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Résumé en Français 

 

Introduction : 

Le récepteur membranaire RANK (receptor activator of NF-κB), membre de la famille des récepteurs 

du TNF (tumor necrosis factor), est activé suite à l’interaction avec son ligand RANKL. Les deux 

molécules ont été découvertes pour leur implication dans l’homéostasie de l’os [1,2]. RANKL existe 

sous une forme soluble ou liée à la membrane cellulaire, comme les autres membres de la famille du 

TNF, il forme un homotrimère qui se lie à RANK induisant ainsi la trimérisation du récepteur. 

L’ostéoprotégérine (OPG) est un récepteur leurre qui se lie à RANKL et empêche l’activation de 

RANK. OPG se lie aussi avec une plus faible affinité à un autre ligand nommé TRAIL qui joue un rôle 

dans l’apoptose cellulaire. La stimulation de RANK conduit à l’activation de la cascade NF-κB, mais 

aussi de Akt, JNK, MAPK ou encore ERK [3].  

 

 

Figure 1: Représentation de l’interaction entre les membres de la triade RANK/RANKL/OPG. RANKL 

soluble ou lié à la membrane se lie à RANK ce qui induit une signalisation intracellulaire. OPG est un récepteur 

leurre qui se lit à RANKL empêchant l’activation de RANK. OPG se lie aussi à TRAIL, un ligand activant l’apoptose 

des cellules qui exprime le récepteur TRAIL-R.  

 

RANK induit une différenciation des cellules de la lignée myéloïde en ostéoclastes, macrophages 

spécialisés dans la résorption de la matrice osseuse [3]. Ainsi, les souris déficientes pour RANK ou 

RANKL ont une plus grande densité osseuse et sont atteintes d’ostéopétrose [4,5]. A l’opposé, les 

souris déficientes pour OPG sont atteintes d’ostéoporose et présentent une plus faible densité 
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osseuse [6]. RANK joue également un rôle dans l’immunité, sa présence sur les cellules dendritiques 

a été observée dans les premières recherches décrivant ce récepteur mais un rôle in vivo reste à être 

démontré. RANK sur les cellules dendritiques interagit avec RANKL exprimé à la surface des cellules T 

activées et participe à la survie des cellules dendritiques [7]. RANK et RANKL sont également 

indispensables pour le développement des ganglions lymphatiques puisque l’absence de ces organes 

lymphoïdes secondaires a été observée chez les souris déficientes pour RANK et RANKL [4,5]. RANK 

active aussi la prolifération des cellules épithéliales, et joue donc un rôle dans la formation et la 

métastase des tumeurs [8,9]. 

Deux principales approches ont été développées pour cibler l’axe RANK/RANKL et ainsi inhiber les 

effets pathologiques de cette voie. L’une consiste à bloquer la signalisation induite par l’activation de 

RANK, l’autre consiste à bloquer l’interaction entre RANK et son ligand. Plusieurs molécules et 

peptides inhibant la signalisation induite par RANK ont été développés [10–15].  Ces molécules 

inhibent pour la plupart l’ostéoclastogenèse. Des peptides fusions tels que OPG-Fc et RANK-Fc ont 

également été développés pour empêcher RANKL de se lier au récepteur [16]. Des peptides basés sur 

la séquence responsable de la liaison à RANKL de OPG ou de RANK ont également été décrits [17–

19]. D’autre part, à ce jour, un anticorps thérapeutique ciblant RANKL appelé denosumab est sur le 

marché pour le traitement de l’ostéoporose et la métastase osseuse de certains cancers. Cependant, 

à notre connaissance aucune petite molécule inhibant l’interaction entre RANK et son ligand n’a été 

décrite. 

Le ganglion lymphatique est un organe lymphoïde secondaire important pour l’initiation de la 

réponse immunitaire. Il est composé de plusieurs types cellulaires incluant des cellules 

hématopoïétiques (exprimant CD45) et des cellules non-hématopoïétiques. Le ganglion lymphatique 

est divisé en trois parties, le cortex où l’on retrouve des follicules de lymphocytes B, le paracortex qui 

contient des lymphocytes T et la zone médullaire. Les cellules endothéliales lymphatiques forment 

les sinus sous-capsulaires et médullaires qui permettent la circulation de la lymphe et l’apport 

d’antigènes et des cellules présentatrices d’antigènes depuis les tissus périphériques. Dans la région 

sous-capsulaire, en bordure des follicules de cellules B se trouvent également les cellules marginales 

réticulaires qui expriment RANKL. Enfin, insérés entre les cellules endothéliales lymphatiques, se 

trouvent les macrophages CD169+ appelés macrophages sous-capsulaires. Ces macrophages jouent 

un rôle dans le transfert des antigènes de la lymphe vers les cellules B et sont aussi importants pour 

limiter la propagation des virus. Dans la partie médullaire, les macrophages du sinus médullaire 

expriment également CD169 et F4/80.  
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Figure 2: Représentation schématique de l’organisation du ganglion lymphatique. (A)  Représentation 

d’un ganglion montrant l’organisation en trois zones, le cortex, le paracortex et la zone médullaire. Le ganglion 

contient plusieurs vaisseaux lymphatiques afférents et un vaisseau efférent. Gauche: représentation 

schématique du réseau vasculaire. Centre: réseau vasculaire représenté avec le réseau réticulaire formé par 

des cellules non-hématopoïétiques. Droite : section d’un ganglion lymphatique mésentérique de rat. Modifié 

d’après la référence [20]. (B) Représentation schématique de l’organisation cellulaire du ganglion lymphatique. 

Les cellules endothéliales lymphatiques (LEC) forment le sinus sous-capsulaire. Les macrophages CD169+ (Mᶲ) 

sont insérés dans le sinus. Sous le sinus sous-capsulaire se trouvent les cellules marginales réticulaires (MRC). 

Les cellules folliculaires dendritiques (FDC) sont nécessaires au maintien de l’organisation du follicule B. Les 

cellules fibroblastiques réticulaires (FRC) forment un conduit de fibres réticulaires (RF) qui permet le transport 

des cellules et des molécules depuis le sinus sous-capsulaire jusqu’à la zone T. Les cellules dendritiques (DC) se 

trouvent dans la zone T. Les lymphocytes ne sont pas représentés pour simplifier la représentation. Modifié 

d’après la référence [21]. 

 

Notre équipe a précédemment montré que RANKL active la croissance du ganglion lymphatique par 

la prolifération des cellules endothéliales lymphatiques (LEC). Cet organe lymphatique présente aussi 

A 

B 
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un surnombre en lymphocytes B, cellules importantes dans la défense contre les agents infectieux 

mais aussi dans l’autoimmunité [22]. De plus, RANKL joue un rôle dans la différenciation des 

ostéoclastes mais peu de choses sont connues de son effet sur la différenciation d’autres sous-types 

de macrophages. 

Ainsi, lors de ma thèse je me suis intéressée au rôle que joue RANKL dans l’homéostasie du ganglion 

lymphatique et plus précisément à son effet sur les LEC et sur la différenciation des macrophages 

CD169+ qui se trouvent dans le sinus sous-capsulaire et le sinus médullaire du ganglion. D’autre part, 

mon projet de thèse consiste aussi à développer de nouveaux outils permettant de cibler RANK et 

RANKL. Ainsi, j’ai caractérisé des anticorps ciblant RANK et j’ai criblé une librairie de petites 

molécules à la recherche d’inhibiteurs de l’interaction entre RANK et RANKL. 

 

Résultats :  

1. Développement d’outils ciblant RANK/RANKL 

a. Caractérisation de deux anticorps anti-RANK : de nouveaux outils pour l’étude de ce récepteur 

 

Notre laboratoire a développé un nouvel anticorps anti-RANK (RANK-02) en collaboration avec 

Medimmune. La séquence de reconnaissance de RANK de cet anticorps est basée sur une publication 

décrivant un ScFv (Single chain fraction variable) issu d’une expérience de phage display [23]. Cette 

publication a mis en évidence une activité inhibitrice de ce ScFv sur l’ostéoclastogenèse de cellules 

murines. Une partie de mes travaux a porté sur la caractérisation de cet anticorps aussi bien au 

niveau de son affinité pour RANK que de son effet biologique. Nous avons pu montrer que cet 

anticorps a une forte affinité pour les récepteurs RANK humain (hRANK) et murin (mRANK) (KD de 

l’ordre de 10-10 M). Dans cette étude, nous avons également comparé l’anticorps RANK-02 à un 

anticorps anti-RANK (R12-31) décris par Kamijo et al [24] mais qui n’avait pas été caractérisé pour 

son effet biologique. Cet anticorps se lie à mRANK avec la même affinité que RANK-02 mais semble 

avoir une affinité inférieure pour hRANK (KD de l’ordre de 10-8 M). Grâce à l’utilisation de lignées 

surexprimant RANK, nous avons pu comparer l’activité biologique de ces deux anticorps. Nous avons 

utilisé des cellules Jurkat JOM2 RANK:Fas qui expriment une protéine fusion composée du domaine 

extracellulaire de RANK et du domaine intracellulaire de Fas induisant ainsi la mort cellulaire lorsque 

RANK est activé. Nous avons également étudié l’activation de la signalisation de NF-κB grâce à une 

expérience de gène rapporteur dans des cellules HEK 293 exprimant RANK.  R12-31 semble avoir un 

effet agoniste sur mRANK et hRANK. De manière opposée, RANK-02 semble avoir une faible activité 

antagoniste sur mRANK et une faible activité agoniste sur hRANK. Enfin, nous avons utilisé ces 



v 
 

anticorps sur des cellules primaires pour vérifier qu’ils permettent de mettre en évidence 

l’expression de RANK à la surface des cellules non transfectées. En utilisant la cytométrie en flux, 

nous avons pu montrer que les deux anticorps marquent RANK à la surface de cellules de Langerhans 

activées issues de peau humaine. L’utilisation d’un test ELISA compétitif a permis de mettre en 

évidence que RANK-02 semble se lier au même site que RANKL alors que R12-31 se lie sur un épitope 

différent. Ce travail de caractérisation de ces deux anticorps anti-RANK a fait l’objet d’une publication 

en premier auteur parue en Janvier 2016 dans Immunology Letters [25]. 

mAb Affinité Activité agoniste Activité antagoniste Blocage RANK-RANKL 

 
 Cellules JOM2 NF-κB Cellules JOM2 NF-κB mRANKL hRANKL 

RANK humain 

R12-31 + ++ ++ ND ND +- - 

RANK-02 ++ +- +- ND ND ++ +++ 

 RANK murin 

R12-31 ++ ++ ++ ND ND +- - 

RANK-02 ++ - - -+ -+ + + 

 

Tableau 1 : Récapitulatif des résultats obtenus lors de la comparaison des deux anticorps anti-

RANK R12-31 et RANK-02. ++ = très bon, + = bon, +- = faible, - = absent, ND = non déterminé. 

 

b. Criblage de petites molécules inhibant la liaison RANK-RANKL 

Grâce au test ELISA et aux tests cellulaires développés pour l’étude des anticorps, j’ai pu évaluer des 

petites molécules pour leur capacité à inhiber la liaison de RANK à son ligand RANKL. J’ai criblé la 

Prestwick Chemical Library® (PCL) qui contient 1280 composés à l’aide du test ELISA compétitif. Cette 

librairie représente une grande diversité chimique de molécules déjà validées par la FDA pour 

certaines applications cliniques.  

Suite au criblage, un hit (vertéporfine) avec une activité supérieure à 40% à 100µM a pu être 

confirmé. Cette molécule montre également une activité dose dépendante dans l’ELISA avec un IC50 

de 0.4µM (Fig 3).  
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Figure 3: La vertéporfine inhibe l’interaction entre RANK et RANKL. (A) Structure de la vertéporfine    

(B) Dose-réponse de vertéporfine dans un test ELISA compétitif étudiant la liaison de RANKL à RANK. La 

quantité de hRANKL liée à hRANK a été mesurée. Les valeurs sont exprimées en pourcentage du contrôle positif 

(moyenne ± SD).  

 

Nous avons par la suite testé 10 analogues structuraux de la vertéporfine à l’aide de l’ELISA. Parmi 

ces analogues, seulement deux n’avaient pas d’activité inhibitrice, quatre composés avaient un IC50 

compris en 0.3 et 1.5µM, deux composés entre 2 et 8.5 µM et 2 composés une activité très moyenne 

due entre autre à une faible solubilité (Fig 4). 

 

 

Figure 4: Evaluation de l’activité d’analogues de la vertéporfine. Dose-réponses d’analogues de la 

vertéporfine dans un test ELISA compétitif étudiant la liaison de RANKL à RANK. La quantité de hRANKL liée à 

hRANK a été mesurée. Les valeurs sont exprimées en pourcentage du contrôle positif (moyenne ± SD). Les 

chiffres 1 à 10 font référence aux molécules décrites dans le tableau 2.    
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n° Nom 
IC50 

(µM) 
n° Nom 

IC50 

(µM) 
      

1 

 
 

Coproporphyrin I 
dihydrochloride 

 

- 7 

 
 

Protoporphyrin IX 
dimethyl ester 

 

23.82 

2 Chlorin e6 
8.37 

 
8 

 
 

Pheophorbide a (mixture 
of diastereomers) 

 

1.15 

3 

 
 

Hematoporphyrin IX 
dimethyl ester 

 

0.32 9 

 
Pyropheophorbide-a 

 
0.51 

4 

 
 

Isohematoporphyrin 
IX 
 

Ambi-
guous 

10 

 
Purpurin 18 

 
1.45 

5 

 
 

Pyropheophorbide-a 
methyl ester 

 

2.37 

 

Tableau 2: Description des analogues de la vertéporfine 

 

J’ai par la suite testé ce hit dans un test cellulaire avec une lignée cellulaire exprimant une protéine 

fusion hRANK:Fas. Lorsque RANK est activé dans ces cellules cela induit la mort cellulaire via 

l’activation de Fas. La mort cellulaire peut ensuite être étudiée grâce à un marquage avec l’iodure de 

propidium qui marque les cellules mortes et une analyse par cytométrie en flux. Une activité 

inhibitrice de la vertéporfine à 10µM a pu être mise en évidence dans ces cellules. En testant les 

analogues à 10µM dans le test cellulaire, nous avons pu confirmer l’activité de cette famille de 

molécules pour l’inhibition de l’interaction entre RANK et son ligand RANKL. De plus, ces molécules 

ne semblent pas avoir un effet cytotoxique sur les cellules jurkat JOM2 (Fig 5).  
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Figure 5: La vertéporfine et les analogues ont une faible cytotoxicité et inhibent l’activation de 

RANK dans les cellules Jurkat JOM2 hRANK:Fas. Les graphes représentent l’intensité de fluorescence 

moyenne (MFI) du marquage à l’iodure de propidium (PI) normalisée par rapport aux cellules traitées avec 

RANKL + 0.05% DMSO. (A) les cellules ont été traitées pendant 16h avec 10µM des molécules. (B) Les cellules 

ont été traitées avec 10µM des molécules et 1ng/ml de RANKL. L’anticorps anti-RANKL IK22-5 à 10µg/ml est un 

contrôle positif de l’inhibition de l’interaction RANK-RANKL. Moyenne ± SD. Un t test a été utilisé pour évaluer 

la significativité statistique. * p<0.05 ** p<0.001 ***p<0.001    

Finalement, nous avons testé la vertéporfine dans un test de différenciation des ostéoclastes. La 

vertéporfine à des doses de l’ordre du micromolaire inhibe efficacement l’ostéoclastogenèse induite 

par le traitement avec M-CSF et RANKL de la lignée cellulaire RAW 264.7 (Fig 6).  

 

 

Figure 6: La vertéporfine inhibe l’ostéoclastogenèse. (A) Images de microscopie montrant l’effet de la 

vertéporfine sur la différenciation des cellules RAW 264.7 en culture avec M-CSF (25ng/ml) et RANKL (30ng/ml) 

pendant 4 jours en présence ou non de vertéporfine. La formation d’ostéoclastes est évaluée par un marquage 

de TRAcP et les cellules sont photographiées (x10). (B) le graphe représente le nombre d’ostéoclastes 

multinuclés (>3 noyaux) positifs pour TRAcP (moyenne ± SD en triplicats) après traitement avec différentes 

doses de vertéporfine.    

Cette étude démontre qu’une petite molécule peut inhiber l’interaction entre RANK et son ligand. 

Cependant la vertéporfine est utilisée comme traitement en thérapie photodynamique de la 
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néovascularisation dans la dégénérescence maculaire liée à l’âge. Cette molécule induit donc une 

photosensibilité lorsqu’elle est injectée. Une étude plus approfondie des potentiels effets 

secondaires et de son effet in vivo est donc nécessaire. 

 

2. Rôle de RANKL dans l’homéostasie du ganglion lymphatique 

a. Mise en évidence d’un nouveau marqueur des cellules endothéliales lymphatiques (LEC) sous 

l’influence de RANKL : ITGA2b  

 

ITGA2b est une molécule de surface qui forme un complexe avec ITGB3, l’intégrine α2bβ3. Cette 

intégrine est connue pour son expression par les mégacaryocytes et les plaquettes. Nous avons 

montré que ITGA2b est présente à la surface des cellules endothéliales lymphatiques (LEC) du 

ganglion lymphatique et que cela n’est pas dû à une contamination par des plaquettes (Fig 7).  

 

Figure 7 : Les cellules endothéliales lymphatiques du ganglion expriment ITGA2b. (A) Histogrammes 

de cytométrie en flux montrant l’expression de ITGA2b par les cellules stromales du ganglion lymphatique. 

LEC= cellules endothéliales lymphatiques ; BEC= cellules endothéliales vasculaires ; FRC= cellules fibroblastiques 

réticulaires ; DNC= cellules doubles négatives (gp38
-
CD31

-
). Le pourcentage de cellules marquées (moyenne ± 

SD n=13) est indiqué. (B) Histogrammes de cytométrie en flux montrant l’expression d’un marqueur spécifique 

des plaquettes (GPIbβ). Le pourcentage de cellules marquées (moyenne ± SD n=8) est indiqué.  (C) Les 

histogrammes montrent l’expression de ITGA2b dans les LECs des souris WT contrôle et une expression réduite 

à absente dans les LECs des souris hétérozygotes ou homozygotes pour la délétion du gène Itga2b. Le 

pourcentage de cellules marquées (moyenne ± SD n=9) est indiqué.  (D) Histogrammes montrant l’expression 

de ITGA2b par les plaquettes et les LECs dans des souris contrôles et dans des souris après transfert de moelle 

osseuse Itga2b
-/- 

(n=8, n=4 pour les souris WT). Le pourcentage ± SD de cellules ITGA2b+ est indiqué.  (E) 

Images de microscopie à fluorescence confocale de LECs triées et mises en culture montrant l’expression de 

mCLCA1 (clone 10.1.1, magenta) et ITGA2b (vert). (F) Histogrammes de cytométrie en flux montrant 

l’expression de ITGA2b dans les cellules stromales du ganglion lymphatique mésentérique d’embryon humain. 

Un t test a été utilisé pour calculer la significativité statistique. ***p<0.001.  
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Nous avons montré que ITGA2b est plus fortement exprimée par les LECs de la partie interne du 

sinus sous-capsulaire et par une partie des LECs de la zone médullaire. L’expression de cette 

molécule de surface illustre donc l’hétérogénéité des LECs au sein du ganglion lymphatique. De plus, 

nous avons démontré que l’expression de ITGA2b est sensible à RANKL. En effet, le pourcentage de 

LECs positives pour ITGA2b est augmenté dans des souris qui surexpriment RANKL et il est diminué 

dans des souris traitées avec un anticorps anti-RANKL ou dans des souris déficientes pour RANKL 

dans les cellules marginales réticulaires (Fig 8). L’expression de ITGA2b par les LECs semble 

également être sous le contrôle de la lymphotoxine. Ces résultats ont fait l’objet d’une publication en 

deuxième auteur dans PLoS ONE en Mars 2016 [26]. 

 

 

Figure 8: L’expression de ITGA2b par les LECs est sensible à RANKL et à la lymphotoxine.                   

(A) Pourcentage de LECs ITGA2b
+
 dans les ganglions lymphatiques périphériques (pLN) en comparaison avec les 

ganglions mésentériques (mLN) (moyenne ± SD n=6). (B) Les souris ont été immunisées avec B.Pertussis 

inactivées et l’expression de ITGA2b dans les LECs a été étudiée dans les ganglions drainants et non drainants. 

Le graphe montre le pourcentage de LECs ITGA2b
+ 

(moyenne ± SD n=6) montrant une augmentation en 

réponse à l’immunisation.          (C) Histogrammes de cytométrie en flux montrant l’expression de ITGA2b dans 

les cellules stromales des ganglions drainants après immunisation (moyenne ±SD n=6). (D) Histogrammes 

montrant l’expression de GPIBβ par les cellules stromales des ganglions drainants après immunisation 

(moyenne ±SD, n=6). (E) Pourcentage de LECs ITGA2b
+
 dans les ganglions lymphatiques des souris contrôles WT 

en comparaison avec des souris qui surexpriment RANKL (RANK-Tg) (moyenne ±SD, n=8). (F) Pourcentage de 

LECs ITGA2b
+
 dans les ganglions lymphatiques des souris contrôles en comparaison avec des souris traitées 

avec un anticorps anti-RANKL (moyenne ±SD, n=5). (G) Images de microscopie confocale de l’expression de 

ITGA2b (vert) par les LECs (10.1.1, magenta) dans les sinus sous-capsulaires et médullaires après traitement 

avec un anticorps anti-RANKL ou un isotype contrôle. (H) Pourcentage de LECs ITGA2b
+
 dans les ganglions 
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lymphatiques des souris contrôles en comparaison avec des souris déficientes pour RANKL dans les cellules 

marginales réticulaires (KO) (moyenne ±SD, n=9). (I) Pourcentage de LECs ITGA2b
+
 dans les ganglions 

lymphatiques des souris contrôles en comparaison avec des souris traitées avec LTβR-Ig (moyenne ±SD, n=3). 

Un t test a été utilisé pour calculer la significativité statistique. *p<0.5, **p < 0.01, ***p < 0.001. 

b. Rôle de RANKL dans l’activation des LECs et la présence des macrophages sous-capsulaires 

 

Les macrophages sous-capsulaires CD169+ sont insérés entre les cellules endothéliales lymphatiques 

dans le sinus sous-capsulaire. Ils sont importants pour la réponse immunitaire contre les virus et le 

transfert des antigènes aux lymphocytes B. Il a été précédemment montré que les souris déficientes 

pour RANK présentent une diminution de l’expression de CD169 dans la rate. Nous avons confirmé 

ces résultats avec des souris déficientes pour RANKL (Fig 9A). Comme ces souris ne développent pas 

de ganglions, nous avons injecté un anticorps anti-RANKL dans des souris WT. Nous avons observé 

une diminution du marquage CD169 dans la rate et dans les ganglions lymphatiques (Fig 9B). Nous 

avons également observé une diminution du nombre absolu de macrophages sous-capsulaires par 

cytométrie en flux (Fig 9C). Les injections de LTβR-Fc et de TNFR2-Fc servent respectivement de 

contrôle positif et de contrôle négatif pour la disparition des macrophages sous-capsulaires.  
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Figure 9: Effet de RANKL sur les macrophages exprimant CD169 dans la rate et le ganglion.             

(A) Images de microscopie de sections de rate de souris WT et RANKL
-/-

 marquées pour visualiser CD169 (vert) 

et B220 (rouge). (B) Images de microscopie de sections de rate ou de ganglions marquées pour visualiser 

CD169 (vert) et B220 (rouge) après traitement avec 20µg d’anticorps anti-RANKL IK22-5, LTβR-Fc ou TNFR2-Fc 3 

fois par semaines pendant 3 semaines. Echelle = 100µm. (C) Stratégie de gating pour étudier les macrophages 

des ganglions par cytométrie en flux. Les graphes montrent le nombre absolu (moyenne ± SD) des 

macrophages sous-capsulaires (SSM) et des macrophages médulaires (MSM) après traitement avec anti-RANKL, 

LTβR-Fc, TNFR2-Fc. Les résultats pour les ganglions inguinaux et brachiaux analysés séparément sont 

représentés sur le même graphe. La significativité statistique a été calculée en utilisant un test ANOVA avec 

une correction de bonferroni.  **** p< 0.0001 

 

Les cellules marginales réticulaires (MRC) expriment de manière constitutive RANKL. Afin de mieux 

étudier l’effet de RANKL sur l’homéostasie du ganglion adulte, nous avons développé un modèle 

murin dans lequel les cellules marginales réticulaires (MRC) n’expriment pas RANKL dans le ganglion 

lymphatique adulte (Fig 10). 
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Figure 10: Absence de RANKL dans les souris RANKL
ΔCcl19

. (A) Images de microscopie confocale de 

ganglion inguinaux de souris RANKL
ΔCcl19

 et de souris contrôles cre- au stade E18.5 marqué pour visualiser les 

cellules endothéliales lymphatiques (anticorps 10.1.1, purple), les cellules LTi (lymphoid inducer cells, marquée 

avec CD4, rouge) et RANKL (cyan). Echelle = 50µm. (B) Images de microscopie confocale de ganglion inguinaux 

de souris RANKL
ΔCcl19

 et de souris contrôles cre- adultes âgées de 8 semaines marqués pour visualiser RANKL 

(vert) et les cellules endothéliales lymphatiques (anticorps 10.1.1, rouge). Echelle = 50µm 

 

Nous avons pu mettre en évidence que le nombre de  macrophages sous-capsulaires est diminué en 

l’absence de RANKL provenant des cellules stromales. Les souris dépourvues de RANKL dans les 

MRCs montrent également un dysfonctionnement fonctionnel puisque le transfert d’antigène aux 

cellules B ne se fait pas correctement (Fig 11). 
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Figure 11: L’absence de RANKL provenant des cellules stromales affecte la différenciation des 

macrophages sous-capsulaires CD169
+
. (A) Images de microscopie d’une section de ganglion provenant de 

souris RANKL
ΔCcl19

 et de souris contrôles marquées pour visualiser CD169 (vert), SIGN-R1 (rouge) et B220 (gris). 

Echelle = 200µm (B) Les graphes montrent la réduction de la population de macrophages CD169
+
 F4/80

-
 

correspondant aux macrophages sous-capsulaires par cytométrie en flux. Le nombre absolu de cellules est 

représenté (moyenne ± SD). La significativité statistique a été calculée avec un test ANOVA avec une correction 

de bonferroni ***p<0.001. (C) Les graphes représentent la stratégie pour étudier la présence 

d’immunocomplexe PE-IC sur les lymphocytes B. Le pourcentage (moyenne ± SD) de lymphocytes B PE+ dans 

les souris RANKL
ΔCcl19

 et les souris contrôle est représenté. La significativité statistique a été calculée en utilisant 

un test de Mann-Whitney **p<0.01.  

 

Nous avons par la suite cherché à identifier le mécanisme par lequel RANKL agit sur les macrophages. 

J’ai étudié le phénotype de souris KO pour RANK dans les macrophages. Je n’ai pas pu observer de 

diminution des macrophages sous-capsulaires dans ces souris (Fig 12A). D’autre part, lors d’un 

transfert de cellules de foie fœtal provenant de souris RANK KO total dans des souris irradiées, nous 

avons pu observer que l’absence de RANK dans les précurseurs myéloïdes n’empêche pas la présence 
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de macrophages sous-capsulaires (Fig 12B). Ces observations nous permettent de conclure que 

RANKL n’a pas un effet direct sur RANK à la surface des macrophages (Fig 12C). Nous avons aussi 

étudié des souris déficientes pour RANK dans les MRC. Ces souris ne présentent pas d’anomalie dans 

les macrophages des ganglions (Fig 12D). Nous pouvons donc exclure un effet autocrine sur les MRCs 

(Fig 12
 
E).  

 

Figure 12: RANKL n’agit pas directement sur les macrophages ou sur les MRC. (A) Les graphes 

représentent le pourcentage (moyenne ±SD) de macrophages sous-capsulaires dans les souris RANK
ΔCD11c

 et 

RANK
ΔLysM

 ainsi que dans les souris contrôles cre-. (B) Le schéma représente le protocole pour le transfert de 

cellules de foie fétale. Le graphe montre le pourcentage de reconstitution (moyenne ±SD) en fonction de 

l’origine des cellules. (C) Représentation schématique résumant nos résultats montrant que RANKL n’agit pas 

directement sur les macrophages. (D) Le graphe montre le pourcentage (moyenne ±SD) de macrophages sous-

capsulaires dans les souris RANK
ΔCCL19 

et les souris contrôles cre-. (E) Représentation schématique montrant que 

RANKL n’a pas un effet autocrine sur les MRC. La significativité statistique a été calculée avec un test de Mann-

Whitney. 

 

Nous avons déjà montré que les LECs sont sensibles à RANKL et surexpriment ITGA2b et MAdCAM-1 

en présence de RANKL [22,26]. Nous avons montré que RANK est exprimé par les LECs par qPCR (Fig 

13A). Nous avons donc étudié comment les MRC, les LECs et les macrophages pourraient 

communiquer entre elles. Pour cela, nous avons injecté du RANKL-GST soluble  et nous avons pu 
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observer que le phénotype des LECs (expression de MAdCAM et de ITGA2b) revient à un niveau 

normal dans les souris qui n’expriment pas RANKL dans les MRC (Fig 13B). Notre hypothèse est donc 

un mécanisme indirect entrainant la différenciation des macrophages sous-capsulaires passant par 

les LECs (Fig 13C). 

 

Figure 13: Les cellules endothéliales lymphatiques (LECs) sont sensibles à RANKL et l’expression de 

ITGA2b et de MAdCAM-1 peut être restaurée. (A) Expression relative de l’ARN messager de RANK 

(moyenne ± SD) dans les LECs, les cellules endothéliales vasculaires (BEC) et les cellules fibroblastiques 

réticulaires (FRC). La significativité statistique a été calculée en utilisant un test de Mann-Whitney. **p<0.01  

(B) Le graphe représente le pourcentage (moyenne ± SD) de LECs MAdCAM-1
+
 et ITGA2b

+
 dans les souris 

RANKL
ΔCcl19 

injectées ou non avec 100µg de GST-mRANKL ou de GST pendant 4 jours en comparaison avec les 

souris contrôles cre-. La significativité statistique a été calculée en utilisant un test ANOVA avec une correction 

de bonferroni. ***p<0.001 (C) Représentation schématique d’un possible mécanisme impliquant les LECs dans 

la différenciation des macrophages sous-capsulaires.  
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Conclusion et perspectives : 

La triade RANK/RANKL/OPG joue un rôle dans différents processus biologiques. En particulier RANKL 

joue un rôle important dans des pathologies telles que le cancer, l’ostéoporose et l’autoimmunité. Il 

est donc intéressant de cibler l’interaction entre RANK et RANKL pour traiter ces pathologies. De 

plus, une bonne caractérisation des outils utilisés pour étudier RANK est importante pour la 

découverte de nouveaux rôles de cette molécule. Pendant cette thèse, j’ai identifié et caractérisé des 

molécules permettant de cibler RANK ou RANKL. Tout d’abord j’ai mis en place des tests in vitro 

permettant la caractérisation de deux anticorps anti-RANK. L’utilisation de ces tests m’a par la suite 

permis d’identifier une famille de petites molécules inhibant l’interaction entre RANK et RANKL.  

L’utilisation de l’ELISA compétitif m’a permis de cribler la Prestwick Chemical Library® et d’identifier 

un hit : la vertéporfine. L’étude de 10 analogues nous a permis de confirmer l’activité de cette 

famille. Nous avons également montré que la vertéporfine et certains analogues inhibent l’activation 

de RANK dans un test cellulaire avec les cellules Jurkat JOM2 hRANK :Fas et enfin que la vertéporfine 

inhibe l’ostéoclastogenèse de cellules murines et humaines.  

Ces molécules seraient donc d’intéressants inhibiteurs de la voie RANK/RANKL et de 

l’ostéoclastogenèse. Cependant la vertéporfine est utilisée en thérapie photodynamique et entraine 

donc une photosensibilité. Les potentiels effets secondaires et off-target de ces molécules doivent 

donc être mieux caractérisés avant d’envisager une utilisation thérapeutique.  

Cette étude apporte tout de même la preuve que ces structures spécifiques sont capables d’inhiber 

l’interaction entre RANK et RANKL et pourrait permettre le développement d’autres molécules plus 

efficaces ayant moins d’effet indésirables. 

D’autre part, nous avons mis en évidence l’importance de RANKL provenant des cellules stromales 

dans la région du sinus sous-capsulaire des ganglions lymphatiques. Cette chimiokine semble en effet 

affecter la différenciation des macrophages sous-capsulaires. Nous avons également mis en évidence 

que les LEC expriment des marqueurs d’activation dépendant de RANKL. Une coopération entre les 

MRC exprimant RANKL, les LEC qui sont sensibles à RANKL et les macrophages sous-capsulaires serait 

donc possible. Pour confirmer cela, nous sommes en train d’étudier des souris dans lesquels les LECs 

n’expriment pas RANK. D’autre part, l’analyse du transcriptome des LECs de souris RANKLΔCcl19 

traitées ou non avec du RANKL recombinant nous permettrait d’identifier les facteurs responsables 

de la différenciation des macrophages. Nous avons donc trié les LECs de ces souris et nous avons 

réalisé un RNAseq. Les résultats sont en cours d’analyse. Enfin, les LEC et les SSM pouvant jouer un 



xviii 
 

rôle dans certaines conditions pathologiques, il serait intéressant d’étudier le rôle de RANKL dans des 

pathologies telles que les cancers et les maladies auto-immunes.  

