R. Chakrabarty, P. S. Mukherjee, and P. J. Stang, Supramolecular Coordination: Self-Assembly of Finite Two-and Three-Dimensional Ensembles, Chem. Rev, vol.111, issue.11, pp.6810-6918, 2011.

M. A. Mateos-timoneda, B. Kerckhoffs-jeenrico, M. C. Crego-calama, M. Reinhoudt, and D. N. , Ditopic Complexation and Release of Neutral Guest Molecules by a Hydrogen-Bonded "Endo-Exo" Receptor, Angew. Chem. Int. Ed, vol.44, issue.21, pp.3248-3253, 2005.

E. Huerta, S. A. Serapian, E. Santos, E. Cequier, C. Bo et al., Molecular Basis for the Recognition of Higher Fullerenes into Ureidopyrimidinone-Cyclotriveratrylene Self-Assembled Capsules, Chem. Eur. J, vol.22, issue.38, pp.13496-13505, 2016.

D. Appavoo, D. Carnevale, R. Deschenaux, and B. Therrien, Combining coordination and hydrogen-bonds to form arene ruthenium metalla-assemblies, J. Organomet. Chem, vol.824, pp.80-87, 2016.

T. Hasell and A. I. Cooper, Porous organic cages: soluble, modular and molecular pores, Nature Reviews Materials, vol.1, p.16053, 2016.

T. Tozawa, J. T. Jones, S. I. Swamy, S. Jiang, D. J. Adams et al., Porous organic cages, Nature Materials, vol.8, p.973, 2009.

G. Zhang, O. Presly, F. White, I. M. Oppel, and M. Mastalerz, A Permanent Mesoporous Organic Cage with an Exceptionally High Surface Area, Angew. Chem, issue.6, pp.1542-1546, 2014.

M. S. Collins, N. Phan, L. N. Zakharov, and D. W. Johnson, Coupling Metaloid-Directed SelfAssembly and Dynamic Covalent Systems as a Route to Large Organic Cages and Cyclophanes, Inorg. Chem, vol.57, issue.7, pp.3486-3496, 2018.

S. Saha, I. Regeni, and G. H. Clever, Structure relationships between bis-monodentate ligands and coordination driven self-assemblies, Coord. Chem. Rev, vol.374, pp.1-14, 2018.

T. Y. Kim, R. A. Vasdev, D. Preston, and J. D. Crowley, Strategies for reversible guest uptake and release from metallosupramolecular architectures, Chem. Eur. J, vol.24, issue.56, pp.14878-14890, 2018.

Y. Zhang, W. Gao, L. Lin, and G. Jin, Recent advances in the construction and applications of heterometallic macrocycles and cages, Coord. Chem. Rev, vol.344, pp.323-344, 2017.

M. Yoshizawa and M. Yamashina, Coordination-driven Nanostructures with Polyaromatic Shells

, Chem. Lett, vol.46, issue.2, pp.163-171, 2017.

M. Pan, K. Wu, J. Zhang, and C. Su, Chiral metal-organic cages/containers (MOCs): From structural and stereochemical design to applications, Coord. Chem. Rev, 2017.

S. Huang, T. S. Hor, and G. Jin, Metallacyclic assembly of interlocked superstructures

, Coord. Chem. Rev, vol.333, pp.1-26, 2017.

W. M. Bloch and G. H. Clever, Integrative self-sorting of coordination cages based on 'naked' metal ions, Chem. Commun, vol.53, issue.61, pp.8506-8516, 2017.

N. J. Young and B. P. Hay, Structural design principles for self-assembled coordination polygons and polyhedra, Chem. Commun, issue.14, pp.1354-1379, 2013.

M. Fujita, J. Yazaki, and K. Ogura, Preparation of a macrocyclic polynuclear complex

, NO3)8 (en = ethylenediamine, bpy = bipyridine), which recognizes an organic molecule in aqueous media, JACS, vol.1990, issue.14, pp.5645-5647

P. J. Stang and D. H. Cao, Transition Metal Based Cationic Molecular Boxes. Self-Assembly of Macrocyclic Platinum(II) and Palladium(II) Tetranuclear Complexes, JACS, vol.116, issue.11, pp.4981-4982, 1994.

L. Caulder, D. N. Raymond, and K. , The rational design of high symmetry coordination clusters, J. Chem. Soc, issue.8, pp.1185-1200, 1999.

D. L. Caulder, C. Brückner, R. E. Powers, S. König, T. N. Parac et al., Stepwise Construction of Heterobimetallic Cages by an Extended Molecular Library Approach, Inorg. Chem, vol.123, issue.37, pp.3507-3515, 2001.

M. Fujita, Metal-directed self-assembly of two-and three-dimensional synthetic receptors

, Chem. Soc. Rev, vol.27, issue.6, pp.417-425, 1998.

M. Fujita, M. Tominaga, A. Hori, and B. Therrien, Coordination Assemblies from a Pd(II)-Cornered Square Complex, Acc. Chem. Res, vol.38, issue.4, pp.369-378, 2005.

F. Norifumi, B. Kumar, F. Makoto, S. Shigeru, and Y. Kentaro, A Porphyrin Prism: Structural Switching Triggered by Guest Inclusion, Angew. Chem. Int. Ed, vol.40, issue.9, pp.1718-1721, 2001.

B. A. Kumar, C. Rajesh, M. Golam, and M. P. Sarathi, , pp.12-12

, Heterometallic Open Molecular Box Containing Six Porphyrin Walls, Angew. Chem. Int. Ed, vol.47, issue.44, pp.8455-8459, 2008.

B. J. Holliday and C. A. Mirkin, Strategies for the Construction of Supramolecular Compounds through Coordination Chemistry, Angew. Chem. Int. Ed, vol.40, issue.11, pp.2022-2043, 2001.

N. C. Gianneschi, M. S. Masar, and C. A. Mirkin, Development of a Coordination Chemistry-Based Approach for Functional Supramolecular Structures, Acc. Chem. Res, vol.38, issue.11, pp.825-837, 2005.

C. G. Oliveri, P. A. Ulmann, M. J. Wiester, and C. A. Mirkin, Heteroligated Supramolecular Coordination Complexes Formed via the Halide-Induced Ligand Rearrangement Reaction, Acc. Chem. Res, issue.12, pp.1618-1629, 2008.

M. A. Zuideveld, B. H. Swennenhuis, M. D. Boele, Y. Guari, G. P. Van-strijdonck et al., The coordination behaviour of large natural bite angle diphosphine ligands towards methyl and 4-cyanophenylpalladium(ii) complexes, J. Chem. Soc, issue.11, pp.2308-2317, 2002.

R. Hashiguchi, K. Otsubo, H. Ohtsu, and H. Kitagawa, A Novel Triangular Macrocyclic Compound, [(tmeda)Pt(azpy)]3(PF6)6·13H2O (tmeda: Tetramethylethylenediamine, azpy: 4,4?-Azopyridine), Chem. Lett, vol.42, issue.4, pp.374-376, 2013.

P. Subhashis and J. P. Rohith, Self-assembled Pd6L4 cage and Pd4L4 square using hydrazide based ligands: synthesis, characterization and catalytic activity in Suzuki-Miyaura coupling reactions, RSC Advances, vol.6, issue.15, pp.12453-12460, 2016.

S. Shanmugaraju, V. Vajpayee, S. Lee, K. Chi, P. J. Stang et al., Coordination-Driven Self-Assembly of 2D-Metallamacrocycles Using a New Carbazole-Based Dipyridyl Donor: Synthesis, Characterization, and C60 Binding Study, Inorg. Chem, vol.2012, issue.8, pp.4817-4823

M. Ferrer, A. Pedrosa, L. Rodríguez, O. Rossell, and M. Vilaseca, New Insights into the Factors That Govern the Square/Triangle Equilibria of Pd(II) and Pt(II) Supramolecules. Unexpected Participation of a Mononuclear Species in the Equilibrium, Inorg. Chem, issue.20, pp.9438-9449, 2010.

