. %$!,

, !50>>161.2!Ck'!0.!.32463+!<13]3216!J>6-7!Md!??F!2-!<32463215!Ck'!->!L!??7PQ!)

. &lt;d&lt;217&lt;b!], , vol.0

!. 0&lt;!,

, !51<,60?20-.!->!2;1!,61/0,1!>-6716!>-6!?, vol.17320

, !3.5!,3+0F63215!2023.047! 50<,!<?60.:<Q!)023.047!JT6351!cP!>3<21

!. J&quot;*kb!cdmmpq,

-. !. 3&lt;!f11, , vol.20

, a,61/0,1!<37?+1<Q!);1!7-.02-60.:!->!2;1!?-21

, 3215! FD! +36:1! ?-21.203+! 56-?J<PQ! ), vol.50

!. 73h0747!1h?-&lt;461,

!. and -. &gt;0, , p.46320

!. ,

. 4&lt;15!3&lt;!, 20/1!<46>3,1!,-.26-+!2-!F1!, vol.54

!. &lt;230, . +1&lt;&lt;!&lt;211+!f3, and . 21603+!-;-%$!, 774.0201<Q! '`9W)

, !<070+36!<12!4?!3<!51<,60F15!0.!^0:461!MN!]3<!4<15!2-!1H?-<1!<4?16a54?+1H!<230

. !l!, 7!3.5!513163215!]3216!4.516!Md!??FQ!955020-.3+!:+3<<!<37?+1<!]161!1H?-<15! 5460
URL : https://hal.archives-ouvertes.fr/hal-00022554

!. , , vol.26

*. 20&gt;0 and B. ,

, 16!2;32! X1?2!2;1!077150321!3613!<2160+1Q!)U*!<-+420-.<!]161!2;1.!<2-615!0.!0,1!>-6!263.<?-62!2-!2;1!7-+1, vol.0

!. ,

, 21603+!736X16a:1.1!]3<! 37?+0>015! FD! 3! ?-+D7163<1!

, ! "++470.3! 353?216<!3.5!<37?+1a<?1,0>0,!<12<!->!F36

!. , , p.2

!. 9&amp;w461!qw and !. J9,

!. Jp and -. ,

!. =43+02d!&gt;0+2160,

!. 3+, , p.602

+. X. 3+!+0,

. R!12!3+qb!cdmmpq!p1!4&lt;15!#*%9$&apos;`!j$-, 1<!12!3+QB!cdMLP!2-!5121,2!3.5! '`9W)%$!

D. Kr+,

G. Ck, &. Odamdd, and !. ,

!. and -. , 5020-.<B!54?

, U3,21603!4<1!615-H!613,20-.<!>-6!1.16:D!

. 16&lt;!1+171 and . 2&lt;!&lt;4,

!. F3 and . 21603+!&gt;63, !0<!61<?-.<0F+1!>-6! 2;1!1..-F+171.2Q!p02, p.20

!. 0&lt;!,

!. , !F3,21603!+0X1!2IG"#%OCE"F\5, vol.51, p.6350

, 0<!2D?1!->!F3,21603!]3<!3+<-!

!. 717f16!-&gt;!2,

, !12!3+QB!cdMmFPQ!k0+a5160/15!

. &lt;245d!], , vol.0

, 1D!, vol.70

-. 2q!-&apos;`9w)%$!,

!. F0-736x16!-&gt;!-46!&lt;245db!s&apos;e%g, , p.32

, 0<!<245D!]1!?6-?-<1!3!+0<2!->!F3

. 60&lt;x!-&gt;!+-, 66-<0-.Q!".216?612320-.<!3F-42!2;1!6-+1!->!F0-736X16<!F3,21603!0<!+070215!2-!102, vol.16

!. Och&quot;g&amp;ae%&quot;ga&quot;ab!-y&apos;&amp;auammcb and !. G&amp;ae%, , vol.0

!. 0&lt;!,

, 3+! Ck'! F12]11.! Od! 3.5! Mdd! ??F! F1+, vol.6020

!. F3, , p.15

, 54?+1H! <230.+1<<! <211+Q! 9F-/1! Mdd! ??F! ->! Ck'B

!. 61&lt;0&lt;23.2!-3++-d&lt;q!,

. D56-, , vol.0

!. 1+1, 20/1! F3,21603! FD! -2;16!342;-6<!Jp3, pp.26-29

3. -. D56-, , vol.51, p.6350

, 0F02! 3!

. 713&lt;463f+1!1+1, , vol.26

!. and -. ,

, 1! ?6-F3F0+02D! ->! ?0220.:!3.5!,61/0,1!,-66-<0-.!3<!2;1!k'W!:12<!,+-<16!2-!2;1!?0220

!. &lt;211+!-361!--&gt;!, , vol.6020

-. 2b!+022+1!0&lt;!x,

*. and -. Mnnl?!$-,

, 0166D!12!3+QB!cdMm?!t, vol.3

, 0<7!2;32!,-4+5!1H?+30.!2;1!1..-F+171.2!>-6!3++!61?-6215!, vol.3

, 38! 3<! 3! F0-736X16! ->! 1..-F+171.2! J)60:-512! 12! 3+QB! cdMNPQ! s!"*! )1.51603! 1+1,26-?, *! )1.51603! 1+1, vol.26, p.32

, 20/1! F3,21603! 361! 3F+1! 2-! 4<1! 1H263,1++4+36! 1+1, vol.26, pp.26-26

, 0<!<245DB!]1!307!32!051.20>D0.:!1+1, pp.26-26

!. F3, , 21603.

-. ,

. 4&lt;!-1h?-&lt;15!-&lt;230.+1&lt;&lt;!-&lt;211+!, , pp.6-9

, 1<B! ]1! ,-4+5! 051.20>D! ?-?4+320-.! :1.-71! 50>>161.203++D! 61<?-.50.:!2-!?-21.203+!7-54+320-.!3.5!0.<?1,2!2;106!?-21.203+!7123F-+0<7Q! ! + '`9W)%$!"""!\!&%)9T%(k&"'!%#"C%('%!k^!%G%')$k)$kW`"'!U9

&. =t+=re+b#ulkev+,

!. 4&lt;15!&lt;4?16a54?+1h!&lt;230.+1&lt;&lt;!&lt;211+&lt;!j*lcomdp and !. , !3<!51<,60F15!0.!)60:-512!12!3+QB!cdMNQ!W+321<!->!

!. ^1q!, 1!?0220.:!61<0<23.,1!1=40/3+1.2!.47F16<!0<! ecQl!Jx'6!u!lBlJx&-!u!dQmxpP!u!MLx, p.3

, k46!1H?16071.23+!51<0:.!0.,+4515!m!<12<!->!<37?+1<!,-7?-<15!->!,-4?-.<!0.!-?1.a,06,402!-6!, vol.13

, <477360Z15!0.!)3F+1!e\!JMP!-?1.!,06,402!?-21.203+!>-6!Ml!53D<?!JcP!-?1.!,06, pp.402-423

, 21.203+!]3<!51,613<15!FD!Mdd!7#!4, vol.516

!. Fd!md!7#!3f-/-;-!+3&lt;2!k&apos;w!/3+41?!, JeP!, vol.2

!. Ml and !. Jmp, +3<<!,-4?-.<Q! p1!1H?-<15!3++!,-4?-.<!<074+233??6-H073215!McG{

!. 6321q!*230,

. 3&lt;!-f11, , p.2

, J%<?1+05B!cddlPQ!p1!4<15!?-21.20-<232!J&0,6-<232!>6-7!*D,-?1+P!2-!07?-<1!<?1,0>0, p.21

, {9:'+!3<!3!61>161.,1!1+1,26-51Q!^0/1!61?+0,321<!]161!4<15!>-6!3++!,-.5020-.<!3.5!1H?-<15!>-6!Ml! '`9W)%$!"""!\!&%)9T%(k&"'!%#"C%('%!k^!%G%')$k)$kW`"'!U9, vol.9

!. 47f16!-&gt;!, , vol.3

#. %&amp;!r,

, ++#9W!#27!9#1,.2#%&(!k'W!>-6!k?1.!'06, p.402

!. &lt;211+!-k&apos;w!-*23, +1<<!<211+! k'W!3.5!,32;-50,!51?-+360Z320-.!aMdd! 7#!/<!k'W!>-6!2;1!+3<2!ce

, +1<<!<211+! W-21.203+!>0H15!32!uldd!7#!/<!9:{9:'+! W61/1.2!1+1, pp.26-26

!. Jmd, !. 7&amp;!)60&lt;b!mmd, and . 7&amp;!,

, !3613!<2160+1Q!)U*!<-+420

, ! dQcc! ?7! T))W! ?-+D,36F-.321! 717F63.1<! J&16,X! &0++0?-61B!, pp.6-10

, X02! Jy03:1.B! T1673.DPQ! p1! ?61/0-4<+D! ,-++1,215! ,-.26-+! <37?+1<! 2

. Pq!-!-&apos;`9w)%$!, !\!&%)9T%(k&"'!%#"C%('%!k^!%G%')$k)$kW

!. Mdd and !. ,

. B!cdmcp, , vol.7123, pp.1-70

!. ,

!. &amp;%t9-;-!/mqmqm!jg0,

. 3+qb!cdmlpb!36,

!. !u-]201c!/cqlqm and . Jg3, , pp.7135-7138

!. and -. ,

. !&apos;k-;-!j9+,

&. and J. , !hdP!2-!70.070Z1!2;1!>63:71.2320-.!166-6!F1>-61!73, vol.13

!. F0, , p.2

. J}!nd!x!, +120-.B!w!m!x!6154.53.,DP!-6!715047!=43+02D!&9T<!J}!md!x!,-7?+120-.B!w!Mdx!6154.53.,DP! JU-]16<!12!3+QB!cdMOPQ!! '`9W)%$!"""!\!&%)9T%(k&"'!%#"C%('%!k^!%G%')$k)$kW`"'!U9

!. 3&lt;&lt;0,

, W>37!/lcQd!J%+aT1F3+0!12!3+QB!cdMNP!4<0.:!3./0a64.a.,F0a, p.2

!. 1+1, 20/1! F3,21603\! 2G%$%&D%CH"G%II, pp.26-29

&. ,

. %$!, !\!&%)9T%(k&"'!%#"C%('%!k^!%G%')$k)$kW, p.9

C. =t++, , vol.613

. !-u!-cmc!-7#!-j?!-l!-7#p!-/&lt;q!-*&apos;%,

!. Q!nmx and -. &. , 1!3613!0<!<

, 5020-.!M '`9W)%$!"""!\!&%)9T%(k&"'!%#"C%('%!k^!%G%')$k)$kW`"'!U9

C. , &. B#u=\#rkb#+=re+b=\i&lt;ai, and !. ,

!. &lt;1=41, !+0F63601<!>-6!3!2-23+!->!Nlh!Ole!OLN!63]!6135<Q!9>216!2;1!=43+02D!>0+2160.:B! hNl!LOh!mmm!<1=41

!. &amp;%t9-;-!61&lt;4+20,

!. F. !hd,

. !&apos;k,

!. J}!mdx and !. , +120-.B!w!Mdx!6154.53.,DP!3.5!hc!;0:;!=43+02D!&9T<!J}! Ndx!,-7?+120-.B!w!mx!6154.53.,DPJ)3F+1!mPQ!

