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RESUME 
 

L’interleukine (IL)-17 et le TNFα sont deux cytokines pro-inflammatoires jouant un rôle 

important dans diverses maladies inflammatoires systémiques et auto-immunes affectant 

différents organes et tissus comme le foie et les muscles. Cependant, les rôles de l’IL-17 et du 

TNFα restent encore mal compris dans les muscles et le foie, qui est impliqué dans la réponse 

en phase aiguë. En utilisant des cultures de myoblastes, d’hépatocytes et de cellules stellaires 

hépatiques humains, nous avons trouvé que l’IL-17 et le TNFα augmentent en synergie la 

sécrétion de la cytokine pro-inflammatoire IL-6 et de plusieurs chimiokines. Dans les 

myoblastes, l’IL-17 et le TNFα induisent un stress oxydatif et une dérégulation de calcium 

montrant ainsi que les processus pathologiques immuns et non-immuns interagissent. Dans les 

hépatocytes, en augmentant en synergie les niveaux de la CRP et des transaminases, l’IL-17 et 

le TNFα participent à l’inflammation systémique et aux dommages cellulaires. Etant donné 

que des infiltrats de cellules immunitaires sont retrouvés lors d’atteintes inflammatoires, les 

interactions cellulaires contribuent certainement à la chronicité de l’inflammation. Des 

cellules mononuclées du sang périphérique activées ou non ont ainsi été placées en co-

cultures avec les myoblastes, les hépatocytes et les cellules stellaires. Par comparaison aux 

monocultures, les productions de l’IL-6 et des chimiokines IL-8 et/ou CCL20 étaient 

augmentées dans les co-cultures. L’IL-17 et le TNFα contribuaient partiellement à ces effets. 

Les effets systémiques de l’IL-17 et du TNFα en font donc des cibles thérapeutiques 

attrayantes pour le traitement des nombreuses maladies inflammatoires systémiques. 

Mots clés : interleukine-17, tumor necrosis factor-α, inflammation, interactions cellulaires, 

hépatocytes, cellules stellaires hépatiques, myoblastes 
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RESUME SUBSTANTIEL 
 

L’interleukine (IL)-17 et le TNFα sont deux cytokines pro-inflammatoires jouant un rôle 

important dans de nombreuses maladies inflammatoires systémiques et auto-immunes comme 

le psoriasis ou la polyarthrite rhumatoïde. Ces maladies systémiques sont caractérisées par 

une atteinte anormale et persistante du système immunitaire menant à une altération de la 

fonction de plusieurs organes et tissus comme par exemple le foie et les muscles. Des 

inhibiteurs de l’IL-17 et du TNFα sont actuellement disponibles pour le traitement de 

certaines de ces pathologies. L’IL-17 peut coopérer avec le TNFα pour agir en synergie sur 

plusieurs gènes inflammatoires dans divers types cellulaires. Cependant, leurs rôles restent 

encore mal compris dans le foie, qui joue un rôle central dans l’inflammation systémique en 

produisant la plupart des protéines de la phase aiguë de l’inflammation, ainsi que dans 

certains troubles musculaires comme les myopathies inflammatoires idiopathiques 

caractérisées par des mécanismes pathologiques immuns et non-immuns. De plus, étant donné 

que l’inflammation locale est caractérisée par une infiltration de cellules immunitaires, les 

interactions locales avec les cellules infiltrées peuvent jouer un rôle central dans la chronicité 

de l’inflammation. La contribution de ces types d’interactions dans la réponse inflammatoire 

nécessite donc d’être étudiée.  

Les objectifs de ces travaux de thèse étaient ainsi de : 

•  Déterminer les effets de l’IL-17 et du TNFα dans la réponse inflammatoire hépatiques 

par l’utilisation d’hépatocytes et de cellules stellaires hépatiques humains 

• D’évaluer le rôle de l’IL-17 et du TNFα dans les mécanismes pathogéniques immuns et 

non-immuns des myosites par l’utilisation de myoblastes humains 

• Etudier les interactions cellulaires entre les cellules mononuclées du sang périphérique 

et les hépatocytes, les cellules stellaires hépatiques ou les myoblastes dans la réponse 

inflammatoire et la contribution de l’IL-17 et du TNFα dans ces interactions 
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La combinaison IL-17 et TNFα amplifie la réponse inflammatoire hépatique 

Les effets de l’IL-17 et du TNFα ont été étudiés dans des cultures cellulaires d’hépatocytes 

primaires humains ainsi que dans les lignées humaines d’hépatocytes HepaRG et de cellules 

stellaires hépatiques LX-2. Dans ces cultures, la coopération IL-17/TNFα augmentait en 

synergie la production de l’IL-6, connu comme un inducteur majeur de la production 

hépatique de protéines de la phase aiguë. L’IL-17 et le TNFα agissaient ainsi sur 

l’inflammation systémique et les dommages cellulaires hépatiques en augmentant la CRP et 

les niveaux de transaminases via l’induction de l’IL-6 dans les cultures d’hépatocytes. 

Indépendamment de l’IL-6, l’IL-17 amplifiait l’effet du TNFα sur l’induction de l’expression 

des chimiokines IL-8, CCL20 et MCP-1. Étonnamment, l’exposition en premier de l’IL-17, 

mais pas du TNFα, était crucial pour l’initiation de l’effet synergique IL-17/TNFα sur la 

sécrétion de l’IL-6 et de l’IL-8 par les hépatocytes. Le blocage de l’IL-17 et/ou du TNFα 

pourrait être une stratégie thérapeutique potentiellement intéressante pour contrôler à la fois 

l’inflammation systémique et l’attraction des cellules dans le foie. 

 

L’IL-17 et le TNFα pourraient perturber la fonction musculaire en agissant sur la 

réponse inflammatoire et l’influx calcique de type SOCE dans les myoblastes humains 

Les myopathies inflammatoires idiopathiques (ou myosites) sont des pathologies auto-

immunes caractérisées par une dégénérescence des tissus musculaires et une infiltration de 

cellules mononuclées. La pathogénèse des myosites comprend des mécanismes immuns avec 

des niveaux élevés d’IL-17 et de TNFα et des mécanismes non-immuns incluant notamment 

un stress oxydatif et un dérèglement de l’homéostasie du calcium. En utilisant des cultures de 

myoblastes humains, nous avons trouvé que l’IL-17 et le TNFα agissaient sur l’état 

inflammatoire et le recrutement des cellules immunitaires en augmentant en synergie la 

sécrétion de l’IL-6 et de la chimiokine CCL20 par les myoblastes. L’IL-17 et le TNFα 

induisaient aussi la production de dérivés actifs de l’oxygène (ROS), un stress du réticulum 

endoplasmique et l’influx calcique de type SOCE (store-operated calcium entry). L’utilisation 

d’inhibiteurs de SOCE réduisait la production de l’IL-6 induite par l’IL-17 et le TNFα. Ainsi 

les processus immuns et non-immuns des maladies inflammatoires idiopathiques peuvent 
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interagir. Le ciblage de cytokines pro-inflammatoires comme l’IL-17 et/ou le TNFα pourrait 

être une stratégie thérapeutique prometteuse dans les myosites afin de contrôler à la fois l’état 

inflammatoire et certains mécanismes non-immuns pathologiques, en particulier, le 

dérèglement de l’homéostasie du calcium qui est crucial dans la fonction musculaire.  

 

L’IL-17 et le TNFα contribuaient à l’induction de la sécrétion de l’IL-6 et de certaines 

chimiokines par les interactions cellulaires entre les cellules mononuclées du sang 

périphériques et les hépatocytes, les cellules stellaires hépatiques ou les myoblastes 

En produisant des chimiokines comme CCL20 et MCP-1, les hépatocytes, les cellules 

stellaires hépatiques LX-2 et les myoblastes peuvent recruter des cellules immunitaires, 

notamment des lymphocytes T, des monocytes ou des cellules dendritiques, localement dans 

le foie et les muscles contribuant à la chronicité de l’inflammation. Afin d’évaluer le rôle 

inflammatoire des interactions cellule-cellule, les hépatocytes HepaRG, les cellules stellaires 

hépatiques LX-2 ou les myoblastes ont été placés en culture avec des cellules mononuclées du 

sang périphérique (PBMC) et ont été activées ou non in vitro par la phytohémagglutinine. La 

production de l’IL-6, des chimiokines CCL20 et IL-8 a été augmentée dans les co-cultures par 

comparaison aux monocultures. L’activation des PBMC avec la phytohémagglutinine 

augmentait la sécrétion de l’IL-6 dans les co-cultures comprenant les cellules HepaRG et/ou 

LX-2 mais pas avec les myoblastes. Le blocage de l’IL-17 et/ou du TNFα dans les co-cultures 

diminuait la libération de l’IL-6, de l’IL-8 et de CCL20 dans les co-cultures. Ainsi, l’IL-17 

et/ou du TNFα participent à l’induction de la réponse inflammatoire induite par les 

interactions cellulaires. 

 

L’inflammation est ainsi un processus dynamique dans lequel les interactions cellulaires 

jouent un rôle important et sont certainement déterminantes dans l’issue de l’état 

inflammatoire. Dans ces interactions, l’échange de facteurs solubles pro-inflammatoires 

comme l’IL-17 et le TNFα mais aussi les contacts directs cellule-cellule contribuent à la 

réponse inflammatoire. En induisant en synergie l’expression et la sécrétion de chimiokines et 
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de cytokines inflammatoires systémiques par les hépatocytes, les cellules stellaires hépatiques 

et les myoblastes, l’IL-17 et le TNFα peuvent amplifier la réponse inflammatoire aigüe mais 

aussi chronique en augmentant localement le recrutement de cellules immunitaires et la 

production de médiateurs inflammatoires systémiques. Ces effets peuvent à leur tour induire 

la production de l’IL-17 et le TNFα menant à une boucle de rétroaction pro-inflammatoire. 

Les effets systémiques et pro-inflammatoires de l’IL-17 et du TNFα, en font donc des cibles 

thérapeutiques attrayantes pour le traitement des nombreuses maladies inflammatoires 

systémiques. 
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SUMMARY 
 

Interleukin-17A (IL-17) and tumor necrosis factor-α (TNFα) are two pro-inflammatory 

cytokines playing an important role in various systemic inflammatory and autoimmune 

disorders affecting different organs and tissues including the liver and the muscles. However, 

the roles of IL-17 and TNFα are not fully understood in the muscles and also in liver, which 

is crucial in the acute phase response. By using cultures of human myoblasts, primary human 

hepatocytes, human HepaRG cells and LX-2 hepatic stellate cells, we found that IL-17 and 

TNFα increase in synergy the production of the pro-inflammatory cytokine IL-6 and 

chemokines (IL-8, CCL20, MCP-1). In myoblasts, the IL-17 and TNFα stimulation induces 

endoplasmic reticulum stress and calcium dysregulation showing that immune and non-

immune pathogenic mechanisms interplay. In hepatocytes, IL-17 and TNFα mediate systemic 

inflammation and cell damage by increasing in synergy the CRP acute-phase protein and 

transaminase levels through the induction of IL-6. Since active liver and muscle disorders are 

characterized by inflammatory infiltrates of immune cells, the cell interactions play certainly 

an important role in the chronicity of the inflammation. Peripheral blood mononuclear cells 

activated or not were therefore co-cultured with myoblasts, hepatocytes and/or hepatic stellate 

cells to assess the inflammatory role of the cell-cell interactions. Co-cultures enhance the 

production of IL-6, IL-8 and/or CCL20 compared to monocultures. IL-17 and TNFα 

contribute partially to these inductions. The systemic effects of IL-17 and/or TNFα make 

them attractive therapeutic targets for the treatment of various systemic inflammatory 

disorders. 

Key words: interleukin-17, tumor necrosis factor-α, inflammation, cell interactions, 

hepatocytes, hepatic stellate cells, myoblasts 
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GENERAL INTRODUCTION 
 

1 Inflammation 

Inflammation is an essential biological reaction of the body to protect tissues from pathogens, 

foreign bodies or tissue injury. It is a tightly regulated cascade that is orchestrated by soluble 

immune signaling molecules called cytokines. The inflammatory response can further be 

described as local and/or systemic where cytokines are key players (Figure 1). 

 

FIGURE 1: Cytokines are key mediators, inducers and regulators of the local and 
systemic inflammatory response 
 

1.1 Local inflammatory response 

Five cardinal signs characterize the local inflammation: redness (rubor), heat (calor), swelling 

(tumor), pain (dolor) and loss of function (functio laesa). These signs are secondary to a local 

vasodilatation and a series of complex cellular and biochemical processes. Inflammation is 

initiated by a tissue-destroying process that involves the recruitment of plasma proteins, fluid 

and leukocytes into perturbed tissue leading to edema and leukocyte extravasation. This 

migration is facilitated by alterations in the local vasculature characterized by vasodilation, 

enhanced vascular permeability and increased blood flow.  

The first step of the inflammation activation involves recognition of infection or damage by 

the detection of pathogen-associated molecular patterns (PAMPs) from circulating micro-
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organisms (“strangers”) or alarmins/damage-associated molecular patterns (DAMPs) from 

tissue damage (“dangers”). PAMPs and DAMPs are recognized by pattern recognition 

receptors (PRRs), which mediate the up-regulation of inflammatory genes. The local release 

of pro-inflammatory cytokines and chemokines promotes effector functions of inflammation 

including the recruitment of neutrophils and monocytes to injured site. Neutrophils are the fist 

innate immune cells recruited; they are professional phagocytes with oxidative and non-

oxidative pathogen killing mechanisms (degranulation and production of neutrophil 

extracellular traps). Neutrophil infiltration is followed by the recruitment of monocytes-

macrophages that remove cellular debris, bacteria and senescent cells. Finally, lymphocytes 

are attracted to the site of inflammation for the activation of the adaptive immune response. 

The resident cells and the infiltrated immune cells can interact with each other and undergo 

the activation with the release of pro-inflammatory cytokines and other cellular mediators 

including leukotrienes, prostanglandins, thromboxanes or the platelet-activating factor.  

Although acute inflammation is initiated as a protective response, chronic inflammation is 

persistent and detrimental phenomenon for the tissue function. Inflammation resolution is the 

reestablishment of normal homeostasis with apoptosis and clearance of activated 

inflammatory cells and tissue healing. Persistent inflammatory stimuli or dysregulation of 

mechanisms of the resolution phase results in chronic inflammation. Chronic inflammation is 

a major cause of common human diseases such as asthma, type 2 diabetes, cardiovascular 

diseases or arthritis. 

The inflammatory response is therefore a dynamic process controlled by cell interactions, the 

concentrations and kinetics of production and degradation of soluble mediators. The outcomes 

of the inflammatory response are dependent on the nature of the trigger, the duration of the 

activation and the environmental factors. 

1.2 Systemic inflammatory response 

Pro-inflammatory cytokines, such as interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)α 

or interferon (IFN)γ, produced locally in inflamed tissues can spill into the circulation and 

initiate a systemic inflammatory response. This systemic response following local 
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inflammation is known as the acute-phase response and drives a wide range of mechanisms 

throughout the body. They include leukocytosis in the bone marrow, changes in the brain 

leading to pyrexia and altered consciousness as well as metabolic disturbances such as 

cachexia, changes of lipid metabolism and decreased gluconeogenesis. The acute-response 

also results in changes in concentrations of some plasma proteins called acute-phase proteins 

(Gabay and Kushner, 1999). 

The acute-phase protein has been defined as one whose plasma concentration increases 

(positive acute-phase proteins) or decreases (negative acute-phase proteins) by at least 25% 

during inflammatory disorders (Gabay and Kushner, 1999). In human, the most induced 

acute-phase proteins include C-reactive protein (CRP), serum amyloid A (SAA) and 

haptoglobin. In contrast, plasma concentrations of albumin and transferrin decrease during the 

acute-phase response. Many of these proteins are multifunctional providing a variety of 

different actions. Some of them are components of the complement system or of the 

coagulation cascade. Others are protease inhibitors, transport proteins or secreted PRRs. 

Although not all functions of the acute-phase proteins are know, their modulations are crucial 

for the control of systemic inflammation and appear beneficial for the response of the body to 

infectious insults and inflammation (Bode et al., 2012; Gabay and Kushner, 1999). 

The acute-phase proteins are mainly produced by hepatocytes in response of a variety of 

different cytokines released during the inflammatory response including IL-6, IL-1β, TNFα 

and IFNγ. IL-6 is the major regulator of the hepatic acute-phase proteins. IL-1β and TNF-α 

can modulate the production of some acute-phase proteins by inducing the synthesis of IL-6 

by hepatocytes and also by enhancing the intracellular signaling of the IL-6-induced acute 

phase protein production (Bode et al., 2012; Kramer et al., 2008; Yoshizaki, 2011). The pro-

inflammatory cytokines are therefore the chief stimulators of the systemic inflammatory 

response. 

1.3 Pro-inflammatory cytokines 

Cytokines are bioactive proteins with low molecular weights (8,000 to 30,000 daltons) that act 

as mediators and modulators of the immunological response. Almost all nucleated cells are 
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capable of synthesizing cytokines and, in turn, of responding to them. They modulate the 

function and activity of cells around them to coordinate and control the inflammatory 

response. The cytokines act in networks, they can interact with each other to mediate additive, 

antagonistic or synergistic effects. The cytokine production is tightly regulated. The relative 

concentrations of cytokines are often associated to the physiological effects of cytokines. 

Some cytokines initiate and amplify the inflammatory response, others sustain or attenuate it 

and some of them cause it to resolve. Based on their main biological activities, cytokines can 

be divided into pro-inflammatory (e.g. IL-6, TNFα or IL-1β) or anti-inflammatory (e.g. IL-10 

or transforming growth factor (TGF)β) cytokines. 

IL-6, TNFα and IL-17 are three pro-inflammatory cytokines contributing to the chronic 

inflammatory state of many autoimmune and inflammatory disorders. They are therefore 

attractive therapeutic targets. Inhibitors of IL-6, TNFα or IL-17 pathways are now available 

on the drug market. For this reason, this study focuses particularly on these three cytokines. 

1.3.1 Interleukin-6 

IL-6 is a four-helix protein of 184 amino acids with pleiotropic activities. IL-6 is synthetized 

and secreted by monocytes, macrophages, T cells, fibroblasts and endothelial cells. IL-6 binds 

the IL-6 receptor (IL-6R), which is not signaling competent. Indeed, IL-6 signaling is initiated 

upon association of the IL-6/IL-6R complex with a second receptor named glycoprotein (gp) 

130 that thereupon dimerizes (Figure 2). Dimerization of gp130 leads to activation of the 

tyrosine kinase janus kinases (JAKs), which stimulate several intracellular signaling pathways 

including signal transducer and activator of transcription (STAT) 1 and STAT3 pathways and 

mitogen-activated protein kinase (MAPK) and phosphatidylinositiol-4,5-biphosphate 3-kinase 

(PI3K) pathways (Calabrese and Rose-John, 2014). 

However, IL-6R is only expressed on few cell types including some leukocytes, hepatocytes, 

some epithelial cells (e.g. biliary epithelial cells) and non-epithelial cells (e.g. hepatic stellate 

cells) (Schmidt-Arras and Rose-John, 2016). However, because a soluble form of IL-6R (sIL-

6R) can be generated from IL-6R expressing cells with the same affinity for IL-6, the IL-

6−sIL-6R complex could stimulate cells that do not express IL-6R (e.g. endothelial cells and 
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smooth-muscle cells) (Calabrese and Rose-John, 2014). This increases the spectrum of IL-6 

target cells. This signaling mode is called IL-6 trans-signaling and the IL-6 signaling through 

the membrane-bound IL-6R is the IL-6 classic signaling (Figure 2). Exploration of these two 

IL-6 signaling suggests that the IL-6 classic signaling is important for regenerative and 

protective functions of IL-6 whereas IL-6 trans-signaling is associated with the IL-6 pro-

inflammatory activities (Scheller et al., 2011). 

In human blood, a soluble form of gp130 (sgp130) is also present and acts as a natural 

inhibitor of IL-6 trans-signaling without affecting the IL-6 classic signaling. High levels of 

sgp130 are founded in the circulation of healthy individuals (250-400 ng/mL) compared to the 

levels of sIL-6R (40-60 ng/mL) and IL-6 that is even lower (1-5 pg/mL). Therefore, sIL-6R 

and sgp130 constitute an effective blood buffer for IL-6 (Calabrese and Rose-John, 2014). 

Interestingly, individuals carrying a polymorphism on the IL-6R gene increasing the sIL-6R 

levels in blood are protected from several autoimmune diseases and cardiovascular diseases 

(Ferreira et al., 2013; Rafiq et al., 2007; Scheller and Rose-John, 2012). The level of sIL-6R is 

consequently crucial in the IL-6 overall activity since the increase of the sIL-6R level 

increases the capacity of the IL-6 buffer in blood. 

 

FIGURE 2: Signaling of IL-6 via the membrane-bound and soluble IL-6 receptor 
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(a) In classic IL-6 signaling, IL-6 binds the membrane-bound IL-6R on hepatocytes and some 
leukocytes. The IL-6−IL-6R complex then associates with the signal transducing protein gp130, 
which is ubiquitously expressed. This association induces dimerization and IL-6 signal transduction. 
(b) In trans-signaling, IL-6 binds the soluble IL-6 receptor (sIL-6R) generated by translation from an 
alternatively spliced mRNA or the cleavage of membrane-bound IL-6R by the metalloprotease 
ADAM10 or ADAM17. The IL-6−sIL-6R complex associates with the membrane-bound gp130 on 
cells that do not express the membrane bound IL-6R and induces dimerization and IL-6 signaling 
pathway. Soluble gp130 (sgp130), present in the circulation in healthy conditions, blocks the IL-6 
trans-signaling by binding the IL-6−sIL-6R complex without affecting the classical signaling. 
Adapted from Liu et al., 2016 - DOI: 10.1097/BOR.0000000000000255, with permission from 
RightsLink / Wolters Kluwer Health, Inc; License Number: 4390181057524 
 
IL-6 is a pleiotropic cytokine with multiple functions in the body. It contributes to host 

defense against pathogens but plays also an important role in various autoimmune and 

inflammatory diseases such as rheumatoid arthritis (Tanaka et al., 2012). By acting on a wide 

variety of cells, IL-6 exerts multiple biological activities. IL-6 is the major inducer of the 

hepatic acute-phase proteins (Heinrich et al., 1990; Schmidt-Arras and Rose-John, 2016). IL-

6 promotes also T cell differentiation toward Th17 cells and immunoglobulin synthesis in 

activated B cells (Tanaka et al., 2012). IL-6 is also involved in the chronicity of the 

inflammatory response by inducing mononuclear cell recruitment to the site of inflammation 

(Gabay, 2006). In the bone marrow, IL-6 enhances the production of platelets and the 

activation of hematopoietic stem cells. Moreover, IL-6 acts on synovial fibroblasts to increase 

osteoclast differentiation and angiogenesis. IL-6 also stimulates the collagen production by 

dermal fibroblasts (Tanaka et al., 2012).  

However, IL-6 has an important role in the regenerative response of intestinal epithelial cells 

and hepatocytes to injury (Scheller et al., 2011; Schmidt-Arras and Rose-John, 2016). In 

addition to its effect on hepatocyte regeneration, IL-6 acts on liver metabolic functions. This 

cytokine is therefore crucial in the liver homeostasis (Hassan et al., 2014; Schmidt-Arras and 

Rose-John, 2016). These anti-inflammatory effects of IL-6 can have important consequences 

on the use of IL-6 inhibitors for the treatment of chronic inflammatory diseases. Indeed, 

blockade of IL-6 is associated with gastrointestinal perforations (Calabrese and Rose-John, 

2014; Taniguchi et al., 2015), transaminase elevation (Genovese et al., 2017) and adverse 

lipid changes (Strang et al., 2013). 
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1.3.2 Tumor necrosis factor αα  

TNFα is a pleiotropic cytokine that participates in a variety of inflammatory, infectious and 

malignant conditions. Activated monocytes and macrophages are the main sources of TNFα 

but a wide range of cells can also produce TNFα including mast cells, T cells, natural killer 

(NK) cells and non-immune cells such as endothelial cells (Sedger and McDermott, 2014). 

TNFα is synthesized as a 26 kDa membrane bound protein which can be cleaved into a 

soluble 17 kDa form by the TNFα-converting enzyme (TACE also known as ADAM17). 

Both membrane-associated and soluble TNFα are active and mediate their downstream signal 

by binding to TNFα receptor 1 (TNFR1) and TNFR2 (Bradley, 2008). TNFR1 (also known as 

CD120a) is expressed ubiquitously and activated by both transmembrane and soluble TNFα. 

However, TNFR2 (also known as CD120b) is restricted to specific cell types including 

immune cells or endothelial cells and binds preferentially the transmembrane form of TNFα 

in the context of cell-cell interactions (Figure 3). These two receptors contain distinct 

intracellular domains. TNFR2 lacks a death domain and thus is unable to induce programmed 

cell death directly whereas TNFR1 signals by the recruitment of TNFR-associated-death 

domain protein (TRADD) (Kalliolias and Ivashkiv, 2016). 

Trimeric TNFα binding to TNFRs leads to receptor trimerization and assembly of distinct 

signaling complexes: complexes I, IIa, IIb and IIc (Figure 3). The formation of the complex I 

induces MAPK signaling cascades and the activation of nuclear factor κB (NFκB) pathway 

leading to expression of genes involved in inflammation, host defense and cell proliferation 

and survival. In contrast, activation of complexes IIa and IIb (also known as ripoptosome) by 

the TNFα-TNFR1 binding mediates cell apoptosis through the activation of a caspase 

cascade. Furthermore, assembly of complex IIc (necrosome) activates the necroptosis effector 

mixed lineage kinase domain-like protein (MLKL) that results in necroptosis and 

inflammation (Figure 3). Indeed, necroptosis is characterized by cell membrane rupture 

leading to the release of intracellular contents triggering local inflammation, in contrast to 

apoptosis where cells are rapidly phagocytized (Kalliolias and Ivashkiv, 2016). 
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FIGURE 3: TNFα signaling pathways via TNFα receptor 1 and 2 
(a) Both soluble and transmembrane TNFα can activate TNFα receptor (TNFR) 1 signaling. TNFR1 
bears a death domain recruiting the TNFR-associated-death domain protein (TRADD). Ligand 
binding to TNFR1 leads to complex I assembly, which induces mitogen-activated protein kinases 
(MAPKs) and nuclear factor κB (NFκB) driving to inflammation, tissue degeneration, host defense 
and cell proliferation and survival. In contrast, other signaling pathways are associated with 
programmed cell death: assembly of Complex IIa and IIb induces apoptosis whereas activation of 
complex IIc results in necroptosis and inflammation. (b) TNFR2 is preferentially activated by 
transmembrane TNFα. Ligation of TNFR2 leads to the recruitment of TNFR-associated factor 2 
(TRAF2), which triggers assembly of complex I, and activation of MAPK, NFκB and AKT 
pathways. This mediates homeostasis effects including tissue regeneration, cell proliferation and 
survival as well as inflammatory and host defense effects. MLKL, mixed lineage kinase domain-like 
protein. Adapted from Kalliolas and Ivashkiv, 2016 - DOI: 10.1038/nrrheum.2015.169, with 
permission from RightsLink / Springer Nature; License Number: 4401830967157 
 
TNFα can therefore trigger multiple signaling pathways involved in inflammation, host 

defense, proliferation and cell death. One of the major biological functions of TNFα is in the 

immune response to bacterial, viral and parasitic infections. TNFα is a key regulator of the 

local inflammatory immune response by initiating the release of a cascade of inflammatory 

mediators, promoting thrombosis and increasing vascular permeability, which enhances 

immune cell recruitment in the site of infection (Bradley, 2008). TNFα is an attractive and 

current therapeutic target for a wide range of inflammatory diseases including rheumatoid 

arthritis, inflammatory bowel diseases, ankylosing spondylitis or psoriasis.  
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The pro-inflammatory cytokine IL-17 is presented in the part 2 of the introduction. 

1.4 Pro-inflammatory chemokines 

Chemokines are small soluble proteins (8-12  kDa) playing an important in tissue homeostasis 

by orchestrating leukocyte trafficking. Indeed, these chemoattractant cytokines induce cell 

recruitment, activation of leukocyte movements and cellular adhesion. This study focuses on 

three key chemokines: IL-8, monocyte chemoattractant protein 1 (MCP-1) and chemokine C-

C motif ligand (CCL)20. 

IL-8 (or chemokine C-X-C motif ligand (CXCL)8) is produced by a wide range of cell types 

such as monocytes/macrophages or hepatocytes and binds the C-X-C motif chemokine 

receptor (CXCR)1 and CXCR2. This chemokine is traditionally associated with neutrophil 

activation and recruitment into injured tissue. However, CXCR1 and CXCR2 are not only 

expressed on neutrophils, but also on other leukocytes and non-immune cells including 

fibroblasts, endothelial cells, smooth muscle cells and hepatocytes. By acting on these cells, 

IL-8 may also contribute to fibrosis, angiogenesis and tumor growth in addition to host 

defense (Russo et al., 2014).  

MCP-1 (also known as CCL2) is secreted by many cells including monocytes, T cells, 

fibroblasts or endothelial cells. MCP-1 interacts with C-C motif chemokine receptor (CCR)2 

on monocytes to induce monocyte chemotaxis and extravasation through vascular 

endothelium. This chemokine is also involved in the recruitment of memory T cells and NK 

cells. Since MCP-1 is overexpressed in autoimmune diseases (e.g. rheumatoid arthritis), 

atherosclerosis and angiogenesis, this chemokine may participate to the pathogenesis of these 

disorders (Melgarejo et al., 2009). 

CCL20 alternatively named macrophage inflammatory protein-3α (MIP-3α) binds CCR6 

expressed by Th17 and Treg cells but also by a wide variety of other leukocyte subsets such 

as dendritic cells (DCs). CCL20 controls both effectors and regulators of many immune 

responses and may participate to the pathogenesis of autoimmune and inflammatory diseases 

including multiple sclerosis or rheumatoid arthritis (Comerford et al., 2010). 
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2 IL-17 in chronic inflammation 

IL-17A, also known as IL-17, is another pro-inflammatory cytokine playing an important role 

in host defense and several inflammatory disorders. The family, the cellular sources and the 

biology of IL-17 as well as the recent findings on the therapeutic strategies for targeting the 

IL-17 pathway and the clinical results are summarized in this following review: 

Beringer A, Noack M and Miossec P. IL-17 in chronic inflammation: from discovery to 
targeting. Trends Mol Med. 2016;22(3):230-41. 
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Review
IL-17 in Chronic Inflammation:
From Discovery to Targeting
Audrey Beringer,1 Melissa Noack,1 and Pierre Miossec1,*

Interleukin-17 (IL-17) is a cytokine which elicits protection against extracellular
bacterial and fungal infections and which plays important roles in inflammation.
However, when produced in excess, it contributes to chronic inflammation
associated with many inflammatory and autoimmune disorders. This has made
IL-17 an attractive therapeutic target. The present review describes the struc-
ture of the IL-17 family, the IL-17 receptor complex, and the cells producing IL-
17. The contributions of IL-17 to disease as well as new IL-17-based treatment
options are discussed. Finally, the results of IL-17 or IL-17 receptor inhibitors in
clinical trials are detailed. With a fruitful outlook, drug registration has now been
granted for psoriasis psoriatic arthritis and ankylosing spondylitis, and also
bears great potential in a growing number of conditions.

Introduction
The proinflammatory cytokine IL-17 was described fairly recently and is becoming an important
therapeutic target for a growing number of chronic inflammatory diseases [1]. IL-17 plays a key
role in host defense against extracellular bacterial and fungal infections [2]. Excess contribution
of IL-17 has been associated with several inflammatory disorders including psoriasis, psoriatic
arthritis (PsA), rheumatoid arthritis (RA), and ankylosing spondylitis (AS). A first antibody against
IL-17 (anti-IL-17) was approved in 2015 for the treatment of psoriasis. Other IL-17 pathway
inhibitors are currently being tested for an increasing number of clinical indications relevant to
various conditions [3].

This review first describes the structure and signaling pathways of IL-17 and IL-17-producing
cells. The key functions of IL-17 are analyzed in the context of disease to introduce the treatment
strategies. Finally, we highlight the benefits and limitations of inhibitors targeting IL-17 and the IL-
17 receptor (IL-17R).

This discussion is timely, as it represents a good example of ‘translational research’, highlighting
recent advances. It shows how quickly information from the discovery of IL-17 and T helper 17
(Th17) cells has been translated into the development of a successful therapy.

IL-17 and IL-17R Family Members and IL-17 Signaling: The Basics
IL-17 Family
Human cytotoxic T lymphocyte-associated antigen 8 (CTLA8) was identified in 1993 and named
IL-17 in 1995 [4]. The first bioactivity of human IL-17 was described in 1996 by showing the
production of IL-6 and IL-8 from RA synoviocytes in response to IL-17. This immediately linked
IL-17 to inflammation through IL-6 and to neutrophil recruitment through IL-8 [5].

Sequence screening identified an IL-17 family comprising six members from IL-17A (the first
described IL-17) to IL-17F (Figure 1). IL-17A and F are the closest members, with 50% homology.
They are secreted as IL-17A and IL-17F homodimers and as IL-17A/F heterodimers [6,7].

Trends
Interleukin-17 (IL-17) is a proinflamma-
tory cytokine that plays a key role in
host defense against extracellular bac-
terial and fungal infections.

T helper 17 (Th17) cells play a key role
in the production of IL-17.

Increased production and contribution
of IL-17 have been associated with
several inflammatory disorders, includ-
ing psoriasis, psoriatic arthritis, rheu-
matoid arthritis, and ankylosing
spondylitis.

The first antibody against IL-17 was
approved by the FDA and EMA in
2015 for the treatment of psoriasis.

Other IL-17 inhibitors are under devel-
opment for a growing number of clinical
indications. These include bispecific
molecules targeting IL-17A and IL-
17F as well as tumor necrosis factor
(TNF) and IL-17A.

Inhibitors of Th17 differentiation include
those that target IL-23 and the tran-
scription factor retinoic acid receptor-
related orphan nuclear receptor
gamma t (RORgt).
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They share most of their activities, with IL-17A being more potent than IL-17F and IL-17A/F
having an intermediate activity [8]. IL-17B, IL-17C, and IL-17D are classified as proinflam-
matory cytokines but their role is not fully known. By contrast, IL-17E, also known as IL-25,
has the lowest homology and is involved in Th2 cell responses against parasites and allergy
[7]. IL-25 regulates IL-17 function and this could possibly occur via competition at the
receptor level [9].

IL-17R Family
IL-17R was identified in 1995 as a new type of cytokine receptor [10]. The IL-17R family was
later described with five subunits, from IL-17RA to IL-17RE (Figure 1). IL-17A, IL-17F, and IL-
17A/F bind the same receptor complex comprising IL-17RA and IL-17RC subunits [11,12].
IL-17RA is also a receptor subunit of the receptor for IL-25, comprising IL-17RA and IL-17RB.
This is important when targeting IL-17RA, which blocks the proinflammatory pathways
mediated by IL-17A, -17F, and -17A/F but also the anti-inflammatory response mediated
by IL-25 (Figure 1).

IL-17R Signaling
All receptor subunits have a single transmembrane domain and the binding of IL-17A to the IL-
17RA/RC complex recruits the ubiquitin ligase Act1 via the SEF/IL-17R (SEFIR) domain [11].
Act1 recruits tumor necrosis factor (TNF) receptor-associated factor 6 (Traf6) leading to the
activation of nuclear factor kappa B (NF-kB) and the mitogen-activated protein (MAP) kinase
pathways. Such activation upregulates many inflammatory genes, particularly the neutrophil-
specific CXC chemokines [13,14].

IL-17RA/RC IL-17RA/RB

IL-17EIL-17F

IL-17A/F

IL-17A

IL-17RB/?

IL-17B

IL-17RA/RE

IL-17C IL-17D

?
?

IL-17RD/?

• Inflammatory diseases
• Neutrophil recruitment
• Host defense against                     

extracellular pathogens
and fungi

• Th2 induc�on
• IL -17/Th17 inhibi�on

• Pro-inflammatory ac�vi�es

An�-IL-17A inhibitorsKey:

An�-IL-17A/F inhibitors

An�-IL-17RA inhibitor

Figure 1. Interleukin (IL)-17 Cytokine and Receptor Family. IL-17 homodimer or heterodimer ligands bind various
receptor complexes. IL-17A and IL-17F bind the IL-17 receptor (IL-17R)A and IL-17RC complex. IL-17E or IL-25 binds the
IL-17RA and IL-17RB complex. Bars represent the various antibodies in clinical development that target IL-17A (blue), IL-
17A and IL-17F (red), or IL-17RA (green).
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IL-17-Producing Cells
Th17 Cells
The production of IL-17 by a subset of T cells was discovered in 1999 using T cell clones
from the joints of RA patients [15]. The results were then confirmed in mice and the term
Th17 subset was introduced in 2005 in the mouse as a T helper subset distinct from Th1 and
Th2 cells [16–18]. IL-12 had been identified as the key cytokine for the production of
interferon gamma (IFNg), the signature cytokine of the Th1 pathway. The new cytokine
IL-23 was found to be associated with the Th17 pathway [19]. Th17 cell differentiation
involves an initiation step in the presence of transforming growth factor beta (TGF-b) and IL-
21 or IL-6, which induce the transcription factor retinoic acid receptor-related orphan nuclear
receptor gamma t (RORgt) (human counterpart RORC). Then amplification occurs with IL-1b
and IL-6 or IL-21, which induces the expression of IL-23R. This leads to the final step of
stabilization with IL-23 [20]. The key cytokines produced by human activated Th17 cells are
IL-17A, IL-17F, IL-21, and IL-22.