 

 

Figure 14 : Représentation schématique du mécanisme liant RANKL exprimé par les cellules 

stromales et la différenciation des macrophages sous-capsulaires (SSM). RANKL est exprimé par les 

MRCs dans le ganglion lymphatique. Nous avons montré que RANKL n’agit pas directement sur les 

macrophages ou sur les précurseurs myéloïdes. Nous avons également exclu une boucle autocrine de RANKL 

sur les MRCs. Nous avons observé que les LECs sont sensibles à RANKL. Nous avons donc comme hypothèse un 

mécanisme indirect passant par les LECs. RANKL aura ainsi un effet sur les LECs qui sécréteraient à leur tour des 

facteurs permettant la différenciation des macrophages. Ces facteurs restant à être identifiés. 
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Chapter 1: The RANK/RANKL/OPG triad, a member 

of the TNF/TNFR superfamilies 

1.1. TNFR and TNF superfamilies 
 

The tumor necrosis factor (TNF) superfamily of receptors and ligands include several signal 

transducers which are important in biological processes such as development and maintenance of 

immune cells and secondary lymphoid organs. They also have other functions such as bone and 

mammary gland homeostasis, host defense, inflammation, and apoptosis [1]. In the 1970’s, 

lymphotoxin (LT) and tumor necrosis factor (TNF) were the first members of the family to be 

identified as molecules causing the lysis of tumor cells [2,3]. In 1984, cDNA coding these two proteins 

were cloned. Strong homologies between TNF and LT were observed suggesting that they formed a 

new superfamily of genes [4,5].  Since then, 18 genes have been identified coding for 19 TNF 

superfamily ligands and 29 receptors were discovered [6] (figure 1.1). 

 

Figure 1.1: Members of the human TNF and TNFR superfamilies. Representation of the interaction 

between human tumor necrosis factor superfamily ligands (top) and their receptors (bottom). TNF ligands are 

all type II transmembrane proteins which can be cleaved as a soluble form by proteases. The arrows show the 

cleavage sites. The vascular endothelial cell growth inhibitor (VEGI) is an exception as it is directly expressed as 

a soluble protein. The green boxes represent the TNF homology domain (THD). The TNF receptors are type I or 

type III transmembrane proteins but can also be soluble. They are composed of cysteine rich domains (CRD) 

comprising a tandem pair of modules (A,B,C,X). The size of intracellular domain is indicated for ligands and 

receptors. The red boxes represent the death domains of TNFR. The red arrows show the known interactions 

between TNF ligands and receptors. After reference [6]. 
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As type II transmembrane proteins, TNF superfamily ligands have an intracellular N terminus and an 

extracellular C terminus. Most ligands are membrane bound but they can be cleaved by proteolysis 

and secreted as a soluble form. Vascular endothelial cell-growth inhibitor (VEGI) is an exception as it 

is directly expressed as a soluble protein.  All TNF family members contain a conserved C-terminal 

domain called “TNF homology domain” (THD) which has 20-30% sequence identity between family 

members. The THD folds into antiparallel β-sandwiches and is involved in receptor binding. TNF 

family ligands assemble into homotrimers containing three receptor binding sites [6]. LTβ cannot 

form homotrimers but rather forms heterotrimers with LTα.  Receptor selectivity of the ligands is due 

to difference in length and residue composition of the surface loops connecting the                           

THD β-strands [7].    

TNFSF receptors are mostly type I transmembrane proteins, meaning that they have an extracellular 

N terminus and an intracellular C terminus. They are characterized by the presence of cysteine rich 

domains (CRDs) the number of which varies from one to four depending on the receptor. Each CRDs 

are formed of 2 modules called A,B,C or X depending on their folding and the number of disulfide 

bridges they contain [7]. These CRDs are located in the extracellular domain of the receptors and 

contain 3 disulfide bonds giving them an elongated shape. This specific shape enables the receptors 

to bind the ligands. Indeed, as TNFSF ligands assemble into homotrimers, the elongated shape of the 

receptors allows the binding between two ligand monomers. Moreover, different orientation of the 

CRDs are responsible for selectivity of the ligands [7].  

Because TNFR lack intrinsic kinase activity, interaction of the intracellular domain with signaling 

molecules is required for receptor activation and signaling. TNFR can be separated in two types of 

receptors based on the signaling molecule they bind. Activating receptors such as RANK, CD40, CD30 

or TNFR2, bind one or more TNFR-associated factors (TRAF). Depending on the TRAF protein, 

different signaling pathways can be induced such as NF-κB, mitogen activated protein kinases (MAPK) 

and JNK leading to cell growth and survival [1,8]. On the other hand, death receptors such as 

TRAILR1, TNFR1 or Fas contain an intracellular death domain (DD). This domain binds Fas-associated 

DD (FADD) or TNFR-associated DD (TRADD) proteins inducing caspase pathways and cell death [1]. 

Therefore, the signaling induced after TNFR superfamily members activation can lead to both 

beneficial and harmful effects [8]. TNF ligands family members have anticancer potential, regulate 

the immune system and protect against infection. On the other hand, they can promote tumour 

development, play a role in autoimmunity and are implicated in other diseases such as osteoporosis 

and chronic heart failure [8]. As they play a role in many physiopathological conditions, TNF family 

members represent interesting therapeutic targets. Indeed, several therapies targeting members of 
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the TNF family are currently approved or in clinical trials, many of them being protein-based         

drugs [9].  

1.2. Discovery of RANK/RANKL/OPG 

 

In the late 1990’s, parallel work aimed at identifying new members of the TNF superfamily. Amgen 

Inc. generated several transgenic mice overexpressing cDNA related to TNF receptors. One of these 

mice presented severe osteopetrosis due to the lack of bone resorbing cells called osteoclasts. The 

protein encoded by this cDNA was named osteoprotegerin (OPG) [10]. Independently, a research 

team from the Snow Brand Milk Product co. reported the discovery of a molecule purified from 

human embryonic fibroblasts inhibiting osteoclastogenesis. This molecule was named 

osteoclastogenesis inhibitory factor (OCIF) [11]. After cloning of this gene both teams identified the 

corresponding ligand called respectively OPG ligand (OPGL) and osteoclast differentiation factor 

(ODF) [12,13]. Two other groups had discovered a member of the TNF ligand superfamily named 

respectively receptor activator of NF-κB ligand (RANKL) [14] and TNF-related activation induced 

cytokine (TRANCE) [15]. All these ligands (OPGL, OCIF, TRANCE and RANKL) discovered independently 

by four teams turned out to be identical. However, OPG was identified as a soluble decoy receptor 

lacking a transmembrane domain [10,16]. Anderson et al identified the cellular receptor called 

receptor activator of NF-κB (RANK) while sequencing cDNAs from human bone marrow derived 

dendritic cells. This group found that RANK had a partial homology to the extracellular domain of 

CD40, another member of the TNFRSF [14]. Therefore, RANK-RANKL-OPG system was identified in 

parallel by four teams describing two different roles for these molecules. RANK,RANKL and OPG are 

involved in osteoclastogenesis and bone homeostasis [12,13] and in T cell proliferation and activation 

by dendritic cells [14,15].  The biological implications of this triad will be detailed in the Chapter 2. 

As described in this paragraph, different names were given to the members of the RANK-RANKL-OPG 

triad depending on the group where they were discovered. They are summarised in table 1.1 

together with their chromosomal location on human and mouse chromosomes. These molecules will 

be called RANKL, RANK and OPG in this thesis.  
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Nomenclature 

name 

Other names Human 

chromosome 

Mouse 

chromosome 

TNFSF11 

RANKL (receptor activator of NF-κB ligand) [14] 

OPGL (osteoprotegerin ligand) [13] 

TRANCE (TNF-related activation induced cytokine) [15] 

ODF (osteoclast differentiation factor) [12] 

13q14 14 

TNFRSF11A 

RANK (receptor activator of NF-κB) [14] 

ODFR (osteoclast differentiation factor receptor) [17] 

TRANCE-R (TNF-related activation induced cytokine       

receptor) [15] 

ODAR (osteoclast differentiation and activation receptor) [18] 

18q22.1 1 

TNFRSF11B 
OPG (osteoprotegerin) [10] 

OCIF (osteoclastogenesis inhibitory factor) [11] 
8q24 15 

Table 1.1: Different names of RANK, RANKL and OPG and chromosomal location. 

TRAIL (TNF-related apoptosis-inducing ligand) is another member of the TNF superfamily of ligands. 

DR4 (death receptor 4) and DR5 (death receptor 5) are binding TRAIL and induce cell apoptosis. Two 

other receptors bind TRAIL but do not contain cell death domain; they are called DcR1 (decoy 

receptor 1) and DcR2 (decoy receptor 2). OPG was also identified as a decoy receptor for TRAIL by 

Emery and co-workers in 1998 [19]. The known interactions between RANK, RANKL and OPG are 

summarized in figure 1.2. 

 

Figure 1.2: Representation of the interactions between the members of RANK/RANKL/OPG axis. 

Soluble or membrane bound RANKL binds RANK to induce intracellular signaling in RANK expressing cells. OPG 

is a soluble decoy receptor binding RANKL and preventing RANK activation. OPG also binds TRAIL, a ligand 

inducing apoptosis of the cells expressing a receptor for TRAIL. 
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1.3. Structure and signaling pathways of the RANK/RANKL/OPG triad 

1.3.1. Structures of RANK/RANKL/OPG triad and regulation of their 

expression 

a) RANKL 

 

RANK ligand (RANKL) is a type II homotrimeric transmembrane protein and has homology with other 

TNFSF members such as TRAIL, FasL and TNFα. Murine RANKL is composed of 316 amino acids and 

has 85% of homology with human RANKL [14]. RANKL protein comprises a C-terminal extracellular 

receptor-interacting domain and a transmembrane domain. It is found both in membrane bound 

(45kDa) and soluble form (31 kDa). Indeed, metalloprotease-desintegrin TNFα convertase (TACE) can 

cleave the extracellular part and release soluble RANKL [20]. The matrix metalloproteinases MMP 14 

and 7 together with a disintegrin and metalloproteinase (ADAM) 10 were also shown to cleave 

RANKL [21,22]. The murine RANKL ectodomain was crystallized in 2001 by Lam and colleagues [23] 

(figure 1.3). They found that RANKL forms homotrimers as it was already known for other members 

of the TNFSF.  Monomers contain four surface loops (AA’, CD, EF, DE loops) which play a role in the 

unicity and specificity of RANKL [23]. RANKL structure is highly comparable to TNF and TRAIL ligands, 

the main differences residing in these surface loops. In 2012, Nelson and colleagues crystallised 

RANKL-OPG and RANKL-RANK complexes. The important residues for binding were different between 

RANKL binding to OPG or RANK. DE loop seems to be important in both cases [24] (figure 1.3). 

Two other isoforms of RANKL resulting from RNA splicing have been identified [25]. RANKL2 contains 

the transmembrane domain but presents a shorter intracellular domain. RANKL3 isoform lacks the 

transmembrane domain.  

RANKL expression was observed in several tissues and cells including lymph nodes, spleen, T 

lymphocytes, osteoblasts, bone marrow, heart and skeletal muscle. During embryonic development, 

RANKL mRNA expression was also found in tissues such as brain, kidney, skin, liver and lung 

[14,15,26].  
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Figure 1.3 : Crystal structure of murine RANKL ectodomain. (a) Ribbon diagram of RANKL homotrimer. 

The β-strands of one monomer are shown in green and connecting loops in orange. The two other monomers 

are shown in blue and magenta. The C-terminus is on the top of the diagram and the membrane-distal region is 

at the bottom. (b) Surface of the homotrimer in the same orientation as in a. (c) Ribbon diagram of RANKL 

homotrimer with membrane-distal face forward. (d) Surface of the homotrimer in the same orientation as in c. 

(e) Comparison of RANKL monomer with TNF and TRAIL monomers. β-strands are colored in green and 

connecting loops of RANKL in orange. Connecting loops of TNF and TRAIL are respectively gray and blue. RANKL 

β-strands superimpose with the other TNFSF members but the structure differs in the connecting loops that are 

unique to RANKL. Key interaction residues between RANKL and OPG (f) and RANKL and RANK (g) are coloured 

depending on the distance according to the scale. Modified after references [23,24]. 

 

b) RANK 

 

RANK receptor is a type I transmembrane protein composed of 616 amino acids and four CRDs [14]. 

There is 85% homology between human and murine RANK. The cytoplasmic domain of RANK 

contains 382 amino acids and is the longest of the TNFR superfamily [6]. RANK protein is highly 

homologous to CD40 with 40% homology [14]. As other receptors of the TNFRSF, RANK lacks intrinsic 

kinase activity and TRAF proteins are recruited after activation to induce downstream signaling. The 

signaling pathways will be detailed in the following paragraph. Upon interaction with RANKL, RANK 

homo-trimerizes [27]. In 2010, Liu and colleagues crystallized the complex containing RANK 

extracellular domain and RANKL ectodomain. They observed the elongated shape formed by the four 

CRDs of RANK and conformational changes of the receptor after binding of RANKL. The structure of 

RANK-RANKL complex was similar to TNFβ(LTα)-TNFRSF1A and TRAIL-DR5 complexes but the CRD3 of 

RANK was differently oriented [28]. Ta and colleagues also showed that loop 3 is particularly 

important for RANK activity [29]. This loop is structurally distinct from other TNF-family members and 

represents the largest surface area binding RANKL. Nelson and colleagues crystallized the RANK-

f 

g 
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RANKL complex in 2012 and were able to identify the key residues for RANK binding to RANKL [24] 

(figure 1.4).   

Alternative splicing variants of RANK were identified. These truncated RANK proteins were shown to 

be less efficient in binding RANKL and activating downstream signaling in vitro [30,31]. The 

importance of these isoforms in vivo remains to be investigated.  

RANK mRNA was found in several tissues including bone marrow, heart, lung, thymus, liver, bones, 

mammary glands, prostate, brain, liver, skeletal muscles and skin [14,32].  

 

 

 

 

 

 

 

 

 

 

Figure 1.4: Crystal structures of RANK and RANK-RANKL complex. (a) Structure of RANK with the four 

cysteine-rich domains (CRD) represented in blue, orange, green and red. (b) Structure of the heterohexameric 

complex containing RANKL homotrimer represented by ribbon diagram in the center and the extracellular 

domain of three RANK receptors. (c) Molecular surface of RANK with the key interaction residues colored by 

distance according to the scale. (d) RANKL-RANK (green), TNFβ(LTα)-TNFRSF1A (red) and TRAIL-DR5 (blue) 

complexes superimposed showing the homology between these receptors. The difference in conformation of 

AA’ and DE loops of the ligands and loops in CRD2 and CRD3 of the receptors are also shown. Modified after 

references [24,28]. 

 

c) OPG  

 

The OPG decoy receptor is also a highly conserved protein as the homology between rat and human 

OPG is approximately 94% while rat and mouse OPG show 85% homology [10]. Full length OPG is a 

401 amino acid protein which is reduced to 380 amino acids due to signal peptidase cleavage [10,32]. 

This protein comprises four CRDs N-terminal domains, two death domain homologous (DDH) regions 

and a C-terminal heparin-binding domain [19,33]. OPG is secreted as a soluble receptor because it 

lacks a membrane-interacting domain [6]. Therefore, DDH are not able to induce apoptosis. 

a b c d 
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However, it was shown that expression of OPG:Fas fusion protein with Fas sequence inserted 

between CRDs and DDH of OPG is able to induce apoptosis [34]. The heparin binding domain was 

shown to bind syndecan 1, a heparan sulfate proteoglycan involved in cell adhesion and migration as 

well as cytoskeleton regulation [35]. OPG contains several N-linked glycosylation sites and is then 

secreted as a disulfide-linked homodimer [10,11,36]. Therefore, OPG protein presents two 

uncommon elements in the TNFR superfamily: (i) it covalently dimerizes and (ii) lacks a 

transmembrane domain.  

It was shown that OPG binds RANKL with high affinity but also binds TRAIL, another TNFSF member, 

with low affinity [19]. Nelson et al crystalized the structure of RANKL-OPG complex in 2012. They 

identified key residues for interaction of OPG with RANKL. The RANKL binding cleft adopts a unique 

conformation to bind OPG which is different from RANKL bound to RANK (figure 1.5). Nelson and 

colleagues also showed that OPG binds RANKL with approximately 500 fold higher affinity than RANK 

[24].  OPG was found to be expressed in several tissues such as skin, liver, heart, lung, kidney, 

intestine, stomach, brain, mammary gland, prostate, spleen and bone [10,37]. 

 

 

Figure 1.5: Crystal structure of OPG and RANKL complex. (a) Structure of RANKL trimer and OPG binding 

to three different binding cleft equally distributed on RANKL surface. (b) Molecular surface of OPG with the key 

interaction residues colored by distance according to the scale. Modified after reference [24]. 

 

 

 

 

 

 

a b 
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As a summary of this paragraph, a schematic representation of RANK, RANKL and OPG proteins is 

presented in figure 1.6. 

 

 

 

Figure 1.6: Schematic representation of RANKL, RANK and OPG proteins.  Domains architecture of 

RANKL, RANK and OPG are represented. TM: transmembrane domain, THD: TNF homology domain, CRD: 

Cysteine rich domain, DD: death domain. Modified after references [24,33,34].  

 

 

 

 

d) Regulation of RANK, RANKL and OPG expression 

RANK, RANKL and OPG mRNA/protein levels can be both negatively and positively regulated by 
numerous factors. Most of these factors are associated with bone homeostasis. Table 1.2 
summarizes the main factors regulating RANK, RANKL and OPG expression.  
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 RANKL OPG RANK 

Hormones    

Vitamin D3 ↑ ↑ ↑ 

Parathyroid hormone ↑ ↓  

Estradiol - ↑  

Testosterone  ↑  

Prolactin ↑ ↓  

Cytokines    

TNFα ↑ ↑  
TNFβ  ↑  
IL-1α  ↑  
IL-1β ↑ ↑  
IL-4 + anti-CD3 (T cells) ↑  ↑ 

IL-6 ↑ ↑ ↓ 

IL-11 ↑ ↑  
IL-17 ↑   
CD40L  ↑  
M-CSF   ↑ 

Growth factors    

TGF-β ↓ ↑ ↓ 
TGF-β + anti-CD3 (T cells) ↑  ↑ 

BMP-2 ↑ ↑  
IGF-1 ↑ ↓  
VEGF   ↑ 

Glucocorticoids    

Dexamethasone ↑ ↓ ↑ 
Hydrocortisone  ↓  

Immunosuppressive molecules    

Rapamycin ↑ ↓  
Cyclosporine A ↑ ↓  
Tacrolimus ↑ ↓  

Others    

Prostaglandin E2   ↑ ↓ ↑ 
Calcium ↑ ↑  
LPS ↑ ↓  
Ionomycin (T cells) ↑   
PMA (T cells) -   

 

Table 1.2: Factors modulating RANKL, OPG and RANK expression. Most results were obtained in studies 

using cells from osteoblasts or osteoclasts lineage; if otherwise the cell type concerned appears in parenthesis. 

Blank: not tested ↑: increased expression ↓: decreased expression –: unchanged . Abbreviations: TNF: tumor 

necrosis factor, IL: interleukin, TGF-β: Transforming growth factor β, BMP-2: Bone morphogenic protein 2, IGF-

1: Insulin growth factor 1, VEGF: Vascular endothelial growth factor, LPS: lipopolysaccharide, PMA: Phorbol 

myristate acetate. Modified after references [38–40]. 
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1.3.2. Signaling pathways induced by RANK 

 

Binding of RANKL homotrimers to RANK induces trimerization of the receptor and intracytoplasmic 

signaling regulating cell activity differentiation and survival [32]. However, it was also observed that 

when RANK is overexpressed in vitro, it can self-assemble at the cell surface an induce signaling 

without RANKL binding [41]. Member of the activating receptors in the TNFRSF without a death 

domain, RANK binds five of the six known TRAF adaptors proteins. It was shown in vitro that TRAF 1, 

2, 3 and 5 bind a membrane-distal motif on RANK intracellular domain while TRAF6 binds RANK in a 

different membrane-proximal region [42]. TRAF6 appears to be the most relevant adaptor for RANK 

signaling in vivo as TRAF6 knockout mice show increased bone mass and lack of lymph nodes [43]. On 

the other hand, TRAF2 and TRAF3 deficient mice did not develop osteopetrosis [44,45]. TRAF6 

contains a distinct Pro-X-Glu-X-X-(aromatic/acidic residue) binding motif that differs from the other 

TRAF adaptor proteins [46]. Another protein called GRB2 (growth factor receptor-bound protein 2)-

associated binding protein (GAB2) is also involved in RANK signaling activation [47]. Finally mutation 

in aminoacids 535 and 536 of RANK cytoplasmic region inhibited RANKL induced osteoclastogenesis 

but not TRAF6 signaling suggesting the existence of a signaling pathway independent of TRAF6 [48]. 

RANK downstream signaling includes different pathways which are summarized in figure 1.7.  

 

Figure 1.7: Schematic diagram of the downstream signaling pathways induced by RANK activation. 

Abbreviations: TRAF: TNFR-associated factors, c-SRC: cellular sarcoma, PI3K: phosphoinositide 3-kinase, MAPK: 

mitogen activated protein kinase, MEK: MAPK/ERK kinase, ERK: extracellular-signal-regulated kinase, MAPKK: 

MAP kinase kinase, JNK: c-Jun N-terminal kinase, STAT1: signal transducer and activator of transcription 1, AP-
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1: activator protein 1, NIK: NF-κB inducible kinase, IKK: IκB kinases complex, NFATc1: nuclear factor of activated 

T cells.  Modified after references [27,49]. 

 

a) NF-κB pathway  

 

The NF-κB pathway was the first pathway induced by RANK that was identified and gave the name 

Receptor activator of NF-κB (RANK) [14]. Five NF-κB transcription factors are expressed in mammals. 

A first group of transcription factors contains RelA (p65), RelB and c-Rel. These are mature proteins 

that do not require proteolytic processing. A second group of transcription factors requires 

proteolytic processing from large precursors NF-κB1 (p105) and NF-κB2 (p100) to mature p50 and 

p52 proteins. Formation of NF-κB dimers is required to induce transcription activation. Indeed only 

RelA, RelB and c-Rel proteins contain a domain allowing transcription activation. NF-κB signaling has 

been divided in two main pathways: the canonical (classical) pathway and the non-canonical 

(alternative) pathway.  

The canonical pathway usually involves RelA/p50 dimers which are retained in the cytoplasm by IκB 

proteins. Activation of the receptor leads to adaptor proteins recruitment such as TRAF6. TRAF 

ubiquitination induces the recruitment of an adaptor complex containing TAB2/TAB1 (TAK1 binding 

protein) and the mitogen activated kinase kinase (MAPKK) kinase TAK1 (TGF-β activated kinase). 

TAK1 activation induces the phosphorylation of IκB kinase (IKK) complex. In the canonical pathway, 

IKK complex is formed of IKKα and IKKβ catalytic subunits and IKKγ (NEMO, NF-κB essential 

modulator) negative regulatory subunit. Phosphorylation of IKKβ induces proteasomal degradation of 

IκB and translocation of RelA/p50 to the nucleus [39,50].  

In the non-canonical pathway, receptor activation induces the recruitment of NF-κB inducing kinase 

(NIK). This kinase phosphorylates IKKα homodimers leading to proteolytic processing of RelB/p100 

dimer into mature RelB/p52 transcription factor enabling nuclear translocation and transcription 

activation [39,50,51]. 

RANK, similarly to LTβR, can activate both canonical and non-canonical pathways leading to cell 

survival and differentiation [39,51–53].  
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Figure 1.8: Canonical and non-canonical NF-κB pathways. The canonical pathway requires the 

recruitment of an adaptor complex containing TAB1/2 and TAK1. TAK1 phosphorylates IKKβ leading to IκB 
phosphorylation and proteasomal degradation. IκB degradation allows RelA/p50 dimer to translocate to the 
nucleus and activate gene transcription. The non-canonical pathway requires phosphorylation of IKKα by NIK. 
IKKα induces processing of RelB/p100 dimer into mature RelB/p52 dimer and translocation to the nucleus. 
Abbreviations: TAB: TAK1 binding protein, TAK1: TGF-β activated kinase 1, IKK: IκB kinase, NIK: NF-κB inducible 
kinase, Ub: ubiquitin. After reference [50,54]. 
 
 

b) MAPK pathway 

 

The family of mitogen-activated protein kinases (MAPK) contains the extracellular signal regulated 

kinases (ERK1/2), p-38-MAPK, c-Jun N-terminal kinases (JNK 1,2,3) and larger MAPKs (ERK 5,7,8). 

They are serine/threonine protein kinases responsible for a wide range of intracellular responses 

including cell differentiation, proliferation and apoptosis. ERK1/2, p38 and JNK signaling have been 

shown to be induced after RANK activation [27,39]. The MAPKs signaling pathway involves a cascade 

of phosphorylation leading to transcription factor activation or structural proteins phosphorylation. 

After receptor activation, MAP3K (MAPK kinase kinase) is activated leading to phosphorylation of the 

MAPK kinase (MAPKK). MAPKK in turn phosphorylates a MAPK inducing the cellular response. It has 

also been shown that p38 MAPK can be activated in a MAPKK independent manner via recruitment 

of TAK1/TAB1-2 complex by TRAF6 [55]. Activation of p38 via RANK signaling was shown to activate 

STAT-1 (signal transducer and activator of transcription 1) thus controlling gene expression [56]. JNK1 

activation induces phosphorylation of c-Jun allowing the formation of AP-1 (activator protein 1) 

transcription factor heterodimer containing c-Fos and c-Jun [57]. The consequences of ERK1/2 
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pathway activation by RANKL are less clear but these kinases are known to be involved in cell 

proliferation [58]. 

 

 
Figure 1.9: Phosphorylation cascade of the MAPKs pathway. After receptor activation activated MAP3K 

phosphorylates MAPKK which in turn phosphorylates the MAPKs ERK, p38 or JNK. Abbreviations: MAP3K: 

mitogen-activated protein kinase kinase kinase, MAPKK: MAP kinase kinase, MAPK: MAP kinase, Ser: serine, 

Thr: Threonine, Tyr: Tyrosine. Modified after reference [58]. 

 

c) PKB/Akt pathway 

 

Akt proteins are also called protein kinase B (PKB). Akt1/PKBα is ubiquitously expressed while 

Akt2/PKBβ is expressed by insulin sensitive tissues and Akt3/PKBγ is expressed in the brain and testis. 

Akt is activated by the phosphatidylinositol 3-kinase (PI3K) heterodimeric lipid kinase. PI3K 

phosphorylates Akt leading to stabilization and activation of the protein thus inducing cellular 

response [59]. It was shown that after RANKL stimulation TRAF6 recruits the c-Src kinase [60]. This 

kinase phosphorylates Cbl protein involved in recruitment of PI3K to the receptor complex [27].  Akt 

activates downstream signaling molecules leading to control of genes involved in cell survival, cell 

cycle, glucose metabolism and protein synthesis depending on the cell type [59]. 
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Figure 1.10: Akt signaling activation by RANKL. TRAF6 activates c-Src and recruitment of PI3K to the 

receptor complex via phosphorylation of Cbl. PI3K phosphorylates Akt thus inducing cellular response.  

Abbreviations: PI3K: phosphatidylinositol 3-kinase, TRAF: TNFR-associated factors, c-SRC: cellular sarcoma. 

 

d) NFATc1/calcineurin pathway 

 

NFAT (Nuclear factor of activated T cells) transcription factors were discovered at first in T cells. This 

family contains five proteins named NFATc1, c2, c3, c4 and NFAT5 playing a role in many biological 

processes including cell differentiation. They are found in a hyperphosphorylated inactive form in the 

cytoplasm. Increase in Ca2+ intracellular levels activates calcineurin via the signaling intermediate 

calmodulin. Calcineurin activation induces NFAT dephosphorylation and nuclear translocation. NFAT 

proteins bind DNA response elements together with other transcription factor such as AP-1 hence 

cooperating with MAPKs pathway [61]. RANKL was shown to induce NFATc1 expression [62,63]. 

However, RANKL was not known to play a role in calcium influx. Koga and colleagues showed that 

RANK can phosphorylate the immunoreceptor tyrosine based activation motif (ITAM) on FCRγ (Fc 

receptor common γ subunit) and DAP (DNAX-activating protein) 12 [64]. ITAM phosphorylation leads 

to Syk kinase activation of phospholipase C γ (PLCγ) [65]. Activated PLC is recruited to the receptor 

and hydrolyses phosphatidylinositol 4,5 biphosphate (PIP2) into diacylglycerol (DAG) and 

phosphatidylinositol 1,4,5 triphosphate (PIP3). PIP3 further induces Ca2+ influx via membrane calcium 

channels. NFATc1 expression was also shown to be induced by p50 and RelA NF-κB components 

binding to NFATc1 promoter after RANK activation [66]. 
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Figure 1.11: Regulation of NFATc1 pathway by RANKL. RANK activates ITAM thus inducing PLC pathway. 

PLC induces Ca
2+ 

influx from endoplasmic reticulum increasing Ca
2+ 

intracellular levels and activating NFATc1. 

RANK-induces NF-κB signaling which increases NFATc1 expression. Abbreviations: ER: endoplasmic reticulum, 

CRAC: calcium release activated channels, ITAM: immunoreceptor tyrosine based activation motif, FcRγ: Fc 

receptor common γ subunit, DAP12: DNAX-activating protein 12, PLCγ: phospholipase C γ,  PIP2: 

phosphatidylinositol 4,5 biphosphate, DAG: diacylglycerol, PIP3: phosphatidylinositol 1,4,5 triphosphate. 

Modified after reference [27,67]. 

 

 

e) Crosstalk with interferon pathway 

 

It was observed that RANK signaling can crosstalk with other signaling pathways including interferon 

pathway. IFNγ induces the degradation of TRAF6 in an ubiquitin-proteasome dependent mechanism 

consequently inhibiting RANK downstream signaling [68]. Moreover, RANKL stimulation induces the 

production of IFNβ but not IFNα in a mechanism involving c-Fos. IFNβ in turn negatively regulates 

RANKL induced c-Fos expression and NFATc1 induction in a STAT1 dependent manner creating a 

negative feeback loop [69]. The induction of IFNβ expression was shown to be mediated by IRF-7 

(Interferon-regulatory factor 7) transcription factor in medullary thymic epithelial cells [70].  
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Figure 1.12: Crosstalk between RANK signaling and interferon signaling. IFNγ signaling induces TRAF6 

degradation in an ubiquitin-proteasome dependent mechanism. RANK activation induces expression of IFNβ. In 

a negative feedback loop IFNβ in turn downregulates gene transcription activated by RANK. Modified after 

reference [27].  

1.4. Conclusions 
 

In the 1990’s, four different groups discovered the RANK/RANKL/OPG triad. These proteins are part 

of the TNF and TNFR superfamilies of receptors and ligands. RANK binds RANKL but OPG acts as a 

decoy receptor binding RANKL and preventing RANK activation. Crystallization of RANKL in a complex 

with RANK and OPG provided detailed understanding of the residues and conformation required for 

binding. RANKL stimulation induces the recruitment of adaptor proteins leading to activation of 

different signaling pathways including canonical and non-canonical NF-κB, MAPK, Akt/PKB and 

calcineurin/NFATc1 pathways. Therefore, RANKL stimulation induces numerous cellular responses 

playing a role in a wide range of biological processes. RANK signaling pathway also crosstalks with 

interferon pathway in a mechanism negatively regulating RANK activation. Although RANK signaling 

pathways are not the subjects of my thesis, I described these different pathways in this chapter to 

highlight the potency of RANK signaling in cell activation.  The biology of the RANK/RANKL/OPG triad 

will be detailed in the following chapter together with the therapeutic approaches used to target 

specifically RANK/RANKL axis. 
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Chapter 2: Biology of RANK/RANKL/OPG triad and 

current therapeutic strategies targeting the triad 

2.1. RANK/RANKL/OPG triad in bone homeostasis and pathologies 
 

Bone is necessary for protection of vital organs, locomotive activity, calcium storage and is also a 

source of hematopoietic stem cells necessary for immune cell development. Bone remodeling is a 

continuous process replacing old bone with new bone matrix thus maintaining size, shape and quality 

of the skeleton. Two main cell types are involved in bone remodeling: osteoblasts (OBs) and 

osteoclasts (OCs) [1]. OCs have a myeloid origin and resorb mineralized bone by secreting digestive 

acids. On the other hand, OBs have a mesenchymal origin and are filling the holes with new bone 

matrix [1]. This continuous cycle is required to maintain skeletal strength and a source of 

hematopoietic stem cells in the bone marrow. Imbalanced activity of these two cell types can lead to 

osteopetrosis (increase of bone mass) or osteoporosis (decrease of bone mass) (figure 2.1). The bone 

homeostasis process can be impaired by a wide range of factors including hormonal changes, 

cytokines and growth factors [1]. (see Chapter 1 table 1.1) 

 

Figure 2.1: Bone remodeling cycle and involvement in diseases. Schematic representation of bone 

cycle. The first step in bone remodeling is resorption of existing bone matrix by osteoclasts (1). In a second 

step, osteoblasts produce new bone matrix to fill the lacunae formed after resorption (2). This continuous cycle 

enables constant renewal of bone matrix maintaining size, shape and quality of the skeleton. Increased bone 

resorption compared to bone formation leads to osteoporosis and thinner bone matrix (a). On the opposite 

when osteoblasts are more active, bone formation increase leads to osteopetrosis and thicker bone matrix (b). 

