographic
defects can also act as domain nucleation centers, which indeed was observed
by means of MFM.

Fig. 6.9 shows a series of MFM scans taken at 20 K in case of SRO2, where
the domain nucleation process is captured. Duration of each scan was approx-
imately 13 minutes. Fig. 6.9(a) shows saturated state measured in remanence
after application of +3 T. Weak dark shadow spots, coming from the crosstalk
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Figure 6.8: MFM images (15� 15� m2) of magnetization reversal in SRO �lm de-
posited on STO substrate with low miscut angle (� 0:1� ), measured at 20 K with
�eld applied perpendicular to sample surface. Slow scan direction is indicated
by the black arrow. Bright areas represent initial magnetization, dark areas are
reversed. (a) Remanent state after saturation at +5 T, (b) �rst scan at -151 mT,
(c) one of the following scans at -151 mT measured after more than 2 hours, (d)
last scan at -151 mT after nearly 4 hours, where further magnetization switch-
ing is still visible. The time after �eld application is indicated for the beginning
(bottom) and the end (top) of each scan

of topography (cf. Fig. 6.2(b)), are visible all over the investigated area. Several
bubble-like features, that were not erased by the saturation �eld of +3 T, can be
observed as well. Two of them indicated by arrows become domain nucleation
centers as demonstrated in Fig. 6.9(b) after application of small negative �eld
of -140 mT. The dark magnetic domains are clearly originating in the persistent
features. Next scan in Fig. 6.9(c) taken after 52 minutes shows again the evolution
of magnetization with time, which now however is not so extensive due to lower
value of the applied magnetic �eld. Nonetheless timescale of the magnetization
relaxation process is always in order of hours as demonstrated in Fig. 6.9(d),
taken after 2 hours from the initial �eld application, where further magnetization
evolution is still visible.

Fig. 6.10 shows a single scan of SRO2 taken at a higher negative �eld of
� 180 mT. The scan was measured right after the �eld application, but here we
do not want to discuss the dynamics. We want to point out that more than
a half of the area is already reversed, which means that the overall magnetic
moment of the sample should be negative. However this scan was taken at a
�eld value determined as coercive �eld according to the SQUID magnetometry.
This disagreement between MFM and SQUID points out the local character of the
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Figure 6.9: MFM images (26� 26 � m2) of magnetization reversal in SRO �lm
deposited on STO substrate with low miscut angle (� 0:1� ), measured at 20 K
with �eld applied perpendicular to sample surface. Slow scan direction is indi-
cated by the black arrow. Bright areas represent initial magnetization, dark areas
are reversed. (a) Fully magnetized state measured in remanence after saturation
in +3 T, (b) �rst scan at -140 mT where domain nucleation is captured, (c) one
of the following scans at -140 mT measured after 52 minutes, (d) last scan at
-140 mT after nearly 2 hours. White circle in all images highlights a dirt particle
that serves as a marker. White arrows in (a) indicate bubble-like features acting
as domain nucleation centers. The time after �eld application is indicated for the
beginning (bottom) and the end (top) of each scan.

MFM measurement, as only a small area of the sample can be measured during the
scan. Nevertheless, despite the quantitative inaccuracy of the MFM, conclusions
on behaviour of magnetic domains remain unequivocal.

As demonstrated in Fig. 6.9, in case of SRO2 we were able to observe the
domain nucleation process, which enabled determination of the nucleation centers.
On the other hand this was not possible in case of SRO1, where we did not succeed
in capturing the exact location of the nucleation centers. As already presented
earlier, in Fig. 6.7(b) we captured the very beginning of the switching process,
yet a clearly demarcated area indicating a nucleation center is not visible. The
reversed (dark) area is missing borders on the left and top edge of the image,
suggesting that the domain nucleated outside of the observed area. In order
to locate the domain nucleation centers, we tried to �nd one clearly demarcated
reversed domain by observing a larger area of the sample. We �rst measured a
single MFM scan at a small negative �eld of -117 mT where a switching event
appeared. Then we turned o� the magnetic �eld to prevent further propagation
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Figure 6.10: MFM image (26� 26� m2) of SRO �lm deposited on STO substrate
with low miscut angle (� 0:1� ), measured at 20 K with �eld of -180 mT applied
perpendicular to sample surface.

of magnetic domains and we moved with the scanner around the area of the
sample to �nd borders of the initially observed reversed domain. This way we
investigated area of 90� 90 squared micrometers as shown in Fig. 6.11. However,
we were not able to �nd borders of the reversed region, i.e. we did not locate the
domain nucleation centers.