M. Fujita, O. Sasaki, T. Mitsuhashi, T. Fujita, J. Yazaki et al., On the structure of transition-metal-linked molecular squares, Chem. Commun, issue.13, pp.1535-1536, 1996.

K. Uehara, K. Kasai, and N. Mizuno, Synthetic and Computational Studies on Factors Controlling Structures of Molecular Triangles and Squares and Their Equilibrium in Solutions, Inorg. Chem, issue.4, pp.2008-2015, 2010.

Y. Fang, T. Murase, and M. Fujita, Cavity-promoted Diels-Alder Reactions of Unsubstituted Naphthalene: Fine Reactivity Tuning by Cavity Shrinkage, Chem. Lett, issue.8, pp.1095-1097, 2015.

M. Yoshizawa, K. Kumazawa, and M. Fujita, Room-Temperature and Solution-State Observation of the Mixed-Valence Cation Radical Dimer of Tetrathiafulvalene, [(TTF)2]+?, within a Self-Assembled Cage, JACS, vol.127, issue.39, pp.13456-13457, 2005.

N. Kiriyama, M. Ebihara, T. Udagawa, and H. Miyaji, Self-organization of dipyridylcalix[4]pyrrole into a supramolecular cage for dicarboxylates, vol.6, pp.19794-19796, 2016.

S. Ghosh and P. S. Mukherjee, Self-assembly of metal-organic hybrid nanoscopic rectangles

, Dalton Transactions, issue.24, pp.2542-2546, 2007.

J. Kim, D. Ryu, Y. Sei, K. Yamaguchi, and K. H. Ahn, Tripodal oxazoline-based homochiral coordination cages with internal binding sites, Chem. Commun, issue.10, pp.1136-1138, 2006.

A. Ikeda, H. Udzu, Z. Zhong, S. Shinkai, S. Sakamoto et al., A Self-Assembled Homooxacalix[3]arene-based Dimeric Capsule Constructed by a PdII?Pyridine Interaction Which Shows a Novel Chiral Twisting Motion in Response to Guest Inclusion, JACS, vol.123, issue.17, pp.3872-3877, 2001.

G. H. Clever and P. Punt, Cation-Anion Arrangement Patterns in Self-Assembled Pd2L4 and Pd4L8 Coordination Cages, Acc. Chem. Res, vol.50, issue.9, pp.2233-2243, 2017.

A. Schmidt, M. Hollering, M. Drees, A. Casini, and F. E. Kuhn, Supramolecular exofunctionalized palladium cages: fluorescent properties and biological activity, Dalton Transactions, vol.45, issue.20, pp.8556-8565, 2016.

T. Tomoki, Z. Wenchao, F. T. Hayato, K. Tatsuo, O. Kazuho et al., Self-Assembly of a Pd4L8 Double-Walled Square Partly Takes Place Through the Formation of Kinetically Trapped Species, Eur. J. Inorg. Chem, issue.10, pp.1192-1197, 2018.

T. Zhang, L. Zhou, X. Guo, L. Cai, and Q. Sun, Adaptive self-assembly and inducedfit transformations of anion-binding metal-organic macrocycles, Nature Communications, vol.8, p.15898, 2017.

K. Yazaki, M. Akita, S. Prusty, D. K. Chand, T. Kikuchi et al., Polyaromatic molecular peanuts, Nature Communications, vol.8, p.15914, 2017.

D. Fujita, Y. Ueda, S. Sato, H. Yokoyama, N. Mizuno et al., SelfAssembly of M30L60 Icosidodecahedron, Chem, vol.2016, issue.1, pp.91-101

T. Y. Kim, L. Digal, M. G. Gardiner, N. T. Lucas, J. D. Crowley et al.,

, Metallosupramolecular Cages: Synthesis, Structures and Guest-Encapsulation Studies, Chem. Eur. J, vol.2017, issue.60, pp.15089-15097

K. Harris, D. Fujita, and M. Fujita, Giant hollow MnL2n spherical complexes: structure, functionalisation and applications, Chem. Commun, issue.60, pp.6703-6712, 2013.

F. A. Cotton, C. Lin, and C. A. Murillo, The use of dimetal building blocks in convergent syntheses of large arrays, Proceedings of the National Academy of Sciences, issue.8, pp.4810-4813, 2002.

Y. Cui, Z. Chen, X. Jiang, J. Tong, and S. Yu, Self-assembly and anion sensing of metalorganic [M6L2] cages from fluorescent triphenylamine tri-pyrazoles with dipalladium

, Dalton Transactions, 2017.

Y. Deng, H. Zhang, Y. Lin, and G. Jin, Construction of half-sandwich rhodium-and iridium-based metallamacrocycles with different space conformations via isomeric pyridyl-substituted ligands, J. Coord. Chem, vol.2018, pp.1-12

T. Bruno, Arene Ruthenium Cages: Boxes Full of Surprises, Eur. J. Inorg. Chem, issue.17, pp.2445-2453, 2009.

P. S. Mukherjee, A. A. Adeyemo, A. Shettar, I. A. Bhat, and P. Kondaiah, Coordination-driven self-assembly of ruthenium(II) architectures: Synthesis, characterization and cytotoxicity studies, Dalton Transactions, vol.47, pp.8466-8475, 2018.

Y. Ye, T. R. Cook, S. Wang, J. Wu, S. Li et al., Self-Assembly of Chiral Metallacycles and Metallacages from a Directionally Adaptable BINOL-Derived Donor, JACS, vol.2015, issue.37, pp.11896-11899

L. Cao, P. Wang, X. Miao, Y. Dong, H. Wang et al., Diamondoid Supramolecular Coordination Frameworks from Discrete Adamantanoid Platinum(II) Cages, JACS, vol.140, issue.22, pp.7005-7011, 2018.

M. Zhang, H. Xu, M. Wang, M. L. Saha, Z. Zhou et al., Platinum(II)-Based Convex Trigonal-Prismatic Cages via Coordination-Driven SelfAssembly and C60 Encapsulation, Inorg. Chem, vol.2017, issue.20, pp.12498-12504

F. Beuerle, B. Gole, W. M. Bloch, J. J. Holstein, W. Hiller et al., Covalent Organic Frameworks and Cage Compounds: Design and Applications of Polymeric and Discrete Organic Scaffolds, Angew. Chem. Int. Ed, vol.57, issue.18, pp.8285-8289, 2018.

R. Zhu, W. M. Bloch, J. J. Holstein, S. Mandal, L. V. Schäfer et al., Donor-sitedirected Rational Assembly of Heteroleptic cis-[Pd2L2L?2] Coordination Cages from Picolyl Ligands, Chem. Eur. J, vol.24, issue.49, pp.12976-12982, 2018.

C. J. Bruns and J. F. Stoddart, The nature of the mechanical bond : from molecules to machines, 2017.

A. R. Pease, J. O. Jeppesen, J. F. Stoddart, Y. Luo, C. P. Collier et al., Switching Devices Based on Interlocked Molecules, Acc. Chem. Res, vol.34, issue.6, pp.433-444, 2001.

V. Balzani, A. Credi, M. Venturi, S. F. Van-dongen, S. Cantekin et al., Light powered molecular machines, Chem. Soc. Rev, vol.38, issue.6, pp.99-122, 2009.