Th17 cell differentiation is also linked to the differentiation of CD4+ regulatory T cells (Tregs).
Because of their opposite effects on the immune response, the Th17/Treg balance is critical in
maintaining immune homeostasis. In inflammatory conditions, Tregs are defective and can be
converted into Th17 cells [21,22].

Other Sources of IL-17
IL-17 is also produced in both humans and mice by innate immune cells in peripheral tissues
such as lungs, intestinal mucosa, and skin [23]. They control the immediate IL-17 response to
stress or tissue injury. Their list keeps growing and includes CD8+ T cells, gd T cells, invariant
natural killer T cells (iNKT), natural killer (NK) cells, natural Th17 cells, lymphoid tissue inducer (LTi)
cells, and group 3 innate lymphoid (ILC3) cells [13,23,24].

Macrophages, neutrophils, and mast cells in both humans and mice have been reported as
another source of IL-17 [7,23]. However, this remains controversial. Although mast cells may
stain positive for IL-17 in sections of inflamed tissue, demonstration of active IL-17 mRNA
expression has been difficult, suggesting that mast cells might engulf IL-17, serving as a local
reservoir [25].

The Biology of IL-17A
IL-17 has pleiotropic effects on multiple cell types. It plays a key role in host defense against
infections but also in the development and chronicity of inflammatory disorders.

Role of IL-17 in Host Defense
Th17 cells and other IL-17-producing cells protect the host against extracellular bacterial and
fungal infections at epithelial and mucosal surfaces. To control infection, IL-17 promotes
granulopoiesis leading to neutrophilia by increasing granulocyte colony-stimulating factor (G-
CSF) and migration in response to neutrophil chemoattractants such as IL-8/CXCL8 [5]. The
production of chemoattractants for lymphocytes, dendritic cells, and monocytes is also induced
by IL-17. CCL20 is an important chemokine that attracts Th17 cells by binding to CCR6, the
receptor for CCL20, which is also a marker of Th17 cells [26].

Overexpression of IL-17 in the lung enhances Klebsiella pneumoniae clearance and mouse
survival [27]. Mice deficient in IL-17 and/or IL-17RA have a higher susceptibility to several
extracellular bacteria, specifically Staphylococcus aureus [28,29]. IL-17 is also essential in
controlling fungal infections [30]. After skin infection with Candida albicans, IL-23- and IL-17-
deficient mice show delayed skin healing and a higher fungal burden, which are improved by
exogenous administration of IL-17A [31].
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In humans, this phenotype is reproduced in patients with hyper-IgE syndrome caused by a
genetic mutation in the STAT3 gene leading to a reduced number of Th17 cells, defective
production of IL-17, and Th2 activation leading to increased production of IgE. They suffer
severe S. aureus and C. albicans infections [32]. Moreover, chronic mucocutaneous candidiasis
has been associated with genetic deficiencies of IL-17RA, IL-17F, Act1, IL-17RC, and RORC
and occurs in patients with autoantibodies against IL-17A, IL-17F, and IL-22 [32–34].

IL-17 and Inflammation
IL-17A and IL-17F act on various isolated cells in both humans and mice, such as endothelial
cells, macrophages, fibroblasts, osteoblasts, and chondrocytes. This increases the production
of proinflammatory cytokines from monocytes [TNF/, IL-1b, IL-6, granulocyte–macrophage
colony-stimulating factor (GM-CSF), G-CSF] [1]. IL-17 acts on mesenchymal cells from syno-
vium and skin to induce chemokines leading to neutrophil (IL-8/CXCL8), lymphocyte (CCL20),
and macrophage recruitment [35–37]. CCL20 drives the recruitment of Th17 and dendritic cells
to the inflammatory site [26]. In turn, Th17 cells are activated and produce inflammatory
mediators leading to chronic inflammation [38]. IL-17 contributes to cartilage destruction by
stimulating the expression of cartilage-degrading enzymes [39] and to bone destruction by
enhancing the expression of receptor activator of NF-kB ligand (RANKL) on osteoblasts that
activate RANK-positive osteoclasts [40].

IL-17 alone is often poorly active but it can synergize with other inflammatory cytokines such as
TNF/, IL-1b, IL-22, IFNg, and GM-CSF, leading to increased production of inflammatory
mediators such as IL-6 and IL-8 [6,37,41]. This results from a combination of mechanisms.
IL-17 stabilizes the mRNA expression activated by TNF/, leading to increased and prolonged
protein production [42]. In addition, IL-17 induces TNF/ receptor II expression, which increases
the response to TNF/ [41]. As a consequence, a combination of IL-17 and TNF/ inhibitors has
greater efficacy in arthritis progression than the monotherapies in mouse models [43]. Similar
results have been obtained with ex vivo cultures of explants taken from the synovium and bone of
arthritis patients [40].

The interactions between IL-17 and TNF/ that lead to increased inflammation are the main basis
for targeting both IL-17 and TNF/, either with a single bispecific molecule or with two inhibitors.
This approach could be interest in patients with an inadequate response to TNF/ inhibitors [44].

The Role of IL-17 in Inflammatory Diseases
IL-17 thus has two opposite contributions. Its deficiency leads to reduced control of infections,
but its overproduction can lead to several chronic inflammatory diseases.

Psoriasis
Psoriasis is an immunological skin disease characterized by chronic inflammation with prolifera-
tion of keratinocytes and accumulation of immune cells, specifically Th17 cells. Expression and
production of IL-17 by skin-infiltrating cells is increased in psoriatic skin lesions [45]. It is well
known that IL-17 acts on keratinocytes to induce the expression of several chemokines leading
to the recruitment and accumulation of neutrophils, T cells, and dendritic cells.

Rheumatic Diseases
PsA is a chronic inflammatory arthritis leading to distal joint destruction. It affects 20–30% of
psoriasis patients but can also be observed in the absence of skin manifestations. High levels of
Th17 cells and CD8+ IL-17+ T cells are found in human peripheral blood and synovial fluid,
correlating with disease activity [46]. In vitro, IL-17 treatment of PsA synoviocytes induces higher
levels of IL-6, IL-8, and matrix metalloproteinase 3 (MMP-3) than that of osteoarthritis syno-
viocytes, suggesting a link between IL-17 and local tissue changes in the joint [47].
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RA is another chronic inflammatory disease characterized by synovitis and destruction of bone
and cartilage. The first demonstration of the production of IL-17 at the site of a human disease
was shown in 1999 using RA synovium explants [35]. The addition of an anti-IL-17 antibody to
supernatants of these RA synovium cultures reduced the production of IL-6 by synoviocytes
exposed to these supernatants. Moreover, elevated levels of IL-17A have been found in serum
and synovial fluid of RA patients, correlating with disease activity [48]. Antibodies against IL-17A
or IL-17RA have been shown to reduce synovial inflammation and prevent joint destruction in the
collagen-induced arthritis mouse model as well as in human synovium and bone explants
[40,49].

AS affects the sacroiliac joints and the spine. In contrast to the destructive aspects of RA and
PsA, AS leads to ectopic bone formation in the spine, referred to as syndesmophytes. Elevated
levels of IL-17 and IL-23 are found in the serum of AS patients [50]. High levels of Th17 cells are
also found in their peripheral blood and synovial fluid [51]. In the sacroiliac joint, IL-17 may be
produced by cells other than Th17 cells [25,52]. ILC3 cells, which express high levels of IL-17
and IL-22, are expanded in the peripheral blood, synovial fluid, gut, and bone marrow of AS
patients, indicating that overall systemic changes occur in these patients [53].

Multiple Sclerosis (MS)
MS is a chronic inflammatory autoimmune disease of the central nervous system (CNS)
characterized by the destruction of myelin by autoreactive pathogenic T cells. Early results
showed increased expression of IL-17 in the brain at autopsy. IL-17-expressing cells are
abundant in active CNS lesions in MS models and patients [54,55].

Crohn's Disease (CD)
CD is an inflammatory bowel disease characterized by local mucosal inflammation in the
intestine. The contribution of IL-17 in CD remains unclear. IL-17 production results in intestinal
inflammation in some mouse studies but is protective in others [56,57]. In some but not other
studies of CD patients, the number of Th17 cells and the expression of their related cytokines
have been reported to be increased in intestinal biopsies and to correlate with disease activity
[58,59]. Another study has indicated that local inflammation leads to greater conversion of Tregs
into Th17 cells [60]. Together these results suggest that IL-17 could play a dual role in disease
activity and protection from mucosal damage.

Other Diseases
An increasing number of diseases has been associated with the IL-17 pathway, including
asthma, chronic obstructive pulmonary disease (COPD), lupus, hidradenitis suppurativa, poly-
myalgia rheumatica, giant cell arteritis, Behçet disease, dry-eye syndrome, and Sjögren's
syndrome. However, for most it remains unclear whether the association is pathogenic and
whether it could justify attempting IL-17 targeting.

Tools to Target the IL-17 Pathway
Studies using cell systems as well as samples from patients and animal models have provided a
strong justification for targeting IL-17 in human diseases, with the goal of controlling the harmful
(and/or painful) manifestations associated with chronic inflammation. Two major options are
currently being developed to target the IL-17 pathway, one acting directly on IL-17A and IL-17F
or IL-17RA and the other acting upstream on the differentiation of Th17 cells (Table 1 and
Figure 2, Key Figure).

Direct Targeting of IL-17A, IL-17F, and IL-17RA
Targeting the cytokine or its receptor with monoclonal antibodies (mAbs) is the most direct and
specific strategy. The first two anti-IL-17A antibodies tested in the clinic were secukinumab
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(AIN457, ConsentyxTM), a fully human IgG1k anti-IL-17A mAb, and ixekizumab (LY2439821), a
humanized IgG4 antibody (Table 1). Several other antibodies, such as CNTO 6785, CJM112,
and BCD085, are now in clinical trials.

Based on the contribution of IL-17F to inflammation in addition to IL-17A, biomolecules targeting
common motifs shared by IL-17A and IL-17F are now in clinical development, including the
nanobody ALX-0761 and the mAb bimekizumab [61].

To target the IL-17 receptor, brodalumab (AMG 827) is a fully human IgG2 that selectively blocks
signaling through the IL-17RA chain of the IL-17 receptor. This antibody inhibits human IL-17A,
IL-17F, and IL-17C but also IL-25 (Figure 1).

Based on the synergistic interactions between TNF/ and IL-17 described above, bispecific
molecules are now in clinical development. ABT-122 is a dual variable domain immunoglobulin
(DVD-IgTM) molecule with one site binding TNF/ and the other IL-17A [62,63]. COVA322 is a
fusion molecule comprising the fully human anti-TNF/ antibody adalimumab with an anti-IL-17A
fynomer [64].

Table 1. Drug Candidates Targeting IL-17 or its Receptor IL-17RA and Their Current Clinical Status

Drug Manufacturer

Psoriasis PsA AS RA Other
Indications

IL-17A Inhibitors

Secukinumab
(AIN457),
ConsentyxTM

Novartis Approved Approved Approved Phase III

Ixekizumab
(LY2439821)

Lilly Submitted Phase III Phase II

CNTO 6785 Janssen Phase II COPD
(Phase II)

CJM112 Novartis Phase I/II Hidradenitis
suppurativa
(Phase II)

BCD 085 Biocad Healthy
subjects
(Phase I)

IL-17A and IL-17F Inhibitors

Bimekizumab
(UCB-4940)

UCB Phase I Phase I Phase II

ALX-0761
(MSB 0010841)

Merck
Serono
Ablynx

Phase I

IL-17A and TNFa Inhibitors

ABT-122 AbbVie Phase II Phase II

COVA322 Janssen/
Covagen

Phase I/II Preclinical Preclinical Preclinical

IL-17RA Inhibitors

Brodalumab
(AMG 827)

Valeant
Pharmaceuticals

Phase III Phase III Phase II

Clinical status is based on data from Clinicaltrials.gov.
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Indirect Targeting of the IL-17 Pathway
IL-23 acts upstream of IL-17. It is a heterodimeric ligand comprising the IL-23-specific p19
subunit and the common p40 subunit shared with IL-12. Specific inhibitors of IL-23 described as
IL-23p19 antibodies include tildrakizumab (MK-3222, SCH-900222), guselkumab (CNTO
1959), AMG 139, LY3074828, and BI 655066 [61]. These inhibitors act on IL-17A, IL-17F,
IL-21, and IL-22 production.

RORgt controls the differentiation of Th17 cells and its targeting will reduce the production of IL-
17A, IL-17F, IL-21, and IL-22. Several small molecules such as the synthetic ligand SR1001 can
bind RORgt and suppress its transcriptional activities in vitro and in mouse models such as
experimental autoimmune encephalomyelitis [65–67]. They are now at an early stage of
development.

Key Figure

Therapeutic Strategies for Targeting the Interleukin (IL)-17 and T helper
17 (Th17) Pathways

ROR γt
IL-23

TNF-α

Innate IL-17 
producers 

An�-IL-23 (p19)

Adap�ve immunity Innate immunity 

An�-IL-17A/F

Naïve T cell

Th17 

RORγt
inhibitors 

IL-17A IL-17A/F IL-17F

An�-IL-17A

IL-17RA IL-17RCAn�-IL-17RA

Target cells 

An�-TNF/IL-17A

Th17 precursor  

TGFβ, IL-6, IL-1

p40 
p19 

TNFR1

TNFR2

Upregula�on of
inflammatory genes 

Indirect
targe�ng of the
IL-17 pathway  

Direct
targe�ng of the
IL-17 pathway    

An�body against IL-17A  
(An�-IL-17A) 

An�body against IL-17A and IL-
17F (An�-IL-17A/F) 

An�body against TNFα and IL-17A 
(An�-TNF α/IL-17A) 

An�body against IL-17 receptor 
type A (An�-IL-17RA) 

Secukinumab (Novar�s) Bimekizumab (UCB) ABT-122 (AbbVie) Brodalumab (Valeant) 

Ixekizumab (Lilly) ALX-122 (Merck Serono/Ablynx) COVA322 (Janssen/Covagen)

CNTO 6785 (Janssen)

CJM112 (Novar�s)

BCD 085 (BIOCAD)

Figure 2. The IL-17 pathway can be targeted directly using monospecific antibodies against IL-17A (anti-IL-17A) and IL-17
receptor (IL-17R)A. Bispecific antibodies can target IL-17A and tumor necrosis factor alpha (TNF/) or IL-17A and IL-17F.
The IL-17 pathway can be targeted indirectly by acting on the differentiation of Th17 cells with inhibitors of IL-23 using a
specific antibody against the IL-23 p19 subunit and with inhibitors of the transcription factor retinoic acid receptor-related
orphan nuclear receptor gamma t (RORgt).
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Clinical Results with Inhibitors of IL-17 or IL-17R
A summary of the clinical results with antibodies directly targeting the IL-17 pathway is shown in
Table 1.

Psoriasis
The key clinical marker for psoriasis response is the Psoriasis Area and Severity Index (PASI), which
measures changes in skin lesion area from baseline. Secukinumab has been evaluated in psoriasis,
with the largest number of clinical trials. The first report, published in 2010, showed that the
percentage of patients achieving PASI 75 at week 12 was higher with secukinumab than with
placebo [68]. Importantly, and for the first time, a drug could achieve a PASI 100 response. Using
the same read-out, secukinumab was found to be superior to two registered drugs for psoriasis:
etanercept, a TNF/ inhibitor [69], and ustekinumab, an inhibitor of the p40 common chain shared
by IL-12 and IL-23 [70]. The FDA and EMA approved this anti-IL-17 in 2015 for the treatment of
adult patients with moderate to severe plaque psoriasis, with an initial dose of 300 mg subcuta-
neously at weeks 0, 1, 2, 3, and 4 followed from week 8 by 300 mg once monthly.

The first results with ixekizumab (anti-IL-17A mAb), published in 2012, showed that 40% of
patients on the drug achieved PASI 100 versus 0% with placebo [71]. Two recent Phase III
clinical studies confirmed these results compared with placebo and etanercept [72]. The first
results with brodalumab (anti-IL-17RA antibody), published in 2012, showed that 75–80% of
patients on the drug achieved PASI 90 versus 0% with placebo [73]. The results were
independent of the presence of arthritis [74]. In a recent Phase III trial, a PASI 100 response
rate was possibly more common with brodalumab than with ustekinumab [75]. Based on these
results, a dossier for registration has been submitted for ixekizumab and brodalumab.

Regarding the inhibition of IL-23, rather similar results have been seen with guselkumab, which
was later found to be more active than adalimumab, a TNF/ inhibitor [76,77]. Tildrakizumab
showed efficacy against placebo in Phase I and II trials [78,79].

PsA
In addition to the PASI score for skin, PsA response is evaluated in part with the American
College of Rheumatology 20 response rate (ACR20), which measures percentage change in
disease activity from baseline.

In the first Phase II trial, the response to secukinumab did not meet the ACR20 primary end point
[80]. However, this was not the case in two larger Phase III trials, which also showed an effect on
radiographic joint damage [81,82]. Now, secukinumab is EMA and FDA-approved for PsA
results with ixekizumab and with brodalumab also demonstrated a higher ARC 20 response rate
with the drug [83].

AS
In AS, response to treatment is based on the level of improvement of the Assessment of
Spondyloarthritis International Society criteria (ASAS20, 50, 70), which measures percentage
change in disease activity from baseline.

In a Phase II study, the response to secukinumab was rapid, since at week 6 the ASAS20
response rate was 59% with secukinumab versus 24% with placebo [84]. In a longer follow-up of
up to 2 years, sustained clinical improvement was accompanied by regression of spinal
inflammation [85]. Secukinumab is now EMA and FDA-approved for AS.

RA
RA response rates to treatment are mostly evaluated using ACR and Disease Activity Score 28
(DAS28) response rates.
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The first results on secukinumab in RA, published in 2010, showed positive results based on the
ACR20 clinical response [68]. In another Phase II trial, the same primary efficacy end point was
not achieved at week 16 [86]. In a 52-week trial, RA patients who failed to respond to
methotrexate and other biologics showed improvement after long-term treatment with secu-
kinumab, with better patient-reported outcomes [87,88]. Analysis of individual response rates
showed a high degree of heterogeneity. In a subanalysis, genetic markers associated with the
MHC type I polymorphism HLA-DRB1* shared epitope and with high rheumatoid factor levels
(but not with anti-CCP antibody positivity) were linked to a better clinical response [89].

Ixekizumab was administered in a first in-human Phase I trial in patients with RA. The first results,
published in 2010, showed better ACR and DAS28 indices with the drug than with placebo [90].
Similar conclusions were reached in a Phase II study in biologic-naïve patients and in patients
with an inadequate response to TNF/ inhibitors [91]. By contrast, no response was seen with
brodalumab [92,93]. No explanation has been proposed for the lack of clinical effect of anti-IL-
17RA brodalumab, but it is possible that, unlike anti-IL-17 antibodies, it might result in inhibition
of the anti-inflammatory cytokine IL-25.

MS
The use of cytokine inhibitors in MS has been limited as the initial proof-of-concept trials with
TNF/ inhibitors in MS showed increased inflammatory lesions [94]. Although there are many
studies employing the experimental autoimmune encephalomyelitis MS mouse model to sup-
port the inhibition of IL-17 [95], only secukinumab has been tested in MS. A Phase II trial showed
a 60% decrease of new MRI lesions compared with placebo, with a trend of reduction of the
annual relapse rate [96,97].

CD
Secukinumab was tested for CD in two Phase II studies. No positive effect was found; rather,
treatment resulted in increased disease activity and a higher rate of serious adverse events in
some patients [98–100]. Two Phase II trials with brodalumab reached the same conclusion [84].
These negative results may be explained by the protective function of IL-17 in the intestine and
the differential contributions of IL-23 and IL-17, as suggested by mouse models of colitis [101].

Other Diseases
The extent of information on other conditions is limited. The effects of secukinumab and
brodalumab on various symptoms, including lung function in asthma, do not support an
important contribution of IL-17 in clinical improvement [102]. Secukinumab did not appear
to influence the severity of dry-eye syndrome [103].

Adverse Events
As predicted from the role of IL-17 in host defense and neutrophil biology, the rate of mild or
moderate infections in patients treated with IL-17 inhibitors has been generally higher [99]. Also
as predicted, Candida infections have been more common in patients treated with IL-17A and
IL-17RA inhibitors [69,72]. However, the severity has been documented as being lower than in
patients with genetic defects affecting the IL-17 pathway [33]. Cases of reduced neutrophil
count have also been reported [73]. Importantly, cases of tuberculosis reactivation, a problem
noted with TNF inhibition, have not been reported with IL-17 inhibition [99].

Cases of stroke and myocardial infarction have been observed in a recent study of secukinumab
in PsA but not in other diseases, or on treatment with other drugs [82]. In addition, suicidal
ideation and behaviors were observed in patients taking brodalumab for psoriasis [104]. No
mechanism has been proposed for this unpredicted adverse event, which has not been seen
with the other IL-17A inhibitors. Only post-authorization safety studies and real-life use of the
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drugs in large numbers of patients will allow a full assessment of the safety profile and the risk:
benefit ratio.

Concluding Remarks
Inhibition of IL-17A and IL-17RA has already provided a major improvement in the care of
psoriasis, achieving a level of response not seen before. Drug registration has been obtained for
PsA and AS. These are already impressive achievements for a molecule discovered in 1995 and
identified as a clinical target in 1999.

Other options based on IL-17 biology are now being tested, including bispecific antibodies
against IL-17A and IL-17F and against TNF/ and IL-17A, which may be of interest in cases of
observed lack or loss of response to anti-TNF/ therapy [43]. In parallel, molecules targeting
Th17 cells and related pathways are under active development. Differences in efficacy and
tolerance are already emerging among these options.

It is clear, however, that a better understanding of patient heterogeneity will be needed to
achieve accurate and improved personalized medicine (see Outstanding Questions). Moreover,
additional research is needed to identify patients with IL-17-driven diseases as well as the
various components that contribute to those diseases [105]. Nevertheless, the process has
begun.
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3 Role of IL-17 and cell interactions in hepatic inflammation 

3.1 The liver, a major organ for the immune system 

The liver provides a multitude of functions to the organism. It is usually perceived as a non-

immunological organ, central for metabolic activities, nutriment storage and detoxification. 

However, by producing most of the acute-phase proteins, the liver plays an important role in 

the acute phase response (as seen in part 1.2). The balance between acute immune responses 

and tolerance in liver is also essential to the overall health (Crispe, 2009; Kubes and Jenne, 

2018). Receiving 80% of its blood supply from the gut and the spleen, the liver is constantly 

exposed to environmental toxins, dietary and commensal bacterial products with 

inflammatory potential via the portal venous blood (Robinson et al., 2016). Mechanisms to 

resolve inflammation are essential to maintain liver homeostasis and disruption of one of 

them or dangerous stimuli leads to chronic pathological inflammation. Therefore the liver is a 

central intersection point of the immune system (Bode et al., 2012). 

The different functions of the liver are tightly linked to the cell composition and structural 

organization. The sinusoids are lined by fenestrated monolayer of liver sinusoidal endothelial 

cells (LSECs). The low-pressure blood and the fenestrated endothelium allow rapid 

exchanges between blood and hepatocytes as well as non-parenchymal cells of the liver 

including hepatic stellate cells (HSCs) and liver macrophages (also known as Kupffer cells). 

This also facilitates the interactions between immune cells in liver sinusoids and some liver 

resident cells in the space of Disse (or sub-endothelial compartment) (Racanelli and 

Rehermann, 2006). 

The structural-functional organization of the liver, the hepatic cell repertoire and its “buffer” 

function between the gut content and the systemic inflammation create a unique 

microenvironment. This microenvironment determines the balance between tolerance and 

inflammation (Robinson et al., 2016). In healthy liver, an active and complex cytokine milieu 

exists including pro-inflammatory and anti-inflammatory cytokines. The inflammatory state 

modulates the expression of various cytokines in the liver. These cytokines are the driving 

force in the fibrosis and cirrhosis processes (Tilg et al., 2006). 
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3.2 IL-17 and IL-17-producing cells in liver disorders 

Because liver cells express ubiquitously the IL-17 receptors (Lafdil et al., 2010; Meng et al., 

2012), the pro-inflammatory cytokine IL-17 can mediate a broad effect in the liver. Moreover, 

the direct pathogenic contribution of IL-17 in some hepatic disorders is emerging. Recent data 

of both in vitro and in vivo studies on the potential role of IL-17 in liver diseases are 

summarized and discussed in this following review: 

Beringer A and Miossec P. IL-17 and IL-17-producing cells in liver diseases, with focus on 
autoimmune liver diseases. Autoimmun Rev. 2018;17(12):1176-85. 
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A B S T R A C T

The pro-inflammatory cytokine interleukin(IL)-17 and IL-17-producing cells are important players in the pa-
thogenesis of many autoimmune / inflammatory diseases. More recently, they have been associated with liver
diseases. This review first describes the general knowledge on IL-17 and IL-17 producing cells. The second part
describes the in vitro and in vivo effects of IL-17 on liver cells and the contribution of IL-17 producing cells to liver
diseases. IL-17 induces immune cell infiltration and liver damage driving to hepatic inflammation and fibrosis
and contributes to autoimmune liver diseases. The circulating levels of IL-17 and the frequency of IL-17-pro-
ducing cells are elevated in a variety of acute and chronic liver diseases. The last part focuses on the effects of IL-
17 deletion or neutralization in various murine models. Some of these observed beneficial effects suggest that
targeting the IL-17 axis could be a new therapeutic strategy to prevent chronicity and progression of various liver
diseases.

1. Introduction

The liver is an essential metabolic and immunological organ [1,2]. It
plays a central role in immunosurveillance but also in systemic in-
flammatory reaction as the main organ producing acute-phase proteins.
Dysregulation of immune cell homeostasis and inflammation in liver
are major features of almost all types of liver diseases. The infiltrated
immune cells can interact with liver cells and induce liver damage. If
not resolved, chronic liver inflammation can drive to liver fibrosis,
cirrhosis and then hepatocellular carcinoma.

IL-17A, also known as IL-17, is a more recently described cytokine,
with dual effects on the immune response. It plays a key role in the
control of bacterial and fungal infections. It is also an important in-
flammatory cytokine with direct contribution to various autoimmune /
inflammatory diseases [3]. Antibodies targeting IL-17 are now available
to treat psoriasis, psoriatic arthritis and ankylosing spondylitis. Over
the last ten years, the number of studies on the role of IL-17 in liver
injury and inflammation has drastically increased. In this review, the
structure and the signaling pathway of IL-17 and the IL-17 producing

cells are first described. The second part will analyze the in vitro effects
of IL-17 on liver resident cells. The third part will focus on the in vivo
involvement of IL-17 and IL-17 producing cells in liver diseases with a
focus on autoimmune liver diseases (AILDs). Finally, the different
strategies to inhibit the IL-17 axis already on the market or in devel-
opment will be presented.

2. Interleukin-17

2.1. General knowledge on IL-17

IL-17A, also known as IL-17, is the first member of the IL-17 family
of cytokines composed of six members from IL-17A to IL-17F. IL-17A
and IL-17F share the strongest homology of 50%. They are secreted as
IL-17A and IL-17F homodimers and as IL-17A/F heterodimers. IL-17A is
more potent than IL-17F. IL-17B, IL-17C and IL-17D are classified as
proinflammatory cytokines but their effects remain poorly understood.
In contrast, IL-17E, also known as IL-25, with the lowest homology with
IL-17A, has anti-inflammatory effects, acting as an inhibitor of IL-17-
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driven inflammation [4].
The IL-17 receptor (IL-17R) family includes five receptor subunits

from IL-17RA to IL-17RE. IL-17A and IL-17F signaling is activated after
IL-17 binding to the IL-17RA/IL-17RC dimeric receptor complex [3].
This binding leads to the recruitment of the adaptor protein ACT1,
which activates nuclear factor kappa B (NF-κB) and mitogen-activated
protein kinase (MAPK) pathways [5]. IL-17RA can also form a complex
with IL-17RB to mediate IL-17E/IL-25 signaling. Because IL-17RA and
IL-17RC are ubiquitously expressed by all cells including liver cells, IL-
17 may act on all these cells resulting in liver inflammation [6,7].

2.2. IL-17 producing cells

CD4+ Th17 cells were the first identified IL-17 producing cells. The
differentiation of Th17 from naïve CD4+ T cells can be divided into
three steps. The initiation step requires transforming growth factor-β
(TGF-β) and the proinflammatory cytokines IL-21 or IL-6, which induce
the expression of the transcription factor retinoic acid receptor-related
orphan nuclear receptor gamma t (RORγt in mice and RORc in hu-
mans). Then IL-1β and IL-6 or IL-21 amplify the differentiation of Th17
precursor cells and induce the expression of IL-23R. During the third
step, IL-23 stabilizes the Th17 cell phenotype. IL-17, IL-17F, IL-21 and
IL-22 are the main secreted Th17 cytokines [3]. However, in the ab-
sence of inflammation, TGF-β induces the expression of the transcrip-
tion factor FoxP3, the marker of CD4+ regulatory T cells (Treg) leading
to Treg instead of Th17 differentiation [8]. Because Th17 and Treg cells

have opposite effects on the immune response, the Th17/Treg balance
is crucial in the maintenance of immune homeostasis. Indeed, elim-
ination of Treg cells enhances the hepatic Th17 cell response and the
severity of liver fibrosis in mice [9]. The increase of Th17/Treg ratio in
a liver fibrosis mouse model is associated with the progression of fi-
brosis [10]. Moreover, there is an important plasticity between Th17
and Treg cells, and Treg can be converted into Th17 cells and vice versa,
under inflammatory changes [11].

Other immune cells can produce IL-17 in response to stress, injury
or pathogens. These cells include mucosal-associated invariant T
(MAIT) cells, γδ T cells, CD8+ T cells, invariant natural killer T (iNKT)
cells, natural killer (NK) cells, lymphoid tissue inducer (LTi) cells and
group 3 innate lymphoid cells (ILC3) [12]. In the liver, MAIT cells re-
present more than 60% of the IL-17+ cells following PMA/ionomycin
activation [13]. Th17 cells and IL-17+ CD8+ T cells are commonly
reported as the major IL-17 secreting cells in several inflammatory liver
diseases [14,15]. However, MAIT cells represent more than 60% of the
IL-17+ cells in liver following PMA/ionomycin activation. MAIT cells
are certainly an important source of IL-17 at the early phase of response
in liver. By secreting CCL20, the MAIT cells can promote the recruit-
ment of Th17 cells [13,16].

2.3. IL-17 biology

IL-17 plays a key protective role in host defense against extracellular
bacterial and fungal pathogens at the epithelial and mucosal barriers.

Fig. 1. Differentiation of Th17 cells and key biological effects of IL-17.
Th17 differentiation is initiated by TGF-β and IL-6 or IL-21, which induce ROR transcription factor. IL-1β and IL-6 or IL-21 amplify the Th17 cell differentiation and
induce the expression of IL-23 receptor (IL-23R). IL-23 stabilizes the Th17 cell phenotype. IL-17, IL-17F, IL-21 and IL-22 are the main Th17 cytokines. IL-17 acts on
multiple cell types to promote inflammation and host protection. By inducing chemokine production, IL-17 attracts neutrophils locally, which exert both protective
and destructive effects. The induction of matrix metal- loprotease and RANKL by IL-17 leads to tissue damage as observed in joint inflammation. By acting on
endothelial cells, IL-17 promotes coag- ulation and thrombosis. IL-23R, IL-23 receptor; RANKL, receptor activator of nuclear fac- tor-κB ligand.
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To control such infections, IL-17 increases the secretion of in-
flammatory mediators leading to neutrophil recruitment to the site of
infection to eliminate the pathogen [3]. Mice deficient in IL-17 and/or
IL-17RA and human patients with genetic deficiencies of Th17 cells and
IL-17 have an increased susceptibility to several bacterial and fungal
infections, specifically Staphylococcus aureus and Candida albicans
[17–21]. This point must be kept in mind when it comes to targeting IL-
17 and will be discussed later.

IL-17 is involved in both acute and chronic inflammation. At the
early-phase, IL-17 plays a key role by inducing the recruitment of
neutrophils to the site of inflammation through IL-8/CXCL8 chemokine
production. An uncontrolled and thus chronic IL-17 production leads to
a chronic infiltration of immune cells resulting in autoimmunity and
tissue damage. Several chronic inflammatory diseases, including psor-
iasis, rheumatoid arthritis and ankylosing spondylitis, are associated
with such IL-17 overproduction. The effects of IL-17 are amplified by
acting on a large variety of cells and through synergistic interactions
with other inflammatory cytokines. For example, TNFα cooperates with
IL-17 to induce in synergy a massive production of IL-6 and IL-8 by
endothelial cells, skin and synovial fibroblasts as well as hepatocytes
[22–25]. This synergistic effect involves several mechanisms. IL-17 and
TNFα co-stimulate the activation of transcription factors involved in the
gene expression of pro-inflammatory mediators [26,27]. In synovial
fibroblasts, IL-17 up-regulates TNF receptor II expression and enhances
TNFα response [28]. In addition, IL-17 increases mRNA stability of
cytokines induced by TNFα which can prolong the protein production
[29].

These general aspects of the biology of IL-17 are summarized in
Fig. 1. We will now consider the effects of IL-17 on isolated resident
liver cells.

3. In vitro effects of interleukin-17 on liver resident cells

Hepatocytes are the most abundant parenchymal cell population in
the liver. The non-parenchymal cells include liver sinusoidal en-
dothelial cells (LSECs), biliary epithelial cells (BECs), stellate cells
(SCs), Kupffer cells (KCs) and resident lymphocytes [1]. The main in-
teractions of IL-17 with liver resident cells on the induction of in-
flammation and fibrosis are presented in Fig. 2.

3.1. Hepatocytes

Hepatocytes represent about 80% of the liver mass; they ensure
many metabolic functions and produce acute-phase proteins such as
CRP. In vitro, IL-17 induces the production of IL-6 by human hepatoma
cell lines and primary hepatocytes with a synergistic effect when TNFα
or free fatty acid are combined to IL-17 [25,30–33]. This increase of IL-
6 induces the production of CRP and the pro-invasive factors matrix
metalloproteinase-2 and vascular endothelial growth factor [30]. IL-8,
monocyte chemoattractant protein-1 (MCP-1/CCL2) and chemokine
CeC motif ligand 20 (CCL20/MIF-3α) are key chemokines up-regulated
by the IL-17 and TNFα synergistic interaction, but independently of IL-6
[25]. By acting on IL-8, IL-17 and TNFα enhance neutrophil recruit-
ment as seen in acute hepatitis whereas MCP-1/CCL2 and CCL20 up-
regulation is associated with the infiltration of monocytes, T cells,
specifically Th17 cells, and dendritic cells as seen in chronic hepatitis,
including autoimmune hepatitis. The IL-17 and TNFα combination has
a role in fibrosis by inducing in synergy periostin expression in hepa-
tocytes, leading to fibroblast activation and collagen production [34].
During cholestasis, IL-17 may enhance the bile acid-induced production
of inflammatory mediators by hepatocytes including IL-23, which in
turn, induces Th17 cell expansion in a positive feedback loop [35]. IL-
17 influences also insulin sensitivity in vitro. In primary human hepa-
tocytes, IL-17 reduces hepatic insulin signaling, the insulin-mediated
suppression of glucose production and the stimulatory effect of insulin
on glycolysis [36]. In summary, in hepatocytes, IL-17 mediates systemic

inflammation, immune / inflammatory cell recruitment, fibrosis and
insulin resistance.

3.2. Liver sinusoidal endothelial cells

LSECs are the second most abundant non-parenchymal liver cells.
They are involved in the exchange of cellular mediators between si-
nusoids and hepatocytes. LSECs have also antigen presentation prop-
erties [2]. Expression of adhesion molecules on LSECs leads to T-cell
trapping and activation [1]. In vitro, murine LSECs inhibit the Th1 and
Th17 cytokine secretion through IL-10 and programmed cell death
protein 1. This mechanism may contribute to hepatic tolerance [37].
However, LSECs also contribute to IL-17 producing cell recruitment and
migration. LSECs stimulation by IFN-γ and TNFα increases Th17 cell
and T CD8+ IL-17+ cell adhesion to endothelium through expression of
the chemokine receptor CXCR3, intracellular adhesion molecule-1 and
vascular cell adhesion molecule-1 [16].

3.3. Biliary epithelial cells

BECs are cholangiocytes forming bile ducts to drain the bile secreted
by hepatocytes. Stimulation with IL-17 up-regulates IL-6, IL-1β and IL-
23 expression in human BECs. These cytokines induce Th17 differ-
entiation. Moreover, IL-17 increases the release of several chemokines
including CCL20 and MCP-1/CCL2, which attract Th17 cells [38]. By
acting on BECs, IL-17 itself can therefore promote Th17 cell differ-
entiation and attraction around the bile ducts and could contribute to
chronic cholangitis. In a human cell line of intrahepatic BECs, IL-17
induces also epithelial-mesenchymal transition and fibroblast-like
morphological changes [39]. This may contribute to fibrosis develop-
ment and BEC damage.