We should mention that one can also made an alternative explanation for the
process depicted in Fig. 6.7. If we assume that the domain nucleated in the very
center of Fig. 6.7(b), and that the reversal process then occured very quickly,
it would be possible that the DWs propagated from the center beyond the im-
age borderds before the scan was �nished. In order to test this hypothesis we
performed several control measurements in a following sequence. Firstly, we sat-
urated the sample in a high positive �eld, and we applied small negative �eld
(e.g. -120 mT) to initiate the nucleation process, after which we captured a �rst
image. Secondly, we saturated the sample in a high positive �eld again, and then
we applied a small negative �eld of lower amplitude compared to the �rst mea-
surement (e.g. -115 mT). Now we captured a second image and compared the
domain pattern with the �rst image. As the second image was recorded at lower
�eld, the reversed area should be smaller compared to the �rst image, allowing
us to determine the direction of DW propagation, as well as the position of the
nucleation center. If the nucleation center were located in the middle of the ob-
served area, the DWs would propagate from the middle, and the reversed area
would be diminished at the borders. However, the measurements revealed the
exact opposite, i.e. the reversed area was signi�cantly diminished in the middle,
suggesting that the DW propagation was proceeding from outside into the inves-
tigated area. This leaves the alternative hypothesis highly unlikely. The domain
nucleation center always appeared to be located outside the observed area. To-
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Figure 6.11: MFM image (90� 90 � m2) of SRO �lm deposited on vicinal STO
substrate, composed of several 26� 26 � m2 scans taken at 20 K, at remanence
after initiation of the switching process with �eld of -117 mT perpendicular to the
sample surface. The two bright rectangles are missing parts.

gether with the �ndings from Fig. 6.11, it leaves us unable to determine the exact
position of domain nucleation centers.

Not being able to capture the domain nucleation in SRO1 indicates signi�-
cantly lower density of the nucleation centers in SRO prepared on vicinal STO
substrate. Properties of the magnetic domains are also di�erent between the
two �lms. SRO1 exhibits larger magnetic domains and smaller coercive �eld,
which both indicate lower density of pinning centers in SRO on vicinal substrate.
The lower density of both the pinning and the nucleation centers is likely to be
related to density of crystallographic defects. Presence of the defects is appar-
ently suppressed in SRO on vicinal substrate via suppression of the multi-variant
growth. Even though we did not achieve growth of purely single-variant SRO �lm,
the representation of second crystallographic variant in case of SRO1 is so low
that the magnetic properties are notably improved. Absence of the bubble-like
features in MFM measurements on SRO1 further support their relation to crys-
tallographic defects, such as APB, which are typically reported in SRO thin
�lms [126, 127, 128]. APB can lead to antiferromagnetic ordering inducing mag-
netic signal that can persist up to high magnetic �elds [125]. Even though there
are no MFM reports on similar behaviour in SRO �lms, a recent study reported
almost identical MFM features arising near APB in bulk Ni-Mn-Ga [129]. We can
therefore conclude that growth of SRO on vicinal STO substrate leads to reduced
density of crystallographic defects acting as domain nucleation centers, such as
APB, and consequently to signi�cantly improved magnetic properties of the �lms.
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6.3.2 Magneto-optical Kerr microscopy

In order to con�rm validity of our MFM results we performed several spatially
resolved measurements on SRO1 magnetization by means of MOKE microscopy.
We used a homemade Kerr microscope with an orange diode as a light source. As
we were not able to apply magnetic �eld higher than� 20 mT, the measurements
were carried out at higher temperature, where the coercive �eld was su�ciently
reduced to allow the magnetization reversal.

Fig. 6.12 shows Kerr microscopy image of SRO1 taken at 135 K and 20 mT
of magnetic �eld applied perpendicular to the sample surface. Circular and oval
spots are visible all over the image area. These are only dust particles on the
CCD detector and do not carry any important information. The magnetic do-
main pattern can be clearly observed and the domain size and shape are in full
agreement with the domain parameters observed by MFM (cf. Fig. 6.11), which
veri�es the qualitative results of the MFM measurements.

Figure 6.12: MOKE microscopy image (128� 96 � m2) of SRO �lm deposited
on vicinal STO substrate, measured at 135 K and 20 mT of magnetic �eld applied
perpendicular to the sample surface.
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Conclusion

Due to the high importance for applications in oxide electronics, two groups
of magnetic oxides were investigated in this work.

Firstly, we presented a systematic study of the in
uence of epitaxial strain
on magnetic and magneto-optical properties of LSMO ultrathin �lms. To be-
gin with, we applied the strain statically by use of several substrates with dif-
ferent lattice mismatch. Both SQUID magnetometry and MOKE spectroscopy
con�rmed deterioration of magnetic properties with increasing epitaxial strain,
which can be explained by both the increasing unit cell distortion of the �lms
and the magnetically inert layer. By combination of spectroscopic ellipsome-
try and MOKE spectroscopy we determined the diagonal and o�-diagonal ele-
ments of permittivity tensor. The spectra of the o�-diagonal elements con�rmed
presence of previously reported electronic transitions around 2.4 and 3.6 eV. A
third electronic transition was observed around 4.3 eV only in spectra of �lms
grown under compressive strain. We proposed classi�cation of this transition as
crystal �eld paramagnetic transition from Mn t2g to Mn eg levels. We further
performed ab initio calculations that justi�ed this classi�cation and manifested
a minor in
uence of OOR in comparison to major role of octahedra distortions
in determining magneto-optical properties of LSMO. We therefore demonstrated
sensitivity of Mn 3d levels to oxygen octahedra distortions, which leads to po-
tential ways of tuning the magneto-optical properties of ultrathin LSMO �lms
in future applications.