, !F1!1H?+30.15!FD!2;1!/16D!, vol.0

!. &lt;1=41,

!. ,

, 0<!?3620,4+36!<37?+1!JMNd!Mdc!

, !6135!73??0.:!2-!&9TrONrMQ!p1!>462;16!0.<?1,215!&9TrONrM!, vol.13

!. and -. ,

/. and &. !. A!z]ghunh,

, ! $1?61<1.2320-.! ->! 2;1! hc!, vol.0

!. =43+02d!-&amp;9t&lt;!--f230, 15! FD! ,-a3<<17F+DQ! );1! ,1.263+! ,+35-:637! -6516<!2

, 1<<0/1!+3D16<!3.5!,-+-615!?16!,-.5020-.Q!);1! ,-+-6!0.21.<02D!61?61<1.2!2;1!713.!,-/163:1!->!2, !<37?+1Q!$1?+0,321!<37?+1<!361!:6-4?15!0.!<4, vol.13

, ! +3D16!61?61<1.2!73??0.:!61<4+2<!>6-7!, vol.13

!. ,

. 1&lt;1!&lt;?+02&lt;q!, , vol.1

!. +02,

. %$!, !\!&%)9T%(k&"'!%#"C%('%!k^!%G%')$k)$kW, p.9

. %$!, !\!&%)9T%(k&"'!%#"C%('%!k^!%G%')$k)$kW, p.9

, C"2"!FKBN=7=U?P#+\#RKB?F+

!. and -. , 515!2-!s!"*! )1.51603! 1+1,26-?, :38! JNLx! <070+3602DPQ!, vol.3

!. 1+1, , vol.26

. 0&lt;!9-;-!-&gt;!hcqhxq!k&lt;0, , vol.163, p.2

, 0=41!>-6!s'3Q!)1.51603!1+1, vol.26

!. F+41q!c!ndn, PB!eee!4.0=41!>-6! &9TrONrM!J-.+D!F+41P!3.5!edN!4.0=41!>-6!s!"*!)1.51603!1+1,26-?;3:38!J-.+D!-63.:1PQ! ! '`9W)%$!"""!\!&%)9T%(k&"'!%#"C%('%!k^!%G%')$k)$kW

!. 1+1, 26-?;3:38!0.!)3F+1!LQ!! p3

!. !&apos;d,ca+0x1 and . D2-, !s!"*!)1.51603!1+1,26-?

, /1!:1.1<!,-50.:!>-6!7-+DF5-?2160.!-H05-6154

, ! 1+1,26-.! 263.<>16! ,-7?+1H1<! ]161!

!. !me,

. %$!, !\!&%)9T%(k&"'!%#"C%('%!k^!%G%')$k)$kW, p.9

C. and &. Kr++,

. 323&lt;1!-]3&lt;!-70&lt;&lt;0,

D. !&apos;kt!3-;-!,

!. &gt;4++!?;-&lt;?, 321!263.<?-62!<D<217!J?<2*'9UB!?;-KP!051.20>015!0.!S*5JAEECCF%$"#(!JU36

, 36051B!+0?-a-+0:-<3

!. , , vol.6154, p.2, 26021.

!. 3&lt;&lt;17f+d!-&gt;!&amp;9tronrm,

. &gt;4++!4613&lt;1!,

. %$!, !\!&%)9T%(k&"'!%#"C%('%!k^!%G%')$k)$kW, p.9

. %$!, !\!&%)9T%(k&"'!%#"C%('%!k^!%G%')$k)$kW, p.9

, !FKBN=7?VKR+`?UL+KUL#7+#T#FU7K=FU?P#+S=FU#7?=+

!. 1+1, , vol.26, p.38

, U-2

!. ,

!. Ffl and !. D2-,

, 1<1! 2;611! F3, p.21603

$. 4u0&lt;&apos;k!,

, 3615!;161Q! ! + '`9W)%$!"""!\!&%)9T%(k&"'!%#"C%('%!k^!%G%')$k)$kW`"'!U9

D. Vfzvv?kr+-d&quot;!&quot;!#t#fu7k=fu?p#+s=fu#7?=+=re+#rrkst#b#ru+,

, !2;1!?61<1.,1!->!&9TrONrM!3.5!02<!?42320/1!7123F-+0<7!0.>16615!>6-7!s!"*!)1.51603!1+1, p.26

, 0<!7-51+B!1+1, p.2

!. and -. &lt;1=41, 2+D!0.,613<1!2;1!k'WQ!)

. 0&lt;!;d?-2,

. 1&lt;0&lt;!0&lt;!,

. U3653+b!mnhm?!g36,

. Mnnl?!,

, :38!J&3+3.-<X0!12!3+QB!cdMh?!), vol.3

, !73X1<!2;1!?61<1.,1!->!3!?42320/1! 1+1, pp.26-26

, !2

. 0&lt;!;d?-2,

, 4+47!>-6!<230.+1<<!<211+!,-+-.0Z320-.Q! '`9W)%$!"""!\!&%)9T%(k&"'!%#"C%('%!k^!%G%')$k)$kW`"'!U9

, !FKBN=7?VKR+KX+B=\i<Ai!+`?UL+j!"*+U#RE#7?=+#T#FU7KNL=\=Q+

, !2-!s!"*!)1.51603!1+1,26-?, vol.0

. 0&lt;!,

!. , , vol.0, p.2

!. , -. 7?-&lt;15!-&gt;!hm, !. , and -. , 20:<B!2

!. and -. &gt;06715!fd!2, , p.2

!. 1d!3+&lt;-!&lt;;361, , p.2

, ! (9C`a-H05-6154,23<1! ,-7?+1HQ! *-71! 7-+DF5-?2160.! -H05-6154

. !-s*,

!. &lt;4,

!. 1+1, , p.26

!. and -. ,

D. and C. , *5JAEECCF%$"#(!F42!7123263.<,60?2-70,<!1H?16071.2!-.!s!"*!)1.51603!1+1, p.26

!. 1h263 and . 1++4+36!-1+1, , vol.26

. 0&lt;!-&apos;`9w)%$!, !\!&%)9T%(k&"'!%#"C%('%!k^!%G%')$k)$kW`"'!U9')%$"9! ! ! MdN

, J$, vol.0

. 365&lt;-, ! 12! 3+QB! cdMcP! 3+6135D! -F<16/15! 0.! -2

, !2

. 0&lt;!&gt;0, , pp.461-361

. %$!, !\!&%)9T%(k&"'!%#"C%('%!k^!%G%')$k)$kW, p.9

, 7KR+KW?E?b?R\+S=FU#7?=+=RE+#RRKST#B#RU+

. B!], , vol.0

!. 0&lt;!,

!. ,

, 161>-61B!0.!2;1!?3<<0/1!>0+7!,-7?-<020-.B! 1J

, 0<!1H?16071.23+!51<0:.!]3<!<4,1<<>4++D!4<15!2-!, vol.61

. 0&lt;!&lt;245d!61+d!-,

, 1<1!61<4+2<!361!F10.:!?6-,1<<15!3.5!

, ?42320/1!1+1,26-.!263.<>16!:1.1<!051.20>015!0.!&9TrONrM!3.5!s!"*!)1.51603!1+1, vol.26

. !-4&lt;1&lt;!-61&gt;161, !5323<12Q! p1! ;3/1! <1+1,215! 2;1! ,-.5020-.! <1+1,20/1! >-6! s!"*! )1.51603! 1+1,26-?, 1! :1.-71<! 2-! F12216! 3<<17F+1! <070+36! :1.-71!1H?1,215!, vol.3

. B!-1+1, , pp.26-26

, 20>D0.:!3.5!,-7?360.:!:1.-71<!->!1+1, pp.26-26

!. +0 and -. &lt;1=41,

, !73@-6!2D?1<!->!F3

!. F3, 0<7!>-6!1, vol.3

!. &lt;211+!, 3<<0/1!>0+7Q!)

*. and -. Mnnl?!$-,

. 4&lt;1!-&gt;!, , vol.7123, pp.1-70

. 1&lt;1!61&lt;4+2&lt;!&lt;26-,

!. ,

!. +#rp?7krb#ruv+,

C. W%, 20>D! s!"*! )1.51603! 1+1, vol.26

, 51<,60F15!3<!3!?42320/1!1+1, pp.26-26

-. 2q!, , vol.9

. 1&lt;0&lt;b!-1+1, , pp.26-26

!. &lt;d&lt;217&lt;!jt?7, 1+!12!3+QB!cddL?!)

, 0166D!12!3+QB!cdMmPB!,-+5!-6!26-?0,3+!61:0-.<!JU3653+!12!3+QB!MNNl?! 511?!<13Q!, vol.0

, ! F3,21603! 361! .32463++D! 61<?-.<0F+1! >-6!

/. 16d!, !->!2

. 3&lt;&lt;17f+d!-&gt;!2, , p.161

. +d!-9i&quot;och&quot;g&amp;ae%&quot;ga&quot;a!,

. 20&gt;d!x,

!. 1+1, , pp.26-26

, 3>>0+0320-.<B!>6-7!2;1!ML*!6$(9B!]161!?--6+D!61<-+/15!541!2-!61>161.,1!5323F3<1<!+3,X0.:!F3,21603!>6

!. 1+1, , pp.26-26

. Q!),

!. F3 and . 21603q!-c&quot;*&apos;k**&quot;k-;-c!w%$*w%,

. B,8;9&amp;!p&apos;(!&gt;&amp;%#1 and . &lt;&amp;!#$,

, !#RP?7KRB#RU=T+KFFZ77#RF#+KX+j!"*+U#RE#7?=+#T#FU7KNL=\=Q++

. 0&lt;!2,

. 3f0232!-&gt;!2,

!. +d!f3,

. 0&lt;!2,

. 3&lt;!f11,

!. 3+q!j0,

C. W%, +D!<37?+0.:!0.!2;1!077150321!/0,0.02D!->!-46!?47?0.:! C"*'K**"k

!. 3&gt;&gt;0+03215!, 2-!s!"*!)1.51603!1+1,26-?;3:38!0

, 0<!2071!<1601<

. 50&lt;260f420-.!-0&lt;!&lt;,

, 1<1!k)K<!]161!3>>0+03215!2-!s!"*!)1.51603!1+1

. 0&lt;!-5323f3&lt;1!-0&lt;!-- and . +d!-3f, , pp.26-26

. &lt;!&lt;4,

!. and !. , *!)1.51603!1+1,26-?

-. 0&lt;!&gt;63, 016!12!3+Q!0.! ?61?