3.4. Hepatic stellate cells

HSCs are in the space of Disse in contact with hepatocytes and
LSECs. Because activated HSCs are the major source of collagen and
extracellular matrix, these cells are crucial in liver fibrosis. HSCs also
amplify inflammation by the secretion of pro-inflammatory mediators.
The LX-2 human HSC cell line and HSCs isolated from mice respond to
IL-17A and/or IL-17F stimulation by up-regulating IL-17 receptors, pro-
inflammatory cytokines (IL-6, IL-1β and TNFα) and profibrotic med-
iators (TGF-β and α-smooth muscle actin (α-SMA)) leading to collagen
production [7,40–42]. The blockade of the IL-6 pathway in murine
HSCs stimulated with IL-17 slightly reduces the expression of profi-
brotic genes but does not eliminate the IL-17 effect [7]. Moreover,
blocking IL-17R in human HSC and MAIT cell co-culture decreases the
pro-inflammatory IL-1β, IL-8 and CCL2 gene expression showing that
the IL-17 pathway contributes to HSC activation [43]. Stimulation of
human HSCs by IL-17 promotes HSC proliferation and the production of
growth related oncogen-α (GROα) and IL-8, which then induces the
recruitment of neutrophils [44,45]. Moreover, α-SMA production by
mouse HSCs is increased in the presence of Th17 cells and reduced with
Treg cells [10]. IL-17 plays also a cooperative role with TGF-β in the
development of fibrosis. IL-17 up-regulates TGF-β1 and TGF-β-RII ex-
pression and induces TGF-β-RII signaling in LX-2 cells, which enhances
HSCs response to TGF-β and activates fibrosis [7,46]. Therefore, IL-17
induces HSCs activation and amplifies the TGF-β-effect on the induction
of liver fibrosis.

3.5. Kupffer cells

KCs are resident liver macrophages [2]. They are located in the si-
nusoid space but can also infiltrate the space of Disse and be in contact
with hepatocytes. IL-17RA and IL-17RC are expressed by mouse KCs
and up-regulated by IL-17A and/or IL-17F. IL-17A and/or IL-17F sti-
mulation of KCs increases their own expression and that of pro-
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inflammatory cytokines (IL-6, IL-1β, TNFα) and the profibrotic cytokine
TGF-β [7,47]. KCs from a mice model of hepatitis induce Th17 differ-
entiation from naïve CD4+ T cells in co-cultures [48]. KC and HSC co-
cultures from wild type (WT) or IL-17RA−/− mice show that the
percentage of collagen-α1 is lower in WT KC – IL-17RA−/− HSC or IL-
17RA−/− KC – WT HSC co-cultures than WT KC – WT HSC co-cul-
tures, and this reduction is even higher in IL-17RA−/− KC – IL-
17RA−/− HSC co-cultures [7]. IL-17 may therefore contribute to
collagen production by acting both on KCs and HSCs. The increase of
TGF-β production by KCs following IL-17 stimulation in turn activates
HSCs and collagen production [7].

4. Contribution of interleukin-17 and interleukin-17-producing
cells to liver diseases

Animal models of liver injury and samples from human subjects
with liver diseases have been used to better understand the involvement
of IL-17 in acute liver failure (ALF), chronic liver diseases (CLD) with a
focus on AILDs and then in acute-on-chronic liver diseases (ACLF). A
summary of the effects of IL-17 in healthy conditions, ALF, and CLDs is
shown in Fig. 3.

4.1. Acute liver diseases

ALF or fulminant hepatitis is a rapid loss of liver function that oc-
curs in patients without preexisting liver conditions. Since neutrophils

Fig. 2. Main effects of IL-17 on liver resident cells.
The induction of pro-inflammatory and pro-fibrotic cytokines by IL-17 and the Th17 cells expansion results in a vicious cycle that leads to chronic inflammation. IL-
17 produced by Th17 cells or other IL-17 pro- ducing cells (e.g. γδ T cells, NK cells or group 3 innate lymphoid cells) induces TNFα, IL-6 and TGF-β release by Kupffer
cells (KC) and hepatic stellate cells (HSC). The IL-17 and TNFα combination acts in synergy on hepatocytes to induce the production of IL-8, IL-6 and the profibrotic
mediator periostin, which activates HSCs. IL-17 increases HSCs response to TGF-β by enhancing TGF-β and TGF-β-receptor expression in a posi- tive feedback loop.
HSC activation by IL-17, TGF-β and periostin leads to collagen production and liver fibrosis. In addition, IL-6 and TGF-β co- operate to activate Th17 differentiation
leading to Th17/Treg imbalance and uncontrolled inflammation. By acting on hepatocytes and biliary epithelial cells (BEC), IL-17 up-regulates various chemokine
expression including MCP-1 and CCL20 involved in the recruitment of Th17 cells, dendritic cells and monocytes. IL-8 produced by HSCs, hepatocytes and BECs
following IL-17 stimulation mediates neutrophil attraction.
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are early responders to tissue injury, cellular stress or systemic in-
flammation, they play an important role in ALF (Fig. 3) [49]. There are
many causes of ALF, the most frequent being drug-induced liver injuries
(DILI), and viral infections [50,51].

The role of IL-17 in ALF was studied in several animal models with
hepatitis induced by chemicals such as Concanavalin A (ConA) or li-
popolysaccharide/D-galactosamine (LPS/GaIN) (Table 1). In the mouse
models of hepatitis, the induction of hepatitis is associated with an
increased IL-17 level correlated with liver damage [47,48,52–55]. Al-
though IL-17 deletion or neutralization attenuates liver injury in most
models, a protective role of IL-17 is seen with the α-galactosylceramide
(αGalCer)-induced hepatitis model. This surprising effect could be
linked to the model itself [56]. αGalCer-induced hepatitis leads to a
specific activation of the innate immune response via NKT cells with an
hepatitis of moderate intensity. Conversely, the ConA model is a model
of severe hepatitis characterized by the activation of the adaptive im-
mune system with massive hepatic CD4+ cell infiltration [56]. The
cellular sources of IL-17, the timing, the duration and the nature of the
injury may therefore influence the final effect of IL-17 on liver in-
flammation.

Concerning DILIs, the effect of IL-17 was investigated in drug-ad-
ministrated mice and DILI patients (Tables 1 and 2). IL-17 level is en-
hanced in drug overdose administration in mice and IL-17 neutraliza-
tion reduces hepatic damage, in line with the contribution of IL-17 to
DILI development [57–60]. In human IL-17, elevated IL-17 level is as-
sociated with the severity of the acute hepatic injury [61] and with poor
prognosis [62]. These animal and human studies demonstrate the in-
volvement of IL-17 in the induction or exacerbation of ALF. Targeting
IL-17 at the initiation of the ALF may prevent neutrophil infiltration
and liver injury and therefore improve prognosis.

4.2. Chronic liver diseases

CLDs are characterized by chronic inflammation and the develop-
ment of fibrosis possibly followed by cirrhosis and hepatocellular car-
cinoma. The causes of CLDs are many, including viral infections,
chronic toxic/drug exposure (mainly alcohol), metabolic, autoimmune,
or cholestatic disorders. The hepatic tissue damage results from the
chronic activation of the wound-healing response leading to fibrosis
progression (Fig. 3).

The studies on the IL-17 and IL-17-producing cell contribution in
murine models of CLD and patients with CLDs are presented in Tables 1
and 2, respectively. An increase in IL-17+ cell frequency and Th17 cell-
related cytokine levels are commonly reported in both murine and
human studies on CLDs. In human liver with CLD, the IL-17+ cells re-
present around 2–3% of the CD3+ T cell infiltrate, with CD4+ Th17
cells present at slightly higher frequency than T CD8+ IL-17+ cells
[16]. Because BECs may attract Th17 cells through CCL20 chemokine
up-regulation in inflammatory conditions, IL-17+ cells are detected
next to bile ducts within inflamed portal tracts in CLD patients [16]. IL-
17 local expression is increased in liver from patients with liver fibrosis
compared to patients without, and IL-17RA expression correlates po-
sitively with the stage of liver fibrosis or cirrhosis [7]. Inhibition of IL-
17 signaling in immune cells, KCs or HSCs attenuates liver fibrosis in
mice with induced liver injury, indicating that IL-17 acts both on re-
sident and non-resident liver cells to induce fibrosis [7]. Conversely, IL-
17E/IL-25 administration in a model of liver fibrosis reduces its de-
velopment [7,63]. IL-17 and IL-17E/IL-25 have therefore opposite ef-
fects on liver fibrosis.

The mechanisms of increased Th17 cell response vary according to
CLD etiology. In chronic hepatitis B (CHB) patients, the increase of
Th17 response may be related to that of the HBV antigen [64,65] and
serum level of HMGB1 [66,67]. The hepatic release of thymic stromal

Fig. 3. Liver cell composition in healthy conditions, acute-liver injury and chronic liver injury.
In healthy conditions, the hepatic stellate cells (HSCs) in space of Disse are quiescent and Kupffer cells (KCs) stay within the liver sinusoid space. Acute-liver injury is
characterized by the infiltration first of neutrophils that respond quickly to tissue injury, cellular stress or systemic inflammation. Neutrophil and hepatic cell
interactions lead to neutrophil activation and hepatocyte oxidant stress that cause hepatic death. In chronic liver injury, chronic activation of infiltrated immune cells
and HSCs induces inflammatory damage and matrix deposition with fibrosis progression. Fibrosis causes architecture changes and loss of hepatic function driving to
cirrhosis. Cirrhosis can progress to hepatocellular carcinoma. KCs, Kupffer cells; HSCs, hepatic stellate cells; SECs, sinusoidal en- dothelial cells.
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lymphopoietin is associated to CD4+ T cell polarization toward Th17
cells in HCV patients [68]. Therefore, the mechanisms of induction of
the Th17 cell response are linked to each disease etiology but all these
CLDs have in common an inflammatory condition in favor of Th17 cell

expansion and IL-17 secretion.
Because IL-17 and Th17 cells are involved and now targeted in

several autoimmune diseases, they may also play a crucial role in the
pathogenesis of AILDs. Circulating Th17 cell frequency and Th17/Treg

Table 1
IL-17 and Th17 cells contribution to in in vivo murine models of liver injury.αGalCer, α-galactosylceramide; AST, aspartate transaminase; BDL, bile duct ligation;
ConA, Concanavalin A; MCDD, methionine and choline deficient diet; NAFLD, non-alcoholic fatty liver disease; WT; wild-type.

Murine models Results Ref.

Chemical compounds-induced hepatitis models
Carbon tetrachloride (CCl4)-induced liver fibrosis mice Increase of plasma IL-17 level and splenic Th17 cell frequency following CCl4 injection. IL-17RA

deletion or IL-17 neutralization attenuates plasma and hepatic levels of inflammatory cytokines,
hepatic fibrosis and hepatocellular necrosis.

[10,40,103]

Concanavalin A (ConA)-induced hepatitis mice ConA injection increases IL-17 liver expression, which correlates with severity of liver injury.
IL-17−/− mice or IL-17 blockade ameliorates hepatitis.

[47,48,52,53]

Poly I:C-induced acute hepatitis mice Poly I:C induces IL-17 production by hepatic γδ T cells following IL-23 release by Kupffer cells. IL-17
neutralization decreases inflammatory cytokine levels and necrotic lesions.

[54]

Lipopolysaccharide/D-galactosamine (LPS/GaIN)-
induced hepatitis mice

IL-17 deletion reduces serum inflammatory cytokine levels, hepatic neutrophil accumulation and
mortality in LPS/GaIN-induced fulminant hepatic injury mice.

[55]

α-galactosylceramide (αGalCer)- induced hepatitis mice αGalCer injection in mice induces IL-17 production by NKT cells. Neutralization of IL-17 before
αGalCer injection exacerbates hepatitis and IL-17 administration ameliorates αGalCer-induced
hepatitis.

[56]

Viral hepatitis models
Adenovirus Adenovirus increases hepatic IL-17A and IL-17F production, predominantly by γδ T cells. IL-17R

deletion or IL-17 neutralization reduces adaptive T cell responses and infiltration and liver injury.
[104,105]

Mouse hepatitis virus Mouse hepatitis virus increases IL-17 level which is associated with liver damage, elevated level of
inflammatory cytokines and death. IFN-γ regulates negatively virus induced-Th17 cell response by
increasing Th17 apoptosis.

[106]

Drug-induced liver injury models
Diclofenac overdose Up-regulation of the hepatic expression of the Th17 cell-related factors RORγt and STAT3. [107]
Acetaminophen overdose IL-17 serum level is increased and associated with the induction of neutrophil recruitment in liver and

hepatotoxicity.
[59,60]

Halothane Increase of plasma IL-17 level and neutrophil infiltration. IL-17 neutralization suppresses the
hepatotoxic effect.

[57]

Triptolide oral gavage Increase of plasma IL-17 level and hepatic Th17 cell frequency. IL-17 neutralization reduces the
hepatic damage.

[58]

Alcoholic liver disease models
Chronic-binge alcohol Chronic-binge alcohol exposure reduces Treg cell frequency but increases Th17 cell number and serum

IL-17 levels.
[108]

Alcoholic liver disease IL-17 neutralization reduces steatosis by suppressing IL-17-related fatty acid metabolism in alcoholic
liver disease group.

[109]

Non-alcoholic fatty liver disease (NAFLD) models
High fat High fat diet increases liver and circulating Th17 cell frequency. Recombinant IL-17A induces fibrosis

and liver injury whereas blocking IL-17A reduces steatosis and liver injury and prevents hepatocellular
carcinoma.

[33,110,111]

Methionine and choline deficient diet (MCDD) MCDD increases hepatic Th17 cell infiltration, IL-17RA expression and IL-17A/IL-17F production.
IL-17−/− mice on MCDD are protected from increased pro-inflammatory cytokine expression, immune
cell infiltration and hepatocellular damage.

[112,113]

Table 2
IL-17 and Th17 cells contribution in human liver diseases other than autoimmune liver diseases ALD, alcoholic liver disease; AIH, autoimmune hepatitis; CHB,
chronic hepatitis B; CHC, chronic hepatitis C; DILI, drug-induced liver injury; HCC, hepatocellular carcinoma; HBV, Hepatitis B virus;; NAFL, non-alcoholic fatty liver;
NASH, nonalcoholic steatohepatitis.

Human liver diseases Results in humans Ref.

Drug-induced liver injury (DILI) Circulating Th17 frequency is increased in DILI patients and correlates with plasma transaminase level.
Elevated IL-17 level is associated with poor prognosis.

[62]

[32,71,72]
Alcoholic liver disease (ALD) Increase of IL-17 plasma level and liver IL-17+ cell infiltrates in ALD patients. The IL-17-secreting cell

infiltrates are associated with fibrosis score and the Th17/Treg imbalance with poor prognosis.
[45,114]

Non-alcoholic fatty liver (NAFL)
disease

Increase of IL-17+ cells and Th17 cell-related gene expression in liver tissue from nonalcoholic steatohepatitis
(NASH). IL-17A levels correlate positively with steatosis. Progression from NAFL to NASH is marked by an
increase of Th17 cell accumulation in liver and a higher Th17/Treg ratio in peripheral blood.

[33,111,115]

Chronic hepatitis B (CHB) Circulating Th17 frequency is increased in CHB patients and correlates positively with plasma HBV load and
liver injury. Plasma levels of pro-inflammatory cytokines are elevated in CHB patients. The increase of IL-17+

cells accumulation in liver in CHB patients is associated with neutrophil infiltration and liver fibrosis.

[41,64,81,87,103,116,117]
[118]

Chronic hepatitis C (CHC) IL-17 and IL-17-producing cell implications are not clear and may play a dual role (protective or destructive).
Intrahepatic Th17 cell number increases in CHC patients and correlates with the severity of liver injury. IL-17-
producting CD8+ T cells are associated with lower inflammatory activity.

[15,68,119–122] [118]

Hepatocellular carcinoma (HCC) IL-17-producing cells and neutrophils are enriched in HCC tissue and their levels correlates with disease
progression and poor survival. By increasing the CXC chemokines expression in liver epithelial cells, IL-17
may promote the migration of neutrophils into HCC and then neutrophils can stimulate the proangiogenic
activity of tumor cells.

[123,124]
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ratio increase in AILD patients and this increase is higher at the active
stage than the remission stage of AILD [69]. The Th17/Treg imbalance
may therefore play an important role in the pathogenesis of AILD. The
possible contribution of IL-17 and Th17 cell in AILDs will be discussed
for the three main AILDs: autoimmune hepatitis (AIH), primary biliary
cirrhosis (PBC) and primary sclerosing cholangitis (PSC).

4.2.1. Autoimmune hepatitis
Autoimmune hepatitis (AIH) is a chronic liver disease characterized

by hepatitis, with markers of autoimmunity with hyper-gammaglobu-
linemia and various autoantibodies. AIH is often associated with an-
other autoimmune disease such as Sjogren's syndrome. IL-17 and IL-23
levels and Th17 cell frequency are increased in peripheral blood of AIH
patients by comparison to CHB patients and healthy subjects [32,70].
Moreover, the hepatic expression of Th17 cells and Th17 cell-related
cytokines are elevated in the AIH patients. Interestingly, the number of
Th17 cell infiltration correlates with the degree of hepatic inflammation
and the fibrosis grade [32]. In a mouse model of experimental AIH, IL-
17 expression in serum and liver is increased whereas the use of IL-17
neutralizing antibody reduces the histological inflammatory grade
score and the serum ALT levels [70]. These results are strong argument
for the role of IL-17 in the pathogenesis of AIH.

Treg cell impairment has been observed in AIH and may contribute
to the loss of immune tolerance. This defect of Treg number and
function and the increase of Treg plasticity toward effector Th17 cells
may contribute to the abnormal autoimmune reaction in AIH patients
[71]. The AIH patients show also a higher proportion of IL-17+ and
RORC+ cells in the newly generated Treg (nTreg CD25−) by compar-
ison to healthy subjects. The elimination of IL-17 leads to the devel-
opment of ngTreg toward a stable Treg phenotype with suppressive
function [72]. Therefore, IL-17 contributes to the reduced Treg func-
tion. Taking together, the blockade of IL-17 axis or/and the use / in-
duction of Treg cells could be an interesting therapeutic strategy to
restore the immune homeostasis in AIH.

4.2.2. Primary Biliary Cirrhosis
Primary biliary cirrhosis (PBC) is an autoimmune liver disease

characterized by the progressive destruction of small bile ducts of the
liver leading to cholestasis and the presence of auti-mitochondrial an-
tibodies. As previously described above, by acting on BECs, IL-17 in-
duces BEC morphological changes and a microenvironment promoting
Th17 induction in vitro [38,39]. In PBC patients, pro-Th17 cytokines
and IL-17 mRNA expression as well as serum IL-23, IL-6, IL-1β and IL-
17 protein levels are elevated by comparison to healthy and disease
controls [73,74]. Circulating Th17 cell frequency is increased in PBC
whereas Treg frequency is decreased, resulting to a Th17/Treg im-
balance [44,74]. IL-17 producing cells accumulate in the inflamed
portal area and their number increases in liver of advanced stage PBC
[38,44,73,75]. The Th1/Th17 balance shifts to Th17 in advanced PBC,
suggesting that Th1 cells play an important role at the onset, whereas
Th17 cells contribute to the perpetuation of the PBC disease [76]. In a
xenobiotic-induced murine model of PBC, IL-17A deletion reduces the
level of autoantibodies and biliary damage [77]. The therapeutic
blockade of IL-17 may therefore be considered in PBC.

4.2.3. Primary Sclerosing Cholangitis
PSC is a chronic cholestatic liver disease characterized by in-

flammation and fibrosis of the bile ducts resulting in liver cirrhosis and
end-stage liver disease. Its etiology remains unknown but auto-
immunity appears as one of the pathogenic mechanisms. Results on the
IL-17/Th17 cell contribution to human PSC are limited. In PSC patients,
the IL-17-producting cells aggregate within periductal areas [78].
Moreover, peripheral blood mononuclear cells from PSC patients in-
duce a higher Th17 cell frequency in vitro in response to pathogens,
which are frequently found in the bile fluid of these patients [78].
During bile duct ligation in mice, a cholestatic model of liver injury,

levels of serum and hepatic IL-17 and IL-17R are increased [7,35]. The
induction of IL-23 production by bile acid observed in mice with bile
duct ligation or fed with bile acid, can induce Th17 cell expansion and
IL-17 production. In turn, IL-17 may act in synergy with bile acid to
increase liver inflammation, since IL-17 and bile acids interact to pro-
mote in vitro the production of inflammatory mediators by hepatocytes
[35]. IL-17 and/or IL-17RA deletion or IL-17 neutralization reduces
hepatic neutrophil accumulation, liver fibrosis and liver damage in
mice with bile duct ligation [7,35,42]. However, it is still difficult to
find PSC models with all PSC attributes, and experimental biliary ob-
struction in mice presents some limitations [79]. Therefore, further
studies in PSC patients or in other PSC mouse models are required to
confirm the IL-17 and Th17 cell contribution in PSC.

4.3. Acute-on-chronic liver failure

ACLF is defined as an acute deterioration of pre-existing CLDs,
leading to a rapid and progressive liver failure. The acute insults are
many and include viral hepatitis, alcohol or hepatotoxic drugs [80].

Th17 cells may contribute to the acute deterioration of liver func-
tion in chronic HBV infected patients. Liver and blood Th17 cell fre-
quencies and IL-17 serum levels are higher in HBV-related ACLF than
CHB or asymptomatic chronic HBV carriers [81–87]. High blood Th17
cell frequency and high IL-17 serum level are associated with poor
prognosis in ACLF patients [81,83,85]. The Th17/Treg ratio is also
dramatically higher in ACLF HBV patients and is inversely associated
with patient survival [83,86,88,89]. In summary, the immune-mediated
liver injury effects of Th17 cells and the Th17/Treg imbalance may
have an important role in the CLD progression to ACLF.

5. Targeting the interleukin-17 axis

Both in vitro and in vivo studies provide evidence for the involve-
ment of IL-17 in the pathogenesis of liver diseases by increasing che-
mokine and cytokine production, immune cell recruitment and fibrosis.
Targeting the IL-17 axis could therefore be considered as a promising
therapeutic strategy to prevent the induction and the progression of
liver diseases. Antibodies targeting IL-17 and IL-17RA are now ap-
proved for the treatment of several inflammatory diseases [90].

5.1. Direct targeting of IL-17

To inhibit directly the IL-17 pathway, antibodies against IL-17 and
IL-17R are the most straight-forward options (Fig. 4). Monoclonal an-
tibodies against IL-17A are the most specific therapeutic option to
target the IL-17 pathway [90]. IL-17RA blockade might be less specific
because this receptor subunit is also part of the anti-inflammatory IL-
17E/IL-25 signaling pathway. Two anti-IL-17A inhibitors (secukinumab
and ixekizumab) and one IL-17RA inhibitor (brodalumab) have been
recently approved for the treatment of psoriasis, psoriatic arthritis and
ankylosing spondylitis. Since IL-17 and TNFα often work in synergy,
bispecific inhibitors blocking both IL-17 and TNFα are in clinical de-
velopment [90,91]. Another option is the targeting of both IL-17A and
IL-17F with bispecific antibodies [92].

5.2. Indirect targeting of the IL-17 pathway with inhibitors of Th17 cell
generation

Blocking Th17 cell generation is another therapeutic option to re-
duce the contribution of this subset and of the production of Th17 cell-
related cytokines, which include IL-17A and IL-17F but also IL-21 and
IL-22. Because IL-6 and IL-1β are involved in the Th17 cell differ-
entiation, the inhibition of the IL-6 pathway (by anti-IL-6R or JAK in-
hibitors) or the IL-1β pathway (by anti-IL-1β or IL-1R antagonist) may
reduce in part the Th17 cell pathway (Fig. 4) [93–95]. Targeting IL-23
is another option to inhibit the IL-23-IL-17 axis since IL-23 stabilizes the
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Th17 cell phenotype [90]. Different pathway inhibitors of IL-6 (tocili-
zumab or the anti-JAK tofacitinib), IL-1β (anakinra or canakinumab)
and IL-23 (tildrakizumab or guselkumab) are now tested. Targeting the
Th17 cell transcription factor RORγt/ RORc can also restore the Treg/
Th17 cell balance and therefore reduces the Th17 cell-related cytokine
production. Several small molecules inhibiting RORc are in develop-
ment [96,97].

5.3. Adverse events and safety

Despite the prominent involvement of IL-17 in inflammatory and
autoimmune diseases, IL-17 has also a protective role in different bac-
terial and fungal infections [17–19,21]. In mouse liver, IL-17 con-
tributes to protection against Listeria monocytogenes and Salmonella en-
terica infections [98,99]. Adverse events of the IL-17 inhibitors in
humans are as expected bacterial infections and localized Candida in-
fections. Induction and reactivation of Crohn's disease have also been
observed, possibly as a result of loss of the protective effect of IL-17
against Candida albicans colonization [90,100–102]. The therapeutic
benefit/risk balance of the IL-17 inhibitors in liver diseases still needs to
be assessed to determine if IL-17 targeting could be a valid treatment
option in liver diseases.

6. Conclusion

As IL-17 and IL-17 producing cells rapidly initiate an inflammatory
response by the recruitment and activation of neutrophils, they play a
key role in host defense but also in liver inflammation and damage in
acute liver dieases. At a later stage, they contribute to the recruitment
of immune cells and fibrosis in CLDs. However, further investigations
are still required on the cellular sources of IL-17 at the early and late

phases of the inflammatory response and the role of the other IL-17
family members in liver biology and disease.

Since the role of IL-17 in liver diseases is becoming established, the
IL-17 axis appears as an interesting therapeutic target for liver diseases.
Various drugs are already on the market. IL-17 blockade may be helpful
in very acute situations, where the primary end-point is easy to estab-
lish. Obviously, the situation is more complex in CLDs. As always,
acting early may prevent the establishment and the progression of acute
and chronic liver inflammation and dysfunction.
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3.3 Role of cell interactions in hepatic inflammation and fibrosis   

Chronic inflammation is a dynamic process where leukocytes and stromal cells interact 

together by paracrine and contact-dependent interactions. The soluble factor exchanges and 

the direct cell-cell contacts may modulate the behavior of hepatocytes and HSCs but also 

leukocyte recruitment, survival and polarization. Therefore, the interactions between 

infiltrating leukocytes and stromal cells appear critical in the induction, the maintenance and 

the resolution of liver inflammation and fibrosis. They determine most likely the outcome of 

liver injury.  

Hepatocytes, HSCs and peripheral blood mononuclear cells (PBMCs) are three key players in 

the chronically inflamed liver because: 

- Hepatocytes are the most abundant cell population in liver and can modulate HSC and 

immune cell responses by secreting damaged hepatocyte-derived mediators and 

cytokines/chemokines 

- Chronic inflammation leads to HSC activation, proliferation and transdifferentiation 

into myofibroblasts resulting in excessive deposition of extracellular matrix (ECM) 

and fibrotic remodeling 

- PBMCs infiltrate the liver in chronic inflammatory conditions 

On the basis of in vitro studies, the roles of the interactions between hepatocytes-HSCs (1), 

hepatocytes-PBMCs (2) and HSCs-PBMCs (3) in liver homeostasis are discussed in this 

section. 

3.3.1 Hepatocyte - Hepatic stellate cell interactions 

By their localization, HSCs in the space of Disse can have a close link with hepatocytes. Co-

culture systems were used to study the interactions between HSCs and hepatocytes. 

Microarray analysis on McA-RH7777 hepatocellular carcinoma cells from rats detected 

28,728 genes, 573 of which were up- or down-regulated more than 2-fold when McA-

RH7777 were co-cultured with activated HSCs from rats with a cell culture insert avoiding 
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direct cell contacts (Wang et al., 2014). Among the genes with altered expression levels, 432 

were up-regulated and 141 genes were down-regulated. The up-regulated genes included 

CXCL1, MCP-1 and CXCL10 chemokines. The production of matrix metalloproteinase 

(MMP)-2, MMP-9, hepatocyte growth factor and IL-6 increased in co-cultures compared to 

McA-RH7777 cell monocultures. In contrast, the levels of TNFα and TGFβ were no affected 

by the presence of HSCs (Wang et al., 2014). Genome-wide expression profiling were also 

performed in the human hepatic HepaRG cell line and the human LX-2 HSCs separated by a 

culture cell insert (Coulouarn et al., 2012). In HepaRG cells, the expression of 212 genes were 

modulated by the presence of LX-2 cells with 83% of these genes regulated positively. These 

up-regulated genes comprised genes related to cell chemotaxis (e.g. IL-8, MCP-1, CCL20 and 

CXCL2 chemokines), pro-inflammatory cytokines (e.g IL-1β and IL-6) and acute-phase 

proteins (e.g. SAA). For the LX-2 cells, the co-culture condition altered the expression of 123 

genes including the up-regulation of master genes involved in extra cellular matrix 

remodeling and angiogenesis (Coulouarn et al., 2012). 

Concerning the effects of hepatocyte-HSC interactions on the main pro-fibrotic genes, the 

presence of the Huh7 hepatoma cells decreased the expression of procollagen-α1 and TGFβ 

whereas the key HSC activator marker α-smooth muscle actin (α-SMA) expression increased 

in primary human HSCs (Sancho-Bru et al., 2010). Interestingly, LX-2 cell exposure to 

conditioned medium from FHCC-98 human hepatoma cell cultures promoted the LX-2 cell 

activation with an increase expression of α-SMA, collagen I and tissue inhibitor of 

metalloproteinase (TIMP) (Ma et al., 2015). Hepatocellular carcinoma cells can thus secrete 

soluble mediators, which promote the activation of HSCs and vice versa. 

Therefore, a bidirectional paracrine crosstalk exists between hepatocytes and HSCs driving to 

a pro-inflammatory and pro-fibrotic microenvironment. However, some mediators, such as 

IL-8, are not regulated in the same way according to the different studies (Coulouarn et al., 

2012; Sancho-Bru et al., 2010). This differential effect could be due to the culture conditions 

such as the culture medium, which can influence the activation of HSCs. The different cell 

response can also be related to the cellular model used. For example, the mRNA expression of 

IL-6 is up-regulated in HepaRG cells, down-regulated in Huh7 cells and unchanged in HepG2 
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cells and HuGB biliary cells in presence of the LX-2 HSCs (Coulouarn et al., 2012). 

However, all the studies reported an induction of a pro-angiogenic and pro-migratory 

microenvironment by the hepatocyte-HSC interactions (Coulouarn et al., 2012; Sancho-Bru et 

al., 2010; Wang et al., 2014). As only non-contact co-cultures are used in these studies, the 

role of the direct cell-cell contacts remain unknown. 

3.3.2 Hepatocyte - Peripheral blood mononuclear cell interactions 

In the liver, hepatocytes interact and establish cell-cell contacts with T cells through 

fenestrations in liver sinusoidal endothelial cells (Warren et al., 2006). Because hepatocytes 

express major histocompatibility complex (MHC) class I and class II molecules in 

inflammatory conditions (Franco et al., 1988; Herkel et al., 2003), hepatocytes have the 

capacity to act as antigen-presenting cells (APC) and therefore to contribute to T cell 

activation and immune regulation in the liver. Hepatocytes from mice can activate CD4+ and 

CD8+ T cells in vitro through antigen-dependent activation but were not able to sustain this 

activation and to create an effective immune response (Bertolino et al., 1998; Herkel et al., 

2003). In contrast, in co-cultures with peripheral blood lymphocytes (PBLs), the human 

hepatic cancer cell line HepG2 or immortalized human hepatocytes enhanced T cell 

proliferation through antigen-independent activation signals. Indeed, antibodies against MHC 

class II molecules did not abolish T cell proliferation. Moreover, this effect was mainly cell 

contact dependent and required the presence of accessory cells since the use of culture cell 

inserts or the use of pure CD3+ T cells instead of PBLs reduced strongly T cell proliferation 

induced by hepatocytes (Correia et al., 2009). The interaction with HepG2 cells or 

immortalized human hepatocytes increased also PBL survival. Unlike the hepatocyte-induced 

T cell proliferation effect, the soluble factors released by hepatocytes were sufficient to 

decrease T cell death. In addition, the induction of T cell survival by hepatocytes was 

maintained in CD3+ T cell-HepG2 cell co-cultures (Correia et al., 2009). Therefore, 

hepatocytes may play an important role in local T cell homeostasis by acting on T cell 

proliferation and survival. 
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Hepatocytes also contribute to immune regulation and tolerance in liver. Interactions between 

CD4+ T cells and hepatocytes from murine liver increased the IL-10 secretion by CD4+ T cells 

following T cell receptor (TCR) stimulation in a cell-cell contact-dependent manner via Notch 

signaling. This increase was even more pronounced with hepatocytes from regenerated livers 

of mice pretreated with the lectin concavanalin A (Con A). The CD4+ T cells primed by 

hepatocytes were able to suppress proliferation of responder T cells upon TCR stimulation. 

Interestingly, most of the CD4+ IL-10+ cells co-express IFNγ but not Foxp3 (Burghardt et al., 

2013). However, the same research team shows that murine hepatocytes in the presence of 

TGFβ promoted Foxp3 expression within CD4+ T cells and the generation of Treg cells with 

suppressive capacity upon TCR stimulation. This induction was dependent on Notch signaling 

(Burghardt et al., 2014). By these mechanisms, hepatocytes may play a pivotal role 

maintaining immunological tolerance in liver. 

The immunoregulatory effects of the hepatocyte-PBMC interactions were also studied in the 

context of hepatocellular carcinoma (HCC) by using primary human hepatocyte and 

autologous PBMC co-cultures (Doumba et al., 2013). The presence of PBMCs increased the 

expression of MHC class II molecules on HCC and non-HCC hepatocytes from liver 

resection specimens of patients operated for HCC. The viability of MHC II-expressing HCC 

hepatocytes was also increased in co-cultures. However, the MHC II expression on 

hepatocytes from donors with no liver diseases remained unchanged when hepatocytes were 

co-cultured with PBMCs. Therefore, hepatocytes from HCC patients have a higher MHC II 

expression and may act as APC when they are in contact with PBMCs. In addition, co-

cultures with HCC but not non-HCC hepatocytes induced the expression of MHC class II on 

PBMCs. In this way, HCC hepatocytes may modulate PBMC activation whereas PBMC 

apoptosis and necrosis were not affected by the presence of hepatocytes (Doumba et al., 

2013). Concerning the activated CD8+ T cells, the CD8+ T cell death increased in co-cultures 

with murine or human HCC hepatocytes but not with non-HCC hepatocytes (Bertolino et al., 

1998; Doumba et al., 2013). Therefore, PBMC-HCC hepatocyte interactions promote the 

APC ability of HCC hepatocytes and the PBMC activation. This effect can provide help to 

immune cells, which are defective in the tumor environment. In contrast, the elevated viability 
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of MHC II expressing HCC hepatocytes and CD8+ T cell necrosis in PBMC-HCC hepatocyte 

co-cultures may contribute to HCC survival and escape from immune attack (Doumba et al., 

2013). Interactions between hepatoma cells and immune cells thus contribute to the immune 

response, which is critical for cancer regression or progression. 

Because hepatocytes can modulate immune cell activation, proliferation, polarization and 

survival, as described above, hepatocyte-PBMC interactions play certainly a crucial role in 

liver tolerogenic effects but also in the induction and the outcome of hepatitis. The effect of 

hepatocytes on the immune response appears to dependent on the nature of the injury and the 

pathological or non-pathological environment. 

3.3.3 Hepatic stellate cell - Peripheral blood mononuclear cell interactions 

HSCs are crucial in liver fibrosis by producing fibrotic mediators leading to extracellular 

matrix deposition. Alteration of liver homeostasis by the presence of infiltrated immune cells 

and soluble inflammatory mediators may promote HSC activation and vice-versa. A recent 

paper shows that oncostatin M, mainly produced by macrophages and neutrophils, had a 

crucial role in the HSC fibrogenic activity. Indeed, oncostatin M suppressed directly fibrolysis 

through the up-regulation of TIMP1 expression in HSCs and promoted indirectly fibrogenesis 

by inducing the release of soluble factors from profibrotic macrophages (Matsuda et al., 

2018). Conversely, HSCs have also an immunoregulatory activity; they can modulate the 

macrophage/monocyte phenotype. In co-cultures, activated primary human HSCs or the 

human LX-2 cell line can reprogram monocytes to an immunosuppressive phenotype 

characterized by the up-regulation of immunosuppressive cytokines (IL-10 and TGFβ1) and 

the down-regulation of pro-inflammatory cytokines (TNFα and IL-1β) (Ji et al., 2015) and 

MHC class II (Höchst et al., 2013). This effect required direct cell-cell contacts and was 

mediated via CD44 (Höchst et al., 2013; Ji et al., 2015). As HSCs are activated during chronic 

inflammation, this monocyte polarization to an immunosuppressive M2 macrophage or 

myeloid derived suppressor cell phenotype may represent a negative feedback loop to 

attenuate local inflammation. 



64 

HSCs may also regulate the hepatic immune response by influencing CD4+ T cell survival. 

Without stimulation, HSCs express low MHC class II and T cell co-stimulatory molecules 

(CD40 and CD80) (Charles et al., 2013; Dangi et al., 2012). In addition, human HSCs 

induced a very low allogenic T cell proliferative response indicating they are not professional 

APCs (Charles et al., 2013). However, HSCs reduced significantly the T-cell proliferative 

response in a dose-dependent manner and induced the apoptosis of activated T cells (Charles 

et al., 2013; Zhao et al., 2012). Because the separation of HSCs and T cells by a pored 

membrane inhibited largely the HSC ability to suppress the T cell proliferative response, this 

inhibitory effect was cell-cell contact dependent. The induction of activated T cells apoptosis 

was mediated via B7-H1 (programmed death-ligand 1 (PD-L1)) - PD1 ligation in HSC-T cell 

co-cultures incubated with anti-CD3/CD28 coated beads (Charles et al., 2013) and via Fas-

Fas ligation in lipopolysaccharide (LPS)-stimulated HSC-CD4+ T cell co-cultures (Dangi et 

al., 2012). In addition, tumor-specific HSCs but not quiescent HSCs promoted T-cell hypo-

responsiveness and apoptosis by inducing DC-derived immunoglobulin receptor 2 (DIgR2) 

expression in DCs (Xia et al., 2017). 