We further tried to apply the strain dynamically by use of piezoelectric un-
derlayer. Even though structural and optical characterization con�rmed proper
physical properties of the fabricated device, the magneto-optical measurements
revealed very small in
uence of applied voltage on resulting spectral behaviour
of Kerr rotation. We showed that such a small e�ect can be more likely explained
by change of the PZT layer thickness due to the applied voltage. Therefore the
results remain inconclusive and we need to �nd a way how to transfer the strain
from PZT layer in LSMO more e�ectively.

The second part of the work dealt with the in
uence of substrate miscut
on magnetic domains in ultrathin �lms of SRO. As expected, structural investi-
gation showed that multi-variant growth can be successfully suppressed by use
of vicinal STO substrate, i.e. by substrate of high miscut angle. Even though
we did not achieve growth of purely single-variant �lm, the second SRO variant
was represented by negligible fraction in case of the vicinal substrate, compared
to 30% in case of the substrate with low miscut angle. By means of SQUID mag-
netometry and MFM microscopy we investigated the magnetization dynamics
and behaviour of the magnetic domains. We found that magnetization relax-
ation takes place in both �lms and it is observable on similar timescale of several
hours. We further found that the �lm with higher representation of the sec-
ond SRO variant exhibits higher coercive �eld and smaller magnetic domains,
which is directly related to higher density of pinning centers, i.e. higher density
of crystallographic defects. High density of defects was con�rmed also by direct
observation of the domain nucleation centers, which are likely to originate due
to the enhanced multi-variant growth. We believe that some of the defects are

97



anti-phase boundaries, leading to antiferromagnetic ordering and persistent fea-
tures in MFM signal up to high magnetic �elds. The qualitative MFM results
were further con�rmed by MOKE microscopy, which revealed essentially identical
magnetic domains pattern. Growth of SRO on vicinal STO substrate therefore
leads to reduced density of crystallographic defects, i.e. to better overall crys-
talline quality of the �lms, and consequenlty to improved magnetic properties
of SRO, which is of high importance for further applications.
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R�esum�e en fran�cais

Introduction

Dans ce travail, on a syst�ematiquement �etudi�e les propri�et�es physiques de deux
oxydes magn�etiques, qui o�rent une grande vari�et�e d'applications dans l'�el�ectro-
nique d'oxydes.

Le manganite dop�e au strontium La2=3Sr1=3MnO3 (LSMO) est un mat�eriau
tr�es connu grâce �a sa combinaison unique des propri�et�es physiques. Il pr�esente
l'e�et de magn�etor�esistance colossale [1], presque 100 % polarisation en spin [3]
et une haute temp�erature de Curie (TC;bulk � 370 K) [2].

Le ferromagn�etisme de LSMO est d�etermin�e par le double �echange, qui d�epend
fortement sur la g�eom�etrie de la liaison Mn-O-Mn. Le facteur qui est donc tr�es
important �a la contrôle des propri�et�es magn�etiques de LSMO est la contrainte
�epitaxiale.

Dans ce travail, on a e�ectu�e l'�etude de l'in
uence de la contrainte, qui a
�et�e appliqu�e dans la fa�con statique et dynamique. L'utilisation de l'approche
dynamique a �et�e motiv�e par le succ�es de la contrôle de l'inversion de l'aimentation
dans un nano�l de la vanne de spin, r�ealis�e par l'aid d'une sous-couche pi�ezo-
�electrique [6] comme montr�e en Fig. 1.

Un autre oxyde magn�etique (TC;bulk � 160 K [7]) tr�es connu est le ruth�enate de
strontium SrRuO3 (SRO). Une combinaison de la grande conductivit�e �electrique
et presque id�eale croissance �epitaxiale est la raison pour la popularit�e de SRO
�a la fabrication d'�electrodes dans les h�et�erostructures d'oxydes [8].

Malgr�e plusiers d�ecennies des �etudes, il y a toujours des questions concernant
l'anisotropie magn�etique de SRO [8]. Mais la connaissance exacte du comporte-
ment magn�etique est tr�es important grâce aux nouvelles applications de SRO
dans le domaine de spintronique [14, 15, 16, 17, 18].

La croissance de SRO sur le substrat de SrTiO3 (STO) est possible dans six
divers orientations cristallographiques, soi-disant variants [19, 20]. La croissance
de plusiers variants peut être supprim�ee par la d�esorientation du substrat, ce
qui m�ene aux couches minces de SRO de haute qualit�e. Dans ce travail, on a
�etudi�e l'in
uence de la d�esorientation du substrat par rapport �a la dynamique de

Figure 1: Sch�ema de l'inversion de l'aimentation dans un nano�l de la vanne de
spin, contrôl�ee dynamiquement par la contrainte �a l'aide de tension externe sur
une sous-couche pi�ezo�electrique (extrait de [6]).