Modified after reference [2].  
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Early studies showed that OCs differentiation is induced by RANKL [3] and the role of RANK-RANKL in 

bone biology has since been extensively studied. It was shown that both macrophage colony-

stimulating factor (M-CSF) and RANKL are required for OC precursor proliferation and differentiation 

[4,5]. Both RANKL and RANK deficient mice present severe osteopetrosis due to a lack of osteoclasts 

[6,7] whereas osteoporosis occurs in OPG deficient mice [8,9]. RANKL is expressed by OBs and bone 

marrow stromal cells while RANK is expressed by both OC precursors and mature OC (figure 2.2). 

Oligomerization of RANKL in vitro mimics the effect of membrane-bound RANKL. It was observed that 

soluble RANKL is less efficient than oligomers in inducing osteoclastogenesis in vitro [10]. Hence, cell-

cell interaction and membrane bound expression of RANKL on OBs might be required for 

osteoclastogenesis.  

 

 

 

Figure 2.2: Role of RANK-RANKL-OPG triad in osteoclast differentiation. Several calcitropic factors such 

as vitamin D3, IL-1 and TNFα induce the expression of RANKL and macrophage colony stimulating factor (M-

CSF) by osteoblasts. M-CSF promotes the development of RANK-expressing osteoclast precursors from myeloid 

progenitors. Osteoblast expressing RANKL then activate precursor differentiation into plurinucleated mature 

osteoclasts. TGF-β and estrogen negatively regulate osteoclastogenesis by inducing OPG expression on 

osteoblasts. Modified after reference [5].   

 

Several factors acting on expression of the RANK/RANKL/OPG triad are involved in the systemic 

regulation of osteoclastogenesis. These molecules such as parathyroid hormone (PTH), vitamin D3, 

prostaglandin E2, IL-1β, TNFα and estrogen were already described in chapter 1. In particular, 

estrogen negatively regulates osteoclastogenesis by inducing OPG expression by OBs. On the other 

hand IL-1, IL-6 and IL-11 are known to induce RANKL expression on OBs [4]. Moreover, TNFα induces 

RANK expression on OC precursors as well as RANKL expression on OBs [11].    
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After RANK stimulation, different signaling pathways are activated (see Chapter 1) inducing 

osteoclast differentiation, proliferation and survival. Osteopetrosis and defect in bone-remodeling 

was observed in TRAF6-deficient mice [12] showing the important relationship between RANK and 

this signaling adaptor. The NF-κB pathway is important for osteoclastogenesis as p50/p52 double KO 

mice show arrested differentiation of osteoclasts [13]. Moreover, IKKβ and IKKγ are required for 

osteoclast differentiation underlining the predominant importance of the canonical NF-kB pathway in 

this process [14]. On the other hand, the alternative NF-κB pathway was also shown to promote 

osteoclastogenesis and mitochondrial biogenesis in osteoclasts in response to RANKL [15]. JNK1 [16], 

Akt/PKB [17], ERK1/2 [17] and p38 MAPK [18] pathways are also activated in osteoclasts. NF-κB and 

Akt/PKB pathways lead to expression of NFATc1 transcription factor. Moreover, as described in the 

previous chapter, RANK can induce ITAM activation and NFATc1 translocation to the nucleus [19]. 

NFATc1 is critical for osteoclasts differentiation as NFATc1 deficient mice showed impaired osteoclast 

development [20].  

OPG is negatively regulating osteoclastogenesis but some pathways induced by RANK signaling can 

also lead to negative regulation of osteoclasts differentiation. The de-ubiquitinase CYLD was shown 

to negatively regulate RANKL induced osteoclastogenesis by preventing ubiquitinated TRAF6 to be 

recruited to IKK complex [21]. Moreover, IFNβ production is induced by RANKL stimulation. A 

negative regulatory loop inhibits RANKL-induced osteoclastogenesis via activation of the IFNAR1 

receptor by IFNβ. Mice deficient in IFNAR1 show osteoporosis and increased OC development 

[22,23]. T cells can also negatively regulate osteoclastogenesis by secreting IFNγ [24]. Finally, the 

formation of a complex containing TRAF3 on the intracellular domain of RANK was shown to inhibit 

NF-κB pathway [25].  

 

Some pathological conditions are linked with the role of RANKL in osteoclastogenesis. First of all, in 

line with the findings in mice, mutations in RANK and OPG were identified in patients with severe 

rare bone disorders [26]. Indeed, paget’s disease and familial expansile osteolysis (FEO) are rare 

autosomal dominant conditions in which osteolytic lesions and enhanced bone remodeling are 

observed. Mutations disrupting functions of RANK signal peptide and inducing RANK constitutive 

activity were linked to FEO and Paget’s disease of the bone (PDB) [26]. Besides inherited bone 

diseases, acquired bone pathologies such as osteoporosis are more common. Osteoporosis is 

characterized by predisposition to fracture and bone weakening due to exacerbated OCs activity 

compared to new bone formation [4]. Post-menopausal women are at high risk of osteoporosis 

because their estrogen levels naturally decrease. Bone remodeling process is accelerated in these 

women as shown by higher expression of both markers for bone formation and resorption [27,28]. 

Postmenopausal women showed higher expression of RANKL on the cell surface of pre-osteoblasts 
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compared to premenopausal or estrogen-treated postmenopausal women [28]. Estrogen effect on 

osteoclastogenesis have also been linked with decreased expression of inflammatory cytokines such 

as IL-1, IL-6 and TNFα which have been shown to regulate RANKL and OPG expression (see chapter 1) 

[29]. Therefore, the RANK-RANKL-OPG triad under the control of estrogen clearly plays a role in 

postmenopausal osteoporosis. Moreover, breast cancer or prostate cancer patients under hormone 

ablation therapy may also present osteoporosis due to increased RANKL expression.   

 

The leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4) was recently identified as a 

new receptor for RANKL playing a role in osteoclastogenesis. It was shown that LGR4 extracellular 

domain binds RANKL and negatively regulates osteoclast differentiation via Gq signaling [30]. 

Therefore, tuning of osteoclast differentiation appears to be a complex mechanism and deserves 

further investigation.   

2.2. RANK/RANKL/OPG triad in the immune system 

 

2.2.1. B and T lymphocytes 

 

By generating mice deficient for RANK and RANKL, Dougall and colleagues [6] and Kong and 

colleagues [7] respectively showed that RANK and RANKL are important for lymphoid development. 

Firstly, both RANK and RANKL deficient mice presented a decreased number of B lymphocytes in the 

spleen with a reduced number of mature IgM+IgD+ and B220+IgM+ B cells [6,7]. Kong and co-workers 

also showed that RANKL plays a role in the development of B cell precursors from B220+CD43+CD25- 

pro-B cells to B220+CD43-CD25+ pre-B cells [7]. The importance of RANK for B cell development was 

also seen in humans as mutations in Rank leads to hypogammaglobulinemia in patients with severe 

autosomal-recessive osteopetrosis (ARO) presenting a defect in immunoglobulin production [31,32]. 

OPG also seems to play a role in B cell development and function. Indeed, accumulation of B cells in 

the spleen and higher in vitro proliferation of pro B cells after IL-7 stimulation was seen in OPG 

deficient mice [33]. It was shown that B cells express OPG after CD40 stimulation [34]. Taken 

together, these observations are in favour of a role for the RANK/RANKL/OPG axis in B cells 

development. The B cells defect observed can be due to a decreased bone marrow cellularity due to 

severe osteopetrosis in these mice [6,7]. In contrast, a recent study of mice with a B cell specific 

RANK deletion showed normal B cells development in these mice [35]. Normal antibody secretion, Ig 

class switch recombination and somatic mutation was also observed in B cell RANK KO mice [35]. 

According to this study, the effective role of RANK signaling in B cells remains unclear but does not 
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appear to be essential for B cell development. This suggests rather a role for these genes in bone 

marrow hematopoiesis.  

 

T cell development was also investigated in mice lacking RANK and RANKL. The proportion of 

CD4+CD8+ immature cells and mature CD4+ or CD8+ T cells were normal in both RANKL and RANK 

deficient mice [6,7]. Normal expression of differentiation markers and TCR-CD3 complex was 

observed in RANKL deficient mice [7]. However, decreased thymic cellularity and size as well as 

impaired early thymocyte development was reported in 4 weeks old RANKL deficient mice [7]. 

Though, thymus of newborns and thymocytes from fetal thymic cultures were normal. From these 

studies, the implication of RANK signaling in T cell development remains unclear but might not be 

essential. On the other hand, RANK is required for the development of invariant γδ T cells [36]. 

 

2.2.2. Dendritic cells and adaptive immune response 

 

Dendritic cells (DCs) are professional antigen presenting cells of the same lineage as osteoclasts. 

These cells are specialized in the capture of antigen and presentation to T cells. Therefore they play 

an important role in immune surveillance and adaptive immunity. RANK expression was detected on 

the surface of mature bone marrow-derived DCs as well as on fresh lymph node (LN), splenic DCs and 

mucosal DCs [37,38]. On the other hand, RANKL is not expressed by naïve T cells but after stimulation 

with anti-CD3/CD28 antibodies; both CD4+ and CD8+ activated T cells express RANKL on their surface 

[39]. It was shown in vitro that RANKL acts as a survival factor on bone marrow-derived DCs and that 

RANKL stimulation of DCs stimulates T cell proliferation [37] (figure 2.3). In the same study, Wong 

and colleagues showed that RANK activation leads to increased expression of the pro-survival protein 

Bcl-xl [37]. Moreover, anti-apoptotic signaling pathways such as Akt, NF-κB and ERK are activated 

after RANK stimulation [5]. The relevance of this anti-apoptotic effect in vivo is of great interest for 

immunotherapy. DC “vectors” survive longer when pre-treated with RANKL [40]. Moreover, RANKL 

could act as an “adjuvant” since mice injected with antigen-pulsed mature DCs pre-treated with 

RANKL ex-vivo showed increased DCs numbers and survival [41]. The increased T cell response was 

probably also due to a modification of cytokine production by DCs. Indeed, RANKL-stimulated DCs 

express pro-inflammatory cytokines IL-1 and IL-6 as well as T cell differentiation and proliferation 

factors such as IL-12 and IL-15 [39,42]. Conversely, it was also demonstrated that DCs activated with 

RANKL can lead to anti-inflammatory response and induce tolerance in a model of oral 

administration of antigens [38]. Williamson and colleagues showed that splenic DCs express pro-

inflammatory IL-12 in response to RANK stimulation while DCs of Peyer’s patches express the anti-
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inflammatory cytokine IL-10 [38]. This difference between mucosal and peripheral DCs might be 

explained by the fact that intestinal DCs play an important role in counteracting immune response 

against the microbiome or food antigens thus preventing autoimmunity.  

Additionally, RANK is expressed on Langerhans cells, the dendritic cells of the skin epidermis and 

RANKL also acts as a survival factor for these cells [43].        

In spite of all these findings, there is little experimental proof that RANKL regulates DC development. 

Indeed, both RANK and RANKL deficient mice do not show impaired DC development [6,7]. Only a 

decreased number of LCs in RANKL deficient mice was observed by Barbaroux and colleagues [43]. 

Moreover, mice treated with recombinant OPG did not present dramatic impairments in innate or 

adaptive immunity [44]. This could be explained by the redundancy of RANK/RANKL system with 

CD40/CD40L. In fact, neutralization of RANKL in vivo in CD40 deficient mice leads to impaired CD4+ T 

cells proliferation in response to viral or parasitic infection [42,45]. This anti-viral response is more 

severely inhibited in CD40 deficient mice than in normal mice, showing the redundancy of 

RANK/RANKL and CD40/CD40L. Moreover, CD40 was shown to be increased in DCs after RANKL 

stimulation [37] and treatment of DCs in vitro with CD40L increased RANK expression [46]. Even if 

there are similarities between these two signaling pathways, the RANK/RANKL system does not 

affect the expression of DC markers such as MHC class II, CD80, CD86, CD54 [46].  

OPG has also been shown to be expressed by DCs [34] and it can bind the TNF superfamily ligand 

TRAIL, a well-known apoptotic factor expressed by activated T cells to induce DC death [47]. 

Therefore the balance between RANKL and TRAIL expression by activated T cells would contribute to 

death or survival of DCs and control the immune response (figure 2.3). However the low affinity of 

OPG for TRAIL compared to RANKL leaves the question open regarding the effective role of TRAIL in 

vivo. OPG expression is upregulated in DCs after CD40 stimulation [34]. 

Knowing that RANKL is under sex hormonal regulation, the effect of RANKL on DCs may explain the 

gender differences observed regarding immunity and the higher occurrence of autoimmune 

disorders in women. Moreover, the fact that RANKL induces survival and increases efficacy of DCs 

could be useful for antitumor vaccination or autoimmune disease treatment.  
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Figure 2.3: Role of the RANK/RANKL/OPG triad in interaction between dendritic cells and T cells. 

Activated T cells express RANKL and induce dendritic cell survival by inducing RANK signaling. OPG can inhibit 

this mechanism. The CD40/CD40L pathway is redundant with RANK/RANKL as it has similar effect on DCs. 

Activated T cells also produce TRAIL and can induce apoptosis of DCs. OPG binds TRAIL and could therefore play 

a role in the balance between survival and apoptosis of DCs. Modified after reference [5]. 

 

2.2.3.  Lymph node development and growth 

 

Studies of RANKL and RANK-deficient mice showed absence or abnormalities in lymphoid organs 

including LN, spleen and Peyer’s patches. The mice failed to develop LNs but retained spleen and 

Peyer’s patches [6,7,48,49]. Moreover, when pregnant monkeys were treated with anti-RANKL 

antibody denosumab, infants monkeys also show impaired LN formation [50].  

During embryogenesis, a rudimentary lymph node anlage is composed of lymphoid tissue organizer 

(LTo) cells expressing RANKL. These cells recruit RANK expressing lymphoid tissue inducer (LTi) cells 

to cluster in the forming LN. LTi cells then activate LTβR expressing LTo cells thanks to expression of 

lymphotoxin α/β (LTα/β). This leads to the development of mature LTo cells. This mechanism induces 

a feed-back loop in which mature LTo cells express RANK/RANKL, trigger LTi growth and induce tissue 

organization [51,52] (figure 2.4). It was observed that the non-canonical NF-κB pathway induced 

both by LTβR and RANK play an important role in this process [14,53].  

Lymphocyte recruitment is also an important step in LN development. Postnatally, RANKL induces LN 

growth by inducing proliferation and chemokines production of non-hematopoietic cells [54]. RANKL 

induction of chemokines secretion such as CXCL13 could be responsible for B cell recruitment and 

organization in LN. Indeed, reduced B cell numbers in LN were observed after RANKL neutralization 

[55]. The organization and function of adult LN will be described in the following chapter.   
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Figure 2.4: Role of RANKL in lymph node development. During embryogenesis, lymphoid tissue 

organizer cells (LTo) are recruited to the forming lymph node anlage. LTo cells recruit RANK expressing 

lymphoid tissue inducer (LTi) cells. LTi cells stimulate the development of mature LTo cells by activating 

LTβR. Mature LTo cells produce RANKL and attract a large number of LTi cells. This creates an amplification 

loop between LTo and LTi cells enabling the development of a complete lymph node. After reference [51]. 

 

2.2.4. Central and peripheral tolerance  

 

An important role for RANK-RANKL has also been established in central tolerance. The thymus is a 

primary lymphoid organ where developing T cells are educated and T cells expressing a potentially 

self-reactive TCR are eliminated. Moreover, generation of immunosuppressive T cells is also 

occurring in the thymus participating in preventing autoimmune diseases. Medullary thymic 

epithelial cells (mTEC) are non-hematopoietic cells in the medullary area of the thymus. They play a 

crucial role in negatively selecting T cells. During embryogenesis, it was shown that RANK signaling is 

necessary for mTEC development. Moreover, a cooperation between RANK and CD40 is essential in 

postnatal development of mTECs [56]. RANK, together with LTβR and CD40, induces expression of 

the autoimmune regulator (AIRE) and tissue specific antigens (TSA) in mTECs [57]. Consequently, lack 

of RANK signaling leads to autoimmune phenotypes. Autoantibodies where found in the sera of 

immunodeficient mice after transplantation of RANK-deficient thymic stroma [58]. TRAF6 deficient 

mice showed impaired mTEC development [59]. The non-canonical NF-κB pathway seems to play a 

crucial role in mTEC development as RelB deficient mice and aly/aly mice having a dysfunctional 

mutation in NIK gene lack mTECs [60,61]. Finally, crosstalk between RANK and IFNβ pathways has 

been shown to be important for the development of AIRE+ mTECs [62]. 

It was also observed that expression of RANKL in the skin can regulate peripheral tolerance. Indeed, 

RANKL controls the pool of regulatory T cells (Treg) in the skin. Tregs are CD4+CD25+Foxp3+ cells 

playing an important role in maintaining self-tolerance and suppressing immune responses to self-

antigens in allergies or autoimmune diseases [63]. RANKL binds RANK on LCs in the dermis and 

promotes their survival. Activation of LCs by RANKL enhances Treg proliferation and immune 

response against self-antigens [64]. Therefore, local stimulation of the RANK/RANKL axis in the skin 
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could be a therapeutic strategy to treat allergies or systemic autoimmunity. RANKL is also required 

for induction of Treg differentiation in other organs. It was shown in a mouse type I diabetes model 

that RANKL prevents CD8+ T cells destruction of pancreatic beta islet. Ablation of RANKL signals lead 

to a decreased number of Tregs in pancreatic tissues and rapid progression of diabetes [65]. Finally, 

RANKL also controls Treg function in the intestine and plays an important role in preventing the 

development of colitis [66].  

 

Table 2.1 summarizes the different roles of RANK/RANKL/OPG axis in the immune system. 

 

Enhancement of immunity Inhibition of immunity 

Regulation of B lymphocytes (remains 

unclear) and γδ T cells development. 

Development of medullary thymic 

epithelial cells (mTECs), which mediate 

T-cell self-tolerance 

Lymph node organogenesis Generation of regulatory T cells (Tregs) 

Increased dendritic cell (DC) survival, 

cytokine expression and migration 

Induction of T-cell tolerance and 

deletion 

Enhanced induction of T cell response  

 

Table 2.1: Roles of RANK/RANKL in the immune system. Modified after reference [67]. 

 

2.2.5. Role of the RANK/RANKL/OPG triad in osteoimmunology, the 

example of rheumatoid arthritis  

 

The osteoimmunology field studies the interaction between bone and the immune system. RANKL is 

one of the major cytokines playing a role in these interactions. Rheumatoid arthritis (RA) is one of the 

most studied diseases involving interaction between bone and the immune system. The pathologic 

mechanisms involved in RA are common between several diseases. RA patients suffer from chronic 

inflammation of the synovial joints leading to bone and cartilage destruction and joint pain. It was 

shown that RANKL is responsible for bone destruction in RA and increased levels are found in the 

synovium of patients [68,69]. RANKL appears to be mainly expressed by synovial fibroblasts and its 

expression can be increased by inflammatory cytokines such as IL-1, IL-6 and TNFα [70]. Moreover, 

RA disease points out the important role of T cells in osteoclastogenesis. Indeed, IL-17 producing T 

cells (Th17) express RANKL and induce osteoclastogenesis and bone destruction. Moreover, IL-17 

production induces RANKL expression by synovial fibroblasts and osteoclast differentiation [70] 

(figure 2.5). RANKL expressing Th17 cells might also increase the activity of mature osteoclasts and 

not only act on the differentiation of osteoclasts precursors [71]. Moreover, a recent study in a 
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mouse model of antibody-induced arthritis showed that exogenous IFNβ improves bone loss by 

inhibiting RANKL signaling [72].   

 

 

Figure 2.5: Role of RANKL in rheumatoid arthritis. RANKL is expressed by synovial fibroblasts under 

inflammatory conditions including secretion of IL-1, IL-6 and TNFα. IL-17 produced by Th17 cells also induces 

expression of RANKL by synovial fibroblasts. Th17 cells express RANKL and play a role in osteoclasts 

differentiation and maturation. After reference [70]. 

 

The example of rheumatoid arthritis shows the importance of the interaction between T cells and the 

bone environment in the development of severe bone diseases. It was also recently observed that B 

cells express RANKL and play a role in osteoclastogenesis in a model of estrogen loss after 

ovariectomy in mouse [73]. Moreover, RANKL is produced by pro-inflammatory FcRL4+ B cells in the 

synovium of RA patients   [74,75]. These observations pave the way to discovery of new mechanism 

involving immune cells in bone disorders.  

2.3. RANKL/RANKL/OPG triad in other tissues  
 

2.3.1 Mammary glands 

 

Lobulo-alveolar mammary structures mainly form during pregnancy under the control of hormones. 

It was shown that RANK and RANKL deficiency leads to impaired development of these mammary 

structures and lactating mammary gland resulting in death of newborns [76,77]. RANK is expressed in 

mammary gland while mammary epithelial cells (MECs) express RANKL. RANKL expression by MECs 

increases during pregnancy and after the first days of lactation [76]. Impaired proliferation of MECs 

and increased apoptosis is observed in RANKL KO mice and can be reversed with RANKL treatment. It 

was shown that this is due to a lack of Akt/PKB pathway activation [76]. The non-canonical NF-κB 
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pathway has also been shown to be involved in MEC proliferation via upregulation of cyclin D1 by 

IKKα [78]. Overall hormonal regulation of RANKL is required for terminal differentiation of MECs and 

the formation of a functional milk secreting mammary gland. 

 

2.3.2 Skin and hair follicles 

 

As previously mentioned, RANK is expressed in human and mouse by LCs in the skin [43,64]. RANKL is 

expressed by inflamed or activated keratinocytes in mouse. Human keratinocytes also express RANKL 

and higher levels are observed in inflammatory conditions such as psoriasis [43,64,79]. Loser and 

colleagues showed that UV exposure induces RANKL expression in the skin via a vitamin D3 

dependent signaling [64]. In RANKL deficient mice, the number of LCs is decreased and their 

proliferation is impaired [43]. Thus keratinocytes play a role in regulating LCs homeostasis. As 

described previously, RANKL activation of LCs was shown to increase the number of peripheral 

regulatory T cells [64]. RANKL deficient mice also show impaired hair renewal and epidermal 

homeostasis. Indeed, it was observed in our group that these mice cannot initiate a new growth 

phase (anagen) of the hair follicle and show arrested epidermal homeostasis [80]. On the contrary, 

transgenic mice with overexpression of RANKL presented increased hair follicle activity and 

epidermal growth. Moreover, RANK is expressed by hair follicle stem cells and in the basal layer of 

the epidermis [80]. Together these results highlight the role of RANK-RANKL axis in both hair and 

epidermis renewal.  

 

2.3.3 Microfold cells in the intestine 

 

Microfold (M) cells are intestinal epithelial-derived cells incorporated in the epithelia covering the 

gut-associated lymphoid tissues (GALT) such as Peyer’s patches. They represent approximately 10% 

of the follicle associated epithelia (FAE) under steady-state conditions (figure 2.6). M cells are 

specialized in phagocytosis and transcytosis of antigens from the gut lumen to antigen presenting 

cells. Hence, these cells play an important role in mucosal immunity [81].  

It was shown that stromal cells in the subepithelial dome of FAE express membrane bound RANKL 

[82]. Study of RANKL deficient mice and administration of recombinant RANKL in vivo showed that 

RANKL plays a critical role in the differentiation of RANK expressing enterocytes into M cells [49]. 

Indeed, RANKL deficient mice do not develop M cells. As stromal cells are expressing membrane 

bound RANKL, cell/cell contact and special FAE microarchitecture is probably needed for M cell 
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differentiation [83]. RANKL upregulates the transcription factor Spi-B which is required for 

maturation of M cells [84]. 

 

Figure 2.6: Microfold cells and the follicle associated epithelia. Microfold cells (M cells) are inserted in 

the follicle associated epithelia (FAE) covering Peyer’s patches. They transfer antigen (Ag) from the intestinal 

lumen to antigen presenting cells in Peyer’s patches. Stromal cells in the subepithelial dome produce RANKL 

and induce differentiation of stem cells into mature M cells. Modified after references [81,85].  

2.3.4 Blood endothelial cells   

 

Angiogenesis involves proliferation of blood endothelial cells (BEC), migration and tube formation. It 

was observed that RANKL induces angiogenesis of human endothelial cells in a pathway involving Src 

and phospholipase C (PLC) [86]. BECs express RANK, RANKL and OPG [87,88]. Induction of RANK 

signaling in BEC promotes their survival via the PI3K/Akt pathway [88]. It was proposed that smooth 

muscle cells surrounding the blood vessels secrete soluble RANKL and stimulate endothelial cells in a 

paracrine manner [88]. Moreover, expression of OPG by BECs prevents apoptosis by blocking TRAIL 

induced signaling [89]. Expression of OPG by BECs can be upregulated via activation of integrin αvβ3 

in a NF-κB dependent pathway. This mechanism induces BEC proliferation and migration [90,91]. In 

inflammatory conditions RANKL induces the expression of the adhesion molecules ICAM-1 and 

VCAM-1 in a pathway involving NF-κB, PLC, PI3K and PKC. These adhesion molecules enhance 

adhesion of leukocytes and their recruitment from circulating blood to the site of inflammation [92]. 

Finally, OPG deficient mice develop vascular calcification indicating a role for RANKL in vessel wall 

homeostasis [8].  

2.4. The RANK/RANKL/OPG triad and cancers   
 

RANK-RANKL-OPG have been shown to be involved in several cancers including breast and prostate 

cancer, multiple myeloma, renal and hepatocellular carcinomas and melanoma [93]. Indeed, several 
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studies showed that they play a role in migration and metastasis of epithelial cells. RANK signaling in 

breast cancer has been well studied. It was observed both in mice and humans that RANKL induces 

mammary epithelial cell proliferation in early steps of tumorigenesis as well as migration and 

metastasis of breast cancer cells [94–97]. It was shown that the alternative NF-κB pathway activated 

by RANK controls nuclear exclusion of p27 and induces mammary tumorigenesis [98]. Human breast 

adenocarcinomas with high RANK mRNA levels were associated with high pathological grade, high 

proliferation, increased metastasis and consequently a decreased overall survival [97]. Moreover, it 

was shown in this study that RANK overexpression in human mammary cells can lead to activation of 

the signaling pathway without RANKL stimulation leading to an increase in CD44+CD24- stem cells and 

epithelial to mesenchymal transition [97]. Hormone replacement therapy could influence cancer 

development as progesterone increases RANKL expression in mammary gland and participates in 

early mammary tumorigenesis [94,95].  

In osteosarcoma, increased RANK expression was associated with low response to chemotherapy 

[99]. RANK levels were also increased in advanced metastatic melanoma and was shown to maintain 

melanoma-initiating cells [100]. High RANK/RANKL/OPG levels are associated with prostate cancer 

metastasis [101]. Overall, activation of RANK signalling is of bad prognosis in many cancers. 

 

Another important role of the RANK/RANKL/OPG system is its involvement in bone tumors and bone 

metastasis of several cancers. As described before in this paragraph, RANK signaling induces 

proliferation of epithelial cells and initiates cancer development. Prostate and breast cancer as well 

as multiple myeloma can develop bone metastases. This is linked with bad prognosis, pathological 

complications (skeletal related events) and bone pain [93]. RANK/RANKL can participate in both the 

promotion of metastasis and the induction of osteolysis, facilitating tumor establishment. An 

increased level of RANKL was seen in bone stromal cells of multiple myeloma patients, together with 

bone pain and excessive osteoclast activity [102]. Breast cancer cell lines are capable of increasing 

RANKL expression and decreasing OPG expression on stromal osteoblasts leading to 

osteoclastogenesis [103]. Moreover, prostate cancer cells produce soluble RANKL inducing 

osteoclastogenesis and OPG prevents prostate cancer tumor metastases to the bone [104]. Overall 

bone metastases create what is called a “vicious cycle”. Metastasis of cancer cells to the bone 

modifies bone turnover leading to osteolysis. In turn, the bone matrix produces growth factors such 

as TGF-β or insulin like growth factors which stimulates tumor cells growth. Tumor growth further 

enhances secretion of factors that are stimulating bone destruction. This cycle enables tumor 

establishment and growth in bones [93] (figure 2.7).  
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Figure 2.7: The “vicious cycle” of cancer metastases in the bone. Metastatic tumor cells induce 

osteoclastogenesis and bone destruction. Bone matrix in turn secretes tumor-growth factors further enhancing 

development of tumors cells in the bone. After reference [105]. 

 

Another aspect of RANK and RANKL molecules involvement in cancer is their role in immune cells. 

Indeed, immune cells expressing RANK or RANKL are present in the tumor microenvironment but 

their role is still unclear and might be dependent on the context. As an example, tumor-associated 

macrophages (TAM) where shown to express RANK in breast adenocarcinomas [95,97]. Moreover, 

RANKL inhibition could have a beneficial effect in inducing anti-tumor immunity. Indeed we have 

already described in this chapter the importance of RANKL in modulating central tolerance. Thus 

RANKL inhibition could lead to persistence of tumor-specific effector T cells [106]. Moreover, RANKL 

expressing Tregs are infiltrating mammary tumors and induce pulmonary metastasis [96]. Finally, it 

was observed that RANK signaling enhances tumour antigen presentation by DCs and CD8+ T cells 

anti-tumor response [107]. Therefore, the role of RANK/RANKL axis in the crosstalk between tumor 

cells and immune cells in the context of oncogenesis is of great importance and deserves further 

investigations to be better understood. 

2.5. Therapeutic approaches targeting RANK/RANKL/OPG triad 
 

As described earlier in this chapter, the RANK-RANKL-OPG axis is involved in many pathological 

conditions. Therefore, therapeutic targeting of this pathway is a main axis of research. In this 

paragraph I will describe the two main strategies used to target RANK-RANKL system:                  (i) 

targeting of RANK downstream signaling pathway and (ii) targeting of RANK/RANKL interaction. This 

paragraph will end with the description of denosumab, a fully humanized mouse monoclonal 

antibody targeting RANKL and approved for specific human treatment.    
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2.5.1 Small molecules and peptides targeting RANK downstream signaling 

 

One of the strategies to improve pathological conditions due to exacerbated RANK activation consists 

in targeting RANK downstream signaling. Many studies have been performed in vitro and in animal 

models using various synthetic small molecules, phytopharmaceuticals as well as peptides. The main 

goal of these studies was to inhibit osteoclastogenesis and bone degradation. There are numerous 

studies therefore I will only describe here some examples to illustrate the broad types of molecules 

targeting RANK signaling that were studied.  

Phytopharmaceuticals are molecules naturally present in plants which are studied for their potential 

therapeutic applications. Jolkinolide B (JB) is isolated from the root of Euphorbia fischeriana Steub 

and is classically used in traditional Chinese medicine. It was observed that JB prevents IκBα 

degradation and phosphorylation of mitogen-activated kinases (MAPKs) downstream of RANK in an 

in vitro model of osteoclast differentiation from bone marrow macrophages [108]. Additionally, alliin 

(S-allyl-L-cysteine sulfoxides), the major component of aged garlic extract, was shown to impair 

RANKL-induced osteoclastogenesis in vitro via a mechanism involving inhibition of c-Fos and NFATc1 

pathways [109]. Flavonoids are plant metabolites often studied for their therapeutic applications. 

Herbacetin is a type of flavonoid which inhibits osteoclastogenesis in vitro and in vivo. It was shown 

to suppress IκBα and JNK phosphorylation and to decrease c-fos and NFATc1 mRNA levels [110]. 

Synthetic molecules were also observed to have beneficial effects on osteoclasts differentiation. 5-

(2’,4’-difluorophenyl)-salicylanilide derivatives were shown to inhibit osteoclastogenesis in vitro by 

inhibiting c-Fos and NFATc1 expression [111]. Chloroquine is an anti-malarian agent also used in 

autoimmune diseases. It was observed that chloroquine increased TRAF3 expression in osteoclasts 

thus reducing the expression of NFATc1 and inhibiting osteoclasts differentiation in vitro and in vivo 

[25]. Small molecules called ABD compounds were studied in the context of rheumatoid arthritis. It 

was shown that they inhibit RANKL induced activation of the MAPKs ERK and JNK. This mechanism 

protected mice from inflammatory arthritis, joint destruction and systemic bone loss [112]. 

Finally, peptides targeting RANK signaling pathway were also developed. A peptide composed of the 

TRAF6 binding site to RANK was shown to prevent RANK signaling induction by RANKL in a 

mechanism disrupting interaction between endogenous TRAF6 and RANK intracellular domain. This 

peptide successfully inhibited osteoclastogenesis in vitro and in vivo. This discovery is part of a US 

patent deposit by Aggarwal and colleagues [113] however since its patent deposition in 2004 the 

peptide has not been tested in clinical trials. Moreover, a peptide called RANK receptor inhibitor 

(RRI) was designed to target a motif on the RANK intracellular domain that was found to induce 

signaling in a TRAF6 independent manner. The peptide blocked osteoclastogenesis in vitro and 
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reduced inflammation-induced bone destruction as well as ovariectomy-induced bone loss in mice 

[114]. 

 

2.5.2 Antibodies, fusion proteins and peptides targeting RANK/RANKL 

 

Targeting RANK signaling is a strategy which can lead to several adverse effects because kinases and 

transcription factors involved are common with other receptors. Therefore, another strategy consists 

in blocking the interaction between RANKL and RANK. Many peptides or proteins were developed 

and tested both in animal models and patients.    

