T. Fransson, C. Weninger, M. Kubin, P. Aller, L. Lassalle et al., Dropon-demand sample delivery for studying biocatalysts in action at X-ray free-electron lasers, Nat. Methods, vol.14, pp.443-449, 2017.

E. F. Garman and M. Weik, Radiation Damage in Macromolecular Crystallography, Methods Mol. Biol. Clifton NJ, vol.1607, pp.467-489, 2017.

C. Gati, G. Bourenkov, M. Klinge, D. Rehders, F. Stellato et al., Serial crystallography on in vivo grown microcrystals using synchrotron radiation, IUCrJ, vol.1, pp.87-94, 2014.

U. K. Genick, G. E. Borgstahl, K. Ng, Z. Ren, C. Pradervand et al., Structure of a protein photocycle intermediate by millisecond time-resolved crystallography, Science, vol.275, pp.1471-1475, 1997.

H. M. Ginn, A. S. Brewster, J. Hattne, G. Evans, A. Wagner et al., A revised partiality model and post-refinement algorithm for X-ray free-electron laser data, Acta Crystallogr. D Biol. Crystallogr, vol.71, pp.1400-1410, 2015.

A. Gorel, K. Motomura, H. Fukuzawa, R. B. Doak, M. L. Grünbein et al., Multi-wavelength anomalous diffraction de novo phasing using a two-colour X-ray free-electron laser with wide tunability, Nat. Commun, vol.8, p.1170, 2017.

T. Grotjohann, I. Testa, M. Leutenegger, H. Bock, N. T. Urban et al., Diffraction-unlimited alloptical imaging and writing with a photochromic GFP, Nature, vol.478, pp.204-208, 2011.

T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling et al., , 2012.

T. P. Halsted, K. Yamashita, K. Hirata, H. Ago, G. Ueno et al., An unprecedented dioxygen species revealed by serial femtosecond rotation crystallography in copper nitrite reductase, IUCrJ, vol.5, pp.22-31, 2018.

M. Heymann, A. Opthalage, J. L. Wierman, S. Akella, D. M. Szebenyi et al., Room-temperature serial crystallography using a kinetically optimized microfluidic device for protein crystallization and on-chip X-ray diffraction, IUCrJ, vol.1, pp.349-360, 2014.

K. Hirata, K. Shinzawa-itoh, N. Yano, S. Takemura, K. Kato et al., Determination of damagefree crystal structure of an X-ray-sensitive protein using an XFEL, Nat. Methods, vol.11, pp.734-736, 2014.

M. S. Hunter, B. Segelke, M. Messerschmidt, G. J. Williams, N. A. Zatsepin et al., Fixed-target protein serial microcrystallography with an x-ray free electron laser, Sci. Rep, vol.4, p.6026, 2014.

M. Ibrahim, R. Chatterjee, J. Hellmich, R. Tran, M. Bommer et al., Improvements in serial femtosecond crystallography of photosystem II by optimizing crystal uniformity using microseeding procedures, Struct. Dyn, 2015.

I. Ishigami, N. A. Zatsepin, M. Hikita, C. E. Conrad, G. Nelson et al., Crystal structure of CO-bound cytochrome c oxidase determined by serial femtosecond X-ray crystallography at room temperature, Proc. Natl. Acad. Sci. U. S. A, vol.114, pp.8011-8016, 2017.

T. Ishikawa, H. Aoyagi, T. Asaka, Y. Asano, N. Azumi et al., Nat. Photonics, vol.6, pp.540-544, 2012.

,

L. C. Johansson, D. Arnlund, G. Katona, T. A. White, A. Barty et al., Structure of a photosynthetic reaction centre determined by serial femtosecond crystallography, Nat. Commun, vol.4, p.2911, 2013.

L. C. Johansson, D. Arnlund, T. A. White, G. Katona, D. P. Deponte et al., Lipidic phase membrane protein serial femtosecond crystallography, Nat. Methods, vol.9, pp.263-265, 2012.

Y. O. Jung, J. H. Lee, J. Kim, M. Schmidt, K. Moffat et al., Volumeconserving trans-cis isomerization pathways in photoactive yellow protein visualized by picosecond X-ray crystallography, Nat. Chem, vol.5, pp.212-220, 2013.

,

W. Kabsch, Processing of X-ray snapshots from crystals in random orientations, Acta Crystallogr. D Biol. Crystallogr, vol.70, pp.2204-2216, 2014.

,

Y. Kang, X. E. Zhou, X. Gao, Y. He, W. Liu et al., Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser, vol.523, pp.561-567, 2015.

J. Kern, R. Alonso-mori, J. Hellmich, R. Tran, J. Hattne et al., Room temperature femtosecond X-ray diffraction of photosystem II microcrystals, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.9721-9726, 2012.

J. Kern, R. Alonso-mori, R. Tran, J. Hattne, R. J. Gildea et al., Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature, Science, vol.340, pp.491-495, 2013.

J. Kern, R. Tran, R. Alonso-mori, S. Koroidov, N. Echols et al., Taking snapshots of photosynthetic water oxidation using femtosecond X-ray diffraction and spectroscopy, Nat. Commun, vol.5, p.4371, 2014.

R. A. Kirian, X. Wang, U. Weierstall, K. E. Schmidt, J. C. Spence et al., Femtosecond protein nanocrystallography-data analysis methods, Opt. Express, vol.18, pp.5713-5723, 2010.

R. A. Kirian, T. A. White, J. M. Holton, H. N. Chapman, P. Fromme et al., Structure-factor analysis of femtosecond microdiffraction patterns from protein nanocrystals, Acta Crystallogr. A, vol.67, pp.131-140, 2011.

R. Koopmann, K. Cupelli, L. Redecke, K. Nass, D. P. Deponte et al., vivo protein crystallization opens new routes in structural biology, vol.9, pp.259-262, 2012.

G. Kovácsová, M. L. Grünbein, M. Kloos, T. R. Barends, R. Schlesinger et al., Viscous hydrophilic injection matrices for serial crystallography, IUCrJ, vol.4, pp.400-410, 2017.

