S. Labile and . .. Cu, 6.5.4 Mechanisms of Cu transfer and retention in soils, p.137

.. .. Conclusion,

.. .. Bibliography,

.. .. Abstract,

. Materials and . .. Methods, 155 7.3.3 Digestion and total elemental contents determination

.. .. Results, 6 Cu isotopic ratios in soils and soil solutions

. .. Discussion, 172 7.5.3 Evolution of elemental contents in soil solutions over time, vol.178

.. .. Conclusion,

.. .. Bibliography,

K. Mengel, E. A. Kirkby, H. Kosegarten, and T. Appel, Plant Nutrients, 2001.

K. Mengel, E. A. Kirkby, and H. Kosegarten, Principles of Plant Nutrition

, , pp.1-13

P. Oliva, J. Viers, and B. Dupre, Chemical weathering in granitic environments, Chemical Geology, vol.202, pp.225-256, 2003.

A. Poszwa, E. Dambrine, B. Pollier, and O. Atteia, A comparison between Ca and Sr cycling in forest ecosystems, PLANT AND SOIL, vol.225, pp.299-310, 2000.

. R-core-team, R : A Language and Environment for Statistical Computing, 2016.

R. Freiburg and . Landesamt-für-geologie, Rohstoffe und Bergbau, 2017. Weinbauatlas von

M. Renard, Géochimie des carbonates pélagiques: mise enévidence des fluctuations de la composition des eaux océaniques depuis 140 Ma, 1985.

P. Ribéreau-gayon, D. Dubourdieu, and B. Domèche, Traité d'oenologie. Microbiologie du vin : vinifications, 2012.

S. M. Rodrigues, M. Otero, A. A. Alves, J. Coimbra, M. A. Coimbra et al., Elemental analysis for categorization of wines and authentication of their certified brand of origin, Journal of Food Composition and Analysis, vol.24, pp.548-562, 2011.

S. Y. Rogers, D. H. Greer, J. M. Hatfield, B. A. Orchard, and M. Keller, Mineral sinks within ripening grape berries (Vitis vinifera L.), Vitis, vol.45, pp.115-123, 2006.

R. G. Rothwell, Ferromagnesian minerals, in: Minerals and Mineraloids in Marine Sediments: An Optical Identification Guide, pp.79-94, 1989.

L. Sack and N. M. Holbrook, Leaf hydraulics, Annual Review of Plant Biology, vol.57, pp.361-381, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00964677

J. Sardans, J. Peñuelas, and R. Ogaya, Drought's impact on Ca, Fe, Mg, Mo and S concentration and accumulation patterns in the plants and soil of a Mediterranean evergreen Quercus ilex forest, Biogeochemistry, vol.87, pp.49-69, 2008.

M. Bigalke, S. Weyer, and W. Wilcke, Stable Copper Isotopes: A Novel Tool to, 2010.

, Trace Copper Behavior in Hydromorphic Soils, Soil Science Society of America Journal, vol.74, p.60

S. Boudesocque, E. Guillon, M. Aplincourt, E. Marceau, and L. Stievano, Sorption of Cu(II) onto vineyard soils: Macroscopic and spectroscopic investigations, Journal of Colloid and Interface Science, vol.307, pp.40-49, 2007.

H. B. Bradl, Adsorption of heavy metal ions on soils and soils constituents, Journal of Colloid and Interface Science, vol.277, pp.1-18, 2004.

G. H. Brimhall, C. J. Lewis, J. J. Ague, W. E. Dietrich, J. Hampel et al.,

P. Rix, Metal enrichment in bauxites by deposition of chemically mature aeolian dust, Nature, vol.333, pp.819-824, 1988.

J. Cambrollé, J. L. García, M. E. Figueroa, and M. Cantos, Evaluating wild grapevine tolerance to copper toxicity, Chemosphere, vol.120, pp.171-178, 2015.

E. Camizuli, F. Monna, A. Bermond, N. Manouchehri, S. Besançon et al., Impact of historical mining assessed in soils by kinetic extraction and lead isotopic ratios, Science of The Total Environment, vol.472, pp.425-436, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00912415

V. Chaignon, I. Sanchez-neira, P. Herrmann, B. Jaillard, and P. Hinsinger, Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vine-growing area, Environmental Pollution, vol.123, pp.229-238, 2003.

J. B. Chapman, T. F. Mason, D. J. Weiss, B. J. Coles, and J. J. Wilkinson, , 2006.

, Chemical Separation and Isotopic Variations of Cu and Zn From Five Geological Reference Materials, Geostandards and Geoanalytical Research, vol.30, pp.5-16

M. V. Cheshire, D. B. Mcphail, and M. L. Berrow, Organic matter -copper complexes in soils treated with sewage sludge, Science of The Total Environment, vol.152, pp.63-72, 1994.

E. I. Chopin, B. Marin, R. Mkoungafoko, A. Rigaux, M. J. Hopgood et al., Factors affecting distribution and mobility of trace elements (Cu, Pb, Zn) in a perennial grapevine (Vitis vinifera L.) in the Champagne region of France, Environmental Pollution, vol.156, pp.1092-1098, 2008.

R. P. De-carvalho, J. R. Freitas, A. G. De-sousa, R. L. Moreira, M. V. Pinheiro et al., Biosorption of copper ions by dried leaves: chemical bonds and site symmetry, Hydrometallurgy, vol.71, pp.277-283, 2003.