First of all, several peptides and proteins targeting RANKL were developed. Native OPG was used to 

block RANKL in vivo in mice but high doses administered subcutaneously (>10-30 mg/kg) were 

needed to suppress bone resorption. Indeed, the carboxyl terminus of native OPG contains heparin-

binding region that alters half-life of the protein and leads to poor pharmacokinetic and 

pharmacodynamic properties [115]. Therefore native OPG was not used in patients. Efforts were 

made to develop recombinant conjugates or fusion proteins lacking the C-terminal heparin binding 

domain of OPG. Among the many fusion proteins that were produced, a protein produced by Amgen 

Inc. in Escherichia coli containing the residues 22-194 of human OPG fused to IgG1 human Fc region 

showed good activity. This Fc-OPG protein was 200 times more active than native OPG in vivo, 

displayed a longer half-life and was therefore the first version of OPG tested in humans in 1998 [50]. 

One single dose injection lead to a rapid (12h), dose dependent decline in bone turnover and the 

effects were measurable up to 6 weeks after the injection [116]. As a backup for this Fc-OPG, Amgen 

Inc also developed an alternative OPG-Fc protein (AMGN-0007) produced in Chinese ovary hamster 

(CHO) mammalian cells. This protein showed three to tenfold higher efficacy and tenfold longer half-

life, thus the development of          AMGN-0007 was continued at the expense of Fc-OPG. AMGN-

0007 phase I trial revealed better pharmacokinetic/pharmacodynamic than Fc-OPG produced in E. 

Coli [117]. However, one patient receiving AMGN-007 developed an immune response against OPG 

which represented a safety risk if a neutralizing immune response against endogenous OPG would 

occur. Moreover, OPG also targets TRAIL and could inhibit TRAIL in tumor surveillance and apoptosis 

[118]. Therefore the development of OPG-Fc constructs was discontinued.  

Another strategy developed by Immunex, similar to the one used for etanercept (TNFR2-Fc), 

consisted in developing a fusion protein containing the extracellular domain of RANK and the Fc part 

of human IgG1 (RANK-Fc). This protein bound specifically RANKL and no other TNF ligands. However 

injections in primates revealed the presence of activating autoantibodies. Thus     RANK-Fc 

development was stopped due to potential risk of immune response to endogenous RANK in patients 
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[50]. IK22-5, an anti-RANKL antibody was developed by Kamijo and colleagues and reduced bone loss 

in a collagen-induced arthritis mouse model [119]. RANK-Fc [65,95,120], OPG-Fc [121–123] and IK22-

5 remain interesting tools to study RANKL blockage in vivo in animal models. 

Several peptides based on either OPG or RANK sequences were tested in vitro and in animal models 

and showed inhibitory effect on osteoclast differentiation. Naidu et al developed a peptide from site 

directed mutagenesis of OPG. Using one of OPG binding site sequence Leu113-Arg122 and 

mutations, this group identified the peptide YR-11 (YLEIEFSLKHR). This peptide inhibited RANK-RANKL 

binding thus reducing osteoclast differentiation in vitro and ameliorating bone loss and inflammation 

in a model of adjuvant induced arthritis in rats [124]. OP3-4 is an OPG-like peptidomimetic. It was 

shown to inhibit osteoclastogenesis in vitro and bone loss in an osteoporosis animal model [125]. 

OP3-4 also limited bone loss in an adjuvant-induced arthritis model but did not decrease 

inflammation [126]. This peptide binds specifically to RANKL and not to TRAIL and also prevents 

myeloma associated bone diseases [127].  

RANK-mimetic peptides based on the finding that loop3 of RANK is important for the binding of 

RANKL were also developed. These peptides reduced RANKL-induced osteoclastogenesis in vitro and 

in vivo [128,129]. The peptide WP9QY known to bind TNFα was shown to bind also RANKL and inhibit 

osteoclast differentiation [130]. Finally, the discovery of LGR4 as a new receptor for RANKL brought 

the possibility to use the soluble LGR4 extracellular domain to target RANKL and prevent binding to 

RANK [30].  

 

Antibodies and antibody fragments targeting RANK were also developed. R12-31 anti-RANK antibody 

was described by Kamijo and colleagues together with IK22-5 anti-RANKL antibody. R12-31 was 

shown to prevent RANKL binding to RANK but no further biological effect was described [119]. In 

2014, Newa and colleagues developed a RANK specific single chain fraction variable (scFv) inhibiting 

osteoclastogenesis in vitro [131]. These proteins targeting RANK require further investigation to 

understand their potential use in animal models or patients.   
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2.5.3 Denosumab: a fully human anti-RANKL antibody with clinical                    

applications 

 

a) Development of denosumab 

Denosumab is a fully humanized mouse IgG2κ antibody obtained from foot pad immunization with 

human RANKL of the IgG2 XenoMouse [50]. This antibody was developed by Amgen Inc. The IgG2 

isotype was preferred because it is known to have limited effector function that could be harmful to 

RANKL-expressing cells. Moreover, the strategy using anti-RANKL antibodies rather than antibodies 

targeting RANK was preferred to avoid unexpected receptor agonism that could be a concern [50]. In 

the XenoMouse model, the murine IgG genes are not expressed and have been replaced by human 

orthologs. Immunization of these mice resulted in an immune response with production of specific 

fully human IgGs binding RANKL [132]. Primary screens of hybridoma used enzyme-linked 

immunosorbent assay (ELISA) to analyse the binding to human and murine RANKL. Secondary 

screens tested the capacity of monoclonal antibodies to actually block recombinant soluble human 

RANKL using Biacore [50]. One of these IgGs (AMG 162) was cloned from lymph node lymphocytes 

and expressed in CHO cells. Production of large-scale purified antibody was then performed to obtain 

clinical grade batches [133]. Denosumab was shown to bind both soluble and membrane-bound 

human RANKL with high affinity (Kd = 3 pM) but not mouse or rat RANKL. More precisely, 

denosumab binds the DE loop on RANKL [50]. Moreover, the binding of denosumab is specific to 

RANKL as it has no affinity for TRAIL or other TNF family members such as TNFα, TNFβ and CD40L 

[134]. However, crossreactivity of denosumab with cynomolgus RANKL was shown and enabled the 

first in vivo trials to be done in cynomolgus monkeys. Single-dose treatment of monkeys proved that 

denosumab inhibited bone resorption and osteoclast activity. The fact that denosumab was not 

active in mouse or rat but only in monkey accelerated the clinical development of this molecule as 

the first preclinical trials were directly done in primates [50]. In patients, denosumab was safer and 

more efficient than OPG-Fc. Indeed, better effect on bone turnover was observed at lower doses and 

the effect last longer than OPG-Fc [118,135] (figure 2.8). Therefore, clinical trials for OPG-Fc (AMGN-

0007) were discontinued in favour of denosumab.  

 



Chapter 2: Biology of the RANK/RANKL/OPG triad 
 

43 
 

 

Figure 2.8: Summary of the strategies developed by Amgen and Immunex Inc. leading to 

denosumab approval. Several inhibitors of RANKL were developed and tested in animal models and clinical 

trials. The table summarizes with +/- rating the results of the teams evaluating these different inhibitors on 

their affinity, activity and potency. Native OPG was the less efficient inhibitor and required treatment with high 

doses. The RANKL binding domain of RANK fused to immunoglobulin Fc (RANK-Fc) was more potent than native 

OPG. Nonetheless it leads to the development of autoantibodies against RANK. A recombinant OPG formed by 

amino-terminal immunoglobulin Fc fused to the RANKL binding domain of OPG (Fc-OPG) was the first 

recombinant form of OPG to be tested in humans. A more potent form of recombinant OPG with the 

immunoglobulin Fc in the C-terminal region (OPG-Fc) was then developed. However, immune response against 

OPG was observed in one patient. Denosumab, a fully human anti-RANKL monoclonal antibody was finally 

developed and tested in clinical trials. This antibody showed longer half-life and was more efficient than OPG-

Fc. No safety issues were observed with denosumab treatment. Abbreviations: E.coli: Escherichia coli; CHO: 

Chinese hamster ovary cell. Modified after reference [50]. 

 

b) Clinical indications of denosumab 

 

Denosumab is approved for use in post-menopausal osteoporosis treatment since 2010, treatment of 

bone metastasis from solid tumors since 2011 and male osteoporosis since 2012. In 2013, the FDA 

(US Food and Drug Administration) also approved denosumab use for specific cases of giant cell 

tumor of bone. The half-life of this antibody is 28 days.  

For treatment of post-menopausal osteoporosis, the commercial name of denosumab is Prolia. It is 

administered sub-cutaneously at a dose of 60mg every 6 months [67]. Before approval, several 

clinical trials enabled the establishment of the doses needed for a beneficial role of denosumab 

treatment in osteoporosis patients. A first single dose phase I trial in healthy post-menopausal 

women showed the activity of denosumab in decreasing born turnover markers [118]. In a phase II 

trial several doses were tested in post-menopausal women with low bone density. This study 
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determined that the treatment with 60mg every 6 months was the most efficient [136]. Finally, 

phase III trials allowed the comparison between denosumab, placebo and bisphosphonate, an 

established anti-resorptive agent. The FREEDOM trial demonstrated that treatment every 6 months 

during 3 years reduced fracture risks compared to placebo [137].  

But did RANKL blockage lead to harmful side effects? Due to the biology of RANK-RANKL axis, 

blocking RANKL could lead to higher incidence of cancers or infections. Moreover, the anti-resorptive 

activity of denosumab could lead to hypocalcemia as bone degradation is also a source of calcium. 

Additionally, it is known that inhibition of osteoclastogenesis can lead to osteonecrosis of the jaw 

(ONJ) [138]. Therefore incidence of cancer, infection, hypocalcemia and ONJ are potential side 

effects that were investigated in clinical trials. In the FREEDOM trial, increased occurrence of these 

four side effects were not observed [137]. Despite the absence of difference in the total occurrence 

of infections, higher number of patients requiring hospitalisation was observed in the denosumab 

group.  Moreover, rare cases of cellulitis were reported [139]. Development of ONJ in two patients 

was observed in the study extension [140]. In a recent study, denosumab treatment of osteoporotic 

women did not influence insulin resistance and development of diabetes [141]. However, treatment 

with denosumab can induce pain in the back, general musculoskeletal pain, increase cholesterol and 

bladder inflammation [139]. Moreover, occurrence of dermatitis and eczema were higher in 

denosumab treated patients [139]. Despite these observed side effects, the risk/benefit ratio was 

favorable and denosumab was approved for use in post-menopausal women with high risk of 

fracture in 2010 with a risk evaluation and mitigation strategy. The potential risk might be evaluated 

before treatment depending on patient condition and patients treated with denosumab should be 

closely monitored. The results of a study evaluating the effects of denosumab after 10 years of 

treatment were published in 2015 [142]. The occurrence of adverse events was not increased with 

long term administration of denosumab. Moreover, the treatment was still efficiently reducing bone 

loss after 10 years of treatment. 

A phase III trial was also conducted on men with prostate cancer undergoing androgen deprivation 

therapy. This study showed reduced risk of fracture after denosumab treatment [143]. Therefore 

denosumab is also approved for male osteoporosis in the context of hormone ablation therapy. 

 

For the prevention of skeletal-related events (SRE) from bone metastasis of solid tumors, the 

commercial name of denosumab is Xgeva. It is administered sub-cutaneously at a dose of 120mg 

every 4 months [67]. Before denosumab, zoledronic acid was used to reduce the appearance of bone 

metastasis but this treatment impairs renal function. Three phase III studies were included in a meta-

analysis to compare the effect of denosumab to zoledronic acid. It was observed that denosumab 

was more efficient than zoledronic acid in reducing the incidence of SRE and a decreased bone pain 
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was observed in patients treated with denosumab. Moreover, the time to appearance of SRE was 

delayed with denosumab [144]. The mAb did not induce new cancer development, infections or ONJ. 

However, in these clinical trials denosumab showed increased risk of hypocalcemia. This side effect 

can be counteracted by calcium supplementation of patients. Despite adverse effects in few patients 

among the cohort, the risk/benefit ratio was also favorable for the use of denosumab in preventing 

SRE development. 

 

Denosumab was evaluated in the treatment of giant tumour cell of the bone (GTCB), a rare primary 

bone tumor. It was observed that treatment reduced progression of this cancer. However the risk-

benefit balance remains to be investigated depending on the patient population [145]. Therefore, 

denosumab is approved for use only in patients with unresectable tumor or at high risk of morbidity 

if undergoing surgery [146].  

 

The effect of denosumab on rheumatoid arthritis patients was also investigated in recent clinical 

trials [147–150]. It was observed that treatment decreased bone loss in rheumatoid arthritis patients 

without safety issues. Higher incidence of infections was not observed in the patients [151]. 

Moreover, ONJ incidence was not observed and one case of hypocalcemia was       reported [147].  

 

Beside the positive effects of denosumab in treating osteoporosis, bone metastasis of solid tumors 

and rheumatoid arthritis, the potential adverse effects on the immune system deserve to be studied. 

Indeed, as we discussed in this chapter the RANK/RANKL/OPG axis is involved in many mechanisms 

of the immune system. Therefore, blockage of RANKL could decrease monocyte or DCs survival, 

affect T cell activation or central tolerance for example. As described previously, the risk/benefit ratio 

was favorable in clinical trials. Infection incidence remained low although denosumab had more or 

less effect on the occurrence of infections depending on the study. On the other hand, there is little 

evidence that RANKL inhibition has immunomodulatory effect. Indeed, blocking RANKL in animal 

models of inflammatory arthritis reduced bone loss but did not change inflammatory parameters 

[126,152]. Moreover, denosumab decreased bone loss in RA patients but did not change disease 

activity [150]. Additionally, OPG treatment in mice did not affect the immune response to 

mycobacterial infection [44]. In humans, loss of function mutation in the RANK/RANKL/OPG axis has 

no effect on the development of immunity [153]. This could be due to the redundancy with other 

pathways such as CD40/CD40L as we discussed previously. RANK signaling might be essential during 

embryonic development illustrated by its requirement for lymph node formation and RANKL 

inhibitors treatment should be avoided in pregnant women. In adults, redundancy with other TNF 

superfamily members might limit the effect of RANKL inhibitors on the immune system. Overall, the 
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implication of RANKL in immune responses deserves further attention to fully understand the 

possible effects of anti-RANKL therapy.   

2.6. Conclusions 
 

The RANK/RANKL/OPG axis was primary studied for its role in osteoclastogenesis and bone 

homeostasis. Both RANK and RANKL deficient mice show severe osteopetrosis. However, these mice 

also show an absence of lymph nodes and impaired mammary gland development. Therefore RANK 

signaling is required for different biological processes. RANKL is required for LN development, 

stimulation of DC survival by T cells, and might have a role in mature B lymphocyte formation. 

Moreover, RANKL plays a role in inflammation-induced bone destruction such as in rheumatoid 

arthritis. RANKL also plays a crucial role in the development of central and peripheral tolerance. 

Finally, RANKL is required for skin homeostasis, M cell development and endothelial cell activation 

and maintenance of vessels wall homeostasis. Many strategies have been tested to block the adverse 

effect of RANKL in pathological conditions however few therapeutic molecules were tested in clinical 

trials. Inhibition of RANK intracellular signaling by small molecules or peptides is a strategy that was 

tested in vitro and in animal models. On the other hand, inhibition of RANK-RANKL interaction is of 

great interest and this strategy led to the approval of the anti-RANKL monoclonal antibody 

denosumab. This antibody is the first-in-class, first-in-pathway treatment for osteoporosis and SRE of 

solid malignancies. However, treatments with monoclonal antibodies require subcutaneous 

injections and are more expensive than therapies with small molecules. To date there is no evidence 

that a small molecule inhibiting RANK-RANKL interaction was discovered. Therefore, identification of 

such a molecule could be of great interest and could allow oral delivery of RANKL inhibitors.   
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Chapter 3: Lymphatic endothelial cells and the 

lymphatic system 

 

The lymphatic system was first identified in the seventeenth century [1]. It consists of a broad 

drainage network that helps recycling body fluid. The lymphatic system comprises lymphatic vessels 

draining lymph as well as lymph nodes (LN). Lymph is derived from interstitial fluids that leak out of 

blood capillaries. It contains gases, nutrients, signaling molecules, antigens and migrating cells. 

Lymphatic vessels formed by lymphatic endothelial cells (LEC) allow a unidirectional transport of the 

lymph from peripheral tissues to the LN. In this chapter, I will describe the lymphatic vasculature and 

the LN organization. I will then focus on LEC heterogeneity of phenotype and function in LNs as well 

as in peripheral tissues. 

3.1. The lymphatic vasculature structure and function 
 

In adults, about 20 liters of protein-poor fluid leaks from blood capillaries into extravascular spaces 

every day. Approximately 90% of this fluid is resorbed locally but the two remaining liters returns to 

blood circulation via lymph vessels [2]. Lymphatic vessels transport migrating cells and soluble 

antigens to the LNs thus play a crucial role for the immune response [3,4]. They are also associated 

with absorption of lipids from the intestinal tract. Indeed, it was shown that lymphatic vessel 

integrity is required for the functional maintenance of the intestine and the LNs [5]. The lymph 

circulation is unidirectional starting from lymph capillaries to collecting lymphatics and finally back to 

the inferior vena cava through the thoracic duct [4] (figure 3.1).  
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Figure 3.1: Schematic representation of the lymphatic and blood vasculature. The lymphatic 

vasculature is linear and open-ended. Cells, molecules and fluids leaking from blood capillaries into interstitial 

tissues are collected by lymphatic capillaries. The lymphatic capillaries then converge into larger collecting 

vessels that form the LN afferent vessels. Lymph is finally transported back to the blood circulation via the 

thoracic duct. After reference [6]. 

Blind-ended capillary lymphatic vessels first absorb interstitial fluids. In these capillaries, LECs form 

discontinuous button-like junctions allowing the entrance of fluids and immune cells [7] (figure 3.3). 

VE-cadherin expression is required for maintenance of junction integrity. A thin discontinuous 

basement membrane surrounds lymphatic capillaries. Anchoring to the extracellular matrix (ECM) 

enables lymphatic cells to detect changes in interstitial pressure. When this interstitial fluid pressure 

increases, stretching of the ECM occurs leading to opening of the intercellular junctions and entry of 

cells and fluids in the capillaries (figure 3.2). 

 

 

Figure 3.2: Representation of lymphatic capillaries opening. When interstitial fluid pressure (IFP) 

increases, the extracellular matrix (ECM) stretches allowing intercellular transport of fluids and migrating cells. 

After reference [8].  

 

Lymphatic capillaries are responsible for the transmigration of immune cells from the peripheral 

tissues to the lymph. Dendritic cells (DC) enter the lymphatic vessels through already existing gaps in 

the basement membranes of the vessels [9]. LEC forming the capillaries express high levels of CCL21, 

Lymphatic capillaries 

Collecting vessel 

Thoracic duct 
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a chemokine binding the receptor CCR7 on DCs. The formation of CCL21 gradients in the interstitium 

would attract DCs to lymphatic vessels [10]. Moreover, intraluminal gradients of CCL21 have been 

shown to promote the migration of DCs toward collecting vessels once inside the capillaries [11]. 

Recirculating memory T cells [12] and neutrophils [13] are other immune cells that use the CCR7 

dependent mechanism to enter the lymphatic capillaries. In the skin, another mean for entry of DCs 

in dermal lymphatics is the interaction between CXCL12 expressing LECs and CXCR4 on DCs [14]. 

Finally, LECs express the semaphorin3A which bind plexinA1/neuropilin 1 (Plwa1/Nrp1) on DCs and 

promote entry in the lymphatics [15]. 

 

 

 

Figure 3.3: Schematic representation of lymphatic capillaries and collecting vessels. LECs forming the 

lymphatic capillaries express high levels of Lyve1 and CCL21. They form button like junctions, allowing entry of 

cells and interstitial fluids. They are surrounded by a discontinuous basement membrane (BM) and filaments 

allow anchoring to extracellular matrix (ECM). CCL21 allows recruitment of dendritic cells (DC) inside the 

vessels. Expression of HDL receptor SR-BI participates in regulating tissue cholesterol. Expression of D6 

scavenging receptor reduces adherence of inflammatory cells and prevents capillary congestion during 

inflammation. Collecting vessels express low levels of Lyve1 and CCL21. They form impermeable zipper like 

junctions and are specialised for the transport of cells and fluids. They are surrounded by smooth muscle cells 

(SMC) and continuous basement membrane. Collecting vessels also contain valves allowing unidirectional 

transport of the lymph. After reference [16].  

 

After entering lymphatic capillaries, the lymph flows through larger collecting vessels. LECs of these 

vessels form zipper-like junctions (figure 3.3). Moreover, they are surrounded by perivascular 

smooth muscle cells and a continuous basement membrane creating impermeable vessels [7]. 

Therefore, the collecting lymphatic vessels are specialized for transport. They express low levels of 

CCL21 and thus are not well equipped for transmigration of immune cells in steady state [16]. 

Transport of lymph is a passive mechanism dependent on smooth muscle cells contraction as well as 

respiratory movements and contraction of skeletal muscles [17]. The presence of valve leaflets 
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formed by specialized LECs with a spindle like morphology ensures the unidirectional lymph flow. The 

opening and closing of the valves relies on the difference of pressure between the two sides. The 

valves allow lymph flow at pressure equilibrium (figure 3.3). These LECs share a gene expression 

profile with venous valve endothelial cells [18]. They express Integrin α-9, laminin α5 and the 

transcription factors Foxc2, GATA2 and NFATC1. Foxc2 and NFATC1 are required for valve formation 

[19–21]. The separation between lymphatic capillaries and larger collecting vessels is not well 

understood. Pre-collecting vessels containing valves but surrounded by few smooth muscle cells are 

linking lymphatic capillaries and collecting vessels [16].   

 

Lymphatic vasculature expresses markers that differentiate them from blood endothelial cells. LECs 

express prospero homeobox 1 (Prox-1), the transmembrane glycoprotein podoplanin (Pdpn or gp38), 

vascular endothelial growth factor 3 (Vegfr3) and neuropilin 2 (Nrp2) which both bind VEGF-C in a 

similar manner [16]. Prox-1 is a transcription factor that plays a role in LECs fate determination [22]. 

It is expressed in a subset of venous endothelial cells and forms primitive lymph sacs. It was observed 

in zebrafish that differentiation of LECs from Prox-1 positive blood endothelial cells (BECs) is due to 

asymmetric division of these cells. After division, one of the daughter cell upregulates Prox-1 while 

the other downregulates Prox-1 and remains BEC [23]. Gp38, also called podoplanin, is a mucin-type 

transmembrane protein that was first identified on LECs but is expressed by many other cell types 

including fibroblastic reticular cells (FRC), alveolar epithelial cells, keratinocytes and kidney 

podocytes. It is known to bind the C-type lectin receptor CLEC-2 on platelets and immune cells. This 

interaction is required for development and function of lymphatic vasculature and LN [24–27]. It also 

plays a role in maintenance of blood-lymphatic separation [28]. The hyaluronan receptor Lyve1 is 

also described as a marker of LEC [29]. However, high expression of Lyve1 was reported in lymphatic 

capillaries while lymphatic collecting vessels and lymphatic valves express lower levels of Lyve1 [30]. 

In addition, Lyve1 is expressed by some macrophages closely related to lymph vessels in embryos, 

tumors and lymph node medullary sinus [31–33]. CLCA1 is a member of CLCA family involved in 

calcium-dependent chloride ion transport and was also shown to be specific of LECs [34]. Antibodies 

targeting Prox-1, Lyve1 and CLCA1 are currently used to visualize lymphatic vessels [22,34,35].   

A study by Malhotra et al, in the context of the immunological genome (ImmGen) project, published 

transcriptional profiling of LN cells [36]. In this study they identified molecules expressed exclusively 

by LECs. For instance within the family of integrins, Itga2b and Itgb3 were expressed only by LECs. 

ITGA2b (CD41 or glycoprotein IIb) pairs exclusively with ITGB3 (CD61 or glycoprotein IIIa). The 

ITGA2b/ITGB3 complex is well known to be expressed by megakaryocytes and platelets and plays a 

role in blood clotting [37]. However, further investigations are required to further characterize 

ITGA2b/ITGB3 expression and function in LECs. 
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Finally, LECs also express endothelial markers shared with blood endothelial cells such as VE 

cadherin, claudin5, PECAM-1 (CD31) and the angiopoietin receptor Tie2 [16]. CD31 is a classical 

marker of all endothelial cells. But this adhesion molecule is also carried by platelets and some blood 

leucocytes. It has a role in cell-cell adhesion but can also induce intracellular signaling [38]. 

 

3.2. The lymph nodes 
 

LNs play a critical role in filtration of lymph and thus its immune surveillance. Mice have 22 LNs and 

about 450 have been identified in humans [39]. The human body contains 250 LNs in abdomen and 

pelvis region, 100 in the thorax and 60 to 70 in the head and neck area [40]. The structure of these 

secondary lymphoid organs is similar between species in mammals. In large vertebrates, lymph 

usually flows through a series of nodes before reaching the collecting duct.  

Lymph arrives in LN via afferent lymphatics, is channelled through the LN sinuses to the parenchyma 

and finally exits via efferent vessels. LNs consist of a collecting point hence it usually has several 

afferent vessels and one efferent vessel. LNs are organized in lobules which are separated by open 

communicating sinuses in small animals such as rats. In larger animals, fibrous radial bands called 

trabeculae separate the lobules. However, murine LNs are generally formed of one single lobule [39] 

(figure 3.4). These secondary lymphoid organs are located at strategic positions in the body and act 

as filters to detect antigens and prevent systemic infection. Indeed, all factors and cells needed for 

the initiation of immune responses are in close contact inside LN. Furthermore, they also play a role 

in resolution of immune responses and maintenance of tolerance.  
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Figure 3.4: Schematic representation of LN organization. Representation of a LN with 3 lobules showing 

the organization in cortex, paracortex and medulla areas. Each lobule has one afferent lymphatic vessel and a 

single efferent vessel. Left lobule: schematic representation of the blood vascular network. Center lobule: 

blood vascular network together with the reticular network formed by non-hematopoietic cells. Right lobule: 

section from a rat mesenteric LN. Modified after reference [39]. 

 

LNs are well organized organs containing 3 major compartments: the cortex, the paracortex and the 

medulla. Each compartment contains different cell types from both haematopoietic and non-

hematopoietic origin that form the complex microarchitecture of a functional LN. Non-hematopoietic 

cells are characterized by their lack of expression of CD45. They are mainly endothelial and 

mesenchymal cells while cell from hematopoietic origin comprise lymphocytes as well as DCs and 

macrophages. The LN is contained in a capsule composed of connective tissue including collagen 

fibers. Under the capsule lies the subcapsular sinus (SCS) into where lymph from afferent vessels 

flows. The two layers of LECs forming the SCS are called the “ceiling” and the “floor” of the sinus. In 

the “floor” layer, CD169+ macrophages responsible for the uptake of antigens into the LN are 

inserted between LECs. Under the SCS lies the cortex. It contains B cell follicles where follicular 

dendritic cells (FDCs) maintain the follicle architecture, enabling B cells to stay in close contact. 

Disturbed organization of the follicles correlates with reduced immunocompetence thus this specific 

configuration of B cells is required for the immune function of LNs [41]. Between the follicles and the 

floor LECs, marginal reticular cells (MRCs) form a reticulum that sustains the SCS. MRCs express 

RANKL as well as CXCL13 and CCL19 [42–44]. High endothelial venules (HEV) are also present in the 

cortex. They are specialized vascular endothelial cells that express Protein NH2-Terminal Asparagine 
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Deamidase (PNAD) and CCL21, facilitating lymphocyte entry into the LN [44]. In the paracortex, the T 

cell zone is more diffuse compared to the cell-dense B cell follicles. This zone contains CD4+ and CD8+ 

T cells, DCs and fibroblastic reticular cells (FRCs). FRCs contribute to the architecture of the T zone 

[44]. Finally, the medulla contains lymphocytes, blood vessels and the medullary sinus where 

macrophages can be found. Medullary sinus and efferent lymphatics allow lymphocyte exit from the 

LN and their return to the blood stream. (figure 3.4 and 3.5) 

  

 

Figure 3.5: Schematic representation of the cell organization in the LN. LECs form the subcapsular 

sinus. CD169
+
 macrophages (Mᶲ) are inserted in the floor of the sinus. Underneath the subcapsular sinus lies a 

layer of reticular cells called marginal reticular cells (MRC). Follicular dendritic cells (FDC) are required for the 

organization of B cell follicles. Fibroblastic reticular cells (FRC) form a conduit of reticular fibers (RF) allowing 

the transport of cells and molecules from the subcapsular sinus to the T cell zone. Dendritic cells (DC) are found 

in the T cells zone. Lymphocytes are not represented to simplify the representation. After reference [43]. 

 

The antigens arriving into the LN can be proteins, lipids, sugars, microorganisms, debris or apoptotic 

cells. They arrive in the LN passively through the lymph flow or actively transported by cells. Self-

antigens carried by tissue-resident antigen-presenting cells (APCs) are also transported to the LN 

[45]. APCs encounter pathogens in the periphery and then migrate to LNs to increase the chance of 

meeting the appropriate lymphocyte [46]. On the other hand, free antigen is recognized and 

processed by LN resident APCs.  

LNs are constituted of numerous cell types, I will focus on LECs in the following paragraphs and on 

macrophages in the next chapter, the two main cell populations I was interested in during my thesis. 

3.3. Lymph node LEC heterogeneity and function 
 

As described in the paragraph 3.1, markers have been identified for LECs. A combination of two 

markers to identify LN non-hematopoietic cells by flow cytometry was introduced by Link et al [47]. 
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After gating on CD45- cells, staining for CD31 and podoplanin gp38 allows the gating of four different 

populations. LECs are double positive for CD31 and gp38 (figure 3.6).  

 

 

 

 

 

 

Figure 3.6: Identification of LN LECs by flow cytometry. After gating on CD45
-
 cells, staining for CD31 and 

podoplanin (gp38) allows the identification of four different populations. LECs are double positive for CD31 and 

gp38. The other lymph node stromal cells consist of blood endothelial cells (BEC) which are CD31
+
gp38

-
, 

fibroblastic reticular cells (FRC) which are CD31
-
gp38

+ 
and double negative (DN) cells.  After reference [47].  

 

Despite these common markers, LN LECs represent a heterogeneous population depending on their 

localization in the LN and also show differences with peripheral tissue lymphatics. In this paragraph I 

will review the main differences between subcapsular sinus LEC and medullary sinus LECs as well as 

their main functions. 

3.3.1 LECs forming the subcapsular sinus 

 

The “floor” of the subcapsular sinus is formed by LECs that filter the entry of small molecules and 

cells in the LN parenchyma. This layer is highly selective as molecules with a size > 70kDa or a radius   

> 4nm cannot enter the parenchyma [48]. Chemokines, cytokines and other small molecules can also 

enter the conduit formed by fibroblastic reticular cells. This conduit is a network composed of 

tubular collagen which allows crosstalk between lymph and blood in the HEV. The mechanism for 

exclusion of large molecules has not been clear for a long time. Recently, it was shown that LN LECs 

express the plasmalemma vesicle-associated protein (PLVAP, also called PV-1 or MECA-32). This 

expression was specific to LN LECs as skin LECs do not express PLVAP. This protein forms a physical 

sieve in the floor sinus bridging the sinus with the conduits. Thus, the diaphragm formed by PLVAP in 

endothelial cells would regulate the entry of antigens but also lymphocytes into the parenchyma 

[49]. Floor LECs also play a role in entry of DCs in the LN. As in peripheral lymphatics, SCS LECs 

express CCL21. Engagement of CCR7 on DCs by CCL21 promotes DCs entry into the LN [50]. However, 

entry of T cells in the parenchyma is CCR7 independent and would rather rely on PLVAP diaphragms 

[49,51]. The ceiling LECs uniquely express CCRL1 (ACKR4), a scavenging receptor for CCL21 [52]. Thus, 

a chemokine gradient is created from the ceiling of the SCS to the parenchyma promoting DCs 

affinity for floor LECs. Moreover, CCL1 is expressed by SCS LECs and also promotes cell entry in the 

LEC 

BEC 

FRC 

DN 
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LN by interacting with CCR8 [53]. Additionally, it was recently shown that Macrophage scavenger 

receptor 1 (MSR1) is carried by SCS LECs and regulates lymphocytes entry in the LN [54]. Finally, it 

was observed that SCS LECs uniformly express MAdCAM-1 compared to medullary sinus LECs; 

nonetheless the function remains unclear [55]. (figure3.7) 

 

Figure 3.7: Representation of LN lymphatic vessels. Subcapsular sinus (SCS) is formed by two layers of 

LECs: the floor (fLEC) and the ceiling (cLEC). cLEC express CCRL1 scavenger receptor for CCL21 as well as low 

levels of Lyve1. fLEC express high levels of Lyve1 and the chemokine CCL21 allowing entry of tissue-derived 

dendritic cells (DC) in a CCR7 dependent manner. CD169
+
 subcapsular sinus macrophages (SCS MF) are inserted 

in the floor layer. Antigens and molecules can enter the parenchyma and rich high endothelial venules (HEV) 

via the conduit formed by fibroblastic reticular cells (FRC). PLVAP diaphragms control the size of the substances 

entering the LN. LECs forming the medullary sinuses (MS) and cortical sinuses (CS) have a distinct phenotype 

compared to SCS LECs. They play a role in egress of immune cells from the LN through the expression of 

sphingosine-1-phosphate (S1P). Medullary sinus macrophages (MS MF) are inserted into MS layer and are 

distinct from the SCS MF. MS and CS also play a role in tolerance as LECs of these vessels express PDL-1, an 

immune check point molecule. Modified after reference [16]. 