99



l'aimantation dans le SRO.

1 Propri�et�es structurales et magn�etiques des
couches ultraminces des oxydes

La structure cristalline d'oxydes magn�etiques est la structure p�erovskite cubique
- ABO3, comme present�e en Fig. 2. Les atomes B sont entour�es de six atomes
d'oxyg�ene formant ainsi un octa�edre BO6, qui est un �el�ement structural tr�es
important dans les mat�eriaux p�erovskites. Les rotations et distorsions d'octa�edres
d'oxyg�ene sont deux m�ecanismes qui peuvent in
uencer les propri�et�es physiques
de ces mat�eriaux. Les rotations d'octa�edres sont caract�eris�ees par la modi�cation
de l'angle de la liaison Mn-O-Mn, tandis que les distorsions sont d�ecrit par la
variation de la longeur de Mn-O.

Ces deux m�echanisms in
uencent directement la con�guration orbitale [21,
37, 38], ce qui m�ene aux e�ects sur les propri�et�es magn�etiques et de transfert [57,
58, 59, 60, 63].

Figure 2: Sch�ema d'une maille p�erovskite id�eale ABO3 (extrait de [21]). Les six
atomes autour du cation B repr�esentent un octa�edre BO6.

2 La th�eorie �el�ementaire de la polarisation et
des �e�ets magn�eto-optiques

La lumi�ere est une onde �electromagn�etique. On peut d�ecrire ses propri�et�es par
l'�evolution temporelle du vecteur du champ �electrique. Ayant la lumi�ere dans la
forme d'une onde plane monochromatique, on peut exprimer le vecteur du champ
�electrique comme

E = Exx + Eyy + Ezz; E i = A0i cos (!t + � i ); i = x; y; z; (6.1)

o�u les vecteurs unitairesx ; y et z forment la base de syst�eme de coordonn�ees
cart�esienne. Les grandeursA0i et � i repr�esentent l'amplitude et la phase des
oscillations harmoniques selon l'axe correspondant,! est la fr�equence angulaire
de l'onde. On peut montrer [69] que le vecteur du champ �electrique trace une
ellipse, autrement dit le cas le plus g�en�eral de la polarisation de la lumi�ere est la
polarisation elliptique.
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L'e�et Kerr magn�eto-optique (MO) �etudie le changement de l'�etat de polar-
isation en r�e
exion d'un �echantillon magn�etiquement ordonn�e et optiquement
anisotrope. On peut caract�eriser ce changement par le ratio des coe�cients de
r�e
exion. L'angle complex de l'e�et Kerr en incidence normale est d�e�ni comme

� K = �
rps

r ss
� � K � i� K ; (6.2)

o�u rps et r ss sont les coe�cients de r�e
exion du p-polaris�e et du s-polaris�e com-
posant de l'onde incidente et re
�et�e, � K et � K repr�esentent les angles magn�eto-
optiques de la rotation et l'ellipticit�e Kerr.

Le tenseur de permittivit�e est un moyen qui nous permet d'introduire la r�ealit�e
physique �a la de�nition �el�ementaire de l'angle Kerr. Le tenseur contient des
informations sur les propri�et�es mat�erielles du syst�eme �etudi�e. La connaissance
complete du tenseur de permittivit�e m�ene �a la solution d'�equation des ondes,
et donc aux coe�cients de r�e
exion qui servent au calcul de l'angle MO par
l'�eq. (6.2). Le tenseur de permittivit�e " dans la con�guration polaire (le champ
magn�etique est perpendiculaire �a la surface de l'�echantillon) et presque normale
incidence de la lumi�ere peut être exprim�e comme

" �

2

6
4

"1 � i" 2 0
i" 2 "1 0
0 0 "1

3

7
5 ; (6.3)

donc le tenseur a seulement deux �el�ements complexes independents: l'�el�ement
diagonal "1 et l'�el�ement non-diagonal "2.

Dans la th�eorie semi-classique, les e�ects MO proviennent de la s�eparation
des niveaux d'�energie qui participent �a ces transitions optiques. Cette s�eparation
vient de l'interaction spin-orbite. Les transitions optiques qui forment la d�epen-
dance spectrale des �el�ements non-diagonaux du tenseur de permittivit�e (et donc

Figure 3: Les formes des raies spectrales de deux types des transitions magn�eto-
optiques; ! 0 est la fr�equence de r�esonance,"

0

1 et "
00

2 sont les parties r�eelle et
imaginaire de"2. (a) Type I, une double ou diamagn�etique transition. L'encart
montre la s�eparation spin-orbite des �etats excit�es. (b) Type II, une single ou para-
magn�etique transition. L'encart montre les divers forcesf + et f � de l'oscillateur
(extrait de [72]).
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qui sont magn�eto-optiquement actives), peut être tri�es dans deux cat�egories,
comme present�e en Fig. 3.