However, HSCs have differential effects on the CD4+ T cell population, they can induce at the 

same time CD4+ T cell apoptosis and Treg cell expansion (Dangi et al., 2012). Indeed, 

incubation of T cells with HSCs increased the number of Treg cells (Li et al., 2017; Zhao et 

al., 2012) and this effect was enhanced when HSCs were pretreated with LPS (Dangi et al., 

2012; Kumar et al., 2017). HSC-expanded Treg cells retained a suppressive phenotype and 

function. Separation of HSCs from Treg cells by the use of a permeable culture inserts 

prevented Treg cell expansion showing that a direct cell-cell contact is required. Because LPS 

increased MHC class II and CD80 expression and the MHC class II blockade reduced the 

HSC-induced proliferation of Treg cells, the MHC class II-TCR signaling has certainly a 

predominant role in this effect (Dangi et al., 2012). In addition, LPS increased also the 

activity of the immunoregulatory enzyme indoleamine-pyrrole 2,3-dioxygenase (IDO1) in 

HSCs, which is associated not only to Treg expansion but also with a strong increase of 

Foxp3 expression (Kumar et al., 2017). In turn, Treg cells reduced the release of pro-

inflammatory cytokines (IL-6, TNFα and IL-1β) by HSCs whereas the production of the anti-
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inflammatory cytokine IL-10 was increased by the presence of Treg cells in LPS-stimulated 

HSC cultures (Dangi et al., 2012). By producing IL-8 and TGFβ1, Treg cells may also down-

regulate pivotal ligands for activating NK cell receptors on HSCs and therefore reduce the 

anti-fibrotic activity of NK cells (Langhans et al., 2015). 

The effect of HSCs on T cell response was also investigated in other CD4+ T cell subtypes. 

Interactions between activated HSCs from rats and rat CD4+ T cells reduced the Th1/Th2 ratio 

in vitro by promoting apoptosis and by inhibiting IFNγ production in Th1 cells whereas the 

Th2 cell response was enhanced. By inhibiting the Th1 cell response, activated HSCs may 

facilitate the shift from a Th1 to a Th17 cell response and promote liver fibrosis (Xing et al., 

2015). Recently, the effects of Th17 cell and HSC interactions were studied in co-cultures 

with CD4+ T cells from patients with chronic hepatitis B (CHB). The interactions between 

CD4+ T cells from CHB patients and activated HSCs enhanced the proliferation of CD4+ T 

cells, the frequency of Th17 cells and the secretion of the Th17 cell-related cytokines 

including IL-17A, IL-21 and IL-22 (Liu et al., 2017). Another study showed that the exposure 

of CD4+ T cells from CHB patients to LX-2 cell and primary HSC supernatants increased the 

Th17 cell frequency (Li et al., 2017). Soluble factor exchanges between HSCs and CD4+ T 

cells appear therefore sufficient to induce the polarization of T cells toward Th17 cells. 

In turn, Th17 cells can modulate HSC activation. Murine HSCs in co-cultures with Th17 cells 

enhanced the expression of α-SMA in proportion to the amount of Th17 cells whereas Treg 

cells had opposite effects (Sun et al., 2014). IL-17-activated PBLs or monocytes up-regulated 

also α-SMA expression in LX-2 cells in vitro (Sun et al., 2012). In addition, the human 

primary HSC and Th17 cell interactions increased the secretion of TGFβ1 as well as the 

release of IL-6 and IL-1β when Th17 cells were purified from patients with CHB. Gene 

expressions of Collagen-III, MMP2, TIMP1 and the pro-fibrotic cytokines TGFβ1, CTGF, 

EGF and PEGF-BB were also up regulated in HSC-Th17 cell co-cultures compared to HSC 

monocultures. Interestingly, these effects on HSC activation mediated by Th17 cells were 

completely reversed by the addition of an anti-IL-17A (Liu et al., 2017). The induction of 

HSC activation by Th17 cells is therefore mainly mediated by IL-17. Moreover, IL-17 

participated to the increased secretion of growth related oncogen α, involved in neutrophil 
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infiltration, when human HSCs were cultured with phytohemagglutinin (PHA)-stimulated 

PBMC supernatant (Lemmers et al., 2009). Blocking IL-17R in human HSC and mucosal-

associated invariant T cell co-cultures decreased also the pro-inflammatory IL-1β, IL-8 and 

CCL2 gene expressions (Böttcher et al., 2018) showing that IL-17 participates to HSC 

activation and HSC-mediated immune cell infiltration. 

When activated HSCs were co-cultured with Th17 cells from CHB patients, HSCs induced 

the generation of a highly pathogenic Th17 phenotype with the up-regulation of most Th17 

cell key gene signatures (IL-17A, IL-23R, CCL20, CCR6 and RORc). Neutralization of IL-6 

and/or IL-1β inhibited significantly the frequency of IL-17A-producing CD4+ T cells and the 

secretion of IL-17 in activated T CD4+ from CHB patients-HSC co-cultures separated by a 

permeable membrane (Liu et al., 2017 . The IL-17 production and the frequency of IL-17-

producing CD4+ T cells were also reduced by the use of a selective COX-2 (cyclooxygenase-

2) inhibitor in the co-culture system. Consequently, the COX-2 inhibition decreased also the 

release of cytokines associated with Th17 cells (IL-17A, IL-21) and HSCs (IL-6, IL-1β and 

TGF-β1) as well, in activated Th17 cells from CHB patients–HSC co-cultures (Liu et al., 

2017). In contrast, PGE2 (prostaglandin E2) or agonist of PGE2 receptors-EP2 and EP4 

enhanced the frequency of Th17 cells in CD4+ T cells (Li et al., 2017). The activation of 

COX-2/PGE2 pathway and the PGE2 secretion by HSCs may thus act on PGE2 receptors on 

CD4+ T cells and promote the differentiation of hepatic Th17 cells. Therefore, a pro-

inflammatory and pro-fibrotic feedback loop between Th17 cells and HSCs may exist in CHB 

patients (Figure 4). 
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FIGURE 4: Pro-inflammatory and pro-fibrotic bidirectional crosstalk between HSCs-
Th17 cells in chronic hepatitis B. 
Activated HSCs enhance Th17 cell differentiation and IL-17 secretion via COX-2/PGE2, IL-6 and 
IL-1β pathways. In turn, IL-17 promotes the activation of HSCs by inducing the expression of pro-
fibrotic genes (α-SMA, Collagen-III, TGFβ1, CTGF, EGF and PEGF-BB) and the secretion of IL-6, 
IL-1β, TGFβ1, MMP2 and TIMP1. 
 

The immunoregulatory role of activated HSCs on immune cells is complex and appears to 

depend on the in vitro cell model used and the cell stimulation. In chronically inflamed liver, 

HSCs are activated and trans-differentiate into pro-fibrogenic myofibroblasts. By inducing 

immunosuppressive functions of Treg cells, monocytes and DCs, activated HSCs can exert 

regulatory immune functions (Dangi et al., 2012; Höchst et al., 2013; Ji et al., 2015; Kumar et 

al., 2017; Xia et al., 2017; Zhao et al., 2012). This may prevent excessive liver injury but also 

facilitates immunologic escape of cancer cells. However, the role of the HSC 

immunoregulatory effects in the progression of fibrosis remains controversial. Treg cells may 

alter the control of hepatic fibrogenic activity (Langhans et al., 2015). TGFβ produced by 

Treg cells or M2 macrophage may worsen fibrosis by activating HSCs. In contrast, the release 

of IL-10 can inhibit HSC activation directly but also indirectly by reducing the effector 

function of other intrahepatic T cells (Liu et al., 2017). Further studies are necessary to 

evaluate the role of Treg cells or M2 macrophage phenotype in the liver microenvironment. 
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In hepatitis B virus (HBV)-related liver fibrosis, the frequency of IL-17-producing cells in 

liver is elevated in patients with in advanced stage of fibrosis (Li et al., 2017). HBV infection 

induces certainly a Th17-polarizing liver environment (Liu et al., 2017). In turn, the interplay 

between Th17 cells and HSCs appears critical to sustain a profibrotic loop and chronic 

inflammation. Because IL-17 and IL-17 producing cells seem to be involved in the pathology 

of other liver diseases including autoimmune hepatitis or alcoholic liver diseases (as seen in 

part 3.2), the pro-inflammatory and profibrotic feedback loop described during HBV infection 

could be found in other liver disorders. 
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4 IL-17 in myositis 

4.1 Idiopathic inflammatory myopathies 

The idiopathic inflammatory myopathies (IIMs), also called myositis, are a group of chronic 

muscle diseases comprising polymyositis (PM), dermatomyositis (DM) and sporadic 

inclusion body myositis (IBM). The clinical features of these diseases include symmetrical 

skeletal muscle weakness, fatigue and elevated muscle enzymes in serum. Histologically, 

muscle tissues of IIM patients are characterized by mononuclear cell infiltration and myofiber 

degeneration (Dalakas and Hohlfeld, 2003). The presence of autoreactive lymphocytes and 

autoantibodies suggests that the autoimmune response has a significant contribution to the 

disease pathogenesis. For this reason, the IIMs are treated with either glucocorticoids or other 

immunosuppressive drugs. However, the innate immune activation and the non-immune 

intrinsic defects in IIMs also contribute certainly to muscle damage and dysfunction 

(Rayavarapu et al., 2013). Therefore, IIM pathogenesis comprises complex pathways and 

their relative contributions and inter-relationships are still unclear. Because a wide range of 

cells produced cytokines and, in turn, respond to them, they may have a central role in the 

interplays between immune and non-immune mechanisms in IIM pathogenesis by acting on 

both immune cells and muscle cells (Figure 5). 

 

FIGURE 5: Potential central role of cytokines in the relationship between immune and 
non-immune pathological mechanisms in idiopathic inflammatory myopathies 
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4.1.1 Innate immune mechanisms 

Emerging evidence indicates that the innate immune response is involved in IIMs, as 

suggested the presence of macrophages and DCs and the overexpression of Toll-like receptors 

(TLRs) in muscle tissues of myositis patients (Page et al., 2004; Rayavarapu et al., 2013). 

Indeed, increased expression of TLR-2, TLR-3, TLR-4, TLR-7 and TLR-9 are found in IIM 

muscular biopsies and TLR pathways participate to the induction of pro-inflammatory 

cytokines leading to an inflammatory environment in affected muscles (Brunn et al., 2012; 

Kim et al., 2010; Schreiner et al., 2006; Tournadre et al., 2010).  

4.1.2 Adaptive immune mechanisms 

The over-expression of MHC class I molecules on the surface of muscle cells, the presence of 

autoreactive T lymphocytes and myositis-specific autoantibodies used for diagnosing support 

an important contribution of the adaptive immune response in IIMs. Both immature and 

mature DCs have been found in muscle biopsies of IIM patients (Page et al., 2004). By 

priming and activating T cells, DCs are a crucial link between the innate and adaptive 

immune systems and the amplification of the inflammatory process in IIMs (Coutant and 

Miossec, 2016). DM is considered as a CD4+ T cells-mediated disease in which the 

dysregulation of the humoral mechanisms and the activation of the complement are 

responsible for the vascular endothelium attack leading to skin and muscle injury. In contrast, 

in PM and IBM, CD8+ T cells are predominant and induce a cytotoxic attack resulting in 

myofiber necrosis (Dalakas and Hohlfeld, 2003; Rayavarapu et al., 2013).  

4.1.3 Non-immune mechanisms 

Recent data in IIMs suggests that both immune and non-immune processes contribute to 

muscle weakness and damage in myositis. The endoplasmic reticulum (ER) stress, the 

metabolic disturbances, the autophagy and the hypoxic conditions have been observed in 

skeletal muscles of IIM patients (Coley et al., 2012; Henriques-Pons and Nagaraju, 2009; 

Rayavarapu et al., 2013). Because the ER is intimately connected to other cellular 

components and performs crucial tasks including calcium (Ca2+) release, posttranslational 
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maturation, protein folding or lipid biosynthesis, the ER can modulate many cellular 

functions. In myositis, uncontrolled ER stress leads to a cross-talk with mitochondria and the 

formation of autophagosomes leading to the activation of cell death pathways (Rayavarapu et 

al., 2012). The ER stress may also affect muscle function by modulating Ca2+ regulation. The 

sarcoplasmic reticulum (SR) is a specialized form of ER found in muscle cells. SR is a Ca2+ 

storage depot and regulates Ca2+ release during muscle contraction. The ER and SR can 

rapidly refill Ca2+
 store by inducing Ca2+ entry from the extracellular environment via the Ca2+ 

sensors stromal interaction molecule (STIM1) and the Ca2+ channel Orai (Henriques-Pons and 

Nagaraju, 2009). Abnormalities of this Ca2+ pathway, known as store-operated Ca2+ entry 

(SOCE), can impair Ca2+ homeostasis and therefore the regulation of muscle contraction 

leading to skeletal myopathies (Stiber et al., 2008). 

Interestingly, the immune pathways interplay with the non-immune mechanisms in IIMs. For 

instance, the pro-inflammatory cytokines IL-1α and IL-1β can cause mitochondrial 

dysfunction. Moreover, overexpression of the MHC class I molecule in skeletal muscle can 

induce ER stress (Rayavarapu et al., 2012, 2013). Conversely, ER stress can activate the 

master regulator of inflammation NF-κB leading to the transcription of pro-inflammatory 

cytokines and chemokines (Henriques-Pons and Nagaraju, 2009). 

4.2 Role of IL-17 in inflamed muscle tissues 

Traditionally, the Th1 cell response is considered as the predominant driver of IIM 

immunopathogenesis (Moran and Mastaglia, 2014). However, the presence of IL-17-

producing cells in inflamed muscle tissues and the in vitro effects of IL-17 on muscle cells 

suggest a pathogenic contribution of the IL-17 pathway in IIMs. 

4.2.1 Expression of IL-17 in myositis 

Several studies have investigated the presence of IL-17 in muscle biopsies and blood in 

patients with IIMs. In muscle tissue, the expression of IL-23p19 and IL-17 mRNA was 

increased in myositis muscles and the elevated IL-17 gene expression was associated with 

increased mRNA levels of TLR-4 and TLR-9 (Brunn et al., 2012; Kim et al., 2010; Kondo et 
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al., 2009). This suggests that activation of TLRs is connected to the Th17 cell response and 

the increase of IL-17 expression in IIMs. In addition, IL-17-producing cells were detected in 

lymphocyte infiltrates of both DM and PM muscle biopsies in contrast to healthy muscle 

biopsies (Chevrel et al., 2003; Page et al., 2004; Tournadre et al., 2009). However, the 

number of IL-17-producing cells was low compared to IFNγ-positive cells (Tournadre et al., 

2009). 

Overexpression of IL-17 transcripts was also found in the whole blood of DM and PM 

patients. Interestingly, a subset of DM patients had an enhanced IL-17 gene signature rather 

than a type I IFN gene signature (Higgs et al., 2012). One study reports an increased of IL-17 

serum level in DM and PM patients (Szodoray et al., 2010) whereas another study detected 

similar levels between the patients with IIMs and healthy controls (Allenbach et al., 2014). 

The frequency of CD3+ CD4+ IL-17+ cells was not higher in IBM patients than healthy 

controls (Allenbach et al., 2014). In contrast, the frequency of CD3+ CD4+ IL-17+ cells and the 

serum levels of cytokines involved in the Th17 differentiation increased in DM patients. The 

serum level of the muscle enzyme creatine kinase, an indicator of the severity of muscle 

severity, correlates also positively with the frequency of Th17 cells (Tang et al., 2013). 

Additionally, upon anti-CD3/CD28 stimulation, PBMCs from patients with early DM and PM 

produced higher levels of IL-17 than PBMCs from healthy controls or patients with 

established DM and PM diseases (Shen et al., 2011). 

4.2.2 Effects of IL-17 on muscle cells 

A limited number of studies have explored the direct effects of IL-17 on muscle cells. First, 

IL-17 could be involved in muscle destruction by inhibiting myogenic differentiation in vitro 

with the reduction of myoblast migration through the activation of ERK pathway and the 

inhibition of urokinase type plasminogen activator expression (Kocić et al., 2012, 2013). IL-

17 has also pro-inflammatory activities on human myoblasts by increasing the production of 

IL-6 in a dose dependent manner. In addition, IL-17 can amplify the effect of IL-1β on the IL-

6 and CCL20 secretion in myoblast cultures and muscle tissue samples. IL-17 promotes also 

the expression of HLA class I with a higher effect when IL-17 and IL-1β were combined 
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(Chevrel et al., 2003). IL-17, but not IFNγ, can further act in synergy with the activation of 

the TLR-3 pathway for the production of IL-6 and CCL20 (Tournadre et al., 2010). By 

amplifying the release of IL-6 and CCL20 from muscle cells, IL-17 can promote mononuclear 

cell migration and differentiation in muscle tissue. Indeed, IL-6 is a key cytokine in the Th17 

differentiation and CCL20 is involved in the recruitment of immature DCs as well as Th17 

cells. The cytokine microenvironment comprising IL-17 and cell-cell interactions contributes 

therefore to DC homing and maturation. In turn, DCs can interact with T cells to amplify the 

inflammatory process in IIMs (Page et al., 2004). IL-17 within a complex network of 

interactive cytokines may thus contribute to the pathogenesis of various inflammatory 

diseases including the IIMs.  



74 

 



75 

RESULTS 
 

IL-17 is a major systemic pro-inflammatory cytokine playing an important role in many 

autoimmune and inflammatory disorders. IL-17 can cooperate with other cytokines such as 

TNFα to amplify their pro-inflammatory effects. However, the role of these two cytokines 

remains poorly understood in the liver and the muscle, which can be affected in some 

systemic inflammatory disorders. In addition, as the tissue inflammation is characterized by 

immune cell infiltration, the local cell-cell interactions play certainly an important role in the 

induction and the outcome of the inflammatory response. To determine the effects of the IL-

17 and TNFα combination and the contribution of the cell-cell interactions in the 

inflammatory response, in vitro culture systems with human cells from liver and muscles are 

used. 

 

The objectives of this thesis project are:  

1) To investigate the effects of IL-17 and TNFα on the inflammatory response in 

hepatocytes 

2) To assess the role of the PBMC-hepatocyte interactions on the immune response by 

using a co-culture system 

3) To determine the effects of IL-17 and TNFα on HSCs and the role of the interactions 

between HSCs, hepatocytes and/or PBMCs on the inflammatory and fibrotic processes 

4) To establish the role of IL-17 and TNFα in immune and non-immune processes in 

myoblasts 
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1 Synergistic effect of IL-17 and TNFαα  on inflammatory response in 
hepatocytes through IL-6-dependent and independent pathways  

 
Beringer A, Thiam N, Molle J, Bartosch B and Miossec P. Synergistic effect of interleukin-17 
and tumor necrosis factor-α on inflammatory response in hepatocytes through interleukin-6-
dependent and independent pathways. Clin Exp Immunol. 2018;193(2):221-233. 

1.1 Background & Objective 

The liver plays an important role in the acute-phase response by producing acute-phase 

proteins such as CRP or SAA. IL-6 is the master regulator of the acute-phase protein 

production. However, other cytokines such as TNFα, IL-1β or IL-17 are also involved in the 

acute-phase protein response and the production of IL-6 itself (Kramer et al., 2008; Patel et 

al., 2007; Yoshizaki, 2011). IL-17 and TNFα cooperate to induce in synergy the secretion of 

IL-6 and IL-8 in various cell types including synovial or skin fibroblasts (Chiricozzi et al., 

2011; Hot et al., 2012; Katz et al., 2001; Osta et al., 2015). However, the effects of the IL-17 

and TNFα combination in the hepatic inflammatory response need to be clarified. Primary 

human hepatocytes (PHH) and three human hepatoma cell lines (HepaRG, HepG2 and 

Huh7.5 cells) were used in this study. 

Objective: To investigate the role of IL-17 and TNFα in the hepatic inflammatory response 

and the contribution of IL-6 in the effects triggered by IL-17 and TNFα. 

1.2 Results 

The IL-17 and TNFα combination increases in synergy the expression and production of   

IL-6 in PHH and HepaRG cell cultures. This effect is not observed in the HepG2 and Huh7.5 

cell lines. 

IL-17 and/or TNFα stimulation indirectly enhances CRP and aspartate 

aminotransferase (ASAT) level through the induction of IL-6. Indeed, the IL-6 pathway 

blockade reduces strongly the IL-17 and/or TNFα effect on the CRP and ASAT levels in 

PHH and HepaRG cell cultures. 
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The IL-17 and TNFα combination increases in synergy the expression and/or 

production of IL-8, MCP-1 and CCL20 chemokines independently of the IL-6 pathway. 

As the use of the anti-IL-6R does not inhibit the induction of these chemokines following the 

IL-17/TNFα exposure, the IL-17 and TNFα effect on IL-8, MCP-1 and CCL20 is mainly 

independent of the IL-6 pathway. 

IL-17 initiates the IL-17 and TNFα synergistic effect on the IL-6 and IL-8 production. 

Indeed, pre-incubation first with IL-17 followed by the addition of TNFα induces two-fold 

higher IL-6 and IL-8 release than the pre-incubation first with TNFα, then with IL-17. 

IL-17 enhances IL-6 mRNA stabilization. This effect increases the IL-6 transcript 

abundance and, in turn, probably the levels of IL-6 secreted. This could participate in the IL-

17 and TNFα synergistic effect on IL-6 in hepatocytes. 

IL-17 and TNF-α increase the hepatic IL-6 and IL-8 secretion in synergy via the 

activation of ERK and/or PI3K/Akt signaling pathways and/or NF-κκB transcription 

factor. ERK inhibition reduces both IL-6 and IL-8 production induced by IL-17 and TNFα 

whereas the activation of PI3K/Akt and NF-κB pathways are only involved in the synthesis of 

IL-6 but not IL-8. 

1.3 Conclusion 

IL-17 and TNFα cooperate to increase systemic inflammation and hepatic damage by 

inducing CRP and ASAT levels in hepatocyte cultures through the induction of IL-6. 

Independently of the IL-6 pathway, IL-17 and TNFα induce in synergy the expression and/or 

production of IL-8, MCP-1 and CCL20 chemokines. Blocking IL-17 and/or TNFα could be a 

promising therapeutic strategy to control systemic inflammation but also the local cell 

recruitment and associated liver cell injury.  
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Summary

The proinflammatory cytokines interleukin (IL)-17 and tumour necrosis

factor (TNF)-a are targets for treatment in many chronic inflammatory

diseases. Here, we examined their role in liver inflammatory response

compared to that of IL-6. Human hepatoma cells (HepaRG, Huh7.5 and

HepG2 cells) and primary human hepatocytes (PHH) were cultured with

IL-6, IL-17 and/or TNF-a. To determine the contribution of the IL-6

pathway in the IL-17/TNF-a-mediated effect, an anti-IL-6 receptor antibody

was used. IL-17 and TNF-a increased in synergy IL-6 secretion by HepaRG

cells and PHH but not by Huh7.5 and HepG2 cells. This IL-17/TNF-a
synergistic cooperation enhanced the levels of C-reactive protein (CRP) and

aspartate aminotransferase (ASAT) in HepaRG cell and PHH cultures

through the induction of IL-6. IL-17/TNF-a also up-regulated IL-8,

monocyte chemoattractant protein (MCP)-1 and chemokine (C-C motif)

ligand 20 (CCL20) chemokines in synergy through an IL-6-independent

pathway. Interestingly, first exposure to IL-17, but not to TNF-a, was

crucial for the initiation of the IL-17/TNF-a synergistic effect on IL-6 and

IL-8 production. In HepaRG cells, IL-17 enhanced IL-6 mRNA stability

resulting in increased IL-6 protein levels. The IL-17A/TNF-a synergistic

effect on IL-6 and IL-8 induction was mediated through the activation of

extracellular signal-regulated kinase (ERK)-mitogen-activated protein

kinase, nuclear factor-jB and/or protein kinase B (Akt)–

phosphatidylinositol 3-kinase signalling pathways. Therefore, the IL-17/

TNF-a synergistic interaction mediates systemic inflammation and cell

damage in hepatocytes mainly through IL-6 for CRP and ASAT induction.

Independently of IL-6, the IL-17A/TNF-a combination may also induce

immune cell recruitment by chemokine up-regulation. IL-17 and/or TNF-a

neutralization can be a promising therapeutic strategy to control both

systemic inflammation and liver cell attraction.

Keywords: hepatocyte, inflammation, interleukin-6, interleukin-17, tumour

necrosis factor-a

Introduction

Interleukin (IL)-6 is a systemic proinflammatory cytokine

playing a pivotal role in the acute-phase response to tissue

injury, infection or inflammation [1,2]. This response is

characterized by changes in the hepatic production of

acute-phase proteins such as increased C-reactive protein

(CRP) production. However, the acute-phase protein

response and the production of IL-6 itself are also induced

by a long list of cytokines, such as tumour necrosis factor-

a (TNF-a), IL-1b and IL-17A, also known as IL-17 [3,4].

Clinical inhibition of IL-6 with an anti-IL-6 receptor

(anti-IL-6R) antibody has shown beneficial effects on the

joint manifestations of rheumatoid arthritis, with a massive

decrease of CRP levels [5–7]. However, IL-6 also has anti-

inflammatory functions [8]. Indeed, IL-6-deficient mice

developed liver inflammation, steatosis and insulin
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resistance [9]. Moreover, IL-6 blockade has been associated

with colon perforation [7,10], transaminase elevation [11]

and adverse lipid changes [12,13], probably related to liver

changes. Therefore, the IL-6 effects on hepatocytes remain

not well known and some of the liver changes in chronic

inflammation may reflect the effects of other cytokines,

independently or not of IL-6.

Liver diseases are characterized by immune cell infiltrates

following chemokine release [14]. Neutrophils are key players

in the initiation of the inflammatory response. Because IL-17

is known to induce neutrophil-attracting chemokines such as

IL-8, IL-17 contributes to liver inflammation by inducing the

local recruitment of neutrophils [15]. As shown in various

cells, including endothelial cells or skin and synovial fibro-

blasts, IL-17 can cooperate with TNF-a to induce in-vitro IL-8

and IL-6 secretion in synergy [16–19]. These two cytokines are

also involved in several liver disorders [15,20–22]. In the liver,

IL-17 was also able to activate hepatic stellate cells and CRP

production by hepatocytes independently of IL-6 [3,23].

The objective of this study was to clarify the effects of IL-

17 and TNF-a on the induction of the inflammatory

response in hepatocytes and to determine the contribution of

IL-6 in these effects. Because primary human hepatocytes

(PHH) are from native liver, they are considered to be the

gold standard approach to reflect the specific functionality

and mediators of the human organ. Therefore, PHH and

human hepatoma cell lines were used. IL-17 and TNF-a
cooperated to increase CRP expression and aspartate amino-

transferase (ASAT) level in hepatocyte cultures through the

activation of the IL-6 pathway. Independently of the IL-6

pathway, IL-17 and TNF-a induced IL-8, monocyte chemo-

attractant protein-1 (MCP-1) and chemokine (C-C motif)

ligand 20 (CCL20) expression and/or production synergisti-

cally. These differences may help understanding of the liver

situation in chronic inflammation.

Materials and methods

Cell cultures

The human hepatoma Huh7.5, HepG2 and HepaRG cells

were cultured as described previously [24,25]. Proliferative

HepaRG cells were used after 15 days post-plating and dif-

ferentiated HepaRG cells were maintained in the same

standard medium supplemented by dimethylsulphoxide

(DMSO) 2% for 2 more weeks. PHH were isolated from

surgical liver resections and cultured as reported [24]. The

samples were collected according to the local ethical com-

mittee and the Ministry of Research, which approved the

study (reference number: AC-2010-1164).

Culture conditions

Hepatocytes were exposed to IL-6 5 ng/ml (R&D Systems,

Minneapolis, MN, USA) or IL-17A 50 ng/ml (Dendritics,

Lyon, France) and/or TNF-a 1 ng/ml (R&D systems). To

block the IL-6, IL-17 or TNF-a pathways, tocilizumab

(Roche, Welwyn, UK), anti-IL-17A (R&D Systems) and

infliximab (MSD, Courbevoie, France) were used at 10 lg/
ml. A monoclonal antibody against the BetV1 allergen

(Dendritics) was used as a control antibody at the same

concentration. Exposures to nuclear factor-kappaB (NF-

jB) inhibitor pyrrolidine dithiocarbamate, phosphoinosi-

tide 3-kinase (PI3K) inhibitor LY294002, protein kinase B

(Akt) inhibitor A6730 (all from Sigma, St Louis, MO,

USA) and mitogen-activated protein kinase (MAPK)

inhibitors SP6000125 [c-Jun N-terminal kinase (JNK)

inhibitor], SB203580 (p38 inhibitor), U0125 [mitogen-

activated protein kinase kinase/extracellular signal-regu-

lated kinase (MEK/ERK) inhibitor] (all from Calbiochem,

San Diego, CA, USA) at 1, 10, 20 and/or 100 lM were

added 1 h prior to cytokine addition. Cells were treated for

12 and 24 h for mRNA expression, 24 h for cytokine pro-

duction and 120 h for CRP and transaminase levels.

mRNA stability

HepaRG cells were treated with IL-17 and/or TNF-a for

12 h. Cells were then washed and incubated with 5 lg/ml

actinomycin D (Orphan Europe, Puteaux, France) to

inhibit further transcription. Total mRNA was extracted

following 0, 1, 2 and 3 h incubation with actinomycin D.

Results were presented as % mRNA remaining compared

with the steady-state level.

Quantitative real time PCR

Total RNA was purified using an RNeasy
VR
Plus Mini kit

(Quiagen, Hilden, Germany). cDNA was synthesized using

the iScriptTM kit (Bio-Rad, Hercules, CA, USA). Polymer-

ase chain reaction (PCR) amplification was performed

using the CFX96TM real-time system instrument (Bio-Rad)

with the iTaqTM universal SYBR
VR

green supermix (Bio-

Rad) and the Qiagen QuantiTect
VR
primers. Expression of

the genes of interest was normalized to the expression of

the glyceraldehyde 3-phosphate dehydrogenase (GAPDH)

housekeeping gene.

Enzyme-linked immunosorbent assays (ELISA)

Supernatant IL-6 and IL-8 concentrations were quantified

with human ELISA kits, according to the manufacturer’s

instructions (R&D Systems).

Western blotting

Proliferative HepaRG cells were exposed to high concentra-

tions of TNF-a alone (10 ng/ml) or a combination of IL-17

(50 ng/ml) and TNF-a (1 ng/ml) for 30 min. Cells were

lysed using the HaltTM protease and phosphatase inhibitor

cocktail kit (Thermo Scientific, Rockford, IL, USA) and the

protein concentration was determined by the bicinchoninic

acid (BCA) protein assay kit (Thermo Scientific). Equal

A. Beringer et al.

222 VC 2018 British Society for Immunology, Clinical and Experimental Immunology, 193: 221–233



80 

amounts of protein (50 lg) were loaded and separated by

15% sodium dodecyl sulphate (SDS)-polyacrylamide gel

and transferred on nitrocellulose membranes (Bio-Rad).

Membranes were blocked for 1 h at room temperature with

5% non-fat milk or 5% bovine serum albumin (BSA). Blots

were incubated overnight at 48C with specific antibodies

against total and phosphorylated ERK1/2, Akt and NF-jB
inhibitor a (IjBa) (Cell Signaling Technology, Leiden, the

Netherlands). Blots were washed three times and incubated

with a secondary antibody for 1 h at room temperature.

Protein bands were detected with an enhanced chemilumi-

nescence (ECL) detection kit (Bio-Rad). Blots were

scanned and analysed using the Gel DocTM XR1 Gel sys-

tem (Bio-Rad) and Image Lag 5.2 software. Cyclophilin B

quantification was used as loading controls. Results are

shown as the ratio of the total and phosphorylated forms.

Laboratory automated analyser

The CRP level was quantified by the automated analyser

BN ProSpec
VR
(Siemems, Erlangen, Germany) and transa-

minases by the Architect analyser (Abbot Diagnostics, Chi-

cago, IL, USA).

Statistical analysis

Calculations were performed with GraphPad Prism version

5.01 software. Data are the mean of at least three independ-

ent experiments 6 standard error of the mean (s.e.m.). Sta-

tistical differences were analysed using the Wilcoxon paired

t-test. P-values less than 0�05 were considered significant.

Results

IL-17 and TNF-a combination increases IL-6
expression and production synergistically

IL-17 and TNF-a have been shown previously to induce a

massive IL-6 production by various cell types in synergy

[16,17]. Here, the IL-17/TNF-a effect on IL-6 was studied in

hepatic cell lines and PHH. In HepaRG cells and PHH, the

IL-17/TNF-a combination exposure increased the IL-6 secre-

tion synergistically compared to IL-17 or TNF-a alone. How-

ever, the IL-6 production by Huh 7.5 and HepG2 cell lines

was not affected by IL-17/TNF-a exposure (Fig. 1a). Based

on these results, the HepaRG cell line was used for the follow-

ing experiments. The IL-17/TNF-a synergistic effect was also

observed on IL-6 mRNA in proliferative HepaRG cells, which

was up-regulated by up to 44-fold (Fig. 1b).

Up-regulation of IL-17 and TNF-a receptors may con-

tribute to this IL-17/TNF-a synergistic effect. IL-17 binds

the heterodimer receptor complex, composed of the IL-17

receptor subunit A (IL-17RA) and the IL-17RC, whereas

TNF-a acts through two independent receptors, the TNF

receptor I (TNF-RI) and the TNF-RII. Only the TNF-RII

was up-regulated in HepaRG cells following IL-17/TNF-a

stimulation (Fig. 1c and data not shown). IL-17R and

TNF-R expressions were also compared between the

HepG2 and Huh7.5 cells, which did not produce IL-6 after

the IL-17/TNF-a stimulation, and the proliferative Hep-

aRG cells, which released IL-6 following the IL-17/TNF-a
stimulation (Fig. 1a). The expression levels of TNF-RI, IL-

17RA and IL-17RC were similar between the HepG2 and

the HepaRG cell lines (data not shown). However, the

TNF-RII mRNA levels were much lower in HepG2

(Fig. 1c) and Huh7.5 (data not shown) cell lines than in

HepaRG cells. Therefore, TNF-RII may have a crucial role

in the IL-6 production by IL-17/TNF-a.
To determine whether IL-6 may regulate its own mRNA,

proliferative HepaRG cells were treated with different IL-6

concentrations and in the presence or not of an anti-IL-6R

antibody. The specific effect of the anti-IL-6R antibody was

verified with a control antibody which had no effect on the

IL-6 mRNA and protein levels induced by IL-6 or IL-17/

TNF-a (Fig. 1e and data not shown). Increasing IL-6 con-

centrations up-regulated IL-6 expression dose-dependently

(Fig. 1d) and the IL-6R blockade inhibited this effect in

proliferative HepaRG cells (Fig 1f), indicating that IL-6

regulated its own mRNA expression positively and directly.

However, the anti-IL-6R did not reduce the IL-6 up-regula-

tion-induced IL-17/TNF-a significantly (Fig. 1f). The con-

tribution of the IL-6-positive feedback loop in the IL-6

induction by IL-17/TNF-a was therefore very weak com-

pared to the IL-17/TNF-a direct effect on IL-6. The IL-6

supernatant levels in hepatocyte cultures stimulated with

IL-6 or IL-17/TNF-a were similar or slightly higher in the

presence of the anti-IL-6R antibody (Fig. 1g). Because the

anti-IL-6R blocks competitively the IL-6 binding to its

receptor, the IL-6 free fraction level in supernatant

increased in the presence of the anti-IL-6R antibody. This

increase can be balanced by the IL-6 positive-feedback loop

effect occurring in the absence of anti-IL-6R antibody.

Induction of the IL-6-dependent CRP and ASAT level
following IL-17 and/or TNF-a stimulation

IL-6 was shown to control CRP production [2,4]. Here, CRP

expression was up-regulated significantly by IL-6 (19-fold),

IL-17 (6-fold) and the synergistic IL-17/TNF-a combination

(37-fold) versus control in proliferative HepaRG cells. The

IL-6 pathway blockade reduced strongly the CRP mRNA

level induced by IL-17 and/or TNF-a (Fig. 2a,b). Moreover,

CRP production by PHH from different donors following

IL-17/TNF-a stimulation correlated strongly with the PHH

ability to produce IL-6 (Fig. 2c,d). Therefore, CRP up-

regulation by IL-17 and/or TNF-a was mainly IL-6-

dependent.

Liver inflammation may induce liver damage, as

reflected by transaminase activity elevation in the clinic. In

HepaRG cells and PHH cultures, ASAT levels increased

after 5 days of IL-6 and IL-17/TNF-a stimulation. These

IL-17 and TNF-a trigger liver inflammation
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elevated ASAT levels returned to control level when an

anti-IL-6R antibody was added (Fig. 2e,f). In these cul-

tures, alanine aminotransferase (ALAT) level was lower

than the detection limit (< 6 UI/l) (data not shown). The

increase in ASAT level was therefore mainly IL-6-

dependent.

IL-17 and TNF-a increase in synergy IL-8 expression
and production independently of the IL-6 pathway

Cell recruitment is crucial for the inflammatory response.

Liver biopsies in patients with active liver disease are

characterized by the presence of inflammatory infiltrates

[26]. IL-8 is associated with neutrophil recruitment

involved in the acute-phase inflammatory response, as in

acute hepatitis [15]. The IL-17/TNF-a co-operation

enhanced IL-8 production by HepaRG cells and PHH ver-

sus IL-17 alone, TNF-a alone and control (Fig. 3a). IL-8

mRNA expression in proliferative HepaRG cells was up-

regulated by IL-17 alone (5-fold) and TNF-a alone (5-

fold), with a synergistic effect of both (24-fold) (Fig. 3b).

The IL-17/TNF-a synergistic interactions also increased IL-

8 mRNA levels by up to 14-fold in PHH (Fig. 3b).