 

3.3.2 LECs forming the medullary and cortical sinuses 

 

Most lymph fluid does not enter the conduits in the parenchyma but crosses the LN through 

medullary and cortical sinuses. These sinuses play a role in lymphocyte egress from the LN into the 

efferent lymph. Medullary and cortical LECs are the only cell type in LNs to produce sphingosine-1-

phosphate (S1P) which promotes egress of lymphocytes from the LN. S1P binds the sphingosine-1-
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phosphate receptor type 1 (S1PR1) expressed by T cells [56–58]. Integrin-α9 was also shown to 

regulate S1P secretion by LECs [59]. Moreover, lymphocytes adhere to LECs prior to leaving the LN 

and possible adherence molecules involved in this phenomenon could be CLCA1 and Mannose 

receptor (MR). CLCA1 was shown to bind LFA-1 and MAC-1 lymphocytes molecules [34]. MR is 

expressed by human lymphatic endothelium and can bind L-selectin on lymphocytes [60]. Moreover, 

the common lymphatic endothelial and vascular endothelial receptor-1 (CLEVER-1) is also expressed 

by LECs and was shown to play a role in lymphocyte trafficking [61].  The importance of these three 

molecules in vivo remains to be investigated. Finally, it was observed that T cells can enter the LN 

paracortex via medullary sinuses in a CCR7 dependent manner [51]. (figure 3.7) 

3.3.3 Antigen presentation by LN LECs and peripheral tolerance 

 

Besides regulating entry and egress of lymphocytes and DCs, LECs also share some characteristics 

with antigen presenting cells (APCs). Indeed LECs express both MHC class I [62,63] and MHC class II 

[36,64] molecules.  

Expression of MHC II is restricted to LN LECs compared to tissue lymphatics LECs, showing the 

different immune function of these cells [64–66]. Tewalt et al have shown that MHC-II is functional 

on LECs as peptide-pulsed LECs induce proliferation of CD4+ T cells [67]. On the other hand, Nörder et 

al showed that LECs interact with CD4+ T cells via MHC-II and LFA-1 (CD58) but were not able to 

induce T cell proliferation [68]. Therefore, further investigation is required to understand the role of 

LECs in regulating CD4+ T cells activation and differentiation. 

LECs are also capable of antigen endocytosis and MHC-I cross-presentation even if they do it less 

efficiently than professional APCs [62]. However, LECs do not express costimulatory molecules such 

as CD80, 4-1BBL and OX40L [64] but they express the Programmed death ligand (PDL-1) immune 

check point. It was also observed that LECs express peripheral tissue-restricted antigens (PTA). 

Therefore, antigen presentation by LECs would play a role in peripheral tolerance. Indeed, it was 

shown that deletion of CD8+ T cells can be induced by LECs [64,69]. The presentation of PTA by LECs 

promotes peripheral tolerance in a way that is similar to medullary thymic epithelial cells (mTECs). 

However, the expression of PTA is not dependent on the Autoimmune regulatory element (Aire). It 

was shown in vivo that tyrosinase presentation by LN LECs to tyrosinase-specific T cells arrests their 

proliferation and leads to their deletion in a mechanism that is independent of the Aire [63]. 

Therefore, T cell deletion by LECs probably relies on lack of costimulation and signaling via PD-L1:PD-

1 pathway [64] (figure 3.8). PTA and PDL-1 are more abundant in LN LECs than tissue lymphatics with 

a higher expression in medullary and cortical sinus LECs [70]. Moreover, LECs express different 

patterns of PTA compared to FRCs or BECs showing that these cells play a specific role in tolerance 

[63,71].  
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Another proposed mechanism is the transfer of antigens from LEC to DCs that would present 

peripheral tissue antigens (PTA) via MHC-II molecule. This mechanism is similar to mTEC antigens 

transfer to thymic DCs thus inducing anergy of CD4+ T cells  [67,72]. Whether LEC PTA presentation is 

involved in other immunological processes than T cell deletion remains to be investigated. Taken 

together, it is likely that dysregulation of peripheral tolerance induction by LN LECs could lead to 

autoimmune diseases.  

Finally, the capture of antigen by LECs may also play a protective role in vaccination and viral 

infection. Indeed, LN LECs may store antigens for a longer period of time after the peak of T cell 

response. Tamburini and colleagues showed that T cell response induces proliferation of LECs and 

capture of persisting antigens. In this process, LECs can archive antigens for weeks and further 

activate memory CD8+ T cells with the help of DCs therefore increasing immune protection [73]. 

 

 

Figure 3.8: Schematic representation of tolerance induction by LECs. LECs present endogenous 

peripheral tissue antigens (PTAs) through MHC class I molecule to naïve CD8+ T cells. Expression of PD-L1 by 

LECs and absence of costimulatory molecules binding CD28 leads to T cell deletion. Modified after reference 

[74]. 

3.4. Peripheral tissue LECs heterogeneity and function 
 

Lymphatics in peripheral tissues are important for body fluid homeostasis and transport of antigens 

from the tissues to LN. Here I will describe some newly identified peripheral lymphatics as well as 

lymphatics with an essential function for the intestine, lungs and skin.  

The ciliary body and the anterior segment of the eye contain lymphatic vessels while there is no 

vasculature in the cornea. The draining of aqueous humour is achieved by Schlemm’s canal. Cells 

forming this vessel express Prox-1, integrin-α9, Vegfr3 and CCL21 therefore they have a lymphatic 

vessels phenotype. However, they do not express Lyve1 and gp38 [75,76].  
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It was thought for a long time that lymphatic vessels were absent from the brain. However, recent 

studies showed the presence of lymphatic vessels in the meninges. These vessels express Prox-1, 

Lyve1 and CCL21 and thus have a lymphatic capillary phenotype. They drain cerebrospinal fluid and 

allow transport of antigens and immune cells to the cervical LN [77,78]. 

 

The lung is an important organ for the defense against airborne particles and microbes. Moreover, 

lungs respond to injury or systemic changes by flooding of fluids. Thus lymphatic vasculature is 

essential for lungs to drain these fluids and keep the lungs dry. Moreover, lymph clears the 

substances entering the lung epithelium and enables pulmonary immune response. When the vessels 

are not needed because of low fluid volume in the lung, they are collapsed. When there is an 

increase in fluid volume the lymphatic vessels swell and increase in size [79].    

Skin is also an important barrier to protect the body from external threats. The skin is composed of 

the epidermis, the dermis and a subcutaneous layer of adipose tissue. The lymphatic capillaries are 

found in the dermis where they allow entry of immune cells and antigens from the skin epithelium. 

Lymphatic vessels in the dermis are divided in two plexus. Lymph first enters the superficial plexus 

located in the dermal papillae and then flows vertically in the deep lymphatic plexus and larger 

collecting vessels that will finally bring the lymph to skin draining LN (figure 3.9) [8]. 

 

Figure 3.9: Skin lymphatic vasculature. Lymphatic vessels in the skin are located in the dermis. Two 

lymphatic plexus can be distinguished, the superficial lymphatic plexus in the dermis papillae and the deep 

lymphatic plexus located around the second arterial network. After reference [8]. 

 

The intestinal lymphatic system plays a particular role in fat absorption and metabolism as well as 

the intestinal immune response. There are two independent vessel networks in the intestine: 

lymphatics that drain the muscular layer of the intestine and the capillaries that drain the intestinal 

villi. The latter are called the lacteals (figure 3.10). These networks connect to larger collecting 

vessels in the mesentery to join the mesenteric LN. The lacteals allow the uptake of chylomicrons, 
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huge triglyceride-loaded particles with a diameter up to 1µm. This mechanism leads to delivery of 

dietary fat to the blood. The mechanism is still not well understood but might involve intracellular 

transport across LECs as well as transport through intercellular junctions. In the lacteals, LECs are 

continuously proliferating even under steady state conditions and form a mix of button-like junctions 

and zipper-like junctions [80]. Lacteals are similar to dermal capillaries in the skin and express high 

levels of Lyve1 and CCL21 [16]. The lymphatic vessels in the intestinal villi and mucosa recruit tissue-

derived DCs and enable them to reach mesenteric LNs. Intestinal lymphatics are crucial for induction 

of oral tolerance against food antigens and microbiota [81]. 

   

Figure 3.10: Representation of the lymphatic vessels in the intestine. Lacteals are specialized lymphatic 

capillaries of the intestine. They uptake chylomicrons, particles formed of dietary triglycerides. They also are 

responsible for the transport of antigens and immune cells to the mesenteric LN, playing a role both in oral 

tolerance and immune response against pathogens. The lymphatic vessels in the muscular part of the intestine 

form a separated network. LV: lymphatic vessel. Modified after reference [16]. 

 

Other lymphatic vessels outside the intestine also play a role in fat metabolism. Indeed, lymphatics 

are required for removal of cholesterol from the tissues and transport to the liver. Lymphatic 

capillaries express the HDL receptor SR-BI (figure 3.2). This mechanism prevents atherosclerosis [16]. 

3.5. LECs in inflammation and pathological conditions 

3.5.1 Role of LECs in inflammation  

 

LECs express toll like receptors (TLR) as well as receptors for inflammatory cytokines such as IFN type 

I and II receptors and TNFR1 [36,82,83]. It was shown in vitro that stimulation of LECs with TLR 

agonists and TNFα induces production of chemokines [47,82–84]. These treatments also induce 
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upregulation of ICAM-1 and VCAM-1 promoting DCs adherence. However, this was not shown in vivo 

[82,83,85]. Inflammatory signals also increase the expression of CCR7 on DCs thus enhancing their 

recruitment to lymphatic vessels and entry in LN [4]. On the other hand, peripheral LECs express the 

atypical chemokine receptor D6 (ACKR2). This receptor binds inflammatory chemokines such as CCL2 

and CCL5 thus limiting inflammatory leukocyte adhesion, preventing vessel congestion and improper 

circulation of APCs [86,87]. Increased ACKR2 expression was observed in inflammation-associated 

diseases such as psoriasis, chronic obstructive pulmonary diseases and inflammatory bowel     

disease [88]. 

Differentiation, proliferation and sprouting of LECs to form new vessels is called lymphangiogenesis. 

During inflammation, lymphangiogenesis is induced by different factors stimulating VEGFR2, VEGFR3 

and LTβR expressed by LECs [89–91]. Inflammatory factors induce the NF-κB pathway in LECs leading 

to Prox-1 activation. Prox-1 in turn increases expression of VEGFR3 hence promoting 

lymphangiogenesis [92]. An interesting crosstalk have been demonstrated with macrophages 

modulating lymphangiogenesis during inflammation through secretion of growth factors such as 

VEGF-C/D and VEGF-A [93]. Scavenging of inflammatory chemokines by ACKR2 regulates the 

proximity of macrophages to lymphatic vessels thus controlling lymphatic vasculature density in 

inflammatory conditions [88]. Additionally, macrophages progenitors can transdifferentiate into 

Lyve-1 expressing LECs and participate in lymph vessels growth [92,94]. Lymphangiogenesis increases 

the lymph flow and participates in attracting innate and adaptive immune cells to support immune 

responses. Indeed, it was observed that increased fluid flow induces CCL21 secretion by LECs and 

higher expression of ICAM-1 and E-selectin on LECs surface [95]. In a synergistic mechanism, 

activation of CCR7 signaling in turn increases affinity of LFA-1 on DCs for ICAM-1 on LECs promoting 

DCs transmigration [96] (figure 3.11). Interaction between ICAM-1 and LFA-1 also increases T cells 

entrance and crawling inside lymph vessels [97]. During inflammation, lymphocytes accumulate 

leading to cellular expansion of the LN. When inflammation is prolonged and to return to steady 

state, lymphangiogenesis of the cortical and medullary sinuses promotes lymphocytes egress [98]. It 

was shown that IL-7 is produced by FRC and LEC and plays an important role in lymphatic vessel 

remodeling in a paracrine and autocrine manner [99,100]. To limit LN expansion, LECs can suppress T 

cell activation by DCs in inflammatory conditions (figure 3.11). ICAM-1 binds Mac1 on DCs which 

inhibits their maturation and consequently T cell activation [101]. Moreover, LECs secrete molecules 

suppressing T cell activation such as a indoleamine 2,3-dioxygenase (IDO) and nitric oxide (NO) in 

response to IFNγ or TNFα [68,102]. Therefore a negative regulatory loop between activated T cells in 

close contact with LECs limits activated T cells expansion in LNs during inflammation (figure 3.11). 

Finally, IFNγ produced by T cells also plays a role in regression of the lymphatic network after 

inflammation [94]. 
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Figure 3.11: Role of inflammed LECs in recruitment of immune cells and control of T cell activation. 

(A) Under inflammatory conditions LECs upregulate adhesion molecules such as VCAM-1 and ICAM-1 

promoting recruitment of dendritic cells via binding to LFA-1. Increased expression of chemokines induces the 

recruitment of DCs and other immune subsets. D6 (ACKR2) acts as a decoy receptor to regulate adhesion of 

immune cells to LECs and prevent congestion of lymphatic vessels. (B) LECs also regulate the inflammatory 

process by suppressing T cell activation. ICAM-1 interacts with Mac-1 and inhibits maturation of DCs thus 

preventing activation of T cells by DCs. Pro-inflammatory cytokines (IFNγ, TNFα) induce the production of 

indoleamine 2,3-dioxygenase (IDO) and nitric oxide (NO) by LECs. These molecules suppress T cell activation. 

After reference [74]. 

 

Lymphangiogenesis also plays a role in clearance of immune cells from peripheral tissues in an 

inflammatory context. However, chronic inflammation can lead to aberrant accumulation of 

lymphocytes and formation of ectopic lymphoid structures called tertiary lymphoid organs (TLO). In 

these structures, expression of homeostatic chemokines favours a cellular organization similar to 

LNs, including formation of lymph vessels [92]. It was shown that IL-7 is required for early lymphatic 

vessel expansion in TLO [103]. Moreover, it was thought that LTα/β plays a role in development of 
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TLO. Targeting of LTβR pathway has prooved to be efficient in resolving these structure in 

autoimmune disease models and LTα overexpression leads to the formation of these stuctures [104–

106]. However, in a mouse model of resolving TLO, a second wave of lymphangiogenesis was 

recently observed to depend of LTβR signaling and promotes egress of leukocytes from inflammed 

tissues and resorption of the ectopic lymphoid stuctures [103]. Lymphangiogenesis is thus required 

to resolve inflammatory TLO and targeting of LTβR pathway might not always be beneficial. On the 

other hand, ectopic expression of CCL21 by newly formed lymphatic vesssels can also promote 

recruitment of immune cells to the inflammed tissues and persistence of inflammatory process [92]. 

Maintenance of TLO can then be harmful as it is the case in autoimmune diseases and transplants 

rejection. Chronic inflammatory factors also promote lymphangiogenesis in dermal lymphatics and 

around islet cells in type 2 diabetes. This phenomenon contributes to impaired wound healing [94].  

 

3.5.2 Role of LECs in Lymphedema 

 

Lymphedema is forming when lymph is accumulating in peripheral tissues due to reduced capacity of 

transport by lymphatic vessels or too high volumes of lymph compared to transport capacity. This 

pathological condition induces susceptibility to infection, inflammation and fibrosis [4,107]. There are 

two types of lymphedema. The primary lymphedema is congenital and is due to failure of superficial 

or subcutaneous vessels in transporting the lymph back to the blood vasculature [107]. This 

congenital form of lymphedema appears in several diseases linked to mutations in genes including 

VEGFR-3, FOXC2, SOX18 and NEMO [4]. The latest is showing the importance of NF-κB signaling in 

LECs. The secondary lymphedema is a form of acquired lymphedema which has two main origins. The 

parasites Wucheria bancrofti and Brugia malayi are transmitted by mosquitoes bite and lead to 

development of lymphatic filariasis also called elephantiasis disease [108]. Moreover surgical 

ablation of LNs in cancers such as breast cancer can induce damage in surrounding lymphatic vessels 

leading to lymphedema [4]. There is currently no cure for lymphedema but VEGF-C, angiopoietin-1 

and fibroblast growth factor 2 have been shown to induce beneficial effect in lymphedema animal 

models [109].   

3.5.3 Role of LECs in cancers 

 

Tumour cells and cells from the tumoral microenvironment produce growth factors including VEGF-C 

and VEGF-D which induce lymphangiogenesis. Induction of LEC proliferation and migration leads to 

enlargement of initial and collecting vessels around and inside tumours. Increased 

lymphangiogenesis is also observed in tumour-draining LNs. These phenomena promote cell entry in 
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the lymphatic vasculature thus spread of tumor cells in the body and metastasis [110]. In addition to 

VEGF-C and VEGF-D, other factors have been identified to play a role in tumor associated 

lymphangiogenesis. NRP2 blockage decreased LEC migration and tumour metastasis in animal 

models [111]. Moreover, prostaglandin increased lymphatic vessel formation and tumor 

dissemination [112]. On the other hand, TGF-β was shown to be a negative regulator of 

lymphangiogenesis in cancer [113]. Tumor-induced lymphangiogenesis also relies on interaction of 

LECs with the extracellular matrix. Indeed, LECs express integrin α4β1 which interact with fibronectin 

and induces lymph vessel growth [114]. LECs represent a heterogeneous population and tumour LECs 

have a distinct molecular profile from other normal and activated tissue LECs [115]. The mechanisms 

for this cell plasticity are not well understood to date. Furthermore, tumour cells express CCR7, 

CXCR4 and CCR8 thus enabling entry into lymphatics and the LN in the same way as immune cells 

[110]. Finally, presentation of tumor antigens by LECs can also have a tumor promoting effect. It was 

observed that LECs from tumor-draining LNs present tumor antigens via MHC-I and induce apoptosis 

of tumor-specific CD8+ T cells [62]. Moreover, LECs from tumor-associated lymphatic vessels were 

shown to express PDL1 and play a role in T-cell inhibition [116]. 

Besides the many markers of lymphatic endothelium previously described, only Lyve1 and gp38 are 

currently used to monitor lymphatic vessels in tumour samples from patients [110]. Lymphatic 

remodeling and lymphangiogenesis has been shown to correlate with patient outcome. Therefore, 

targeting lymphangiogenesis is a strategy to decrease metastatic events and modulate immune 

response to cancer cells. Inhibitors of lymphangiogenesis promoting factors are already approved in 

some cancers and preclinical and clinical studies are still ongoing (for review see [110]). 

3.6. Conclusion 
 

Interstitial fluids leak from blood capillaries and are absorbed by lymphatic capillaries. Lymph is then 

transported to the LN through collecting vessels and brought back to the blood circulation via the 

thoracic duct. LNs are well organized lymphoid organs filtrating lymph. Antigens and APCs transit to 

the LN where presentation to T or B cells occurs. Therefore, LNs allow initiation and resolution of 

immune response as well as maintenance of tolerance. They are composed of immune cells and non-

hematopoietic cells responsible for the architecture of the LN. LECs are forming the lymphatic 

vessels. They show a different phenotype depending on their localization in the tissues and in the 

LNs. As described in this chapter, LECs express multiple chemokines and adhesion molecules and play 

various roles in the peripheral tissues and LNs. LN LECs especially play a role in trafficking of DCs and 

T cells in and out of the LN. They express chemokines such as CCL21 attracting DCs. Moreover, LN 
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LECs present peripheral tissue antigens to T cells and induce tolerance. The expression of chemokines 

and adhesion molecules is inducible by inflammatory factors and can participate both in recruiting 

immune cells and regulating inflammation by suppressing T cell activation. Moreover, LECs 

proliferation and sprout leads to lymphangiogenesis that has beneficial and harmful effect. Indeed, 

formation of new lymphatic vessels is required for clearance of immune cells from inflamed tissues 

and return to steady-state in LN. However, lymphangiogenesis also promotes cancer dissemination. 

Several studies showed that LEC plasticity could be modulated as a treatment for lymphatic related 

diseases. However, the precise underlying mechanisms remain unknown. Overall, LECs were shown 

to interact with many cell types through direct contact or molecules secretions but further studies 

are required to understand the full potential of LECs. 

As described in Chapter 2, RANK was shown to be expressed by endothelial cells from the blood 

vasculature but it is still not clear whether LECs express RANK. A first study from our group showed 

that RANKL overexpression in mice leads to activation of LECs with higher expression of MAdCAM-1 

and VCAM1 [117]. Moreover, proliferation of LECs was induced in this animal model. Therefore, the 

detailed role of RANKL in modulating LECs phenotype and the consequences on LN cells function 

remains to be investigated more precisely.  
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Chapter 4: CD169+ macrophages in secondary 

lymphoid tissues and beyond 

 

Macrophages are highly phagocytic cells that internalize and degrade pathogens and particulate 

antigens. In the XIXth century, Metchnikoff discovered these cells and named them macrophages 

from the Greek “large eaters” [1]. Macrophages were classified based on their ontogeny and 

phagocytic properties in what is called the mononuclear phagocytic system [2]. They are 

characterised by their dependence on colony stimulating factor-1 (CSF-1) [3,4] and the expression of 

the integrin CD11b (also called Mac1) [5]. They are present in tissue where they acquire specialized 

properties according to the function of their tissue of residence. Therefore, there is a great 

heterogeneity among the macrophage population. In some tissues, macrophages represent 10-15% 

of the total cell number [6]. In this chapter, I will focus on CD169+ macrophages, a subtype of 

macrophages with a great plasticity. This cell type plays an important role in secondary lymphoid 

tissues such as lymph nodes (LN) and spleen but also in other tissues.   

4.1. Characteristics of macrophages in secondary lymphoid tissues 

4.1.1 Phenotypic markers of lymphoid tissues macrophages 

 

In addition to CD11b, several markers are used to define lymphoid tissues macrophages.  

CD169 is also called sialoadhesin or sialic acid binding lectin 1 (siglec-1). It is part of the sialic acid 

binding immunoglobulin-like lectin (Siglec) family that contains 17 Ig domains in the extracellular 

region. This molecule does not have a tyrosine-based signaling motif as other members of the family. 

Therefore, CD169 plays a role in cell-cell interactions rather than signaling. CD169 on macrophages 

enables the interaction with other immune cells or microbial particles both in a sialic acid dependent 

and a sialic acid independent binding manner [7]. CD169 can also mediate endocytosis of toxins and 

antigens [8,9].  

F4/80 has 7 transmembrane EGF-like domains. It is thus part of the EGF-TM7 family of molecules, 

members of a G Protein coupled receptors (GPCR) subfamily: the adhesion-GPCRs. Present on murine 

macrophages, it has both an adhesion and a signaling role, however the exact signaling mechanism 

remains to be discovered [10].  

Other markers such as SIGN-R1, MARCO, the mannose receptor (MR) CD206 and CD68 are also used 

to characterize macrophages from lymphoid tissues. SIGN-R1 is a type II C-type lectin homologous to 

human DC-SIGN [11]. This protein binds mannose and fucose and is therefore essential for pathogen 
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recognition. The class A scavenger receptor MARCO is a type II transmembrane collagenous protein. 

This receptor plays a role in phagocytosis and endocytosis of pathogens [12,13] but also in adhesion 

of macrophages to B cells [14]. MR is a lectin-like endocytic receptor that recognizes several viruses 

and parasites. Ligands for the cystein-rich domain of MR (MR-L) are also used as markers of LN and 

splenic macrophages [15].  Finally, the glycoprotein CD68 is a pan macrophages marker [15]. 

The use of these markers and the localization of macrophages in lymphoid tissues allowed the 

characterization of different resident macrophage populations in LNs and spleen. They will be 

described in the next paragraphs.   

4.1.2 LN macrophages 

 

a) Subcapsular sinus macrophages (SSM)  

 

Macrophages located below the LN subcapsular sinus were identified in early studies as poorly 

phagocytic cells which can quickly capture small amounts of lymph-borne antigens [16,17]. They are 

called SSMs that refers to Subcapsular Sinus Macrophages. It was discovered later that these cells 

express low levels of lysosomal proteins, explaining the poor degradative activity of SSM [18]. 

SSMs are characterised as CD169hiCD11cloCD11b+F4/80- cells [18] and also express ligands for the 

cysteine-rich domain of MR (MR-L) [19]. These cells are lining the border to the B cell follicles and 

appear intercalated between the floor lymphatic endothelial cells. They capture particulate antigens 

from the lymph and transfer them to follicular B cells [18,20–22] . Moreover, SSM express VCAM-1 

and ICAM-1 [20]. Knowing that these adhesion molecules play a role in B cells adhesion and 

formation of immunological synapse [23], this could contribute to antigen transfer to B cells. 

 

b) Medullary sinus macrophages (MSM)  

 

Macrophages associated with the LN medullary sinus walls were also identified in early studies [24]. 

They are called MSMs for Medullary Sinus Macrophages. They are highly phagocytic and can acquire 

large amounts of antigens [17,24,25]. They also express higher amounts of lysosomal proteins such 

as LAMP-1 and 2 compared to SSMs [18]. Their poor selectivity allows them to take up any 

particulate antigen [26]. A proof of the more active phagocytic activity compared to SSMs is that 

MSMs disappear before SSM after dichloromethylene diphosphonate (CI2MDP)-containing liposome 

treatment [27]. MSMs also play an important role in survival and clearance of short lived plasma   

cells [15].  
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In addition to CD169 marker, MSM are characterised by the expression of F4/80, they are therefore  

labeled as CD169hiCD11cloCD11b+F4/80+ cells [18]. However, some studies depicted them as 

expressing lower levels of CD169 than SSM [28]. MSM also express the C-type lectin SIGN-R1, the 

class A scavenger receptor MARCO, MR and LYVE-1 [3,15]. Overall, MSMs harbour a more mature 

macrophage phenotype compared to SSMs. 

c) Medullary cord macrophages (MCM) 

 

Medullary cord macrophages (MCM) are located in the parenchyma surrounding medullary sinuses 

of the LNs called the medullary cord. They do not express CD169 but express the macrophages 

markers CD11b and F4/80 and are therefore characterized as CD169-CD11cloCD11b+F4/80+ cells 

[3,18]. MCM have a lower phagocytic activity than MSM as they contain smaller lysosomes [25]. 

These macrophages are mainly responsible for the clearance of apoptotic plasma cells [3].  

 

d) Interfollicular macrophages 

 

The interfollicular region, situated between B cell follicles shows a great heterogeneity regarding 

macrophage populations. SSMs are able to penetrate this region but cells showing the same 

characteristics as MSMs (SIGN-R1, MARCO, F4/80 expression) are also present. In 2002, Geijtenbeek 

and colleagues observed heterogeneous expression of SIGN-R1 in the subcapsular area which 

appears to be in this interfollicular region [11]. The role of macrophages in this region remains to be 

investigated in more details but they seem also to play a role in antigen transfer to B cells and        

DCs [3].   
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Figure 4.1: Localization and characteristics of LN macrophage populations. Subcapsular sinus 

macrophages (SSM) lie in the floor of the subcapsular sinus between lymphatic endothelial cells surrounding 

the B cell follicle. Medullary sinus macrophages (MSM) and medullary cord macrophages (MCM) are found in 

the LN medulla. Interfollicular regions contain both SSM and macrophages with the same characteristics as 

MSM.  Characteristic markers of each population are indicated. Modified after reference [3]. 

 

4.1.3 Splenic macrophages  

The main function of the spleen is to filter blood allowing the clearance of apoptotic erythrocytes 

and the elimination of pathogens. The spleen is divided into two parts: the red pulp containing 

erythrocytes and the white pulp containing lymphocytes. The border between the red pulp and the 

white pulp is called the marginal zone. This zone represents an important transit area for cells 

coming from blood flow and entering the white pulp [29]. Macrophage populations are found in the 

different areas of the spleen and will be described in this paragraph (figure 4.2). 
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Figure 4.2: Localization and characteristics of splenic macrophage populations. The spleen has distinct 

red pulp and white pulp regions separated by the marginal zone. Red pulp macrophages (RPM) reside in the 

cords of the red pulp. They are directly in contact with red blood cells (RBCs). In the outer layer of the marginal 

zone, marginal zone macrophages (MZM) are directly in contact with blood-borne antigens. Marginal 

metallophilic macrophages (MMM) are found in the inner layer of the marginal zone, surrounding the white 

pulp. They are responsible for uptake of antigens from the blood flow and transfer to B cells in the white pulp.    

Modified after references [30,31]. 

 

a) Marginal metallophilic macrophages (MMM) 

 

Marginal metallophilic macrophages (MMM) reside at the border of B cell follicles forming the white 

pulp, next to endothelial cells forming the inner ring of the marginal zone sinus. They express 

intermediate levels of CD11b.The expression of CD11c is not clear as there is discrepancy between 

studies showing absence or presence of CD11c staining in MMMs [32,33]. These macrophages are 

characterized by high expression of CD169 [34] and low expression of F4/80 [30]. They also express 

ligands for the cysteine-rich region of MR [19]. They are able to enter the B cell follicle during an 

immune response [19,35]. Due to their similarity of markers and function, MMM are thought to be 

the splenic counterpart of LN SSM. Knowledge brought by several studies on MMM might therefore 

apply to SSM. The detailed function of these cells will be described later in this chapter. 

b) Marginal zone macrophages (MZM)  

 

Marginal zone macrophages (MZM) form the outer ring of the marginal zone, residing between the 

marginal sinus and the red pulp. It was shown in one study by Eloranta and colleagues that they do 

not express CD11c [32]. They are characterized by the expression of SIGN-R1 [11,36] and MARCO [37] 

but do not express CD169 and express low levels of F4/80 [30]. These macrophages also have access 
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to the blood circulation and are responsible for antigen uptake and interaction with B cells from the 

marginal zone [35]. They are more phagocytic than MMMs [38]. 

c) Red pulp macrophages 

 

Red pulp macrophages (RPM) highly express F4/80, CD68, VCAM-1 and MR, express intermediate to 

low levels of CD11b and do not express CD169 [28,39]. They are mainly involved in phagocytosis of 

dead erythrocytes and iron homeostasis. They also mediate regulation of serum glycoproteins and 

uptake of pathogens via MR [28].  

 

 

4.1.4 Mucosal lymphoid tissues macrophages 

 

There is little knowledge about macrophages associated with mucosal lymphoid tissues. As describe 

in chapter 2, M cells are responsible for the transfer of antigens from the gut lumen to peyer’s 

patches. F4/80+ macrophages were not found in peyer’s patches but in the lamina propria of small 

and large intestine [40]. CD169+ macrophages were also found in intestinal tissues and will be 

described in the last paragraph of this chapter [41,42]. 

 

The study involved in my thesis is related to CD169+ macrophages in the LN. Therefore, after 

describing the different macrophages population in lymphoid tissues, I will now focus on the function 

of CD169+ macrophages, that is LN SSM and MSM as well as MMM in the spleen.  

4.2. Functions of CD169+ macrophages in LNs and spleen 

4.2.1 Pathogen elimination and innate immunity 

 

As described before, SIGN-R1 and MARCO are pattern-recognition receptors (PRR) expressed by 

macrophages from the spleen and the LN. CD169+ macrophages also express Toll-like receptors (TLR) 

leading to cell activation and initiation of immune response. Therefore, the first function of these 

macrophages is to recognize pathogens and to induce an innate immune response. It was shown that 

MMM are essential for the trapping of particulate antigen from Listeria monocytogenes and limit 

spreading of this bacteria [43]. MMM also limit plasmodium berghei infection [44]. Moreover, 

CD169+ macrophages are the first line in antiviral defense. It was observed that MMM have a crucial 

role in eliminating lymphocytic choriomeningitis virus (LCMV) and preventing spreading of the virus 

to other organs [45]. On the other hand, SSM reduce the spread of murine cytomegalovirus (MCMV) 
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[46]. The main pathway involved in prevention of virus replication is IFN-I secretion and activation of 

IFNAR receptors. IFN-I production by SSM but also plasmacytoid DCs is needed to prevent central 

nervous system infection via intranodal nerves [47]. It was also shown that MMM produce IFN-I after 

herpes simplex virus infection [32]. Moreover, it was observed that lymphotoxin (LT) expressed by B 

cells plays a critical role in viral protection induced by SSMs [48]. Indeed no production of IFN-I was 

observed in absence of LT expression. Production of IFN-I by SSM also recruits natural-killer (NK) cells 

in the subcapsular sinus in a mechanism dependent on CXCR3 [49].  

Additionally, SSM and MSM are closely located to innate lymphocytes (NK cells, NKT cells, γδT cells, 

innate-like CD8 T cells) in the LN and are able to induce their activation [33,50,51]. It was observed 

that pathogen recognition by SSM activates their inflammasome leading to IL-18 and IL-1β secretion 

[52]. IL-18 induces IFNγ production by innate lymphocytes in a loop further activating macrophages. 

IL-1β enables fast recruitment of neutrophils and efficient pathogen clearance. SSM also play an 

important role in mediating the effect of vaccine adjuvants [53,54].   

 

4.2.2 Antigen presentation and adaptive immunity 

 

In addition to pathogen recognition and induction of innate immunity, CD169+ macrophages are able 

to capture and present antigens and thus act as antigen presenting cells (APC) initiating adaptive 

immune responses. Indeed, many studies brought evidence that CD169+ LN and splenic macrophages 

are able to capture viral particles as well as particulate antigens and immune complexes [18,20–

22,55]. To achieve this function, SSM have a projection in the lymph sinus called the “head” and a 

“tail” that extends in the B cell follicle (figure 4.3). Interestingly, it has been shown by imaging that 

this shape is stable in contrast to dendrites of DCs [18,20,21,55]. The development of confocal 

microscopy techniques also allowed to observe that SSM are able to transfer intact immune 

complexes to B cells  [18]. B cells can acquire immune complexes through the complement receptor 

and transport them to the follicle were immune complexes can be transferred to follicular dendritic 

cells (FDCs) [56]. However, spleen is less accessible than LNs and this was not shown for MMM.  

