, mais en théorie n'importe quel modèle pour peu que les fonctions de coût adéquates soient définies), et valider leurs performances en comparant les simulations aux croissances réelles. Nous avons en outre montré qu'il est très important de considérer le développement dès les stades très précoces, car desévénements importants se passent très tôt, comme l'apparition des dents. En effet, c'est l'intégration de plusieurs mécanismes dans l'espace et le temps qui définit les formes finales, ce chapitre a présenté des modèles dans le but de mieux comprendre la morphogenèse. Les trajectoires de croissance réelles sont importantes pour paramétrer des modèles (les nôtres

, Au cours d'une collaboration avec l'équipe Facteur de Transcription et Architecture de l'Institut Jean-Pierre Bourgin, une méthode qui permet de cartographier des rapporteurs de l'expression de gènes sur le limbe pendant la croissance de la feuilleàété développé

, Cette méthode est décrite dans l'article suivant

. Dynamic-atlasing, . Gene, . Domains, . Individual-images-mohamed, E. Oughou et al., , vol.5

. Sheth, Hox genes regulate digit patterning by controlling the wavelength of a turing-type mechanism, Science, vol.338, pp.1476-1480, 2012.

S. Amourda, Gene expression boundary scaling and organ size regulation in the drosophila embryo, Development, Growth & Differentiation, vol.59, pp.21-32

. Biot, Multiscale quantification of morphodynamics: Morpholeaf, software for 2-d shape analysis, Development, 2016.

J. , GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants, The EMBO Journal, vol.6, pp.3901-3907, 1987.

. Kieffer, TCP14 and TCP15 affect internode length and leaf shape in arabidopsis, Plant Journal, vol.68, pp.147-158, 2011.

. Debernardi, Functional specialization of the plant miR396 regulatory network through distinct microRNAtarget interactions, PLoS Genetics, vol.8, p.1002419, 2012.

. Béziat, Histochemical Staining of ?-Glucuronidase and Its Spatial Quantification, vol.1497, pp.73-80, 2017.

. Selka, Towards a spatio-temporal atlas of 3D cellular parameters during leaf morphogenesis, International Conference on Computer Vision Workshop on Bio Image Computing, 2017.

. Bookstein, Principal warps: thin-plate splines and the decomposition of deformations, IEEE Transactions on Pattern Analysis & Machine Intelligence, vol.11, pp.567-585, 1989.

D. C. Adams, F. J. Rohlf, and D. E. Slice, Geometric morphometrics: Ten years of progress following the 'revolution', Italian Journal of Zoology, vol.71, issue.1, pp.5-16, 2004.

J. P. Alvarez, C. Furumizu, I. Efroni, Y. Eshed, and J. L. Bowman, Active suppression of a leaf meristem orchestrates determinate leaf growth. eLife, vol.5, pp.1-17, 2016.

E. Anastasiou, S. Kenz, M. Gerstung, D. Maclean, J. Timmer et al., Control of Plant Organ Size by KLUH/CYP78A5-Dependent Intercellular Signaling, Developmental Cell, vol.13, issue.6, pp.843-856, 2007.

P. Andrey and Y. Maurin, Free-D: An integrated environment for three-dimensional reconstruction from serial sections, Journal of Neuroscience Methods, vol.145, issue.1-2, pp.233-244, 2005.

A. R. Backes and O. M. Bruno, Image and Signal Processing, p.6134, 2010.

K. F. Baker-brosh and R. K. Peet, The ecological significance of lobed and toothed leaves intemperate forest trees, Ecology, vol.78, issue.4, pp.1250-1255, 1997.

M. Bar and N. Ori, Leaf development and morphogenesis, Development, vol.141, issue.22, pp.4219-4230, 2014.

M. K. Barton and R. S. Poethig, Formation of the shoot apical meristem in Arabidopsis thaliana : an analysis of development in the wild type and in the shoot meristemless mutant, Development, vol.119, issue.3, pp.823-831, 1993.

G. D. Bilsborough, A. Runions, M. Barkoulas, H. W. Jenkins, A. Hasson et al., Model for the regulation of Arabidopsis thaliana leaf margin development, Proceedings of the National Academy of Sciences, vol.108, issue.8, pp.3424-3429, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01000463

E. Biot, M. Cortizo, J. Burguet, A. Kiss, M. Oughou et al., Multiscale quantification of morphodynamics: MorphoLeaf software for 2D shape analysis, Development, vol.143, issue.18, pp.3417-3428, 2016.