C. O. Dietrich-buchecker and J. P. Sauvage, Interlocking of molecular threads: from the statistical approach to the templated synthesis of catenands, Chem. Rev, vol.87, issue.4, pp.795-810, 1987.

J. D. Crowley, S. M. Goldup, A. Lee, D. A. Leigh, and R. T. Mcburney, Active metal template synthesis of rotaxanes, catenanes and molecular shuttles, Chem. Soc. Rev, vol.38, issue.6, pp.1530-1541, 2009.

J. Chambron and J. Sauvage, Topologically complex molecules obtained by transition metal templation: it is the presentation that determines the synthesis strategy, New J. Chem, vol.37, issue.1, pp.49-57, 2013.

T. J. Hubin and D. H. Busch, Template routes to interlocked molecular structures and orderly molecular entanglements, Coord. Chem. Rev, pp.5-52, 0202.

M. Fukuda, R. Sekiya, and R. Kuroda, A Quadruply Stranded Metallohelicate and Its Spontaneous Dimerization into an Interlocked Metallohelicate, Angew. Chem. Int. Ed, vol.47, issue.4, pp.706-710, 2008.

R. Sekiya, M. Fukuda, and R. Kuroda, Anion-Directed Formation and Degradation of an Interlocked Metallohelicate, JACS, vol.2012, issue.26, pp.10987-10997

Z. Rongmei, L. Jens, D. ;. Birger, and C. G. , Stepwise Halide-Triggered Double and Triple Catenation of Self-Assembled Coordination Cages, Angew. Chem. Int. Ed, vol.54, issue.9, pp.2796-2800, 2015.

J. Jo, N. Singh, D. Kim, S. M. Cho, A. Mishra et al., Coordination-Driven Self-Assembly Using Ditopic Pyridyl-Pyrazolyl Donor and p-Cymene Ru(II) Acceptors: [2]Catenane Synthesis and Anticancer Activities, Inorg. Chem, vol.2017, issue.14, pp.8430-8438

Y. H. Song, N. Singh, J. Jung, H. Kim, E. H. Kim et al., Template-Free Synthesis of a Molecular Solomon Link by Two-Component Self-Assembly, Angew. Chem. Int. Ed, vol.55, issue.6, pp.2007-2011, 2016.

T. Y. Kim, L. Digal, M. G. Gardiner, N. T. Lucas, J. D. Crowley et al.,

, Metallosupramolecular Cages: Synthesis, Structures and Guest-Encapsulation Studies, Chem. Eur. J, vol.2017, issue.60, pp.15089-15097

M. Yamashina, M. M. Sartin, Y. Sei, M. Akita, S. Takeuchi et al., Preparation of Highly Fluorescent Host-Guest Complexes with Tunable Color upon Encapsulation, JACS, vol.2015, issue.29, pp.9266-9269

S. H. Leenders, R. Becker, T. Kumpulainen, B. De-bruin, T. Sawada et al., Selective Co-Encapsulation Inside an M6L4 Cage, Chem. Eur. J, vol.22, issue.43, pp.15468-15474, 2016.

J. S. Wright, A. J. Metherell, W. M. Cullen, J. R. Piper, R. Dawson et al., Highly selective CO2vs. N2 adsorption in the cavity of a molecular coordination cage, Chem. Commun, vol.2017, issue.31, pp.4398-4401

N. P. Barry, O. Zava, P. J. Dyson, and B. Therrien, Excellent Correlation between Drug Release and Portal Size in Metalla-Cage Drug-Delivery Systems, Chem. Eur. J, vol.17, issue.35, pp.9669-9677, 2011.

M. D. Pluth and K. N. Raymond, Reversible guest exchange mechanisms in supramolecular hostguest assemblies, Chem. Soc. Rev, vol.36, issue.2, pp.161-171, 2007.

A. K. Chan, .. Lam, W. H. Tanaka, Y. Wong, K. M. et al., Multiaddressable molecular rectangles with reversible host-guest interactions: Modulation of pH-controlled guest release and capture, Proceedings of the National Academy of Sciences, vol.112, issue.3, pp.690-695, 2015.

G. H. Clever, S. Tashiro, and M. Shionoya, Light-Triggered Crystallization of a Molecular Host?Guest Complex, JACS, vol.2010, issue.29, pp.9973-9975

H. Muxin, L. Yuansu, D. Bernd, G. Laura, R. Xavi et al., Light-Controlled Interconversion between a Self-Assembled Triangle and a Rhombicuboctahedral Sphere, Angew. Chem. Int. Ed, vol.55, issue.1, pp.445-449, 2016.

H. Muxin, M. Reent, H. Bice, C. Yu-sheng, S. Dietmar et al., LightTriggered Guest Uptake and Release by a Photochromic Coordination Cage, Angew. Chem. Int. Ed, vol.52, issue.4, pp.1319-1323, 2013.

K. Li, L. Zhang, C. Yan, S. Wei, M. Pan et al., Stepwise Assembly

, Nanoscale Rhombododecahedral Metal-Organic Cages via Metalloligand Strategy for Guest Trapping and Protection, JACS, vol.2014, issue.12, pp.4456-4459

M. Yoshizawa, S. Miyagi, M. Kawano, K. Ishiguro, and M. Fujita, Alkane Oxidation via Photochemical Excitation of a Self-Assembled Molecular Cage, JACS, vol.126, issue.30, pp.9172-9173, 2004.

A. Casini, B. Woods, and M. Wenzel, The Promise of Self-Assembled 3D Supramolecular Coordination Complexes for Biomedical Applications, Inorg. Chem, vol.56, issue.24, pp.14715-14729, 2017.

B. Therrien, G. Süss-fink, P. Govindaswamy, A. K. Renfrew, and P. J. Dyson, The "Complex-ina-Complex" Cations [(acac)2M?Ru6(p-iPrC6H4Me)6(tpt)2(dhbq)3]6+: A Trojan Horse for Cancer Cells, Angew. Chem. Int. Ed, vol.47, issue.20, pp.3773-3776, 2008.

J. E. Lewis, E. L. Gavey, S. A. Cameron, and J. D. Crowley, Stimuli-responsive Pd2L4 metallosupramolecular cages: towards targeted cisplatin drug delivery, Chemical Science, vol.2012, issue.3, pp.778-784

J. Han, A. Schmidt, T. Zhang, H. Permentier, G. M. Groothuis et al., Bioconjugation strategies to couple supramolecular exo-functionalized palladium cages to peptides for biomedical applications, Chem. Commun, vol.2017, issue.8, pp.1405-1408

L. Tabrizi and H. Chiniforoshan, Ruthenium(II) p-cymene complexes of naphthoquinone derivatives as antitumor agents: A structure?activity relationship study, J. Organomet. Chem, vol.822, pp.211-220, 2016.

E. Orhan, A. Garci, T. Riedel, M. Soudani, P. J. Dyson et al., Cytotoxic double arene ruthenium metalla-cycles that overcome cisplatin resistance, J. Organomet. Chem, vol.803, pp.39-44, 2016.

A. Dubey, Y. J. Jeong, J. H. Jo, S. Woo, D. H. Kim et al., Anticancer Activity and Autophagy Involvement of Self-Assembled Arene-Ruthenium Metallacycles, vol.2015, pp.4507-4514

V. Vajpayee, S. Lee, S. Kim, S. C. Kang, T. R. Cook et al., Self-assembled metalla-rectangles bearing azodipyridyl ligands: synthesis, characterization and antitumor activity, Dalton Transactions, vol.42, issue.2, pp.466-475, 2013.

T. R. Cook, V. Vajpayee, M. H. Lee, P. J. Stang, and K. Chi, Biomedical and Biochemical Applications of Self-Assembled Metallacycles and Metallacages. Acc. Chem. Res, vol.46, issue.11, pp.2464-2474, 2013.