La th�eorie macroscopique du formalisme de Yeh [76] nous permet de faire
les calculs de la r�eponse MO bas�es sur la connaissance complete du tenseur de
permittivit�e. Ou au contraire, on peut calculer les �el�ements du tenseur de per-
mittivit�e si on fait d'abord les mesures exp�erimentales de la d�ependance spectrale
de l'e�et MO.

3 Dispositifs exp�erimentaux

Les principaux outils exp�erimentaux utilis�es pendant cette th�ese ont �et�e les suiv-
ants. Toutes les couches ont �et�e d�epos�ees par ablation laser puls�e. La di�raction
des rayons X a permis de compl�etement d�ecrire la cellule unitaire des �echantillons
�etudi�es. Les propri�et�es magn�etiques ont �et�e examin�ees �a l'aide de magn�etom�etre
SQUID. Des informations compl�ementaires sur les propri�et�es magn�etiques ont
�et�e fourni par la microscopie �a force magn�etique (MFM) et la spectroscopie
Kerr magn�eto-optique. Les propri�et�es optiques ont �et�e caract�eris�ees par l'aide
de l'ellipsom�etrie spectroscopique. La technique la plus importante a �et�e la spec-
troscopie magn�eto-optique de l'e�et Kerr (MOKE).

La spectroscopie Kerr MO est une technique tr�es susceptible pour la car-
act�erisation des propri�et�es magn�etiques des mat�eriaux. Elle peut mesurer les
angles MO avec une haute pr�ecision ce qui est convenable �a �etudier des signaux
faibles des couches ou multicouches minces. Dans ce travail, on a utilis�e un spec-
trom�etre MO �a l'analyseur tournant, qui est montr�e en Fig. 4. La lumi�ere �emis
par la lampe passe d'abord par le polariseur P, qui d�e�nit l'�etat de la polarisation
de l'onde lumineuse. Apr�es la r�e
exion sur la surface de l'�echantillon S plac�e
dans un �electro-aimant, la lumi�ere passe par le compensateur C et ensuite par
l'analyseur tournant A. En�n elle est enregistr�ee par le d�etecteur D. L'intensit�e
de la lumi�ere I varie en fonction de l'angle� de l'analyseur tournant selon la
formule

I = sin2 � + ( � K cos� + � K sin� ) sin (2� ) + I dark ; (6.4)

o�u � d�esigne le retard en phase de la lumi�ere induit par le compensateur C,I dark

light
source

L1

L2

P

C

S

A

D

Figure 4: Sch�ema du spectrom�etre magn�eto-optique bas�e sur la technique de
l'analyseur tournant; A - analyseur tournant, C - compensateur, D - d�etecteur,
L1, L2 - lentilles, P - polariseur, S - �echantillon aimant�e.
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est un terme constant repr�esentant le courant d'obscurit�e, en�n� K et � K sont
les angles MO de la rotation et l'ellipticit�e Kerr. On peut extraire les angles de
la rotation et l'ellipticit�e Kerr des mesures exp�erimentaux par l'ajustement de
courbe de la d�ependence de l'intensit�eI en fonction de l'angle� selon l'�eq. (6.4),
ayant les angles� K et � K comme les param�etres de l'ajustement.

4 Les �echantillons examin�es

Tous les �echantillons ont �et�e fabriqu�es au Centre de Nanosciences et de Nanotech-
nologies �a Orsay.

Pour l'application statique de la contrainte, les couches ultraminces de LSMO
(avec l'�epaisseur environ 20 nm) ont �et�e d�epos�ees sur quatre substrats di��erents
- LaAlO3 (LAO), (LaAlO 3)1=3(Sr2AlTaO 6)2=3 (LSAT), STO et DyScO3 (DSO).
Ces substrats ont fourni une grande vari�et�e des valeurs de la contrainte, allant de
la grande contrainte compressive sur LAO �a la grande contrainte de traction sur
DSO. Les param�etres de maillea et les valuers de la contrainte �epitaxiale sont
r�esum�es dans le Tableau 1 pour tous les substrats.

Mat�eriel LAO LSAT LSMO STO DSO
Param�etre de maille a [�A] 3.790 3.868 3.876 3.905 3.942
Contrainte �epitaxiale [%] 2.27 0.21 -0.74 -1.67

Tableau 1: Le sommaire des param�etres de maillea et des valeurs de la contrainte
�epitaxiale pour tous les substrats utilis�es pour le d�epôt des couches LSMO.

Pour l'application dynamique de la contrainte, un dispositif a �et�e r�ealis�e par
des techniques de microfabrication. Le dispositif a �et�e bas�e sur une h�et�ero-
structure, qui a contenu la couche LSMO au dessus d'une sous-couche pi�ezo-
�electrique de PbZr0:52Ti 0:48O3 (PZT), le sch�ema du dispositif est present�e en Fig. 5.