Fig. 1. Interleukin (IL)-17 and tumour necrosis factor (TNF)-a combination increases IL-6 expression and production synergistically.

Hepatocytes were exposed to IL-17 and/or TNF-a or IL-6 with/without the anti-IL-6R. (a,g) IL-6 production by hepatocytes was quantified by

enzyme-linked immunosorbent assay (ELISA). (b,d,e,f) IL-6 expression in proliferative human HepaRG cells at 12 h was expressed as fold

changes compared to control. (c) TNF receptor II (TNF-RII) expression at 12 h was normalized to that of glyceraldehyde 3-phosphate

dehydrogenase (GAPDH). The control antibody had no effect on IL-6 mRNA and protein levels following IL-6 or IL-17/TNF-a stimulation in

HepaRG cells (e, data not shown). Data are the mean of three to 18 independent experiments 6 standard error of the mean (s.e.m.); *P < 0�05
and **P < 0�01 versus control; #P < 0�05 and ##P < 0�01 versus other cytokine conditions.
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However, the IL-8 mRNA and protein level was

unchanged after IL-6 exposure. Moreover, the IL-6 pathway

inhibition had no effect on the induction of IL-8 expres-

sion and production by IL-17/TNF-a (Fig. 3c,d). There-

fore, IL-8 induction by IL-17 and TNF-a was not mediated

through IL-6. The IL-17 and TNF-a combination may thus

have a key role in the migration of neutrophils to the liver

in the context of acute hepatitis.

IL-17 and TNF-a increase in synergy MCP-1 and
CCL20 expression mainly through an IL-6-
independent pathway

MCP-1 and CCL20 are two chemokines acting on mono-

nuclear cells involved in the chronicity of the inflammatory

response [27–29]. MCP-1 and CCL20 mRNA levels

increased in the presence of IL-17 or TNF-a, with a clear

Fig. 2. Induction of the interleukin (IL)-6-dependent C-reactive protein (CRP) expression and aspartate aminotransferase (ASAT) activity level

following IL-17 and/or tumour necrosis factor (TNF)-a stimulation. Hepatocytes were treated with IL-17 and/or TNF-a or IL-6 with/without

the anti-IL-6R. (a,b) CRP expression in the human HepaRG cell line and primary human hepatocytes (PHH) at 24 h was expressed as fold

changes compared to control. The control antibody had no effect on CRP mRNA levels following IL-6 or IL-17/TNF-a stimulation in HepaRG

cells (data not shown). (c) Correlation between IL-6 and CRP mRNA levels in PHH stimulated with IL-17/TNF-a for 24 h. mRNA levels were

normalized to that of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). (d) Correlation between IL-6 and CRP production in PHH cultures

treated with IL-17/TNF-a. (e,f) ASAT supernatant levels were quantified at 120 h. Data are the mean of four to six independent

experiments 6 standard error of the mean (s.e.m.); *P < 0�05 versus control, §P < 0�05 versus IL-17/TNF-a condition, #P < 0�05 versus other

cytokine conditions.

IL-17 and TNF-a trigger liver inflammation
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Fig. 3. Interleukin (IL)-17 and tumour necrosis factor (TNF)-a combination increases IL-8 expression and production synergistically

independently of the IL-6 pathway. Hepatocytes were exposed to IL-17 and/or TNF-a or IL-6 with/without an anti-IL-6R antibody. (a,c). IL-8

production was quantified by enzyme-linked immunosorbent assay (ELISA). (b,d) IL-8 expression at 12 h was expressed as fold change

compared to control. The control antibody had no effect on the IL-8 mRNA and protein levels following IL-6 or IL-17/TNF-a stimulation in

human HepaRG cells (data not shown). Data are the mean of three to 18 independent experiments 6 standard error of the mean (s.e.m.);

*P < 0�05 and **P < 0�01 versus control; #P < 0�05 and ##P < 0�01 versus other cytokine conditions.

Fig. 4. Interleukin (IL)-17 and tumour

necrosis factor (TNF)-a combination

increases monocyte chemoattractant protein

(MCP)-1 and chemokine (C-C motif)

ligand 20 (CCL20) chemokine expression

synergistically, mainly through an IL-6-

independent pathway. Proliferative human

HepaRG cells were exposed to IL-17 and/or

TNF-a or IL-6 with/without an anti-IL-6R

antibody. (a–d) MCP-1 and CCL20

expression at 12 h in proliferative HepaRG

cells was expressed as fold change compared

to control. The control antibody had no

effect on the MCP-1 and CCL20 mRNA

levels following IL-6 or IL-17/TNF-a

stimulation (data not shown). Data are the

mean of seven to eight independent

experiments 6 standard error of the mean

(s.e.m.); *P < 0�05 and **P < 0�01 versus

control; #P < 0�05 and ##P < 0�01 versus

other cytokine conditions.
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synergistic effect of both cytokines (16- and 108-fold,

respectively, P < 0�01) versus control (Fig. 4a,b).
To determine whether the IL-17/TNF-a effect on MCP-1

and CCL20 expression was mediated through the IL-6

pathway, IL-6 and an anti-IL-6R antibody were used. By

comparison with IL-17/TNF-a stimulation, IL-6 had a very

minimal effect on MCP-1 and CCL20 mRNA levels. Simi-

larly, the anti-IL-6R antibody did not abrogate the MCP-1

and CCL20 expression induced by the IL-17 and TNF-a
combination in proliferative HepaRG cells (Fig. 4c,d).

Therefore, IL-17 and TNF-a can act independently of the

IL-6 signalling pathway on the induction of MCP-1 and

CCL20 expression. IL-17/TNF-a may thus have a key role

in the migration of immune cells, including T helper type

17 (Th17) cells, to the liver in the context of chronic

hepatitis.

IL-17 initiates the IL-17 and TNF-a synergistic effect
on IL-6 and IL-8 production

To understand more clearly the contribution of each cyto-

kine on the IL-17 and TNF-a synergistic effect, antibodies

blocking the IL-17, TNF-a and IL-6 pathways were used.

Anti-IL-17 or anti-TNF-a antibody exposure in conjunc-

tion of the IL-17/TNF-a combination reduced the synergis-

tic effect on IL-6 and IL-8 production in HepaRG cells,

whereas the IL-6R inhibition had no significant effect on

IL-6 and IL-8 supernatant levels (Fig. 5a,b).

We next investigated whether first exposure to IL-17,

TNF-a or both initiated the IL-17 and TNF-a synergistic

effects on IL-6 and IL-8 release. Proliferative HepaRG cells

were pre-exposed overnight to IL-17 and/or TNF-a and

then IL-17 and/or TNF-a were added to both cytokines in

the culture medium. Pre-incubation first with IL-17 fol-

lowed by the addition of TNF-a induced two-fold higher

IL-6 and IL-8 production at 24 h than pre-incubation with

TNF-a, then with IL-17 (Fig. 5c,d). First exposure to IL-17,

but not to TNF-a, was thus crucial for initiation of the IL-

17/TNF-a synergistic effect.

IL-17 enhanced the stability of IL-6 mRNA

Post-transcriptional regulations could contribute to the IL-

17 and TNF-a synergistic effect. To determine the IL-17

Fig. 5. Interleukin (IL)-17 initiates the IL-17 and tumour necrosis factor (TNF)-a synergistic effect on IL-6 and IL-8 production. (a,b) To

evaluate the contribution of IL-17, TNF-a and IL-6 pathways in the IL-17/TNF-a synergistic effect, human hepatoma cells (HepaRG) cells were

treated with IL-17 and/or TNF-a with/without anti-IL-17A (aIL-17), anti-TNF-a (aTNF) or anti-IL-6R (aIL-6R) antibody. The control antibody

had no effect on the IL-6 and IL-8 protein levels following IL-17/TNF-a stimulation (data not shown). (c,d) Proliferative HepaRG cells were pre-

exposed to IL-17 and/or TNF-a overnight (for 12 h) before IL-17 and/or TNF-a addition to have both cytokines in the culture medium (except

for the control (Ø)). The IL-6 and IL-8 production was measured by enzyme-linked immunosorbent assay (ELISA). Data are the mean of five to

seven independent experiments 6 standard error of the mean (s.e.m.); *P < 0�05 and **P < 0�01 versus control; #P < 0�05 and ##P < 0�01
versus other cytokine conditions.

IL-17 and TNF-a trigger liver inflammation
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and TNF-a effect on mRNA stabilization, HepaRG cells

were treated with IL-17 and/or TNF-a for 12 h and then

transcription was inhibited. TNF-a-induced IL-6 tran-

scripts had a half-life of 46 min, whereas IL-17 and the IL-

17/TNF-a combination increased the half-life up to 124

and 82 min, respectively (Fig. 6). IL-17 may thus increase

IL-6 mRNA stabilization in hepatocytes.

IL-17 and TNF-a increase IL-6 and IL-8 production
in synergy via the activation of ERK and/or PI3K/Akt
signalling pathways and/or NF-jB transcription factor

The effect of the TNF-a/IL-17 combination on the down-

stream signalling pathways was then investigated, focusing

on the MAPKs (JNK, p38, ERK), NF-jB and Akt/PI3K

pathways [22,30,31]. Results are shown as the ratio of the

total and phosphorylated forms (Fig. 7a). In HepaRG cells,

the IL-17/TNF-a association induced phosphorylation of

IjBa (leading to NF-jB release and activation) and ERK.

The IL-17/TNF-a effect of Akt phosphorylation was weaker

(Fig. 7a). Proliferative HepaRG cells were therefore treated

with chemical inhibitors of these pathways. Quantification

of transaminase secretion and cell viability were monitored

to select the concentrations that did not induce cell death

and other cytotoxic effects (data not shown).

The IL-17/TNF-a synergistic effect on IL-6 and IL-8

production was reduced slightly using JNK or p38 MAPK

inhibitors. In contrast, ERK inhibition decreased strongly

the production of IL-6 (29 and 70% of inhibition for 1 and

10 lM, respectively) and IL-8 (31 and 69% of inhibition

for 1 and 10 lM, respectively) in a dose-dependent manner

induced by the IL-17/TNF-a combination (Fig. 7b,c). IL-6

production induced by the IL-17/TNF-a combination was

also inhibited in the presence of the NF-jB inhibitor (60%

of inhibition), the Akt inhibitor (more than 70% of inhibi-

tion for 10 and 20 lM) and the PI3K inhibitor (40 and

65% of inhibition for 1 and 10 lM, respectively), whereas

IL-8 production was not impacted significantly (Fig. 7d–g).

Activation of ERK, NF-jB and/or PI3K/Akt signalling

pathways was therefore involved in the IL-17/TNF-a syner-

gistic effect on IL-6 and/or IL-8 production.

Discussion

This study shows how the IL-17/TNF-a synergistic interac-

tions mediate a hepatic inflammatory response mainly

through IL-6 for CRP and ASAT induction, and independ-

ently of IL-6 for IL-8, MCP-1 and CCL20 chemokine up-

regulation.

IL-6 is a systemic inflammatory mediator, which plays a

key role in triggering the acute-phase response to injury or

inflammation. IL-17 was shown previously to induce IL-6

production by the human hepatoma Huh7, HepG2 and

Hep3B cell lines [3,32,33]. Here, IL-17 and TNF-a
increased the production of IL-6 in HepaRG cells and PHH

in synergy. Because IL-6 promotes the generation and dif-

ferentiation of Th17 cells [28], the main IL-17-producing

cells, the increase of IL-6 production by the IL-17/TNF-a
synergistic effect and IL-6 autoinduction could exacerbate

the inflammatory IL-6/Th17/IL-17 amplification. Interest-

ingly, IL-6 was also able to up-regulate directly its own

expression in vitro leading to a positive feedback loop of

IL-6. However, the contribution of this positive autoregula-

tion of IL-6 in the IL-6 induction following the IL-17/TNF-

a synergistic interaction was very weak at 12 h (Fig. 1g)

and 24 h (data not shown) compared to the direct IL-17/

TNF-a effect. Because an anti-IL-6R antibody blocks the

IL-6 binding to its receptor competitively, a higher IL-6

protein level was expected in supernatants of hepatic cul-

tures exposed to the anti-IL-6R antibody. For this reason,

the IL-6-positive feedback loop after IL-6 treatment was

observed only on IL-6 mRNA levels and not on IL-6 pro-

tein levels in supernatants.

High CRP levels are associated with an increased risk of

cardiovascular events [34]. In-vitro and in-vivo studies have

demonstrated the potent role of IL-6 on CRP production

[3,7]. Here, IL-17 and/or TNF-a enhanced CRP expression

in HepaRG cells, showing a synergistic effect with the com-

bination. The IL-6 pathway blockade inhibited CRP induc-

tion strongly by IL-17 and/or TNF-a. In PHH treated with

the IL-17/TNF-a combination, CRP levels correlated per-

fectly with those of IL-6. Moreover, CRP mRNA level was

lower at 12 than 24 h (data not shown), indicating that IL-

17 and TNF-a act first on the induction of IL-6 produc-

tion, which leads in turn to CRP up-regulation. Therefore,

the induction of CRP appears mainly IL-6-dependent.

Fig. 6. Interleukin (IL)-17 enhances the stability of IL-6 mRNA.

Proliferative human HepaRG cells were incubated with IL-17 (filled

circles), tumour necrosis factor (TNF)-a (empty squares) or the IL-

17/TNF-a combination (filled triangles) for 12 h. Actinomycin D

was added to inhibit further transcription. The IL-6 and IL-8

expression during the next 3 h were quantified. Results are presented

as % of mRNA remaining over time compared with the steady-state

level (at 0 h). Data are the mean of four independent

experiments 6 standard error of the mean (s.e.m.).
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Fig. 7. Interleukin (IL)-17 and tumour necrosis factor (TNF)-a combination increases IL-6 and IL-8 production synergistically through the

activation of extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAPK) and/or phosphatidylinositide 3-kinase/

protein kinase B (PI3K/Akt) signalling pathways and nuclear factor kappa B (NF-jB) transcription factor. (a) Proliferative human HepaRG

cells were incubated with IL-17 and/or TNF-a for 30min. The total and phosphorylated forms of ERK, NF-jB inhibitor a (IjBa) and Akt

were quantified by Western blotting and their densitometry values were normalized to the cyclophilin content. Data are presented as the fold

induction change of the ratio of phosphorylated to total protein in control samples. One representative experiment is shown. (b–g)

Proliferative HepaRG cells were pre-exposed to MAPKs [Janus kinase (JNK), p38, ERK], NF-jB, Akt and PI3K pathway inhibitors for 1 h

followed by the IL-17 and/or TNF-a addition. IL-6 and IL-8 production at 24 h was measured by enzyme-linked immunosorbent assay

(ELISA). SP6000125: JNK inhibitor, SB203580: p38 MAPK inhibitor, U0125: MEK/ERK inhibitor; pyrrolidine dithiocarbamate (PDTC): NF-

jB inhibitor; LY294002: PI3K inhibitor and A6730: Akt inhibitor. Data are the mean of at least four to eight independent

experiments 6 standard error of the mean (s.e.m.); *P < 0�05, **P < 0�01 versus control in dimethylsulphoxide (DMSO) condition,

§P < 0�05 and §§P < 0�01 versus IL-17/TNF-a condition in DMSO medium; #P < 0�05 and ##P < 0�01 versus other inhibitor conditions.
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However, one study has demonstrated that IL-17 can stim-

ulate CRP expression independently of IL-6 in Hep3B cells

[3], suggesting that a possible minor pathway independent

of IL-6 could exist.

In chronic inflammatory diseases, liver changes are com-

mon and may lead to transaminase elevation [35]. The IL-

17/TNF-a combination increased the ASAT activity level

through the IL-6 pathway. These results appear consistent

with our in-vivo studies, which showed that TNF-a neu-

tralization decreased serum levels of transaminase in mice

and patients with autoimmune hepatitis [35,36]. Moreover,

IL-17 deficiency or IL-17 neutralization reduced transami-

nase levels in various mouse models of liver injury [37,38].

Therefore, controlling IL-17 and TNF-a levels and func-

tions may be protective and reduce liver damage.

Hepatic infiltration of neutrophils is an early response to

systemic inflammation crucial to initiate liver injury

[39,40]. The link between IL-17, neutrophil recruitment

and hepatic necrosis was demonstrated in several mouse

models [37,41]. IL-8 has a key role in the neutrophil mobi-

lization and activation [15]. IL-17 may stimulate IL-8 pro-

duction through IL-6 up-regulation in Huh7 cells [33]. In

our study, IL-8 production was increased by the IL-17/

TNF-a synergistic interaction independently of the IL-6

pathway, as the exposure to an anti-IL-6R antibody had no

effect (Fig. 3c,d). IL-6 could nevertheless act in vivo on the

IL-8 level by promoting the Th17–IL-17 cells axis leading

to an increase of IL-17 production and, in turn, of IL-8.

Chronic hepatitis is characterized by the liver infiltration

by various immune cells attracted by chemokines, such as

CCL20 and MCP-1. Here, IL-17 and TNF-a were able to

up-regulate CCL20 and MCP-1 expression synergistically

through an IL-6-independent pathway. In HepG2 culture

and an autoimmune hepatitis mouse model, TNF-a
induced CCL20 expression and this up-regulation was

associated with the progression of fatal inflammation

[27,36]. MCP-1 was described as a central co-ordinator of

hepatocyte-mediated inflammation [42,43]. MCP-1 expres-

sion was up-regulated in primary hepatocytes by activation

of the IL-6-mediated signalling cascade [44]. In turn,

MCP-1 induced IL-6 production in mouse hepatocytes,

suggesting a possible positive feedback loop between IL-6

and MCP-1 [42]. Taken together, CCL20 and MCP-1

induction by IL-17/TNF-a can increase the accumulation

of a Th17-driven response and lead to a chronic inflamma-

tory state.

Although the IL-17/TNF-a synergistic effect has been

well described in several cell types [16–19,45,46], the mech-

anism of this effect on IL-6 and IL-8 production has not

yet been studied in hepatocytes. Various mechanisms may

act at several levels: at a receptor level, at a post-

transcriptional level and at a promoter level. In synovio-

cytes, the TNF receptor II (TNF-RII) contributed to the IL-

17 and TNF-a synergistic effect on CCL20 production, and

IL-17 treatment alone up-regulated its expression [47].

Here, in HepaRG cells, stimulation with the IL-17/TNF-a
combination but not with IL-17 alone increased TNF-RII

expression. Regulation of the TNF-RII expression may be

different between synoviocytes and HepaRG cells. However,

the TNF-RII mRNA level was much lower in HepG2 and

Huh7.5 cells than in HepaRG cells (data not shown). This

could explain the lack of response of the HepG2 and

Huh7.5 cells to the IL-17/TNF-a synergistic effect on IL-6

and IL-8 production.

Post-transcriptional regulation is important to control

cellular transcript abundance and, in turn, the levels of the

secreted proteins. Several studies have reported that the IL-

17 and TNF-a co-operation modulates mRNA stability

[45,46,48–50]. In HepaRG cells, IL-17 could enhance IL-6

mRNA stability (Fig. 6). As the 3’-untranslated region of

the IL-6 mRNA contains adenylate and uridylate (AU)-rich

elements, IL-17 may promote the binding of stabilizing

AU-binding proteins over that of destabilizing AU-binding

proteins, prolonging IL-6 mRNA half-life [51]. Activation

of the ERK MAPK pathway may contribute to this IL-6

mRNA stabilization [52].

To investigate the potential signalling pathways involved

in IL-17 and TNF-a synergistic stimulation on hepatic IL-6

and IL-8 production, several chemical pathway inhibitors

were used. MAPK, PI3K and its downstream mediator Akt

were involved in the IL-6 signalling, and also in the IL-17-

induced production of IL-6, IL-8 and MCP-1 in several cell

types, including human hepatocellular carcinoma cell lines

[32,33,53–55]. In HepaRG cells, activation of the ERK

MAPK pathway in the IL-17–TNF-a interaction appears

crucial, as the ERK pathway inhibition reduced both IL-6

and IL-8 production. The PI3K/Akt signalling pathway

contributes to the synergistic effect of IL-17/TNF-a on the

induction of IL-6 but not of IL-8. Because the MAPK and

PI3K/Akt pathways can be activated by IL-6, their contri-

bution on the IL-6 production can be related to the posi-

tive autoregulation of IL-6 (Fig. 1c). However, the anti-IL-

6R antibody failed to reduce IL-6 expression induced by

IL-17/TNF-a (Fig. 1f) in HepaRG cells. Therefore, the IL-

17/TNF-a combination could activate the ERK MAPK and

PI3K/Akt pathways directly to induce IL-6 and/or IL-8

production.

Transcription factor-binding sites for NF-jB and C/EBP

(CCAAT/enhancer-binding protein) in the IL-6 promoter

were both involved in the IL-17 and TNF-a synergistic

effect on IL-6 in an osteoblastic cell line [56]. Part of the

IL-17/TNF-a synergistic effect on IL-6 may occur at the

gene transcription level through the up-regulation of C/

EBPd by IL-17/TNF-a and the increase of C/EBPd recruit-

ment to the promoter by TNF-a [31,56,57]. In primary

murine hepatocytes, NF-jB contributed to the activation

of many IL-17 target genes related to inflammation [58].

Here, in HepaRG cells, the NF-jB pathway appears to be

involved in IL-6 release induced by the IL-17/TNF-a com-

bination (Fig. 7d). Both IL-17 and TNF-a signalling
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pathways promote NF-jB activation. However, the IL-17/

TNF-a combination may induce a further increase of NF-

jB activation through IjBf, which acts as a NF-jB co-acti-

vator [57,59]. In primary murine hepatocytes, IL-17 and

TNF-a cooperate to enhance the IjBf mRNA expression in

synergy [58].

In conclusion, targeting IL-17 and/or TNF-a could be a

promising therapeutic strategy to control systemic inflam-

mation, as seen with IL-6 inhibition, but also the local cell

recruitment and associated liver cell injury. These results

are summarized in Fig. 8. Furthermore, control of the CRP

level could be critical to reduce the cardiovascular risks

that represent a major cause of death in patients with

chronic inflammatory diseases.
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2 Two-phase kinetics of the inflammatory response through hepatocyte-
peripheral blood mononuclear cell interactions 

 
Two-phase kinetics of the inflammatory response through hepatocyte-peripheral blood 
mononuclear cell interactions (in preparation). 
 
Keywords: hepatocytes; immune cells; cell-cell interactions; inflammation; tolerance 

Abstract 

Active liver diseases are characterized by the infiltration of inflammatory immune cells, 

which can interact locally with hepatocytes. Co-cultures between non- and PHA-activated 

human PBMCs and human hepatoma HepaRG cells were used to determine the role of theses 

cell interplays on the inflammatory response. The PBMC-HepaRG cell interactions increased 

the mRNA expression and/or secretion of IL-6, IL-8, CCL-20 and MCP-1 partially through 

direct cell contact and the induction was higher in PHA-activated conditions. The pro-

inflammatory cytokines IL-17 and/or TNFα contributed also to the increase of IL-6 and IL-8 

secretion. HepaRG cells modulated T cell polarization by increasing the Th1 cell transcription 

factor expression and by reducing the CD3+ CD4+ IL-17+ cell frequency when PBMCs were 

activated with PHA. Moreover, the presence of HepaRG cells inhibited the PHA-induced 

HLA-DR expression on PBMCs and PBMC proliferation. In contrast, the presence of skin 

fibroblasts had no effect on the PBMC proliferation induced by PHA. After a first pro-

inflammatory phase, the PBMC-HepaRG cell interactions may therefore down-regulate the 

immune response. The PBMC-hepatocyte interplays can thus participate in the initiation of 

hepatitis and also in the maintenance of immune tolerance in liver. 

 

2.1 Introduction  

The liver is traditionally perceived as a metabolic organ but it is also a central intersection 

point of the immune system. Receiving 80% of its blood supply from the gut, the liver is 

constantly exposed to environmental toxins, dietary and bacterial products via the portal vein 

(Robinson et al., 2016). The liver plays also an important role in the initiation of the acute-

phase response by producing most of the acute-phase proteins. The structural organization of 
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the liver, the hepatic cell repertoire and its “buffer” function between the gut content and 

systemic inflammation create an unique environment which determines the balance between 

inflammation and immunosuppression (Robinson et al., 2016).  

Because liver transplantations are commonly well-tolerated and required low levels of 

immunosuppressive therapy compared to other allogeneic grafts such as skin graft, the liver is 

often perceived as an immunologically tolerant organ (Calne et al., 1969; Lerut and Sanchez-

Fueyo, 2006). In addition, the liver can mediate systemic tolerance since the liver graft can 

protect other transplanted organs from rejection (Kamada et al., 1981; Simpson et al., 2006; 

Wang et al., 1998). 

During liver injury and inflammation, immune cells infiltrated the liver (Quintin et al., 2010) 

and can interact with liver resident cells by paracrine and contact-dependent interactions. 

Leukocyte and stromal cell interplays within liver appear crucial in the outcome of liver 

injury (Holt et al., 2008). Theses interactions are facilitate by the low-blood pressure and the 

fenestrated endothelium within the liver allowing direct cell-cell interactions between cells in 

liver sinusoids and hepatocytes (Racanelli and Rehermann, 2006; Warren et al., 2006). By 

secreting damaged hepatocyte-derived mediators and cytokines, hepatocytes, which represent 

the most abundant cell population in liver, can also modulate the immune cell response 

(Petrasek et al., 2015). 

The objective of this study was to assess the role of the immune cell-hepatocyte interactions 

on the inflammatory response by using co-cultures between human PBMCs and the human 

hepatoma HepaRG cells. The PBMC-HepaRG cell interactions increased the mRNA 

expression and/or secretion of IL-6 as well as several chemokines partially through direct cell 

contacts and this effect was higher when PBMCs were activated with PHA. Hepatocytes can 

then modulate the PBMC immune response by acting on T cell polarization and cytokine 

secretion and also by reducing the PHA-induced PBMC proliferation and the antigen 

presenting cell capacity of the PBMCs. The PBMC-hepatocyte interplays can thus participate 

in the initiation of hepatitis and also in the maintenance of immune tolerance in liver. 

2.2 Materials and methods 

Cell culture 

The human hepatoma HepaRG cells were grown in William’s E medium (Sigma, St Louis, 

MO, USA) supplemented with 10% fetal bovine serum (Life Technologies, Carlsbad, USA), 
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2 mM L-glutamine (Eurobio, Les Ulis, France), 5 μg/mL insulin (Sigma), 50 μM 

hydrocortisone hemisuccinate (Serb, Paris, France), 50 U/mL penicillin and 50 μg/mL 

streptomycin (Eurobio). HepaRG cells were used after 15 days post-plating. Human skin 

fibroblasts were obtained from biopsies of non-lesional skin as previously described (Noack 

et al., 2016). Fibroblasts were maintained in Dulbecco’s modified Eagle’s medium (Eurobio) 

supplemented with 10% fetal bovine serum (Life Technologies), 2 mM L-glutamine 

(Eurobio), 100 U/mL penicillin and 100 μg/mL streptomycin (Eurobio). 

PBMC isolation and co-culture assays 

Whole blood samples were obtained from the Etablissement français du Sang. PBMCs were 

isolated by Ficoll-Hypaque (Eurobio) density gradient centrifugation. Cells were maintained 

in RPMI 1640 medium (Eurobio) supplemented with 10% human AB serum (Etablissement 

Français du Sang, La Plaine Saint-Denis, France), 2 mM L-glutamine (Eurobio). PBMCs 

were activated or not with 5 μg/ml phytohemagglutinin (PHA) (Sigma-Aldrich) and added on 

HepaRG cells or skin fibroblasts at a ratio of 5 PBMCs for 1 HepaRG cell or 1 skin fibroblast. 

This ratio was based on data from the literature (Doumba et al., 2013; Noack et al., 2016). For 

cell culture insert assays, HepaRG cells were cultured at the bottom of a culture plate well and 

PBMCs were placed in Falcon® cell-culture inserts (Corning, NY, USA) with a small-pored 

membrane (0.4μm) preventing direct cell-cell contacts but allowing the circulation of soluble 

factors. For IL-17 and/or TNFα neutralization assays, PBMCs activated or not with PHA for 

24h were exposed to anti-IL-17 secukinumab (Novartis, Basel, Switzerland) at 10 μg/mL 

and/or anti-TNFα infliximab (Merck, Kenilworth, USA) at 10 μg/mL during 2h before being 

added to HepaRG cells. A monoclonal antibody against the BetV1 allergen (Dendritics, Lyon, 

France) was used as a control antibody at the same concentration. 

Quantitative real time-PCR 

Total RNA was purified using an RNeasy® Plus Mini kit (Quiagen, Hilden, Germany). 

cDNA was synthetized using the iScript™ kit (Bio-Rad, Hercules, CA, USA). PCR 

amplification was performed using the CFX96TM Real time system instrument (Bio-Rad) with 

the iTaqTM universal SYBR® green supermix (Bio-Rad) and the Qiagen QuantiTect® primers. 
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The expression of the genes of interest was normalized to the expression of the housekeeping 

GAPDH gene. 

Enzyme-linked immunosorbent assays 

Supernatant cytokine concentrations were quantified with human ELISA kits according to the 

instructions of the manufacturer. IL-6 and IL-8 ELISA kits from Diaclone (Besancon, France) 

and CCL20, IL-17, TNFα, IFNγ, IL-1β and IL-10 ELISA kits from R&D system 

(Minneapolis, USA) were used. 

Flow Cytometry 

Cell phenotyping was performed on Navios flow cytometer (Beckman Coulter, Indianapolis, 

IN, USA). For CD3+ CD4+ IL-17+ cell staining, eFluor 450 labeled anti-CD3 antibody (clone 

UCHT1, 48-0038, eBiosciences, San Diego, CA, USA) and phytoerythrin (PE)-Cyanine7 

labeled anti-CD4 antibody (clone RPA-T4, 25-0049, eBiosciences) were used for surface 

staining. After cell fixation with 2% paraformaldehyde (Sigma) for 15 min and cell 

permeabilization with 0.5% saponin (Sigma) for 20min, the allophycocyanin (APC) labeled 

anti-IL-17A (clone eBio64DEC17, 17-7179, eBiosciences) were used for intracellular 

staining. For the other analysis, the PBMC population and the HepaRG cell population were 

distinguished by the use of the pacific blue (PB) labeled anti-CD45 (clone HI30, 304029, 

Biolegend, San Diego, CA, USA). PE labeled anti-HLA-DR (clone immu357, IM1639, 

Beckman Coulter) was used to stain HLA Class II. Corresponding isotypic antibodies labeled 

with the same fluorophores and from the same suppliers were used as controls. To track 

PBMC proliferation, PBMCs were stained with carboxyfluorescein diacetate succinimidyl 

ester (CFSE) as previously described by Quah B et al (Quah et al., 2007). Briefly, PBMCs 

(10.106 cells/mL) were labelled with 1 μM CFSE for 5min at room temperature, PBMCs were 

then washed and cultured for 3 days in presence or not of PHA. To investigate cell viability 

the fluorescein isothiocyanate (FITC) annexin V apoptosis detection kit (556547, BD, 

Franklin Lakes, NJ, USA) were performed according to the manufacturer’s instructions. Data 

were analyzed using Kaluza solftware (version 1.2, Beckman Coulter). 
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Statistical analysis 

Calculations were performed with GraphPad Prism version 5.01 software. Data are the mean 

of at least 3 independent experiments ± SEM. Statistical differences were analyzed using the 

Mann Whitney test. P values less than to 0.05 were considered significant. 

2.3 Results 

PBMC-hepatocyte interactions induce the IL-6 synthesis in activated conditions 

Acute-phase proteins are mainly produced by hepatocytes in response of a variety of different 

pro-inflammatory cytokines in which IL-6 is the chief stimulator (Schmidt-Arras and Rose-

John, 2016). In liver, hepatocytes can interact and establish cell-cell contracts with PBMCs 

through fenestrations in liver endothelial cells (Warren et al., 2006). The role of PBMC-

HepaRG cell interactions on the IL-6 mRNA expression and secretion was studied by using a 

co-culture system (Figure 6A). No contribution of alloreactivity has been detected in the same 

type of co-culture model (Correia et al., 2009). When PBMCs and HepaRG cells were 

cultured together, the IL-6 mRNA levels were higher (>8.0-fold, p<0.05) than when the cells 

were cultured separately and the increase of the IL-6 mRNA expression was even stronger in 

PHA activated conditions (>19-fold, p<0.05) (Figure 6B). However, the IL-6 supernatant 

level was not significantly different between PBMCs alone and the co-cultures in non-

stimulated PBMC conditions. In contrast, PHA activation enhanced significantly the IL-6 

release in PBMC monocultures with a strong induction in co-cultures. Indeed, the IL-6 

supernatant level was 18-fold higher in co-cultures versus PBMCs alone in PHA-stimulated 

cultures. The use of cell culture inserts avoiding direct cell-cell contacts but allowing the 

circulation of soluble factors reduced by 72% (p<0.01) the IL-6 secretion compared to co-

cultures without inserts (Figure 6C). The PBMC-HepaRG cell interactions thus induced a 

strong IL-6 secretion in PHA-activated conditions and the direct cell-cell contacts have an 

important contribution in this effect. 
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FIGURE 6: PBMC-HepaRG cell interactions increase the expression and/or secretion of 
IL-6 in activated condition mainly through direct cell-cell contacts 
(A) Human PBMCs and HepaRG cells were cultured alone or in co-cultures with or without cell 
culture inserts at a ratio of 5 PBMCs : 1 HepaRG cell in presence or not of phytohemagglutinin 
(PHA). (B) IL-6 mRNA expression at 24h in PBMCs and HepaRG cells were expressed as fold 
changes compared to non-activated conditions with PBMCs and HepaRG cells cultured alone. (C) IL-
6 supernatant levels were quantified by ELISA at 48h in PBMC monocultures, PBMC-HepaRG cell 
co-cultures with or without cell culture inserts. Data are the mean of 7 to 9 independent experiments 
± SEM; Mann Whitney test, *p<0.05, **p<0.01 versus co-culture conditions; #p<0.05 and ##p<0.01 
versus non-activated conditions. 
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PBMC-hepatocyte interactions increase the expression and/or secretion of IL-8, CCL20 

and MCP-1 chemokines 

Chemokine release induces immune cell recruitment that is crucial for the inflammatory 

response. Inflammatory infiltrates are founded in patients with active liver diseases (Quintin 

et al., 2010). The effect of PBMC-HepaRG cell interactions on IL-8, CCL20 and MCP-1 

chemokines was thus investigated. mRNA expression of IL-8, CCL20 and MCP-1 was up-

regulated (<4.9-; 4.6- and 3.8-fold, p<0.05) in PBMC-HepaRG cell co-cultures compared to 

PBMCs and HepaRG cells cultured alone (Figures 7A-C). PHA activation increased the 

MCP-1 mRNA levels by 1.8-fold (p<0.05) in co-cultures (Figure 7C). In contrast, IL-8 and 

CCL20 mRNA levels in co-cultures were no significantly different between non-activated and 

PHA-activated co-cultures (Figures 7A, B). The quantification of the IL-8 and CCL20 

supernatant levels confirmed the induction of IL-8 and CCL20 by the PBMC-HepaRG cell 

interactions compared to PBMCs alone (p<0.01) and HepaRG cells alone (17.5 ng/mL for IL-

8 and 3.6 ng/mL for CCL20, p<0.01, data not shown) in both non- and PHA-activated 

conditions (Figures 7D, E). PHA activation enhanced significantly the IL-8 and CCL20 

secretion in co-cultures (p<0.05). The inhibition of the direct PBMC-HepaRG cell contacts by 

the use of cell culture inserts reduced the IL-8 and CCL20 release by 45% and 19%, 

respectively (p<0.05) in activated conditions (Figure 7D, E). The contribution of the direct 

cell-cell contacts on the IL-8 and CCL20 release was lower compared to the IL-6 secretion for 

the same conditions (72%) (Figure 6B). Therefore, soluble factor exchanges between PBMCs 

and HepaRG cells had a major contribution in the release of IL-8 and CCL20 induction. 



98 

 

FIGURE 7: PBMC-HepaRG cell interactions increase the expression and/or secretion of 
IL-8, CCL20 and MCP-1 chemokines 
Human PBMCs and HepaRG cells were cultured alone or in co-cultures with or without cell culture 
inserts at a ratio of 5 PBMCs : 1 HepaRG cell in presence or not of phytohemagglutinin (PHA). (A-
C) IL-8 and CCL20 mRNA expression at 24h and MCP-1 mRNA expression at 8h in PBMCs and 
HepaRG cells were expressed as fold changes compared to non-stimulated conditions with PBMCs 
and HepaRG cells cultured alone. (D, E) IL-8 and CCL20 supernatant levels were quantified by 
ELISA after 48h of culture in PBMC monocultures, PBMC-HepaRG cell co-cultures with or without 
cell culture inserts. Data are the mean of 7 to 8 independent experiments ± SEM; Mann Whitney test, 
*p<0.05, **p<0.01 versus co-culture conditions; #p<0.05 and ##p<0.01 versus non-stimulated 
conditions. 
 