T. Blein, A. Pulido, A. Vialette-guiraud, K. Nikovics, H. Morin et al., A conserved molecular framework for compound leaf development, Science, vol.322, issue.5909, pp.1835-1839, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02263093

F. L. Bookstein, Landmark methos for forms without lendmarks: morphometrics of group difference in outline shape, Medical Image Analysis, vol.1, issue.3, pp.225-243, 1997.

A. Brand, N. Shirding, S. Shleizer, and N. Ori, Meristem maintenance and compoundleaf patterning utilize common genetic mechanisms in tomato, Planta, vol.226, issue.4, pp.941-951, 2007.

J. Bühler, L. Rishmawi, D. Pflugfelder, G. Huber, H. Scharr et al., phenoVein -A tool for leaf vein segmentation and analysis, Plant Physiology, vol.169, p.974, 2015.

A. Burian, M. Ludynia, M. Uyttewaal, J. Traas, A. Boudaoud et al., A correlative microscopy approach relates microtubule behaviour, local organ geometry, and cell growth at the Arabidopsis shoot apical meristem, Journal of Experimental Botany, vol.64, issue.18, pp.5753-5767, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01204036

D. H. Chitwood, A. Ranjan, C. C. Martinez, L. R. Headland, T. Thiem et al., A Modern Ampelography: A Genetic Basis for Leaf Shape and Venation Patterning in Grape, Plant Physiology, vol.164, issue.1, pp.259-272, 2014.

J. Y. Clark, Identification of Botanical Specimens using Artificial Neural Networks, Proceedings of the IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp.87-94, 2004.

J. Y. Clark, Neural networks and cluster analysis for unsupervised classification of cultivated species of Tilia (Malvaceae), Botanical Journal of the Linnean Society, vol.159, issue.2, pp.300-314, 2009.

J. Cope, D. Corney, J. Clark, P. Remagnino, and P. Wilkin, Plant species identification using digital morphometrics: A review, Expert Systems with Applications, vol.39, issue.8, pp.7562-7573, 2012.

T. Cucchi, M. Baylac, A. Evin, and O. Bignon-lau, Morphométrie géométrique et archéozoologie : Concepts, méthodes et applications, 2015.

M. Das-gupta and U. Nath, Divergence in Patterns of Leaf Growth Polarity Is Associated with the Expression Divergence of miR396, The Plant Cell, vol.27, 2015.

S. Douady and Y. Couder, Phyllotaxis as a Self-Organized Growth Process, Physical review letters, vol.68, pp.2098-2101, 1992.

L. Dupuy, J. Mackenzie, T. Rudge, and J. Haseloff, A system for modelling cell-cell interactions during plant morphogenesis, Annals of Botany, vol.101, issue.8, pp.1255-1265, 2008.

I. Efroni, Y. Eshed, and E. Lifschitz, Morphogenesis of Simple and Compound Leaves: A Critical Review, The Plant Cell, vol.22, issue.4, pp.1019-1032, 2010.

B. Ellis, Manual of Leaf Architecture, vol.34, 2009.

R. F. Evert, S. E. Eichhorn, and T. Edition, Esau ' s Plant Anatomy ESAU, S PLANT ANATOMY. Development, pp.1-601, 2006.

K. W. Fleischer, D. H. Laidlaw, B. L. Currin, and A. H. Barr, Cellular Texture Generation. SIGGRAPH '95, 22nd annual conference on Computer graphics and interactive techniques, pp.239-249, 1995.

S. Fox, P. Southam, F. Pantin, R. Kennaway, S. Robinson et al., Spatiotemporal coordination of cell division and growth during organ morphogenesis, vol.16, 2018.

A. Hasim, Y. Herdiyeni, and S. Douady, Leaf Shape Recognition using Centroid Contour Distance, IOP Conference Series: Earth and Environmental Science, vol.31, p.12002, 2016.

A. Hasson, A. Plessis, T. Blein, B. Adroher, S. Grigg et al., Evolution and Diverse Roles of the <i>CUP-SHAPED COTYLE, 2011.

. Don&lt;/i&gt;, Genes in <i>Arabidopsis</i> Leaf Development. The Plant Cell, vol.23, issue.1, pp.54-68

A. Hay, ASYMMETRIC LEAVES1 and auxin activities converge to repress BRE-VIPEDICELLUS expression and promote leaf development in Arabidopsis, Development, vol.133, issue.20, pp.3955-3961, 2006.