S. Bhowmick, A. Jana, K. Singh, P. Gupta, A. Gangrade et al., Coordination-Driven Self-Assembly of Ionic Irregular Hexagonal Metallamacrocycles via an Organometallic Clip and Their Cytotoxicity Potency, Inorg. Chem, vol.57, issue.7, pp.3615-3625, 2018.

S. M. Mcneill, D. Preston, J. E. Lewis, A. Robert, K. Knerr-rupp et al., Biologically active [Pd2L4]4+ quadruply-stranded helicates: stability and cytotoxicity, Dalton Transactions, vol.44, issue.24, pp.11129-11136, 2015.

K. Singh, A. Gangrade, S. Bhowmick, A. Jana, B. B. Mandal et al.,

, Ionic Hexagonal Macrocycle and Its Antiproliferative Activity. Frontiers in Chemistry, vol.6, p.87, 2018.

C. Lorenzo, Z. Qi, and T. Konrad, Advantages of Catalysis in Self-Assembled Molecular Capsules

, Chem. Eur. J, vol.22, issue.27, pp.9060-9066, 2016.

D. Zhang, T. K. Ronson, and J. R. Nitschke, Functional Capsules via Subcomponent SelfAssembly, Acc. Chem. Res, vol.51, issue.10, pp.2423-2436, 2018.

C. Zhao, F. D. Toste, K. N. Raymond, and R. G. Bergman, Nucleophilic Substitution Catalyzed by a Supramolecular Cavity Proceeds with Retention of Absolute Stereochemistry, JACS, vol.2014, issue.41, pp.14409-14412

V. F. Slagt, J. N. Reek, P. C. Kamer, and P. W. Van-leeuwen, Assembly of Encapsulated Transition Metal Catalysts, Angew. Chem. Int. Ed, vol.40, issue.22, pp.4271-4274, 2001.

Q. Zhang and K. Tiefenbacher, Terpene cyclization catalysed inside a self-assembled cavity, Nature Chemistry, vol.7, 0197.

M. D. Pluth, R. G. Bergman, and K. N. Raymond, Acid Catalysis in Basic Solution: A Supramolecular Host Promotes Orthoformate Hydrolysis, Science, issue.5821, pp.85-88, 2007.

J. Kang, J. Santamaría, G. Hilmersson, and J. Rebek, Self-Assembled Molecular Capsule Catalyzes a Diels?Alder Reaction, JACS, vol.120, issue.29, pp.7389-7390, 1998.

A. G. Salles, S. Zarra, R. M. Turner, and J. R. Nitschke, A Self-Organizing Chemical Assembly Line, JACS, vol.2013, issue.51, pp.19143-19146

Z. J. Wang, K. N. Clary, R. G. Bergman, K. N. Raymond, and F. D. Toste, A supramolecular approach to combining enzymatic and transition metal catalysis, Nature Chemistry, issue.5, p.100, 2013.

V. Croue, S. Goeb, and M. Salle, Metal-driven self-assembly: the case of redox-active discrete architectures, Chem. Commun, issue.34, pp.7275-7289, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01390940

Y. Furutani, H. Kandori, M. Kawano, K. Nakabayashi, M. Yoshizawa et al., In Situ Spectroscopic, Electrochemical, and Theoretical Studies of the Photoinduced Host?Guest Electron Transfer that Precedes Unusual Host-Mediated Alkane Photooxidation, JACS, vol.131, issue.13, pp.4764-4768, 2009.

Y. Zheng, K. Suntharalingam, T. C. Johnstone, and S. J. Lippard, Encapsulation of Pt(iv) prodrugs within a Pt(ii) cage for drug delivery, Chemical Science, vol.6, issue.2, pp.1189-1193, 2015.

M. Yuan, F. Weisser, B. Sarkar, A. Garci, P. Braunstein et al., Synthesis and Electrochemical Behavior of a Zwitterion-Bridged Metalla-Cage, Organometallics, vol.33, issue.18, pp.5043-5045, 2014.

A. Szumna and J. Jurczak, A New Macrocyclic Polylactam-Type Neutral Receptor for Anions ? Structural Aspects of Anion Recognition, Eur. J. Org. Chem, issue.21, pp.4031-4039, 2001.

C. You and F. Würthner, Self-Assembly of Ferrocene-Functionalized Perylene Bisimide Bridging Ligands with Pt(II) Corner to Electrochemically Active Molecular Squares, JACS, vol.125, issue.32, pp.9716-9725, 2003.

W. Frank, S. Armin, S. ;. Dietmar, and W. P. , Fluorescent and Electroactive Cyclic Assemblies from Perylene Tetracarboxylic Acid Bisimide Ligands and Metal Phosphane Triflates, Chem. Eur. J, vol.7, issue.4, pp.894-902, 2001.

K. Mahata, P. D. Frischmann, and F. Würthner, Giant Electroactive M4L6 Tetrahedral Host SelfAssembled with Fe(II) Vertices and Perylene Bisimide Dye Edges, JACS, vol.2013, issue.41, pp.15656-15661

D. R. Van-staveren and N. Metzler-nolte, Bioorganometallic Chemistry of Ferrocene, Chem. Rev, vol.104, issue.12, pp.5931-5986, 2004.

L. Xu, Y. Wang, L. Chen, and H. Yang, Construction of multiferrocenyl metallacycles and metallacages via coordination-driven self-assembly: from structure to functions, Chem. Soc. Rev, vol.44, issue.8, pp.2148-2167, 2015.

K. Ghosh, Y. Zhao, H. Yang, B. H. Northrop, H. S. White et al., Synthesis of a New Family of Hexakisferrocenyl Hexagons and Their Electrochemical Behavior, The Journal of Organic Chemistry, vol.73, issue.21, pp.8553-8557, 2008.

H. Yang, K. Ghosh, Y. Zhao, B. H. Northrop, M. M. Lyndon et al., A New Family of Multiferrocene Complexes with Enhanced Control of Structure and Stoichiometry via Coordination-Driven Self-Assembly and Their Electrochemistry, JACS, vol.130, issue.3, pp.839-841, 2008.

G. Zhao, Q. Li, L. Chen, H. Tan, C. Wang et al., Facile Self-Assembly of Supramolecular Hexakisferrocenyl Triangles via CoordinationDriven Self-Assembly and Their Electrochemical Behavior, Organometallics, vol.30, issue.13, pp.3637-3642, 2011.

K. Ghosh, J. Hu, H. S. White, and P. J. Stang, Construction of Multifunctional Cuboctahedra via Coordination-Driven Self-Assembly, JACS, vol.131, issue.19, pp.6695-6697, 2009.

L. Chen, Q. Li, J. He, H. Tan, Z. Abliz et al., Design and Construction of EndoFunctionalized Multiferrocenyl Hexagons via Coordination-Driven Self-Assembly and Their Electrochemistry, The Journal of Organic Chemistry, vol.2012, issue.2, pp.1148-1153

L. Yao, Z. Yu, L. Qin, Y. Li, Y. Qin et al., Self-assembly of metallomacrocycles with dipyrazole ligands and anion sensing of [Pd4Fe2] macrocycle with ferrocene-based dipyrazole ligand, Dalton Transactions, vol.42, issue.10, pp.3447-3454, 2013.

N. Das, A. M. Arif, P. J. Stang, M. Sieger, B. Sarkar et al., Self-Assembly of Heterobimetallic Neutral Macrocycles Incorporating Ferrocene Spacer Groups: Spectroelectrochemical Analysis of the Double Two-Electron Oxidation of a Molecular Rectangle, Inorg. Chem, issue.16, pp.5798-5804, 2005.