 
IL-17 and TNFα contribute to the induction of the IL-6 and IL-8 secretion by the 

PBMC-HepaRG cell interactions 

IL-17 and TNFα are two pro-inflammatory cytokines which induced in synergy the IL-6 and 

IL-8 production by hepatocytes (Beringer et al., 2018). As shown in Figures 6C and 7D, 

PBMC-HepaRG cell interactions enhanced the secretion of IL-6 and IL-8 and a part of this 

effect was mediated through the soluble factor exchanges. To determine the contribution of 

IL-17 and TNFα produced by the PBMCs on the IL-6 and IL-8 release in co-cultures, PBMCs 



99 

activated with PHA for 24h were exposed to specific inhibitors of IL-17 and/or TNFα and 

then added in the HepaRG cell cultures. This PBMC pre-incubation step was to better mimic 

the in vivo conditions in chronic inflammatory disorders in which PBMCs are certainly pre-

activated before being in contact with resident tissue cells. As expected, interactions between 

pre-incubated PBMCs and HepaRG cells increased significantly the IL-6 and IL-8 secretion 

compared to PBMCs alone or HepaRG cells alone (Figures 8A, B). Neutralization of IL-17, 

TNFα or both reduced significantly the production of IL-6 by 18%, 38% and 39% and IL-8 

by 26%, 39% and 44%, respectively versus the condition with the control antibody. IL-6 and 

IL-8 secretion was lower in presence of the anti-TNFα alone or the combination of anti-IL-17 

and anti-TNFα compared to the anti-IL-17 alone (p<0.01 for IL-6 and p<0.05 for IL-8) 

(Figures 8C, D). Therefore, the use of both anti-IL-17 and anti-TNFα had no additive or 

synergistic inhibitory effects on the IL-6 and IL-8 release. Consistent with our prior 

experiments with HepaRG cell monocultures (Beringer et al., 2018), the blockade of IL-6 

pathway had no effect on the IL-8 release in co-cultures (Figure 8D). IL-17 and TNFα thus 

contributed to the induction of IL-6 and IL-8 secretion in PBMC-HepaRG cell co-cultures but 

the combination of IL-17 and TNFα inhibitors had no additive effects on the IL-6 and IL-8 

inhibition. 
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FIGURE 8: IL-17 and TNFα contribute to the induction of IL-6 and IL-8 secretion by the 
PBMC-HepaRG cell interactions 
Human PBMCs were incubated for 24h in presence or not of phytohemagglutinin (PHA) and then 
exposed or not to the anti-IL-17 (aIL-17a) and/or the anti-TNFα (aTNFα) or the anti-IL-6 receptor 
(aIL-6R) or the control antibody during 2h before being added to the HepaRG cells. IL-6 and IL-8 
supernatant levels were quantified by ELISA after 48h of co-cultures. (A, B) Co-cultures between 
HepaRG cells and pre-incubated PBMCs increased the IL-6 and IL-8 secretion compared to HepaRG 
cells alone or pre-incubated PBMCs alone. (C, D) Data are expressed as IL-6 or IL-8 supernatant 
level percentages compared to the PHA-activated PBMC–HepaRG cell co-cultures in presence of the 
control antibody. Data are the mean of 7 to 8 independent experiments ± SEM; Mann Whitney test, 

p<0.05 and p<0.01 versus HepaRG cells alone; §p<0.05 and §§p<0.01 versus preincubated 
PBMCs alone; p<0.05 versus PHA condition; *p<0.05 and **p<0.01 versus the PHA-stimulated 
co-culture conditions with the control antibody; #p<0.05 and ##p<0.01 versus the PHA-stimulated 
co-culture conditions with the anti-IL-17. 
 
 
PBMC-hepatocyte interactions increase Tbet expression whereas RORc expression and 

CD3+ CD4+ IL-17+ cell frequency decreased in PHA-activated conditions 

As IL-17, a signature cytokine of the Th17 cell, contributed to the induction of IL-6 and IL-8 

in co-cultures, PBMC-HepaRG cell interactions may act on T cell polarization and potentially 

on the secretion of specific T cell cytokines. The transcription factor mRNA expressions of 

Treg cells (FoxP3), Th1 cells (T-bet) and Th17 cells (RORc) were therefore quantified in 
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PBMCs and HepaRG cells cultured alone or together. PHA activation increased FoxP3 

mRNA levels in both separate cultures and co-cultures (p<0.05) (Figure 9A). In contrast, T-

bet mRNA expression was significantly up-regulated whereas the RORc mRNA level was 

down-regulated in PHA-activated co-cultures compared to the other conditions (p<0.05) 

(Figures 9B, C). The frequency of CD3+ CD4+ IL-17+ cells being lower in PBMC-HepaRG 

cell co-cultures compared to PBMCs alone in presence of PHA confirms this effect on Th17 

cells (Figure 9D). Hepatocytes therefore contributed to the T cell polarization in PHA-

activated conditions by increasing Tbet expression and by reducing CD3+ CD4+ IL-17+ cell 

frequency. 

 

FIGURE 9: PBMC-HepaRG cell interactions up-regulate Tbet expression whereas RORc 
expression and IL-17+ CD4+ CD3+ cell frequency decreased in PHA-activated conditions 
Human PBMCs and HepaRG cells were cultured alone or in co-cultures with or without cell culture 
inserts at a ratio of 5 PBMCs : 1 HepaRG cell in presence or not of phytohemagglutinin (PHA). (A-
C) FoxP3, T-bet and RORc mRNA expression at 24h was expressed as fold changes compared to 
non-activated conditions with PBMCs and HepaRG cells cultured alone. (D) Frequency of IL-17 
positive CD4 T cells after 48h of cultures. Cells were first gated on CD3 and CD4 expression. Data 
are the mean of 6 to 7 independent experiments ± SEM; Mann Whitney test, *p<0.05 versus co-
culture conditions; #p<0.05 versus non-activated conditions. 
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PBMC-hepatocyte interactions decrease the secretion of TNFαα  but not the IL-10, IL-1β , 

IL-17 and IFNγ  release 

Because hepatocytes can act on T cell polarization, mRNA and/or culture supernatant levels 

of the pro-inflammatory cytokines IL-1β, IL-17, IFNγ and TNFα and of the anti-

inflammatory cytokine IL-10 were quantified in PBMC cultures in presence or not of 

HepaRG cells. mRNA levels of IL-10 and IL-1β were increased by the PBMC-HepaRG cell 

interactions with a higher induction in PHA-stimulated condition versus non-activated 

conditions (p<0.05) (Figures 10A, B). IL-17 mRNA level was strongly up-regulated in PHA-

activated co-cultures compared to other conditions (p<0.05) (Figure 10C). Cytokine 

supernatant levels were then quantified in PBMC monocultures and PBMC-HepaRG cell co-

cultures. In HepaRG cell cultures, cytokine production was too low compared to other culture 

conditions or not detected (data not shown). Supernatant levels of IL-10, IL-1β, IL-17 and 

IFNγ were higher in PHA-conditions (p<0.05) but similar between PBMCs alone and in co-

cultures (Figures 10D, E, F, G). In contrast, TNFα secretion was enhanced by the PHA 

activation only when PBMCs were cultured alone (p<0.05) (Figures 10H). Therefore, PBMC-

HepaRG cell interactions induced gene expressions of IL-10, IL-1β and IL-17 but not their 

secretion in culture supernatants in PHA-activated conditions. 
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FIGURE 10: PBMC-HepaRG cell interactions decrease the secretion of TNFαα  and had no 
effect on the IL-10, IL-1β , IL-17 and IFNγ  release in PHA-activated condition 
Human PBMCs and HepaRG cells were cultured alone or in co-cultures at a ratio of 5 PBMCs : 1 
HepaRG cell in presence or not of phytohemagglutinin (PHA). (A, B) IL-10 and IL-1β mRNA 
expressions at 24h were expressed as fold changes compared to non-activated condition with PBMCs 
and HepaRG cells cultured separately. (C) IL-17A expression at 24h was normalized to that of 
glyceraldehydes 3-phosphate dehydrogenase (GAPDH). (D-H) IL-10, IL-1β, IL-17, IFNγ and TNFα 
supernatant levels were quantified by ELISA after 48h of culture. Data are the mean of 6 to 11 
independent experiments ± SEM; Mann Whitney test, *p<0.05 versus co-culture conditions; #p<0.05 
and ##p<0.01 versus non-stimulated conditions. 
 
 
PBMC-hepatocyte interactions inhibit the antigen presenting cell capacity of PBMCs 

and the PBMC proliferation induced by PHA 

The effect of PBMC-HepaRG cell interactions on the antigen presenting cell capacity to CD4+

T cells was next determined by looking at the human leukocyte antigens (HLA)-DR 
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expression on both PBMCs and HepaRG cells as hepatocytes express major 

histocompatibility complex (MHC) class II in inflammatory conditions (Franco et al., 1988; 

Herkel et al., 2003). To distinguish PBMC and HepaRG cell population by cytometry, cells 

were stained with anti-CD45 antibody (Figure 12A). In the PBMC population, the PBMC-

HepaRG cell interactions enhanced HLA-DR expression by 1.4-fold (p<0.05) versus PBMCs 

alone in non-activated conditions. In contrast, HLA-DR expression of PBMCs was down-

regulated in PHA-activated co-cultures compared to other conditions (p<0.05) (Figure 11A). 

In the HepaRG cell population, PHA activation increased HLA-DR expression in both PBMC 

mono- and co-cultures (p<0.05) whereas the PBMC-HepaRG cell interactions decreased 

slightly the HLA-DR expression compared to HepaRG cells cultured alone in non-activated 

conditions (p<0.05) (Figure 11B). The potential effect of the PBMC-HepaRG cell interactions 

on PBMC proliferation was then investigated by using the CFSE staining. As expected the 

PHA activation enhanced the percentage of dividing cells (p<0.05). However, this effect was 

suppressed in presence of HepaRG cells (Figures 11C, D). To determine whether this effect is 

specific of hepatocytes, skin fibroblasts were co-cultured with PBMCs. Interestingly, the 

PBMC-skin fibroblast interactions had no effect on the PHA-induced PBMC proliferation 

(Figures 11E, F). To verify if the HepaRG cell inhibitory effect on the PBMC division was 

related to cell death, the cell viability was also determined. PBMC viability was slightly 

reduced in PHA-activated PBMC monocultures (p<0.01) but not in co-cultures (Figure 12B). 

This lower frequency of PBMC viability in PHA-activated PBMC monocultures was most 

likely offset by the strong induction of PBMC proliferation induced by PHA. HepaRG cell 

viability was also modulated by the presence of PBMCs activated or not with PHA. The 

viability of HepaRG cells was especially decreased in PHA-activated co-cultures (Figure 

12B). Therefore, the HepaRG cells can reduce the antigen presenting cell capacity of the 

PBMCs in PHA conditions as well as the PBMC proliferation induced by PHA without 

affecting the PBMC viability. 
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FIGURE 11: PBMC-HepaRG cell interactions reduce the HLA-DR expression on PBMCs 
and the PHA-induced PBMC proliferation
Human PBMCs and HepaRG cells or skin fibroblasts were cultured alone or in co-cultures at a ratio 
of 5 PBMCs : 1 HepaRG cell or 1 skin fibroblast in presence or not of phytohemagglutinin (PHA). 
(A, B) HLA-DR expression was measured in HepaRG cells and PBMCs after 48h of cultures by flow 
cytometry. (C-E) PBMCs were first labeled with CFSE and then cultured with/without HepaRG cells 
or skin fibroblasts and in presence or not of PHA for 3 days. Data are the mean of 6 to 7 independent 
experiments ± SEM; Mann Whitney test, *p<0.05, vs. co-culture conditions; #p<0.05 vs. 
unstimulated conditions.
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FIGURE 12: Effect of PBMC-HepaRG cell interactions on cell viability 
PBMCs and HepaRG cells were cultured alone or in co-cultures at a ratio of 5 PBMCs : 1 HepaRG 
cell in presence or not of phytohemagglutinin (PHA) for 48h. (A) Cells were then labeled with pacific 
blue anti-CD45 antibody to distinguish by flow cytometry the PBMC population (CD45+) and the 
HepaRG cell population (CD45-). (C, D) Cells were stained with Annexin V (AnV)-FITC and 
propidium iodide (PI) to quantify the percentage of viable (AnV- PI-), early apoptosis (AnV+ PI-) and 
dead (AnV+ PI+) cells by flow cytometry. Data are the mean of 8 independent experiments ± SEM; 
Mann Whitney test, *p<0.05 and **p<0.01, vs. monoculture conditions without PHA; #p<0.05, 
##p<0.01 vs. monoculture conditions with PHA; §§p<0.01 vs. co-culture conditions without PHA. 

2.4 Discussion 

This study shows that PBMC-HepaRG cell interactions may enhance immune cell recruitment 

and inflammation in liver by inducing IL-6 as well as IL-8, CCL20 and MCP-1 chemokine 

mRNA expression and/or secretion. In addition, the hepatocytes modulated the PBMC 

immune response by acting on T cell polarization and by reducing the PBMC antigen 

presenting cell capacity and the PBMC proliferation in PHA-activated conditions. The 

PBMC-HepaRG cell interactions appear therefore to promote first the inflammatory response 

and then hepatocytes may inhibit the PBMC immune response. 

The systemic inflammatory cytokine IL-6 is the major regulator of the release of acute-phase 

proteins that are mainly produced by the liver (Heinrich et al., 1990; Schmidt-Arras and Rose-
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John, 2016). The liver plays therefore an important role in the acute phase response. To mimic 

the infiltration of immune cells during liver injury and inflammation, conventional and non-

contact co-cultures between non-activated and activated PBMCs and HepaRG cells were 

used. PBMC-HepaRG cell interactions increased the IL-6 secretion mainly through direct 

cell-cell contact in PHA-activated conditions. However, the expression of CRP, a major 

acute-phase protein, was no significantly enhanced by the PBMC-HepaRG cell interactions.  

Both acute-phase and chronic inflammatory responses are characterized by the attraction of 

immune cells induced by the local chemokine release. IL-8 is important in the mobilization 

and activation of neutrophils (Lemmers et al., 2009) that are mainly involved in the early 

response. CCL20 and MCP-1 chemokines attract various immune cells, which contribute to 

the chronicity of the inflammation. Co-cultures between the human monocyte cell line THP-1 

and the human hepatoma HepG2 cells up-regulated the gene expression of IL-8 and MCP-1 

compared to THP-1 cell alone (Honda and Inagawa, 2016). Here, the PBMC-HepaRG cell 

interactions enhanced the IL-8, CCL20 and MCP-1 expression and/or production in both non- 

and PHA-activated co-cultures. The IL-8 and CCL20 induction was partially mediated 

through direct cell-cell interactions. By their effects on the chemokine levels, the PBMC-

HepaRG cell interactions may increase immune cell recruitment and therefore amplify the cell 

interactions. 

IL-17 and TNFα are two pro-inflammatory cytokines which has been implicated in several 

liver diseases (Beringer and Miossec, 2018; Schwabe and Brenner, 2006; Yang and Seki, 

2015). As IL-17 and TNFα induced in synergy the IL-6 and IL-8 release by HepaRG cells 

independently of the IL-6 pathway (Beringer et al., 2018), their potential contributions on the 

induction of IL-6 and IL-8 secretion in activated PBMC–HepaRG cell co-cultures were 

assessed. To better mimic the in vivo conditions during chronic liver injury, PBMCs were pre-

activated for one day and then co-cultured with the HepaRG cells. Neutralization of IL-17 

and/or TNFα inhibited the IL-6 and IL-8 production in co-cultures without an additional 

inhibitory effect of the blockade of both IL-17 and TNFα. As previously demonstrated 

(Beringer et al., 2018), inhibition of the IL-6 pathway did not reduce the IL-8 secretion. 

Soluble factor exchanges between PBMCs and HepaRG cells such as IL-17 and TNFα are 

therefore important in the induction of IL-8 but also IL-6 to a less extent. 

Hepatocytes can influence the immune cell phenotype and the cytokine expression. Indeed, 

the human monocyte cell line THP-1 and HepG2 interactions increased the mRNA expression 
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of IL-1β, TNFα and IL-10 compared to THP-1 cultured alone (Honda and Inagawa, 2016). In 

addition, the interactions between CD4+ T cells and hepatocytes from murine livers increased 

the IL-10 secretion by CD4+ T cells following T cell receptor stimulation in a cell-cell 

contact-dependent manner via Notch signaling (Burghardt et al., 2013). Hepatocytes 

enhanced also the frequency CD4+ FoxP3+ Treg cells in presence of TGFβ through Notch 

signaling (Burghardt et al., 2014). The induction of IL-10 and FoxP3+ Treg cells was even 

more pronounced when CD4+ T cells where co-cultured with hepatocytes from regenerated 

livers of mice pretreated with the lectin concavanalin A (Burghardt et al., 2013, 2014). The 

CD4+ T cells primed by hepatocytes were able to suppress proliferation of responder T cells 

upon T cell receptor stimulation (Burghardt et al., 2014). In this study, the Treg transcription 

factor FoxP3 expression and IL-10 production were enhanced in PHA-activated cultures 

without difference between PBMCs cultured alone or with HepaRG cells. In contrast, the 

Tbet expression was increased in PHA-activated co-cultures compared to PBMC 

monocultures whereas the secretion of IFNγ, known as a signature cytokine of Th1 cells, was 

similar between these two conditions. Surprising, the PBMC-HepaRG cell interactions 

decreased the RORc expression and the frequency of CD3+ CD4+ IL-17+ cells whereas the IL-

17 mRNA expression increased in PHA-activated conditions. There are fewer Th17 cells in 

PHA-activated co-cultures but they express higher quantity of IL-17 mRNA. Furthermore, the 

IL-17 secretion remained similar between PBMC monocultures and co-cultures activated with 

PHA whereas the TNFα release was lower in co-cultures. In addition, gene expressions of IL-

10, IL-1β and IL-17 were up-regulated in PHA-activated co-cultures but not the IL-10, IL-1β 

and IL-17 secretion. Hepatocytes can thus act both at transcriptional and post-transcriptional 

levels by enhancing the transcription of several cytokines without increasing their release. 

Because hepatocytes express MHC I and II molecules in inflammatory conditions as well as 

co-stimulatory molecules (Franco et al., 1988; Herkel et al., 2003), hepatocytes can act as 

antigen-presenting cells and therefore contribute to T cell activation and immune regulation in 

liver. Murine hepatocytes activated CD4+ and CD8+ T cells in vitro through antigen-

dependent activation but were not able to sustain this activation and to create an effective 

immune response (Bertolino et al., 1998; Herkel et al., 2003). Autologous co-cultures 

between human PBMCs and primary human hepatocytes increased the MHC II expression 

when hepatocytes were from patients operated for hepatocellular carcinoma but not from 

donors without liver diseases (Doumba et al., 2013). Here, the HLA-DR expression of the 

HepaRG cells decreased slightly in presence of non-activated PBMCs. In contrast, PHA-
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activation increased the HLA-DR expression of HepaRG cells cultured alone or with PBMCs. 

The antigen-presenting cell ability of PBMCs to CD4+ T cells was also assessed. HLA-DR 

expression of PBMCs was up-regulated in non-activated co-cultures and down-regulated in 

PHA-activated co-cultures compared to monocultures. In activated conditions, HepaRG cells 

can thereby inhibit the initiation of the antigen-specific immune response by reducing the 

MHC II molecules of PBMCs. At the same time, the MHC II expression on HepaRG cells 

was induced by the PHA activation. However, this induction of antigen presentation by 

hepatocytes may influence the inflammatory response but was not sufficient to produce an 

effective immune response (Bertolino et al., 1998; Herkel et al., 2003) and was not associated 

with the development of liver autoimmune diseases (Herkel et al., 2003). 

As PBMCs proliferate upon activation, the effect of hepatocytes on PBMC proliferation was 

thus investigated. Murine hepatocytes were able to induce CD8+ T cell proliferation but fail to 

promote their survival (Bertolino et al., 1998). Soluble factors released by murine hepatocytes 

enhanced also the expansion of hematopoietic precursor cells and their differentiation to 

natural killer cells (Bordoni et al., 2004). In addition, co-cultures of the human HepG2 cell 

line or nontumoral immortalized human hepatocytes with peripheral blood lymphocytes 

enhanced T cell survival and proliferation independently of the MHC class II molecules. 

Interestingly, this effect on the T cell proliferation was mainly cell contact dependent and 

required the presence of accessory cells since the use of culture cell inserts or the use of pure 

CD3+ T cells instead of peripheral blood lymphocytes reduced strongly the T cell proliferation 

(Correia et al., 2009). Here, in non-stimulated conditions, the PBMC-HepaRG cell 

interactions had no effect on PBMC proliferation and death after two and three days of 

cultures. A longer time of culture is certainly necessary to observe the effects described by 

Correia et al in which hepatocytes and peripheral blood lymphocytes where co-cultured for 

seven days (Correia et al., 2009). However, as expected, PHA-stimulation enhanced PBMC 

proliferation but the presence of HepaRG cells removed the PHA-induced PBMC 

proliferation without affecting PBMC death. In contrast, the PBMC proliferation induced by 

PHA was not impacted by the PBMC-skin fibroblast interactions. Hepatocyte and skin 

fibroblasts have thus different effects on the PBMC response that could be crucial in graft 

rejection. Indeed, liver transplantations are commonly well tolerated compared to skin graft 

(Calne et al., 1969; Lerut and Sanchez-Fueyo, 2006). These immunosuppressive effects of 

hepatocytes on the PBMCs can therefore contribute to the maintenance of immune tolerance 

in liver. 
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Cell interactions may also influence cell survival and cell death. Increased survival of 

peripheral blood lymphocytes has been observed in presence of hepatocytes through the 

release of soluble factors (Correia et al., 2009). In this study, PBMC viability was lower in 

PHA-activated PBMC monocultures compared to other conditions. However, this lower 

percentage of viable cells in PHA-activated PBMC monocultures was certainly offset by the 

PHA-induced PBMC proliferation. HepaRG cell viability was also impacted by the presence 

of PHA and/or PBMCs. Indeed, PHA reduced slightly the viability of the HepaRG cells 

cultured alone whereas the presence of PBMCs increased the frequency of viable HepaRG 

cells in non-activated co-cultures. Nevertheless, PHA-activated PBMCs decreased the 

viability HepaRG cells. Therefore, long-term exposure to activated PBMCs could lead to a 

massive HepaRG cell death and, consequently, a loss of the tolerogenic HepaRG cell 

activities. This situation probably occurs in chronic liver diseases that are characterized with 

hepatocyte death, sustained inflammation and the development of fibrosis driving to liver 

cirrhosis (Yang and Seki, 2015). 

Since the PHA-induced PBMC proliferation was inhibited in presence of HepaRG cells, the 

PBMC/HepaRG cell ratio was higher when the PHA-activated PBMCs were cultured alone 

compared to other culture conditions. This different cell ratio is an important point to take 

account for all the analysis of this study.  

Because hepatocytes act on immune cell recruitment, activation, proliferation and 

polarization, the complex and bidirectional hepatocyte-PBMC interplays play certainly a 

crucial role in the onset of hepatitis but also in liver tolerance. The interactions with other 

liver resident cells such as hepatic stellate cells, liver endothelial sinusoidal cells or Kupffer 

cells may also interfere with the PBMC-hepatocyte cross talk. A better understanding of the 

role of the cell interactions in the hepatic immune response could lead to the identification of 

new therapeutic targets. 

 



 111 

3 The IL-17 and TNFα cooperation enhances the hepatic stellate cell pro-
inflammatory response 

 
The IL-17 and TNFα cooperation contributes to the pro-inflammatory response of LX-2 
hepatic stellate cells. (in preparation) 
 
Keywords: hepatic stellate cells, interleukin-17, tumor necrosis factor-α, inflammation, 

fibrosis, cell interactions 

Abstract 

HSCs have a central role in liver fibrosis by producing inflammatory and fibrotic mediators. 

Their activation is regulated through direct cell-cell interactions but also through systemic and 

local effects of soluble factors. The role of the pro-inflammatory cytokines IL-17 and TNFα 

as well as the cell interactions with the hepatocytes on HSC activation were assessed. The 

human LX-2 HSCs and HepaRG hepatoma cells were exposed to IL-17 and/or TNFα. IL-17 

and TNFα contribution was determined in a co-culture model including non- or PHA-

activated PBMCs, LX-2 cells and/or HepaRG cells. IL-17 enhanced TNFα effects on the 

induction of IL-6 and IL-1β pro-inflammatory cytokines and IL-8, CCL20 and MCP- 

chemokines expression/secretion in LX-2 cell cultures. LX-2 cell-HepaRG cell interactions 

did not enhance IL-6, IL-8 and CCL20 production compared to HepaRG cells alone. 

However, LX-2 cell-HepaRG cell interactions increased the mRNA CRP expression. 

Moreover, IL-17 and/or TNFα had no direct pro-fibrotic effects in collagen I α1, TIMP and 

MMP2 gene expression whereas MMP3 mRNA levels are up-regulated in LX-2 cells. 

Nevertheless, IL-17 and TNFα could act indirectly on fibrosis at later time points through the 

induction of TGFβ. Lastly, IL-17 and TNFα contributed to the strong increase of IL-6 and IL-

8 production induced by PBMC, LX-2 cell and/or HepaRG cell interactions. As chronic liver 

inflammation leads to liver fibrosis, IL-17 and/or TNFα neutralization can of interest to 

control liver inflammation and therefore its effect on fibrosis. 

3.1 Introduction  

HSCs are crucial in liver fibrosis by producing inflammatory and fibrotic mediators leading to 

extracellular matrix deposition. The transdifferentiation of HSCs into activated 
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myofibroblasts is regulated through direct cell-cell interactions but also through soluble factor 

exchanges with hepatocytes and immune cells (Barbero-Becerra et al., 2015; Coulouarn et al., 

2012; Pellicoro et al., 2014).  

The pro-inflammatory cytokine IL-17 and the IL-17-producing cells are associated with 

several liver diseases where IL-17-secreting cells infiltrated the liver (Beringer and Miossec, 

2018). Because HSCs express IL-17 receptors, IL-17 can act directly on HSCs (Meng et al., 

2012; Sun et al., 2012). IL-17 stimulation promoted HSC proliferation and enhanced in vitro 

the expression of pro-inflammatory cytokines, chemokines and profibrotic mediators in HSCs 

(Lemmers et al., 2009; Meng et al., 2012; Shi et al., 2015; Sun et al., 2012; Tan et al., 2013). 

In addition, IL-17 synergized with TGFβ, the master profibrotic cytokine, to induce the 

human HSC activation (Fabre et al., 2014). Since IL-17 enhanced the TNFα production by 

Kupffer cells and the TNFα mRNA expression in HSCs, TNFα can in turn act with IL-17 on 

local hepatic cells such as HSCs (Hara et al., 2013; Meng et al., 2012). As shown in various 

cells including hepatocytes or skin and synovial fibroblasts, IL-17 can cooperate with TNFα 

to up-regulate in synergy some pro-inflammatory genes (Beringer et al., 2016, 2018; Katz et 

al., 2001; Zrioual et al., 2009). TNFα has various effects on HSCs and appears involved in the 

HSC activation (Osawa et al., 2013; Pradere et al., 2013; Tarrats et al., 2011; Yang and Seki, 

2015). 

By their localization, the HSCs are in close contact with hepatocytes and therefore they can 

interact with each other. The bidirectional exchange of soluble factors between HSCs and 

hepatocytes were associated with the generation of a pro-inflammatory and pro-fibrotic 

microenvironment (Coulouarn et al., 2012; Wang et al., 2014). Furthermore, by acting on 

hepatocytes, IL-17 and TNFα induced in synergy the release of periostin which can in turn 

activate fibroblast and collagen production (Amara et al., 2015). 

The objective of this study was to assess the effects of the IL-17 and TNFα combination on 

the inflammatory and fibrosis response of the human LX-2 HSC line. Co-cultures between the 

LX-2 cells and the human hepatoma HepaRG cells were also performed to determine whether 

cell-cell interactions might amplify the IL-17 and TNFα effects. Finally, the IL-17 and TNFα 

contribution was determined in a co-culture model including PBMCs, LX-2 cells and/or 

HepaRG cells. The IL-17 exposure enhanced the TNFα effects on the induction of pro-

inflammatory cytokines and chemokines. Moreover, IL-17 and TNFα contributed to the 

strong increase of IL-6 and IL-8 production induced by the PBMC, LX-2 cell and/or HepaRG 

cell interactions. 
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3.2 Materials and methods 

Cell lines 

The human LX-2 HSCs were cultured in DMEM (Eurobio, Les Ulis, France) supplemented 

with 2% fetal bovine serum (Life Technologies, Carlsbad, USA), 2 mM L-glutamine 

(Eurobio) and 50 U/mL penicillin and 50 μg/mL streptomycin (Eurobio). For the monoculture 

assays, LX-2 cells were serum-starved overnight in DMEM with L-glutamine prior to 

cytokine exposure in serum-free conditions. The human hepatoma HepaRG cells were grown 

in William’s E medium (Sigma, St Louis, MO, USA) supplemented with 10% fetal bovine 

serum (Life Technologies), 2 mM L-glutamine (Eurobio), 5 μg/mL insulin (Sigma), 50 μM 

hydrocortisone hemisuccinate (Serb, Paris, France), 50 U/mL penicillin and 50 μg/mL 

streptomycin (Eurobio). HepaRG cells were used after 15 days post-plating. 

PBMC isolation 

Whole blood samples were obtained from the Etablissement français du Sang. PBMCs were 

isolated by Ficoll-Hypaque (Eurobio) density gradient centrifugation.  

Culture conditions 

LX-2 cells were exposed to IL-17A 50 ng/mL (Dendritics, Lyon, France) and/or TNFα 

0.5 ng/mL (R&D systems, Minneapolis, MN, USA). To block the IL-6 and TGFβ1 pathways, 

tocilizumab (Roche, Welwyn, UK) and anti-TGFβ1 (R&D systems) were used at 10 μg/mL. 

A monoclonal antibody against the BetV1 allergen (Dendritics) was used as a control 

antibody at the same concentration. For the co-culture assays, cells were maintained in 

DMEM supplemented with 2% fetal bovine serum (Life Technologies) and 2 mM L-

glutamine (Eurobio) at a ratio of 25 PBMCs for 5 HepaRG cells for 1 LX-2 cell. This ratio 

was chosen according to data from the literature (Barbero-Becerra et al., 2015; Doumba et al., 

2013). LX-2 cell-HepaRG cell co-cultures were stimulated or not with the combination of IL-

17A 50 ng/mL and TNFα 0.5 ng/mL. For cell culture insert assays, HepaRG cells were 

cultured at the bottom of a culture plate well and LX-2 cells were placed in Falcon® cell-

culture inserts (Corning, NY, USA) with a small-pored membrane (0.4μm) preventing direct 

cell-cell contacts but allowing the circulation of soluble factors. For the co-cultures with 
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PBMCs, PBMCs were activated or not with 5 μg/ml phytohemagglutinin (PHA) (Sigma-

Aldrich) and exposed to the anti-IL-17 secukinumab (Novartis, Basel, Switzerland) and the 

anti-TNFα infliximab (Merck, Kenilworth, USA) or the control antibody at 10 μg/mL during 

2h before being added to LX-2 cells and/or HepaRG cells. 

Quantitative real time-PCR 

Total RNA was purified using an RNeasy® Plus Mini kit (Quiagen, Hilden, Germany). 

cDNA was synthetized using the iScript™ kit (Bio-Rad, Hercules, CA, USA). PCR 

amplification was performed using the CFX96TM Real time system instrument (Bio-Rad) with 

the iTaqTM universal SYBR® green supermix (Bio-Rad) and the Qiagen QuantiTect® primers. 

The expression of the genes of interest was normalized to the expression of the housekeeping 

GAPDH gene. 

Enzyme-linked immunosorbent assays 

Supernatant cytokine concentrations were quantified with human ELISA kits according to the 

instructions of the manufacturers. IL-6 and IL-8 ELISA kits from Diaclone (Besancon, 

France) and CCL20 ELISA kit from R&D system (Minneapolis, USA) were used. 

Statistical analysis 

Calculations were performed with GraphPad Prism version 5.01 software. Data are the mean 

of at least 3 independent experiments ± SEM. Statistical differences were analyzed using the 

Mann Whitney test. P values less than to 0.05 were considered significant.  

3.3 Results 

IL-17 amplified the TNFα effect on the induction IL-6 and IL-1β in the LX-2 cells 

IL-17 can cooperate with TNFα to increase in synergy the IL-6 secretion in various cell types 

including hepatocytes, endothelial cells or skin/synovial fibroblasts (Beringer et al., 2018; Hot 

et al., 2012; Katz et al., 2001). The effects of IL-17 and TNFα were thus investigated in the 

human LX-2 HSC cultures. IL-17 alone had no or a limited effect on the mRNA expression of 

IL-6 (p<0.05) and IL-1β as well as IL-6 secretion compared to control condition. In contrast, 

the LX-2 cells stimulation with TNFα alone enhanced strongly the IL-6 and IL-1β mRNA 
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levels and the IL-6 supernatant level (p<0.05). Interestingly, addition of IL-17 to the TNFα 

induced a further increase of the IL-6 and IL-1β mRNA expression and the IL-6 production 

versus TNFα alone (p<0.05) (Figures 13A-C). Therefore, IL-17 amplified the TNFα effect on 

the IL-6 and IL-1β induction in the LX-2 cell cultures. Because the LX-2 cells have 

functional IL-6 and TGFβ receptors (Fabre et al., 2014; Schmidt-Arras and Rose-John, 2016; 

Schoenherr et al., 2010), a part of the IL-17 and TNFα effects could be mediated indirectly 

through the HSC autocrine IL-6 and TGFβ secretion. Indeed, an IL-6 positive-feedback loop 

effect has been described in the human hepatocyte HepaRG cells (Beringer et al., 2018). Here, 

the blockade of the IL-6 and TGFβ pathways by the use of specific inhibitors had no effect on 

the induction of IL-6 expression and production whereas the blockade of the IL-6 pathway, 

but not the TGFβ pathway, reduced by 18% the IL-1β up-regulation induced by IL-17 and 

TNFα (Figures 13A-C). The induction of IL-6 and IL-1β following the IL-17 and TNFα 

stimulation is therefore mainly independent of the IL-6 and TGFβ pathway activation. 

 

 

FIGURE 13: IL-17 amplifies the TNFα effect on the induction of IL-6 and IL-1β in the 
LX-2 cells mainly independently of IL-6 and TGFβ pathways 
LX-2 cells were exposed to IL-17 and/or TNFα with/without anti-IL-6R (aIL-6R) or anti-TGFβ 
(aTGFβ). (A, C) IL-6 and IL-1β mRNA expression at 10h were expressed as fold changes compared 
to control. (B) IL-6 supernatant level at 48h was quantified by ELISA. The control antibody has no 
effect on the IL-6 supernatant level following IL-17 and TNFα stimulation (data not shown). Data are 
the mean of 6 independent experiments ± SEM; Mann Whitney test, *p<0.05 versus control, #p<0.05 
versus other cytokine conditions. 
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IL-17 amplifies the TNFα effect on the increase of the IL-8, CCL20 and MCP-1 

chemokine expression and/or secretion 

As immune cell recruitment is crucial for the inflammatory response, the effects of IL-17 and 

TNFα alone or in combination on the IL-8, CCL20 and MCP-1 (also known as CCL2) 

chemokines were next investigated in the LX-2 cells. IL-8 is associated with neutrophil 

recruitment involved in the acute phase response whereas CCL20 and MCP-1 attract 

mononuclear cells involved in the chronicity of the inflammatory response. TNFα treatment 

induced the IL-8, CCL20 and MCP-1 mRNA expression by 6.8-, 17- and 9.9-fold, 

respectively (p<0.05) whereas IL-17 had a modest effect on these chemokine mRNA levels. 

As for IL-6 and IL-1β, IL-17 amplified the TNFα effect on the IL-8, CCL20 and MCP-1 

mRNA levels with an increase of 18-, 38.6- and 22-fold, respectively, compared to control 

condition (p<0.05). The higher IL-8 and CCL20 supernatant levels following the IL-17 and 

TNFα stimulation compared to TNFα alone (p<0.05) confirmed that IL-17 potentiated the 

TNFα effects on the increase of chemokine expression and/or production (Figures 14D, E). In 

addition, IL-8 induction following IL-17/TNFα was independent of IL-6 and TGFβ pathways 

since specific inhibitors of IL-6 and TGFβ pathways had no effect on the IL-8 levels induced 

by IL-17/TNFα (Figures 14A, D). In contrast, the MCP-1 mRNA expression and CCL20 

release but not the CCL20 mRNA expression was inhibited by 38% and 26%, respectively 

(p<0.05), by the neutralization of the IL-6 pathway whereas the TGFβ pathway blockade had 

no effect (Figure 14B, C, E). This IL-17 and TNFα cooperation on the chemokine induction 

can intensify the local immune cell recruitment mainly through pathways independent of IL-6 

and TGFβ. 
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FIGURE 14: IL-17 amplifies the TNFα effect on the increase of the IL-8, CCL20 and 
MCP-1 chemokine expression and/or secretion 
LX-2 cells were exposed to IL-17 and/or TNFα with/without anti-IL-6R (aIL-6R) or anti-TGFβ 
(aTGFβ). (A-C) IL-8, CCL20 and MCP-1 mRNA expression at 10h were expressed as fold changes 
compared to control. (D, E) IL-8 and CCL20 supernatant levels at 48h were quantified by ELISA. 
The control antibody has no effect on the IL-8 and CCL20 supernatant level following the IL-17 and 
TNFα stimulation (data not shown). Data are the mean of 6 independent experiments ± SEM; Mann 
Whitney test, *p<0.05 versus control, #p<0.05 versus other cytokine conditions. 
 