C. Kupitz, S. Basu, I. Grotjohann, R. Fromme, N. A. Zatsepin et al., Nature, vol.513, pp.261-265, 2014.

C. Kupitz, I. Grotjohann, C. E. Conrad, S. Roy-chowdhury, R. Fromme et al., Microcrystallization techniques for serial femtosecond crystallography using photosystem II from Thermosynechococcus elongatus as a model system, Philos. Trans. R. Soc. Lond. B. Biol. Sci, vol.369, 2014.

C. Kupitz, J. L. Olmos, M. Holl, L. Tremblay, K. Pande et al., Structural enzymology using X-ray free electron lasers, 2017.

S. P. Laptenok, A. A. Gil, C. R. Hall, A. Lukacs, J. N. Iuliano et al., Infrared spectroscopy reveals multi-step multi-timescale photoactivation in the photoconvertible protein archetype dronpa, Nat. Chem, vol.10, pp.845-852, 2018.

D. B. Lee, J. Kim, J. H. Seok, J. Lee, J. D. Jo et al., Supersaturationcontrolled microcrystallization and visualization analysis for serial femtosecond crystallography, Sci. Rep, vol.8, p.2541, 2018.

M. Levantino, G. Schirò, H. T. Lemke, G. Cottone, J. M. Glownia et al., Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser, Nat. Commun, vol.6, p.6772, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01139805

M. Levantino, B. A. Yorke, D. C. Monteiro, M. Cammarata, and A. R. Pearson, Using synchrotrons and XFELs for time-resolved X-ray crystallography and solution scattering experiments on biomolecules, Curr. Opin. Struct. Biol, vol.35, pp.41-48, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01225627

W. Liu, A. Ishchenko, and V. Cherezov, Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography, Nat. Protoc, vol.9, pp.2123-2134, 2014.

W. Liu, D. Wacker, C. Gati, G. W. Han, D. James et al., Serial femtosecond crystallography of G protein-coupled receptors, Science, vol.342, pp.1521-1524, 2013.

L. Lomb, T. R. Barends, S. Kassemeyer, A. Aquila, S. W. Epp et al., crystallography using an iododetergent, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.13039-13044

T. Nakane, C. Song, M. Suzuki, E. Nango, J. Kobayashi et al., Native sulfur/chlorine SAD phasing for serial femtosecond crystallography, Acta Crystallogr. D Biol. Crystallogr, vol.71, pp.2519-2525, 2015.

,

E. Nango, A. Royant, M. Kubo, T. Nakane, C. Wickstrand et al., A threedimensional movie of structural changes in bacteriorhodopsin, Science, vol.354, pp.1552-1557, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01437084

K. Nass, A. Meinhart, T. R. Barends, L. Foucar, A. Gorel et al., Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data, IUCrJ, vol.3, pp.180-191, 2016.

R. Neutze, R. Wouts, D. Van-der-spoel, E. Weckert, and J. Hajdu, Potential for biomolecular imaging with femtosecond X-ray pulses, Nature, vol.406, pp.752-757, 2000.

P. Nogly, V. Panneels, G. Nelson, C. Gati, T. Kimura et al., Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography, Nat. Commun, vol.7, 2016.

P. Nogly, T. Weinert, D. James, S. Carbajo, D. Ozerov et al., Retinal isomerization in bacteriorhodopsin, p.361, 2018.

D. Oberthuer, J. Kno?ka, M. O. Wiedorn, K. R. Beyerlein, D. A. Bushnell et al., Acoustic Injectors for Drop-On-Demand Serial Femtosecond Crystallography. Struct. Lond. Engl, vol.24, pp.631-640, 1993.

N. K. Sauter, XFEL diffraction: developing processing methods to optimize data quality, J. Synchrotron Radiat, vol.22, pp.239-248, 2015.

,

N. K. Sauter, N. Echols, P. D. Adams, P. H. Zwart, J. Kern et al., No observable conformational changes in PSII, Nature, vol.533, pp.1-2, 2016.

N. K. Sauter, J. Hattne, R. W. Grosse-kunstleve, and N. Echols, New Python-based methods for data processing, Acta Crystallogr. D Biol. Crystallogr, vol.69, pp.1274-1282, 2013.

M. R. Sawaya, D. Cascio, M. Gingery, J. Rodriguez, L. Goldschmidt et al., Protein crystal structure obtained at 2.9 Å resolution from injecting bacterial cells into an X-ray free-electron laser beam, Proc. Natl. Acad. Sci. U. S. A, vol.111, pp.12769-12774, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01131830

G. Schirò, J. Woodhouse, M. Weik, I. Schlichting, and R. L. Shoeman, Simple and efficient system for photoconverting light-sensitive proteins in serial crystallography experiments, J. Appl. Crystallogr, vol.50, pp.932-939, 2017.

,

I. Schlichting, S. C. Almo, G. Rapp, K. Wilson, K. Petratos et al., Time-resolved X-ray crystallographic study of the conformational change in Ha-Ras p21 protein on GTP hydrolysis, Nature, vol.345, pp.309-315, 1990.

M. Schmidt, Mix and Inject: Reaction Initiation by Diffusion for Time-Resolved Macromolecular Crystallography, 2013.

. Adv, Condens. Matter Phys, vol.18

F. Schotte, H. S. Cho, V. R. Kaila, H. Kamikubo, N. Dashdorj et al., Watching a signaling protein function in real time via 100-ps time-resolved Laue crystallography, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.19256-19261, 2012.

F. Schotte, M. Lim, T. A. Jackson, A. V. Smirnov, J. Soman et al., Watching a protein as it functions with 150-ps time-resolved x-ray crystallography, Science, vol.300, pp.1944-1947, 2003.

,

D. A. Sherrell, A. J. Foster, L. Hudson, B. Nutter, J. O'hea et al., A modular and compact portable mini-endstation for high-precision, high-speed fixed target serial crystallography at FEL and synchrotron sources, J. Synchrotron Radiat, vol.22, pp.1372-1378, 2015.

A. Shimada, M. Kubo, S. Baba, K. Yamashita, K. Hirata et al., A nanosecond time-resolved XFEL analysis of structural changes associated with CO release from cytochrome c oxidase, Sci. Adv, vol.3, 2017.