/. 16d!, 6361!F0-<?, vol.161

!. , 71.2!0.!-46!1H?16071.23+!>3,0+02D!541!2-! 61?13215!<230.+1<<!<211+!1H?-<020, p.60

. B,8;9&amp;!ph(!&gt;&amp;%#1, !. &lt;&amp;!#$;27#2-&amp;!.a!y&quot;b0, and %. #aa,

+. 21#k&amp;!a.-;-!&amp;c/&amp;9 and . +&amp;210!-!, ! 355020-.B! 2;1! ?42320/1! 1H263,1++4+36! 1+1,26-.! 263.<>16! <D<217! 0.! &9TrONrM! -6! s!"*! )1.51603! 1+1,26-?, 2009.

!. Aecfq$,

, 1!>-6716!

. 3&lt;!f11 and . 50&lt;,

, ! 73??15! 2

. 1&lt;1!-&lt;1=41, 1<! 2-! 2;1! :1.-71! ->! s!"*! )1.51603! 1+1,26-?

, 02;!2;1!,+136!1.60,;71.2! ->!s!"*!)1.51603!1+1,26-?, vol.3

C. W%,

. 3&lt;!]1++!3&lt;!1h263, , pp.6-6

, ! +3D16! 61?61<1.2! 3! <37?+1!>6-7!3!7123:1.-70,!5323!<12Q!);1!:63D!

. !-!-c&quot;*&apos;k**&quot;k-;-c!w%$*w%&apos;)&quot;#%*!,

!. and &. =+, , p.2

, ! 2;1! 1+1, pp.26-26

, ! 3+6135D! ?61<1.2! -.! <230.+1<<! <211+! 5460

-. 2q!,

, 3++D!?-+360Z15!<230.+1<<!, pp.32-50

!. 3&lt;!, 3+!<13]3216!217?1632461!Jedv'!, vol.6020

!. ,

!. , 3+!>-6!2;1!3??36020-.!->!2;1!k'W!0.,613<1Q!!, vol.6020

. 0&lt;!]-6xb!,

, !]3.215!2-!?16>-67!

. C&quot;*&apos;k**&quot;k-;-c!w%$*w%,

, F3,21603Q! p1! 4<15! <37?+1<! 07716<15! 0.! 3! cdG!

. 0&lt;!f-22+1!]-4+5!,

, <020/1!, vol.3, pp.366015-366057

!. &lt;230, +1<<! <211+! <37?+1<! 1H?-<15! 0.! 3! cdG! <13]3216! F-22+1, p.2

!. , 1<<36D!>-6!1+1, vol.1, pp.26-26

!. and -. F1!1,

, /1+-?71.2! ->! 2

. S&quot;e%becj&apos;#$&apos;,

, 3<!2;1!<371!?;-<?;321!263.<?-62!<D<217!J';3?216!

!. +3 and X. ,

!. ,

. 1&lt;1!f3 and . 21603q!)-!35561&lt;&lt;!,

. 0&lt;!=41&lt;20-.b!]1!,-4+5!,-++1,

. C&quot;*&apos;k**&quot;k-;-c!w%$*w%&apos;)&quot;#%*!,

. &quot;!-l,

3. -. D56-, ! F3,21603! 361! 4<43++D! >-4.5! 0.! -0+!, vol.51, p.2370

. &lt;32463215!3+0, , vol.320

, 0<!2D?1!->!F3, p.2

-. , 2!0.!-46!1H?16071.2<Q!)

!. 24f0, ! <D<217B! F42! 2;106! 61,4661.,1! 0.! -46! 5323<12! 61730.<! 3! 61736X3F+1! 61<4+2Q! );1! 730

3. -. D56-, !F3,21603!0.!-46!5323<12<!0.,+4515!0IA%BD%I, vol.51, p.6350

, 1D!

. 1d!-- and 3. -. +d!-61+d!--.!-;d56-,

!. ^4.;-&gt;&gt;b!cddopq!-*, 62!,;30.!J'ca'eP!3+X3.1!51:635320

!. 3&lt;!9+xuq!,

!. 1+1, !263.<>16!?6-210.!.3715! 64F615-H0.!3.5!64F615-H0.!6154,23<1!2-!263, vol.26

. 1&lt;1!f3,

!. and 3. -. , , vol.51, p.2

!. , , vol.26

3. -. D56-, , vol.51, p.635320

!. and 3. ,

, =40,X+D!51?+1215!J&-660<!3.5!E0.B!cddOPQ!U3,21603!4<15!0

, 4.5!3.5!263.<>16!1+1,26-.!1H263,1++4+36+D!2-!3.!1+1,26-51!J&-660<!12!3+QB! cddNPQ! *-71! 2D?0,3+! 1+1, p.26

. 3&lt;!-f11.!-&lt;,

!. W%, , vol.1, pp.26-26

!. Mcl, !F3,21603!, vol.51, p.6350

;. !s!-;-!jp3 and . B!cdmmfpq!s&quot;e%#ch&quot;g&amp;ae!jp3, *!)1.51603!1+1,26-?, !12!3+QB!cdMm3PB!8"HEA#T%"!Jp3, vol.3, p.12

!. 1+1, , vol.26

. Jp3, , vol.51, p.6350

. 1&lt;1!-f3,

!. 1+1,

!. &gt;6-,

. 0&lt;!;d?-2,

, 1<0<!

!. 1+1, , pp.26-26

. F1!-&gt;462, , pp.26-26

, !

!. +0x1!, , pp.56-58

, 0,!F3,21603!0.!-?1.! ,06,402!,-.5020-.B!3<!-??-<15!2-!F0-1+1, vol.26, pp.26-26

, 5! 2;161>-61! ?6-/051! -6:3.0,! 732216! 2-! <4<230.! ;1216-26-?

-. 2q!,

. &gt;!1+1, , pp.26-26

. 3&lt;!-f11,

/. 1&lt;20, 3215Q!)

&. , , vol.3, p.21603

. %h26171!-%,

, +15:1<! 3.5! <X0++<! ->! 70,6-F0-+-:D! 3.5! 1+1, p.26

!. 1+1, , pp.26-26

, F+0<<171.2!51!+83,016!0.-HD53F+1!1<2!R2450RB!12!?-46!+3!?6170A61!>-0<!.-4<!, vol.3

, :3.0<71<B!30.<0!=41!+146<!7R23F-+0<71<B!<-.2!07?+0=4R<!53.<!+8R+R/320-.!54!?-21.201+!+0F61!=40! 34:71.21!+1<!60<=41<!51!,-66-<0-.!+-,3+0<RQ!'81<2!30.<0!=41B!?-46!1H?+0=416!+83.-F+0<<171.2B!.-4<!, vol.70, pp.26-26

, A<1! 1<2! 61.>-6,R1! ?36! +3! 5R?-+360<320-.!

, +022R632461B!30.<0!=41!+3!?6R<1.,1!584.!k)K!12!584.!:R.-71!0<<4!583<<17F+3:1!7R23:R.-70=41!3>>0+0R!S! s!"*!)1.51603!1+1, vol.26

!. F0-, , p.0

, 0=41<B!12!?36!+8420+0<320-.!51! ,4+2461!?461!51!F3,2R601<!R+1, pp.26-26

, G1!?6-,;30.!5R>0!1.!R+1,26-a70,6-F0-+-:01!<163!51!5R?3<<16!+1<!514H!7-5A+1<!=41!<-.2!T1-F3

. 1++1!-51&lt;!-f3 and . 2r601!-r+1, 20/1<B! 730<!34<<0!1H?+-616!+146!6V+1!53.<!+81, pp.241-171

. 51&lt;!-f3 and . 2r601&lt;!-r+1, , pp.26-26

. 1673+1&lt;!j%716&lt;-.b!cdmlp,

!. , 1! 1.! ,-.5020-.! 51! ?-21.201+! +0F61B! ?36! -??-<020-.! 34H! <D<2A71!F0-aR+1, p.26

, 070=41<B!->>61!51!.-4/1++1<!?16<?1,20/1<!S!?6-?-<!51!+146<!,3?3,02R<!S!420+0<16!51<!

. &lt;46&gt;3, , vol.54

!. , 1B! 12! 5-.,! 3??-6216! 51! +3! 7320A61! -6:3.0=41!?-46!+1<!F3,2R601<!;R2R6-26-?, 16!4.!?6-2-,-+1!?-46!+8051.20>0,320-.!51<!F3,2R601<!R+1, pp.26-26

, 34<<0!1H?+-616!+3!50/16<02R!51<!F3,2R601<!R+1, pp.26-26

, ! +3! ?6170A61! >-0<! =41! +807?-623.,1! 51<! F3,2R601<! R+1, pp.26-26

, 5R/1+-??171.2!51!<-+420-.<!

. +1&lt;!-f3 and . 2r601&lt;!-r+1, , pp.26-26

K. , 3<?1,2! 07?-623.2! 51! ,1221! 2

, 1<!12! ,-7?R21.,1!51!70,6-F0-+-:01!12!R+1,26-,;0701!51<!3,016<!0, HD53F+1<!?-46!?6-?-<16!51<!1H?R601.,1<! ?1620.1.21<Q!'81<2!+3!?6170A61!>-0<!=41!+1<!514H!0.<20242<!-.2!,-++3F-6RB!0+!3!5-.,!>3++4!2-42!712261!1.! ?+3,1!\! 54! ?6-2-,-+1! 51! ,-++1,20-.! 51<! F3, pp.26-26

, W-46!6R<4716B!51!+3!, vol.70, p.26

, 0701B!2-42!.81<2!=484

N. Acuña, B. O. Ortega-morales, and A. Valadez-gonzález, Biofilm Colonization Dynamics and Its Influence on the Corrosion Resistance of Austenitic UNS S31603 Stainless Steel Exposed to Gulf of Mexico Seawater, Mar Biotechnol, vol.8, pp.62-70, 2006.

Z. Ahmad, CHAPTER 3 -CORROSION KINETICS, Principles of Corrosion Engineering and Corrosion Control, pp.57-119, 2006.

J. Alneberg, B. S. Bjarnason, I. De-bruijn, M. Schirmer, J. Quick et al., Binning metagenomic contigs by coverage and composition, Nature Methods, vol.11, pp.1144-1146, 2014.

H. Amaya and H. Miyuki, Mechanism of Microbially Influenced Corrosion on Stainless-Steels in Natural Seawater, J. Jpn. Inst. Met, vol.58, pp.775-781, 1994.

J. P. Audouard, C. Compere, N. J. Dowlilng, D. Feron, D. Festy et al., Effect of marine biofilms on high performance stainless steels exposed in European coastal waters, Microbial Corrosion: Proceedings of the 3 rd International EFC Workshop, pp.198-210, 1994.

P. W. Baker, K. Ito, and K. Watanabe, Marine prosthecate bacteria involved in the ennoblement of stainless steel, Environmental Microbiology, vol.5, pp.925-932, 2003.

M. Balvo?i?t? and D. H. Huson, SILVA, RDP, Greengenes, NCBI and OTT -how do these taxonomies compare?, BMC Genomics, vol.18, 2017.