L. Yao, L. Qin, T. Xie, Y. Li, and S. Yu, Synthesis and Anion Sensing of WaterSoluble Metallomacrocycles, Inorg. Chem, issue.13, pp.6055-6062, 2011.

P. J. Stang, B. Olenyuk, J. Fan, and A. M. Arif, Combining Ferrocenes and Molecular Squares: Self-Assembly of Heterobimetallic Macrocyclic Squares Incorporating Mixed Transition Metal Systems and a Main Group Element. Single-Crystal X-ray Structure of, Organometallics, vol.15, issue.3, pp.904-908, 1996.

V. Vajpayee, H. Kim, A. Mishra, P. S. Mukherjee, P. J. Stang et al., Self-assembled molecular squares containing metal-based donor: synthesis and application in the sensing of nitro-aromatics, Dalton Transactions, vol.40, issue.13, pp.3112-3115, 2011.

F. Jiang, J. Wang, J. Li, N. Wang, X. Bao et al., Supramolecular Assemblies with Symmetrical Octahedral Structures -Synthesis, Characterization, and Electrochemical Properties, Eur. J. Inorg. Chem, issue.3, pp.375-380, 2013.

K. Yazaki, S. Noda, Y. Tanaka, Y. Sei, M. Akita et al., An M2L4 Molecular Capsule with a Redox Switchable Polyradical Shell, Angew. Chem. Int. Ed, vol.55, issue.48, pp.15031-15034, 2016.

F. J. Rizzuto, D. M. Wood, T. K. Ronson, and J. R. Nitschke, Tuning the Redox Properties of Fullerene Clusters within a Metal-Organic Capsule, JACS, vol.2017, issue.32, pp.11008-11011

S. Hünig, H. Schlaf, G. Kie?lich, and D. Scheutzow, Zweistufige, reversible redoxsysteme mit stabilem radikalkation, Tetrahedron Lett, issue.27, pp.2271-2274, 1969.

D. L. Coffen, Condensation of carbon disulfide with dimethyl acetylenedicarboxylate, Tetrahedron Lett, vol.1970, issue.30, pp.2633-2636

F. Wudl, G. M. Smith, and E. J. Hufnagel, Bis-1,3-dithiolium chloride: an unusually stable organic radical cation, Journal of the Chemical Society D: Chemical Communications, issue.21, pp.1453-1454, 1970.

F. Wudl, D. Wobschall, and E. J. Hufnagel, Electrical conductivity by the bis(1,3-dithiole)-bis(1,3-dithiolium) system, JACS 1972, vol.94, pp.670-672

J. Ferraris, D. O. Cowan, V. Walatka, and J. H. Perlstein, Electron transfer in a new highly conducting donor-acceptor complex, JACS, vol.1973, issue.3, pp.948-949

N. Martín, Tetrathiafulvalene: the advent of organic metals, Chem. Commun, issue.63, pp.7025-7027, 2013.

T. Jørgensen, T. K. Hansen, and J. Becher, Tetrathiafulvalenes as building-blocks in supramolecular chemistry, Chem. Soc. Rev, vol.23, issue.1, pp.41-51, 1994.

M. R. Bryce, Functionalised tetrathiafulvalenes: new applications as versatile ?-electron systems in materials chemistry, J. Mater. Chem, vol.10, issue.3, pp.589-598, 2000.

J. L. Segura and N. Martín, New Concepts in Tetrathiafulvalene Chemistry, Angew. Chem. Int. Ed, vol.40, issue.8, pp.1372-1409, 2001.

E. Coronado and P. Day, Magnetic Molecular Conductors, Chem. Rev, vol.104, issue.11, pp.5419-5448, 2004.

D. Canevet, M. Salle, G. Zhang, D. Zhang, and D. Zhu, Tetrathiafulvalene (TTF) derivatives: key building-blocks for switchable processes, Chem. Commun, issue.17, pp.2245-2269, 2009.

J. Roncali, Linearly extended ?-donors: when tetrathiafulvalene meets conjugated oligomers and polymers, J. Mater. Chem, vol.7, issue.12, pp.2307-2321, 1997.

P. Frère and P. J. Skabara, Salts of extended tetrathiafulvalene analogues: relationships between molecular structure, electrochemical properties and solid state organisation, Chem. Soc. Rev, vol.34, issue.1, pp.69-98, 2005.

F. G. Brunetti, J. L. López, C. Atienza, and N. Martín, ?-Extended TTF: a versatile molecule for organic electronics, J. Mater. Chem, vol.2012, issue.10, pp.4188-4205

E. M. Pérez, B. M. Illescas, M. Á. Herranz, and N. Martín, Supramolecular chemistry of ?-extended analogues of TTF and carbon nanostructures, New J. Chem, vol.33, issue.2, pp.228-234, 2009.

S. Goeb, S. Bivaud, P. I. Dron, J. Balandier, M. Chas et al., A BPTTF-based selfassembled electron-donating triangle capable of C60 binding, Chem. Commun, vol.2012, issue.25, pp.3106-3108

J. Balandier, M. Chas, S. Goeb, P. I. Dron, D. Rondeau et al., A self-assembled bis(pyrrolo)tetrathiafulvalene-based redox active square, New J. Chem, vol.35, issue.1, pp.165-168, 2011.

S. Bivaud, J. Balandier, M. Chas, M. Allain, S. Goeb et al., A Metal-Directed SelfAssembled Electroactive Cage with Bis(pyrrolo)tetrathiafulvalene (BPTTF) Side Walls, JACS, vol.2012, issue.29, pp.11968-11970

S. Bivaud, S. Goeb, J. Balandier, M. Chas, M. Allain et al., Self-Assembled Cages from the Electroactive Bis(pyrrolo)tetrathiafulvalene (BPTTF) Building Block, Eur. J. Inorg. Chem, issue.14, pp.2440-2448, 2014.

S. Bivaud, S. Goeb, V. Croué, P. I. Dron, M. Allain et al., Self-Assembled Containers Based on Extended Tetrathiafulvalene, JACS, vol.2013, issue.27, pp.10018-10021

V. Croué, S. Goeb, G. Szalóki, M. Allain, and M. Sallé, Reversible Guest Uptake/Release by Redox-Controlled Assembly/Disassembly of a Coordination Cage, Angew. Chem. Int. Ed, vol.55, issue.5, pp.1746-1750, 2016.

G. Szaloki, V. Croue, M. Allain, S. Goeb, and M. Salle, Neutral versus polycationic coordination cages: a comparison regarding neutral guest inclusion, Chem. Commun, vol.52, issue.65, pp.10012-10015, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01416415

G. Szalóki, V. Croué, V. Carré, F. Aubriet, O. Alévêque et al., Controlling the Host-Guest Interaction Mode through a Redox Stimulus, Angew. Chem. Int. Ed, vol.2017, issue.51, pp.16272-16276

Y. Mitamura, H. Yorimitsu, K. Oshima, and A. Osuka, Straightforward access to aryl-substituted tetrathiafulvalenes by palladium-catalysed direct C-H arylation and their photophysical and electrochemical properties, Chemical Science, vol.2, issue.10, pp.2017-2021, 2011.

V. Vajpayee, S. Bivaud, S. Goeb, V. Croué, M. Allain et al., Electron-Rich Arene-Ruthenium Metalla-architectures Incorporating TetrapyridylTetrathiafulvene Donor Moieties, Organometallics, vol.33, issue.7, pp.1651-1658, 2014.

K. Nielsen, J. O. Jeppesen, N. Thorup, and J. Becher, A Pyrrolo-Tetrathiafulvalene Belt and Its TCNQ Complex: Syntheses and X-ray Crystal Structures, Org. Lett, issue.8, pp.1327-1330, 2002.