J. Duplay, K. Semhi, E. Errais, G. Imfeld, I. Babcsanyi et al., , 2014.

, The impact of cultural practices, Copper, zinc, lead and cadmium bioavailability and retention in vineyard soils, vol.230

D. El-azzi, J. Viers, M. Guiresse, A. Probst, D. Aubert et al., Origin and fate of copper in a small Mediterranean vineyard catchment: New insights from combined chemical extraction and ? 65 Cu isotopic composition, Science of The Total Environment, vol.463, pp.91-101, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00843304

Z. Fekiacova, S. Cornu, and S. Pichat, Tracing contamination sources in soils with Cu and Zn isotopic ratios, Science of The Total Environment, vol.517, pp.96-105, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01466186

K. Flogeac, E. Guillon, and M. Aplincourt, Surface Complexation of Copper, 2004.

, Soil Particles: EPR and XAFS Studies. Environmental Science & Technology, vol.38, pp.3098-3103

L. M. Flores-vélez, J. Ducaroir, A. M. Jaunet, and M. Robert, Study of the distribution of copper in an acid sandy vineyard soil by three different methods, European Journal of Soil Science, vol.47, pp.523-532, 1996.

E. Guimarães, A. S. Mangrich, V. G. Machado, D. G. Traghetta, and M. A. Lobo, Criterious Preparation and Characterization of Earthworm-composts in View of Animal Waste Recycling: Part II. A Synergistic Utilization of EPR and 1H NMR Spectroscopies on the Characterization of Humic Acids from Vermicomposts, Journal of the Brazilian Chemical Society, vol.12, pp.734-741, 2001.

A. R. Jacobson, S. Dousset, F. Andreux, and P. C. Baveye, Electron Microprobe and Synchrotron X-ray Fluorescence Mapping of the Heterogeneous Distribution of Copper in High-Copper Vineyard Soils, Environmental Science & Technology, vol.41, pp.6343-6349, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00199956

D. P. Lejon, J. M. Martins, J. Lévêque, L. Spadini, N. Pascault et al., Copper Dynamics and Impact on Microbial Communities in Soils of Variable Organic Status, Environmental Science & Technology, vol.42, pp.2819-2825, 2008.
URL : https://hal.archives-ouvertes.fr/insu-00334543

D. Li, S. Liu, and S. Li, Copper isotope fractionation during adsorption onto kaolinite: Experimental approach and applications, Chemical Geology, vol.396, pp.74-82, 2015.

Y. Ma, E. Lombi, I. W. Oliver, A. L. Nolan, and M. J. Mclaughlin, Long-Term Aging of Copper Added to Soils, Environmental Science & Technology, vol.40, pp.6310-6317, 2006.

C. Marechal and S. Sheppard, Isotopic fractionation of Cu and Zn between chloride and nitrate solutions and malachite or smithsonite at 30 degrees and 50 degrees C. Geochimica et Cosmochimica Acta 66, p.484, 2002.

C. N. Maréchal, P. Télouk, and F. Albarède, Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry, Chemical Geology, vol.156, pp.251-273, 1999.

N. Mirlean, A. Roisenberg, and J. O. Chies, Metal contamination of vineyard soils in wet subtropics (southern Brazil), Environmental Pollution, vol.149, pp.10-17, 2007.

J. Peisach and W. E. Blumberg, Structural implications derived from the analysis of electron paramagnetic resonance spectra of natural and artificial copper proteins, Archives of Biochemistry and Biophysics, vol.165, pp.691-708, 1974.

P. Pérez-rodríguez, D. Soto-gómez, I. De-la-calle, J. E. López-periago, and M. Paradelo, Rainfall-induced removal of copper-based spray residues from vines, Ecotoxicology and Environmental Safety, vol.132, pp.304-310, 2016.

J. C. Petit, J. De-jong, L. Chou, and N. Mattielli, Development of Cu and Zn Isotope MC-ICP-MS Measurements: Application to Suspended Particulate Matter and Sediments from the Scheldt Estuary, Geostandards and Geoanalytical Research, vol.32, pp.149-166, 2008.

J. C. Petit, J. Schäfer, A. Coynel, G. Blanc, V. N. Deycard et al.,

L. Lanceleur, L. Dutruch, C. Bossy, and N. Mattielli, Anthropogenic sources and biogeochemical reactivity of particulate and dissolved Cu isotopes in the turbidity gradient of the Garonne River (France), Chemical Geology, vol.359, pp.125-135, 2013.

U. Pietrzak and D. C. Mcphail, Copper accumulation, distribution and fractionation in vineyard soils of Victoria, Australia. Geoderma, vol.122, pp.151-166, 2004.

O. S. Pokrovsky, J. Viers, E. E. Emnova, E. I. Kompantseva, and R. Freydier, Copper isotope fractionation during its interaction with soil and aquatic microorganisms and metal oxy(hydr) oxides: Possible structural control, Geochimica et Cosmochimica Acta, vol.72, pp.1742-1757, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00321523

A. A. Ponizovsky, H. E. Allen, and A. J. Ackerman, Copper activity in soil solutions of calcareous soils, Environmental Pollution, vol.145, pp.1-6, 2007.

M. Porchet and H. Laferre, Détermination des caractéristiques hydro-dynamiques des sols en place. Mémoire et notes techniques, 1935.

O. Ribolzi, V. Valles, L. Gomez, and M. Voltz, Speciation and origin of particulate copper in runoff water from a Mediterranean vineyard catchment, Environmental Pollution, vol.117, pp.261-271, 2002.

H. W. Richardson, Ullmann's Encyclopedia of Industrial Chemistry, 2000.

W. Kgaa and G. ,

B. M. Ryan, J. K. Kirby, F. Degryse, K. Scheiderich, and M. J. Mclaughlin, , 2014.

, Copper Isotope Fractionation during Equilibration with Natural and Synthetic Ligands, Environmental Science & Technology, vol.48, pp.8620-8626

S. Sayen and E. Guillon, X-ray absorption spectroscopy study of Cu 2+ geochemical partitioning in a vineyard soil, Journal of Colloid and Interface Science, vol.344, pp.611-615, 2010.

