H. Tamamura, A. Otaka, and N. Fujii, J. Org. Chem, vol.67, pp.6162-6173, 2002.

J. Vå-benø, T. Lejon, C. U. Nielsen, B. Steffansen, W. Chen et al., J. Med. Chem, vol.47, pp.1060-1069, 2004.

A. Dondoni and D. Perrone, Tetrahedron Lett, vol.33, pp.7259-7262, 1992.

T. Lama, S. E. Del-valle, N. Genest, and W. D. Lubell, Int. J. Pept. Res. Ther, vol.13, pp.355-366, 2007.

A. G. Myers, J. K. Barbay, and B. Zhong, J. Am. Chem. Soc, vol.123, pp.7207-7219, 2001.

Y. Aoyagi and R. M. Williams, Tetrahedron, vol.54, pp.10419-10433, 1998.

G. Righi, S. Ronconi, and C. Bonini, Eur. J. Org. Chem, pp.1573-1577, 2002.

P. J. Gilligan, D. W. Robertson, and R. Zaczek, J. Med. Chem, vol.43, pp.1641-1660, 2000.

K. Leftheris, T. Kline, G. D. Vite, Y. H. Cho, R. S. Bhide et al., J. Med. Chem, vol.39, pp.224-236, 1996.

M. Zanda, New J. Chem, vol.28, pp.1401-1411, 2004.

C. S. Li, D. Deschenes, S. Desmarais, J. Falgueyret, J. Y. Gauthier et al., Bioorganic & Medicinal Chemistry Letters, vol.16, 1985.

H. Huang, N. Zhou, R. P. Ortiz, Z. Chen, S. Loser et al., Adv. Funct. Mater, vol.24, pp.2782-2793, 2014.

C. Tanase, J. Wildeman, and P. W. Blom, Adv. Funct. Mater, vol.15, pp.2011-2015, 2005.

J. H. Burroughes, D. D. Bradley, A. R. Brown, R. N. Marks, K. Mackay et al., Nature, vol.347, pp.539-541, 1990.

T. Qi, T. Deschrijver, I. Huc, and . Nat, , vol.8, pp.693-708, 2013.

A. Ozanne, L. Pouysé-gu, D. Depernet, B. Franç-ois, and S. Quideau, Org. Lett, vol.5, pp.2903-2906, 2003.

Y. Huang, J. Huang, and Y. Chen, Protein & Cell, vol.1, pp.143-152, 2010.

A. Tossi, L. Sandri, and . Giangaspero, A. Pept. Sci, vol.55, pp.4-30, 2000.

S. E. Howson, A. Bolhuis, V. Brabec, G. J. Clarkson, J. Malina et al.,

. Chem, , vol.4, p.31, 2012.

J. M. Lehn, A. Rigault, J. Siegel, J. Harrowfield, B. Chevrier et al., Proceedings of the National Academy of Sciences, vol.84, pp.2565-2569, 1987.
URL : https://hal.archives-ouvertes.fr/hal-00679619

C. Piguet, G. Bernardinelli, and G. Hopfgartner, Chem. Rev, vol.97, 1997.

W. Zarges, J. Hall, J. Lehn, and C. Bolm, Helv. Chim. Acta, vol.74, pp.1843-1852, 1991.

K. T. Potts, M. Keshavarz-k, F. S. Tham, H. D. Abruna, and C. Arana, Inorg. Chem, vol.32, pp.4436-4449, 1993.

B. Jana, L. Cera, B. Akhuli, S. Naskar, C. A. Schalley et al., Inorg. Chem, vol.56, pp.12505-12513, 2017.

J. L. Greenfield, E. W. Evans, D. Di-nuzzo, M. Di-antonio, R. H. Friend et al.,

, J. Am. Chem. Soc, vol.140, pp.10344-10353, 2018.