STO

SRO
PZT PZT

LSMO Si3N4 Ti/Au

Ti/Au
+ -

PZT

SRO

LSMO

+
-

Ti/Au

Ti/Au

Si3N4

(a) (b)

Figure 5: (a) Sch�ema du pro�l et (b) de la vue de dessus de l'h�et�erostructure apr�es
microfabrication, utilis�ees comme le dispositif pour l'application dynamique de la
contrainte. La tension �el�ectrique a �et�e appliqu�ee dans la direction perpendiculaire
par rapport �a la surface de la multicouche.

A�n d'�etudier l'in
uence de la d�esorientation du substrat par rapport �a la
dynamique de l'aimantation de SRO, on a fabriqu�e deux couches minces sur les
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substrats de STO avec les valeurs di��erents de la d�esorientation� . Des grandes
valeurs de la d�esoriantation (� & 1� ) m�enent �a la suppression de la croissance de
plusiers variants cristallographiques, on a donc utilis�e les substrats avec� = 0:1�

a�n de r�ealiser la croissance de plusiers variants sur l'un d'�echantillons et� = 1:0�

a�n de fabriquer un seul variant sur l'autre.

5 L'in
uence de la contrainte sur la structure
�electronique de La 2=3Sr1=3MnO 3

5.1 L'application statique de la contrainte

La qualit�e des couches minces LSMO d�epos�ees par ablation laser puls�e a �et�e
v�eri��ee �a l'aide de la microscopie �a force atomique et la di�raction des rayons
X. La cellule unitaire a �et�e compl�etement d�ecrite en utilisant la cartographie
de l'espace r�eciproque par di�raction des rayons X. Les propri�et�es magn�etiques
ont �et�e caract�eris�ees par la magn�etometrie SQUID, les propri�et�es optiques par
l'ellipsom�etrie spectroscopique. Les r�esultats principaux ont �et�e obtenus par spec-
troscopie MOKE.

La spectroscopie MOKE a �et�e utilis�ee a�n de d�eterminer les �el�ements non-
diagonaux du tenseur de permittivit�e "2. Les mesures MOKE �a temperature
ambiante ont �et�e e�ectu�ees par le spectrom�etre MO �a l'analyseur tournant, qui est
pr�esent�e en Fig. 4. Les donn�ees ont �et�e enregistr�ees dans la con�guration polaire
�a 1 T du champ magn�etique (champ su�sant pour la saturation compl�ete), sur
la gamme spectrale de 1.5 �a 5.0 eV.

Les spectres MOKE ont �et�e usilis�es pour calculer les spectres des �el�ements non-
diagonaux du tenseur de permittivit�e, qui sont montr�es en Fig. 6. Les param�etres

Substrat LAO LSAT STO DSO
Transition 1 Transition du champ cristallin Mn t2g ! eg

("
00

2)max 0.010 0.472 0.069 0.001
! 0 [eV] 2.45 2.50 2.38 2.49
� [eV] 0.43 0.66 0.38 0.42

Transition 2 Transition de transfert de charge O 2p ! Mn t2g

("
0

2)max 0.04 1.16 0.36 0.01
! 0 [eV] 3.63 3.51 3.55 3.64
� [eV] 0.87 1.14 0.97 0.73

Transition 3 Transition du champ cristallin Mn t2g ! eg

("
00

2)max -0.03 -0.69 Pas de transition
! 0 [eV] 4.26 4.25 sur la contrainte
� [eV] 0.56 0.67 de traction

Tableau 2: Les param�etres de trois transitions �electroniques qui ont �et�e utilis�ees
pour d�ecrire la r�eponse magn�eto-optique des couches LSMO sur quatre sub-
strats di��erents; ( "

0

2)max ou ("
00

2)max , ! 0 et � d�esignent l'amplitude maximale,
la fr�equence et la largeur des oscillateurs. Les param�etres ont �et�e obtenus par
l'ajustement de courbe des spectres MOKE en utilisant les �el�ements diagonaux
du tenseur de permittivit�e.
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Figure 6: Les spectres des parties r�eelle (en haut) et imaginaire (en bas) des
�el�ements non-diagonaux du tenseur de permittivit�e des couches LSMO sur quatre
substrats di��erents. Ils ont �et�e calcul�es des �el�ements diagonaux du tenseur de
permittivit�e et des spectres MOKE. Pour plus de clart�e, les spectres des couches
d�epos�ees sur LAO et DSO ont �et�e ampli��es par dix.

des transitions utilis�ees pour d�ecrire les �el�ements non-diagonaux sont pr�esent�es
dans la Tableau 2. Dans les spectres de tous �echantillons, on peut voir deux
transitions �electroniques qui ont �et�e d�ej�a rapport�ees. Autour de l'�energie de
3.6 eV, il y a le minimum principal qui est associ�e avec la transition de transfert
de charge de O 2p �a Mn t2g [74, 104, 105, 107]. Autour de 2.4 eV, on peut
voir le maximum qui est associ�e avec la transition du champ cristallin de Mnt2g

�a Mn eg [74, 105, 107]. De plus, il y a une autre transition autour de l'�energie
de 4.3 eV, mais seulement dans les spectres des �echantillons fabriqu�es avec une
contrainte compressive.