R. G. Sierra, C. Gati, H. Laksmono, E. H. Dao, S. Gul et al., Concentric-flow electrokinetic injector enables serial crystallography of ribosome and photosystem II, Nat. Methods, vol.13, pp.59-62, 2016.

R. G. Sierra, H. Laksmono, J. Kern, R. Tran, J. Hattne et al., Nanoflow electrospinning serial femtosecond crystallography, Acta Crystallogr. D Biol. Crystallogr, vol.68, pp.1584-1587, 2012.

V. Srajer, T. Teng, T. Ursby, C. Pradervand, Z. Ren et al., Photolysis of the carbon monoxide complex of myoglobin: nanosecond time-resolved crystallography, Science, vol.274, pp.1726-1729, 1996.

J. R. Stagno, Y. Liu, Y. R. Bhandari, C. E. Conrad, S. Panja et al., Structures of riboswitch RNA reaction states by mix-and-inject XFEL serial crystallography, Nature, vol.541, pp.242-246, 2017.

F. Stellato, D. Oberthür, M. Liang, R. Bean, C. Gati et al., Room-temperature macromolecular serial crystallography using synchrotron radiation, IUCrJ, vol.1, pp.204-212, 2014.

H. P. Stevenson, G. Lin, C. O. Barnes, I. Sutkeviciute, T. Krzysiak et al., Transmission electron microscopy for the evaluation and optimization of crystal growth, Acta Crystallogr. Sect. Struct. Biol, vol.72, pp.603-615, 2016.

H. P. Stevenson, A. M. Makhov, M. Calero, A. L. Edwards, O. B. Zeldin et al., Liquid sample delivery techniques for serial femtosecond crystallography, Philos. Trans. R. Soc. Lond. B. Biol. Sci, vol.369, 2014.

U. Weierstall, D. James, C. Wang, T. A. White, D. Wang et al., Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography, Nat. Commun, vol.5, p.3309, 2014.

T. A. White, Post-refinement method for snapshot serial crystallography, Philos. Trans. R. Soc. Lond. B. Biol. Sci, vol.369, 2014.

T. A. White, A. Barty, F. Stellato, J. M. Holton, R. A. Kirian et al., Crystallographic data processing for free-electron laser sources, Acta Crystallogr. D Biol. Crystallogr, vol.69, pp.1231-1240, 2013.

,

T. A. White, R. A. Kirian, A. V. Martin, A. Aquila, K. Nass et al., CrystFEL: a software suite for snapshot serial crystallography, J. Appl. Crystallogr, vol.45, pp.335-341, 2012.

T. A. White, V. Mariani, W. Brehm, O. Yefanov, A. Barty et al., Recent developments in CrystFEL, J. Appl. Crystallogr, vol.49, pp.680-689, 2016.

C. Wickstrand, R. Dods, A. Royant, and R. Neutze, Bacteriorhodopsin: Would the real structural intermediates please stand up?, Biochim. Biophys. Acta, vol.1850, pp.536-553, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01131847

J. Wiedenmann, S. Ivanchenko, F. Oswald, F. Schmitt, C. Röcker et al., EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion, Proc. Natl. Acad. Sci. U. S. A, vol.101, pp.15905-15910, 2004.

D. Yadav, F. Lacombat, N. Dozova, F. Rappaport, P. Plaza et al., Real-time monitoring of chromophore isomerization and deprotonation during the photoactivation of the fluorescent protein Dronpa, J. Phys. Chem. B, vol.119, pp.2404-2414, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01116607

I. D. Young, M. Ibrahim, R. Chatterjee, S. Gul, F. Fuller et al., Structure of photosystem II and substrate binding at room temperature, vol.540, pp.453-457, 2016.

U. Zander, G. Bourenkov, A. N. Popov, D. De-sanctis, O. Svensson et al., MeshAndCollect: an automated multi-crystal data-collection workflow for synchrotron macromolecular crystallography beamlines, Acta Crystallogr. D Biol. Crystallogr, vol.71, pp.2328-2343, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01235920

N. E. References-chayen, Comparative studies of protein crystallization by vapour-diffusion and microbatch techniques, Acta Crystallogr. D Biol. Crystallogr, vol.54, pp.8-15, 1998.

A. D'arcy, T. Bergfors, S. W. Cowan-jacob, and M. Marsh, Microseed matrix screening for optimization in protein crystallization: what have we learned?, Acta Crystallogr. Sect. F Struct. Biol. Commun, vol.70, pp.1117-1126, 2014.

M. Duszenko, L. Redecke, C. N. Mudogo, B. P. Sommer, S. Mogk et al., In vivo protein crystallization in combination with highly brilliant radiation sources offers novel opportunities for the structural analysis of post-translationally modified eukaryotic proteins, Acta Crystallogr. Sect. F Struct. Biol. Commun, vol.71, pp.929-937, 2015.

M. El-khatib, A. Martins, D. Bourgeois, J. Colletier, and V. Adam, Rational design of ultrastable and reversibly photoswitchable fluorescent proteins for super-resolution imaging of the bacterial periplasm, Sci. Rep, vol.6, p.18459, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01280266

T. Grotjohann, I. Testa, M. Reuss, T. Brakemann, C. Eggeling et al., , 2012.

M. Ibrahim, R. Chatterjee, J. Hellmich, R. Tran, M. Bommer et al., Improvements in serial femtosecond crystallography of photosystem II by optimizing crystal uniformity using microseeding procedures, Struct. Dyn, 2015.

R. Koopmann, K. Cupelli, L. Redecke, K. Nass, D. P. Deponte et al., vivo protein crystallization opens new routes in structural biology, vol.9, pp.259-262, 2012.

C. Kupitz, I. Grotjohann, C. E. Conrad, S. Roy-chowdhury, R. Fromme et al., Microcrystallization techniques for serial femtosecond crystallography using photosystem II from Thermosynechococcus elongatus as a model system, Philos. Trans. R. Soc. Lond. B. Biol. Sci, vol.369, 2014.

W. Liu, A. Ishchenko, and V. Cherezov, Preparation of microcrystals in lipidic cubic phase for serial femtosecond crystallography, Nat. Protoc, vol.9, pp.2123-2134, 2014.