R. A. Barco, D. Emerson, J. B. Sylvan, B. N. Orcutt, M. E. Jacobson-meyers et al., New Insight into Microbial Iron Oxidation as Revealed by the Proteomic Profile of an Obligate Iron-Oxidizing Chemolithoautotroph, Appl Environ Microbiol, vol.81, pp.5927-5937, 2015.

E. Bardal, J. M. Drugli, and P. O. Gartland, The behaviour of corrosion-resistant steels in seawater: A review, Corrosion Science, vol.35, pp.257-267, 1993.

A. Bergel, D. Féron, and A. Mollica, Catalysis of oxygen reduction in PEM fuel cell by seawater $%^%$%('%! ! ! Mll! biofilm, Electrochemistry Communications, vol.7, pp.900-904, 2005.

L. J. Bird, V. Bonnefoy, and D. K. Newman, Bioenergetic challenges of microbial iron metabolisms, Trends in Microbiology, vol.19, pp.330-340, 2011.

D. R. Bond and D. R. Lovley, Electricity Production by Geobacter sulfurreducens Attached to Electrodes, Appl. Environ. Microbiol, vol.69, pp.1548-1555, 2003.

A. Bose, E. J. Gardel, C. Vidoudez, E. A. Parra, and P. R. Girguis, Electron uptake by ironoxidizing phototrophic bacteria, Nature Communications, vol.5, p.3391, 2014.

R. M. Bowers, N. C. Kyrpides, R. Stepanauskas, M. Harmon-smith, D. Doud et al., Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea, Nature Biotechnology, vol.35, pp.725-731, 2017.

K. R. Braughton, R. L. Lafond, and Z. Lewandowski, The influence of environmental factors on the rate and extent of stainless steel ennoblement mediated by manganeseOoxidizing biofilms, Biofouling, vol.17, pp.241-251, 2001.

E. A. Brown, F. J. Chain, T. J. Crease, H. J. Macisaac, and M. E. Cristescu, Divergence thresholds and divergent biodiversity estimates: can metabarcoding reliably describe zooplankton communities?, Ecol Evol, vol.5, pp.2234-2251, 2015.

E. D. Brutinel and J. A. Gralnick, Shuttling happens: soluble flavin mediators of extracellular electron transfer in Shewanella, Appl Microbiol Biotechnol, vol.93, pp.41-48, 2012.

J. Brzeszcz and P. Kaszycki, Aerobic bacteria degrading both n-alkanes and aromatic hydrocarbons: an undervalued strategy for metabolic diversity and flexibility, Biodegradation, vol.29, pp.359-407, 2018.

B. Buchfink, C. Xie, and D. H. Huson, Fast and sensitive protein alignment using DIAMOND, 2015.

, Nat Meth, vol.12, pp.59-60

B. J. Callahan, P. J. Mcmurdie, M. J. Rosen, A. W. Han, A. J. Johnson et al., , 2016.

, High-resolution sample inference from Illumina amplicon data. Nat Meth advance online publication, vol.2

J. H. Campbell, P. O&apos;donoghue, A. G. Campbell, P. Schwientek, A. Sczyrba et al., , 2013.

, UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota, PNAS, vol.110, pp.5540-5545

H. Canstein, J. Ogawa, S. Shimizu, and J. R. Lloyd, Secretion of Flavins by Shewanella Species and Their Role in Extracellular Electron Transfer, Appl. Environ. Microbiol, vol.74, pp.615-623, 2008.

J. Charles, Super Duplex Stainless Steels: Structure and Properties, Proc. Conf. Duplex Stainless Steels '91, pp.3-48, 1991.

K. Y. Cheng, G. Ho, and R. Cord-ruwisch, Anodophilic biofilm catalyzes cathodic oxygen reduction, Environ. Sci. Technol, vol.44, pp.518-525, 2010.

S. Cheng, D. Xing, D. F. Call, and B. E. Logan, Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis, Environ. Sci. Technol, vol.43, pp.3953-3958, 2009.

P. Clauwaert, K. Rabaey, P. Aelterman, L. De-schamphelaire, T. H. Pham et al., , 2007.

, Biological Denitrification in Microbial Fuel Cells. Environ. Sci. Technol, vol.41

D. Coursolle and J. A. Gralnick, Reconstruction of Extracellular Respiratory Pathways for Iron(III) Reduction in Shewanella Oneidensis Strain MR-1, 2012.

D. Courtine, Génomique comparative d'isolats phylogénétiquement proches appartenant au genre Thermococcus, 2017.

A. W. Dale, L. Nickelsen, F. Scholz, C. Hensen, A. Oschlies et al., A revised global estimate of dissolved iron fluxes from marine sediments, Global Biogeochemical Cycles, vol.29, 2015.

N. Das and P. Chandran, Microbial degradation of petroleum hydrocarbon contaminants: an overview, Biotechnol Res Int, p.941810, 2011.

S. Debuy, S. Pecastaings, A. Bergel, and B. Erable, Oxygen-reducing biocathodes designed with pure cultures of microbial strains isolated from seawater biofilms, Int. Biodeterior. Biodegrad, vol.103, pp.16-22, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01149815

D. Quéméner, E. Rimboud, M. Bridier, A. Madigou, C. Erable et al., , 2016.

, Biocathodes reducing oxygen at high potential select biofilms dominated by Ectothiorhodospiraceae populations harboring a specific association of genes, Bioresource Technology, vol.214, pp.55-62

S. C. Dexter and P. Chandrasekaran, Direct measurement of ph within marine biofilms on passive metals, Biofouling, vol.15, pp.313-325, 2000.

W. H. Dickinson, F. Caccavo, and Z. Lewandowski, The ennoblement of stainless steel by manganic oxide biofouling, Corrosion Science, vol.38, pp.1407-1422, 1996.

W. H. Dickinson and Z. Lewandowski, Electrochemical concepts and techniques in the study of stainless steel Ennoblement, Biodegradation, vol.9, pp.11-21, 1998.

I. Dupont, D. Féron, and G. Novel, Influence de facteurs inorganiques sur l'évolution du potentiel des aciers inoxydables en eau de mer naturelle, Matériaux & Techniques, vol.85, pp.41-46, 1997.

I. Dupont, D. Féron, and G. Novel, Effect of glucose oxidase activity on corrosion potential of stainless steels in seawater, International Biodeterioration & Biodegradation, vol.41, pp.80003-80009, 1998.

R. Duran, Marinobacter, Handbook of Hydrocarbon and Lipid Microbiology, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01643936

. Timmis, , pp.1725-1735

M. Eashwar and S. Maruthamuthu, Mechanism of biologically produced ennoblement: Ecological perspectives and a hypothetical model, Biofouling, vol.8, pp.203-213, 1995.

M. Eashwar, S. Maruthamuthu, S. Palanichamy, and K. Balakrishnan, Sunlight irradiation of seawater eliminates ennoblementOcausation by biofilms, Biofouling, vol.8, pp.215-221, 1995.

M. Eashwar, S. Maruthamuthu, S. Sathiyanarayanan, and K. Balakrishnan, The ennoblement of stainless alloys by marine biofilms: The neutral pH and passivity enhancement model, Corrosion Science, vol.37, pp.1169-1176, 1995.

B. J. Eddie, Z. Wang, W. J. Hervey, D. H. Leary, A. P. Malanoski et al., , 2017.

, Metatranscriptomics Supports the Mechanism for Biocathode Electroautotrophy by "Candidatus Tenderia electrophaga, vol.2

B. J. Eddie, Z. Wang, A. P. Malanoski, R. J. Hall, S. D. Oh et al., Candidatus Tenderia electrophaga", an uncultivated electroautotroph from a biocathode enrichment, Int. J. Syst. Evol, 2016.

. Microbiol, , vol.66, pp.2178-2185

S. El-gebali, J. Mistry, A. Bateman, S. R. Eddy, A. Luciani et al., The Pfam protein families database in 2019, Nucleic Acids Res, vol.47, 2019.

D. Emerson, The Irony of Iron -Biogenic Iron Oxides as an Iron Source to the Ocean, Frontiers in Microbiology, vol.6, 2016.

D. Emerson, E. Field, O. Chertkov, K. Davenport, L. Goodwin et al., Comparative genomics of freshwater Fe-oxidizing bacteria: implications for physiology, ecology, and systematics, 2013.

D. Emerson, E. J. Fleming, and J. M. Mcbeth, Iron-Oxidizing Bacteria: An Environmental and Genomic Perspective, Annu. Rev. Microbiol, vol.64, pp.561-583, 2010.

D. Emerson, J. A. Rentz, T. G. Lilburn, R. E. Davis, H. Aldrich et al., A Novel $%^%$%('%! ! ! MlO! Lineage of Proteobacteria Involved in Formation of Marine Fe-Oxidizing Microbial Mat Communities, 2007.

, PLOS ONE, vol.2, p.667

B. Erable, I. Vandecandelaere, M. Faimali, M. Delia, L. Etcheverry et al., Marine aerobic biofilm as biocathode catalyst, Bioelectrochemistry, vol.78, pp.51-56, 2010.

A. M. Eren, Ö. C. Esen, C. Quince, J. H. Vineis, H. G. Morrison et al., Anvi'o: an advanced analysis and visualization platform for 'omics data, PeerJ, vol.3, p.1319, 2015.

A. M. Eren, L. Maignien, W. J. Sul, L. G. Murphy, S. L. Grim et al., , 2013.

, Oligotyping: Differentiating between closely related microbial taxa using 16S rRNA gene data, Methods Ecol Evol, vol.4

A. M. Eren, H. G. Morrison, P. J. Lescault, J. Reveillaud, J. H. Vineis et al., , 2014.

, Minimum entropy decomposition: Unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences, The ISME Journal

A. M. Eren, J. H. Vineis, H. G. Morrison, and M. L. Sogin, Correction: A Filtering Method to Generate High Quality Short Reads Using Illumina Paired-End Technology, PLoS ONE, vol.8, 2013.

B. Espelid, Development of a new crevice corrosion qualification test for stainless steels, pp.457-462, 2003.

M. Faimali, E. Chelossi, G. Pavanello, A. Benedetti, I. Vandecandelaere et al., , 2010.

, Electrochemical activity and bacterial diversity of natural marine biofilm in laboratory closed-systems, Bioelectrochemistry, vol.78, pp.30-38

M. Falkland, M. Glaes, and M. Liljas, Duplex Stainless Steels, Uhlig's Corrosion Handbook, pp.695-706, 2011.

S. J. Ferguson and W. J. Ingledew, parsimonious energy sources and at acidic pH: I. Acidithiobacillus ferrooxidans as a paradigm, Biochimica et Biophysica Acta (BBA) -Bioenergetics, vol.1777, pp.1471-1479, 2008.

D. Féron, Comportement des aciers en environnement naturel : cas des aciers inoxydables en eau de mer. Mater. Tech. 93, s.43-s.58, 2005.