Y. Cotelle, M. Hardouin-lerouge, S. Legoupy, O. Alévêque, E. Levillain et al., Glycoluril-tetrathiafulvalene molecular clips: on the influence of electronic and spatial properties for binding neutral accepting guests, Beilstein Journal of Organic Chemistry, vol.11, pp.1023-1036, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01301844

A. Andrieux, C. Duroure, D. Jérome, and K. Bechgaard, The metallic state of the organic conductor TMTSF-DMTCNQ at low temperature under pressure, Journal de Physique Lettres, vol.40, issue.15, pp.381-383, 1979.
URL : https://hal.archives-ouvertes.fr/jpa-00231649

M. Spruell-jason, Molecular recognition and switching via radical dimerization, In Pure Appl. Chem, vol.82, p.2281, 2010.

D. Zhang, J. Tian, L. Chen, L. Zhang, and Z. Li, Dimerization of Conjugated Radical Cations: An Emerging Non-Covalent Interaction for Self-Assembly, Chemistry -An Asian Journal, vol.10, issue.1, pp.56-68, 2015.

L. Huchet, S. Akoudad, E. Levillain, J. Roncali, A. Emge et al., Spectroelectrochemistry of Electrogenerated Tetrathiafulvalene-Derivatized Poly(thiophenes): Toward a Rational Design of Organic Conductors with Mixed Conduction, The Journal of Physical Chemistry B, issue.40, pp.7776-7781, 1998.

V. Khodorkovsky, L. Shapiro, P. Krief, A. Shames, G. Mabon et al., Do ?-dimers of tetrathiafulvalene cation radicals really exist at room temperature?, Chem. Commun, issue.24, pp.2736-2737, 2001.

S. V. Rosokha and J. K. Kochi, Molecular and Electronic Structures of the Long-Bonded ?-Dimers of Tetrathiafulvalene Cation-Radical in Intermolecular Electron Transfer and in (Solid-State) Conductivity, JACS, vol.129, issue.4, pp.828-838, 2007.

A. Y. Ziganshina, Y. H. Ko, W. S. Jeon, and K. Kim, Stable ?-dimer of a tetrathiafulvalene cation radical encapsulated in the cavity of cucurbit[8]uril, Chem. Commun, issue.7, pp.806-807, 2004.

A. Christensen, C. Becher, J. Christensen, C. ;. Goldenberg, L. R. Bryce et al., Synthesis and electrochemistry of a tetrathiafulvalene (TTF)21-glycol dendrimer: intradendrimer aggregation of TTF cation radicals, Chem. Commun, issue.4, pp.509-510, 1998.

J. Lyskawa, M. Salle, J. Balandier, F. Derf, E. Levillain et al., Monitoring the formation of TTF dimers by Na+ complexation, Chem. Commun, issue.21, pp.2233-2235, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00084427

C. Bejger, C. M. Davis, J. S. Park, V. Lynch, J. B. Love et al., Palladium Induced Macrocyclic Preorganization for Stabilization of a Tetrathiafulvalene Mixed-Valence Dimer, Org. Lett, issue.18, pp.4902-4905, 2011.

M. Hasegawa, K. Daigoku, K. Hashimoto, H. Nishikawa, and M. Iyoda, Face-to-Face Dimeric Tetrathiafulvalenes and Their Cation Radical and Dication Species as Models of Mixed Valence and ?-Dimer States, Bull. Chem. Soc. Jpn, vol.2012, issue.1, pp.51-60

J. M. Spruell, A. Coskun, D. C. Friedman, R. S. Forgan, A. A. Sarjeant et al., , vol.2, p.870, 2010.

Y. Wang, D. L. Frattarelli, A. Facchetti, E. Cariati, E. Tordin et al., Twisted ?-Electron System Electrooptic Chromophores. Structural and Electronic Consequences of Relaxing Twist-Inducing Nonbonded Repulsions, The Journal of Physical Chemistry C, issue.21, pp.8005-8015, 2008.

Y. Cohen, L. Avram, and L. Frish, Diffusion NMR Spectroscopy in Supramolecular and Combinatorial Chemistry: An Old Parameter-New Insights, Angew. Chem. Int. Ed, vol.44, issue.4, pp.520-554, 2005.

H. Spanggaard, J. Prehn, M. B. Nielsen, E. Levillain, M. Allain et al., Multiple-Bridged Bis-Tetrathiafulvalenes: New Synthetic Protocols and Spectroelectrochemical Investigations, vol.122, pp.9486-9494, 2000.

M. I. Knyazhanskii,

R. Yakov and . Tymyanskii,

V. M. Feigelman,

A. R. Katritzky, Pyridinium Salts: Luminescent Spectroscopy and Photochemistry, Heterocycles, vol.26, issue.11, pp.2963-2982, 1987.

H. Jung, A. Dubey, H. J. Koo, V. Vajpayee, T. R. Cook et al., Self-Assembly of Ambidentate Pyridyl-Carboxylate Ligands with Octahedral Ruthenium Metal Centers: Self-Selection for a Single-Linkage Isomer and Anticancer-Potency Studies, Chem. Eur. J, vol.19, issue.21, pp.6709-6717, 2013.

E. Orhan, A. Garci, and B. Therrien, Flexible arene ruthenium metalla-prisms, Inorg. Chim. Acta, vol.438, pp.5-9, 2015.

K. Suzuki, M. Tominaga, M. Kawano, and M. Fujita, Self-assembly of an M6L12 coordination cube, Chem. Commun, issue.13, pp.1638-1640, 2009.

H. Wang, J. Mei, P. Liu, K. Schmidt, G. Jiménez-osés et al., Scalable and Selective Dispersion of Semiconducting Arc-Discharged Carbon Nanotubes by Dithiafulvalene/Thiophene Copolymers for Thin Film Transistors, ACS Nano, vol.7, issue.3, pp.2659-2668, 2013.

S. Amriou, C. Wang, A. S. Batsanov, M. R. Bryce, D. F. Perepichka et al., The Interplay of Inverted Redox Potentials and Aromaticity in the Oxidized States of New ?-Electron Donors: 9-(1,3-Dithiol-2-ylidene)fluorene and 9-(1,3-Dithiol-2-ylidene)thioxanthene Derivatives, Chem. Eur. J, vol.12, issue.12, pp.3389-3400, 2006.

V. Croue, S. Krykun, M. Allain, Y. Morille, F. Aubriet et al., A Self-Assembled M2L4 Cage incorporating Electron-rich 9-(1,3-dithiol-2-ylidene)Fluorene Units, New J. Chem, vol.2017, issue.9, pp.3238-3241

, The cavity volume has been estimated based on voidoo algorithm with ABSiCC (Automating Boring Stuff in Computational Chemistry), a homemade POVRAY-interfaced program designed by Thomas Cauchy and written by Yohann Morille

D. F. Perepichka, I. F. Perepichka, O. Ivasenko, A. J. Moore, M. R. Bryce et al., Combining High Electron Affinity and Intramolecular Charge Transfer in 1,3-Dithiole-Nitrofluorene Push-Pull Diads, Chem. -Eur. J, vol.14, issue.9, pp.2757-2770, 2008.

S. Krykun, M. Allain, V. Carré, F. Aubriet, Z. Voitenko et al., A M2L2 RedoxActive Metalla-Macrocycle Based on Electron, Fluorene. Inorganics, vol.6, issue.9, p.44, 2018.