I. Schlichting, Serial femtosecond crystallography: the first five years, IUCrJ, vol.2, pp.246-255, 2015.

K. M. Dean and A. E. Palmer, Advances in fluorescence labeling strategies for dynamic cellular imaging, Nat Chem Biol, vol.10, pp.512-535, 2014.

W. Weber, V. Helms, J. A. Mccammon, and P. W. Langhoff, Shedding light on the dark and weakly fluorescent states of green fluorescent proteins, Proc Natl Acad Sci U S A, vol.96, pp.6177-82, 1999.

S. L. Maddalo and M. Zimmer, The role of the protein matrix in green fluorescent protein fluorescence, Photochem Photobiol, vol.82, pp.367-72, 2006.

R. Y. Tsien, The green fluorescent protein, Annual Review of Biochemistry, vol.67, pp.509-544, 1998.

A. A. Voityuk, M. Michel-beyerle, and N. Rösch, Structure and rotation barriers for ground and excited states of the isolated chromophore of the green fluorescent protein, Chem Phys Lett, vol.296, pp.269-276, 1998.

K. Nienhaus and G. U. Nienhaus, Fluorescent proteins for live-cell imaging with superresolution, Chem Soc Rev, vol.43, pp.1088-106, 2014.

V. Adam, R. Berardozzi, M. Byrdin, and D. Bourgeois, Phototransformable fluorescent proteins: Future challenges, Curr Opin Chem Biol, vol.20, pp.92-102, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01321271

M. Hofmann, C. Eggeling, S. Jakobs, and S. W. Hell, Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins, Proc Natl Acad Sci U S A, vol.102, pp.17565-17574, 2005.

M. G. Gustafsson, Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution, Proceedings of the National Academy of Sciences of the United States of America, vol.102, pp.13081-13086, 2005.

K. Nienhaus and G. U. Nienhaus, Photoswitchable Fluorescent Proteins: Do Not Always Look on the Bright Side, ACS Nano, 2016.

T. Brakemann, A reversibly photoswitchable GFP-like protein with fluorescence excitation decoupled from switching, Nature Biotechnology, vol.29, p.942, 2011.

M. Andresen, Structure and mechanism of the reversible photoswitch of a fluorescent protein, Proc Natl Acad Sci U S A, vol.102, pp.13070-13074, 2005.

S. Habuchi, Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa, Proc Natl Acad Sci U S A, vol.102, pp.9511-9517, 2005.

R. Ando, H. Mizuno, and A. Miyawaki, Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting, Science, vol.306, pp.1370-1373, 2004.

E. Fron, Ultrafast excited-state dynamics of the photoswitchable protein Dronpa, J Am Chem Soc, vol.129, pp.4870-4871, 2007.

M. M. Warren, Ground-state proton transfer in the photoswitching reactions of the fluorescent protein Dronpa, Nat Commun, vol.4, p.1461, 2013.

M. Kaucikas, M. Tros, and J. J. Van-thor, Photoisomerization and proton transfer in the forward and reverse photoswitching of the fast-switching M159T mutant of the Dronpa fluorescent protein, J Phys Chem B, vol.119, pp.2350-62, 2015.

D. Yadav, Real-time monitoring of chromophore isomerization and deprotonation during the photoactivation of the fluorescent protein Dronpa, J Phys Chem B, vol.119, pp.2404-2418, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01116607

A. Lukacs, Protein photochromism observed by ultrafast vibrational spectroscopy, J Phys Chem B, vol.117, pp.11954-11963, 2013.

T. Grotjohann, rsEGFP2 enables fast RESOLFT nanoscopy of living cells, Elife, vol.1, p.248, 2012.

M. El-khatib, A. Martins, D. Bourgeois, J. P. Colletier, and V. Adam, Rational design of ultrastable and reversibly photoswitchable fluorescent proteins for super-resolution imaging of the bacterial periplasm, Sci Rep, vol.6, p.18459, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01280266

M. Andresen, Structural basis for reversible photoswitching in Dronpa, Proc Natl Acad Sci U S A, vol.104, pp.13005-13014, 2007.

H. Ai, J. N. Henderson, S. J. Remington, and R. E. Campbell, Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging, Biochemical Journal, vol.400, pp.531-540, 2006.

V. Adam, Structural characterization of IrisFP, an optical highlighter undergoing multiple photo-induced transformations, Proc Natl Acad Sci U S A, vol.105, pp.18343-18351, 2008.

N. Coquelle, Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography, Nature Chemistry, vol.10, pp.31-37, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01618533

M. Yabashi, H. Tanaka, and T. Ishikawa, Overview of the SACLA facility, Journal of Synchrotron Radiation, vol.22, pp.477-484, 2015.

G. Schiro, J. Woodhouse, M. Weik, I. Schlichting, and R. L. Shoeman, Simple and efficient system for photoconverting light-sensitive proteins in serial crystallography experiments, Journal of Applied Crystallography, vol.50, pp.932-939, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01596687

T. Ursby and D. Bourgeois, Improved Estimation of Structure-Factor Difference Amplitudesfrom Poorly Accurate Data, Acta Crystallographica Section A, vol.53, pp.564-575, 1997.

T. C. Terwilliger and J. Berendzen, Difference refinement: obtaining differences between two related structures, Acta Crystallogr D Biol Crystallogr, vol.51, pp.609-627, 1995.

J. Colletier, Use of a `caged' analogue to study the traffic of choline within acetylcholinesterase by kinetic crystallography, Acta Crystallographica Section D, vol.63, pp.1115-1128, 2007.

U. Genick, Structure-factor extrapolation using the scalar approximation: theory, applications and limitations, Acta Crystallographica Section D, vol.63, pp.1029-1041, 2007.

K. Brejc, Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein, Proc Natl Acad Sci U S A, vol.94, pp.2306-2317, 1997.

N. Agmon, Proton pathways in green fluorescence protein, Biophys J, vol.88, pp.2452-61, 2005.

R. Faro and A. , Low-temperature chromophore isomerization reveals the photoswitching mechanism of the fluorescent protein padron, J Am Chem Soc, vol.133, pp.16362-16367, 2011.