D. J. Hearn, Shape Analysis for the Automated Identification of Plants from Images of Leaves, Taxon, vol.58, issue.3, pp.934-954, 2009.

H. Honda, M. Tanemura, and T. Nagai, A three-dimensional vertex dynamics cell model of space-filling polyhedra simulating cell behavior in a cell aggregate, Journal of Theoretical Biology, vol.226, issue.4, pp.439-453, 2004.

F. Huang, M. Zago, L. Abas, A. Van-marion, C. S. Galván-ampudia et al., Phosphorylation of Conserved PIN Motifs Directs <i>Arabidopsis</i> PIN1 Polarity and Auxin Transport, The Plant Cell, vol.22, issue.4, pp.1129-1142, 2010.

C. Im, H. Nishida, and T. L. Kunii, A Hierarchical Method of Recognizing Plant Species by Leaf Shapes. Mva, pp.158-161, 1998.

G. Jurgens, R. A. Ruiz, and T. Berleth, Embryonic Pattern Formation in Flowering Plants, Annual Review of Genetics, vol.28, issue.1, pp.351-371, 1994.

E. Kawamura, G. Horiguchi, and H. Tsukaya, Mechanisms of leaf tooth formation in Arabidopsis, Plant Journal, vol.62, issue.3, pp.429-441, 2010.

T. Kazama, Y. Ichihashi, S. Murata, and H. Tsukaya, The mechanism of cell cycle arrest front progression explained by a KLUH/CYP78A5-dependent mobile growth factor in developing leaves of arabidopsis thaliana, Plant and Cell Physiology, vol.51, issue.6, pp.1046-1054, 2010.

S. Kondo and T. Miura, Reaction-Diffusion Model as a Framework for Understanding Biological Pattern Formation, Science, vol.329, issue.5999, pp.1616-1620, 2010.

E. E. Kuchen, S. Fox, P. B. De-reuille, R. Kennaway, S. Bensmihen et al., Generation of leaf shape through early patterns of growth and tissue polarity, Science, vol.335, issue.6072, pp.1092-1096, 2012.

E. Kuylen, G. T. Beemster, J. Broeckhove, D. Vos, and D. , Simulation of regulatory strategies in a morphogen based model of Arabidopsis leaf growth, Procedia Computer Science, vol.108, pp.139-148, 2017.

M. Lafos, P. Kroll, M. L. Hohenstatt, F. L. Thorpe, O. Clarenz et al., Dynamic regulation of H3K27 trimethylation during arabidopsis differentiation, PLoS Genetics, vol.7, issue.4, 2011.

M. Lopez-vernaza, S. Yang, R. Müller, F. Thorpe, E. De-leau et al., , 2012.

, Antagonistic roles of SEPALLATA3, FT and FLC genes as targets of the polycomb group gene CURLY LEAF, PLoS ONE, vol.7, issue.2

M. Luichtl, B. S. Fiesselmann, M. Matthes, X. Yang, O. Peis et al., Mutations in the Arabidopsis RPK1 gene uncouple cotyledon anlagen and primordia by modulating epidermal cell shape and polarity, Biology Open, vol.2, issue.11, pp.1093-1102, 2013.

R. Malinowski, Understanding of Leaf Development-the Science of, Complexity. Plants, vol.2, issue.3, pp.396-415, 2013.

A. Maugarny-calès, Towards the elucidation of the CUP-SHAPED COTYLEDONcentered network during Arabidopsis thaliana leaf development, 2017.

U. Mayer, R. A. Ruiz, T. Berleth, S. Miséra, and G. Jürgens, Mutations affecting body organization in the Arabidopsis embryo, Nature, vol.353, p.402, 1991.

R. D. Meicenheimer, The plastochron index: Still useful after nearly six decades, American Journal of Botany, vol.101, issue.11, pp.1821-1835, 2014.

R. M. Merks, M. Guravage, D. Inze, and G. T. Beemster, VirtualLeaf: An OpenSource Framework for Cell-Based Modeling of Plant Tissue Growth and Development, Plant Physiology, vol.155, issue.2, pp.656-666, 2011.

E. M. Meyerowitz, Pattern formation in plant development: four vignettes, Current Opinion in Genetics and Development, vol.4, issue.4, pp.602-608, 1994.

T. Nagai, S. Ohta, K. Kawasaki, and T. Okuzono, Computer simulation of cellular pattern growth in two and three dimensions, Phase Transitions, vol.28, issue.1-4, pp.177-211, 1990.