M. Ferrer, A. Gutiérrez, L. Rodríguez, O. Rossell, E. Ruiz et al., Self-Assembly of Heterometallic Metallomacrocycles via Ditopic Fluoroaryl Gold(I) Organometallic Metalloligands, Organometallics, vol.2012, issue.4, pp.1533-1545

D. Samanta, S. Shanmugaraju, S. A. Joshi, Y. P. Patil, M. Nethaji et al., Pillar height dependent formation of unprecedented Pd8 molecular swing and Pd6 molecular boat via multicomponent self-assembly, Chem. Commun, vol.2012, issue.17, pp.2298-2300

Z. Niu, D. Li, D. Liu, D. Xia, Y. Zou et al., Syntheses, electrochemical behaviors, spectral properties and DFT calculations of two 1,3-dithiole derivatives, Chem Res Chinese U, vol.30, issue.3, pp.425-430, 2014.

R. Ganesamoorthy, G. Sathiyan, and P. Sakthivel, Review: Fullerene based acceptors for efficient bulk heterojunction organic solar cell applications, Sol. Energy Mater. Sol. Cells, vol.161, pp.102-148, 2017.

G. Szalóki, S. Krykun, V. Croué, M. Allain, Y. Morille et al., Redox-Driven Transformation of a Discrete Molecular Cage into an Infinite 3D Coordination Polymer, Chem. Eur. J, vol.24, issue.44, pp.11273-11277, 2018.

S. Bivaud, , 2012.

N. E. Gruhn, N. A. Macías-ruvalcaba, and D. H. Evans, Studies of Potential Inversion in an Extended Tetrathiafulvalene, Langmuir, vol.22, issue.25, pp.10683-10688, 2006.

S. Amriou, C. Wang, A. S. Batsanov, M. R. Bryce, D. F. Perepichka et al., The Interplay of Inverted Redox Potentials and Aromaticity in the Oxidized States of New ?-Electron Donors: 9-(1,3-Dithiol-2-ylidene)fluorene and 9-(1,3-Dithiol-2-ylidene)thioxanthene Derivatives, Chem. Eur. J, vol.12, issue.12, pp.3389-3400, 2006.

Q. F. Sun, J. Iwasa, D. Ogawa, Y. Ishido, S. Sato et al., Self-assembled M24L48 polyhedra and their sharp structural switch upon subtle ligand variation, Science, vol.2010, issue.5982, pp.1144-1151

, The cavity volume has been estimated based on voidoo algorithm with ABSiCC (Automating Boring Stuff in Computational Chemistry), a homemade POVRAY-interfaced program designed by Thomas Cauchy and written by Yohann Morille

G. Szalóki, V. Croué, V. Carré, F. Aubriet, O. Aleveque et al., Controlling the Host-Guest Interaction Mode through a Redox Stimulus, Angew. Chem. Int. Ed, vol.2017, issue.51, pp.16272-16276

H. Wang, L. Cui, J. Xie, C. F. Leong, D. M. ;-d'alessandro et al., Functional coordination polymers based on redox-active tetrathiafulvalene and its derivatives, Coord. Chem. Rev, vol.2017, pp.342-361

S. Krykun, V. Croué, M. Allain, Z. Voitenko, J. Aragó et al., Tuning the electronic properties and the planarity degree in the ?-extended TTF series: the prominent role of heteroatoms, Journal of Materials Chemistry C, vol.6, issue.48, pp.13190-13196, 2018.

A. J. Moore and M. R. Bryce, Highly conjugated [?]-electron donors for organic metals: synthesis and redox chemistry of new 1,3-dithiole and 1,3-selenathiole derivatives, J. Chem. Soc., Perkin Trans. 1, vol.0, issue.1, pp.157-168, 1991.

M. R. Bryce, A. J. Moore, M. Hasan, G. J. Ashwell, A. T. Fraser et al., Electrical and Magnetic Properties and X-Ray Structure of a Highly Conductive 4:1 Complex of Tetracyanoquinodimethane and a Tetrathiafulvalene Derivative, Angew. Chem. Int. Ed, vol.29, issue.12, pp.1450-1452, 1990.

Y. Yamashita, Y. Kobayashi, and T. Miyashi, p-Quinodimethane Analogues of Tetrathiafulvalene, Angew. Chem. Int. Ed, vol.28, issue.8, pp.1052-1053, 1989.

M. R. Bryce and A. J. Moore, A new highly-conjugated TTF analogue: Synthesis, electrochemistry and a conducting TCNQ complex of 9, vol.10

, Synth. Met, vol.25, issue.2, pp.203-205, 1988.

F. G. Brunetti, J. L. Lopez, C. Atienza, and N. Martin, pi-Extended TTF: a versatile molecule for organic electronics, J. Mater. Chem, vol.2012, issue.10, pp.4188-4205

D. Ogi, Y. Fujita, S. Mori, T. Shirahata, and Y. Misaki, Bis-and Tris-fused Tetrathiafulvalenes Extended with Anthracene-9,10-diylidene, Org. Lett, vol.18, issue.22, pp.5868-5871, 2016.

E. A. Younes and Y. Zhao, Highly [small pi]-extended tetrathiafulvalene analogues derived from pentacene-5, vol.7, pp.88821-88825, 2015.

M. A. Christensen, C. R. Parker, T. J. Sorensen, S. De-graaf, T. J. Morsing et al., Mixed valence radical cations and intermolecular complexes derived from indenofluorene-extended tetrathiafulvalenes, J. Mater. Chem. C, vol.2014, issue.48, pp.10428-10438

M. A. Christensen, G. E. Rudebusch, C. R. Parker, C. L. Andersen, A. Kadziola et al., Diindenothienoacene-tetrathiafulvalene redox systems, RSC Adv, vol.2015, issue.61, pp.49748-49751

J. F. Petersen, C. K. Frederickson, J. L. Marshall, G. E. Rudebusch, L. N. Zakharov et al., Expanded Indacene-Tetrathiafulvalene Scaffolds: Structural Implications for Redox Properties and Association Behavior, Chem. Eur. J, vol.2017, issue.53, pp.13120-13130

S. L. Broman, C. L. Andersen, T. Jousselin-oba, M. Manso, O. Hammerich et al., Tetraceno[2,1,12,11-opqra]tetracene-extended tetrathiafulvalene -redox-controlled generation of a large PAH core, Org. Biomol. Chem, vol.2017, issue.4, pp.807-811

J. Giguère and J. Morin, Superextended Tetrathiafulvalene: Synthesis, Optoelectronic Properties, Fullerenes Complexation, and Photooxidation Study, J. Org. Chem, vol.80, issue.13, pp.6767-6775, 2015.

G. Conboy, H. J. Spencer, E. Angioni, A. L. Kanibolotsky, N. J. Findlay et al., To bend or not to bend -are heteroatom interactions within conjugated molecules effective in dictating conformation and planarity? Mater. Horiz, vol.3, pp.333-339, 2016.

A. J. Moore and M. R. Bryce, New vinylogous tetrathiafulvalene (TTF) ?-electron donors, Tetrahedron Lett, issue.10, pp.1373-1376, 1992.

Y. Ren, S. Lee, J. A. Bertke, and J. S. Moore, Crystal structure of 9, Act. Cryst. E, vol.1, issue.9, pp.1475-1479
URL : https://hal.archives-ouvertes.fr/hal-01486142

A. S. Batsanov, M. R. Bryce, M. A. Coffin, A. Green, R. E. Hester et al., Donor-?-Acceptor Species Derived from Functionalised 1,3-Dithiol-2-ylidene Anthracene Donor Units Exhibiting Photoinduced Electron Transfer Properties: Spectroscopic, Electrochemical, XRay Crystallographic and Theoretical Studies, Chem. Eur. J, vol.4, issue.12, pp.2580-2592, 1998.