K. Miwa, Y. Furusho, and E. Yashima, Nat. Chem, vol.2, p.444, 2010.

N. Ousaka, K. Shimizu, Y. Suzuki, T. Iwata, M. Itakura et al., J. Am. Chem. Soc, vol.140, pp.17027-17039, 2018.

J. K. Bera and K. R. Dunbar, Angew. Chem. Int. Ed, vol.41, pp.4453-4457, 2002.

J. L. Greenfield, F. J. Rizzuto, I. Goldberga, and J. R. Nitschke, Angew. Chem. Int. Ed, vol.56, pp.7541-7545, 2017.

V. Maurizot, G. Linti, and I. Huc, Chem. Commun, pp.924-925, 2004.

P. Mateus, B. Wicher, Y. Ferrand, and I. Huc, Chem. Commun, vol.54, pp.5078-5081, 2018.

P. Mateus, B. Wicher, Y. Ferrand, and I. Huc, Chem. Commun, vol.53, pp.9300-9303, 2017.

M. Horeau, G. Lautrette, B. Wicher, V. Blot, J. Lebreton et al., Angew. Chem. Int. Ed, vol.56, pp.6823-6827, 2017.

H. Jiang, J. Lé-ger, and I. Huc, J. Am. Chem. Soc, vol.125, pp.3448-3449, 2003.

Y. Ferrand and I. Huc, Acc. Chem. Res, vol.51, pp.970-977, 2018.

T. Kawamoto, B. S. Hammes, B. Haggerty, G. P. Yap, A. L. Rheingold et al.,

, J. Am. Chem. Soc, vol.118, pp.285-286, 1996.

T. Kawamoto, O. Prakash, R. Ostrander, A. L. Rheingold, and A. S. Borovik, Inorg. Chem, vol.34, pp.4294-4295, 1995.

X. Li, T. Qi, K. Srinivas, S. Massip, V. Maurizot et al., Org. Lett, vol.18, pp.1044-1047, 2016.

N. Delsuc, T. Kawanami, J. Lefeuvre, A. Shundo, H. Ihara et al., ChemPhysChem, vol.9, pp.1882-1890, 2008.

H. A. Jahn, E. Teller, and F. G. Donnan, Proceedings of the Royal Society of London. Series AMathematical and Physical Sciences, vol.161, pp.220-235, 1937.

T. Qi, T. Deschrijver, and I. Huc, Nat. Protoc, issue.8, p.693, 2013.

, 87 (s, 1 H), vol.10

. Hz,

, 64-7.30 (m, 17 H), 7.28 (s, 1 H), 7.05 (s, 1 H), 6.68 (s, 1 H), 6.66 (s, 1 H), 6.59 (s, 1 H), 1 H), 7.97-7.93 (m, 6 H), 7.86-7.68 (m, 9 H), vol.7

H. Nmr, CDCl 3 ) ?: 11.58 (s, 1 H), 11.46 (s, 1 H), MHz, issue.300, p.1

, 16 (s, 1 H), 11.09 (s, 1 H), 10.96 (s, 1 H), 11.27 (s, 1 H), vol.11

, 01 (s, 1 H), 6.69 (s, 1 H), 6.67 (s, 1 H), 6.61 (s, 1 H), 6.41 (s, 1 H), m, 5 H), 7.90 (s, 1 H), 7.86 (d, J = 8.6 Hz, 1 H), 7.84 (d, J = 8.4 Hz, 1 H), 7.80 (s, 1 H), 7.75-7.46 (m, 16 H), 7.42 (s, 1 H), 7.41-7.29 (m, 5 H), 7.16 (t, J = 7.9 Hz, 1 H, vol.7, p.68

H. Nmr, , vol.300

, CDCl 3 ) ?: 11.47 (s, 1 H), 11.42 (s, 1 H), 11.33 (s, 1 H), vol.11

, 78 (s, 1 H), vol.10

, 2 Hz, 2 H), 8.43 (d, J = 8.5 Hz, 2 H), vol.8

, .85 (m, 10 H), 7.79 (s, 1 H), 7.76-7.31 (m, 23 H), vol.8, p.1

, 93 (s, 1 H), 6.64 (s, 1 H), 6.58 (s, 1 H), 6.47 (m, 1 H), 6.38 (s, 1 H), vol.6

B. Dang, H. Wu, V. K. Mulligan, M. Mravic, Y. Wu et al., Proceedings of the National Academy of Sciences, vol.114, pp.10852-10857, 2017.

H. Gradi?ar, S. Bo?i?, T. Doles, D. Vengust, I. Hafner-bratkovi? et al., Nat. Chem. Biol, issue.9, p.362, 2013.

L. A. Churchfield, R. G. Alberstein, L. M. Williamson, and F. A. Tezcan, J. Am. Chem. Soc, vol.140, pp.10043-10053, 2018.