T. Brakemann, Molecular basis of the light-driven switching of the photochromic fluorescent protein Padron, J Biol Chem, vol.285, pp.14603-14612, 2010.

T. R. Barends, Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation, Science, vol.350, pp.445-50, 2015.

K. Pande, Femtosecond structural dynamics drives the trans/cis isomerization in photoactive yellow protein, Science, vol.352, pp.725-734, 2016.

J. Tenboer, Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein, Science, vol.346, pp.1242-1248, 2014.

E. Nango, A three-dimensional movie of structural changes in bacteriorhodopsin, Science, vol.354, pp.1552-1557, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01437084

A. Shimada, A nanosecond time-resolved XFEL analysis of structural changes associated with CO release from cytochrome c oxidase, Sci Adv, vol.3, p.1603042, 2017.

M. Suga, Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL, Nature, vol.543, pp.131-135, 2017.

P. Nogly, Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography, Nat Commun, vol.7, p.12314, 2016.

T. Tosha, Capturing an initial intermediate during the P450nor enzymatic reaction using time-resolved XFEL crystallography and caged-substrate, Nat Commun, vol.8, p.1585, 2017.

J. Kern, Simultaneous femtosecond X-ray spectroscopy and diffraction of photosystem II at room temperature, Science, vol.340, pp.491-496, 2013.

I. D. Young, Structure of photosystem II and substrate binding at room temperature, Nature, vol.540, pp.453-457, 2016.

T. Domratcheva and I. Schlichting, Spiers Memorial Lecture. Introductory lecture: the impact of structure on photoinduced processes in nucleic acids and proteins, Faraday Discuss, vol.207, pp.9-26, 2018.

J. P. Colletier, Serial Femtosecond Crystallography and Ultrafast Absorption Spectroscopy of the Photoswitchable Fluorescent Protein IrisFP, J Phys Chem Lett, vol.7, pp.882-889, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01285611

L. Lomb, An anti-settling sample delivery instrument for serial femtosecond crystallography, Journal of Applied Crystallography, vol.45, pp.674-678, 2012.

U. Weierstall, J. C. Spence, and R. B. Doak, Injector for scattering measurements on fully solvated biospecies, Rev Sci Instrum, vol.83, p.35108, 2012.

K. Tono, Diverse application platform for hard X-ray diffraction in SACLA (DAPHNIS): application to serial protein crystallography using an X-ray free-electron laser, Journal of Synchrotron Radiation, vol.22, pp.532-537, 2015.

T. Kameshima, Development of an X-ray pixel detector with multi-port chargecoupled device for X-ray free-electron laser experiments, Rev Sci Instrum, vol.85, p.33110, 2014.

L. Foucar, CASS-CFEL-ASG software suite, Computer Physics Communications, vol.183, pp.2207-2213, 2012.

N. Coquelle, Raster-scanning serial protein crystallography using micro-and nano-focused synchrotron beams, Acta Crystallographica Section D, vol.71, pp.1184-1196, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01572740

P. V. Afonine, R. W. Grosse-kunstleve, N. Echols, J. J. Headd, N. W. Moriarty et al., Towards automated crystallographic structure refinement with phenix.refine, Acta Crystallogr. D Biol. Crystallogr, vol.68, pp.352-367, 2012.

N. Coquelle, M. Sliwa, J. Woodhouse, G. Schirò, V. Adam et al., Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography, Nat. Chem, vol.10, pp.31-37, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01618533

W. Delano, The PyMOL Molecular Graphics System, 2002.

M. El-khatib, A. Martins, D. Bourgeois, J. Colletier, and V. Adam, Rational design of ultrastable and reversibly photoswitchable fluorescent proteins for super-resolution imaging of the bacterial periplasm, Sci. Rep, vol.6, p.18459, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01280266

P. Emsley, B. Lohkamp, W. G. Scott, and K. Cowtan, Features and development of Coot, Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.486-501, 2010.

W. Kabsch, XDS. Acta Crystallogr. D Biol. Crystallogr, vol.66, pp.125-132, 2010.

A. J. Mccoy, R. W. Grosse-kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni et al., Phaser crystallographic software, J. Appl. Crystallogr, vol.40, pp.658-674, 2007.

A. T. Brünger, P. D. Adams, G. M. Clore, W. L. Delano, P. Gros et al., Crystallography & NMR system: A new software suite for macromolecular structure determination, Acta Crystallogr. D Biol. Crystallogr, vol.54, pp.905-921, 1998.

N. Coquelle, M. Sliwa, J. Woodhouse, G. Schirò, V. Adam et al., Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography, Nat. Chem, vol.10, pp.31-37, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01618533

W. Delano, The PyMOL Molecular Graphics System, 2002.

M. El-khatib, A. Martins, D. Bourgeois, J. Colletier, and V. Adam, Rational design of ultrastable and reversibly photoswitchable fluorescent proteins for super-resolution imaging of the bacterial periplasm, Sci. Rep, vol.6, p.18459, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01280266

J. S. Fraser, H. Van-den-bedem, A. J. Samelson, P. T. Lang, J. M. Holton et al., Accessing protein conformational ensembles using room-temperature X-ray crystallography, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.16247-16252, 2011.

U. K. Genick, Structure-factor extrapolation using the scalar approximation: theory, applications and limitations, Acta Crystallogr. D Biol. Crystallogr, vol.63, pp.1029-1041, 2007.

G. Schirò, J. Woodhouse, M. Weik, I. Schlichting, and R. L. Shoeman, Simple and efficient system for photoconverting light-sensitive proteins in serial crystallography experiments, J. Appl. Crystallogr, vol.50, pp.932-939, 2017.

,

T. Ursby and D. Bourgeois, Improved Estimation of Structure-Factor Difference Amplitudesfrom Poorly Accurate Data, Acta Crystallogr. A, vol.53, pp.564-575, 1997.

M. Kaucikas, M. Tros, and J. J. Van-thor, Photoisomerization and proton transfer in the forward and reverse photoswitching of the fast-switching M159T mutant of the Dronpa fluorescent protein, J. Phys. Chem. B, vol.119, pp.2350-2362, 2015.