K. Nikovics, T. Blein, A. Peaucelle, T. Ishida, H. Morin et al., , 2006.

, The Balance between the MIR164A and CUC2 Genes Controls Leaf Margin Serration in Arabidopsis. the Plant Cell Online, vol.18, pp.2929-2945

R. D. Plotze, M. Falvo, J. G. Pádua, L. C. Bernacci, M. L. Vieira et al., Leaf shape analysis using the multiscale Minkowski fractal dimension, a new morphometric method: a study with <i>Passiflora</i> (Passifloraceae), Canadian Journal of Botany, vol.83, issue.3, pp.287-301, 2005.

M. D. Pollicelli, .. P. Idaszkin, Y. L. Gonzalez-josé, R. Márquez, and F. , Leaf shape variation as a potential biomarker of soil pollution, Ecotoxicology and Environmental Safety, vol.164, pp.69-74, 2018.

P. Prusinkiewicz, Modeling of spatial structure and development of plants: A review, Scientia Horticulturae, vol.74, issue.1-2, pp.113-149, 1998.

P. Prusinkiewicz, A look at the visual modeling of plants using L-systems, Agronomie, vol.19, issue.3-4, pp.211-224, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00885925

L. Remmler and A. Rolland-lagan, Computational Method for Quantifying Growth Patterns at the Adaxial Leaf Surface in Three Dimensions, Plant Physiology, vol.159, issue.1, pp.27-39, 2012.

. Richards, A. J. Kavanagh, and O. W. , , 1943.

A. Rolland-lagan, L. Remmler, and C. Girard-bock, Quantifying Shape Changes and Tissue Deformation in Leaf Development, Plant Physiology, vol.165, issue.2, pp.496-505, 2014.

D. L. Royer and P. Wilf, Why Do Toothed Leaves Correlate with Cold Climates ? Gas Exchange at Leaf Margins Provides New Insights into a Classic Paleotemperature Proxy, International Journal of Plant Sciences, vol.167, issue.1, pp.11-18, 2006.

D. L. Royer, P. Wilf, D. A. Janesko, E. A. Kowalski, and D. L. Dilcher, Correlations of climate and plant ecology to leaf size and shape: Potential proxies for the fossil record, 2005.

, American Journal of Botany, vol.92, issue.7, pp.1141-1151

T. Rudge and J. Haseloff, A computational model of cellular morphogenesis in plants, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.3630, pp.78-87, 2005.

K. Rumpunen and I. V. Bartish, Comparison of differentiation estimates based on morphometric and molecular data, exemplified by various leaf shape descriptors and RAPDs in the genus Chaenomeles (Rosaceae), Taxon, vol.51, issue.1, pp.69-82, 2002.

A. Runions, M. Tsiantis, and P. Prusinkiewicz, A common developmental program can produce diverse leaf shapes, New Phytologist, vol.216, issue.2, pp.401-418, 2017.

E. Scarpella, D. Marcos, J. Friml, T. Berleth, E. Scarpella et al., , 2006.

, Control of leaf vascular patterning by polar auxin transport Control of leaf vascular patterning by polar auxin transport, pp.1015-1027

F. Selka, T. Blein, J. Burguet, E. Biot, P. Laufs et al., Towards a SpatioTemporal Atlas of 3D Cellular Parameters During Leaf Morphogenesis, Proceedings -2017 IEEE International Conference on Computer Vision Workshops, pp.56-63, 2017.

E. Souer, V. Houwelingen, D. Kloos, J. Mol, and R. Koes, Polysilanes show promise as photoresists, Chemical and Engineering News, vol.62, issue.46, p.6, 1984.

H. Tsukaya, Leaf shape diversity with an emphasis on leaf contour variation, developmental background, and adaptation, Seminars in Cell and Developmental Biology, vol.79, pp.48-57, 2018.

A. M. Turing, The chemical basis of morphogenesis, Bulletin of Mathematical Biology, vol.52, issue.1-2, pp.153-197, 1952.

D. Vlad, D. Kierzkowski, M. I. Rast, F. Vuolo, R. Dello-ioio et al., Leaf shape evolution through duplication, regulatory diversification and loss of a homeobox gene, Science, vol.343, issue.6172, pp.780-783, 2014.

C. Weight, D. Parnham, and R. Waites, LeafAnalyser: A computational method for rapid and large-scale analyses of leaf shape variation, Plant Journal, vol.53, issue.3, pp.578-586, 2008.