S. Liu, I. Pérez, N. Martín, and L. Echegoyen, Intramolecular Electronic Interactions in Conjugated Ferrocene??-Extended-Tetrathiafulvalene Donor-?-Donor Molecular Hybrids, J. Org. Chem, issue.26, pp.9092-9102, 2000.

Y. Yamashita, K. Ono, S. Tanaka, K. Imaeda, and H. Inokuchi, Nonplanar bis(1,3-dithiole) donors affording novel cation radical salts, Adv. Mater, vol.6, issue.4, pp.295-298, 1994.

R. Carlier, P. Frère, M. Sallé, J. Roncali, M. Jubault et al., Prediction of the stoichiometry of cation radical salts of organic metals by thin layer cyclic voltammetry, Adv. Mater, vol.5, issue.6, pp.445-447, 1993.

G. Szaloki, S. Krykun, V. Croué, M. Allain, Y. Morille et al., Redox-Driven Transformation of a Discrete Molecular Cage into an Infinite 3D Coordination Polymer, Chem. Eur. J, vol.24, issue.44, pp.11273-11277, 2018.

A. E. Jones, C. A. Christensen, D. F. Perepichka, A. S. Batsanov, A. Beeby et al., 10-dihydroanthracene System: Generation and Characterisation of the Radical Cation, Dication, and Derived Products, Photochemistry of the ?-Extended, vol.9, pp.973-978, 2001.

K. Masaru, M. John, K. Nagao, S. Masahiko, Y. Kenji et al., Synthesis, Optical Properties, and Electronic Structures of Fully Core-Modified Porphyrin Dications and Isophlorins, Chem. Eur. J, vol.2012, issue.42, pp.13361-13371

T. Ozturk, D. C. Povey, J. D. Wallis, C. Heterocyclic, . Short-intramolecular-sulfur?-sulfur et al., THE STRUCTURES OF TWO DERIVATIVES OF THE 2-(1,3-DITHIOL-2-YLIDENEMETHYL)-1,3-DITHIOLIUM CATION. Phosphorus, Sulfur, and Silicon and the Related Elements, vol.122, pp.313-324, 1997.

V. Emanuel, P. Michael, H. Adalbert, W. Torsten, K. Christoph et al., Porphyrinoid Macrocycles Based on Thiophene-The Octaethyltetrathiaporphyrin Dication, Angew. Chem. Int. Ed, vol.35, pp.1520-1524, 1996.

T. Suzuki, T. Sakimura, S. Tanaka, Y. Yamashita, H. Shiohara et al., 2-(Thiopyran-4[prime or minute]-yliden)-1,3-dithioles fused with thiophene units: intramolecular S [three dots, centered] S interaction affecting the redox properties and molecular geometries, J. Chem. Soc., Chem. Commun, issue.12, pp.1431-1432, 1994.

H. Yan, G. Suss-fink, A. Neels, and H. Stoeckli-evans, Mono-, di-and tetra-nuclear pcymeneruthenium complexes containing oxalato ligands, J. Chem. Soc, vol.22, pp.4345-4350, 1997.

P. E. Barry-nicolas, J. Furrer, J. Freudenreich, G. Süss-fink, and B. Therrien, Designing the HostGuest Properties of Tetranuclear Arene Ruthenium Metalla-Rectangles to Accommodate a Pyrene Molecule, Eur. J. Inorg. Chem, issue.5, pp.725-728, 2010.

B. Kobin, L. Grubert, S. Blumstengel, F. Henneberger, and S. Hecht, Vacuum-processable laddertype oligophenylenes for organic-inorganic hybrid structures: synthesis, optical and electrochemical properties upon increasing planarization as well as thin film growth, J. Mater. Chem, vol.2012, issue.10, pp.4383-4390

, Spectroelectrochemistry for self-assembly ??1

, ? NMR for self-assembly ??2 in acetone-d6

, Annex 3.2. 1 ? NMR for self-assembly ??3 in DMSO-d6

, Annex 3.3. 1 ? NMR for self-assembly ??6 in CD2Cl2

, COSY NMR for self-assembly ??6

, COSY NMR for self-assembly ??6 -aromatic region

, Annex 3.6. 1 ? NMR for self-assembly ??4 in CD2Cl2

, C NMR for self-assembly ??4 in CD2Cl2

?. Nmr and . .. Cd3od,

, COSY NMR for self-assembly ??8 in CD3OD

, Annex 3.10. 1 ? NMR for self-assembly ??10 in CD3OD

, Annex 3.11. COSY NMR for self-assembly ??10 in CD3OD

, Annex 3.12. ROESY NMR for self-assembly ??10 in CD3OD

, Annex 3.13. 1 ? NMR for self-assembly ??11 in CD3OD

, COSY NMR for self-assembly ??11 in CD3OD

, Annex 3.15. ROESY NMR for self-assembly ??11 in CD3OD

, Annex 3.16. 1 ? NMR for self-assembly ??12 in CD3CN

, Annex 3.17. COSY NMR for self-assembly ??12 in CD3CN

, Annex 3.18. ROESY NMR for self-assembly ??12 in CD3CN

, Annex 3.19. 1 ? NMR for self-assembly ??10 in different solvents

, Annex 3.20. Fit for association constant using NMR data for self-assembly ??11

, Annex 3.21. 1 ? NMR for self-assembly ??14 in CDCl3

, Annex 3.22. COSY NMR for self-assembly ??14 in CDCl3

, Annex 3.23. NOESY NMR for self-assembly ??14 in CDCl3

, Annex 3.24. 1 ? NMR for self-assembly ??15 in CDCl3

, Annex 3.25. COSY NMR for self-assembly ??15 in CDCl3

, Annex 3.26. NOESY NMR for self-assembly ??15 in CDCl3

, Annex 3, p.27

?. Nmr, TEG with 4 eq. of AgBF4 in CD3CN

, Annex 3.28. DOSY NMR for ligand exTTF-TEG with 4 eq. of AgBF4 in CD3CN

, Annex 3.29. 1 ? NMR for compound 30 (S-exTTF) in CD2Cl2

, Annex 3.30. 13 ? NMR for compound 30 (S-exTTF) in CD2Cl2

, Annex 5.1. ESI-FTCIR for self-assembly ??7 in CH2Cl2

, ESI-FTCIR for self-assembly ??8 in methanol

, ESI-FTCIR for self-assembly ??10 in methanol

, ESI-FTCIR for self-assembly ??12 in methanol

.. .. X-ray-data, Annex 6

, Annex 6.1. X-ray data for self-assembly TTF(PhPy)

, Annex 6.2. X-ray data for self-assembly AA1

, X-ray data for ligand 25 (3Py-DTF-SHex)

, X-ray data for ligand 27 (3Py-DTF-SPr)

, Annex 6.5. X-ray data for self-assembly ??3

, Annex 6.6. X-ray data for self-assembly??4

, Annex 6.7. X-ray data for self-assembly??9

, X-ray data for self-assembly ??11, vol.8

. .. 2+-]x, Annex 6.9. X-ray data for

, Annex 6.10. X-ray data for compound 29

, Annex 6.11. X-ray data for compound 31

*. +. , 180 in our case -for x-ray diffraction analysis. Main principle is based on the slow oxidation or reduction of the electro-active molecule and generation of corresponding charge particle. The later than crystalize with counter-ions, Annex 6.12. X-ray data for compound 30

, ? NMR for self-assembly ??12 in CD3CN

, Annex 3.17. COSY NMR for self-assembly ??12 in CD3CN

, Annex 5.3. ESI-FTCIR for self-assembly ??10 in methanol

, ESI-FTCIR for self-assembly ??12 in methanol

, Final R indices

, Final R indices

, Largest diff. peak and hole 2.867 and -1