N. Fierer, J. , and R. B. , The diversity and biogeography of soil bacterial communities, Proc, 2006.

, Natl. Acad. Sci. U.S.A, vol.103, pp.626-631

W. Fiers, R. Contreras, F. Duerinck, G. Haegeman, D. Iserentant et al., , 1976.

, Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene, Nature, vol.260, p.500

M. Y. Galperin, K. S. Makarova, Y. I. Wolf, and E. V. Koonin, Expanded microbial genome coverage and improved protein family annotation in the COG database, Nucl. Acids Res, 2014.

M. Geiser, R. Avci, and Z. Lewandowski, Microbially initiated pitting on 316L stainless steel, International Biodeterioration & Biodegradation, vol.49, pp.235-243, 2002.

P. N. Golyshin, T. N. Chernikova, W. Abraham, H. Lünsdorf, K. N. Timmis et al., Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons, Int. J. Syst. Evol. Microbiol, vol.52, pp.901-911, 2002.

Y. A. Gorby, S. Yanina, J. S. Mclean, K. M. Rosso, D. Moyles et al., , 2006.

, Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms, PNAS, vol.103, pp.11358-11363

J. Goris, K. T. Konstantinidis, J. A. Klappenbach, T. Coenye, P. Vandamme et al., , 2007.

, DNA-DNA hybridization values and their relationship to whole-genome sequence similarities, Int. J. Syst

, Evol. Microbiol, vol.57, pp.81-91

E. D. Graham, J. F. Heidelberg, and B. J. Tully, BinSanity: unsupervised clustering of $%^%$%('%! ! ! MlN! environmental microbial assemblies using coverage and affinity propagation, PeerJ, vol.5, p.3035, 2017.

K. B. Gregory, D. R. Bond, and D. R. Lovley, Graphite electrodes as electron donors for anaerobic respiration, Environ. Microbiol, vol.6, pp.596-604, 2004.

J. F. Grubb, Martensitic Stainless Steels, Uhlig's Corrosion Handbook, pp.707-714, 2011.

P. Gümpel, N. Arlt, J. Telegdi, D. Schiller, and O. Moos, Microbiological influence on the electro-chemical potential of stainless steel, Materials and Corrosion, vol.57, pp.715-723, 2006.

T. J. Hakkarainen, Microbiologically influenced corrosion of stainless steels -What is required for pitting?, Materials and Corrosion, vol.54, pp.503-509, 2003.

T. Havn, Material Engineering and Fabrication Experiences, vol.56, p.95, 1995.

J. E. Hobbie, R. J. Daley, J. , and S. , Use of nuclepore filters for counting bacteria by fluorescence microscopy, Appl. Environ. Microbiol, vol.33, pp.1225-1228, 1977.

R. Holthe, The Cathodic and Anodic Properties of Stainless Steels in Seawater, 1998.

R. Holthe, E. Bardal, and P. O. Gartland, Time dependence of cathodic properties of materials in seawater, Materials Performance, vol.28, pp.16-23, 1989.

R. Holthe, E. Bardal, and P. O. Gartland, , 1989.

T. Hunkapiller, R. J. Kaiser, B. F. Koop, and L. Hood, Large-scale and automated DNA sequence determination, Science, vol.254, pp.59-67, 1991.

E. Huttunen-saarivirta, P. Rajala, M. Marja-aho, J. Maukonen, E. Sohlberg et al., , 2018.

, Ennoblement, corrosion, and biofouling in brackish seawater: Comparison between six stainless steel grades, Bioelectrochemistry, vol.120, pp.27-42

D. Hyatt, G. Chen, P. F. Locascio, M. L. Land, F. W. Larimer et al., Prodigal: prokaryotic gene recognition and translation initiation site identification, BMC Bioinformatics, vol.11, p.119, 2010.

, Initial sequencing and analysis of the human genome, International Human Genome Sequencing Consortium, vol.409, pp.860-921, 2001.

T. Ishii, S. Kawaichi, H. Nakagawa, K. Hashimoto, and R. Nakamura, From chemolithoautotrophs to electrolithoautotrophs: CO2 fixation by Fe(II)-oxidizing bacteria coupled with direct uptake of electrons from solid electron sources, Front. Microbiol, vol.6, 2015.

. Iso, Standard ISO 18070:2015. International Organization for Standardization, 2015.

Y. Jiao and D. K. Newman, The pio Operon Is Essential for Phototrophic Fe(II) Oxidation in Rhodopseudomonas palustris TIE-1, Journal of Bacteriology, vol.189, pp.1765-1773, 2007.

R. Johnsen, North Sea Experience with the use of Stainless Steels in Seawater Applications, 1996.

R. Johnsen and E. Bardal, Cathodic Properties of Different Stainless Steels in Natural Seawater, CORROSION, vol.41, pp.296-302, 1985.

R. Johnsen and B. E. , The Effect of a Microbiological Slime Layer on Stainless Steel in Natural Seawater, Corrosion, vol.86, 1986.

M. Kanehisa, Y. Sato, and K. Morishima, BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences, Journal of Molecular Biology, vol.428, pp.726-731, 2016.

D. D. Kang, J. Froula, R. Egan, W. , and Z. , MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities, PeerJ, vol.3, p.1165, 2015.

$. %^%$%(&apos;%!-!-!-mem,

D. Kim, L. Song, F. P. Breitwieser, and S. L. Salzberg, Centrifuge: rapid and sensitive classification of metagenomic sequences, Genome Res, vol.26, pp.1721-1729, 2016.

H. J. Kim, M. S. Hyun, I. S. Chang, and B. H. Kim, A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens, Journal of microbiology and biotechnology, vol.9, pp.365-367, 1999.

M. Kim, H. Oh, S. Park, C. , and J. , Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes, International Journal of Systematic and Evolutionary Microbiology, vol.64, pp.346-351, 2014.

M. Kolari, K. Mattila, R. Mikkola, and M. S. Salkinoja-salonen, Community structure of biofilms on ennobled stainless steel in Baltic Sea water, J Ind Microbiol Biotech, vol.21, pp.261-274, 1998.

J. Köster and S. Rahmann, Snakemake-a scalable bioinformatics workflow engine, Bioinformatics, vol.28, pp.2520-2522, 2012.

J. Kruger, Passivity," in Uhlig's Corrosion Handbook, pp.151-155, 2011.

J. Landoulsi, K. E. Cooksey, and V. Dupres, Review -Interactions between diatoms and stainless steel: focus on biofouling and biocorrosion, vol.27, pp.1105-1124, 2011.

J. Landoulsi, C. Dagbert, C. Richard, R. Sabot, M. Jeannin et al., Enzyme-induced ennoblement of AISI 316L stainless steel: Focus on pitting corrosion behavior, Electrochimica Acta, vol.54, pp.7401-7406, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00426258

J. Landoulsi, K. El-kirat, C. Richard, R. Sabot, M. Jeannin et al., , p.139, 2008.

J. Landoulsi, M. J. Genet, C. Richard, K. El-kirat, P. G. Rouxhet et al., Ennoblement of stainless steel in the presence of glucose oxidase: Nature and role of interfacial processes, Journal of Colloid and Interface Science, vol.320, pp.508-519, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00308458

J. Landoulsi, K. E. Kirat, C. Richard, D. Féron, and S. Pulvin, Enzymatic Approach in Microbial-Influenced Corrosion: A Review Based on Stainless Steels in Natural Waters, Environ. Sci, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00308468

. Technol, , vol.42, pp.2233-2242

B. Langmead and S. L. Salzberg, Fast gapped-read alignment with Bowtie 2, Nat. Methods, vol.9, pp.357-359, 2012.

N. Larché, H. Iken, and D. Thierry, Monitoring of seawater biofilms on stainless steel for corrosion risk assessment, 2011.

N. Larché, D. Thierry, P. Boillot, T. Cassagne, J. Blanc et al., Crevice Corrosion Performance of High Grade Stainless Steels and Ni-Based Alloys in Natural and treated Seawater, 2016.

N. Larché, D. Thierry, V. Debout, J. Blanc, T. Cassagne et al., Crevice corrosion of duplex stainless steels in natural and chlorinated seawater, Duplex World, 2010.

N. Larché, D. Thierry, C. Leballeur, S. L. Wijesingue, and T. Zixi, Evaluation of Corrosion Risks with the Use of High Alloy Stainless Steels in Seawater Applications -Effect of Service Conditions on Corrosion potential and Cathodic Efficiency, Stainless Steel World, 2013.

N. Larché, D. Thierry, C. Leballeur, S. L. Wijesingue, and T. Zixi, Corrosion Risk for Stainless Steels in Tropical Seawaters, Stainl. Steel World, 2015.

L. Bozec and N. , Reaction de reduction de l'oxygene sur les aciers inoxydables en eau de mer naturelle, 2000.

$. %^%$%,

L. Bozec, N. Compère, C. L&apos;her, M. Laouenan, A. Costa et al., Influence of stainless steel surface treatment on the oxygen reduction reaction in seawater, Corrosion Science, vol.43, pp.765-786, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01770132

D. H. Leary, W. J. Hervey, A. P. Malanoski, Z. Wang, B. J. Eddie et al., PROTEOMICS, vol.15, pp.3486-3496, 2015.

C. Leballeur, N. Larché, and D. Thierry, Galvanic series in seawater as a function of temperature, oxygen content and chlorination, Stainless Steel World Conference, 2015.

D. Li, R. Luo, C. Liu, C. Leung, H. Ting et al., MEGAHIT v1.0: A fast and scalable metagenome assembler driven by advanced methodologies and community practices, Methods, vol.102, pp.3-11, 2016.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., The Sequence Alignment/Map format and SAMtools, Bioinformatics, vol.25, pp.2078-2079, 2009.

J. Liao, H. Fukui, T. Urakami, and H. Morisaki, Effect of biofilm on ennoblement and localized corrosion of stainless steel in fresh dam-water, Corrosion Science, vol.52, pp.1393-1403, 2010.

P. Linhardt, Microbially influenced corrosion of stainless steel by manganese oxidizing microorganisms, Materials and Corrosion, vol.55, pp.158-163, 2004.

P. Linhardt, MIC of stainless steel in freshwater and the cathodic behaviour of biomineralized Mnoxides, Electrochimica Acta, vol.51, pp.6081-6084, 2006.

B. J. Little, J. S. Lee, and R. I. Ray, The influence of marine biofilms on corrosion: A concise review, Electrochimica Acta, vol.54, pp.2-7, 2008.

B. Little, J. Lee, R. Ray, S. Austin, and J. Biffinger, Ennoblement Due to Biofilms: Indicator for Potential Corrosion and Source of Electrical Energy, Recent Patents on Materials Science, vol.6, pp.20-28, 2012.

$. %^%$%(&apos;%*!-!-!-mee and !. Doi,

J. Liu, Z. Wang, S. M. Belchik, M. J. Edwards, C. Liu et al., Identification and Characterization of MtoA: A Decaheme c-Type Cytochrome of the Neutrophilic Fe(II)-Oxidizing Bacterium Sideroxydans lithotrophicus ES-1, Front. Microbiol, vol.3, 2012.

Y. Liu, Z. Wang, J. Liu, C. Levar, M. J. Edwards et al., A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA, Environmental Microbiology Reports, vol.6, pp.776-785, 2014.