L. Doyle, J. Hallinan, J. Bolduc, F. Parmeggiani, D. Baker et al., Nature, vol.528, p.585, 2015.

J. M. Fletcher, R. L. Harniman, F. R. Barnes, A. L. Boyle, A. Collins et al., Science, vol.340, pp.595-599, 2013.

Y. Lai, D. Cascio, and T. O. Yeates, Science, vol.336, pp.1129-1129, 2012.

A. Lakshmanan, S. Zhang, and C. A. Hauser, Trends Biotechnol, vol.30, pp.155-165, 2012.

Y. Bai, Q. Luo, and . Liu, J. Chem. Soc. Rev, vol.45, pp.2756-2767, 2016.

S. J. Fleishman, T. A. Whitehead, D. C. Ekiert, C. Dreyfus, J. E. Corn et al., Science, vol.332, pp.816-821, 2011.

D. N. Woolfson, Adv. Protein Chem, vol.70, pp.79-112, 2005.

N. Delsuc, S. Massip, J. Lé-ger, B. Kauffmann, and I. Huc, J. Am. Chem. Soc, vol.133, pp.3165-3172, 2011.

C. Tsiamantas, X. De-hatten, C. Douat, B. Kauffmann, V. Maurizot et al., Angew. Chem. Int. Ed, vol.55, pp.6848-6852, 2016.

S. De, B. Chi, T. Granier, T. Qi, V. Maurizot et al., Nat. Chem, p.51, 2017.

L. Rao and U. Bierbach, J. Am. Chem. Soc, vol.129, pp.15764-15765, 2007.

H. Baruah, C. S. Day, M. W. Wright, U. Bierbach, H. Baruah et al., J. Am. Chem. Soc, vol.126, issue.16, pp.6059-6070, 2004.

H. Jiang, J. Lé-ger, and I. Huc, J. Am. Chem. Soc, vol.125, pp.3448-3449, 2003.

A. Smeyanov and A. Schmidt, Synth. Commun, vol.43, pp.2809-2816, 2013.

, CDCl 3 ): ? = 12.39 (s, 2 H), vol.9, p.5

, 7.78 (s, 1 H), 7.70 (t, J = 7.9 Hz, 1 H), vol.7

. Hz,

, This compound was synthesized the same way as compound 8. Yield 242 mg (69 %), vol.10

H. Nmr, CDCl 3 ): ? = 11.94 (s, 2 H), 11.80 (s, 1 H), 11.76 (s, 1 H), MHz, vol.8, issue.300, p.97

, 8.69 (dd, J = 7.7, 1.2 Hz, 1 H), 8.65 (dd, J = 7.7, 1.0 Hz, 1 H), 8.17 (dd, J = 8.6, 1.3 Hz, 2 H), 8.10-7.98 (m, 6 H), 7.89-7.82 (m, 3 H), 7.72 (t, J = 7.9 Hz, 1 H), 7.45 (d, J = 7.8 Hz, 1 H), vol.7

H. Nmr, 82 (s, 1 H), 11.67 (s, 1 H), 8.98 (d, J = 1.4 Hz, 1 H), 8.71 (dd, J = 5.0, 1.6 Hz, 1 H), 8.67 (dd, 300 MHz, CDCl 3 ): ? = 11.99 (s, 1 H), vol.11

, Hz, 1 H), 7.90 (dd, J = 8.3, 1.2 Hz, 1 H), 7.84 (t, J = 7.9 Hz, 1 H), 7.69 (t, J = 7.9 Hz, 1 H), 7.54 (dd, J = 8.2, 0.9 Hz, 1 H), 7.47-7.42 (m, 1 H), 7.43 (s, 1 H), 7.42 (t, J = 7.9 Hz, 1 H), vol.7

, CDCl 3 ): ? = 11.47 (s, 2 H), 11.28 (s, 2 H), vol.10

, 7.94 (d, J = 7.7 Hz, 2 H), vol.7

T. and J. ,

, 6.17 (t, J = 8.2 Hz, 2 H), vol.6

H. Nmr, CDCl 3 ): ? = 11.69 (s, 2 H), 11.44 (s, 2 H), MHz, vol.10, issue.300, p.33

, 63 (t, J = 8.0 Hz, 2 H), 7.38 (dd, J = 8.3, 1.0 Hz, 2 H), vol.7

, To a dry flask was added with compound 5 (80 mg, 0.2 mmol) and NaOH (80 mg, 2 mmol). Then THF (1.8 mL) and MeOH (0.2 mL) were added into the flask. The solid was dried under high vacuum, vol.14

H. Nmr, , vol.300

, 73 (s, 1 H), 8.68 (dd, CDCl 3 ): ? = 8.92 (dd, J = 2.0, 0.9 Hz, 1 H), vol.8, p.1