S. Sayen, J. Mallet, and E. Guillon, Aging effect on the copper sorption on a vineyard soil: Column studies and SEM-EDS analysis, Journal of Colloid and Interface Science, vol.331, pp.47-54, 2009.

D. G. Strawn and L. L. Baker, Molecular characterization of copper in soils using X-ray absorption spectroscopy, Environmental Pollution, vol.157, pp.2813-2821, 2009.

D. G. Strawn and L. L. Baker, Speciation of Cu in a Contaminated Agricultural Soil Measured by XAFS, µ-XAFS, and µ-XRF, Environmental Science & Technology, vol.42, pp.37-42, 2008.

L. Strom, Root exudation of organic acids: importance to nutrient availability and the calcifuge and calcicole behaviour of plants, OIKOS, vol.80, pp.459-466, 1997.

A. P. Tikhonov, O. N. Sorokina, A. L. Kovarskii, A. P. Solomatin, and A. V. Afonin,

P. P. Sinitsa, EPR analysis of copper particles in aqueous systems, Colloid Journal, vol.68, pp.93-97, 2006.

M. Toselli, E. Baldi, G. Marcolini, D. Malaguti, M. Quartieri et al., Response of potted grapevines to increasing soil copper concentration, Australian Journal of Grape and Wine Research, vol.15, pp.85-92, 2009.

M. Valko, H. Morris, M. Mazur, J. Telser, E. Mcinnes et al., , 1999.

, High-affinity binding site for copper(II) in human and dog serum albumins (an EPR study)

, Journal Of Physical Chemistry B, vol.103, pp.5591-5597

D. Vance, C. Archer, J. Bermin, J. Perkins, P. J. Statham et al., The copper isotope geochemistry of rivers and the oceans, Earth and Planetary Science Letters, vol.274, pp.204-213, 2008.

D. Vance, A. Matthews, A. Keech, C. Archer, G. Hudson et al., The behaviour of Cu and Zn isotopes during soil development: Controls on the dissolved load of rivers, Chemical Geology, vol.445, pp.36-53, 2016.

V. Vermorel and C. Michaut, Bibliothèque du Progrès agricole et viticole, p.1889

S. Yang, X. Ren, G. Zhao, W. Shi, G. Montavon et al., Competitive sorption and selective sequence of Cu(II) and Ni(II) on montmorillonite: Batch, modeling, EPR and XAS studies, Geochimica Et Cosmochimica Acta, vol.166, pp.129-145, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01201702

L. Anatole-monnier, Effets de la contamination cuprique des sols viticoles sur la sensibilité de la vigneà un cortège de bio-agresseurs, 2014.

J. Arellano, J. Lazaro, J. Lopez-gorge, and M. Baron, The donor side of Photosystem II as the copper-inhibitory binding site, Photosynthesis Research, vol.45, pp.127-134, 1995.

M. Arias, M. T. Barral, and J. C. Mejuto, Enhancement of copper and cadmium adsorption on kaolin by the presence of humic acids, Chemosphere, vol.48, pp.1081-1088, 2002.

, , pp.169-177

M. Arias-estevez, J. C. Novoa-munoz, M. Pateiro, and E. Lopez-periago, Influence of aging on copper fractionation in an acid soil, Soil Science, vol.172, pp.225-232, 2007.

I. Babcsányi, F. Chabaux, M. Granet, F. Meite, S. Payraudeau et al.,

G. Imfeld, Copper in soil fractions and runoff in a vineyard catchment: Insights from copper stable isotopes. Science of The Total Environment 557-558, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01409767

I. Babcsányi, G. Imfeld, M. Granet, and F. Chabaux, Copper Stable Isotopes To Trace Copper Behavior in Wetland Systems, Environmental Science & Technology, vol.48, pp.5520-5529, 2014.

L. S. Balistrieri, D. M. Borrok, R. B. Wanty, and W. I. Ridley, Fractionation of Cu and Zn isotopes during adsorption onto amorphous Fe(III) oxyhydroxide: Experimental mixing of acid rock drainage and ambient river water, Geochimica et Cosmochimica Acta, vol.72, pp.311-328, 2008.

M. Barón, J. B. Arellano, and J. L. Gorgé, Copper and photosystem II: a controversial relationship, Physiologia Plantarum, vol.94, pp.174-180, 1995.

M. Bigalke, S. Weyer, and W. Wilcke, Copper Isotope Fractionation during Complexation with Insolubilized Humic Acid, Environmental Science & Technology, vol.44, pp.5496-5502, 2010.

M. Bigalke, S. Weyer, and W. Wilcke, Stable Copper Isotopes: A Novel Tool to, 2010.

, Trace Copper Behavior in Hydromorphic Soils, Soil Science Society of America Journal, vol.74, p.60

H. Blume, G. W. Brümmer, H. Fleige, R. Horn, E. Kandeler et al., Scheffer/SchachtschabelSoil Science, 2016.

S. Boudesocque, E. Guillon, M. Aplincourt, E. Marceau, and L. Stievano, Sorption of Cu(II) onto vineyard soils: Macroscopic and spectroscopic investigations, Journal of Colloid and Interface Science, vol.307, pp.40-49, 2007.

R. Bowell, Sorption of arsenic by iron oxides and oxyhydroxides in soils, Applied geochemistry, vol.9, pp.279-286, 1994.

H. B. Bradl, Adsorption of heavy metal ions on soils and soils constituents, Journal of Colloid and Interface Science, vol.277, pp.1-18, 2004.