Bas�e sur l'�etude de LSMO par la spectroscopie MOKE d�epandante de la
temp�erature [110] on a propos�e la classi�cation de cette transition comme une
transition paramagn�etique du champ cristallin de Mnt2g �a Mn eg. Cette classi-
�cation conforme aux calculsab initio de densit�e d'�etats �electroniques rapport�es
pr�ec�edemment [107, 111, 112]. Nos calculs de densit�e d'�etats �electroniques ont
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ensuite confort�e cette classi�cation. De plus, les calculs ont montr�e un rôle
mineur des rotations d'octa�edres d'oxyg�ene compar�e au rôle majeur des distor-
sions d'octa�edres par rapport �a la contrôle des propri�et�es MO de LSMO.

5.2 L'application dynamique de la contrainte

La qualit�e du dispositif LSMO/PZT a �et�e veri��ee par les mesures des propri�et�es
structurales, ferro�electriques, optiques et magn�eto-optiques ainsi que par les cal-
culs th�eoriques de la r�eponse MO. Les r�esultats principaux ont �et�e obtenus par
la spectroscopie MO et ils sont present�es en Fig. 7. Il y a deux courbes qui mon-
trent la r�eponse MO du dispositif mesur�ee �a 0 V et 4 V de la tension �el�ectrique
appliqu�ee �a travers de la couche PZT. La di��erence de ces mesures est montr�ee
et pour plus de clart�e elle est ampli��ee par dix. Bas�e sur les calculs th�eoriques
de la r�eponse MO du dispositif, on a propos�e que l'e�et du changement de la
rotation Kerr est si faible qu'il vient probablement de l'interf�erence optique du
signal MO, venant du changement de l'�epaisseur de la couche PZT caus�ee par
la tension �el�ectrique. Donc l'application dynamique de la contrainte est rest�ee
peu concluante. Des am�eliorations ult�erieures du dispositif sont n�ecessaires pour
atteindre un meilleur transfert de la contrainte entre les couches LSMO et PZT.

Figure 7: Le spectre de la rotation Kerr du dispositif LSMO/PZT pour 0 V et
4 V de la tension �el�ectrique appliqu�ee �a travers de la couche PZT, mesur�e dans la
con�guration polaire �a l'angle d'incidence de 60� . La di��erence des deux mesures
est montr�ee.

6 L'in
uence de la d�esorientation du substrat
sur l'aimantation de SrRuO 3

Les propri�et�es structurales des couches SRO ont �et�e caract�eris�ees par la cartogra-
phie de l'espace r�eciproque par di�raction des rayons X. Comme attendu, on a
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trouv�e que le grand angle de d�esorientation m�ene �a la suppression de la crois-
sance de plusiers variants, donc on a r�ealis�e une couche SRO avec un seul variant
(SRO1) et une couche SRO avec deux types de variant (SRO2).

Les propri�et�es magn�etiques ont �et�e d'abord caract�eris�ees par la magn�etometrie
SQUID. On a trouv�e qu'il y a des di��erences dans le cycle d'hyst�er�esis des deux
�echantillons, notamment que dans le SRO1 le champ coercitif est plus petit et
l'aimantation de saturation est plus grande que dans le SRO2.

Les r�esultats principaux ont �et�e obtenus par la microscopie �a force magn�etique
qui a servi �a la caract�erisation du comportement des domaines magn�etiques. La
temp�erature de Curie de SRO est environ 160 K, donc les mesures de MFM ont
�et�e e�ectu�ees en basses temp�eratures, plus pr�ecis�ement �a 20 K. Une s�erie typique
des images MFM de SRO1 est present�ee en Fig. 8. On peut voir la morphologie
des domaines magn�etiques ainsi que leur comportement dynamique. De la com-
paraison des images des deux �echantillons, on a trouv�e que la pr�esence de plusiers
variants m�ene �a l'augmentation de la densit�e de d�efauts agissant comme points

Figure 8: Images MFM (15� 15 � m2) de l'inversion de l'aimentation dans la
couche SRO d�epos�ee sur le substrat STO vicinal (� = 1:0� ), mesur�ees �a 20 K
du champ appliqu�e dans la direction perpendiculaire �a la surface de l'�echantillon.
La direction du balayage est montr�ee par la 
�eche noire. (a) L'�etat �a la satu-
ration totale, mesur�e �a +3 T, (b) le premier balayage �a -119 mT, o�u on peut
voir le d�ebut du processus de l'inversion, (c) le deuxi�eme balayage �a -119 mT,
mesur�e juste apr�es le premier, (d) le dernier balayage �a -119 mT apr�es presque
4 heures, o�u on peut toujours voir l'inversion continuante. Les 
�eches blanches
dans (b) et (c) surlignent les lignes horizontales entre les r�egions claires (initiales)
et noires (invers�ees) qui viennent de l'inverser pendant le balayage. Le temps
apr�es l'application du champ est indiqu�e pour le d�ebut (en haut) et la �n (en
bas) de chaque balayage.
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d'ancrage ou de nucl�eation pour les domaines magn�etiques.