B. E. Logan and J. M. Regan, Electricity-producing bacterial communities in microbial fuel cells, Trends in Microbiology, vol.14, pp.512-518, 2006.

B. E. Logan, R. Rossi, A. Ragab, and P. E. Saikaly, Electroactive microorganisms in bioelectrochemical systems, Nature Reviews Microbiology, vol.1, 2019.

D. R. Lovley, Bug juice: harvesting electricity with microorganisms, Nature Reviews Microbiology, vol.4, pp.497-508, 2006.

D. R. Lovley, Powering microbes with electricity: direct electron transfer from electrodes to microbes, Environmental Microbiology Reports, vol.3, pp.27-35, 2011.

D. R. Lovley, Electromicrobiology, Annu. Rev. Microbiol, vol.66, pp.391-409, 2012.

D. R. Lovley, T. Ueki, T. Zhang, N. S. Malvankar, P. M. Shrestha et al., , 2011.

, Geobacter: The Microbe Electric's Physiology, Ecology, and Practical Applications, Advances in Microbial Physiology Advances in Microbial Physiology

L. L. Machuca, R. Jeffrey, S. I. Bailey, R. Gubner, E. L. Watkin et al., , 2014.

, Filtration-UV irradiation as an option for mitigating the risk of microbiologically influenced corrosion of subsea construction alloys in seawater, Corrosion Science, vol.79, pp.89-99

M. T. Madigan, J. M. Martinko, K. S. Bender, D. H. Buckley, and D. A. Stahl, Brock biology of microorganisms, 2014.

F. Mahé, T. Rognes, C. Quince, C. De-vargas, and M. Dunthorn, Swarm v2: highly-scalable and high-resolution amplicon clustering, PeerJ, vol.3, 2015.

A. P. Malanoski, B. Lin, B. J. Eddie, Z. Wang, W. J. Hervey et al., Relative abundance of "Candidatus Tenderia electrophaga" is linked to cathodic current in an aerobic biocathode community, Microb Biotechnol, vol.11, pp.98-111, 2018.

C. Marconnet, C. Dagbert, M. Roy, and D. Féron, Stainless steel ennoblement in freshwater: From exposure tests to mechanisms, Corrosion Science, vol.50, pp.2342-2352, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01247960

P. Marcus, Corrosion Mechanisms in Theory and Practice, Third Edition, 2011.

E. Marsili, D. B. Baron, I. D. Shikhare, D. Coursolle, J. A. Gralnick et al., , 2008.

, Shewanella secretes flavins that mediate extracellular electron transfer, PNAS, vol.105, pp.3968-3973

E. Martin, B. Tartakovsky, and O. Savadogo, Cathode materials evaluation in microbial fuel cells: A comparison of carbon, Mn2O3, Fe2O3 and platinum materials, Electrochimica Acta, vol.58, pp.58-66, 2011.

F. J. Martin, P. M. Natishan, K. E. Lucas, E. A. Hogan, A. M. Grolleau et al., , 2003.

, Crevice Corrosion of Alloy 625 in Natural Seawater, CORROSION, vol.59, pp.498-504

S. Maruthamuthu, G. Rajagopal, S. Sathiyanarayanan, S. Angappan, M. Eashwar et al., Contributions of oxide film and bacterial metabolism to the ennoblement process: Evidence for a novel mechanism, Curr. Sci, vol.71, pp.315-320, 1996.

K. Mattila, L. Carpen, T. Hakkarainen, and M. S. Salkinoja-salonen, Biofilm development during ennoblement of stainless steel in Baltic Sea water: A microscopic study, 1997.

K. Mattila, L. Carpen, L. Raaska, H. L. Alakomi, T. Hakkarainen et al., , 2000.

, Impact of biological factors on the ennoblement of stainless steel in Baltic seawater, J. Ind. Microbiol

, Biotechnol, vol.24, pp.410-420

D. Mcdonald, M. N. Price, J. Goodrich, E. P. Nawrocki, T. Z. Desantis et al., An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea, The ISME Journal, vol.6, pp.610-618, 2012.

M. Mehanna, R. Basséguy, M. Délia, and A. Bergel, Effect of Geobacter sulfurreducens on the microbial corrosion of mild steel, ferritic and austenitic stainless steels, Corrosion Science, vol.51, pp.2596-2604, 2009.

M. Mehanna, R. Basseguy, M. Delia, and A. Bergel, Role of direct microbial electron transfer in corrosion of steels, Electrochemistry Communications, vol.11, pp.568-571, 2009.

M. Mehanna, R. Basséguy, M. Délia, and A. Bergel, Geobacter sulfurreducens can protect 304L stainless steel against pitting in conditions of low electron acceptor concentrations, Electrochemistry Communications, vol.12, pp.724-728, 2010.

T. Mehta, M. V. Coppi, S. E. Childers, and D. R. Lovley, Outer Membrane c-Type Cytochromes Required for Fe(III) and Mn(IV) Oxide Reduction in Geobacter sulfurreducens, Appl. Environ. Microbiol, vol.71, pp.8634-8641, 2005.

E. M. Milner, D. Popescu, T. Curtis, I. M. Head, K. Scott et al., Microbial fuel cells with highly active aerobic biocathodes, Journal of Power Sources, vol.324, pp.8-16, 2016.

A. E. Minoche, J. C. Dohm, and H. Himmelbauer, Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and Genome Analyzer systems, Genome Biology, vol.12, p.112, 2011.

J. Mistry, R. D. Finn, S. R. Eddy, A. Bateman, and M. Punta, Challenges in homology search: $%^%$%('%! ! ! MeO! HMMER3 and convergent evolution of coiled-coil regions, Nucleic Acids Res, vol.41, pp.121-121, 2013.

A. Mollica, Biofilm and corrosion on active-passive alloys in seawater, International Biodeterioration & Biodegradation, vol.29, pp.213-229, 1992.

A. Mollica and V. Scotto, Mechanism and Prevention of Biofilm Effect on Stainless Steel Corrosion. Seawater Corrosion of Stainless Steel -Mechanisms and Experiences EFC Publ, vol.19, pp.23-43, 1996.

A. Mollica and A. Trevis, Comptes rendus du 4e Congrès International de la Corrosion Marine et des Salissures, p.351, 1976.

O. Moos and P. Gümpel, Comparison of the microbiological influence on the electro-chemical potential of stainless steel between macro-and micro-areas of specimens, Electrochimica Acta, vol.54, pp.53-59, 2008.

J. M. Morris, J. , and S. , Feasibility of using microbial fuel cell technology for bioremediation of hydrocarbons in groundwater, Journal of Environmental Science and Health, Part A, vol.43, pp.18-23, 2007.

J. M. Morris, S. Jin, B. Crimi, and A. Pruden, Microbial fuel cell in enhancing anaerobic biodegradation of diesel, Chemical Engineering Journal, vol.146, pp.161-167, 2009.

S. Motoda, Y. Suzuki, T. Shinohara, and S. Tsujikawa, Passivation of metals and semiconductors The effect of marine fouling on the ennoblement of electrode potential for stainless steels, Corrosion Science, vol.31, pp.515-520, 1990.

K. H. Nealson, R. , and A. R. , Electromicrobiology: realities, grand challenges, goals and predictions, Microb Biotechnol, vol.9, pp.595-600, 2016.

M. Nebel, C. Pfabel, A. Stock, M. Dunthorn, and T. Stoeck, Delimiting operational taxonomic, 2011.

, Microbiol Rep, vol.3, pp.154-158

M. C. Nelson, H. G. Morrison, J. Benjamino, S. L. Grim, and J. Graf, Analysis, Optimization and Verification of Illumina-Generated 16S rRNA Gene Amplicon Surveys, PLOS ONE, vol.9, 2014.

K. P. Nevin, S. A. Hensley, A. E. Franks, Z. M. Summers, J. Ou et al., , 2011.

, Electrosynthesis of Organic Compounds from Carbon Dioxide Is Catalyzed by a Diversity of Acetogenic Microorganisms, Appl. Environ. Microbiol, vol.77, pp.2882-2886

K. P. Nevin, B. Kim, R. H. Glaven, J. P. Johnson, T. L. Woodard et al., Anode Biofilm Transcriptomics Reveals Outer Surface Components Essential for High Density Current Production in Geobacter sulfurreducens Fuel Cells, PLOS ONE, vol.4, 2009.

T. A. Nguyen, Y. Lu, X. Yang, and X. Shi, Carbon and Steel Surfaces Modified by Leptothrix discophora SP-6: Characterization and Implications, Environ. Sci. Technol, vol.41, pp.7987-7996, 2007.

P. Nice, H. Amaya, L. Scoppio, N. Larché, Y. Matsuda et al., Evaluation of the Corrosion Risk of Duplex Stainless Steel UNS S82551 in Treated Seawater Injection Service, 2017.

H. B. Nielsen, M. Almeida, A. S. Juncker, S. Rasmussen, J. Li et al., , 2014.

, Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes, Nature Biotechnology, vol.32, pp.822-828

S. Oh and B. E. Logan, Voltage reversal during microbial fuel cell stack operation, Journal of Power Sources, vol.167, pp.11-17, 2007.

B. H. Olesen, R. Avci, and Z. Lewandowski, Manganese dioxide as a potential cathodic reactant in corrosion of stainless steels, Corrosion Science, vol.42, pp.211-227, 2000.

D. H. Park and J. G. Zeikus, Improved fuel cell and electrode designs for producing electricity $%^%$%('%! ! ! MeN! from microbial degradation, Biotechnology and Bioengineering, vol.81, pp.348-355, 2003.

S. Parot, O. Nercessian, M. Delia, W. Achouak, and A. Bergel, Electrochemical checking of aerobic isolates from electrochemically active biofilms formed in compost, Journal of Applied Microbiology, vol.106, pp.1350-1359, 2009.

C. Pfeffer, S. Larsen, J. Song, M. Dong, F. Besenbacher et al., Filamentous bacteria transport electrons over centimetre distances, Nature, vol.491, pp.218-221, 2012.

F. Pfeiffer, C. Gröber, M. Blank, K. Händler, M. Beyer et al., Systematic evaluation of error rates and causes in short samples in next-generation sequencing, Scientific Reports, vol.8, p.10950, 2018.

T. H. Pham, N. Boon, P. Aelterman, P. Clauwaert, L. De-schamphelaire et al., , 2008.

, Metabolites produced by Pseudomonas sp. enable a Gram-positive bacterium to achieve extracellular electron transfer, Appl Microbiol Biotechnol, vol.77, pp.1119-1129

J. Philips, K. Verbeeck, K. Rabaey, A. , and J. , Electron transfer mechanisms in biofilms, Microbial electrochemical and fuel cells : fundamentals and applications, pp.67-113, 2015.

S. Pirbadian, S. E. Barchinger, K. M. Leung, H. S. Byun, Y. Jangir et al., , 2014.

, Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components, PNAS, vol.111, pp.12883-12888

C. Quast, E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer et al., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools, Nucleic Acids Res, vol.41, pp.590-596, 2013.