M. N. Bravin, C. Garnier, V. Lenoble, F. Gérard, Y. Dudal et al., Root-induced changes in pH and dissolved organic matter binding capacity affect copper dynamic speciation in the rhizosphere, Geochimica et Cosmochimica Acta, vol.84, pp.256-268, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01096850

M. N. Bravin, B. Le-merrer, L. Denaix, A. Schneider, and P. Hinsinger, Copper uptake kinetics in hydroponically-grown durum wheat (Triticum turgidum durum L.) as compared with soil's ability to supply copper, Plant and Soil, vol.331, pp.91-104, 2010.

M. N. Bravin, A. L. Martí, M. Clairotte, and P. Hinsinger, Rhizosphere alkalisation -a major driver of copper bioavailability over a broad pH range in an acidic, copper-contaminated soil, Plant and Soil, vol.318, pp.257-268, 2009.

J. Cambrollé, J. L. García, M. E. Figueroa, and M. Cantos, Evaluating wild grapevine tolerance to copper toxicity, Chemosphere, vol.120, pp.171-178, 2015.

V. Chaignon, I. Sanchez-neira, P. Herrmann, B. Jaillard, and P. Hinsinger, Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vine-growing area, Environmental Pollution, vol.123, pp.229-238, 2003.

E. I. Chopin, B. Marin, R. Mkoungafoko, A. Rigaux, M. J. Hopgood et al., Factors affecting distribution and mobility of trace elements (Cu, Pb, Zn) in a perennial grapevine (Vitis vinifera L.) in the Champagne region of France, Environmental Pollution, vol.156, pp.1092-1098, 2008.

R. Clayton, K. Hudson-edwards, and S. Houghton, Isotopic effects during Cu sorption onto goethite, Geochimica et Cosmochimica Acta, vol.69, p.216, 2005.

B. Collin, E. Doelsch, C. Keller, P. Cazevieille, M. Tella et al.,

F. Panfili, J. Hazemann, and J. Meunier, Evidence of sulfur-bound reduced copper in bamboo exposed to high silicon and copper concentrations, Environmental Pollution, vol.187, pp.22-30, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01332730

F. Coutelot, V. Sappin-didier, C. Keller, and O. Atteia, Comparison of soil solution sampling techniques to assess metal fluxes from contaminated soil to groundwater, Environmental Monitoring and Assessment, vol.186, pp.8929-8941, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01458019

F. Degryse, V. K. Verma, and E. Smolders, Mobilization of Cu and Zn by root exudates of dicotyledonous plants in resin-buffered solutions and in soil, Plant and Soil, vol.306, pp.69-84, 2008.

J. Duplay, K. Semhi, E. Errais, G. Imfeld, I. Babcsanyi et al., , 2014.

, The impact of cultural practices, Copper, zinc, lead and cadmium bioavailability and retention in vineyard soils, vol.230

S. Ehrlich, I. Butler, L. Halicz, D. Rickard, A. Oldroyd et al., Experimental study of the copper isotope fractionation between aqueous Cu(II) and covellite, CuS. Chemical Geology, vol.209, pp.259-269, 2004.

D. El-azzi, J. Viers, M. Guiresse, A. Probst, D. Aubert et al., Origin and fate of copper in a small Mediterranean vineyard catchment: New insights from combined chemical extraction and ? 65 Cu isotopic composition, Science of The Total Environment, vol.463, pp.91-101, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00843304

Z. Fekiacova, S. Cornu, and S. Pichat, Tracing contamination sources in soils with Cu and Zn isotopic ratios, Science of The Total Environment, vol.517, pp.96-105, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01466186

C. Gallet and C. Keller, Phenolic composition of soil solutions: comparative study of lysimeter and centrifuge waters, Soil Biology and Biochemistry, vol.31, pp.33-37, 1999.

T. P. Garnett and R. D. Graham, Distribution and Remobilization of Iron and Copper in Wheat, Annals of Botany, vol.95, pp.817-826, 2005.

P. Hinsinger, Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review, Plant and Soil, vol.237, pp.173-195, 2001.

P. Hinsinger, How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere, Advances in Agronomy, vol.64, pp.225-265, 1900.

P. Hinsinger, C. Plassard, C. Tang, and B. Jaillard, Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review, Plant and Soil, vol.248, pp.43-59, 2003.

D. Jouvin, D. J. Weiss, T. F. Mason, M. N. Bravin, P. Louvat et al., Stable Isotopes of Cu and Zn in Higher Plants: Evidence for Cu Reduction at the Root Surface and Two Conceptual Models for Isotopic Fractionation Processes, Environmental Science & Technology, vol.46, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268399

K. Juang, Y. Lee, H. Lai, and B. Chen, Influence of magnesium on copper phytotoxicity to and accumulation and translocation in grapevines, Ecotoxicology and Environmental Safety, vol.104, pp.36-42, 2014.

C. Kabala, A. Karczewska, and A. Medynska-juraszek, Variability and relationships between Pb, Cu, and Zn concentrations in soil solutions and forest floor leachates at heavily polluted sites, Journal of Plant Nutrition and Soil Science, vol.177, pp.573-584, 2014.

A. Kabata-pendias, Soil-plant transfer of trace elements-an environmental issue, Geoderma, vol.122, pp.143-149, 2004.

K. Kim, G. Owens, R. Naidu, and S. Kwon, Influence of plant roots on rhizosphere soil solution composition of long-term contaminated soils, Geoderma, vol.155, pp.86-92, 2010.

M. Komárek, E. ?adková, V. Chrastný, F. Bordas, and J. Bollinger, Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects, Environment International, vol.36, pp.138-151, 2010.