Conclusion

Deux groupes d'oxydes mang�etiques ont �et�e �etudi�es dans ce travail grâce �a leur
haute importance pour les applications dans l'�el�ectronique d'oxydes.

En premier lieu, on a present�e une �etude syst�ematique de l'in
uence de la con-
trainte �epitaxiale sur les propri�et�es magn�etiques et magn�eto-optiques des couches
minces de LSMO. D'abord on a appliqu�e la contrainte statiquement �a l'aide de
plusiers substrats di��erents qui ont fourni une grande vari�et�e des valeurs de la
contrainte. La magn�etometrie SQUID et la spectrocopie MOKE ont con�rm�e
la d�et�erioration des propri�et�es magn�etiques en augmentation de la valeur de la
contrainte. La combinaison de l'ellipsom�etrie spectroscopique et la spectroscopie
MOKE a servi �a d�eterminer les spectres des �el�ements diagonaux et non-diagonaux
du tenseur de permittivit�e. Les spectres non-diagonaux ont con�rm�e la pr�esence
de deux transitions d�ej�a rapport�ees autour des �energies de 2.4 et 3.6 eV. Une
autre transition �el�ectronique autour de 4.3 eV a �et�e trouv�ee seulement dans les
spectres des couches d�epos�ees avec la contrainte compressive. On a propos�e la
classi�cation de cette transition comme une transition paramagn�etique du champ
cristallin de Mn t2g �a Mn eg. Les calculsab initio ont confort�e cette classi�cation
et ils ont r�ev�el�e le rôle mineur des rotations d'octa�edres d'oxyg�ene compar�e au
rôle majeur des distorsions d'octa�edres par rapport �a la contrôle des propri�et�es
magn�eto-optiques de LSMO. L'application dynamique de la contrainte �a l'aide
d'une sous-couche pi�ezo�electrique a montr�e un changement faible du spectre de
la rotation Kerr, ce qui a donc rest�e peu concluant, n�ecessitant des am�eliorations
ult�erieures du dispositif LSMO/PZT pour un meilleur transfert de la contrainte
entre la sous-couche pi�ezo�electrique et la couche LSMO.

En second lieu, l'in
uence de la d�esorientation du substrat a �et�e �eduti�ee par
rapport au comportement des domaines magn�etiques des couches minces de SRO.
Comme attendu, on a montr�e que l'emploi d'un substrat vicinal (avec un grand
angle de la d�esorientation) m�ene �a la suppression de la croissance de plusiers
variants cristallographiques de SRO. La magn�etometrie SQUID et la microscopie
�a force magn�etique ont �et�e utilis�ees �a �etudier la dynamique de l'aimantation et
des domaines magn�etiques. On a trouv�e que la pr�esence de plusiers variants
cristallographiques m�ene �a un champ coercitif plus grand et une aimantation
de saturation plus petite, ce qui est directement li�e �a une densit�e plus haute des
points d'ancrage, c'est �a dire la densit�e plus haute des d�efauts cristallographiques.
On a donc montr�e que l'emploi d'un substrat vicinal m�ene �a la r�eduction de la
densit�e de d�efauts agissant comme points d'ancrage ou de nucl�eation pour les
domaines magn�etiques et alors que le substrat vicinal est tr�es important pour
la fabrication des couches ultraminces de SRO de haute qualit�e et d'excellentes
propri�et�es magn�etiques.
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List of Abbreviations
AF - antiferromagnetic
AFM - atomic force microscopy
APB - anti-phase boundaries
CCD - charge-coupled device
CMR - colossal magnetoresistance
DC - direct current
DE - double-exchange
DOS - density of states
DSO - DyScO3

DW(s) - domain wall(s)
IBE - ion beam etching
LAO - LaAlO 3

LD - linear dichroism
LSAT - (LaAlO 3)1=3(Sr2AlTaO 6)2=3

LSMO - La2=3Sr1=3MnO3

MBE - molecular beam epitaxy
MFM - magnetic force microscopy
MO - magneto-optical
MOCVD - metalorganic chemical vapour deposition
MOKE - magneto-optical Kerr e�ect
MPMS - Magnetic Properties Measurement System
NGO - NdGaO3

OOC - oxygen octahedra coupling
OOR - oxygen octahedra rotations
PLD - pulsed laser deposition
PZT - PbZr1=2Ti 1=2O3

RF - radio frequency
RHEED - re
ection high-energy electron di�raction
RSM(s) - reciprocal space map(s)
RSO - reciprocating sample option
SE - spectroscopic ellipsometry
SQUID - superconducting quantum interference device
SRO - SrRuO3

TDOS - total density of states
XAS - X-ray absorption spectroscopy
XRD - X-ray di�raction
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