MCH-II expressing CD169+ macrophages have been identified in the LN floor subcapsular sinus 

confirming that SSM are gatekeepers able to transfer antigens to B cells and induce a humoral 

response [20]. Whether MMM express MHC-II remains unclear. Antigen in complex with MR can be 

acquired by both MMM and SSM [19]. Furthermore, MR-L targeting allowed to visualize SSM and 

MMM migrating to B cell follicle after antigen uptake [19,57]. This is probably to increase 

presentation to B cells thus enabling a longer presentation of antigens. However, this migration leads 

to loss of LN integrity which causes problems in secondary infections [58]. Overall, antigen uptake 

and presentation to B cells by CD169+ macrophages is important for initiation of an immune 
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response. However, since the B cell response occurs even after depletion of CD169+ macrophages it 

is thought that macrophages only play an accessory role in inducing B cell activation [28].   

 

 

Figure 4.3: Antigen presentation by subcapsular sinus macrophages. Scheme representing the 

characteristic shape of subcapsular sinus macrophages inserted in the lymphatic endothelium. The “head” is 

responsible for capture of lymph borne antigen and the “tail” for transfer of antigens to B cells. Antigen can be 

directly recognized by B cell in a cognate interaction leading to direct activation of B cells. Immune complexes 

can also be recognized by complement receptors and transported by B cells into the follicle. After reference 

[56]. 

 

Another role of CD169+ macrophages is cross-presentation of antigens. Indeed, SSM would also play 

a role in central memory CD8+ T cells and DCs activation [22]. It is of great interest to understand the 

effects on cytotoxic CD8+ T cells to set up new vaccination strategies. It was shown that SSM and 

MMM are able to internalize, process and present antigens trough MHC-I molecule, thus replacing 

CD8α+ DCs and directly priming CD8+ T cells [18,59,60]. It was also demonstrated that MMM present 

antigens to CD8+ DCs and induce CD8+ T cells response [61]. Bernhard and colleagues recently 

showed that cross-presentation by CD169+ macrophages is restricted to peptides strongly binding 

MHC-I [60]. This cross-presentation mechanism seems to be independent of B cell activation as 

depletion of B cells do not impair CD8+ T cells activation [62]. Furthermore, LCMV infection leads to 

production of CXCR3 ligands by MMM guiding CD8+ T cells and inducing a short term effector cells 

response [63]. 

Moreover, investigation of T. Gondii infection showed that SSM invaded with this parasite cluster 

with CD8+ T cells leading to release of the pathogens from macrophages and infection of T cells 

[59,64].  Additionally, spleen infection with P. chabaudi induces deletion of MMM by CD8+ T cells via 

CD95/CD95L and perforin [65]. These mechanisms are used by pathogens to promote their 

dissemination.  
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4.2.3 Permissivity to infection 

 

Beside secretion of interferon type I in response to viral infection, it has also been shown that viruses 

can infect and replicate in CD169+ macrophages [26]. Vaccinia virus (VV) was shown to replicate in 

SSM [66], LCMV in MMM [63] and MCMV and Vesicular stomatitis virus (VSV) in both SSM and MMM 

[20,67,68]. A study of VSV infection in the spleen demonstrated that permissivity to virus infection in 

MMM is due to negative regulation of IFNAR pathway in these cells. Indeed, it has been shown that 

MMM express Usp18, a negative regulator of IFN-I signaling cascade. Thus, CD169+ macrophages 

responsiveness to IFN-I is decreased which allows locally restricted replication of the virus [68]. We 

can assume that this mechanism extends to SSM. Moreover, viral replication in CD169+ macrophages 

generates intact viral particles that are more effective to activate B cells than free antigens. This 

mechanism would induce antibody response as Usp18-/- mice and CD169-DTR mice present reduced 

antibody response to infection [68]. However, the link between CD169+ macrophages and antibody 

response remains unclear. Additionally, production and release of live viruses leads to T cell priming 

via DCs [69]. The mechanism controlling live viruses release remains to be investigated. Therefore, 

Usp-18 inhibition of IFNAR signaling cascade is required to allow local replication of viruses and 

induce a protective adaptive immune response. This involves activation of antiviral T cells and 

neutralizing antibodies production. These observations could explain why attenuated live vaccines 

are more effective than inactivated or subunit vaccines in inducing protective immunity [69]. 

Permissivity to infection is not restricted to viruses as Toxoplasma gondii also infects and replicates in 

SSM [70].   
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Figure 4.4: Mechanism allowing marginal metallophilic macrophages permissivity to infection. 

Vesicular stomatitis virus (VSV) arrives in the spleen via blood circulation. Virus recognition leads to type I 

interferon secretion and activation of IFNAR receptor. In CD169
+
 marginal metallophilic macrophages Usp18 

prevents binding of Jak1 to IFNAR2 and inhibits downstream IFN-I signaling allowing replication of the virus. 

Intact virus particles are presented to induce B cell response. Live viruses release allows T cells priming via 

dendritic cells (DC). Modified after reference [69]. 

 

Finally, LNs medullary and subcapsular sinus macrophages probably do not play the same role in host 

defense. Indeed, MSMs do not allow virus replication [47,48]. These cells are more phagocytic and 

express more TLR4 and TLR13 than SSMs. Thus, they are able to recognize and destroy extracellular 

viruses and rather play a role in innate immune response through IFN-I [26].  

4.2.4 Tolerance and anti-tumor immunity 

 

In addition to preventing systemic infection, it has also been observed that CD169+ macrophages play 

an important role in tolerance and anti-tumor immunity. MMM and MSM are able to clear apoptotic 

cells thus preventing autoimmune responses. MSM express Tim-4 and MMM express Tim-4 and 

Trem14 receptors for apoptotic cells. Uptake of cell debris leads to secretion of immunosuppressive 

factors [71,72]. MSM uptake of apoptotic cells was indeed shown to induce tolerance in lung draining 

LNs [73]. Additionally, apoptotic cell uptake by MMM leads to CCL22 secretion and activation of 

Foxp3+ Treg cells and DCs hence inducing tolerance [74].   

Dead tumor cells are a source of tumor antigens. It was shown that immunization with irradiated 

tumor cells induced protection against syngeneic tumors in mice [75]. In this study, Asano and 

colleagues showed that SSM present tumor antigens to CD8+ T cells without involving DCs. Depletion 

of CD169+ macrophages in CD169-DTR mice suppressed the antitumor effect of immunization with 
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tumor dead cells and CD8+ T cells were not activated. A mechanism for the uptake of dead cells could 

be recognition of phosphatidylserine by SSM [76]. Thus, it would be interesting to take advantage of 

this mechanism for antitumoral vaccination strategies. Moreover, Pucci et al studied Tumor-derived 

extracellular vesicles (tEVs) in the context of melanoma. They showed that tEVs are drained from the 

tumor in lymphatics and bind SSM in tumor draining LNs then preventing cancer progression [77]. 

However, they also show that the SSM barrier can be disrupted by chemotherapy agents or CSF1-R 

inhibitor immunotherapy. In the spleen, tumor antigen targeting to MMM also induce antitumor 

immunity in a CD8+ T cells dependent mechanism [61]. CD169+ macrophages were also shown to be 

important in humans. CD169+ macrophage numbers in regional LN (RLN) correlated with longer 

survival in colorectal cancer and endometrial carcinoma patients. In these patients, SSM were closely 

associated with CD8+ T cells [78,79]. CD169+ macrophage numbers in RLN also correlated with clinical 

stages of breast cancer. Decrease in the CD169+ macrophage population was associated with cancer 

progression [80]. 

4.3. Development of CD169+ macrophages in LNs and spleen 
 

Different factors required for CD169+ macrophages development have been identified. SSM and 

MMM development is sensitive to CSF-1. Op/op mice missing CSF-1 expression lack these 

macrophage populations [81,82]. Interestingly, treatment of op/op mice with CSF-1 from 3 days of 

age to 3-4 months of age rescues the presence of MMMs [82]. Moreover, increased levels of CSF-1 

were observed in macrophage-enriched zones in spleen and LNs [83]. SSM and MMM have been 

shown to depend also on LTα1β2 secreted by B cells. In fact, SSM population was greatly reduced in 

B cell-deficient mice and after treatment with LTBR-Fc both in LN sections and by flow cytometry 

[18]. Impaired spleen architecture and lack of MMM was also observed in these mice [84,85]. NF-κB 

signaling induction by LTβR seems to be essential as NF-κB p52 deficient mice lack MMM [86]. It is 

not known whether NF-κB signaling is also involved in SSM development. However, CSF-1 does not 

affect LNs MSM presence and LTα1β2 blockage had a moderate effect on MSM population 

[18,81,82]. Moreover, TNF appears to be important for spleen macrophages but not for LN 

macrophages [87,88]. The nuclear factor LXRα was also suggested to be required for splenic 

macrophage development as LXRα deficient mice lack MMM [89].  

Beside the identification of these factors regulating the presence of CD169+ macrophages, the origin 

and precise developmental mechanism of those cells remains unclear. It has been observed in many 

tissues that tissue-resident macrophages renewal is based on local proliferation in adult steady-state 

rather than recruitment from peripheral monocytes [5]. However, it was recently proposed that 

spleen macrophages derive from CX3CR1intLY6Chi monocytes [89]. Moreover, intravital imaging 
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allowed to observe monocytes accumulation in the spleen and mobilization of monocytes in 

inflammatory conditions [90]. Whether this phenomenon contributes to renewal of spleen 

macrophages remains unclear. On the other hand, early studies showed that splenic macrophages 

renewal is due, at least in part, to local proliferation [91,92]. Overall, further fate mapping 

experiments are required to better understand splenic CD169+ macrophage ontogeny.   

To study the development of SSM, Delemarre et al studied in 1990 the repopulation of these 

macrophages after dichloromethylene diphosphonate (Cl2MDP)-liposomes injection. After 5 days of 

treatment, all LN macrophages disappeared. Macrophages populations were again present in the LNs 

of all animals after 5 months. There was no difference in the repopulation kinetic of SSM and MSM 

meaning that the two populations probably have the same precursors [27]. Conversely, splenic 

macrophages did not have the same repopulation kinetic after Cl2MDP-liposomes injection. MMM 

complete reappearance was observed 2 weeks after injection while it took 1 month for MZM to be 

back in normal numbers [93]. Following selective depletion of CD169+ macrophages by a single 

injection of diphtheria toxin (DT) in CD169-DTR mice, recovery of LN and splenic macrophages was 

observed after 7-10 days [75,94]. The effect seen in liposomes treated mice might be due to long 

lasting effect of the toxin.  

Delemarre’s group also investigated whether LN macrophages precursor are coming from the blood 

compartment. They transplanted Cl2MDP-liposomes treated LNs into control animals. In this case, 

the macrophages repopulated the LNs after 5 weeks only [95]. Moreover, after lymphatics occlusion, 

disappearance of SSM was observed showing that macrophages in LN might come from new 

immigration from interstitial tissues through the lymph rather than local proliferation [92,95].  In this 

study, they also excluded that precursors come from monocytes influx via high endothelial venules. 

On the other hand, irradiation chimeras experiments suggest that LN CD169+ macrophages have a 

bone marrow origin [3]. Overall, the origin of LNs and splenic CD169+ macrophages remains unclear 

and whether they have the same precursors or not remains to be investigated. They might show 

different terminal differentiation due to distinct tissue of residence. Lineage tracing experiments 

would be required to further understand CD169+ macrophages origin and development. Finally, the 

stromal environment might play a role in macrophages differentiation and would require further 

investigation. 
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4.4. CD169+ macrophages in other tissues 
 

CD169+ macrophages were recently identified in intestinal tissues by two independent groups 

[41,42]. Hiemstra and colleagues identified the presence of CD169+ macrophages in lamina propria of 

the colon. They show that development of this population does not rely on LTα as in the spleen but 

rather relies on vitamin A. Mice deficient for vitamin A present a reduced number of colonic CD169+ 

macrophages [41]. These findings show the different requirements for CD169+ macrophage 

differentiation depending on the tissue of residence. Moreover, Asano and colleagues observed 

CD169+ macrophages in the bottom of the lamina propria, distant from the intestinal lumen. Hence 

this macrophage population is not directly exposed to commensal bacteria. In a mouse model, colitis 

epithelial-mucosal injury leads to production of CCL8 by CD169+ macrophages and recruitment of 

inflammatory monocytes. Depletion of this macrophage population ameliorates the colitis  

symptoms [42].   

CD169+ macrophages were also identified in bone marrow (BM). Erythropoiesis is a process leading 

to development of red blood cells from erythroid precursors and occurs in BM. It was shown that 

CD169+ macrophages play a role in erythropoiesis. Depletion of CD169+ macrophages in BM leads to 

impaired erythropoiesis and reduced number of erythroblasts [96,97]. Therefore, CD169+ 

macrophages would play a role in anemia-associated diseases. CD169+ macrophages are also able to 

retain hematopoietic stem cells (HSC) in bone marrow [98,99] thus regulating the number of HSC 

leaving bone marrow to the peripheral blood.    

Additionally, CD169+ macrophages are involved in kidney diseases however contrary roles have been 

described depending on the study. Ikezumi and colleagues found accumulation of CD169+ 

macrophages in glomerulonephritis patients and the number of this macrophage population 

correlated with proteinuria and histological damage [100]. On the other hand, Karazawa and 

colleagues recently demonstrated the presence of kidney resident CD169+ macrophages in renal 

ischemia-reperfusion injury (IRI) mouse model. They show that CD169+ macrophages depletion 

worsen renal IRI symptoms. Hence this population would play a role in suppression and resolution of 

IRI. Interestingly, this study also showed that CD169+ macrophages would play a role in vascular 

homeostasis by regulating the expression of adhesion molecules such as ICAM-1 on endothelial cells 

[101]. 

Moreover, in arthritis accumulation of CD169+ macrophages was observed in the synovium. But 

whether macrophages play a role in this autoimmune disease or their accumulation is a result of 

inflammatory conditions remains unclear [102]. 

CD169+ macrophages were also found in models of cerebral vasculature injury [103] and 

atherosclerosis [104]. 
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Finally, CD169+ macrophages are located in hepatocellular carcinoma tissues were they activate CD8+ 

T cells and are therefore associated with favorable prognosis [105]. 

4.5. Conclusions 
 

CD169+ macrophages play an important role in inducing both innate and adaptive immunity in LNs 

and spleen. SSMs are able to present antigen to B cells and cross-present antigens to cytotoxic      

CD8+ T cells. Moreover, they have a characteristic permissivity to infection enabling local 

proliferation of viruses in order to enhance adaptive immune response. Recent studies also 

demonstrated the importance of CD169+ macrophages in other non-lymphoid tissues. However, the 

mechanisms leading to their differentiation are still poorly understood and might be tissue 

dependent. Due to the importance of CD169+ macrophages in protecting against infections and 

tumors development, it appears crucial to understand the key mechanisms leading to their 

differentiation. Many studies have been investigating the splenic CD169+ macrophages counterpart 

of SSM, but whether the mechanisms involved in the spleen are the same in the LNs remain to be 

better understood. The role of the tissue microenvironment would also require further 

investigations.  

CD169+ macrophages were also identified in human spleen but functional studies are lacking [106]. 

Moreover, macrophages with the same phenotype as mouse LN macrophages were identified in 

human LNs [107]. However, there is still a limited knowledge about the similarities of LN 

macrophages and more generally CD169+ macrophages between mouse and human [22]. 
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Thesis objectives 

 

The RANK/RANKL/OPG triad is involved in many biological processes and unknown mechanisms 

probably remain to be discovered. Many molecules targeting RANKL have been developed and 

evaluated. However antibodies targeting the receptor RANK were poorly characterized and would be 

useful to identify and study RANK expressing cells. Moreover, while a monoclonal antibody targeting 

RANKL is used for treatment of osteoporosis and bone metastases, no small molecule inhibiting 

RANK/RANKL interaction was reported. Therefore, the objective of a first part of my thesis was to 

develop and characterize new molecular tools to study RANK/RANKL. Firstly, I characterized two anti-

RANK antibodies for their binding and affinity to RANK as well as their biological activity. Secondly, I 

performed the screening of a small molecule library to identify compounds inhibiting RANK/RANKL 

interaction. 

It is known that RANKL is required for lymph node development but whether RANKL is required for 

lymph node homeostasis in adults is not known. Moreover, RANKL plays a role in osteoclast 

differentiation but whether it also contributes to the differentiation of other macrophages subsets is 

currently unclear. RANKL is expressed by a stromal cell subset (MRC) in the adult lymph node. 

Therefore, the objective of a second part of my thesis was to study the effect of RANKL on lymph 

node homeostasis, more precisely its impact on lymphatic endothelial cells and macrophages. In this 

work, we identified a new marker of LECs under the control of RANKL. Moreover, we investigated the 

effect of RANKL deficiency in MRCs on lymph node macrophages and studied the underlying cellular 

mechanism. The lymph node contains several cell types which could express many signal inducing 

factors. Thus, a goal of this thesis was to identify RANK expressing cells and try to understand the 

signals they provide to maintain lymph node macrophage homeostasis. 
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1. Development of new molecular tools to 

target RANK-RANKL 

1.1. Introduction :  
 

The TNF family member Receptor activator of NF-kB (RANK) was first discovered for its role in 

osteoclastogenesis caused by increased RANKL levels in response to hormonal changes. In spite of its 

recognized role in osteoporosis, RANK also plays an important role in the immune system, in the 

activation of epithelial cells and pathological conditions such as cancer. Therefore, high affinity tools 

that target the RANK-RANKL axis are important both in investigative research and in therapy. 

Denosumab is a human monoclonal antibody targeting RANKL and is used for treatment of 

osteoporosis and bone metastases. Other reagents are also used to manipulate the RANK-RANKL 

pathway such as OPG-Fc, RANK-Fc or the anti-mouse RANKL antibody IK22-5. To target mouse RANK, 

an anti-mRANK monoclonal antibody was generated (R12-31) by immunizing rats. Also, screening of 

a phage display library led to the discovery of a single-chain fraction variable (scFv) binding human 

and mouse RANK. However, these tools are often insufficiently characterized.  

Moreover, two main strategies were used to target RANK activation. Firstly, peptides binding RANK 

intracellular domain and small molecules interacting with downstream signaling were identified. On 

the other hand, blocking the interaction between RANK and RANKL is another strategy. 

Peptidomimetics such as peptides base on the loop 3 of RANK or the binding motif of OPG were 

described. However, to our knowledge, a small molecule inhibiting the interaction between RANK 

and RANKL was not reported.  Such a molecule could have advantages regarding cost of treatment 

and route of administration compared to therapeutic antibodies. 

During my thesis, we aimed to find new tools to target RANK/RANKL. First we developed a 

monoclonal antibody targeting RANK based on the sequence of the scFv described by Newa and 

colleagues. We characterized this antibody together with the already published R12-31 antibody with 

regard to binding capacity, biological activity, distinct or shared epitope and binding of primary cells 

(Article 1, Immunology letters 2016). We also investigated the effect of these antibodies in vivo.  

In order to identify a small molecule inhibiting the interaction between RANK and RANKL, I 

performed the screening of the Prestwick Chemical Library (PCL) using a competitive ELISA assay. We 

identified a hit and validated it by testing 10 close analogues. We completed the study by testing the 

compounds in vitro in a cellular assay using Jurkat JOM2 cells as well as in an osteoclast 

differentiation assay (Article 2, in preparation). 
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1.2. Article 1 

 

Characterization and application of two RANK-specific antibodies with different biological activities 

 

M. Chypre, J. Seaman, O.G. Cordeiro, L. Willen, K.A. Knoop, A. Buchanan, R.C.A. Sainson, I.R. Williams, 

H. Yagita, P. Schneider, C.G. Mueller 

 

Immunol. Lett. 171, 5–14, 2016 
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Supplementary Figure 1:  

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 1.  The figure presents the ΔMFI of the flow cytometry RANK staining with the 

two mAbs (RANK-02 and R12-31) for the six different cell lines. The data was derived from Figure 1 

and 3 and the ΔMFI= MFI RANK antibody – MFI isotype control was calculated. (A) ΔMFI for the 

Jurkat JOM2 mRANK:Fas cell line and its parental cell line Jurkat JOM2. (B) ΔMFI for the HEK 293 

mRANK cell line and its parental cell line. (C) Same as (A) but for Jurkat JOM2 hRANK:Fas cell line. (D) 

same as (B) but for HEK 293 hRANK cell line, n=3.  
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Supplementary Figure 2: 

 

 

Supplementary Figure 2. (A) Dose response curve for recombinant mRANKL fused to GST on Jurkat 

JOM2 cells expressing or not mouse or human RANK:Fas. The graph displays the percentage cell 

viability relative to Jurkat JOM2 cells grown in the absence of mRANKL (non-treated, NT) as a 

function of increasing concentrations of GST-mRANKL. Data points are the mean (± SD, n=3 with 

duplicate wells). Curve fitting was performed using the PRISM software. (B) Cell viability of Jurkat 

JOM2 cells expressing or not mouse or human RANK:Fas fusion protein treated with 0.1 µg/ml GST 

only or 0.1 µg/ml GST-mRANKL. Data is the mean (± SD, n=3 with duplicate wells) relative to JOM2 

cells exposed to GST. (C) Same as panel A but with Fc-mRANKL and Fc-hRANKL. The hBAFFR:Fas cell 

line and Fc-hBAFF were used as a negative controls. (D) EC50 values from results of panel C.  
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Supplementary Figure 3: 

 

Supplementary Figure 3. Competitive FACS to determine RANK-02 / R12-31 distinct or shared 

epitopes. Cells in 50 µl FACS buffer were coated for 15 min on ice with 100, 200 or 500 µg/ml of 

RANK-02 (human anti-RANK), or R12-31 (rat IgG2a anti-RANK), or NIP288 (ctrl for RANK-02) or rat 

IgG2a (ctrl for R12-31) in 6-fold dilutions (10 µl passed in 50 µl). Without washing, biotinylated RANK-

02 at 10 or 50 µg/ml (50 or 250 ng/staining) or biotinylated R12-31 at 20 or 50 µg/ml (100 or 250 

ng/staining) was added. After 20 min on ice, the cells were washed and biotinylated mAb revealed 

with PE-conjugated streptavidin. The histograms for each condition are shown. The dashed green line 

indicated the signal of uncompleted antibody binding.  
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1.3. Article 2 

 

Porphyrin derivatives inhibit the interaction between Receptor activator of NF-κB and its ligand 

M.Chypre, M-B Madel, C. Blin-Wakkach, C. Morice, C.G. Mueller 

 

In preparation  
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NF-κB and its ligand 
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, Christophe Morice 
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Abstract  

Receptor Activator of NF-κB (RANK) is a member of the TNF-receptor superfamily essential for 

osteoclastogenesis and bone resorption. Many efforts have been made to identify molecules 

inhibiting RANK activation to prevent pathological bone loss. Denosumab, a human monoclonal 

antibody blocking RANKL, is already approved for treatment of osteoporosis and bone metastasis. 

However, a small molecule inhibiting RANK activation is still needed to reduce the cost of treatment 

and facilitate the administration with orally available therapeutic agents. Here, we report the 

discovery of the first non-peptidic inhibitors of RANK-RANKL interaction. We screened the Prestwick 

Chemical Library® using a competitive ELISA assay. Verteporfin was identified as a hit, presenting a 

dose dependent activity with an IC50 of 0.4µM and inhibiting osteoclast differentiation in vitro. By 

testing 10 analogues, we confirmed the activity of porphyrin derivatives and the structural benefit of 

this specific chemical series. This discovery of a family of small molecules inhibiting RANK-RANKL 

interaction represents a useful tool for further characterization of novel therapeutic agents targeting 

bone destruction.  

Keywords  

porphyrinoids, inhibitors, Receptor activator of NF-κB, drug discovery, biological activity 
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The TNF superfamily member Receptor Activator of NF-κB (RANK) and its ligand RANKL were 

discovered in the late 1990’s for their function in bone homeostasis and immune regulation.
[1,2]

 

Osteoprotegerin (OPG), member of the tumor necrosis factor (TNF) receptor superfamily was shown 

to act as a decoy receptor of RANKL, thus preventing RANK activation.
[3]

 The RANK/RANKL/OPG triad 

was identified for its role in bone homeostasis through the activity of RANKL to induce 

osteoclastogenesis of RANK-expressing precursor cells.
[4]

 Uncontrolled RANK activation can lead to 

decreased bone mass and higher risk of fractures in osteoporosis or inflammatory arthritis.
[4,5]

 

Furthermore, the triad is involved in several immunological processes and plays an important role in 

cancer development and metastasis.
[4,6]

 Two main strategies have been developed to target the 

RANK/RANKL/OPG axis to counteract increased bone resorption in pathological conditions. Firstly, 

jolkinolide B and aliin phytopharmaceuticals, chloroquine and 5-(2’,4’-difluorophenyl)-salicylanilide 

derivatives are example of molecules inhibiting RANK induced signaling.
[7–10]

 Peptides interacting with 

the cytoplasmic part of RANK where also developed to inhibit downstream signaling.
[11,12]

 Another 

strategy consists in blocking the interaction between RANK and RANKL. For this purpose 

peptidomimetics of RANK or OPG such as peptides based on the RANK loop3 sequence or on the OPG 

binding site of RANKL have been described.
[13,14]

 Fusion proteins of the RANK and OPG binding 

domains with immunoglobulin Fc were also generated.
[15]

 Amgen Inc. developed the human 

monoclonal antibody Denosumab that neutralizes RANKL. This antibody is more potent and has a 

longer half-life than the OPG-Fc constructs, and, importantly, no safety risks were reported so far in 

clinical trials.
[15]

 Denosumab is a first-in-class, first-in-pathway monoclonal antibody approved for 

post-menopausal osteoporosis and prevention of skeletal related events (SRE) in patients with bone 

metastasis from solid tumors.
[15]

 However, small synthetic molecules inhibiting the RANKL interaction 

with its receptor RANK have so far not been reported but might represent cost and pharmacological 

advantages over proteins. 

The Prestwick Chemical Library (PCL) is a collection of 1280 small molecules; all are approved drugs 

(FDA, EMA and other agencies) selected by a team of medicinal chemists and pharmacists for their 

high chemical and pharmacological diversity as well as for their known bioavailability and safety in 

humans.
[16,17]

 We used a competitive ELISA assay to screen the Prestwick Chemical Library for small 

molecules that inhibit the interaction between human RANK and its ligand human RANKL. Herein, we 

report the identification of porphyrin derivatives as inhibitors of this interaction in ELISA as well as in 

a viability cellular assay using Jurkat JOM2 cell lines and an osteoclast differentiation assay using the 

RAW 264.7 macrophagic cell line.  
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We screened the 1280 compounds at a concentration of 100µM with a cutoff inhibitory effect ≥ 40%. 

Surprisingly, only one hit was identified (Verteporfin; compound 14G06, Fig.1) despite the high 

concentration used. In a dose response the IC50 of 0.4µM was determined (Fig. 1). Verteporfin is a 

benzoporphyrin derivative currently used for neovascular macular degeneration in ocular 

photodynamic therapy. Considering the large chemical diversity of the Prestwick Chemical Library 

and the fact that verteporfin is a unique representative of porphyrin macrocycles, this chemical 

structure seems to have a specific behavior with regard to the interaction between RANK and its 

ligand RANKL.  

 

 

Figure 1: Verteporfin inhibits the interaction between RANK and RANKL. (A) Verteporfin structure and (B) 

dose response curve of verteporfin in a competitive ELISA of RANKL binding to RANK. The ELISA plate was 

coated with hRANK-Fc followed by incubation of hRANKL together with increasing doses of verteporfin. The 

amount of bound hRANKL was measured. Values are the mean %, relative to hRANKL binding positive control 

(± SD) in the absence of the inhibitor. These data reveal that verteporfin inhibits hRANKL binding to hRANK in a 

dose dependent manner with an IC50 of 0.4µM.  

 

In order to validate the activity of this class of molecules, a hit follow-up process was performed by 

testing 10 close analogues, 5 phorphyrin and 5 chlorine macrocycles (Fig. 2 and table 1). Chlorines 

are closely related to porphyrin as they have the same macrocycle with a mono saturation at one of 

the four pyrrole site. Hematoporphyrin IX dimethyl ester (3) and Pyropheophorbide-a (9) had a 

similar activity to verteporfin with an IC50 of 0.3µM and 0.5µM, respectively. Pheophorbide a (8) and 

Purpurin 18 (10) had also a low micromolar activity with an IC50 of 1.2µM and 1.5µM, respectively. 

Pyropheophorbide-a methyl ester (5) and Chlorin e6 (2) were likewise active with an IC50 of 2.4 µM 

and 8.4 µM, respectively. Isohematoporphyrin IX (4) and Protoporphyrin IX dimethyl ester (7) 

presented weak activity with an IC50 > 20µM and some solubility issues led to only approximate IC50 

determination. Finally, Coproporphyrin I dihydrochloride (1) and Protoporphyrin IX (6) did not reveal 

any inhibitory activity. The variability of the results obtained for this small set of 10 structurally close 

analogues from potent to inactive in ELISA experiment validated the original hit, verteporfin (14G06). 

These results show a first promising Structure-Activity Relationship (SAR) for this chemical series in 
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regard to RANK-RANKL binding inhibition. Porphyrin macrocycles (1,6,4,7) are poorly to not inhibiting 

the interaction. On the other hand, benzoporphyrin (14G06) and chlorines (5, 8, 9 and 10) seem 

more efficient in inhibiting the interaction. The number of Hydrogen Bond Donor (HBD) 

functionalities (alcohol, carboxylic acid) and the presence of neutral Hydrogen Bond Acceptor (HBA) 

seem to be detrimental for activity. The more potent compounds bear preferentially one carboxylic 

acid group (8, 9 and 10) or hydroxyl groups in replacement (3). With more than two hydroxy or acid 

groups (1, 2 or 4), activity drops progressively until inactive tetraacid coproporphyrin I (1). Neutral 

oxygenated HBA groups such as ketone (5, 8, 9), ester (14G06) or anhydride (10) are suspected to 

participate in the binding. The close association of one HBD and one HBA enhances the inhibitory 

effect (9 vs 5, 6 and 7). Some results remained ambiguous, especially in the Porphyrin subseries (3 vs 

6 and 7) and further analogues would need to be tested to better understand the first SAR observed. 

Moreover, it would be interesting to test fragments of those macrocycles in order to determine how 

the aromatic macrocycle is detrimental for the inhibition. 

 

 

Figure 2: Activity evaluation of verteporfin analogues. Dose response curves of verteporfin analogues in a 

competitive ELISA of RANKL binding to RANK. The ELISA plate was coated with hRANK-Fc followed by 

incubation of hRANKL together with increasing doses of compounds. The amount of bound hRANKL was 

measured. Values are the mean % relative to RANKL binding positive control (± SD). The numbers refer to 

compounds 1-10 described in table 1. 
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Table 1: Name, structure and IC50 of the compounds tested in competitive ELISA. 

 

 

n° Name Structure 
IC50 

(µM) 
n° Name Structure 

IC50 

(µM) 
        

14G06 

 

Verteporfin 

 

0.43 6 

 

Protoporphyrin IX 

 

 

- 

1 

 

 

Coproporphyrin I 

dihydrochloride 

 

 

- 7 

 

 

Protoporphyrin IX 

dimethyl ester 

 
 

23.82 

2 Chlorin e6 
8.37 

 
8 

 

 

Pheophorbide a (mixture 

of diastereomers) 

 
 

1.15 

3 

 

 

Hematoporphyrin IX 

dimethyl ester 

 

 

0.32 9 

 

Pyropheophorbide-a 

 

 

0.51 

4 

 

 

Isohematoporphyrin 

IX 

 

 

Ambi-

guous 
10 

 

Purpurin 18 

 

1.45 

5 

 

 

Pyropheophorbide-a 

methyl ester 

 

 

2.37 

 

 

 

We next tested Verteporfin and its analogs in an in vitro cellular assay using Jurkat JOM2 cells 

expressing a chimeric receptor of the extracellular domain of hRANK fused to the intracellular 

domain of hFas. Activation of hRANK-hFas by RANKL leads to apoptosis, which is measured by 

propidium iodide (PI) incorporation into dead cells by flow cytometry.
[18]

 However, a receptor-ligand 

inhibition would rescue from cell death. First, we tested the efficacy of the assay by incubating the 
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cells with recombinant mRANKL in 0.05% DMSO alone or with the IK22-5 anti-RANKL antibody.
[18]

 

Recombinant RANKL triggered cell death while the antibody IK22-5 rescued the cells from apoptosis. 

The cell death values induced by RANKL were arbitrarily set to 100% (Fig 3A). Next, we verified the 

activity of the compounds that showed inhibitory activity in the ELISA assay at 10µM in the absence 

of RANKL. None-to-little cell death was observed, demonstrating their low cytotoxicity and their low 

RANK agonist effect (Fig 3A). We then tested their inhibitory activity by incubating the cells with 

RANKL together with 10µM of the compounds. The cellular inhibition is in accordance with the 

binding experiment (Fig. 3B), the most effective inhibitors in ELISA showing the highest inhibitory 

effects in cells (compounds 14G06, 2, 3, 8, 9 and 10). Inversely, 4 and 7, two poor RANK/RANKL 

binding inhibitors (IC50 > 20µM), were inactive in the cell assay at 10 µM. The three most potent 

inhibitors (8, 9 and 10) in cells were the chlorines bearing only one carboxylic acid group. Compound 

2 was less potent at the same concentration of 10µM. One possible explanation could be the free 

fraction of the inhibitor available at the cell surface in the experimental conditions. This local 

concentration could be modulated by the solubility of the compound and its global negative charge. 

Therefore, too many carboxylate functions (three in compound 2) may have a repulsive effect to 

access the membrane surface.  