S. M. Kraemer, Iron oxide dissolution and solubility in the presence of siderophores, Aquatic Sciences, vol.66, pp.3-18, 2004.

R. Kretzschmar, W. P. Robarge, and A. Amoozegar, Filter Efficiency of Three Saprolites for Natural Clay and Iron Oxide Colloids, Environmental Science & Technology, vol.28, pp.1907-1915, 1994.

R. Kretzschmar and H. Sticher, Transport of Humic-Coated Iron Oxide Colloids in a Sandy Soil: Influence of Ca2+ and Trace Metals, Environmental Science & Technology, vol.31, pp.3497-3504, 1997.

H. Küpper, F. Küpper, and M. Spiller, Environmental relevance of heavy metalsubstituted chlorophylls using the example of water plants, Journal of Experimental Botany, vol.47, pp.259-266, 1996.

C. Kusonwiriyawong, M. Bigalke, S. Cornu, D. Montagne, and Z. Fekiacova,

M. Lazarov and W. Wilcke, Response of copper concentrations and stable isotope ratios to artificial drainage in a French Retisol, Geoderma, vol.300, pp.44-54, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01517760

L. R. Lado, T. Hengl, and H. I. Reuter, Heavy metals in European soils: A geostatistical analysis of the FOREGS Geochemical database, Geoderma, vol.148, pp.189-199, 2008.

L. Guédard, M. Faure, O. Bessoule, and J. , Soundness of in situ lipid biomarker analysis: Early effect of heavy metals on leaf fatty acid composition of Lactuca serriola, Environmental and Experimental Botany, vol.76, pp.54-59, 2012.

D. Li, S. Liu, and S. Li, Copper isotope fractionation during adsorption onto kaolinite: Experimental approach and applications, Chemical Geology, vol.396, pp.74-82, 2015.

S. Li, X. Zhu, L. Wu, and Y. Luo, Cu isotopic compositions in Elsholtzia splendens: Influence of soil condition and growth period on Cu isotopic fractionation in plant tissue, Chemical Geology, vol.444, pp.49-58, 2016.

K. Lock, P. Criel, K. A. De-schamphelaere, H. Van-eeckhout, and C. R. Janssen, Influence of calcium, magnesium, sodium, potassium and pH on copper toxicity to barley (Hordeum vulgare), Ecotoxicology and Environmental Safety, vol.68, pp.299-304, 2007.

J. Loneragan, Distribution and movement of copper in plants. Copper in soils and plants, 1981.

Y. Ma, E. Lombi, I. W. Oliver, A. L. Nolan, and M. J. Mclaughlin, Long-Term Aging of Copper Added to Soils, Environmental Science & Technology, vol.40, pp.6310-6317, 2006.

C. Marechal and S. Sheppard, Isotopic fractionation of Cu and Zn between chloride and nitrate solutions and malachite or smithsonite at 30 degrees and 50 degrees C. Geochimica et Cosmochimica Acta 66, p.484, 2002.

C. N. Maréchal, P. Télouk, and F. Albarède, Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry, Chemical Geology, vol.156, pp.251-273, 1999.

, Marschner's Mineral nutrition of higher plants, 3, 2012.

R. Mathur, L. Jin, V. Prush, J. Paul, C. Ebersole et al., Cu isotopes and concentrations during weathering of black shale of the Marcellus Formation, Chemical Geology, pp.175-184, 2012.

R. Mathur, J. Ruiz, S. Titley, L. Liermann, H. Buss et al., Cu isotopic fractionation in the supergene environment with and without bacteria, Geochimica et Cosmochimica Acta, vol.69, pp.5233-5246, 2005.

J. F. Mccarthy and J. M. Zachara, Subsurface transport of contaminants, Science & Technology, vol.23, pp.496-502, 1989.

P. C. Nagajyoti, K. D. Lee, and T. V. Sreekanth, Heavy metals, occurrence and toxicity for plants: a review, Environmental Chemistry Letters, vol.8, pp.199-216, 2010.

R. Nickson, J. Mcarthur, P. Ravenscroft, W. Burgess, and K. Ahmed, Mechanism of arsenic release to groundwater, Bangladesh and West Bengal, Applied Geochemistry, vol.15, pp.403-413, 2000.

E. Oburger, G. J. Kirk, W. W. Wenzel, M. Puschenreiter, and D. L. Jones, Interactive effects of organic acids in the rhizosphere, Soil Biology & Biochemistry, vol.41, pp.449-457, 2009.

U. Pietrzak and D. C. Mcphail, Copper accumulation, distribution and fractionation in vineyard soils of Victoria, Australia. Geoderma, vol.122, pp.151-166, 2004.

O. S. Pokrovsky, J. Viers, E. E. Emnova, E. I. Kompantseva, and R. Freydier, Copper isotope fractionation during its interaction with soil and aquatic microorganisms and metal oxy(hydr) oxides: Possible structural control, Geochimica et Cosmochimica Acta, vol.72, pp.1742-1757, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00321523

A. A. Ponizovsky, H. E. Allen, and A. J. Ackerman, Copper activity in soil solutions of calcareous soils, Environmental Pollution, vol.145, pp.1-6, 2007.

M. Ponthieu, O. Pourret, B. Marin, A. R. Schneider, X. Morvan et al., Evaluation of the impact of organic matter composition on metal speciation in calcareous soil solution: Comparison of Model VI and NICA-Donnan, Journal of Geochemical Exploration, vol.165, pp.1-7, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02136365

S. Reichman, The Responses of Plants to Metal Toxicity: A Review Forusing on Copper, Manganese & Zinc. Australian Minerals & Energy Environment Foundation Melbourne, 2002.