S. P. Laptenok, A. A. Gil, C. R. Hall, A. Lukacs, J. N. Iuliano et al., Infrared spectroscopy reveals multi-step multi-timescale photoactivation in the photoconvertible protein archetype dronpa, Nat. Chem, vol.10, pp.845-852, 2018.

M. M. Warren, M. Kaucikas, A. Fitzpatrick, P. Champion, J. T. Sage et al., Ground-state proton transfer in the photoswitching reactions of the fluorescent protein Dronpa, Nat. Commun, vol.4, p.1461, 2013.

D. Yadav, F. Lacombat, N. Dozova, F. Rappaport, P. Plaza et al., Real-time monitoring of chromophore isomerization and deprotonation during the photoactivation of the fluorescent protein Dronpa, J. Phys. Chem. B, vol.119, pp.2404-2414, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01116607

N. Coquelle, M. Sliwa, J. Woodhouse, G. Schirò, V. Adam et al., Ilme Schlichting

, QM/MM and MD simulations ? Excited state QM/MM simulations: calculation of protonation states ????????

, Excited state QM/MM simulations: molecular dynamics simulations ???????? 8 ? Excited state QM/MM simulations: method ?????????????????

, ? Excited state QM/MM simulations : chromophore models in vacuum ???????... 10 ? Excited state QM/MM simulations of the chromophore in rsEGFP2 ????????

, 13 ? Excited state classical MD simulations : MD protocol ?????????????.. 15 ? Excited state classical MD simulations: protein dynamics with the S 0 chromophore ??? 15 ? Excited state classical MD simulations, ? DFT calculations of the cationic ground-state chromophore in rsEGFP2 ??????? 13 ? Excited state classical MD simulations: force field ??????????????

, ? S 0 -S 1 energy gap and oscillator strengths calculated from QM and QM/MM simulations ? 16

, ? Microcrystal growth, preparation and injection ????????????????, vol.18

, Pre-illumination of microcrystals to convert rsEGFP2 from the on to the off state ???? 19

, ? Femtosecond pump-laser excitation of rsEGFP2 crystals in TR-SFX experiments ???, p.19

, ? SFX data collection and on-line monitoring ?????????????????.. 20 ? Calculation of absorbed X-ray dose ????????????????????, vol.21

, ? Time-sorting diffraction images based on arrival time diagnostics ?????????.. 21 ? Hit-finding and sorting of laser-on and laser-off data ??????????????, p.22

, 23 ? 1-ps intermediate-state structure: data collection, modeling and refinement ??????, p.26

, ? Difference Fourier maps calculated with data collected after a 3 ps pump-probe delay ??, p.32

, Site-directed mutagenesis, purification and spectroscopic characterisation of rsEGFP2 and rsEGFP2-V151A ?????????????????????, p.33

+. , We hypothesize that the similarity of model P to the off-state chromophore indicates that no major conformational changes in the protein scaffold accompanies the slight change in chromophore conformation. Consequently, conformational changes in the difference-refined laser-on-?1ps structure with respect to the off-state structure are interpreted as accompanying chromophore twisting towards model T. The most notable conformational change is that occurring in the side chain of Thr204 (?-strand-10), which rotates by 120° in model T (Supplementary Fig. 23). Hence, the on-state, the off-state and model T are each associated to a specific rotamer of Thr204, The chromophore conformation in model T, however, displays an imidazolinone ring that is nearly perpendicular to that of the phenol group (Fig. 4c, d)

, Å from Wat356 and Wat17, respectively. Wat17 is H-bonded to Gln184(N?1) and

, As Ser164O? is itself a donor in the H-bond it forms with Tyr52(O), the chromophore OH is an obligate donor in the H-bond it establishes with Wat17 in the off-state. The same applies to Wat356, Ser164(O?) in both the off-state structure and in model P

, Upon transition of the chromophore to model T, steric hindrance forces Thr204 side chain to rotate by 120°, resulting in the breaking of its H-bond with Wat356, and in the latter becoming available for H-bonding to the chromophore phenol-OH. Upon transition to model T and formation of this H-bond, that with Wat17 is forced to break, since the chromophore OH can only be donor in a single H-bond. Thus, this water was kept in model P, but not in model T (Supplementary Fig. 23). Also due to steric hindrance, His149 side chain draws back from the chromophore phenol, but no rotation of its side chain is suggested by the data. Around the imidazolinone ring of the chromophore, side chains of several residues display conformational changes, His149(O), Val151(N) and Leu202(O) and Thr204(OH) in the off-state structure of rsEGFP2

, This DDM illustrates that in addition to the above-described local-changes, the ?-barrel expands upon the transition from the off-state to model T, and thus offers a peek into concerted conformational changes across the protein, A distance difference matrix (DDM) was calculated between the difference refined laser-on?1ps structure and the off-state conformer (Supplementary Fig. 27a)

. Ligase, Digestion of the template methylated DNA was achieved by incubating the PCR product with 10 U DpnI

, µL/50 µL cells) for DNA minipreps and sequencing. Fluorescent proteins (rsEGFP2 and rsEGFP2-V151A) fused to an N-terminal polyhistidine tag were

, After cell lysis, the fluorescent proteins were purified by Ni-NTA affinity chromatography. Absorption spectra were recorded using a Jasco V-630 UV/VIS photospectrometer

E. Avantes, The Netherlands) coupled with optic fibres to a cuvette holder

, Photoinduced fluorescence switching cycles were measured as described 34 at low laser power densities: 6.7 mW/cm² at 488 nm (to both excite and switch-off fluorescence) and 1 mW/cm² at 405 nm (to promote off-to-on photoswitching), Molar extinction coefficients of on and off

, mJ/cm 2 ) and (e, j) pre-exponential factors associated to the kinetics at 385, 455, 530 and 650 nm

, Ultrafast transient difference absorption spectra of rsEGFP2 (off (a, d, g), from 0.4 to 1.4 ps (b, e, h), and from 1.6 to 9.9 ps (c, f, i) for three different pump power densities (13 GW cm -2 (left), 68 GW cm -2 (middle), and 140 GW cm -2 (right). are averaged over several, vol.4

, Raw data (blue) were fitted (red) using a kinetic model involving one-to-one reversible conversion between the on-and the off-state, Cyan and violet lines represent the illumination times at 488-and 405-nm, vol.30

J. P. Colletier, Serial Femtosecond Crystallography and Ultrafast Absorption Spectroscopy of the Photoswitchable Fluorescent Protein IrisFP, J Phys Chem Lett, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01285611

D. Yadav, Real-time monitoring of chromophore isomerization and deprotonation during the photoactivation of the fluorescent protein Dronpa, J Phys Chem B, vol.119, pp.2404-2418, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01116607

C. N. Lincoln, A. E. Fitzpatrick, and J. J. Van-thor, Photoisomerisation quantum yield and non-linear cross-sections with femtosecond excitation of the photoactive yellow protein, Phys Chem Chem Phys, vol.14, pp.15752-64, 2012.