 

 

Figure 3: Verteporfin and analogues have low cytotoxicity and inhibit RANK activation in Jurkat JOM2 

hRANK:Fas cells. Graph represent the Mean Fluorescence Intensity (MFI) of propidium iodide (PI) staining 

normalized to cells treated with RANKL + 0.05% DMSO. (A) Cells were treated for 16h with 10µM of the 

respective compounds. (B) Cells were treated with 10µM of the compounds together with RANKL at 1ng/ml. 

IK22-5 anti-RANKL antibody was used at 10µg/ml as a positive control for RANKL inhibition. Mean ± SD, t-test 

was used to calculate statistical significance. * p<0.05 ** p<0.001 ***p<0.001 
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Finally, we tested 14G06 in an osteoclast differentiation assay with the murine RAW-264.7 

macrophage cell line (Fig. 4). Their culture with mM-CSF and mRANKL is known to induce the 

formation of large multinucleated osteoclasts positive for Tartrate-resistant acid phosphatase 

(TRAcP).
[19]

 We observed a dose dependent inhibition of osteoclast formation with micromolar 

concentrations confirming the efficiency of verteporfin to inhibit RANK-RANKL interaction. 

 

Figure 4: Verteporfin inhibits osteoclastogenesis.   (A) Microscopy images showing the effect of verteporfin on 

RAW-264.7 differentiation. RAW-264.7 cells were cultured with M-CSF (25 ng/ml) and RANKL (30 ng/ml) for 

differentiation into osteoclasts for 4 days in the presence or absence of 14G06 (verteporfin, 1µM). The cells 

were stained for TRAcP assay and photographed (x10). (B) Graph represents the number of multinucleated (≥ 3 

nuclei) TRAcP positive osteoclasts (mean ± SD in triplicates) after the treatment with different doses of 

verteporfin.  

 

Here, we report the first non-peptidic inhibitors of RANK-RANKL interaction. Detailed SAR remains to 

be investigated but these first results show that porphyrin derivatives and, more specifically, 

chlorines are validated core structures that effectively inhibit RANK-RANKL binding. This inhibition is 

influenced by modifications of the central aromatic macrocycle. The number of carboxylic acid 

groups affected the inhibitory activity. We based our initial screen on an ELISA assay to identify 

rapidly and cell-independently molecules that show inhibitory activity of RANK-RANKL interaction. 

We then confirmed the inhibitory activity in a cellular assay with the readout of rescuing cell death of 

Jurkat JOM2 hRANK:Fas cells by RANKL. Finally we showed that verteporfin inhibits 

osteoclastogenesis in a dose-dependent manner. This procedure is therefore different from those 

aiming to identify inhibitors of osteoclast formation or activity using osteoclasts or their precursor 

cells. The here identified compounds had a micromolar IC50 in ELISA and in cellular assays. This 

concentration range is comparable with peptides and small molecules inhibiting RANK signaling but it 

is higher than Denosumab or OPG-Fc with an IC50 in the nanomolar range in osteoclastogenesis 

assays.
[7,8,13,14,20]

 To our knowledge, no small molecule has been identified that blocks RANKL-RANKL 

interaction. Thus, this study provides for the first time the identification of chemical compounds 
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inhibiting RANK binding to its ligand RANKL. Furthermore, the porphyrin derivatives can serve as 

chemical backbone for refinement and activity enhancement. Similarly to OPG-Fc and Denosumab, 

the here described molecules or their derivatives could be applicable in diseases such as 

osteoporosis, cancer and inflammation caused by an increased RANKL expression.
[4,6,21]

 Verteporfin is 

currently used as a photosensitizer in photodynamic therapy of the eyes.
[22]

 Activation of verteporfin 

with a 689nm laser leads to production of singlet oxygen and free radicals inducing cell damage. 

Therefore, it can be activated with normal light and leads to skin photosensitivity for at least 48h 

after injection. Verteporfin extravasation out of blood vessels could also lead to pain, inflammation, 

swelling or discoloration.
[23]

 Thus, the use of these compounds in vivo could lead to potential side 

effects. We therefore propose porphyrin derivatives as useful tools to investigate the RANK/RANKL 

interaction blockade and to further develop more efficient and specific molecules that could be 

suitable for therapy. Though, at present, only anti-RANK and anti-RANKL antibodies could be used as 

a positive control for inhibition of RANK/RANKL interaction.   

Experimental Section:  

ELISA: Competitive ELISA to study RANK-RANKL interaction was already described.
[18]

 Goat-anti-

human antibody (5µg/ml) was coated in carbonate buffer overnight in 96-well plates. Plates were 

washed with PBS/0.05% Tween (PBS-T), blocked for 1h at 37°C with PBS containing 4% (w/v) milk 

powder and washed again. Conditioned supernatant of 293T cells transfected with hRANK-Fc 

(5µl/well) was then incubated 2h at 37°C. Plates were washed with PBS-T, titrated amounts of 

compounds together with supernatant containing Flag-hRANKL (2µl/well) were added and incubated 

for 1h at 37°C. Supernatant volumes were chosen for their ability to generate a close to maximal but 

non-saturating signal. Binding of Flag-hRANKL was revealed with biotin-conjugated M2-antibody 

(0.5µg/ml) (Sigma) and streptavidin-HRP (Jackson immunoresearch) (1/4000). Tetramethylbenzidine 

(TMB, 75µl) was added to each well and then neutralized with HCL 1 N (25µl). Plates were read at 

450 nm on Multiskan Ex (MTX Labsystems Inc.). Plasmids were a kind gift from Dr. Pascal Schneider, 

University of Lausanne. 

 

Cell culture: Jurkat JOM2 hRANK:Fas (a kind gift from Dr. Pascal Schneider, University of Lausanne ) 

were maintained in a humidified incubator with 5% CO2 at 37°C and grown in RPMI 1640 medium 

supplemented with 10% FCS. Jurkat JOM2 hRANK:Fas were generated according to a described 

protocol.
[18,24,25]

 RAW-264.7 cells were cultured in αMEM containing 5% FCS, 1% penicillin-

streptomycin as well as 50 μM β-mercaptoethanol. 

Cell viability assay: Jurkat JOM2 hRANK:Fas (1×10
5
 cells/100 µl) were incubated for 16h with 

compounds and/or recombinant RANKL or anti-RANKL antibody IK22-5 as indicated. Cells were then 

washed with PBS and incubated with 1µg/ml propidium iodide (PI) for 15min at room temperature. 

Cell viability was assessed by measurement of PI mean fluorescence by flow cytometry using FACS 

Calibur (BD) and Flowjo software (Treestar) for analysis. 
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Osteoclastogenesis assay: 5x10
3 

RAW-264.7 cells/well were seeded in a 48-well plate. Cells were 

incubated with 30 ng/ml murine RANKL and 25 ng/ml murine M-CSF (R&D Systems) and without or 

with different concentrations of verteporfin. After 4 days of culture, cells were fixed and stained for 

TRAcP activity according to manufacturer’s instructions (Sigma-Aldrich). TRAcP positive cells with 3 

and more nuclei were counted as osteoclasts. Cells were photographed (magnification 10x) using the 

Zeiss Primo Vert phase-contrast microscope and the Axiocam ERc 5s microscope camera (Zeiss) 

utilizing the AxioVision Rel 4.8 (Zeiss) imaging software. The number of osteoclasts were visually 

scored. 

 

References: 

[1] D. M. Anderson, E. Maraskovsky, W. L. Billingsley, W. C. Dougall, M. E. Tometsko, E. R. Roux, M. 

C. Teepe, R. F. DuBose, D. Cosman, L. Galibert, Nature 1997, 390, 175–179. 

[2] B. R. Wong, R. Josien, S. Y. Lee, B. Sauter, H.-L. Li, R. M. Steinman, Y. Choi, J. Exp. Med. 1997, 186, 

2075–2080. 

[3] W. S. Simonet, D. L. Lacey, C. R. Dunstan, M. Kelley, M.-S. Chang, R. Lüthy, H. Q. Nguyen, S. 

Wooden, L. Bennett, T. Boone, et al., Cell 1997, 89, 309–319. 

[4] M. C. Walsh, Y. Choi, Inflammation 2014, 5, 511. 

[5] K. Okamoto, H. Takayanagi, Arthritis Res. Ther. 2011, 13, 219. 

[6] E. González-Suárez, A. Sanz-Moreno, FEBS J. 2016, 283, 2018–2033. 

[7] X. Ma, Y. Liu, Y. Zhang, X. Yu, W. Wang, D. Zhao, Biochem. Biophys. Res. Commun. 2014, 445, 

282–288. 

[8] Y. Chen, J. Sun, C. Dou, N. Li, F. Kang, Y. Wang, Z. Cao, X. Yang, S. Dong, Int. J. Mol. Sci. 2016, 17, 

DOI 10.3390/ijms17091516. 

[9] Y. Xiu, H. Xu, C. Zhao, J. Li, Y. Morita, Z. Yao, L. Xing, B. F. Boyce, J. Clin. Invest. 2014, 124, 297–

310. 

[10] C.-C. Lee, F.-L. Liu, C.-L. Chen, T.-C. Chen, D.-M. Chang, H.-S. Huang, Eur. J. Med. Chem. 2015, 98, 

115–126. 

[11] B. Aggarwal, B. Darnay, S. Singh, Inhibitors of Receptor Activator of NF-kappaB and Uses Thereof, 

2004, US20040167072 A1. 

[12] H. Kim, H. K. Choi, J. H. Shin, K. H. Kim, J. Y. Huh, S. A. Lee, C.-Y. Ko, H.-S. Kim, H.-I. Shin, H. J. Lee, 

et al., J. Clin. Invest. 2009, 119, 813–825. 

[13] G. Kato, Y. Shimizu, Y. Arai, N. Suzuki, Y. Sugamori, M. Maeda, M. Takahashi, Y. Tamura, N. 

Wakabayashi, R. Murali, et al., Arthritis Res. Ther. 2015, 17, 251. 

[14] J. Hur, A. Ghosh, K. Kim, H. M. Ta, H. Kim, N. Kim, H.-Y. Hwang, K. K. Kim, Mol. Cells 2016, 39, 

316–321. 



Results (part 1) 

Development of new molecular tools to target RANK/RANKL 

 

135 

 

[15] D. L. Lacey, W. J. Boyle, W. S. Simonet, P. J. Kostenuik, W. C. Dougall, J. K. Sullivan, J. S. Martin, R. 

Dansey, Nat. Rev. Drug Discov. 2012, 11, 401–419. 

[16] G. Porcu, E. Serone, V. D. Nardis, D. D. Giandomenico, G. Lucisano, M. Scardapane, A. Poma, A. 

Ragnini-Wilson, PLOS ONE 2015, 10, e0144550. 

[17] C. Corbel, B. Zhang, A. Le Parc, B. Baratte, P. Colas, C. Couturier, K. S. Kosik, I. Landrieu, V. Le Tilly, 

S. Bach, Chem. Biol. 2015, 22, 472–482. 

[18] M. Chypre, J. Seaman, O. G. Cordeiro, L. Willen, K. A. Knoop, A. Buchanan, R. C. A. Sainson, I. R. 

Williams, H. Yagita, P. Schneider, et al., Immunol. Lett. 2016, 171, 5–14. 

[19] T. Ciucci, L. Ibáñez, A. Boucoiran, E. Birgy-Barelli, J. Pène, G. Abou-Ezzi, N. Arab, M. Rouleau, X. 

Hébuterne, H. Yssel, et al., Gut 2015, 64, 1072–1081. 

[20] P. J. Kostenuik, H. Q. Nguyen, J. McCabe, K. S. Warmington, C. Kurahara, N. Sun, C. Chen, L. Li, R. 

C. Cattley, G. Van, et al., J. Bone Miner. Res. 2009, 24, 182–195. 

[21] F. Toberer, J. Sykora, D. Göttel, V. Ruland, W. Hartschuh, A. Enk, T. A. Luger, S. Beissert, K. Loser, 

S. Joos, et al., Exp. Dermatol. 2011, 20, 600–602. 

[22] V. I. P. T. S. Group, Am. J. Ophthalmol. 2001, 131, 541–560. 

[23] U. Schmidt-Erfurth, T. Hasan, Surv. Ophthalmol. 2000, 45, 195–214. 

[24] P. Schneider, L. Willen, C. R. Smulski, in Methods Enzymol. (Ed.: J.A.W. and J.Y. Avi Ashkenazi), 

Academic Press, 2014, pp. 103–125. 

[25] L. K. Swee, K. Ingold-Salamin, A. Tardivel, L. Willen, O. Gaide, M. Favre, S. Demotz, M. Mikkola, P. 

Schneider, J. Biol. Chem. 2009, 284, 27567–27576. 

 

 

 





Results (part 1) 

Development of new molecular tools to target RANK/RANKL 

 

137 

 

1.4. Conclusions  

 

Investigation of RANK-RANKL axis and discovery of new therapeutic applications requires well 

characterized high affinity tools. In these studies, we developed and characterized new tools to 

target RANK-RANKL axis. To do so, I set up different and complementary assays to study binding to 

RANK and activation of downstream signaling. In the first study, we carefully characterized two 

monoclonal antibodies (mAbs) targeting RANK. We observed that they bind both mRANK and hRANK 

by ELISA, plasmon resonance and in flow cytometry. The mAbs showed different biological activity 

probably due to the binding of different epitopes. R12-31 presented an agonist activity against both 

mRANK and hRANK. RANK-02 showed partial antagonist activity on mRANK and weak agonist activity 

on hRANK. Both mAbs recognized RANK at the surface of migrating primary Langerhans cells. R12-31 

was active in vivo and induced the differentiation of M cells of the intestinal villi.  

In a second study, I used the tests set up in the previous part to identify small molecules inhibiting 

the interaction between RANK and RANKL. I screened the Prestwick Chemical Library of small 

molecules using the competitive ELISA. One hit with a micromolar IC50 was identified (Verteporfin). 

To validate the hit we tested 10 analogues, only two of them did not show inhibitory activity. These 

results allowed the evaluation of the first keys for structure-activity relationship.  Some analogues 

were also tested for their effect in the cellular assay using Jurkat JOM2 hRANK:Fas cells. The 

structure-activity relationship found in ELISA was confirmed and showed that these compounds can 

efficiently inhibit RANKL interaction with the RANK extracellular domain. Finally verteporfin was 

tested in an osteoclastogenesis assay in vitro. It potently inhibited murine osteoclasts differentiation 

at micromolar concentrations.  

In this part of my thesis work, I set up several in vitro methods to characterize tools targeting RANK-

RANKL. The competitive ELISA and the cellular assay using Jurkat JOM2 hRANK:Fas were validated 

with the antibody study and enabled the identification of a family of small molecules inhibiting 

RANK-RANKL interaction. Together, these findings pave the way for the use of these mAbs and small 

molecules to better understand RANK-RANKL-OPG triad biology and discover new therapeutic 

agents. 
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2. RANKL in adult lymph node homeostasis: effect 

on lymphatic endothelial cells and macrophages 

2.1. Introduction 

 

Lymph nodes (LNs) are well organized organs comprising both hematopoietic and non-hematopoietic 

cells playing an important role in the initiation of an immune response. Lymph containing antigen 

presenting cells as well as particulate antigens arrives in the LN subcapsular sinus via the afferent 

lymphatics. The subcapsular sinus is formed by lymphatic endothelial cells (LECs) creating two layers 

called the ceiling and the floor. The CD169
+
 subcapsular sinus macrophages (SSMs) are inserted into 

the floor LEC layer. Marginal reticular cells (MRCs) are found between the floor of the sinus and the B 

cell follicles. Lymph flows through LN via medullary and cortical sinuses which are also formed by 

LECs. The CD169
+
 medullary sinus macrophages (MSM) are found in the medullary sinuses. 

RANKL together with LTαβ are known to play a role in LN organogenesis. Mice deficient for RANK or 

RANKL do not develop LNs. Moreover, MRCs are known to constitutively express RANKL in the adult 

LN. Nonetheless, the role of RANKL in the adult LN remains unclear.  

During my thesis, we addressed the question of the heterogeneity of LECs by investigating a new 

marker of these cells, ITGA2b, sensitive to RANKL (Article 3, Plos One 2016). ITGA2b was known to be 

expressed by platelets and megakaryocytes. We show that LECs also express this integrin in the floor 

of the subcapsular sinus and heterogeneously in medullary and cortical regions of the LN. The 

expression of ITGA2b by LECs was sensitive to stromal RANKL and to LTαβ blockage. 

In a second study, we investigated whether stromal RANKL also impacts LN macrophages (Article 4, 

in preparation). We observed that stromal RANKL deficiency reduced CD169
+
 SSM numbers. This did 

not involve a direct mechanism activating RANK on macrophages or an autocrine effect on MRCs. 

Expression of ITGA2b and MAdCAM-1 on LECs could be restored to WT levels with recombinant 

RANKL. 
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2.2. Article 3 

 

Integrin-Alpha IIb Identifies Murine Lymph Node Lymphatic Endothelial Cells Responsive to RANKL 

O.G. Cordeiro, M. Chypre, N. Brouard, S. Rauber, F. Alloush, M. Romera-Hernandez, C. Bénézech, Z. 

Li, A. Eckly, M.C. Coles, A. Rot, H. Yagita, C. Léon, B. Ludewig, T. Cupedo, F. Lanza, C.G. Mueller 

PLOS ONE 11, e0151848, 2016 
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2.3. Article 4  

 

Stromal RANKL regulates LN subcapsular sinus macrophages differentiation 

M. Chypre, O.G. Cordeiro, J. Sponsel, G. Anderson, B. Ludewig, H. Yagita, T. Lawrence, C.G. Mueller  

 

In preparation 
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Abstract 

BACKGROUND: The TNF superfamily member RANKL functions in osteoclastogenesis by activating 

RANK signaling in myeloid osteoclast precursors, such as monocytes, macrophages or dendritic cells. 

However, whether it also plays a role in the differentiation of other cells of the myeloid lineage is not 

known. LN macrophages are tissue-resident macrophages important for both innate and adaptive 

immunity but their differentiation process is still not well understood. 

AIM: The aim of this study is to investigate whether RANKL is involved in the differentiation of LN 

macrophages.  

METHODS: To answer this question, we used the cre/lox system to generate mice lacking either 

RANKL or its receptor. We then analyzed LNs for different macrophage populations by flow 

cytometry and fluorescence microscopy.  

RESULTS: After conditional deletion of RANKL in marginal reticular stromal cells (MRCs), we observed 

impaired differentiation of the subcapsular sinus macrophages (SSMs) leading to dysfunctional 

antigen transport to B cells. To understand the mechanisms behind SSMs regulation by RANKL, we 

generated mice with conditional deficiency of RANK in macrophages. We also adoptively transferred 

RANK
-
 and RANK

+
 fetal liver hematopoietic progenitors into irradiated mice to competitively 

reconstitute the myeloid compartment. However, in all cases the SSM population was normal, 

excluding a direct effect of RANKL. Moreover, we generated mice with conditional deficiency of 

RANK in MRCs and did not observe impaired differentiation of SSMs. We have recently shown that 

RANKL activated RANK
+
 lymphatic endothelial cells (LECs) to express ITGA2b [1]. We were able to 

recover ITGA2b expression on LECs after recombinant RANKL administration to mice deficient in 

stromal RANKL.  

CONCLUSIONS: We conditionally deleted RANKL in MRCs and were able to show that stromal RANKL 

alters SSM differentiation. We show that this is not due to a direct effect on RANK on macrophages 

or to an autocrine effect of RANKL on MRCs. Therefore, we are now investigating whether there is a 

cross-talk between RANKL-activated LECs and SSMs. 
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Introduction 

Sinuses of lymph nodes (LNs) and the splenic marginal zone in mouse and human are lined by 

macrophages that play an important role in initiation and regulation of innate and adaptive 

immunity. In the LN, the CD169
+
 subcapsular sinus macrophages (SSMs) are localized between the B 

cell follicles and the floor lymphatic endothelial cells (LECs) and constitute an early target cell for 

pathogen replication and a key player for a rapid innate immune defense [2–5]. SSMs also capture 

non-infectious antigen, otherwise too large to penetrate into the LN [6,7]. Their position together 

with their lower lysosomal enzymatic activity, favors antigen relay to activate B cells and the humoral 

response. The CD169
+
 medullary sinus macrophages (MSMs) are associated with the medullary 

lymphatics that collect lymph before its exit through efferent lymphatics. MSMs also capture viral 

pathogens [4,8] but are more mature macrophages as indicated by expression of F4/80 and SIGN-R1 

and by their active proteolytic machinery [9]. Thus, MSMs are equipped to recognize and probably 

eliminate pathogens.  

 

The TNFSF member RANKL (TNFSF11) is required for the formation of osteoclasts, specialized bone-

resorbing macrophages, by activating the signaling receptor RANK (Receptor activator of NF-κB, 

TNFRSF11a) [10–12]. In the periphery, the Langerhans cells are under RANKL regulatory control, as 

their number decreases in mice lacking RANKL [13]. However, although mature dendritic cells of the 

secondary lymphoid organs carry the receptor, so far no function for RANKL for these dendritic cells 

was found in vivo [10,11]. This is in spite of the essential role of RANKL for LN formation during 

embryogenesis [12,14]. 

In adult secondary lymphoid organs RANKL is constitutively expressed by the marginal zone reticular 

cells (MRCs) [15]. Using RANKL as marker for MRCs, suggestive evidence was provided that MRCs are 

precursors for follicular dendritic cells (FDC) [16]; however, other than this the role of MRC RANKL in 

LN integrity and its function remains unclear.  

 

In the light of the dual role of RANKL in osteoclastogenesis and lymphoid organogenesis, we asked 

whether these two elements are united in the regulation of LN macrophages. Using a conditional 

knock-out of RANKL in MRCs, we showed that RANKL regulates CD169
+
 SSMs differentiation. Antigen 

transfer to B cells was compromised. We investigated the possible mechanistic insights linking 

stromal RANKL and SSMs differentiation. We generated mice with conditional deletion of RANK in 

macrophages and performed adoptive transfer of RANK- and RANK+ fetal liver hematopoietic 
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progenitors to irradiated mice to competitively reconstitute the myeloid compartment. In both cases 

SSMs differentiation was not impaired, excluding a direct effect of stromal RANKL on macrophages. 

We also excluded an autocrine mechanism involving MRCs as mice deficient for RANK under the 

control of CCL19 promoter did not show impaired differentiation of SSM. We observed that LECs are 

sensitive to stromal RANKL which leads to the hypothesis of an indirect mechanism involving LECs.  

Material and methods 

Mice 

C57BL/6 (Charles River Laboratories France), RANKL-/- [17], Ly5.1 (CD45.1) and RANKL
ΔCcl19

, 

RANK
ΔCD11c

 and RANK
ΔLysM

 mice were bred and kept in specific pathogen-free conditions. All 

experiments were carried out in conformity with the animal bioethics legislation and institutional 

guidelines. To generate mice with conditional RANKL deficiency in marginal reticular cells 

(RANKL
ΔCcl19

), mice containing a single copy of the Ccl19-cre BAC transgene [18] were crossed with 

RANKLf/f (B6.129-Tnfsf11tm1.1Caob/J) mice [19]. CD11c Cre;RANK flox/flox (RANK
ΔCD11c

)  mice and 

LysM Cre;RANK flox/flox (RANK
ΔLysM

) mice were kindly provided by Toby Lawrence, CIML, Marseille, 

France. Unless otherwise indicated all mice were 8 weeks old. To inhibit lymphotoxin, RANKL and TNF 

pathway, mice received 20 µg of LTβR-muIgG1 (LTβR-Fc , kindly provided by Biogen, Cambridge, MA, 

USA), anti-RANKL antibody IK22-5 [20] or TNFR2-Fc (Etanercept) i.p. 3 times per week for 3 weeks. To 

rescue lymphatic endothelial cell activation in RANKL
ΔCcl19

 mice, mice were treated with 100µg GST-

mRANKL i.p. on day 0 and 100µg GST-mRANKL s.c. on day 0-3. On day 4, mice were sacrificed and LNs 

were collected.  

In vivo generation of immune complexes was performed as described [9]. In brief, mice were injected 

i.p. with 2 mg rabbit IgG anti-PE (Rocklands) 12-16 h before s.c. administration of 10 µg PE 

(Invitrogen Molecular Probes) into hind legs to drain into the inguinal and popliteal LNs. Mice were 

sacrificed 8 h later.  

Ly5.1 x C57BL/6 F1 mice (CD45.1+;CD45.2+) were lethally irradiated and 2x10
6
 fetal liver 

hematopoietic stem cells from C57BL/6 RANK
Δb-actin

 (CD45.2+) and from Ly5.1 (RANK
+/+

;CD45.1+) mice 

were adoptively transferred in equal proportions.  Eight weeks later the origin of the SSMs was 

determined using the congenic CD45.1/2 markers.  

 

Isolation and analysis of LN cells  

Stromal cells from peripheral LNs were prepared as published [21,22]. Briefly, lymph nodes were 

digested in RPMI + 2% FCS + Dispase II (Roche, 1mg/ml), Collagenase D (Roche,1mg/ml), DNase I 

(Roche, 0.1mg/ml) under agitation at 37°C for 1h. The cell suspension was then filtered at 100µm. 
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ACK buffer was used to remove red blood cells. CD45
+
 and TER119

+
 cells were depleted using anti-

TER119 and anti-CD45 coupled magnetic beads (Miltenyi Biotec). LN macrophages were isolated 

following the same protocol as for stromal cells omitting the CD45+ cell depletion step.  

 

Flow cytometry and immunofluorescence 

Primary and secondary antibodies used are listed in Supplemental Table. Flow cytometry was 

performed on a Gallios (Beckman-Coulter) and analyzed with FlowJo software (Treestar). Cells were 

sorted on a FACS Aria II (BD bioscience). 

Eight µm LN and spleen sections were cut on a cryostat (Leica), fixed in cold acetone and blocked 

with 2% BSA. After immunolabelling, sections were mounted in Fluomount (Dako) and images 

acquired on a spinning disk inverted microscope (Carl Zeiss) and the appropriate software 

(Metamorph). Images were analyzed using the open source imageJ software.  

 

Quantitative reverse transcription coupled polymerase chain reaction (qRT-PCR) 

RNA from sorted LN lymphatic endothelial cells (LECs), blood endothelial cells (BEC) and fibroblastic 

reticular cells (FRC) was extracted using the RNeasy kit (Qiagen) and cDNA was synthesized with 

Maxima First Strand cDNA Synthesis Kit (Thermo Scientific) and Improm-II (Promega) using 

oligo(dT)15 primers. RT-PCR was performed using Luminaris color HiGreen qPCR Master Mix (Thermo 

Scientific) using the following primers to amplify RANK: forward 5’- tgcgtgctgctcgttcca, reverse 5’-

accgtccgagatgctcataat with the housekeeping gene coding for GAPDH (Forward 5’-

TGACGTGCCGCCTGGAGAAA  and Reverse 5’-AGTGTAGCCCAAGATGCCCTTCAG). Quantitative RT-PCR 

was run on a Bio-Rad CFX96 thermal cycler, and threshold values (Ct) of the target gene were 

normalized to GAPDH (ΔCt = CtRANK  – CtGAPDH). RANK expression was finally expressed relatively 

to expression in BEC.  

 

Statistical analysis 

Mann-Whitney test and one or two way ANOVA with bonferroni correction were used on GraphPad 

Prism (GraphPad software) to calculate statistical significance. ns = not statistically significant, 

*p<0.05 **p<0.01 ***p<0.001 ****p<0.0001 
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Results 

RANKL regulates the differentiation of splenic CD169
+
 macrophages and LN SSM but not MSM. 

It has previously been reported that the spleen of RANK-deficient mice displays reduced expression 

of CD169, recognized by the Moma-1 monoclonal antibody [10]. We therefore examined the spleen 

of Rankl
-/-

 mice by microscopy for the expression of CD169 and also observed a reduction in CD169 

expression (Fig. 1A). This suggests a requirement for RANKL-RANK for the formation of the CD169
+
 

marginal metallophilic macrophages (MMMs). Because Rank
-/-

 or Rankl
-/-

 mice lack LNs, these organs 

cannot be studied in these mice. Therefore, to extend this finding to LNs we injected the antagonistic 

anti-RANKL (IK22-5) antibody in C57BL/6 mice. Because it has previously been shown that LTβR-Fc 

decreases CD169
+
 SSM numbers [9], we used LTβR-Fc as a positive control. On the other hand, 

administration of TNFR2-Fc served a negative control as the inhibition of TNFα has no effect on LN 

CD169
+
 macrophages [23,24]. We saw that RANKL and LTαβ blockage decreased CD169 staining both 

in spleen and LNs in comparison with TNFR2-Fc treatment (Fig1. B). Medullary sinus macrophages 

(MSMs) that also express CD169 in the LNs were not affected by the treatments (Fig1. B). We further 

assessed the presence of the CD169
+
 macrophages in LNs by flow cytometry using a previously 

established cell gating strategy [9] (Fig.1 C). We confirmed that RANKL neutralization and LTαβ 

inhibition decreased CD169
+
 SSM numbers. As for the MSMs, although there was a tendency for 

reduction after anti-RANKL administration, the difference with TNFR2-Fc was not significant (Fig.1 C). 

As expected, MSMs were not affected by LTβR-Fc [4,9]. These findings demonstrate the role of 

RANKL in CD169
+
 SSM differentiation in LN and spleen. 

 

Stromal RANKL deficiency decreases CD169
+
 SSM numbers and impairs SSM functionality 

To confirm the role of RANKL in mediating MMM and SSM differentiation genetically, we generated 

mice with a conditional Rankl knock-out under control of the CCL19 promoter [18]. CCL19 is active in 

Lymphoid tissue organizer cells (LTos) in embryos that give rise to the lymphoid stromal 

compartment including marginal reticular cells (MRCs), the main constitutive source of RANKL in the 

adult [15,25]. RANKL
∆CCL19

 mice developed LNs but immunolabelling of the embryonic inguinal LNs 

revealed a strong reduction in RANKL expression by the LTos (Fig. 2A). In the adult LN, RANKL 

expression by MRCs was no longer detected (Fig. 2B). We therefore analysed the LNs for CD169 

expression and found an almost complete absence of CD169 in the subcapsular sinus (Fig. 3A). 

Because, it was previously shown that LTαβ inhibition lead to the aberrant expression of SIGN-R1 by 

SSM [4], we also labelled the LNs sections for this marker. Indeed, SIGN-R1 largely replaced CD169 in 
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the subcapsular sinus. We then assessed LN macrophages numbers by flow cytometry. There was a 

5-fold reduction in the SSM population (Fig. 3B). However, despite a tendency of reduction, MSM 

numbers were not significantly different between RANKL
∆CCL19

 mice and control littermates.  

We next probed for the functional consequences by determining the relay of immune complexes to B 

cells. Passive immunization with phycoerythrin (PE)-specific antibodies followed by subcutaneous 

administration of PE led to the capture of PE-labeled immune complexes by B cells via SSMs [7]. 

Fewer B cells captured the fluorochrome in RANKL
∆CCL19

 mice showing a decreased functionality of 

SSM (Fig. 3C).  

As for the spleen, although the CCL19 Cre transgene shows activity in the splenic stroma, we found 

no change in CD169
+
 expression in RANKL

∆CCL19
 in comparison to Cre-negative littermate controls 

(data not shown).  

Therefore, the generation of mice deficient for LN stromal RANKL allowed us to show that stromal 

RANKL is required for CD169 expression by subcapsular sinus macrophages which is important for 

functional immune complexes transfer to B cells. 

 

Stromal RANKL does not act directly on macrophages or in an autocrine manner 

In order to understand the mechanistic insights of SSM differentiation we investigated whether 

stromal RANKL acts directly on macrophages. We used RANK
ΔCD11c 

and RANK
ΔLysM

 mice in which RANK 

is deleted from cells expressing CD11c or LysM respectively, including LN macrophages. We assessed 

the proportion of SSMs among the CD11b
+
 CD11c

lo/-
 cells by flow cytometry and observed no 

difference between knockout mice and control littermates (Fig. 4A). To address the requirement of 

RANK for SSMs differently, we adoptively co-transferred fetal liver hematopoietic progenitors from 

RANK
-/-

 CD45.2 C57BL/6 and from WT CD45.1 mice to irradiated CD45.1 x CD45.2 F1 mice. After 

reconstitution of the immune system, the proportion of CD45.1 (RANK
+/+

 donor origin) versus CD45.2 

(RANK
-/-

 donor origin) and CD45.1/2 (recipient origin) was assessed for SSMs and other myeloid cell 

populations. We observed that SSMs, as well as MSMs or other myeloid cells (DCs and 

CD11b
+
CD11c

lo
 macrophages) derived from both the RANK

+/+
 and the RANK

-/-
 donor origin (Fig. 4B). 

Residual recipient myeloid cells remained owing to radiation resistance. This confirmed that RANK 

expression was not required for SSM formation.  

Next, we addressed the question of an autocrine effect of RANKL on MRCs by generating mice with 

conditional RANK deficiency in CCL19 expressing cells. We assessed SSMs in these mice and did not 

observe a difference in SSM percentage between RANK
ΔCCL19 

mice and control littermates (Fig. 4D). 
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Therefore, the involvement of an autocrine mechanism through MRCs for CD169
+
 SSM 

differentiation can also be excluded (Fig. 4E).   