Z. Ren, M. Tella, M. N. Bravin, R. N. Comans, J. Dai et al.,

Y. Sivry, E. Doelsch, A. Straathof, and M. F. Benedetti, Effect of dissolved organic matter composition on metal speciation in soil solutions, Chemical Geology, vol.398, pp.61-69, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01426103

B. Reynolds, B. Reynolds, P. A. Stevens, S. Hughes, and S. A. Brittain, Comparison of field techniques for sampling soil solution in an upland peatland, Soil Use and Management, vol.20, pp.454-456, 2004.

A. Romeu-moreno and A. Mas, Effects of copper exposure in tissue cultured Vitis vinifera, Journal of agricultural and food chemistry, vol.47, pp.2519-2522, 1999.

P. A. Rousos, H. C. Harrison, and K. L. Steffen, Physiological responses of cabbage to incipient copper toxicity, Journal of the American Society for Horticultural Science (USA), 1989.

G. Rufyikiri, D. Nootens, J. E. Dufey, and B. Delvaux, Mobilization of aluminium and magnesium by roots of banana (Musa spp.) from kaolinite and smectite clay minerals, 2004.

, Applied Geochemistry, vol.19, pp.633-643

S. Ruyters, P. Salaets, K. Oorts, and E. Smolders, Copper toxicity in soils under established vineyards in Europe: A survey, Science of The Total Environment, vol.443, pp.470-477, 2013.

B. M. Ryan, J. K. Kirby, F. Degryse, H. Harris, M. J. Mclaughlin et al., Copper speciation and isotopic fractionation in plants: uptake and translocation mechanisms, New Phytologist, vol.199, pp.367-378, 2013.

B. M. Ryan, J. K. Kirby, F. Degryse, K. Scheiderich, and M. J. Mclaughlin, , 2014.

, Copper Isotope Fractionation during Equilibration with Natural and Synthetic Ligands, Environmental Science & Technology, vol.48, pp.8620-8626

S. Sauvé, A. Dumestre, M. Mcbride, and W. Hendershot, Derivation of soil quality criteria using predicted chemical speciation of Pb 2+ and Cu 2+, Environmental Toxicology and Chemistry, vol.17, pp.1481-1489, 1998.

S. Sayen and E. Guillon, X-ray absorption spectroscopy study of Cu2+ geochemical partitioning in a vineyard soil, Journal of Colloid and Interface Science, vol.344, pp.611-615, 2010.

S. Sayen, J. Mallet, and E. Guillon, Aging effect on the copper sorption on a vineyard soil: Column studies and SEM-EDS analysis, Journal of Colloid and Interface Science, vol.331, pp.47-54, 2009.

A. R. Schneider, M. Ponthieu, B. Cancès, A. Conreux, X. Morvan et al., Influence of dissolved organic matter and manganese oxides on metal speciation in soil solution: A modelling approach, Environmental Pollution, vol.213, pp.618-627, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01788842

D. G. Strawn and L. L. Baker, Molecular characterization of copper in soils using X-ray absorption spectroscopy, Environmental Pollution, vol.157, pp.2813-2821, 2009.

D. G. Strawn and L. L. Baker, Speciation of Cu in a Contaminated Agricultural Soil Measured by XAFS, µ-XAFS, and µ-XRF, Environmental Science & Technology, vol.42, pp.37-42, 2008.

M. Toselli, E. Baldi, G. Marcolini, D. Malaguti, M. Quartieri et al., Response of potted grapevines to increasing soil copper concentration, Australian Journal of Grape and Wine Research, vol.15, pp.85-92, 2009.

D. Vance, A. Matthews, A. Keech, C. Archer, G. Hudson et al., The behaviour of Cu and Zn isotopes during soil development: Controls on the dissolved load of rivers, Chemical Geology, vol.445, pp.36-53, 2016.

C. Weinstein, F. Moynier, K. Wang, R. Paniello, J. Foriel et al., Isotopic fractionation of Cu in plants, Chemical Geology, 2011.
URL : https://hal.archives-ouvertes.fr/insu-00683360

H. Zhang, F. Zhao, B. Sun, W. Davison, and S. P. Mcgrath, A New Method to Measure Effective Soil Solution Concentration Predicts Copper Availability to Plants, Science & Technology, vol.35, pp.2602-2607, 2001.

X. K. Zhu, Y. Guo, R. J. Williams, R. K. O'nions, A. Matthews et al., Mass fractionation processes of transition metal isotopes, Earth and Planetary Science Letters, vol.200, pp.47-62, 2002.

G. Brunetto, G. W. Bastos-de-melo, M. Toselli, M. Quartieri, and M. Tagliavini, The role of mineral nutrition on yields and fruit quality in grapevine, 2015.

, Revista Brasileira de Fruticultura, vol.37, pp.1089-1104

J. Cadiou, S. Pichat, V. P. Bondanese, A. Soulard, T. Fujii et al.,

P. Oger, Copper transporters are responsible for copper isotopic fractionation in eukaryotic cells, Scientific Reports, vol.7, p.44533, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01632761

P. P. Coetzee, F. P. Van-jaarsveld, and F. Vanhaecke, Intraregional classification of wine via ICP-MS elemental fingerprinting, Food Chemistry, vol.164, pp.485-492, 2014.

J. Duplay, K. Semhi, E. Errais, G. Imfeld, I. Babcsanyi et al., , 2014.

, The impact of cultural practices, Copper, zinc, lead and cadmium bioavailability and retention in vineyard soils, vol.230

J. D. Greenough, L. M. Mallory-greenough, and B. J. Fryer, Geology and wine 9 : Regional trace element fingerprinting of Canadian wines, Geoscience Canada, vol.32, pp.129-137, 2005.