C. D. Hutchison, Photocycle populations with femtosecond excitation of crystalline photoactive yellow protein, Chemical Physics Letters, vol.654, pp.63-71, 2016.

M. Feliks, M. J. Field, and . Pcetk, A pDynamo-based Toolkit for Protonation State Calculations in Proteins, J Chem Inf Model, vol.55, pp.2288-96, 2015.

M. J. Field, The pDynamo Program for Molecular Simulations using Hybrid Quantum Chemical and Molecular Mechanical Potentials, J Chem Theory Comput, vol.4, pp.1151-61, 2008.

D. Bashford, An Object-Oriented Programming Suite for Electrostatic Effects in Biological Molecules, Lecture Notes in Computer Science, vol.1343, pp.233-240, 1997.

B. R. Brooks, CHARMM: A program for macromolecular energy, minimization, and dynamics calculations, Journal of Computational Chemistry, vol.4, pp.187-217, 1983.

B. R. Brooks, CHARMM: the biomolecular simulation program, J Comput Chem, vol.30, pp.1545-614, 2009.

A. D. Mackerell, All-atom empirical potential for molecular modeling and dynamics studies of proteins, J Phys Chem B, vol.102, pp.3586-616, 1998.

N. Reuter, H. Lin, and W. Thiel, Green fluorescent proteins: empirical force field for the neutral and deprotonated forms of the chromophore. Molecular dynamics simulations of the wild type and S65T mutant, Journal of Physical Chemistry B, vol.106, pp.6310-6321, 2002.

P. Beroza, D. R. Fredkin, M. Y. Okamura, and G. Feher, Protonation of interacting residues in a protein by a Monte Carlo method: application to lysozyme and the photosynthetic reaction center of Rhodobacter sphaeroides, Proc Natl Acad Sci U S A, vol.88, pp.5804-5812, 1991.

W. Humphrey, A. Dalke, and K. Schulten, VMD: visual molecular dynamics, J Mol Graph, vol.14, pp.27-35, 1996.

J. C. Phillips, Scalable molecular dynamics with NAMD, J Comput Chem, vol.26, pp.1781-802, 2005.

W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, Comparison of simple potential functions for simulating liquid water, Journal of Chemical Physics, vol.79, pp.926-935, 1983.

F. Neese, The ORCA program system, Wiley Interdisciplinary Review of Computational Molecular Science, vol.2, pp.73-78, 2011.

M. Lelimousin, V. Adam, G. U. Nienhaus, D. Bourgeois, and M. J. Field, Photoconversion of the fluorescent protein EosFP: a hybrid potential simulation study reveals intersystem crossings, J Am Chem Soc, vol.131, pp.16814-16837, 2009.

A. Roy, M. J. Field, V. Adam, and D. Bourgeois, The nature of transient dark states in a photoactivatable fluorescent protein, J Am Chem Soc, vol.133, pp.18586-18595, 2011.

M. J. Dewar, E. G. Zoebisch, E. F. Healy, and J. J. Stewart, AM1: a new general purpose quantum mechanical molecular model, Journal of the American Chemical Society, vol.107, pp.3902-3909, 1985.

P. Slavicek and T. J. Martinez, Ab initio floating occupation molecular orbital-complete active space configuration interaction: an efficient approximation to CASSCF, J Chem Phys, vol.132, p.234102, 2010.

I. V. Polyakov, B. L. Grigorenko, E. M. Epifanovsky, A. I. Krylov, and A. V. Nemukhin, Potential Energy Landscape of the Electronic States of the GFP Chromophore in Different Protonation Forms: Electronic Transition Energies and Conical Intersections, J Chem Theory Comput, vol.6, pp.2377-87, 2010.

M. Wanko, P. Garcia-risueno, and A. Rubio, Excited states of the green fluorescent protein chromophore: Performance of ab initio and semi-empirical methods, Physica Status Solidi B, vol.249, pp.392-400, 2012.

M. J. Field, A molecular dynamics simulation of photo-induced electron transfer in an organic donor-acceptor compound, Chemical Physics Letters, vol.195, pp.388-392, 1992.

E. Fabiano, G. Groenhof, and W. Thiel, Approximate switching algorithms for trajectory surface hopping, Chemical Physics, vol.351, pp.111-116, 2008.

M. J. Frisch, Gaussian 03, Revision C.02, 2003.

D. A. Case, , 2008.

G. Jonasson, Excited State Dynamics of the Green Fluorescent Protein on the Nanosecond Time Scale, J Chem Theory Comput, vol.7, pp.1990-1997, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01550017

C. Filippi, M. Zaccheddu, and F. Buda, Absorption Spectrum of the Green Fluorescent Protein Chromophore: A Difficult Case for ab Initio Methods?, Journal of Chemical Theory and Computation, vol.5, pp.2074-2087, 2009.

A. Toniolo, S. Olsen, L. Manohar, and T. J. Martinez, Conical intersection dynamics in solution: the chromophore of Green Fluorescent Protein, Faraday Discuss, vol.127, pp.149-63, 2004.

S. Olsen, K. Lamothe, and T. J. Martinez, Protonic gating of excited-state twisting and charge localization in GFP chromophores: a mechanistic hypothesis for reversible photoswitching, J Am Chem Soc, vol.132, pp.1192-1195, 2010.