K. Rabaey, S. T. Read, P. Clauwaert, S. Freguia, P. L. Bond et al., Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells, The ISME Journal, vol.2, p.519, 2008.

M. S. Rappé, S. A. Connon, K. L. Vergin, and S. J. Giovannoni, Nature, vol.418, pp.630-633, 2002.

G. Reguera, K. D. Mccarthy, T. Mehta, J. S. Nicoll, M. T. Tuominen et al., , vol.435, pp.1098-1101, 2005.

D. J. Richardson, J. N. Butt, J. K. Fredrickson, J. M. Zachara, L. Shi et al., The 'porin-cytochrome' model for microbe-to-mineral electron transfer, Molecular Microbiology, vol.85, pp.201-212, 2012.

M. Richter and R. Rosselló-móra, Shifting the genomic gold standard for the prokaryotic species definition, PNAS, vol.106, pp.19126-19131, 2009.

M. Rimboud, M. Barakat, A. Bergel, and B. Erable, Different methods used to form oxygen reducing biocathodes lead to different biomass quantities, bacterial communities, and electrochemical kinetics, Bioelectrochemistry, vol.116, pp.24-32, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01845856

A. Rinaldi, B. Mecheri, V. Garavaglia, S. Licoccia, P. D. Nardo et al., Engineering materials and biology to boost performance of microbial fuel cells: a critical review, Energy Environ. Sci, vol.1, pp.417-429, 2008.

C. Rinke, P. Schwientek, A. Sczyrba, N. N. Ivanova, I. J. Anderson et al., Insights into the phylogeny and coding potential of microbial dark matter, Nature, vol.499, pp.431-437, 2013.

T. Rogne and U. Steinsmo, Practical consequences of the biofilm in natural sea water and of chlorination on the corrosion behaviour of stainless steels. Seawater Corrosion of Stainless SteelMechanisms and Experiences EFC Publ, vol.19, pp.55-74, 1996.

T. Rogne and U. Steinsmo, Practical Consequences of the Biofilm in Natural Sea Water and of Chlorination on the Corrosion Behaviour of Stainless Steels. Sea Water Corrosion of Stainless SteelsMechanisms and Experiences, 1996.

T. Rognes, T. Flouri, B. Nichols, C. Quince, and F. Mahé, VSEARCH: a versatile open source $%^%$%('%! ! ! MmM! tool for metagenomics, PeerJ, vol.4, 2016.

F. Rojo, Degradation of alkanes by bacteria, Environmental Microbiology, vol.11, pp.2477-2490, 2009.

D. E. Ross, J. M. Flynn, D. B. Baron, J. A. Gralnick, and D. R. Bond, Towards Electrosynthesis in Shewanella: Energetics of Reversing the Mtr Pathway for Reductive Metabolism, PLOS ONE, vol.6, 2011.

M. Rothballer, M. Picot, T. Sieper, J. B. Arends, M. Schmid et al., , 2015.

, Monophyletic group of unclassified ?-Proteobacteria dominates in mixed culture biofilm of highperforming oxygen reducing biocathode, Bioelectrochemistry, vol.106, pp.167-176

R. A. Rozendal, A. W. Jeremiasse, H. V. Hamelers, and C. J. Buisman, Hydrogen Production with a Microbial Biocathode, Environ. Sci. Technol, vol.42, pp.629-634, 2008.

F. Sanger, G. G. Brownlee, and B. G. Barrell, A two-dimensional fractionation procedure for radioactive nucleotides, Journal of Molecular Biology, vol.13, pp.373-377, 1965.

F. Sanger, S. Nicklen, and A. R. Coulson, DNA sequencing with chain-terminating inhibitors, Proc Natl Acad Sci U S A, vol.74, pp.5463-5467, 1977.

P. D. Schloss, S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann et al., , 2009.

, Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities, Applied and environmental microbiology, vol.75, pp.7537-7541

S. Schneiker, V. A. Santos, D. Bartels, T. Bekel, M. Brecht et al., , 2006.

, Genome sequence of the ubiquitous hydrocarbon-degrading marine bacterium Alcanivorax borkumensis

, Nature Biotechnology, vol.24, pp.997-1004

V. Scotto, G. Alabiso, and G. Marcenaro, An example of microbiologically influenced corrosion, Bioenergetics, vol.16, pp.347-355, 1986.

V. Scotto, M. Beggiato, G. Marcenaro, and D. R. , Microbial and Biochemical Factors Affecting the Corrosion Behaviour of Stainless Steels in Seawater, 1996.

V. Scotto, R. D. Cintio, and G. Marcenaro, The influence of marine aerobic microbial film on stainless steel corrosion behaviour, Corrosion Science, vol.25, pp.185-194, 1985.

V. Scotto and M. E. Lai, The ennoblement of stainless steels in seawater: A likely explanation coming from the field, Corrosion Sci, vol.40, pp.1007-1018, 1998.

N. Segata, J. Izard, L. Waldron, D. Gevers, L. Miropolsky et al., Metagenomic biomarker discovery and explanation, Genome Biology, vol.12, p.60, 2011.

L. Shi, T. C. Squier, J. M. Zachara, and J. K. Fredrickson, Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes, Molecular Microbiology, vol.65, pp.12-20, 2007.

X. Shi, R. Avci, M. Geiser, and Z. Lewandowski, Comparative study in chemistry of microbially and electrochemically induced pitting of 316L stainless steel, Corrosion Science, vol.45, pp.2577-2595, 2003.

X. Shi, R. Avci, and Z. Lewandowski, Microbially deposited manganese and iron oxides on passive metals -Their chemistry and consequences for material performance, Corrosion, vol.58, pp.728-738, 2002.

F. A. Simão, R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov, BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs, Bioinformatics, vol.31, pp.3210-3212, 2015.

E. Singer, D. Emerson, E. A. Webb, R. A. Barco, J. G. Kuenen et al., , 2011.

, Mariprofundus ferrooxydans PV-1 the First Genome of a Marine Fe(II) Oxidizing Zetaproteobacterium

, PLOS ONE, vol.6

$. %^%$%(&apos;%!-!-!-mml,

E. Singer, J. F. Heidelberg, A. Dhillon, and K. J. Edwards, Metagenomic insights into the dominant Fe(II) oxidizing Zetaproteobacteria from an iron mat at L?´ihi, Hawai´l. Front. Microbiol, vol.4, 2013.

D. Sridharan, S. P. Manoharan, and N. Palaniswamy, Redox behavior of biofilm on glassy carbon electrode, Bioelectrochemistry, vol.82, pp.135-139, 2011.

E. Stackebrandt and J. Ebers, Taxonomic parameters revisited: tarnished gold standards. Microbiology today 33, p.152, 2006.

E. Stackebrandt and B. M. Goebel, Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology, International Journal of Systematic Bacteriology, vol.44, pp.846-849, 1994.

J. T. Staley and A. Konopka, Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats, Annu. Rev. Microbiol, vol.39, pp.321-346, 1985.

A. J. Stams and C. M. Plugge, Electron transfer in syntrophic communities of anaerobic bacteria and archaea, Nature Reviews Microbiology, vol.7, pp.568-577, 2009.

L. D. Stein, The case for cloud computing in genome informatics, Genome Biology, vol.11, p.207, 2010.

O. Strandmyr and O. Hagerup, Field Experience With Stainless Steel Materials in Seawater Systems, 1998.

M. A. Streicher and J. F. Grubb, Austenitic and Ferritic Stainless Steels, Uhlig's Corrosion Handbook, pp.657-693, 2011.

S. M. Strycharz, R. H. Glaven, M. V. Coppi, S. M. Gannon, L. A. Perpetua et al., Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens, Bioelectrochemistry, vol.80, pp.142-150, 2011.

S. M. Strycharz, T. L. Woodard, J. P. Johnson, K. P. Nevin, R. A. Sanford et al., , 2008.

, Graphite Electrode as a Sole Electron Donor for Reductive Dechlorination of Tetrachlorethene by Geobacter lovleyi, Appl. Environ. Microbiol, vol.74, pp.5943-5947

S. M. Strycharz-glaven, R. H. Glaven, Z. Wang, J. Zhou, G. J. Vora et al., , 2013.

, Appl. Environ. Microbiol, vol.79, pp.3933-3942

F. Suja, F. Rahim, M. R. Taha, N. Hambali, M. Razali et al., Effects of local microbial bioaugmentation and biostimulation on the bioremediation of total petroleum hydrocarbons (TPH) in crude oil contaminated soil based on laboratory and field observations, International Biodeterioration & Biodegradation, vol.90, pp.115-122, 2014.

Z. M. Summers, J. A. Gralnick, and D. R. Bond, Cultivation of an Obligate Fe(II)-Oxidizing Lithoautotrophic Bacterium Using Electrodes, vol.4, pp.420-432, 2013.

S. Sunagawa, L. P. Coelho, S. Chaffron, J. R. Kultima, K. Labadie et al., Structure and function of the global ocean microbiome, Science, vol.348, p.1261359, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01233742

C. J. Sund, S. Mcmasters, S. R. Crittenden, L. E. Harrell, and J. J. Sumner, Effect of electron mediators on current generation and fermentation in a microbial fuel cell, Appl Microbiol Biotechnol, vol.76, pp.561-568, 2007.

A. Sydow, T. Krieg, F. Mayer, J. Schrader, and D. Holtmann, Electroactive bacteria-molecular mechanisms and genetic tools, Appl Microbiol Biotechnol, vol.98, pp.8481-8495, 2014.

D. Thierry, N. Larche, C. Leballeur, S. L. Wijesinghe, and T. Zixi, Corrosion potential and cathodic reduction efficiency of stainless steel in natural seawater, Mater. Corros, vol.66, pp.453-458, 2015.

C. I. Torres, A. Kato-marcus, and B. E. Rittmann, Kinetics of consumption of fermentation products by anode-respiring bacteria, Appl Microbiol Biotechnol, vol.77, pp.689-697, 2007.

S. V. Toshchakov, A. A. Korzhenkov, T. N. Chernikova, M. Ferrer, O. V. Golyshina et al.,

M. , The genome analysis of Oleiphilus messinensis ME102 (DSM 13489T) reveals backgrounds of its obligate alkane-devouring marine lifestyle, Marine Genomics, vol.36, pp.41-47, 2017.

F. Trigodet, N. Larché, H. G. Morrison, M. Jebbar, D. Thierry et al., Electroactive Bacteria Associated With Stainless Steel Ennoblement in Seawater, Front. Microbiol, vol.10, 2019.

P. J. Turnbaugh, R. E. Ley, M. Hamady, C. Fraser-liggett, R. Knight et al., The human microbiome project: exploring the microbial part of ourselves in a changing world, Nature, vol.449, pp.804-810, 2007.

J. Valdés, I. Pedroso, R. Quatrini, R. J. Dodson, H. Tettelin et al., Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications, BMC Genomics, vol.9, p.597, 2008.

J. B. Van-beilen and E. G. Funhoff, Alkane hydroxylases involved in microbial alkane degradation, Appl Microbiol Biotechnol, vol.74, pp.13-21, 2007.