D. Jouvin, D. J. Weiss, T. F. Mason, M. N. Bravin, P. Louvat et al., Stable Isotopes of Cu and Zn in Higher Plants : Evidence for Cu Reduction at the Root Surface and Two Conceptual Models for Isotopic Fractionation Processes, Environmental Science & Technology, vol.46, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268399

M. Komárek, E. ?adková, V. Chrastný, F. Bordas, and J. Bollinger, Contamination of vineyard soils with fungicides : A review of environmental and toxicological aspects, Environment International, vol.36, pp.138-151, 2010.

S. Li, X. Zhu, L. Wu, and Y. Luo, Cu isotopic compositions in Elsholtzia splendens : Influence of soil condition and growth period on Cu isotopic fractionation in plant tissue, Chemical Geology, vol.444, pp.49-58, 2016.

C. Martin, The spectroscopy Raman for the fight against the forgery and for the reassurance of the sector wine, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01230259

U. Pietrzak and D. C. Mcphail, Copper accumulation, distribution and fractionation in vineyard soils of Victoria, Australia. Geoderma, vol.122, pp.151-166, 2004.

P. Pohl, What do metals tell us about wine ?, TrAC Trends in Analytical Chemistry, vol.26, pp.941-949, 2007.

B. M. Ryan, J. K. Kirby, F. Degryse, H. Harris, M. J. Mclaughlin et al., Copper speciation and isotopic fractionation in plants : uptake and translocation mechanisms, New Phytologist, vol.199, pp.367-378, 2013.

C. Weinstein, F. Moynier, K. Wang, R. Paniello, J. Foriel et al., Isotopic fractionation of Cu in plants, Chemical Geology, 2011.
URL : https://hal.archives-ouvertes.fr/insu-00683360

, Mediterranean Red 2012 Yes 194 France La Clape Corb.-Rouss. Mediterranean Red 2013 Yes 195 France La Clape Corb.-Rouss. Mediterranean Red 2014 Yes 196 France La Clape Corb.-Rouss, 2012.

, topright',col=COL_color,legend=levels(FACTORS$Color), vol.15, p.1

, # LDA1=~2*log10(Mg)-log10(Ca)=log10(Mg/Ca) plot(1:length(PROJ),2*CONC1$Mg-CONC1$Ca

(. Discrim_class=cut and . Combi, BREAKS) barplot(t(table(DISCRIM_class,FACTORS12$Color2)),col=c('red','green'),xlab=' LDA1',ylab='Frequency')

, BREAKS){ pred=rep('Red',nrow

(. Classif=table and . Factors12$color2,

. Proj=as, matrix(CONC1) %*% as.matrix(ALD$scaling)

D. Breaks=seq,

, FACTORS1$Calc)), col=c('darkgrey','white') ,xlab='LDA1

#. Lda1=~log10, Mg)+log10(Ba)=log10(Mg*Ba) plot(1:length(PROJ),CONC1$Mg+CONC1$Ba

, CONC1$Mg+CONC1$Ba-0.05, WINES$ID, vol.1

, FACTORS13$Calc)), col=c('darkgrey','white'), xlab=expression(log, Mg~Ba)),ylab='Frequency')

, BREAKS){ pred=rep

(. Classif=table and . Calc, pred) cat(x,':',sum(diag(CLASSIF))/sum(CLASSIF)*100

, LDA_calc.pdf',width=10,height=6) par(mar=c, vol.6

, FACTORS13$Calc)), col=c('darkgrey','white'), axes=FALSE,ylim=c(0,15),names.arg='') #lab_BREAKS=BREAKS #lab_BREAKS

, Mg~Ba)),side=1,line=4,cex=1.3) axis(2,at=seq(0,15,5),cex.axis=1.3) mtext('Frequency',side=2,line=4,cex=1.3) legend('topright',col=c('darkgrey','black'), legend=c('Non-calcareous

, RDA_calc_color.pdf',width=10,height=10) plot(summary(RDA1)$sites

;. $color2 and . Calc, Red/Non-calcareous','Red/Calcareous','Non-Red/Non-calcareous','NonRed/Calcareous'),add.plot=TRUE,cellipse=0,cpoint=0,clabel=1) arrows

, CLASSIF=table(FACTORS3$Color2:FACTORS3$Calc

, LDA_calc_color.pdf',width=8,height=8) par(mar=c, vol.5

. Factors1$calc,

&. and &. ,

, Red/Non-calcareous ','Red/Calcareous, FACTORS1$Color2:FACTORS1$Calc, label=c

, A soil sample from a calcaric cambisol a bulk soil sample from a vertic cambisols, a citrate soil extract and a leaf sample. The calcaric cambisols sample came from the lowest horizon (50-60 cm) of the C220 sample spot of the Soave vineyard described in Chapter 5. The vertic cambisols sample was B20 110-120 cm. Deepest horizons were chosen as they contain lowest Cu concentrations and are most contrasted in their mineralogy. 100 mg of ground soil samples and 200 mg of ground leaf sample were digested in a CEM MARS 5 microwave oven using ultrapure acids, step, matrix separation was evaluated for four different matrix types

. Na-citrate-extractions-(labanowski, 2008) were performed on a vertic cambisols sample using 0.1 molar tri-sodiumcitrate solution (citric acid trisodium salt dehydrate, Acros Organics

. %-h-2-o-2-following, Recovered solution was evaporated and redissolved and elemental contents were measured on an Agilent 7500ce Q-ICP-MS, as described above. Experiment 2: Cu recovery In the following experiment, two vertic soil samples (3 and 5 M elution) and one sample of a citrate extraction (4 M elution) were loaded on a separation column as described above. The elution protocol was interrupted after the matrix elution, vol.35, p.32, 1999.