 
IL-17 and TNFα have no direct effects on pro-fibrotic genes 

HSCs have a crucial role in liver fibrosis. Indeed, they can induce fibrogenesis by producing 

extracellular matrix components such as collagen I. Moreover, they can modulate fibrolysis 

through the secretion of MMPs and TIMP. The MMP/TIMP balance defects leads to 

extracellular matrix accumulation. IL-17 and TNFα stimulation increased mRNA expression 

of the master pro-fibrotic cytokine TGFβ1 by 1.9-fold (non-significant) in LX-2 cells (Figure 

15A). Moreover, IL-17 and/or TNFα stimulation had no effect on mRNA levels of collagen I 

α1, TIMP1 and MMP2 (Figures 15B-D). In contrast, MMP3 mRNA expression was enhanced 

in presence of the IL-17 and TNFα combination (p<0.05) (Figure 15E). IL-6 and TGFβ 

pathways were not involved in the effects mediated by IL-17 and TNFα since the inhibition 

of IL-6 or TGFβ pathway had no effect on the gene expression levels in IL-17 and/or TNFα 

conditions. Therefore, IL-17 and TNFα have no direct pro-fibrotic effects on LX-2 cells. 
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However, by enhancing MMP3, IL-17 and TNFα could reduce or/and prevent extracellular 

matrix deposition. 

 

FIGURE 15: IL-17 and TNFα have no direct effects on profibrotic genes 
LX-2 cells were exposed to IL-17 and/or TNFα with/without anti-IL-6R or anti-TGFβ. (A-E) TGFβ1 
mRNA expression at 10h and collagen I α1, TIMP1, MMP2 and MMP3 mRNA expression at 48h 
were expressed as fold changes compared to control. Data are the mean of 6 independent experiments 
± SEM; Mann Whitney test; #p<0.05 versus other cytokine conditions. 
 
 
The LX-2 cell-HepaRG cell interactions induce the CRP expression but not the IL-6, IL-

8 and CCL20 secretion by HepaRG cells 

By their localization, the HSCs and hepatocytes interact together through direct cell contact 

and paracrine interactions. A bidirectional cross talk between hepatocytes and HSCs has been 

previously described (Coulouarn et al., 2012; Sancho-Bru et al., 2010; Wang et al., 2014). 

Here, the effects of the interactions between the human LX-2 HSCs and the HepaRG cells on 

several pro-inflammatory mediators were studied in non-activated and IL-17/TNFα-activated 

cultures (Figure 16A). In non-activated conditions, production of IL-6 was slightly enhanced 

by 1.5-fold in the LX-2 cell-HepaRG cell co-cultures versus the LX-2 cell monocultures 

(p<0.05) (Figure 16A). IL-8 and CCL20 secretion was also higher in the HepaRG cell 

monocultures and co-cultures compared to LX-2 cells alone (p<0.05) (Figures 16C, D). The 

IL-17 and TNFα stimulation increased the IL-6, IL-8 and CCL20 release in all culture 

conditions. However, IL-8 and CCL20 supernatant levels in LX-2 monocultures were too low 
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compared to the levels in HepaRG cell monocultures or co-cultures to observe an induction. 

IL-8 and CCL20 supernatant concentrations were similar between HepaRG cells alone and 

the co-cultures; indicating that IL-8 and CCL20 were secreted by the HepaRG cells in co-

cultures (Figures 16D, E). In contrast, even if the LX-2 cells were five times less numerous 

than HepaRG cells, the IL-6 supernatant levels were quite similar between the monocultures 

of LX-2 cells (9.6 ng/mL) and HepaRG cells (13 ng/mL). Nevertheless, there were no 

additive effects of the two cell types on the IL-6 production in co-cultures (Figure 16B). 

However, during the 48h of culture, the LX-2 cell proliferation was certainly higher in 

monocultures compared to co-cultures whereas the HepaRG cells were not in a proliferation 

state but in a differentiation state. The use of cell culture inserts, to avoid direct cell contacts 

but allowing soluble factor exchanges, reduced significantly CCL20 secretion in IL-

17/TNFα-activated cultures by 34% but not  IL-6 and IL-8 supernatant levels compared to 

conventional co-cultures (Figures 16B, D, E). mRNA level of the C-reactive protein (CRP), 

an acute-phase protein commonly induced by IL-6, was also quantified in LX-2 cells and 

HepaRG cells cultured separately or in co-cultures. LX-2 cell-HepaRG cell interactions up-

regulated CRP expression (p<0.05) and this effect was further increased in IL-17/TNFα-

stimulated conditions (Figure 16C). Therefore, the LX-2 cell-HepaRG cell interactions may 

have an important role in the CRP induction whereas HepaRG cells but not the LX-2 cells 

have a major contribution in the chemokine induction in co-cultures exposed to IL-17/TNFα. 
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FIGURE 16: LX-2 cell-HepaRG cell interactions enhance CRP expression but not the IL-
6, IL-8 and CCL20 secretion by HepaRG cells 
LX-2 cells and HepaRG cells were cultured alone or in co-cultures with/without cell culture inserts at 
a ratio of 5 HepaRG cells : 1 LX-2 cell in presence or not of IL-17 and TNFα (A, C, D) IL-6, IL-8 
and CCL20 supernatant levels at 48h was quantified by ELISA. (B) CRP mRNA expression at 48h 
were expressed as fold changes compared to control. Data are the mean of 6 to 8 independent 
experiments ± SEM; Mann Whitney test, *p<0.05 versus conditions without cytokines, #p<0.05 other 
cell compositions of the cultures. 
 
 
LX-2 cell-HepaRG cell interactions modulate the pro-fibrotic genes expression in IL-17 

and TNFα activated conditions 

The effects of LX-2 cell–HepaRG cell interactions on fibrotic genes were next assessed with 

or without IL-17 and TNFα stimulation. Compared to LX-2 cells and HepaRG cells cultured 

separately, collagen type I α1mRNA expression decreased slightly but no significantly 
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whereas TIMP1 mRNA levels increased (p<0.05) in the LX-2 cell–HepaRG cell co-cultures 

stimulated with IL-17/TNFα compared to other conditions (Figures 17A, B). MMP2 mRNA 

levels were similar between the different culture conditions (Figure 17C). As shown in Figure 

15E, IL-17 and TNFα exposure increased MMP3 mRNA expression (1.9-fold, non-

significant) and this effect was further higher in co-cultures (3.3-fold, non-significant) (Figure 

17D). The interplays between HepaRG cells and LX-2 cells may therefore modulate the 

effects mediated by IL-17 and TNFα on the fibrotic genes. 

 

FIGURE 17: LX-2 cell-HepaRG cell interactions modulated Collagen I α1, TIMP and 
MMP3 expression in IL-17 and TNFα activated conditions 
LX-2 cells and HepaRG cells were cultured alone or in co-cultures at a ratio of 5 HepaRG cells : 1 
LX-2 cell in presence or not of IL-17 and TNFα. (A-C) Collagen I α1, TIMP1 and MMP3 mRNA 
expression at 48h were expressed as fold changes compared to control. Data are the mean of 6 
independent experiments ± SEM; Mann Whitney test, *p<0.05 versus conditions without cytokines, 
#p<0.05 versus co-cultures. 
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IL-17 and TNFα contribute to the induction of IL-6 and IL-8 production in PBMC-LX-2 

cell-HepaRG cell co-cultures in activated conditions 

Because inflammatory infiltrates are often observed in liver biopsies of patients with active 

liver diseases (Quintin et al., 2010), the potential contribution of IL-17 and TNFα was studied 

in a co-culture model comprising non- or PHA-activated PBMCs, LX-2 cells and/or HepaRG 

cells. Indeed, inflammation is a dynamic process where the recruited leukocytes interact with 

parenchymal cells and resident cells inside tissue. Compared to the co-cultures, a low level of 

IL-6, IL-8 and CCL20 was detected in PBMCs alone as well as in LX-2 cell and HepaRG cell 

monocultures in presence or not of PHA (Figure 18A-D and data not shown). Interestingly, 

IL-6 secretion was higher in PBMC-LX-2 cell co-cultures compared to PBMC-HepaRG cell 

and PBMC-LX-2 cell-HepaRG cell co-cultures in both non- and PHA-activated conditions 

(p<0.05) (Figure 18A). In contrast, the IL-8 supernatant levels were more similar between the 

different co-cultures (Figure 18B). As seen in LX-2 cell-HepaRG cell co-cultures (Figure 

16D), the release of CCL20 was strongly associated with the presence of HepaRG cells since 

the CCL20 supernatant levels were very low in PBMC-LX-2 cell co-cultures compared to the 

other co-cultures with HepaRG cells (p<0.05) (Figure 18D). PHA activation increased the IL-

6 by 1.4- to 1.7-fold in all co-cultures conditions (p<0.05) whereas no effect or a slight effect 

(<1.2-fold) of PHA stimulation was observed for the IL-8 and CCL20 release. Neutralization 

of IL-17 plus TNFα by the use of specific inhibitors reduced IL-6 production in both non- and 

PHA-activated co-cultures by 26 to 42% (p<0.05) (Figure 18A). IL-8 secretion was also 

inhibited by the blockade of both IL-17 and TNFα by up to 32% in PHA-activated co-cultures 

(p<0.05) (Figure 18B). IL-17 and TNFα contribution in the CCL20 release was weak in the 

PBMC-LX-2 cell-HepaRG cell co-cultures (2.2% and 3.0% in non- and PHA-activated 

condition respectively, p<0.05) and was not observed in all the other co-culture conditions 

(Figure 18D). IL-17 and TNFα were thus involved in the IL-6 and IL-8 secretion induced by 

the interactions between PBMCs, LX-2 cells and/or HepaRG cells. 



123 

 

FIGURE 18: IL-17 and TNFα contribute to the induction of IL-6, IL-8 and CCL20 
production in LX-2 cell-HepaRG cell-PBMC co-cultures in PHA-activated conditions 
PBMCs were stimulated or not with phytohaemagglutinin (PHA) and exposed or not to the anti-IL-17 
(aIL-17a) and the anti-TNFα (aTNFα) or control antibody during 2h before being added to the LX-2 
cells and/or HepaRG cells at a ratio of 25 PBMCs : 5 HepaRG cells : 1 LX-2 cell. (A-D) IL-6, IL-8 
and CCL20 supernatant levels were quantified by ELISA after 48h of cultures. IL-6 and IL-8 were no 
detected in LX-2 cell and/or HepaRG cell cultures without PBMCs. The control antibody had no 
effect on the IL-6, IL-8 and CCL20 supernatant levels. Data are the mean of 6 independent 
experiments ± SEM; Mann Whitney test, *p<0.05 versus PBMC alone, §p<0.05 versus LX-2 cell-
PBMC co-cultures, #p<0.05 versus without anti-IL-17 and anti-TNFα, p<0.05 versus non-activated 
conditions. 

3.4 Discussion 

This study shows that IL-17 amplified the TNFα response on the induction of systemic 

inflammatory cytokines and chemokines without direct pro-fibrotic effects. LX-2 cell and 

HepaRG cell interactions had no significant effect on the level of IL-6 secretion following IL-

17 and TNFα stimulation but they enhanced the CRP expression. The HepaRG cells had 

certainly a major contribution in the IL-8 and CCL20 secretions in LX-2 cell – HepaRG cell 

co-cultures. PBMC, LX-2 cell and/or HepaRG cell interactions induced a strong secretion of 

IL-6, IL-8 and CCL20. IL-17 and TNFα participated to the increased production of IL-6 and 

IL-8 in co-cultures. 
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Chronic liver diseases are characterized by sustained liver inflammation that leads to fibrosis 

where HSCs play a central role by producing several pro-inflammatory mediators and 

extracellular matrix. Since HSCs expressed IL-17 receptor (Meng et al., 2012; Sun et al., 

2012), the effect of IL-17 on HSCs was therefore studied. IL-17 has been implicated in the 

HSC proliferation and activation (Hara et al., 2013; Meng et al., 2012; Shi et al., 2015; Sun et 

al., 2012). IL-17 was also shown to induce the expression and/or production of the systemic 

inflammatory cytokines IL-6 and IL-1β as well as IL-8 and growth-related oncogene-α 

involved in neutrophil recruitment in HSCs (Hara et al., 2013; Meng et al., 2012; Shi et al., 

2015; Sun et al., 2012; Tan et al., 2013). Here, IL-17 alone had a weak or no significant effect 

on the induction of IL-6, IL-1β and IL-8 mRNA expression and/or secretion in LX-2 cell 

cultures compared to the TNFα stimulation. However, IL-17 potentiated the TNFα effects on 

the IL-6, IL-1β and IL-8 induction. This IL-17 and TNFα cooperation enhanced also the 

expression of CCL20 and MCP-1 chemokines in LX-2 cells. By inducing CCL20 and MCP-1 

which attract T cells, monocytes and dendritic cells, IL-17 and TNFα participate probably to 

the chronicity of the inflammation in addition to the early response mediated by the induction 

of IL-8 associated with neutrophil recruitment. Since IL-17 up-regulated IL-6 and TGFβ 

expression in HSCs (Meng et al., 2012; Sun et al., 2012) and HSCs have functional IL-6 and 

TGFβ receptors (Fabre et al., 2014; Schmidt-Arras and Rose-John, 2016; Schoenherr et al., 

2010), the contribution of these two pathways in the IL-17 and TNFα-mediated effects was 

assessed. The IL-6 and TGFβ pathways were not involved in the IL-17 and TNFα effects of 

the pro-inflammatory mediators studied with the exception of the IL-1β and MCP-1 mRNA 

expression and the CCL20 release that were slightly inhibited by the use of the IL-6 pathway 

inhibitor in the LX-2 cell cultures. This suggests a main direct effect of IL-17 and TNFα on 

the induction of the pro-inflammatory mediators studied here. As IL-17 may enhance the local 

TNFα production in liver (Hara et al., 2013; Meng et al., 2012), TNFα can in turn act in 

cooperation with IL-17 on HSCs and amplify the inflammatory process by promoting the 

systemic inflammatory cytokine production and the recruitment of immune cells in liver. 

Since inflammation is important for the initiation of liver fibrosis, pro-inflammatory cytokines 

may promote the pro-fibrotic activities of the HSCs. Because IL-17 up-regulated the 

expression of the major pro-fibrotic cytokine TGFβ1 as well as collagen type I α1 in HSCs, 

IL-17 may induce fibrogenesis (Meng et al., 2012; Tan et al., 2013). Another study showed 

that the effect of IL-17 alone on collagen type I α1 and TIMP1 expression was very weak or 
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absent compared to TGFβ stimulation. However, IL-17 enhanced the TGFβ response of HSCs 

by up-regulating its receptor expression at the HSC surface (Fabre et al., 2014). The pro-

fibrotic activities of IL-17 can therefore be mediated via the intensification of the TGFβ 

pathway activation. TNFα was previously associated with matrix degradation through the 

induction of MMPs. Expressions of MMP1, MMP3 and MMP9 were up-regulated in LX-2 

cells by the TNFα stimulation whereas the collagen type I α1, TIMP1 and MMP2 expressions 

were unchanged (Robert et al., 2016; Tarrats et al., 2011). This matrix breakdown mediated 

by TNFα could be essential at the early stage of liver injury for the recruitment of 

inflammatory immune cells and later, TGFβ could decrease the initial TNFα-mediated MMP 

induction activity leading to the development of liver fibrosis (Knittel et al., 1999). Here, IL-

17 and/or TNFα had no effect on the collagen I α1, TIMP1 and MMP2 mRNA expressions in 

LX-2 cells. However, as expected, the presence of TNFα enhanced MMP3 expression, this 

could prevent the extracellular matrix accumulation. IL-17 and/or TNFα have thereby no 

direct pro-fibrotic activities on HSCs. Nevertheless, by inducing the TGFβ1 secretion by 

Kupffer cells (Hara et al., 2013), IL-17 may have indirect pro-fibrotic effects which can be 

amplify by the IL-17 and TGFβ cooperation described by Fabre et al. (Fabre et al., 2014). The 

potential indirect effects mediated by TGFβ may occur at later time points and therefore they 

were no observed in this study.  

Hepatocytes are the most abundant cell population in liver. They can modulate the HSC 

response and vice versa through direct cell-cell and paracrine interactions (Barbero-Becerra et 

al., 2015; Coulouarn et al., 2012; Ma et al., 2015; Wang et al., 2014). Non-contact LX-2 cell 

and HepaRG cell co-cultures have demonstrated a bidirectional crosstalk between these two 

cell types. Indeed, the presence of LX-2 cells up-regulated the gene expressions of IL-6, IL-

1β, IL-8, CCL20 and MCP-1 as well as the acute-phase protein serum amyloid A in HepaRG 

cells (Coulouarn et al., 2012). Here, the LX-2 cell–HepaRG cell co-cultures with and without 

culture cell inserts did not enhance the secretion of IL-6, IL-8 and CCL20 compared to 

HepaRG cell cultured alone in both non- and IL-17/TNFα-activated conditions. However, the 

CRP mRNA expression was up-regulated by the LX-2 cell–HepaRG cell interactions. By this 

way, the LX-2 cell–HepaRG cell interactions can promote systemic inflammation. 

Hepatocytes can also alter the HSC fibrotic activities since the LX-2 cells exposure to the 

conditioned medium from human hepatocellular carcinoma cells increased HSC proliferation 

as well as the gene expression levels of collagen I and TIMP (Ma et al., 2015). In this study, 
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the expression of these two genes was unchanged by the LX-2 cell – HepaRG cell interactions 

in non-activated conditions. Therefore, the hepatocyte cell line used but more likely the direct 

cell-cell interactions play certainly an important role. In contrast to non-stimulated conditions, 

the expression of the fibrotic gene TIMP was enhanced when the two cell types were cultured 

together in IL-17/TNFα activated conditions. Indeed, by inducing the release of soluble 

factors such as periostin by hepatocytes, IL-17 and TNFα can promote indirectly fibroblast 

activation and fibrosis (Amara et al., 2015). However, MMP3 expression was also up-

regulated by the presence of IL-17 and TNFα in LX-2 cell-HepaRG cell co-cultures and could 

therefore counterbalance partially the IL-17/TNFα pro-fibrotic effects. 

By secreting chemokines, activated HSCs and hepatocytes recruit immune cells in liver 

contributing to sustained inflammation and, if not resolved, chronic liver diseases. Therefore, 

complex interactions between the infiltrated immune cells and the hepatic cells such as HSCs 

and hepatocytes occur during chronic inflammation in liver. These interplays between the 

different cell types are mediated through direct cell-cell interactions and soluble factor 

exchanges. By this way, IL-17 and TNFα can participate to the cell-to-cell communication in 

liver. Indeed, HSCs exposed to conditioned medium from activated PBMCs increased the 

growth-related oncogene-α secretion by HSCs and IL-17 contributed to this effect (Lemmers 

et al., 2009). IL-17-activated monocytes and peripheral blood lymphocytes promoted also 

HSC activation in vitro (Sun et al., 2012). Moreover, co-cultures of human HSCs and 

mucosal-associated invariant T cells enhanced the expression of the pro-inflammatory genes 

IL-6, IL-1β, IL-8 and MCP-1 as well as the pro-fibrotic gene TIMP1 via direct cell-cell 

contact and also partially through IL-17 (Böttcher et al., 2018). TNFα-released from 

macrophages was also a key factor of HSC activation since the blockage of TNFα decreased 

mRNA levels of fibrosis markers in HSCs co-cultured with CCR9+ macrophages (Chu et al., 

2013). In addition, TNFα contributed to the increase of HSC survival induced by the HSC–

hepatic macrophage interactions via the activation of NF-κB signaling pathways (Pradere et 

al., 2013). Here, PBMCs co-cultured with LX-2 cells and/or HepaRG cells induced a strong 

synthesis of IL-6, IL-8 and CCL20 compared to monocultures. Interestingly, the presence of 

HepaRG cells appears to reduce the IL-6 secretion observed in PBMC-LX-2 cell co-cultures. 

By this way, the HepaRG cells may reduce the liver inflammation. In contrast, the PBMC-

HepaRG cell interplays and not the PBMC-LX-2 cell interactions induced a strong 

production. Because IL-17 and TNFα were involved in the induction of IL-6 and IL-8 release 
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in non- and/or activated co-cultures, IL-17 and TNFα contribute most probably to the 

perpetuation of the chronic inflammatory state in liver. Since sustained liver inflammation 

drive to liver fibrosis, neutralization of IL-17 and/or TNFα at the early phase of the liver 

injury can be a promising therapeutic strategy to control liver inflammation and therefore to 

prevent fibrosis. 
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4 IL-17 and TNFα may impair muscle function by acting on myoblast 
inflammatory reponse and the SOCE calcium pathway in myoblats 

 

Beringer A & Gouriou Y, Lavocat F, Ovize M, and Miossec P. Blockade of store-operated 
calcium entry reduces cytokine-induced inflammatory response in human myoblasts. (In 
review) 

4.1 Background and Objective 

IIMs (or myositis) are chronic muscle diseases characterized by muscle inflammation and 

dysfunction. Immune cell infiltrates in muscles are observed in IIM patients. Emerging 

evidences suggest that both immune and non-immune processes contribute IIM pathogenesis. 

Elevated levels of IL-17 and TNFα are found in IIM muscle samples and their in vitro effects 

on muscle cells suggest that these cytokines contribute to myositis pathogenesis (Chevrel et 

al., 2003, 2005; De Bleecker et al., 1999; Kuru et al., 2000; Page et al., 2004). Non-immune 

processes including ER stress, mitochondria dysfunction or Ca2+ dysregulation have been 

observed in the skeletal muscles of IIM patients (Coley et al., 2012; Henriques-Pons and 

Nagaraju, 2009; Rayavarapu et al., 2013). SOCE is a major pathway of Ca2+ and its 

overexpression was associated with muscular dystrophy (Edwards et al., 2010). SOCE is 

activated by Ca2+ depletion from the ER that triggers STIM1 translocation to Orai leading to 

store-operated Ca2+ channel opening (Figure 19). 

 

FIGURE 19: Store-operated calcium entry process 
The increase of endoplasmic reticulum Ca2+ store depletion (1) enhances STIM1 aggregation (2) 
leading to store-operated channels Ca2+ opening (3) and Ca2+ entry in cells. Reprinted with the 
permission of the American Thoracic Society. Copyright© 2018 American Thoracic Society. Jia et 
al., 2013 - DOI: 10.1165/rcmb.2013-0040OC. The American Journal of Respiratory Cell and 
Molecular Biology is an official journal of the American Thoracic Society.  
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Objective: To determine the effects of IL-17 and TNFα on the inflammatory response and 

SOCE in human myoblasts. 

4.2 Results 

IL-17 and TNFα increase in synergy IL-6 and CCL20 production by myoblasts. As IL-6 

and CCL20 induce Th17 cell differentiation and recruitment respectively, IL-17 and TNFα 

can contribute to the local Th17 cell induction. 

IL-17 and TNFα promote ER stress and mitochondrial ROS stress in myoblasts. Indeed, 

the IL-17/TNFα combination increases significantly the expression of Grp78 protein, an ER 

stress marker. Moreover, ROS level in myoblasts is enhanced by IL-17 and/or TNFα. 

PBMC-myoblast interaction induces a strong IL-6 and CCL20 release by comparison to 

myoblasts alone or PBMCs alone. PBMC activation with PHA is not required in these 

inductions. The use of cell culture inserts, allowing the soluble factor circulation but not the 

direct cell-cell contacts, reduces strongly the CCL20 secretion whereas the IL-6 production is 

not affected. Neutralization of TNFα but not IL-17 inhibits the IL-6 and CCL20 release in co-

cultures with PBMCs preincubated with PHA. Therefore, the induction of IL-6 production in 

co-cultures is mainly mediated through soluble factor exchanges between PBMCs and 

myoblasts, and TNFα contribute to this induction. 

IL-17 and TNFα increase SOCE. IL-17 and TNFα up-regulate STIM1 protein expression 

but not the STIM1 mRNA expression. The induction of STIM1 appears thus to occur at a 

post-transcriptional level. IL-17 and/or TNFα exposure increase significantly SOCE. 

Inhibition of SOCE reduces the IL-6 production induced by IL-17 and TNFα. Two 

SOCE inhibitors are used to confirm this effect. SOCE interacts therefore with immune 

processes. 

4.3 Conclusion 

IL-17 and TNFα play an important role in myoblast inflammatory response by inducing the 

secretion of pro-inflammatory cytokines. IL-17 and TNFα promote also ER stress, ROS 

production and SOCE whereas SOCE inhibition reduces the secretion of IL-6 induced by IL-
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17/TNFα. Therefore, the immune processes and the calcium dysregulation interplay. 

Neutralization of IL-17 and/or TNFα may be a promising therapeutic strategy to control both 

immune and non-immune pathological mechanisms in IIMs. 
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Abstract 26 
Muscle inflammation as in idiopathic inflammatory myopathies (IIM) leads to muscle 27 

weakness, mononuclear cell infiltration and myofiber dysfunction affecting calcium channels. The 28 
effects of interleukin-17A (IL-17) and tumor necrosis factor- on inflammation and 29 
calcium changes were investigated in human myoblasts. Human myoblasts were exposed to IL-17 30 

-operated Ca2+ entry (SOCE) inhibitors (2-ABP or BTP2). For co-31 
cultures, peripheral blood mononuclear cells (PBMC) from healthy donors activated or not with 32 
phytohemagglutinin (PHA) were added to myoblasts at a 5:1 ratio.  33 
IL-17 20 and IL-6 production by myoblasts (>14-fold). 34 
PBMC-myoblast co-cultures enhanced CCL20 and IL-6 production in the presence or not of PHA 35 
compared to PBMC or myoblast monocultures. Anti-IL-17 and/or anti-36 
production of IL-6 in co-cultures (p<0.05). Transwell system that prevents direct cell-cell contact 37 
reduced CCL20 (p<0.01) but not IL-6 secretion. IL-38 
stress marker Grp78, mitochondrial ROS and promoted SOCE activation by 2-fold (p<0.01) in 39 
isolated myoblasts. SOCE inhibitors reduced the IL-6 production induced by IL- . 40 
Therefore, muscle inflammation induced by IL- may increase muscle cell 41 
dysfunction, which, in turn, increased inflammation. Such close interplay between immune and 42 
non-immune mechanisms may drive and increase muscle inflammation and weakness. 43 
 44 

Keywords: inflammatory myopathies, interleukin-17, tumor necrosis factor- -operated 45 
calcium entry, myoblasts  46 
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Introduction 47 
Idiopathic Inflammatory Myopathies (IIM) such as dermatomyositis and polymyositis are 48 

chronic muscle diseases characterized by muscle inflammation, skeletal muscle weakness and 49 
early sarcopenia. Calcium (Ca2+) dysregulation contributes to muscle cell dysfunction with effects 50 
on contractibility (1). Store-operate calcium entry (SOCE) is a major pathway for Ca2+. SOCE is 51 
activated by Ca2+ depletion from the endoplasmic reticulum (ER) that triggers the store-operated 52 
calcium channels (SOCs) opening through stromal-interacting molecule (STIM1) translocation to 53 
Orai. SOCE overexpression was associated with muscular dystrophy (2,3). 54 

IIM are characterized by inflammatory / immune cell infiltration (4,5), which contributes to 55 
muscle inflammation and dysfunction. Among the local secreted was found 56 
upregulated in IIM samples (6 8). Interleukin (IL)-17A, also known as IL-17, was detected in 57 
lymphocytic infiltrates in myositis tissues (9,10) and IL-17 serum level was elevated in IIM 58 
patients (11 13). In cultured human myoblasts, both IL- induced massive myoblast 59 
inflammatory response (9,14,15). The elevated levels of IL-60 
effects suggest that these cytokines play an important role in the pathogenesis of myositis. 61 

Here, the interplay between inflammation and Ca2+ dysregulation was studied in human 62 
myoblasts exposed to IL- . Immune cell and myoblast co-cultures were used to mimic 63 
the immune cell infiltrate found in IIM and to assess the contribution of these cell-cell contacts. 64 
The results indicate that IL-65 
response especially in IL-6 secretion. ER stress, reactive oxygen species (ROS) generation and 66 
SOCE were induced by IL- -6 production 67 
inducted by IL- Such close interplay between immune and non-immune mechanisms 68 
may drive and increase muscle weakness. 69 

 70 
Materials and methods 71 
 72 
Isolation and culture of muscle cells. Muscle samples were obtained from subjects 73 

undergoing orthopedic surgery. Biopsies were performed on m. vastus lateralis (femoral 74 
quadriceps) at distance of the joint. Written informed consent was obtained before surgery 75 
according to the policies of the local ethical committee and the Ministry of Research, which 76 
approved the study (reference number: AC-2010-1164). After surgery, muscle samples were 77 
immediately placed in sterile PBS with antibiotics (penicillin and streptomycin, Eurobio, 78 
Courtaboeuf, France) and washed. The fat and fibrous tissues were removed. Muscle samples 79 
were cut into fragments (1-2mm3) and incubated at 37°C for 30 minutes with 1mg/mL collagenase 80 
(Sigma-Aldrich, St Louis, MO, USA). After washing and filtration, a first selection was done to 81 
remove fibroblasts by incubating the supernatants in petri dishes at 37°C for 1 hour. Unattached 82 
myoblasts were then transferred and cultured at 37°C/5% CO2 -F10 medium (Eurobio) 83 
supplemented with 20% fetal bovine serum (Life Technologies, Carlsbad, USA), 2% Penicillin-84 
Streptomycin (Eurobio), 1% L-glutamine (Eurobio) and 1% Amphotericin B (Eurobio). After 10 85 
days, adherent cells were detached with trypsin (Eurobio), and myoblasts were purified by positive 86 
selection with CD56 microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany), according to 87 
the instructions of the manufacturer. Myoblasts were used between passages 2 and 8. 88 

 89 
Myoblast culture exposures. Myoblasts were seeded at a density of 50,000 cells/cm2. After 90 

adhesion, cells were stimulated with 50ng/mL IL-17A (Dendritics, Lyon, France) or 1ng/mL 91 
TNF  (R&D Systems, Minneapolis, USA) alone or in combination. To inhibit SOCE, BTP2 (or 92 
YM58483) and 2-aminoethyl diphenylborinate (2-APB) inhibitors (Sigma-Aldrich) were used 93 

 94 
 95 
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PBMC isolation and co-culture assays. Whole blood samples were obtained from the 96 
Etablissement Français du Sang. Peripheral blood mononuclear cells (PBMCs) were isolated by 97 
Ficoll-Hypaque (Eurobio) density gradient centrifugation. Cells were maintained in RPMI 1640 98 
medium supplemented with 10% human AB serum (Etablissement Français du Sang, La Plaine 99 
Saint-Denis, France), 2% Penicillin-Streptomycin (Eurobio) and 1% L-glutamine (Eurobio). 100 
PBMCs were activated or not with 5μg/mL phytohemagglutinin (PHA) (Sigma-Aldrich) and 101 
added on adherent myoblasts at a ratio of 5 PBMCs for 1 myoblast. For cell culture insert assays, 102 
myoblasts were cultured at the bottom of a culture plate well and PBMCs were placed in Falcon® 103 
cell-culture inserts (Corning, NY, USA) with a small-pored membrane (0.4μm) preventing cell-104 
cell contacts but not the crossing of soluble factors. For the IL-17 and TNF105 
PBMCs activated or not with PHA for 24 hours were exposed to an anti-IL-17 antibody (R&D 106 
Systems) and/or the anti-TNF antibody infliximab (Merck, Kenilworth, USA) at 10μg/mL for 3 107 
hours before being added to the HepaRG cells. 108 

 109 
Enzyme-linked immunosorbent assay (ELISA). After 48 hours of treatment, supernatants 110 

were harvested and the IL-6 and chemokine (C-C motif) ligand 20 (CCL20) productions were 111 
quantified with commercially available ELISA kits (R&D Systems) according to the 112 
manufacturer  113 

 114 
Quantitative real time-PCR. Total RNA was purified using an RNeasy® Plus Mini kit 115 

(Q -Rad, Hercules, 116 
CA, USA). PCR amplification was performed using the CFX96TM Real time system instrument 117 
(Bio-Rad) with the iTaqTM universal SYBR® green supermix (Bio-Rad) and the Qiagen 118 
QuantiTect® primers (QT00083538 for STIM1 and QT01870043 for ORAI1). The expression of 119 
the genes of interest was normalized to the expression of the housekeeping GAPDH gene. 120 

 121 
Cell lysis and western blotting. Cell lysates were obtained by lysing cells with RIPA buffer 122 

supplemented with 1mM Na3VO4,1 mM DTT, 20mM NAF, 5mM EDTA and a cocktail of 123 
proteases inhibitor. Total protein concentration was determined using Bicinchoninic acid method 124 
(BCA, Interchim) and 25μg of protein of each sample was loaded on 12% sodium dodecyl sulfate 125 
polyacrylamide gel (SDS-PAGE). Migration was performed during 15 minutes at 90V followed 126 
by 60 minutes at 130V. Proteins were then blotted on a polyvinylidene difluoride (PVDF) 127 
membrane by electro transfer (Trans-Blot Turbo Transfer, Bio-Rad). PVDF membrane was 128 
incubated at room temperature for 1 hour with 5% milk in PBS for blocking and then incubates 129 
overnight at 4°C in the same buffer with the primary antibody (Grp78, sc-376768; STIM1, 130 
ab108994; ORAI1, sc68895; Tubulin, sc-5286). Secondary Horse radish peroxidase (HRP) 131 
coupled antibodies and ECL (entry-level peroxidase substrate for enhanced chemiluminescence) 132 
plus kit and Western Blotting detection system from GE Healthcare were used to reveal the 133 
proteins. The protein amount was determined using ImageLab software (Bio-Rad). 134 

 135 
Wide-field microscopy for Ca2+ live cell imaging. Cells were imaged on an epifluorescence 136 

microscope Leica DMI6000B using 40x objective equipped with Orca-Flash4.0 digital camera 137 
(Hamamatsu). Myoblasts were double excited at 340 and 380nm and emission was collected at 138 
510nm with identical acquisition parameters. Medium was replaced by a Calcium Containing 139 
Buffer (CCB) (in mmol/L: 140NaCl, 5KCl, 10HEPES, 1MgCl2, 2CaCl2, 10glucose, adjusted to 140 
pH7.4) containing 3μmol/L of fura2-AM during 30min at room temperature. Cells were washed 141 
twice with calcium free buffer in which 0.1mmol/L EGTA was added and placed under the 142 
microscope. For depletion of Ca2+ stores, cyclopiazonic acid (CPA) (10143 
2mM calcium solution (CCB) was added to trigger the SOCE. Fluorescence ratios were calculated 144 
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in metaFluor 6.3 (Universal Imaging) and analyzed in Origin Pro (OriginLab) + GraphPad Prism 4 145 
(GraphPad). 146 

 147 
Confocal microscopy for oxidative stress detection. Cells were imaged on a confocal 148 

microscope Nikon A1r using 40x objective. Myoblasts were excited at 640nm and emission was 149 
collected at 665nm. Medium was replaced by a Calcium Containing Buffer (CCB) (in mmol/L: 150 
140NaCl, 5KCl, 10HEPES, 1MgCl2, 2CaCl2, 10glucose, adjusted to pH7.4) containing 151 
2.5μmol/L of  during 30min at 37°C. Fluorescence intensity was 152 
analyzed in ImageJ Fiji (https://fiji.sc/#, NIH). A threshold at the third quartile of the pixel 153 
intensity distribution was applied before the analysis. 154 

 155 
Confocal microscopy for STIM1 puncta analysis 156 
Cells were imaged on a confocal microscope Nikon A1r using 40x objective. Myoblasts were 157 

excited at 488nm and emission was collected at 510nm. Medium was replaced by a calcium free 158 
buffer (CFB) (in mmol/L: 140NaCl, 5KCl, 10HEPES, 1MgCl2, 0.1EGTA, 10glucose, adjusted to 159 
pH7.4). Cells were washed twice with calcium free buffer in which 0.1mmol/L EGTA was added 160 
and placed under the microscope. For depletion of Ca2+ stores, cyclopiazonic acid (CPA) 161 
was used in order to form STIM1 puncta. 162 

For each coverslip, 10 cells were imaged for each experiment and then analyzed with either 163 
Image J to calculate the colocalization coefficients or MATLAB® (MathWorks®) to perform 164 
Image Correlation spectroscopy (ICS). 165 

For ICS analysis, images of fluorescence channel were filtered and transformed in binary 166 
images. The filtering threshold was calculated automatically by the algorithm and determined as 167 
the mean value of the fluorescence intensity in each image. The series of images were analyzed 168 
with a batch-  (16). 169 
Mean and SEM of both surface area and density of the fluorescent clusters were figured out 170 
automatically by the batch-ICS algorithm. 171 

 172 
Statistical analysis. Data are presented as the mean ± SEM. Statistical differences were 173 

analyzed using the non-parametric Wilcoxon paired-test. P-values lower than 0.05 were 174 
considered significant. 175 

 176 
Results 177 
 178 
Synergistic effect of IL-  on CCL20 and IL-6 production by myoblasts 179 
IL-6 is a pro-inflammatory cytokine involved in the differentiation of Th17 cells, the main IL-180 

17-producing cells. By attracting Th17 cells and dendritic cells, CCL20 plays an important role in 181 
the local immune cell recruitment (17). IL-17 and TNF are involved in IL-6 and/or CCL20 182 
production by muscle cells (9,14,15). but the effect of their combination has not yet been 183 
investigated. The IL-17/T -6 and CCL20 release was studied in human myoblasts. 184 
IL- - -6 production by 4-, 3- 185 
and 14-fold respectively compared to untreated condition (Figure 1A). CCL20 secretion by 186 
myoblasts was also induced by IL-17 alone (4- -fold) ant the IL-187 
combination (29-fold) compared to the control condition (p<0.05) (Figure 1B). Therefore, the IL-188 

L-6. By acting on IL-189 
6 and CCL20 secretion, IL- local Th17 cell induction. 190 

 191 
IL- ER stress and mitochondrial ROS in myoblasts 192 
To study the ER stress triggered by pro-inflammatory cytokine exposure, the expression of 193 

BiP/Grp78 protein was quantified. BiP/Grp78 protein controls the activation of the ER stress 194 

In review
experiment and thend then

fficients or MATLAB® (Mants or MATLAB® (MathWt
CS).