LECs are sensitive to stromal RANKL and can be rescued by recombinant RANKL injections 

We have previously shown that stromal RANKL activates LECs resulting in ITGA2b and MAdCAM-1 

expression [1,26]. We therefore envisioned the possibility that RANKL controls SSM differentiation 

indirectly through lymphatic endothelial cells. First, we explored the expression of RANK by qRT-PCR 

in LECs, BECs and FRCs and found highest transcription in LECs, none in FRCs and low levels in BECs 

(Fig. 5A). Indeed, the level of ITGA2b and MAdCAM-1 expression was greatly reduced in RANKL
ΔCcl19 

mice (Fig. 5B). Then, we investigated whether the administration of recombinant RANKL fused to GST 

could restore ITGA2b and MAdCAM-1 expression. RANKL injection increased ITGA2b and MAdCAM-1 

expression on LECs from RANKL
ΔCcl19 

mice to a level comparable to control littermates (Fig. 5B). 

Knowing that these cells are in close contact with SSM in LNs, we hypothesize an indirect mechanism 

involving LECs leading to CD169
+
 SSM differentiation (Fig. 5C).  

 

Discussion 

Here we have shown that stromal RANKL is required for LN CD169
+
 subcapsular sinus macrophages 

(SSM) and splenic CD169
+
 marginal metallophilic macrophage differentiation. We found that this is 

not due to a direct effect on macrophages or precursor cells and that there is not an autocrine effect 

on MRCs. We confirm that LECs are sensitive to stromal RANKL and hypothesize an indirect 

mechanism implicating LECs as intermediate cells between RANKL-expressing MRCs and SSMs. 

RANKL is constitutively expressed by MRCs in adults [15]. We conditionally deleted RANKL using the 

CCL19 promoter [18,25] and RANKL was efficiently deleted from MRCs in adult LNs. Unlike a total 

RANKL knock-out, the RANKL
∆CCL19

 mice developed LNs enabling us to investigate the effect of MRC 

RANKL in immune cell homeostasis. Strikingly, we observed a reduction in CD169
+
 SSMs. This finding 

supports initial observations made in the spleen of total RANK-deficient mice [10] and confirmed in 

this study with RANKL
-/-

 animals and injections of anti-RANKL antibody. The LN CD169
+
 macrophages 

comprise two populations, the SSMs and the MSMs, phenotypically distinct by F4/80 and SIGN-R1 

expression. RANKL
∆CCL19

 mice showed impaired formation of SSMs but not MSMs. SSM capture 

particulate antigen, virus or dead cells and present them to the underlying B cells [6,7,27]. Thus, mice 

with stromal RANKL deficiency display lower B cell uptake of immune complexes. This impaired 

function of SSMs shows that complete differentiation into CD169 expressing cells is required for 

SSMs function. Moreover, upregulation of SIGN-R1 by cells in the subcapsular sinus was observed in 
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RANKL
∆CCL19

 mice. This supports a defective macrophage differentiation pathway in the absence of 

RANKL.  

We further addressed the mechanistic insights linking RANKL to SSM differentiation. Macrophages, 

dendritic cells and monocytes are known to express RANK, respond to RANKL and differentiate into 

osteoclasts [12,28].  We therefore investigated whether RANKL acts directly on macrophages in LNs. 

We obtained mice deficient for RANK under the control of the CD11c or the LysM promoter. CD11c 

cre targets dendritic cells but would be expressed in macrophages including SSM that express low 

levels of CD11c. LysM cre targets all macrophage populations, but also monocytic precursor cells 

[29,30]. Moreover, in the case that these Cre promotors should not be adequately expressed in 

SSMs, we performed adoptive transfer of RANK
-
 and RANK

+
 fetal liver hematopoietic progenitors to 

irradiated mice to competitively reconstitute the myeloid compartment. Under all conditions, the 

SSM population was normal, excluding a direct effect of stromal RANKL. We additionally investigated 

whether stromal RANKL could act in an autocrine manner directly on MRCs which could subsequently 

express other factors triggering macrophages differentiation. We generated mice deficient for RANK 

under the control of CCL19 promoter. The SSM population was not affected in these mice excluding 

an autocrine mechanism involving MRCs.  

We previously described a new marker of activated LECs, ITGA2b [1]. This integrin is overexpressed 

by LECs in RANKL overexpressing mice but almost absent from LECs in RANKL
∆CCL19

 mice. This result 

was confirmed in this study. Moreover, we also showed previously that MAdCAM-1 is expressed by 

LECs and overexpressed in RANKL overexpressing mice [1,26]. Here we demonstrated that MAdCAM-

1 expression on LECs is also dependent on stromal RANKL as MAdCAM-1
+
 LECs population is 

decreased in RANKL
∆CCL19

 mice. We next showed that decreased expression of ITGA2b and MAdCAM-

1 by LECs can be rescued to WT levels by injecting recombinant RANKL for 4 days. SSMs lie in the 

layer formed by LECs in the subcapsular sinus and by RANKL expressing MRCs, thus these three cell 

populations are in close contact. We therefore hypothesize that an indirect mechanism involving 

LECs could trigger SSM differentiation. RANK expressing LECs activated by MRC RANKL could further 

participate in SSM differentiation. The reason why MSM differentiation is not affected although 

these cells also reside close to LECs may be related to the increased distance between the medulla 

and MRCs, together with the likelihood that RANKL is expressed in its cell-anchored version. To 

confirm that RANK on LECs plays a role in SSM differentiation, generation of mice deficient for RANK 

in LECs and analysis of their phenotype is required. Moreover, detailed investigation of the LEC 

transcriptome after RANKL activation may identify potential factors regulating SSM differentiation.   
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Altogether, this study points out the complexity of immune cell homeostasis in LNs and more 

precisely that of CD169
+
 macrophage differentiation. Few things are known to date about SSM 

development. Here we provided the first evidence that RANKL is involved in this process but further 

investigations are required to fully understand this complex mechanism. We found SIGN-R1 

expression in the subcapsular sinus of RANKL
ΔCcl19 

mice. Therefore SSM are probably present in a 

more advanced differentiation state. Indeed, MSM expressing SIGN-R1 were found to have a more 

mature signature than SSM shown by higher levels of lysosomal enzymes [9]. New insights in CD169
+ 

macrophage biology are of interest for basic and applied research. LN CD169
+
 macrophages play a 

role in cancer development [31,32]. Moreover, CD169
+
 macrophages are present in other tissues 

such as colon and bone marrow [33–35]. Understanding their differentiation process might 

consequently also be helpful in certain pathological conditions such as cancers, colitis and anemia.                                     
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Figures 

 

Figure 1: Impact of loss of RANKL on CD169-expressing macrophages in spleen and LNs. (A) Wide-

field microscopy imaging of spleen sections from WT and RANKL
-/- 

mice stained for CD169 (green) 

and B220 (red). Scale bar = 100µm. (B) Imaging of spleen and LN sections stained for CD169 (green) 

and B220 (red) after treatment with 20µg of anti-RANKL-IK22-5, LTβR-Fc or TNFR2-Fc 3 times per 

week for 3 weeks. Scale bar = 100µm (C) Gating strategy to study LN macrophages by flow 

cytometry. Graphs show the absolute numbers (mean ± SD) of subcapsular sinus macrophages (SSM) 

or medullary sinus macrophages (MSM) as indicated after treatment with anti-RANKL-IK22-5, LTβR-Fc 

or TNFR2-Fc. Datas from inguinal and brachial lymph nodes analysed separately were pooled. 

Statistical significance was calculated using one way ANOVA with bonferroni correction. **** p< 

0.0001 
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Figure 2: RANKL deficiency in  RANKL
ΔCcl19 

mice. (A) Confocal microscopy images of inguinal  LN  

anlagen  of RANKL
ΔCcl19 

mice and  Cre - littermate  controls  at  E18.5,  labelled  for  lymphatic 

endothelial  cells  (LECs)  (using  monoclonal  antibody  10.1.1),  for  LTi  cells  (CD4)  and  RANKL 

(expressed  by  LTOs).  Scale  bar  =  50µm.  (B)  Confocal microscopy  images  of  inguinal  LNs  of  

RANKL
ΔCcl19 

mice and  Cre - littermates  at  8  weeks  of  age, labelled for RANKL and LECs (using  

monoclonal  antibody  10.1.1). Scale bar = 50µm.  
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Figure 3: Stromal RANKL knockout impairs CD169
+
 subcapsular sinus macrophage differentiation and 

function. (A) Wide field microscopy imaging of LN sections from RANKL
∆CCL19

 mice and control 

littermates stained for CD169 (green), SIGN-R1 (red) and B220 (grey). Scale bar = 200µm. (B) Plots 

depict LN macrophage populations in RANKL
∆CCL19

 mice and control littermates. Graph shows the 

absolute numbers (mean ± SD) of subcapsular sinus macrophages (SSM) and medullary sinus 

macrophages (MSM) in RANKL
∆CCL19 

mice and cre- control littermates. Statistical significance was 

calculated using two way ANOVA with bonferroni correction ***p<0.001. (C) Plots depict the gating 

strategy to investigate PE-IC complexes uptake by B cells. Graph shows the percentage (mean ± SD) 

of PE
+
 B cells in RANKL

∆CCL19 
mice and cre- control littermates. Statistical significance was calculated 

using Mann-Whitney test. **p<0.01. 
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Figure 4: Stromal RANKL does not act directly on macrophages or stromal cells (A) Graphs represent 

the mean (± SD) percentage of subcapsular sinus macrophages (SSM) in RANK
ΔCD11c 

and RANK
ΔLysM

 

mice and cre- control littermates. (B) Scheme representing the protocol for RANK-KO versus WT fetal 

liver transfer in irradiated WT mice. Graph shows the reconstitution percentage (mean ± SD) of 

different cell populations according to their origin as indicated. FL= fetal liver, Mph= total 

macrophages. (C) Schematic representation summarizing our results that stromal RANKL does not act 

directly on macrophages. (D) Graph shows the percentage (mean ± SD) of SSM in RANK
ΔCCL19  

mice 

and cre- control littermates. (E) Schematic representation showing that stromal RANKL does not act 

in an autocrine manner on RANK expressing stromal cells, nor does it directly stimulate SSM 

differentiation. Statistical significance was calculated using Mann-Whitney test. 
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Figure 5: LECs are sensitive to stromal RANKL and can be rescued. (A) Relative expression (mean ± 

SEM) of RANK mRNA in LN lymphatic endothelial cells (LEC), blood endothelial cells (BEC) and 

fibroblastic reticular cells (FRC). Statistical significance was calculated using Mann-Whitney test. 

**p<0.01 (B) Graph represents the percentage (mean ± SD)  of MAdCAM-1
+
 and ITGA2b

+
 LECs in 

RANKL
ΔCCL19 

injected or not with 100µg GST-mRANKL or GST for 4 days compared to cre- control 

littermates. Statistical significance was calculated using one way ANOVA with bonferroni correction. 

***p<0.001 (C) Schematic representation of a possible indirect mechanism involving LECs. 
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Supplemental Table. 

Antibodies used in the study.  

Target Species Clone Conjugation Supplier 

CD45 Rat IgG2a 30-F11 APC-CY7 Biolegend 

Ter-119 Rat IgG2b TER-119 APC-CY7 Biolegend 

CD31 Rat IgG2a 390 A488 Biolegend 

Gp38 Syrian Hamster IgG 8.1.1 PE/CY7 Biolegend 

MAdCAM-1 Rat IgG2a MECA-367 biotin eBioscience 

CD41 Rat IgG1 MWReg30 APC Biolegend 

B220 Rat IgG2a RA3-6B2 Biotine eBioscience 

RANKL Rat IgG2a IK22.5 Purified Hideo Yagita 

CD16/32 Rat IgG2b 2.4G2 Purified BD Pharmingen 

CD11c Armenian hamster 
N418 

 
PE/Cy7 eBioscience 

CD11b Rat IgG2b M1/70 PerCP CY5.5 BD 

CD169 Rat IgG2a 3D6.112 FITC Biolegend 

F4/80 Rat IgG2a BM8 APC eBioscience 

CD45.1 Mouse IgG2a A20 APC eBioscience 

CD45.2 mouse IgG2a 104 APC eBioscience 

CD3 
Armenian hamster 

IgG1, k 
145-2C11 FITC; PE BD 

CD4 Rat IgG2a RM4-5 PerCPCy5.5; 

APC 

BD 

CD19 Rat IgG2a RA3-6B2 
PE, PerCPCy5.5; 

APC 
BD 

LTβR-muIgG1 Mouse IgG1   Biogen 

SIGN-R1 
Armenian Hamster 

IgG 
22D1 Purified BioXcell 

mCLCA1 Syrian Hamster IgG 10.1.1 Purified Andy Farr 

Hamster IgG Goat Polyclonal A488; A546 Molecular probes 

Streptavidin   PE; APC BD 
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2.4. Conclusions 

 

LECs represent heterogeneous populations in LNs and in peripheral lymphatic vasculature. In a first 

study we described a new marker of LECs, ITGA2b, expressed by a subset of LN LECs from the 

subcapsular, cortical and medullary sinuses. The ITGA2b
+
 LECs also expressed MAdCAM-1. ITGA2b is 

known to be expressed by megakaryocytes and platelets; we excluded platelet contamination in our 

experiments. We demonstrated that ITGA2b expression by LECs is sensitive to RANKL and LT. 

Functional relevance of ITGA2b expression requires further investigations but this study illustrates 

LEC heterogeneity and shows that RANKL is an important activation factor of these cells.  

CD169
+
 macrophages are present in the subcapsular and medullary sinus of the LNs. RANKL is known 

to regulate osteoclast differentiation but whether it has an impact on the differentiation of other 

macrophage subsets was not known. RANKL is constitutively expressed by MRCs in the LN 

subcapsular area, therefore we generated mice with conditional deletion of RANKL in MRCs 

(RANKL
ΔCCL19

). We observed a reduced number of CD169
+ 

SSM in these mice while the MSM 

population was not significantly decreased. We investigated the possible underlying mechanism and 

showed that RANKL does not act directly on RANK on macrophages or myeloid precursors. We also 

observed that RANKL is not acting in an autocrine manner on MRCs. As we have previously shown 

that LECs are sensitive to RANKL, we injected RANKL
ΔCCL19

 mice with GST-mRANKL. We observed a 

restored expression of ITGA2b and MAdCAM-1 to WT levels on LECs. Therefore, we hypothesize an 

indirect mechanism of SSM differentiation to occur via LECs. Further studies are required to confirm 

that RANK expression on LECs is important for SSM differentiation and to identify the potential 

factors involved in this process. 
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Discussion and perspectives 

Development of new molecular tools to target RANK/RANKL 

The RANK/RANKL/OPG triad is involved in many biological processes. Therefore, targeting 

RANK/RANKL interaction could be of interest in several pathological conditions such as osteoporosis, 

autoimmunity, lymphangiogenesis and epithelial cell proliferation in cancers. Anti-RANKL antibody 

denosumab is currently approved for treatment of osteoporosis and tumor bone metastases [1]. 

Several molecules, peptides, fusion-proteins or antibodies were studied to target RANKL, RANK or 

the signaling pathway of RANK  [1–5]. However, a small molecule inhibiting the interaction between 

RANK and its ligand was not reported. Such a molecule could have advantages regarding cost and 

route of administration compared to therapeutic antibodies. Moreover, there was a lack of well 

characterized anti-RANK antibodies that remain important tools to study RANK biology. In this thesis, 

the development of a new anti-RANK antibody (RANK-02) and its characterization together with an 

existing antibody (R12-31) brought better understanding of their binding to human and murine 

RANK. Additionally, we characterized their biological activity in vitro and in vivo and they constitute 

new tools to further address mechanisms implicating RANK. This study also allowed setting up the in 

vitro tests for the screening of a library of small molecules we performed in a second step.  

Moreover, we showed that RANK-02 interferes with RANKL binding on RANK therefore we were able 

to use this antibody as a positive control for inhibition of RANK-RANKL interaction. We screened the 

Prestwick Chemical Library® containing 1280 already approved drugs using a competitive ELISA assay. 

Surprisingly, beside the large chemical diversity of the library, only one hit was validated. This 

compound is verteporfin, a benzoporphyrin derivative used as a treatment in photodynamic therapy 

of neovascular age-related macular degeneration (AMD). We confirmed the activity of this 

compound by testing 10 close analogues, only two of them did not show inhibitory activity. The 

compounds inhibited RANK activation in vitro in a cellular assay using Jurkat JOM2 hRANK:Fas cells as 

well as in an osteoclasts differentiation assay. This study provides the proof of concept that it is 

possible to inhibit RANK/RANKL interaction with a small molecule. Benzoporphyrin derivatives have a 

specific porphyrin macrocycle structure that may provide the molecular base for interference with 

RANK-RANKL interaction. Verteporfin is commercialized since 2000 by Novartis under the name 

Visudyne®. It is approved to treat “wet” AMD in photodynamic therapy of the eye. In this form of 

AMD, choroidal neovascularization by leaking vessels impairs vision and can lead to blindness. 

Intravenous injection of verteporfin followed by laser irradiation at 689nm on the site of 

neovascularization leads to generation of singlet oxygen and other free radicals. This results in 

intravascular damage of endothelial cells, thrombus formation and platelet activation leading to 
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vascular occlusion and vision improvement. The liposomal formulation of Visudyne® aims to target 

lipoproteins expressed by proliferating endothelial cells and increase selectivity of the drug [6]. In 

recent studies, other properties of verteporfin were demonstrated in absence of light activation. 

Verteporfin inhibits autophagosome accumulation and increases antitumor activity of Gemcitabine in 

pancreatic ductal adenocarcinoma [7,8]. Verteporfin also inhibited YAP transcriptional co-activator of 

the Hippo pathway in ovarian cancer cells and suppressed their invasive/migratory capacity [9]. 

Moreover this compound was able to kill tumor cells in a colorectal cancer model in a YAP 

independent mechanism involving impaired clearance of p62/STAT3 [10]. However, due to its ability 

to generate free radicals when exposed to light, verteporfin is a photosensitizing agent. Extravasation 

of verteporfin outside of blood vessels and exposure to light could cause severe pain, inflammation, 

swelling or discoloration [6]. With a half-life of 2-5h, verteporfin is cleared rapidly compared to other 

photosensitizers. Nonetheless, patients injected with Visudyne® present skin photosensitivity for at 

least 48h. Overall, verteporfin presents several potential side effects due to its photosensitizer 

properties. Moreover, the recent studies showing inhibition of autophagy and tumor cell 

proliferation describe potential off-target effects if it were used to target RANK/RANKL. Specificity for 

RANK or RANKL would have to be investigated in more details as structures of the TNF/TNFR family 

members are well conserved within the family. Therefore, further investigations would be required 

to evaluate verteporfin as a therapeutic molecule targeting RANK/RANKL axis. Verteporfin and 

porphyrin derivatives could be used as new tools to identify other molecules inhibiting RANK/RANKL 

interaction. This could improve the discovery of small molecules in a way we used antibodies 

targeting RANK and RANKL as positive controls.  

 

Stromal RANKL implication in lymph node homeostasis 

RANKL is constitutively expressed by marginal reticular cells (MRCs) in the subcapsular area of LNs. 

RANKL was shown to play a role in osteoclast differentiation but whether it also plays a role in the 

differentiation of other macrophages was not known. We generated mice deficient for stromal 

RANKL (RANKL
ΔCCL19

) and observed a decreased number of CD169
+
 subcapsular sinus macrophages 

(SSMs). SSMs play an important role in the transfer of antigens from the lymph to B cells [11–14]. 

Consequently, antigen uptake by B cells was impaired in RANKL
ΔCCL19

 mice. SSM are also important in 

virus infection as they are permissible to infection, enabling viral replication and enhancing antiviral 

response through IFN-I production [13,15]. Therefore, to further confirm the functional relevance of 

CD169 loss in the subcapsular sinus of RANKL
ΔCCL19 

mice, we will perform Vesicular stomatitis virus 

(VSV) infection and study mouse mortality.  
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In the absence of stromal RANKL, we observed that a subset of cells from the subcapsular sinus 

express the C-type lectin SIGN-R1. This suggests that macrophages are still present in the LN 

subcapsular sinus but in a different differentiation state. MSM express SIGN-R1 and are described as 

more phagocytic thus more mature cells [11,16–18]. Therefore, the absence of RANKL would lead to 

advanced differentiation and expression of SIGN-R1 by SSMs. Injection of recombinant RANKL for 4 

or 8 days did not rescue CD169 expression in the subcapsular sinus. This inefficacy of RANKL is in line 

with the idea that CD169 is a marker of immature macrophages requiring the replacement of –

probably longlived- mature macrophages by precursor cells in order to recover bona fide SSMs. A key 

signal might be needed in the embryo or during early life to inhibit complete differentiation into 

phagocytic, SIGN-R1 expressing cells. GST-mRANKL construct is likely immunogenic and its prolonged 

used in vivo could promote immune reaction against GST and thus its neutralization. Irradiation and 

reconstitution with WT bone marrow in the presence of recombinant RANKL could be tested to 

investigate whether the formation of new SSM is accelerated.  

 

Lymphotoxin (LT) is also part of the TNF superfamily. It was shown that LTβR-Fc injections reduced 

SSM numbers [11]. We confirmed these results and showed that anti-RANKL antibody injection 

reduced SSM numbers in the same extent as LTβR-Fc. Both RANKL and LT blockage had more effect 

on the SSM population than on MSMs. However, Phan and colleagues showed that MSMs express 

more LTβR than SSMs but SSMs are more sensitive to LT blockage. This apparent discrepancy was not 

studied in detail and would require further attention. Moreover, the phenotype of mice deficient for 

LTbR was opposite to LTβR-Fc injections with decreased MSM population and less effect on SSMs 

[11]. The transfer of Ltbr-/- bone marrow into irradiated mice showed that LTβR expression on 

macrophages or precursors seems to be required for SSM development. In this study, we showed 

that RANK expression by macrophages or myeloid precursors is not required for the presence of 

SSMs. Therefore, the mechanisms involving LT and RANKL affecting SSM differentiation are probably 

different. Moseman and colleagues showed that LT expressed by B cells is important for CD169 

expression by SSM [19]. B cells deficient mice showed decreased expression of CD169 and increased 

SIGN-R1 expression in the subcapsular sinus. This shows that lack of LT stimulation leads to a 

phenotype of SSM that we observed in stromal RANKL deficient mice. Therefore, RANKL and LT could 

be linked in a mechanism leading to triggering CD169 expression and SSM differentiation. However, 

we observed normal levels of LTα and LTβ as well as absolute B cell numbers in RANKL
ΔCCL19 

mice 

(data not shown). Further investigations are required to understand whether LT and RANKL are 

linked in order to maintain LN macrophages homeostasis. We also confirmed in this study that TNF 

do not play a role in CD169
+
 macrophages differentiation. Knowing the existing redundancy between 
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different members of the TNF/TNFR superfamily, further investigations would be required to 

understand the roles of RANKL, LT and TNF in LN homeostasis. 

 

We decided to focus our work on identifying which cell type expressing RANK is important for CD169
+
 

SSM differentiation and understanding the underlying cellular mechanisms. As already mentioned, 

we excluded a direct action of RANK on macrophages. The expression of RANK by MRCs was also not 

required, excluding an autocrine effect of RANKL. Lymphatic endothelial cells (LECs) are forming the 

floor subcapsular sinus which is in close contact with MRCs and SSMs. Hence, we investigated the 

effect of RANKL on LECs. It was previously shown in our group that LECs overexpress markers such as 

MAdCAM-1 in a mouse model overexpressing RANKL [20]. During this thesis, we found a new marker 

expressed by LECs, ITGA2b. Expression of this integrin by LECs is sensitive to RANKL as mice treated 

with anti-RANKL antibody and RANKL
ΔCCL19 

mice have a lower percentage of ITGA2b
+
 LECs. Moreover, 

this study further highlights the heterogeneity of LECs in the LN. Expression of ITGA2b and MAdCAM-

1 is different depending on the localization of LECs, showing different activation state. A factor 

responsible for LEC activation is RANKL. We confirmed this by injecting GST-mRANKL to RANKL
ΔCCL19 

mice and observed a rescue of ITGA2b and MAdCAM-1 to WT levels on LECs.  In the subcapsular 

sinus, floor LECs are more activated probably because they are in close contact with RANKL 

expressing MRCs. We used RANK-02 anti-RANK antibody and observed that only a part of LECs 

population express RANK on the cell surface. This might be explained by internalization of the 

receptor upon stimulation. This could also show that other factors are responsible for LECs 

activation. We observed that LT blockage decreased the proportion of ITGA2b
+
 LECs in the LN. LT was 

also shown to affect MAdCAM-1 expression as LTβR-Fc injection decreased MAdCAM-1 expression in 

the subcapsular sinus [21]. However, in this study Cohen and colleagues also showed that LTβR 

deletion in LECs under the control of Prox-1 promoter did not reduce MAdCAM-1 expression by LECs. 

These results show that the subcapsular sinus area is a complicated region with different cell types 

and factors influencing their activation state. Observed phenotypes probably result from several 

indirect mechanisms. We showed that LECs express RANK by qRT-PCR. Therefore, we generated mice 

deficient for RANK under Prox-1 promoter by crossing Prox-1 cre ERT2 mice with RANK flox/flox mice 

(RANK
ΔProx-1

). We have set the conditions of tamoxifen injection to efficiently delete RANK from LECs 

(fig. 1). We now need to investigate whether these mice present the same phenotype as RANKL
ΔCCL19 

mice regarding ITGA2b/MAdCAM-1 expression by LECs and CD169 expression by SSMs. If RANK
ΔProx-1 

mice show a decreased CD169
+
 SSM number similar to RANKL

ΔCCL19
 mice, we will be able to conclude 

that RANKL expressed by MRCs is acting on floor LECs and LECs further provide a signal enabling 
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CD169 expression by SSM. This signal would contribute to maintenance of a differentiation state 

characterized by absence of SIGN-R1 and low phagocytic activity (Fig. 2). 

Figure 1: Deletion of exon 2 and 3 of the tnfrsf11a gene in DNA of LECs from RANK
ΔProx-1

 mice after tamoxifen 

injections. LECs were sorted from Prox-1 RANK flox/WT mice aged of 8 weeks. Before taking the LNs, mice 

were injected for 4 consecutive days with 3mg tamoxifen every day. To confirm Prox-1 cre recombinase-

mediated deletion of exon 2 and 3 of the tnfrsf11a gene, two PCR were performed on LECs DNA using 3 

different primers. Primer 1 (5’-TGTCCCACTGACACAGGAGA-3’) and primer 2 (5’-AGCTCACAACGCACAAAACA-3’) 

amplify a 469 bp fragment from the floxed locus and a 290 bp fragment from WT locus. Primer 1 and primer 3 

(5’-GAGTTCAAGGCCAACCTGAG-3’) amplify a 392 bp fragment resulting from excision of the floxed region by 

Prox-1-cre recombinase [22].    

Identification of the potential factors expressed by RANKL stimulated LECs that could trigger 

macrophages differentiation or precursor recruitment will then be required. It was shown that LECs 

can produce CSF1 [23] and GM-CSF [24]. Moreover, CSF-1 is required for SSMs development but not 

MSMs [25] which could explain the differences we observe in RANKL
ΔCCL19

 mice. Another factor that 

was shown to induce CD169 expression is type I interferon (IFN). Studies using human monocytes 

show that CD169 expression can be induced in vitro by TLR ligands and IFNα and that CD169 is 

increased on circulating monocytes in patients with pathological type I IFN increase [26,27]. In 

rodents, only a study in rats showed that CD169 expression can be induced on macrophages by IFNβ 

[28]. Conversely, SSMs were still present in IFNAR deficient mice [15]. Therefore elucidating a 

potential link between RANKL and type I IFN in inducing CD169 macrophages differentiation could be 

of interest. RANKL was also shown to induce CCL20 expression. CCL20 is responsible for migration of 

lymphocytes in the follicular associated epithelium (FAE) of the intestine. Lympho-epithelial cells 

interactions is necessary for M cell maturation [29]. Moreover, RANKL expressing T cells induce 

CCL20 production by astrocytes thus recruiting lymphocytes in the CNS. Mice deficient for RANKL in T 

cells are resistant to autoimmune encephalomyelitis [30]. Therefore, another hypothesis could be 

that stromal RANKL induces CCL20 expression by LECs which could play a role in recruitment of 

myeloid precursors of SSMs. In order to investigate the potential factors linking LECs with CD169 

expression by macrophages, we sorted LECs from RANKL
ΔCCL19 

mice treated or not with GST-mRANKL 

and performed RNA sequencing. The results are currently being analysed.  

F. Alloush 
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Figure 2: Schematic representation of the mechanism linking stromal RANKL and subcapsular sinus 

macrophages (SSM) differentiation. RANKL is expressed by MRCs in the LN. We showed that RANKL does not 

act directly on macrophages or myeloid precursors. We also excluded an autocrine loop with RANKL acting on 

MRCs. We observed that LECs are sensitive to RANKL therefore we hypothesized an indirect mechanism with 

RANKL acting on LECs. The factors expressed by LECs upon RANKL stimulation and responsible for the 

differentiation of SSM remain to be identified. 

Co-culture of LECs and macrophages or monocytes could also enable the validation of important 

factors. However, culturing LECs was challenging and we did not succeed in culturing enough cells to 

perform these experiments. Recently, a new protocol consisting in culturing total stromal cells before 

sorting LECs showed promising results. This experiment requires further set up. 

These findings showing the importance of RANKL in CD169
+
 SSM differentiation could also be of great 

interest in other tissues. Indeed, CD169
+
 macrophages are also present in tissues such as intestines 

[31,32] where stromal cells also produce RANKL. Moreover, depletion of CD169
+ 

macrophages in 

intestines ameliorates colitis symptoms [32]. Therefore, identifying the factors responsible for their 

development could be of interest in this pathological condition. On the other hand, it was also shown 

that SSMs can induce anti-tumor immunity by presenting tumor antigens to CD8+ T cells [33]. Hence, 

depending on the pathology, it would be of interest to locally modulate the presence or absence of 

the SSM population.  

In this study, we confirmed that LECs express RANK. It was previously shown in our group that RANKL 

overexpression in mouse induces LEC proliferation [20]. We confirmed that RANKL is involved in LEC 

activation. Moreover, RANKL is known to induce angiogenesis of blood endothelial cells [34]. 

Lymphangiogenesis is increased in cancers and promotes tumor spread [35]. Therefore it could be 

interesting to study in more details the role of RANKL in lymphangiogenesis to evaluate it as a 

therapeutic target. Moreover, we observed that RANKL-activated LECs upregulate MAdCAM-1 
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expression. MAdCAM-1
+
 LECs were mainly located in the floor of the subcapsular sinus. MAdCAM-1 is 

a ligand for Integrin α4β7 and L-selectin on leukocytes [36,37] thus RANKL activation of LECs might 

also play a role in leukocyte adherence to subcapsular sinus and entry in the LN. 

Overall, this work further shows the complexity of the mechanisms orchestrating LN organisation and 

homeostasis. The detailed characterization of the cells and factors leading to the presence of CD169 

expressing macrophages in the LN subcapsular sinus remain to be identified. This work also shows a 

novel role of RANKL beyond bone homeostasis and could help understanding the potential side 

effects of anti-RANKL therapy. On the other hand, activation of LECs by RANKL could play a role in 

immune pathologies and cancers. This paves the way to further investigate RANKL as a therapeutic 

target in cancers and autoimmune disorders.   
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Résumé 

Le récepteur activateur de NF-κB (RANK), membre de la famille des récepteurs au TNF, est connu 
pour son rôle dans l’homéostasie de l’os, mais joue aussi un rôle important dans le système 
immunitaire. J’ai tout d’abord étudié des outils permettant de ciblé RANK/RANKL. J’ai caractérisé et 

comparé l’activité biologique de deux anticorps anti-RANK. J’ai également criblé une librairie de 

petites molécules pour identifier des inhibiteurs de l’interaction RANK/RANKL. Dans une deuxième 
partie, je me suis intéressée au rôle du ligand de RANK (RANKL) dans l’homéostasie du ganglion 
lymphatique. RANKL joue un rôle dans la différenciation des ostéoclastes mais son rôle dans la 

différenciation d’autres macrophages n’a pas été étudié. Nous avons étudié des souris déficientes 

pour RANKL dans les cellules marginales réticulaires (MRC) qui expriment RANKL de manière 

constitutive dans le ganglion adulte. Nous avons observé une diminution de la population de 

macrophages sous-capsulaires (SSM). Nous avons également montré que les cellules endothéliales 

lymphatiques (LEC) expriment l’intégrine alpha 2b (ITGA2b)  et que cette expression est sensible à 

la présence de RANKL.  

Mots clés : RANKL,RANK, ganglion lymphatique, macrophages, cellules endothéliales lymphatiques, 

inhibiteurs 

 

Résumé en anglais 

The TNF-family member Receptor Activator of NF-κB (RANK) is known for its role in bone 

homeostasis and is increasingly recognized as a central player in immune regulation. Firstly I looked 

for new molecular tools to target RANK/RANKL axis. I characterized and compared the biological 

activity of two anti-RANK antibodies. Moreover, I screened the Prestwick Chemical Library® of small 

molecules in order to identify inhibitors of RANK/RANKL interaction. Secondly, I studied the effect of 

the RANK/RANKL axis in lymph node homeostasis. RANKL is known to promote osteoclast 

differentiation but whether it also plays a role in the differentiation of other macrophage subsets is 

not known. We addressed this question by conditionally deleting RANKL from marginal reticular 

stromal cells (MRCs) that constitutively express RANKL in the lymph node. We observed impaired 

differentiation of the subcapsular sinus macrophages (SSMs). We also studied lymph node lymphatic 

endothelial cells (LECs) and showed that integrin alpha 2b (ITGA2b) is expressed by a lymph node 

subset of LECs and its expression is sensitive to RANKL.  
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