, Again eluted solutions were sampled at 3, 6, 9, 12, 15, 18 mL of the respective acid treatment. Recovered solutions were evaporated to dryness, redissolved and Cu contents measured on a AAnalyst600

C. Archer and D. Vance, Mass discrimination correction in multiple-collector plasma source mass spectrometry: an example using Cu and Zn isotopes, Journal of Analytical Atomic Spectrometry, vol.19, pp.656-665, 2004.

I. Babcsanyi, Copper transport and isotope fractionation in an agrosystem. Université de Strasbourg, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01254127

M. Bigalke, S. Weyer, and W. Wilcke, Stable Copper Isotopes: A Novel Tool to, 2010.

, Trace Copper Behavior in Hydromorphic Soils, Soil Science Society of America Journal, vol.74, p.60

D. M. Borrok, R. B. Wanty, W. I. Ridley, R. Wolf, P. J. Lamothe et al., Separation of copper, iron, and zinc from complex aqueous solutions for isotopic measurement, CHEMICAL GEOLOGY, vol.242, pp.400-414, 2007.

J. B. Chapman, T. F. Mason, D. J. Weiss, B. J. Coles, and J. J. Wilkinson, , 2006.

, Chemical Separation and Isotopic Variations of Cu and Zn From Five Geological Reference Materials, Geostandards and Geoanalytical Research, vol.30, pp.5-16

S. Dong, D. J. Weiss, S. Strekopytov, K. Kreissig, Y. Sun et al., Stable isotope ratio measurements of Cu and Zn in mineral dust (bulk and size fractions) from the Taklimakan Desert and the Sahel and in aerosols from the eastern tropical North Atlantic Ocean, Talanta, vol.114, pp.103-109, 2013.

S. Ehrlich, I. Butler, L. Halicz, D. Rickard, A. Oldroyd et al., Experimental study of the copper isotope fractionation between aqueous Cu(II) and covellite, CuS. Chemical Geology, vol.209, pp.259-269, 2004.

Z. Fekiacova, S. Cornu, and S. Pichat, Tracing contamination sources in soils with Cu and Zn isotopic ratios, Science of The Total Environment, vol.517, pp.96-105, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01466186

D. Jouvin, D. J. Weiss, T. F. Mason, M. N. Bravin, P. Louvat et al., Stable Isotopes of Cu and Zn in Higher Plants: Evidence for Cu Reduction at the Root Surface and Two Conceptual Models for Isotopic Fractionation Processes, Environmental Science & Technology, vol.46, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01268399

J. Labanowski, F. Monna, A. Bermond, P. Cambier, C. Fernandez et al., Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate, Environmental Pollution, vol.152, pp.693-701, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01192014

F. Larner, M. Rehkaemper, B. J. Coles, K. Kreissig, D. J. Weiss et al., A new separation procedure for Cu prior to stable isotope analysis by MC-ICP-MS, Journal of Analytical Atomic Spectrometry, vol.26, pp.1627-1632, 2011.

W. Li, S. E. Jackson, N. J. Pearson, O. Alard, and B. W. Chappell, The Cu isotopic signature of granites from the Lachlan Fold Belt, SE Australia, Chemical Geology, vol.258, pp.38-49, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00413130

S. Liu, F. Teng, S. Li, G. Wei, J. Ma et al., Copper and iron isotope fractionation during weathering and pedogenesis: Insights from saprolite profiles, Geochimica et Cosmochimica Acta, vol.146, pp.59-75, 2014.

C. Maréchal and F. Albarède, Ion-exchange fractionation of copper and zinc isotopes, Geochimica et Cosmochimica Acta, vol.66, pp.1499-1509, 2002.

C. N. Maréchal, P. Télouk, and F. Albarède, Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry, Chemical Geology, vol.156, pp.251-273, 1999.

G. Markl, Y. Lahaye, and G. Schwinn, Copper isotopes as monitors of redox processes in hydrothermal mineralization, Geochimica et Cosmochimica Acta, vol.70, pp.4215-4228, 2006.

T. May and R. Wiedmeyer, A table of polyatomic interferences in ICP-MS, Atomic Spectroscopy, vol.19, pp.150-155, 1998.

K. Peel, D. Weiss, J. Chapman, T. Arnold, and B. Coles, A simple combined sample-standard bracketing and inter-element correction procedure for accurate mass bias correction and precise Zn and Cu isotope ratio measurements, J. Anal. At. Spectrom, vol.23, pp.103-110, 2008.

J. C. Petit, A. Taillez, and N. Mattielli, A Case Study of Spectral and NonSpectral Interferences on Copper Isotope Measurements by Multi-Collector ICP-MS (Wet Plasma), Geostandards and Geoanalytical Research, vol.37, pp.319-335, 2013.

B. M. Ryan, J. K. Kirby, F. Degryse, H. Harris, M. J. Mclaughlin et al., Copper speciation and isotopic fractionation in plants: uptake and translocation mechanisms, New Phytologist, vol.199, pp.367-378, 2013.

B. Tremillon, Les séparations par resineséchangeuses d'ions, 1965.

D. Vance, C. Archer, J. Bermin, J. Perkins, P. J. Statham et al., The copper isotope geochemistry of rivers and the oceans, Earth and Planetary Science Letters, vol.274, pp.204-213, 2008.

Z. Zhu, S. Jiang, T. Yang, and H. Wei, Improvements in Cu-Zn isotope analysis with MC-ICP-MS: A revisit of chemical purification, mass spectrometry measurement and mechanism of Cu/Zn mass bias decoupling effect, International Journal of Mass Spectrometry, vol.393, pp.34-40, 2015.