ages of fluorescence channel cence channel werewe filtered and trailtered and 
ltering threshold was calculated automatically by the ad was calculated automatically by the a

an valn value of the fluorescence intensity in each imagerescence intensity in each ima
batchtch-
nd SEM of both surface area ad SEM of both surface area a
cally by the batchlly by the batc ICS



136 
6 

 

sensors and to initiate the ER stress response known as the unfolded-protein response (18). As 195 
observed for the secretion of CCL20 and IL-6, IL-17 and cooperated to increase the 196 
expression of BiP/Grp78 protein compared to IL-17 and TNF  alone (Figure 2A and B). In 197 
addition to the unfolded-protein response, oxidative stress and accumulation of reactive oxygen 198 
species (ROS) initiate and contribute to the inflammatory response. Using confocal microscopy, a 199 
1.5-fold increase in mitochondrial ROS and a 2-fold increase with both cytokines (p<0.0001) was 200 
observed -17 treated myoblasts (Figure 2C and D). 201 

 202 
PBMC-myoblast interaction induces a strong IL-6 and CCL20 release 203 
To better understand the consequences of immune cell infiltration in muscle tissue of IIM 204 

patients (4,5), a model of co-culture between myoblasts and PBMC was used. CCL20 and IL-6 205 
were quantified in co-culture supernatants after 48 hrs. PBMC from healthy donors were used. No 206 
contribution of alloreactivity has been detected in the same short-term co-culture model (19,20). 207 
The PBMC-myoblast interaction induced a strong CCL20 and IL-6 production by comparison to 208 
myoblasts alone or PBMC alone (P<0.01) (Figure 3A and B). PBMC activation with PHA was not 209 
required for the increase of CCL20 and IL-6 secretion in co-cultures (Figure 3A to F). 210 

To determine the role of PBMC-myoblast contact in the inflammatory process, transwell cell 211 
culture inserts allowing the circulation of soluble factors but not direct cell-cell contact were used. 212 
Myoblasts were first added to the bottom of the well and PBMC to the insert. The use of these 213 
inserts reduced strongly CCL20 secretion by 86% in resting co-cultures (p<0.01) and by 77% in 214 
PHA-stimulated co-cultures (p<0.01) (Figure 3C). In contrast, the IL-6 release in co-cultures 215 
stimulated or not with PHA was not affected (Figure 3D). Therefore, the induction of IL-6 in co-216 
cultures was mainly mediated through soluble mediators between PBMCs and myoblasts. 217 

To determine the contribution of IL- CCL20 and IL-6 218 
release in co-cultures, PBMCs activated with PHA for 24 hours were exposed to specific 219 
inhibitors of IL-17 an to myoblast cultures. This PBMC pre-incubation 220 
step was used to better mimic the in vivo conditions in chronic inflammatory state. As shown in 221 
figures 3E and 3F, neutralization of IL-17 did not reduce the CCL20 and IL-6 secretion in our co-222 
culture system. By contrast, the anti-  and IL-6 production 223 
both in unstimulated condition (36% and 42% of inhibition respectively, p<0.05) and PHA 224 
condition (34% and 35% of inhibition respectively, p<0.05). Moreover, the use of both anti-IL-17 225 
and anti- -6 secretion without additive or 226 
synergistic inhibitory effects (Figures 3E and F). d to the induction of 227 
CCL20 and IL-6 release in PHA-activated co-cultures. 228 

 229 
IL-17 and  increase store operated calcium entry (SOCE) 230 
Inflammation increases intracellular Ca2+ concentrations in several inflammatory muscle 231 

disorders. The routes of calcium entry include calcium leak channels, stretch-activated channels, 232 
receptor-operated channels, and store-operated calcium channels. Ca2+ influx is sufficient to 233 
induce muscular dystrophy through a TRPC-dependent mechanism (21). The pro-inflammatory 234 
cytokine  has been shown to enhance SOCE in human airway smooth muscle cells (22). The 235 
effect of IL-17 and TNF on the calcium homeostasis has not been investigated in the context of 236 
IIM pathogenesis.  237 

Orai1 and STIM1 mRNA levels were first measured in human myoblasts after 6 and 12 hrs of 238 
IL-17 and/or TNF  exposure. No significant effect in mRNA levels of ORAI1 and STIM1 was 239 
detected at 6 hrs (data not shown) and 12 hrs. (Figure 4A and B). Orai1 and STIM1 protein levels 240 
were next investigated by western blot. IL-17/TN  STIM1 expression 241 
compared to control (Figure 4E and F). STIM1 puncta formation analysis revealed no significant 242 
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difference in the puncta density, but an increase of STIM1-puncta surface in IL17/TNF  243 
conditions (Figure 4G and H). 244 

To confirm the effect of cytokines on SOCE, a fluorescence-based measurement of SOCE in 245 
human myoblasts was performed after cytokine treatment. IL-17 and TNF single treatment 246 
modified the slope of SOCE by 1.4-fold and the IL- mbination by 2-fold compared to 247 
control condition (p<0.01) (Figure 4I and J).  248 

 249 
Inhibition of SOCE reduces IL-6 production induced by the IL-  250 
To assess the SOCE contribution to the myoblast inflammatory response, myoblasts were 251 

stimulated with IL-17 and/or TNF -APB or BTP2 SOCE inhibitors. IL-6 252 
release by myoblasts was quantified at 48 hrs. The 2-ABP and BTP2 inhibitors inhibited the 253 
induction of IL-6 production by IL-17 and/or TNF -dependent manner. The induction of 254 
IL-6 secretion by the IL-17 and TNF ombination was reduced by 42% (p<0.05) with 2-ABP at 255 
50 , and by 19% (p<0.05) and 33% (p<0.01) with BTP-2 at 10 and 20 , respectively (Figure 256 
5A and B). Therefore, SOCE interacts with immune mechanisms to further increase the myoblast 257 
inflammatory response. 258 

 259 
Discussion 260 
Both immune and non-immune mechanisms contribute to IIM pathogenesis. The interplay 261 

between these two mechanisms was studied in human myoblasts stimulated with the pro-262 
inflammatory cytokines IL- . Immature muscle precursors are immunologically active 263 
cells, playing an important role in disease progression and probably in muscle regeneration defects 264 
observed in IIM patients (15,23,24). The results indicate that in addition of the inflammatory 265 
response induced by IL- IL- promoted also ER and mitochondrial 266 
stress and calcium dysregulation in myoblasts, leading to muscle cell dysfunction.  267 

The immune cell infiltrate contributes to the pathogenesis of IIM through cell-cell interactions 268 
and the release of cytokines. Myoblasts may contribute to mononuclear cell attraction by secreting 269 
chemokines in response to local inflammation (23). CCL20 expression was found in 270 
dermatomyositis and polymyositis muscle samples and was associated with dendritic and Th17 271 
cell homing (10). In this study, IL- d a cooperative synergistic effect on CCL20 272 
secretion by isolated myoblasts. These results are in line with our previous reports indicating that 273 
IL-17 increases TLR-3 agonist and IL- -induced CCL20 production by myoblasts (9,15). 274 
Therefore, IL-17 can exacerbate the weak effects of low concentrations of -275 
CCL20 release. Because CCL20 induces Th17 and dendritic cell recruitment, this local increase of 276 
CCL20 could contribute to the induction and perpetuation of the IIM local inflammation.  277 

IL-6 is a pleiotropic inflammatory cytokine produced by myoblasts in response to 278 
inflammation. The IL-17/IL- - been previously 279 
shown to have additive/synergistic effects on the induction of IL-6 secretion by myoblasts 280 
(9,14,23,25). Here, IL- -6. 281 

To mimic the in vivo environment characterized by immune cell infiltration in IIM, a PBMC 282 
and myoblast co-culture system was used. The interactions between PBMC and myoblasts 283 
induced a strong CCL20 and IL-6 release and PBMC activation with PHA was not required for 284 
this induction. In synoviocyte-PBMC or skin fibroblast-PBMC co-cultures, cell interactions were 285 
also sufficient to induce the IL-6 or IL-8 secretion (20,26). The increase of CCL20 production in 286 
co-cultures was mediated through direct PBMC-myoblast contacts since the use of cell culture 287 
insert reduced strongly its production in co-culture. Another study showed that the T cell  288 
myoblast direct interactions can lead to T cell proliferation (27). By contrast, the IL-6 secretion 289 
was mainly induced through soluble factors in myoblast-PBMC co-culture whereas the direct cell 290 
contact was significantly involved in IL-6 generation in synoviocyte-PBMC or skin fibroblast-291 
PBMC co-cultures (20,26). Neutralization of IL-17 and/or  in the co-culture system with 292 
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pre-incubated PBMCs and myoblasts reduced IL-6 release, confirming the contribution of the 293 
soluble factors. Therefore, the soluble inflammatory cytokines IL-17 and  could have an 294 
important role in initiating and maintaining inflammation in vivo in IIM through the production of 295 
IL-6, which then contributes to Th17 cell differentiation. 296 

The ER stress pathways are activated in tissues from patients with IIM (28,29) and interplay 297 
with mitochondrial dysfunction and ROS generation (30). In myoblasts, we identified that IL-17 298 

, suggesting that these cytokines may 299 
participate in vivo to these non-immune mechanisms. Moreover, ER is the main intracellular Ca2+ 300 
storage, and ER stress induces Ca2+ ER release. Changes in Ca2+ homeostasis can affect muscle 301 
contractibility (31). Ca2+ dysregulation was reported in sporadic inclusion body myositis (32). 302 
SOCE is a key component of the intracellular calcium concentration and plays an important role in 303 
muscle function and development (3,33,34). SOCE is modified during inflammation (22,35). In 304 
this study, IL-17 and/or  exposure increased SOCE in myoblasts with a higher effect when 305 
IL-17 and TNF  were combined. In human airway smooth muscle cells,  enhanced Orai1, 306 
STIM1, and SOCE (35). In myoblasts,  alone did not increase significantly Orai1 and 307 
STIM1 expression but the concentration was 20-fold lower. However, the IL-17/TNF  308 
combination increased significantly STIM1 protein level in myoblasts but had no significant effect 309 
on STIM1 and Orai1 mRNA expression or Orai1 protein level.  and IL-13 have been shown 310 
to increase STIM1 aggregation in human airway smooth muscle cells, contributing to SOCE 311 
induction (22). Therefore, IL- Ca2+ release from 312 
ER and enhancing STIM1 aggregation. 313 

To determine the role of SOCE in the inflammatory response induced by IL-17/ , SOCE 314 
inhibitors were used. SOCE inhibition reduced the secretion of IL-6 following IL-17/  315 
exposure. In human bronchial epithelial cells, SOCE inhibition with BTP2 inhibited IL-6 and IL-8 316 
production after allergen stimulation (36). Therefore, in addition to muscle cell dysfunction, 317 
SOCE may have a central role in the induction of inflammation. Its neutralization could be a 318 
promising therapeutic strategy in IIM. These results in myoblasts are summarized in Figure 6. 319 
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Figure legends: 456 
 457 
Figure 1: Synergistic effect of IL- -6 production by 458 

myoblasts. Myoblasts were treated with IL-17 (50 ng/mL) and/or TNF (1 ng/mL) for 48 hrs. IL-459 
6 and CCL20 secretion by myoblasts was quantified by ELISA (A, B). Data are the mean of 5 to 8 460 
independent experiments ± SEM; * p<0.05, ** p<0.01 vs. control untreated condition and # 461 
p<0.05, ## p<0.01 vs. other inflammatory conditions. 462 

 463 
Figure 2: IL- ER stress and mitochondrial ROS in myoblasts. 464 

Myoblasts were treated with IL-17 (50 ng/mL) and/or TNF  ng/mL) for 24 hrs. Expression of 465 
BiP/Grp78 protein was measured by western-blot and the band density was normalized with 466 
tubulin expression (A, B). Mitochondrial oxidative stress measurements (ROS) of human 467 
myoblasts was measured with the fluorescence intensity of CellRox Dye, using 40x objective of a 468 
confocal microscope Nikon A1r, scale bar 70μm (C, D). Data are the mean of 4 to 7 independent 469 
experiments ± SEM, *** p<0.001 and **** p<0.0001, vs. control untreated condition. 470 

 471 
Figure 3: PBMC-myoblast interaction induces a strong production CCL20 and IL-6. 472 

PBMC and myoblasts were cultured alone or in co-culture at a ratio of 5 PBMCs for 1 myoblast 473 
for 48 hrs in the presence or not of PHA (5 -6 secretion by myoblasts was 474 
quantified by ELISA (A-F). The contribution of direct cell-cell contact was investigated with a 475 
cell culture permeable insert (C, D). PBMCs were pre-incubated for 24h in presence or not of 476 
PHA and then exposed or not to an anti-IL-17 antibody and/or an anti- for 3h 477 
before being added to the myoblast cultures. Data are expressed as CCL20 and IL-6 supernatant 478 
level percentages compared to the non-activated pre-incubated PBMC  myoblast co-cultures (E, 479 
F).. Data are the mean of 6 to 14 independent experiments ± SEM; * p<0.05, ** p<0.01 vs. control 480 
co-culture condition. 481 

 482 
Figure 4: IL-17 and TNF -operated calcium entry. Myoblasts were treated 483 

with IL-17 (50 ng/mL) and/or TNF  ng/mL). mRNA levels of STIM1 and ORAI1 at 12 hrs was 484 
expressed as fold changes compared to control (A, B). ORAI1 and STIM1 protein was measured 485 
by western-blot and the band density was normalized with the tubulin expression. (C-F). 486 
Representative image of STIM1 puncta in human myoblast treated with IL-17 (50 ng/mL) and 487 

 ng/mL) for 24 hours. Image Correlation Spectroscopy (ICS) analysis of STIM1 puncta 488 
(left inset) mean density of puncta (μm ). (right inset) mean surface of puncta (puncta/μm ). Data 489 
are the mean of 3 independent experiments with cells from 3 different donors ± SEM; * p<0.05 vs. 490 
control untreated condition, scale bar 3μm (G, H). SOCE was measured by using Fura2-AM dye 491 
in human myoblasts. Cells were imaged on an epifluorescence microscope using a 40x objective. 492 
Trace is a representative measurement of SOCE in IL17/TNF  treated myoblasts. (I). Slope 493 
analysis of the SOCE (J). Data are the mean of 4-5 independent experiments ± SEM; * p<0.05 494 
and **** p<0.00001, vs. control untreated condition. 495 

 496 
Figure 5: Inhibition of SOCE reduces IL-6 production induced by the IL-497 

combination. Myoblasts were stimulated with IL- the SOCE 498 
inhibitor 2-APB (10; 25 and 50 or BTP2 (10 and 20 for 48 hrs. CCL20 and IL-6 499 
secretion by myoblasts was quantified by ELISA (A, B). Data are the mean of 7 independent 500 
experiments ± SEM; ** p<0.01 vs. control untreated condition and # p<0.05, ## p<0.01 vs. other 501 
inflammatory conditions 502 

 503 
Figure 6: IL- mediate muscle damage and weakness through immune and 504 

non-immune pathways in myoblasts. The immune cell infiltration in IIM constitutes a local 505 
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source of cytokines and promotes the cell-cell interactions. IL-17 mainly produced by Th17 cells, 506 
in synergy on myoblasts to increase IL-6 and CCL20 secretion. Because IL-6 is 507 

involved in the Th17 cell differentiation and CCL20 in dendritic and Th17 cell recruitment, IL-6 508 
and CCL20 mediate a positive feedback loop promoting local IL-17 production. IL-1509 
induce also non-immune pathways with ROS production, ER stress and SOCE activation. The IL-510 

activation are probably closely 511 
linked. SOCE and calcium dysregulation contribute to IL-6 release induced by IL-  512 
ER: endoplasmic reticulum; ROS: reactive oxygen species; chemokine (C-C motif) ligand 20: 513 
CCL20; DC: dendritic cells 514 
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DISCUSSION 
 

This study highlights the cooperative effects of IL-17 and TNFα on the induction of the 

inflammatory response in hepatocytes, HSCs and myoblasts by using human cell cultures. In 

addition, the IL-17 and TNFα association can also mediate non-immune adverse effects in the 

liver and the muscles that could impair liver and muscle functions. These findings confirm the 

systemic and pleiotropic activities of IL-17 and TNFα. Moreover, IL-17 and TNFα contribute 

partially to the increase of pro-inflammatory mediators induced by the interactions between 

PBMCs and hepatocytes, HSCs or myoblasts. In this way, IL-17 and TNFα are pro-

inflammatory mediators in the bidirectional crosstalk between the PBMCs and the resident 

tissue cells, which can drive to chronic inflammation.  

1 The use of human cells for the in vitro cellular models 

1.1 Hepatocyte cultures 

In order to keep the human- and the organ-specific properties, in vitro models with human 

cells from liver were used in this study. Because PHHs are from native livers, they are 

considered to be a gold standard approach to reflect the specific functionality and mediators 

of the human organ. However, liver biopsies are rare and they can have important individual 

differences due to several factors such as genetic factors, environmental factors or 

pathological conditions (e.g. infections, steatosis, cancer). For these reasons, human hepatoma 

cell lines are useful alternative tools. Here, three immortal cell lines (Huh7.5, HepG2 and 

HepaRG cells) derived from liver tissue of patients with hepatocellular carcinoma were used. 

Interestingly, the HepaRG cells evolve from a bipotent progenitor cells toward both 

hepatocyte-like and primitive biliary epithelial-like cells (Marion et al., 2010). To choose the 

most relevant cell line, Huh7.5, HepG2 and HepaRG cells were exposed to IL-17 and TNFα. 

The IL-17 and TNFα combination increases in synergy the IL-6 and IL-8 secretion in 

HepaRG cell and PHH cultures but not in Huh7.5 and HepG2 cell cultures. The low TNFR2 

mRNA levels in Huh7.5 and HepG2 cells compared to HepaRG cells may contribute to the 
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different levels of IL-6 and IL-8 secretion between the cell lines following IL-17 and TNFα 

exposure. Based on these results, the HepaRG cell line was selected for the experiments of 

this study. 

1.2 Hepatic stellate cell cultures 

To study the role of IL-17 and TNFα as well as the effects of cell interactions on the HSCs, 

the LX-2 human HSCs were used. The LX-2 cells were generated by spontaneous 

immortalization in low serum conditions. They are now well characterized and share key 

features with human HSCs including cytokine signaling or fibrogenesis (Xu et al., 2005). 

Indeed, the LX-2 cells express and respond to IL-17, TNFα, IL-6 as well as TGFβ (Fabre et 

al., 2014; Meng et al., 2012; Robert et al., 2016; Schoenherr et al., 2010; Sun et al., 2012). 

Nevertheless, it would be interesting to use primary human HSCs to confirm our results 

obtained with the LX-2 cells. 

1.3 Myoblast cultures 

Immature myoblast precursors are present in normal muscle tissue. After muscle damage, 

these cells proliferate and participate in the regeneration process. The immature myoblast 

precursors appear to be implicated in the pathogenesis of inflammatory myopathies. Indeed, 

in contrast to normal muscle tissue, myositis tissues are characterized by the overexpression 

of HLA class I antigens and myositis-associated autoantigens, as well as activation of TLR 

pathway and production of type I interferon, all observed in immature myoblast precursors 

(Casciola-Rosen et al., 2005; Tournadre et al., 2010, 2012). In addition, damage of these cells 

accomplishing repair may amplify tissue damage and could explain the defective repair and 

the presence of necrotic cells in inflammatory muscles leading to muscular atrophy 

(Tournadre and Miossec, 2013). For these reasons, human myoblasts instead of mature 

myotubes were used in this study. 
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2 The IL-17 and TNFαα  cooperation enhances the hepatic and muscle 
inflammatory response 

2.1 IL-17 and TNFα  cooperate to enhance the expression and/or secretion of pro-
inflammatory mediators 

IL-17 alone is often poorly active. However, IL-17 can synergize with other cytokines such as 

TNFα, IL-1β or IFNγ, leading to increased production of pro-inflammatory mediators such as 

IL-6 and IL-8 by various cell types including synoviocytes or endothelial cells (Beringer et 

al., 2016; Chabaud et al., 1998; Hot et al., 2012). Nevertheless, the effects of the IL-17 and 

TNFα cooperation have not been investigated on liver and muscle cells whereas these two 

cytokines are involved in several liver and muscle disorders or systemic inflammatory 

diseases with hepatic and muscle complications (Beringer and Miossec, 2018; De Bleecker et 

al., 1999; Kuru et al., 2000; Schwabe and Brenner, 2006; Tournadre and Miossec, 2012). In 

this study, IL-17 and TNFα cooperate to promote systemic inflammation by increasing IL-6 

secretion, which in turn, enhances the CRP expression in hepatocytes. IL-17 amplifies also 

the TNFα effect on the induction of IL-8, CCL20 and MCP-1 chemokine expression and/or 

secretion mainly through an IL-6 independent pathway in hepatocyte and LX-2 HSC cultures. 

By promoting the neutrophil-attracting chemokine IL-8, the IL-17 and TNFα combination 

may have a crucial role in the initiation of liver inflammation. These in vitro results are 

consistent with the in vivo murine models of liver injury showing that IL-17 deletion or 

neutralization reduces neutrophil accumulation as well as the levels of inflammatory 

cytokines in liver (Furuya et al., 2015; He et al., 2013; Tan et al., 2013). It would be therefore 

interesting to investigate whether blocking both IL-17 and TNFα induce a further decrease of 

the immune cell recruitment and the release of pro-inflammatory mediators. In myoblast 

cultures, IL-17 and TNFα enhance also in synergy the IL-6 and CCL20 release. Since CCL20 

attracts Th17 cells and IL-6 is involved in Th17 cell differentiation, the IL-17 and TNFα 

synergistic cooperation may contribute to the local Th17 cell induction in the liver and the 

muscles by increasing the IL-6 and CCL20 production. 
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2.2 Mechanisms of the IL-17 and TNFαα  synergistic effects 

Although the IL-17 and TNFα synergistic effects have been well described in several cell 

types, the mechanisms of this interaction on the IL-6 and IL-8 induction are not well 

established. Here, in HepaRG cells, first exposure to IL-17, but not to TNFα, is crucial for the 

initiation of the IL-17 and TNFα synergistic cooperation. Various mechanisms may act at 

several levels: at a receptor level, at a promoter level and at a post-transcriptional level. In 

synoviocytes, IL-17 up-regulated the TNFR2 and the blockade of its receptor reduced the IL-

17 and TNFα synergistic cooperation on the CCL20 production (Zrioual et al., 2009). In 

HepaRG cells, IL-17 and TNFα together but not IL-17 alone induces the TNFR2 mRNA 

expression. The regulation of the TNFR2 appears therefore different between synoviocytes 

and HepaRG cells. Moreover, the TNFR2 mRNA lower in HepG2 and Huh7.5 cells than in 

HepaRG cells could explain the lack of response of the HepG2 and Huh7.5 cells to the IL-17 

and TNFα synergistic effect on the IL-6 and IL-8 secretion. This data suggest that the TNFR2 

could have a key role in the HepaRG cell inflammatory response induced by IL-17 and TNFα 

although the TNFR2 is preferentially activated by the transmembrane form of the TNFα (as 

seen in part 1.3.2). The use of a specific blocking anti-TNFR2 antibody could be useful to 

confirm its involvement in the IL-17 and TNFα cooperation. 

Part of the IL-17 and TNFα cooperation may also occur at a gene transcription level. 

Transcription factor-binding sites for NF-κB and C/EBP (CCAAT/enhancer-binding protein) 

in the IL-6 promoter were both involved in the IL-17 and TNFα synergistic effect on IL-6 in 

an osteoblastic cell line (Ruddy et al., 2004). The up-regulation of C/EBPδ by the IL-17 and 

TNFα stimulation and the increase of C/EBPδ recruitment to the promoter by TNFα may 

participate to the IL-17 and TNFα cooperative effect on the IL-6 induction (Gaffen et al., 

2014; Ruddy et al., 2004; Zimmermann et al., 2015). In addition, by enhancing IκBζ mRNA 

expression in synergy, IL-17 and TNFα may induce a further increase of NF-κB activation 

since IκBζ acts as a NF-κB co-activator (Karlsen et al., 2010; Sparna et al., 2010; 

Zimmermann et al., 2015). 
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Post-transcriptional regulation is important to control cellular transcript abundance and, in 

turn, the levels of secreted proteins. IL-17 can increase the stability of mRNAs induced by the 

TNFα stimulation such as IL-6 and IL-8 mRNA (Hartupee et al., 2007; Henness et al., 2004, 

2006). In this study, IL-17 enhances the IL-6 mRNA stability in HepaRG cells. As the 3’-

untranslated region of the IL-6 mRNA contains adenylate and uridylate (AU)-rich elements, 

IL-17 may promote the binding of stabilizing AU-binding proteins over that of destabilizing 

AU-binding proteins, prolonging IL-6 mRNA half-life (Chowdhury et al., 2013). This IL-17 

effect on the mRNA stabilization could therefore contribute to the IL-17 and TNFα 

synergistic effect on the IL-6 production. 

Multiple mechanisms at different levels appear therefore involved in the IL-17 and TNFα 

synergistic effect. The contribution of these different mechanisms differs from one cell type to 

another as seen with the TNFR2. Moreover, in the same cell type, the mechanism involved 

varies between the gene or mRNA targets of IL-17 and TNFα. Indeed, NF-κB pathways 

participate in the secretion of IL-6 induced by the IL-17 and TNFα cooperation but not in the 

IL-8 secretion in HepaRG cells. In this way, the IL-17 and TNFα synergistic effect on the 

IκBζ up-regulation, which intensifies NF-κB activation, cannot be involved in the IL-

17/TNFα-induced IL-8 production in HepaRG cells. 

2.3 Potential contribution of the IL-17 and TNFαα  synergistic cooperation in 
systemic inflammatory diseases 

This study shows that the effects of TNFα at low concentration can be potentiate by IL-17 in 

the liver and the muscles. These results strengthen the potential important systemic role of IL-

17 and TNFα in autoimmune and inflammatory diseases. However, the concentrations of IL-

17 and TNFα used in our in vitro systems may no reflect the in vivo local concentrations in 

organs or tissues. Moreover, the range of cytokines is limited in our monocultures, which 

reduces the number and the diversity of the interactions between cytokines. Indeed, because 

cytokines act in networks, IL-17 and TNFα can interact with other cytokines to mediate 

additive, antagonistic or synergistic effects. For example, IL-17 can synergize with other 

cytokines such as IL-1β, IFNγ, IL-22 or GM-CSF, in addition to TNFα, to promote 
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inflammation (Beringer et al., 2016). For this reason, a cell-based assay has been developed at 

the laboratory to detect circulating bioactive IL-17 instead of circulating IL-17 levels to select 

the patients more susceptible to respond to an anti-IL-17 therapy (Ndongo-Thiam and 

Miossec, 2015). 

3 The IL-17 and TNFαα  inflammatory reponse may impair the liver and 
muscle function 

3.1 IL-17 and TNFα  induce cell damage in liver 

Since liver inflammation may induce liver damage, the IL-17 and TNFα association could 

also mediate non-immune adverse effects in the liver. Here, the IL-17 and TNFα stimulation 

increases the levels of the intracellular ASAT transaminase in supernatants of hepatocyte cell 

cultures through the induction of IL-6. The IL-17 and TNFα combination can thus mediate 

indirectly liver damage. This hepatotoxic effect of IL-17 has been demonstrated in vivo in 

several models of liver injury in which the IL-17 inhibition reduced the necrotic lesions 

(Furuya et al., 2015; He et al., 2013; Tan et al., 2013). In addition, TNFα was also associated 

with liver injury (Park et al., 2012; Yang and Seki, 2015). 

By acting on HSCs, IL-17 and TNFα could participate to the fibrosis process. In a mice 

model of liver fibrosis, the plasma IL-17 level is increased and inhibition of the IL-17 

pathway attenuates fibrosis whereas the in vivo role of TNFα in liver fibrosis is still 

controversial (Qin et al., 2016; Tan et al., 2013; Yang and Seki, 2015). However, IL-17 and 

TNFα have no direct effect on the pro-fibrotic gene expression in our HSC cultures. 

Nevertheless, IL-17 can enhance the secretion of the main pro-fibrotic cytokine TGFβ by the 

activated Kupffer cells (Hara et al., 2013). In addition, IL-17 and TNFα increase slightly the 

TGFβ mRNA expression in LX-2 cells. Therefore, IL-17 and TNFα could have indirect pro-

fibrotic effects via the induction of TGFβ, which can be amplify by the IL-17 and TGFβ 

synergistic cooperation (Fabre et al., 2014). In this way, it could be interesting to study the 

role of IL-17, TNFα and TGFβ cytokine interplays in the fibrosis process at several time 

points of the cultures. Indeed, it has been suggest that the matrix breakdown mediated by 
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TNFα may be essential at the early stage of liver injury for the recruitment of inflammatory 

immune cells and, later, TGFβ could decrease the initial TNFα-mediated MMP induction 

activity leading to the development of liver fibrosis (Knittel et al., 1999). 

3.2 IL-17 and TNFαα  induce endoplasmic reticulum stress and calcium 
dysregulation 

Muscle weakness and early sarcopenia are observed in inflammatory muscle disorders. Here, 

in human myoblasts, IL-17 and/or TNFα stimulation increase the ER stress and the 

mitochondrial ROS production contributing to cell damage. In addition, the IL-17 and TNFα 

exposure enhances SOCE in myoblasts. This effect on SOCE could impair Ca2+ homeostasis 

that is crucial in the regulation of muscle contraction. Interestingly, the inhibition of SOCE 

reduces the IL-6 release by IL-17 and TNFα. Therefore, immune and non-immune 

mechanisms interplay in the muscles. Controlling inflammation in the muscles could prevent 

muscle damages and dysfunctions, and in turn, the chronicity of the inflammation since the 

non-immune adverse mechanisms also participate in the inflammatory state (Henriques-Pons 

and Nagaraju, 2009). 

4 Cell interactions have an important role in the initiation and the 
outcome of the immune response 

4.1 The co-culture system to study the cell-cell interactions 

During liver or muscle injury, inflammatory immune cells infiltrate the liver or the muscles 

allowing interactions between the infiltrated immune cells and the liver and muscle resident 

cells (Quintin et al., 2010; Tournadre et al., 2009; Warren et al., 2006). These cell interplays 

have certainly a key role in the initiation and the outcome of the inflammatory response. This 

study focuses on the cell interactions between PBMCs, hepatocytes, HSCs and myoblasts as 

hepatocytes are the most abundant cell population in liver; the HSC activation is crucial in 

liver fibrosis and the myoblast precursors have a critical role in myositis. Cells were co-

cultured at a ratio of 25 PBMCs : 5 HepaRG cells : 1 LX-2 cell or 5 PBMCs : 1 myoblast. 

These ratios were based on data from the literature (Barbero-Becerra et al., 2015; Doumba et 
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al., 2013). The objective of this study is to get closer to the in vivo conditions in chronic 

inflammation. For this reason, neutrophils, which are mainly involved in the acute-phase 

response, were not added in our co-culture model. However, to keep the overall response of 

the mononuclear cells, PBMCs instead of purified monocytes or PBLs were used. As PBMCs 

are activated in inflammatory conditions, PBMCs were stimulated with PHA. In addition, 

non-activated PBMCs were also used to determine whether cell interactions could modulate 

the immune response when the immune cells are “quiescent”. Because the cells can interact 

through direct cell-cell contacts and paracrine interactions, cell culture inserts were used to 

assess the contribution of each.  

However, these co-culture systems could be improved. Only one or two cell types from the 

muscles or the liver are studied whereas the cell composition is much varied in vivo in the 

muscles and especially in the liver. Indeed, the liver is characterized by a large hepatic cell 

repertoire including LSECs or Kupffer cells and it is also a rich source of NKT cells and γδ T 

cells (Racanelli and Rehermann, 2006). It would be interesting to develop a human multi-cell 

liver culture model mimicking the cellular arrangement within the liver to better understand 

the overall effect of the cell interplays in the liver. Such a culture system has been proposed 

with primary cells from rat livers (Bale et al., 2016). 

4.2 Interactions between PBMCs, hepatocytes, HSCs or myoblasts increase the 
secretion of pro-inflammatory cytokines and chemokines 

By using our co-culture model, the effects of the cell interactions on the pro-inflammatory 

cytokines and chemokines were studied. PBMC-HepaRG cell interactions enhance the 

expression and/or secretion of IL-6 as well as IL-8, CCL20 and MCP-1 chemokines partially 

through direct cell-cell interactions. PHA activation induces a higher IL-6, IL-8 and CCL20 

release in PBMC-HepaRG cell co-cultures but the contribution of the PHA stimulation is 

weak for the CCL20 production. In contrast, the PHA activation has no effect on the 

induction of the IL-6 and CCL20 release by the PBMC-myoblast interactions. Moreover, the 

direct cell-cell contacts are crucial for the increase of CCL20 levels whereas the induction of 

the IL-6 secretion is mainly mediated by the paracrine interactions in PBMC-myoblast co-

cultures.  
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By inducing IL-6 and several chemokines, these cell interactions can therefore promote 

immune cell recruitment and inflammation within the liver and the muscles, which are 

important in the onset and the persistence of the inflammatory state. The effects of the cell 

interplays on the IL-6 and chemokine levels are mediated through different mechanisms 

depending to the cell type. For example, direct PBMC-myoblast contacts are crucial for the 

induction of CCL20 secretion but not the direct contacts between PBMCs and hepatocytes. 

These observations could help in the identification and targeting of key pro-inflammatory 

molecules involved in the direct cell-cell contacts. The use of in vivo inflammatory models 

will then be needed to validate the potential targets. 

4.3 IL-17 and TNFαα  contribute to the induction of IL-6 and IL-8 secretion by the 
cell interactions 

Because IL-17 and TNFα cooperate to induce a pro-inflammatory response in hepatocyte, 

HSC and myoblast cultures, these two cytokines can contribute to the induction of IL-6, IL-8 

and/or CCL20 observed in co-cultures. Neutralization of IL-17 and/or TNFα reduces the IL-6 

and IL-8 secretion but not the CCL20 production induced by the interactions between 

PBMCs, hepatocytes and/or HSCs. TNFα also contributes to the enhanced IL-6 and CCL20 

release in PBMC-myoblast co-cultures. However, the blockade of both IL-17 and TNFα does 

not induce a further inhibition of the IL-6, IL-8 and/ CCL20 levels in PBMC-hepatocyte and 

PBMC-myoblast co-cultures. It could be interesting to repeat these assays with PBMCs from 

patients with active systemic inflammatory diseases instead of PBMCs from healthy donors. 

Indeed, the phenotype and the reactivity of the PBMCs are different between these two donor 

populations and may affect the IL-17 and TNFα contribution in co-cultures. 

4.4 Hepatocytes participate in the maintenance of immune tolerance in liver 

The hepatocytes are the main parenchymal tissue of the liver, they are traditionally known for 

their metabolic activities. However, these cells produce acute-phase proteins and express 

MHC I and II molecules in inflammatory conditions. Hepatocytes can therefore participate in 

the immune cell response (Franco et al., 1988; Herkel et al., 2003). As described above, 

PBMC-HepaRG cell interactions may contribute to immune cell recruitment and 
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inflammation by increasing IL-6 and chemokine expression and/or synthesis through both 

direct cell contacts and paracrine interactions. In addition, the presence of HepaRG cells 

modulates T-cell polarization by increasing T-bet mRNA expression and by decreasing the 

CD3+ CD4+ IL-17+ cell frequency in PHA-activated PBMCs. Surprising, the PBMC-HepaRG 

cell interactions increase the mRNA levels of some pro-inflammatory cytokines but not their 

secretion. Lastly, the HepaRG cells inhibit the MHC II expression on PBMCs activated with 

PHA as well as the PHA-induced PBMC proliferation. In contrast, the skin fibroblasts have 

no effect on the induction of PBMC proliferation by PHA. Therefore, the hepatocytes seem to 

mediate immunosuppressive signals on activated PBMCs, which certainly contribute to the 

maintenance of immune tolerance in liver and the low levels of graft rejection in liver 

transplantations. However, the HepaRG cell viability decreases in presence of PHA-activated 

PBMCs. Long-term exposure to PHA-activated PBMCs could lead to a massive HepaRG cell 

death and, consequently, a loss of tolerogenic HepaRG cell activities. This situation probably 

occurs in chronic liver diseases that are characterized by hepatocyte death, sustained 

inflammation and the development of fibrosis driving to liver cirrhosis. In this way, 

identification of the tolerogenic pathways that appear specific to the liver could lead to new 

therapeutic approaches to prevent the establishment and the progression of chronic 

inflammation. 
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CONCLUSION 
 

Inflammation is a dynamic process in which cell interactions play an important role in the 

initiation, progression, persistence or resolution of the inflammatory state. The direct cell-cell 

contacts as well as the exchanges of soluble factors, such as IL-17 and TNFα, contribute to 

the immune response. By increasing in synergy the expression and the secretion of pro-

inflammatory cytokines and chemokines by hepatocytes, HSCs and myoblasts, IL-17 and 

TNFα can promote immune cell recruitment and the production of systemic inflammatory 

mediators. In addition, the IL-17 and TNFα association can also mediate non-immune adverse 

effects in the liver and the muscles that could impair the hepatic and muscular functions. All 

these effects participate in the chronicity of the inflammatory response and can, in turn, 

enhance the IL-17 and TNFα synthesis leading to a pro-inflammatory feedback loop. 

Neutralization of IL-17 and/or TNFα at the onset of the inflammatory process can be a 

promising therapeutic strategy to control liver and muscle inflammation and therefore prevent 

tissue injury and dysfunction. IL-17 and TNFα inhibitors are currently available on the drug 

market for the treatment of several autoimmune diseases including psoriasis or ankylosing 

spondylitis. Their use could be extended to other systemic inflammatory disorders. 
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