J. B. Van-beilen and E. G. Funhoff, Expanding the alkane oxygenase toolbox: new enzymes and applications, Current Opinion in Biotechnology, vol.16, pp.308-314, 2005.

S. Van-dongen and C. Abreu-goodger, Using MCL to Extract Clusters from Networks, pp.281-295, 2012.

J. C. Venter, K. Remington, J. F. Heidelberg, A. L. Halpern, D. Rusch et al., , 2004.

, Environmental Genome Shotgun Sequencing of the Sargasso Sea, Science, vol.304, pp.66-74

Q. Wang, G. M. Garrity, J. M. Tiedje, C. , and J. R. , rRNA sequences into the new bacterial taxonomy, Appl. Environ. Microbiol, vol.73, pp.5261-5267, 2007.

W. Wang, X. Li, J. Wang, H. Xu, and J. Wu, Influence of biofilms growth on corrosion potential of metals immersed in seawater, Materials and Corrosion, vol.55, pp.30-35, 2004.

W. Wang and Z. Shao, Enzymes and genes involved in aerobic alkane degradation, Front Microbiol, vol.4, 2013.

W. Wang, X. Zhang, W. , and J. , Rainbow fringes around crevice corrosion formed on stainless steel AISI 316 after ennoblement in seawater, Materials and Corrosion, vol.60, pp.820-824, 2009.

W. Wang, X. Zhang, W. , and J. , The influence of local glucose oxidase activity on the potential/current distribution on stainless steel: A study by the wire beam electrode method, 2009.

, Electrochimica Acta, vol.54, pp.5598-5604

Z. Wang, B. J. Eddie, A. P. Malanoski, W. J. Hervey, B. Lin et al., , 2015.

, Complete Genome Sequence of Marinobacter sp. CP1, Isolated from a Self-Regenerating Biocathode Biofilm, Genome Announc, vol.3

Z. Wang, B. J. Eddie, A. P. Malanoski, W. J. Hervey, B. Lin et al., , 2016.

, Isolated from a Self-Regenerating Biocathode Biofilm, Complete Genome Sequence of Labrenzia sp. Strain CP4, vol.4

Z. Wang, D. H. Leary, A. P. Malanoski, R. W. Li, W. J. Hervey et al., A Previously Uncharacterized, Nonphotosynthetic Member of the Chromatiaceae Is the Primary CO 2 -Fixing Constituent in a Self-Regenerating Biocathode, Applied and Environmental Microbiology, vol.81, pp.699-712, 2015.

N. Washizu, Y. Katada, and T. Kodama, Role of H2O2 in microbially influenced ennoblement of open circuit potentials for type 316L stainless steel in seawater, Corrosion Science, vol.46, pp.1291-1300, 2004.

$. %^%$%(&apos;%!-!-!-mmo,

L. G. Wayne, D. J. Brenner, R. R. Colwell, P. A. Grimont, O. Kandler et al., Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics, International Journal of Systematic Bacteriology, vol.37, pp.463-464, 1987.

W. Wei, W. Jia, X. Haibo, and L. Xiangbo, Relationship between the ennoblement of passive metals and microbe adsorption kinetics in seawater, Materials and Corrosion, vol.56, pp.329-333, 2005.

J. L. Weirather, M. De-cesare, Y. Wang, P. Piazza, V. Sebastiano et al., , 2017.

, Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. F1000Research 6, p.100

H. Wickham, Ggplot2: elegant graphics for data analysis, 2009.

C. R. Woese and G. E. Fox, Phylogenetic structure of the prokaryotic domain: The primary kingdoms, PNAS, vol.74, pp.5088-5090, 1977.

C. R. Woese, O. Kandler, and M. L. Wheelis, Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya, PNAS, vol.87, pp.4576-4579, 1990.

Y. Wu, B. A. Simmons, and S. W. Singer, MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets, Bioinformatics, vol.32, pp.605-607, 2016.

L. Xiangbo, W. Jia, W. Wei, and W. Hongren, Ennoblement of stainless steel in natural seawater -A new explanation, Materials and Corrosion, vol.58, pp.29-32, 2007.

M. M. Yakimov and P. N. Golyshin, The Family Oleiphilaceae, The Prokaryotes, 2014.

E. F. Rosenberg, S. Delong, E. Lory, F. Stackebrandt, and . Thompson, , pp.529-533

M. M. Yakimov, P. N. Golyshin, S. Lang, E. R. Moore, W. Abraham et al., , 1998.

, Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium, International Journal of Systematic and Evolutionary Microbiology, vol.48, pp.339-348

$. %^%$%(&apos;%*!-!-!-mmh and !. Doi,

M. M. Yakimov, K. N. Timmis, and P. N. Golyshin, Obligate oil-degrading marine bacteria, Current Opinion in Biotechnology, vol.18, pp.257-266, 2007.

C. M. Yentsch, F. C. Mague, P. K. Horan, and K. Muirhead, Flow cytometric DNA determinations on individual cells of the dinoflagellate Gonyaulax tamarensis var. excavata, Journal of Experimental Marine Biology and Ecology, vol.67, issue.83, pp.90088-90094, 1983.

H. J. Zhang and D. S. , Effect of Biofilms on Crevice Corrosion of Stainless Steels in Coastal Seawater, Corrosion Science, pp.56-66, 1995.

H. Zhang and S. C. Dexter, Effect of Biofilms on Crevice Corrosion of Stainless Steels in Coastal Seawater, CORROSION, vol.51, pp.56-66, 1995.

T. Zhang, S. M. Gannon, K. P. Nevin, A. E. Franks, and D. R. Lovley, , vol.12, 2010.

X. Zhang, W. Wang, W. , and J. , A novel device for the wire beam electrode method and its application in the ennoblement study, Corrosion Science, vol.51, pp.1475-1479, 2009.

L. Zhou, D. Deng, D. Zhang, Q. Chen, J. Kang et al., Microbial Electricity Generation and Isolation of Exoelectrogenic Bacteria Based on Petroleum Hydrocarbon-contaminated Soil, Electroanalysis, vol.28, pp.1510-1516, 2016.

&. ,

. G%,

U. and &. D%&lt;ga@=,

. \qc%-f&apos;)1/&apos;!d%-+cf%-i;:baabe&lt;g;ficf% and . Fag&gt;%, , p.8

. &lt;qeicg&gt;cb%-=c%-8a&gt;cg&gt;;c=%-=;@bc%-dcf%-&lt;:;cbf%-;gajud&lt;@=cf%cg%c&lt;q%dc%icb%h,

. Ag% and . &lt;ga@=,

. Ffcicg&gt;^%-(c&gt;&gt;c%-9=9h&lt;&gt;,

. Ag%-dc%-8=qf,

. Gcf%-dc%-i;==,

H. =a,

. Ffcicg&gt;%-&lt;%-9&gt;9%-9&gt;qd,

. 9%-8cgd&lt;g&gt;%-8=qf%-dc%-_`%-&lt;gft%, . C&gt;%, and . Fag%,

. Cg%-bcf8agf&lt;@=cf%-dq%-8s9gaiygc%-g]ag&gt;%-8&lt;f%-9&gt;9%-;dcg&gt;;w;9f^% and . &lt;hagf%,

. G9%-=], 9:A=AE;C% I

. Cggc%-c&gt;%-=]9=c, >BA:S;I

C. &lt;ffa,

. Ffcicg&gt;%-c&gt;%-gaqf%-=cf%-&lt;hagf%-q&gt;;=;f9f%-8aqb%,

. Dcg&gt;;w;cb%-=&lt;% and . Wb&lt;,

A. &lt;ffa,

. C=^%-+]&lt;ga@=;ffcicg&gt;% and . Cf&gt;%,

, GS

. @9%-8&lt;b%-qgc%-&gt;ci89b&lt;&gt;qbc%-:b;&gt;,

. \qc%-dc%-=]c&lt;q%, . Dc%, and . L&lt;q,

. Ffaqf^%-*%-=]&lt;,

D. Dc%-dq%-f9\qcgd&lt;ec%, D. &lt;ww;=;9cf%-a%, and . @&lt;,

. Bc%-=]ajueygc% and . &lt;hc,

D. 9%-=c%-bf=c%,

. Agf%-&lt;%-8a&gt;cg&gt;,

. C=f%-w;,

. C&gt;%-=;@bcf%-&lt;hc:%-qgc%-&lt;88ba,

. Ffq%-d]&lt;ffci@=&lt;ec%-i9&gt;&lt;e9gai,

. \qc%-l3*2p%-&gt;byf%-8ba,

. Cg%-8aqb%-cj8=,

. \qcb%-=]&lt;ga@=;ffcicg&gt;%?%-=cf% and . @&lt;,

. Bc%-dc%-=]ajueygc% and . &lt;hc,

. W%-dc%-=]&lt;,

G. Dag,

. Bagicg&gt;%-v-6y*$2)!d%cgga@=cicg&gt;t%i,

&. D% and ;. Baabe&lt;g;fif%-;g:bc&lt;fc%-&gt;sc%-a8cg,

&. Fc&lt;h&lt;&gt;cb%,

. G%-&lt;%-8scgaicgag%-:&lt;==cd%-cgga@=cicg&gt;^%-!s;f%-:s&lt;gec%-aw%-8a&gt;cg&gt;,

. &lt;=%-aw% and . Sqgdbcdf%-aw%-i;==,

H. B&lt;;fcf%&gt;sc%,

. Ag^%-!sc%cgga@=cicg&gt;%s&lt;f%@ccg%f&gt;qd,

_. &gt;&gt;=c%;f%igahg%&lt;@aq&gt;%&gt;sc%i and ;. C=c, >BA:SCI;F>BU% >A%

. E&lt;&gt;c%-&gt;sc%-d;hcbf,

&. Cgga@=cicg&gt;%-&lt;gd%-hc% and Q. Ag%&lt;ffa,

. &gt;s%-&gt;sc%-8scgaicgag^%-!sc%-cgga@=cicg&gt;%-;f%,

. Gs;@;&gt;cd%@u%&lt;%:b;&gt;;, , pp.8-74

. &gt;s%-&amp;.*%-&lt;i8=;:ag% and . Fc\qcg,

@. &gt;f%-l&apos;!-fp%-&gt;s&lt;&gt;%-hcbc%,

!. Ai&lt;bicbf%aw%&gt;sc%cgga@=cicg&gt;^%, &. Scbc%hcbc%faic%, and . &lt;ww;=,

&. &lt;@=c%, ;. Bcdq:c%-ajuecg%-h, and . Vc%;ghcf&gt;;e&lt;&gt;cd%&gt;sc%ba=c%aw%c=c:&gt;ba&gt;ba8s;, %@<:>CB;<% h;>S%8A>CG>;AF><>;:%<GD%A8CG%:;B:Q;>%:AGD;>;AGF%<GD% h;>S%IC><ECGAI

. Ag%-w;=it%-scg:c%-;gw=qcg:;ge%-&gt;sc%-a8cg%,