G. Jonasson, Etude théorique de l'extinction de fluorescence des protéines fluorescentes : champ de forces, mécanisme moléculaire et modèle cinétique, 2012.

A. M. Koster, P. Calaminici, M. E. Casida, V. D. Dominguez, G. Flores-moreno et al., The deMon developers, vol.2, 2006.

T. Grotjohann, rsEGFP2 enables fast RESOLFT nanoscopy of living cells, vol.1, p.248, 2012.

M. El-khatib, A. Martins, D. Bourgeois, J. P. Colletier, and V. Adam, Rational design of ultrastable and reversibly photoswitchable fluorescent proteins for super-resolution imaging of the bacterial periplasm, Sci Rep, vol.6, p.18459, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01280266

L. Lomb, An anti-settling sample delivery instrument for serial femtosecond crystallography, Journal of Applied Crystallography, vol.45, pp.674-678, 2012.

M. Liang, The Coherent X-ray Imaging instrument at the Linac Coherent Light Source, J. Synchrotron Rad, vol.22, pp.514-519, 2015.

U. Weierstall, J. C. Spence, and R. B. Doak, Injector for scattering measurements on fully solvated biospecies, Rev Sci Instrum, vol.83, p.35108, 2012.

G. Schiro, J. Woodhouse, M. Weik, I. Schlichting, and R. L. Shoeman, Simple and efficient system for photoconverting light-sensitive proteins in serial crystallography experiments, Journal of Applied Crystallography, vol.50, pp.932-939, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01596687

G. Blaj, X-ray detectors at the Linac Coherent Light Source, Journal of Synchrotron Radiation, vol.22, pp.577-583, 2015.

L. Foucar, CASS-CFEL-ASG software suite, Computer Physics Communications, vol.183, pp.2207-2213, 2012.

L. Foucar and . Cfel-asg, Software Suite (CASS): usage for free-electron laser experiments with biological focus, Journal of Applied Crystallography, vol.49, pp.1336-1346, 2016.

T. R. Barends, Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation, Science, vol.350, pp.445-50, 2015.

O. B. Zeldin, S. Brockhauser, J. Bremridge, J. M. Holton, and E. F. Garman, Predicting the X-ray lifetime of protein crystals, Proc Natl Acad Sci U S A, vol.110, pp.20551-20557, 2013.

O. B. Zeldin, M. Gerstel, and E. F. Garman, RADDOSE-3D: time-and space-resolved modelling of dose in macromolecular crystallography, Journal of Applied Crystallography, vol.46, pp.1225-1230, 2013.

M. Harmand, Achieving few-femtosecond time-sorting at hard X-ray freeelectron lasers, Nature Photonics, vol.7, pp.215-218, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00825702

N. Coquelle, Raster-scanning serial protein crystallography using micro-and nano-focused synchrotron beams, Acta Crystallographica Section D Biological Crystallography, vol.71, pp.1184-1196, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01572740

T. A. White, Crystallographic data processing for free-electron laser sources, Acta Crystallogr D Biol Crystallogr, vol.69, pp.1231-1240, 2013.

K. Nass, Protein structure determination by single-wavelength anomalous diffraction phasing of X-ray free-electron laser data, IUCrJ, vol.3, pp.180-91, 2016.

A. J. Mccoy, Phaser crystallographic software, Journal of Applied Crystallography, vol.40, pp.658-674, 2007.

P. D. Adams, PHENIX: a comprehensive Python-based system for macromolecular structure solution, Acta Crystallographica. Section D, Biological Crystallography, vol.66, pp.213-221, 2010.

P. Emsley and K. Cowtan, Coot: model-building tools for molecular graphics, Acta Crystallographica. Section D, Biological Crystallography, vol.60, pp.2126-2132, 2004.

, The PyMOL Molecular Graphics System

J. D. Hunter, Matplotlib: A 2D Graphics Environment, Computing in Science & Engineering, vol.9, pp.90-95, 2007.

T. Ursby and D. Bourgeois, Improved Estimation of Structure-Factor Difference Amplitudesfrom Poorly Accurate Data, Acta Crystallographica Section A Foundations of Crystallography, vol.53, pp.564-575, 1997.

A. T. Brunger, Version 1.2 of the Crystallography and NMR system, Nature Protocols, vol.2, pp.2728-2733, 2007.

J. Colletier, Shoot-and-Trap: Use of specific x-ray damage to study structural protein dynamics by temperature-controlled cryo-crystallography, Proceedings of the National Academy of Sciences, vol.105, pp.11742-11747, 2008.

T. C. Terwilliger and J. Berendzen, Difference refinement: obtaining differences between two related structures, Acta Crystallogr D Biol Crystallogr, vol.51, pp.609-627, 1995.

J. Colletier, Use of a `caged' analogue to study the traffic of choline within acetylcholinesterase by kinetic crystallography, Acta Crystallographica Section D, vol.63, pp.1115-1128, 2007.

C. Duan, Structural evidence for a two-regime photobleaching mechanism in a reversibly switchable fluorescent protein, J Am Chem Soc, vol.135, pp.15841-50, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01322350

J. P. Colletier, De novo phasing with X-ray laser reveals mosquito larvicide BinAB structure, Nature, vol.539, pp.43-47, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01461381

I. Schlichting and K. Chu, Trapping intermediates in the crystal: ligand binding to myoglobin, Curr Opin Struct Biol, vol.10, pp.744-52, 2000.

T. C. Terwilliger and J. Berendzen, Bayesian difference refinement, Acta Crystallogr D Biol Crystallogr, vol.52, pp.1004-1015, 1996.

C. Duan, Rational design of enhanced photoresistance in a photoswitchable fluorescent protein, Methods and Applications in Fluorescence, vol.3, p.14004, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01161782

W. W. Ward, Properties of the coelenterate green-fluorescent proteins, Bioluminescence and chemiluminescence: basic chemistry and analytical applications, 1981.

M. D. Winn, Overview of the CCP4 suite and current developments, Acta Crystallogr D Biol Crystallogr, vol.67, pp.235-277, 2011.

T. A. White, Post-refinement method for snapshot serial crystallography, Philos Trans R Soc Lond B Biol Sci, vol.369, p.20130330, 2014.