, 7.77 (t, J = 8.1 Hz, 1 H), vol.7

, CDCl 3 ): ? = 11.44 (s, 2 H), vol.11

, 02 (s, 2 H), vol.11

, 74 (s, 2 H), 6.38 (s, 2 H), 6.19-6.10 (m, 4 H), 7.31 (s, 2 H), 7.26-7.06 (m, 9 H), vol.6

, (m, 48 H), 0.95 (s, 18 H) ppm

, The compound was prepared according to the same procedure as compound 5, Compound, vol.28, p.92

H. Nmr, CDCl 3 ): ? = 9, MHz, issue.300

D. and J. =. , 37 (s, 1 H), 7.92 (dd, vol.8, p.1

C. Nmr, , p.75

H. Nmr, MHz, issue.300

, 50 (s, 1 H), 66 (br, 1 H), 8.61 (d, J = 7.6 Hz, 1 H), vol.8

, CDCl 3 ): ? = 11.43 (s, 2 H), vol.11

, 12 (s, 2 H), 8.69 (dd, 11.02 (s, 2 H), vol.10

, 7.31 (s, 2 H), 7.23-7.05 (m, 9 H), vol.6

H. Nmr, CDCl 3 ): ? = 8.70 (dd, MHz, issue.300, p.1

H. Nmr, CDCl 3 ): ? = 12.43 (s, 1 H), 12.36 (s, 1 H), MHz, vol.9, issue.300

, 8.06 (d, J = 8.5 Hz, 1 H), 8.03 (d, J = 8.6 Hz, 1 H), 7.83 (t, J = 7.9 Hz, 1 H), 7.80 (s, 1 H), 7.77-7.69 (m, 3 H), vol.7

H. Nmr, CDCl 3 ): ? = 12.39 (s, 2 H), MHz, vol.9, issue.300

, 50 (s, 3 H), 2.40-2.32 (m, 2 H), 1.19 (d, J = 6.8 Hz, 12 H) ppm, vol.3

H. Nmr, CDCl 3 ): ? = 11.94 (s, 2 H), MHz, vol.11, issue.300

D. and J. =. , Hz, 1 H), 8.65 (d, J = 7.9 Hz, 1 H), 8.14 (dd, J = 8.4, 1.1 Hz, 1 H), 8.09 (d, p.1

C. Nmr, MHz, CDCl, vol.3

H. Nmr, CDCl 3 ): ? = 11.99 (s, 1 H), 11.96 (s, 1 H), Mhz, issue.300, p.1

, 11.67 (s,1 H)

, 88 (s, 1 H), 6.84 (s, 1 H), 7.40 (s, 1 H), 7.34 (s, 1 H), 7.32 (t, J = 7.9 Hz, 1 H), 6.99 (t, J = 7.6 Hz, 1 H), vol.6

, This compound was prepared according to the same procedure as compound 13. Yield: 120 mg (19 %), Compound, vol.36, issue.L2

, CDCl 3 ): ? = 11.30 (s, 2 H), vol.11

, 00 (s, 2 H), vol.11

. Hz,

T. and J. , 44 (s, 2 H), vol.6

. Hz,

, CDCl 3 ): ? = 11.83 (s, 1 H), 11.70 (s, 1 H), 11.58 (s, 8.3, 1.1 Hz, 1H)

, 7.43 (s, 1 H), 7.38-7.29 (m, 4 H), p.1

, 77 (s, 1 H), vol.6

, 18 (s, 3 H), 2.60-2.35 (m, 5 H), vol.3

. H)-ppm,

H. Nmr, CDCl 3 ): ? = 11.86 (s, 1 H), 11.73 (s, 1 H), MHz, vol.11, issue.300, p.1

, 45 (s, 1 H), 11.43 (s, 1 H), vol.11, p.1

, 34 (s, 1 H), 7.38 (s, 1 H), 7.37 (dd, J = 3.1, 2.0 Hz, 1 H), vol.7

. Hz, , p.4

. H)-ppm,

, CDCl 3 ): ? = 11.40 (s, 2 H), vol.11

, 09 (s, 2 H), vol.11

, 37 (m, 12 H), 7.30 (d, J = 8.1 Hz, 4 H), m, 4 H), 7.52 (d, J = 7.6 Hz, 2 H, vol.7, pp.45-52

C. Nmr, , p.75

Y. Inokuma, T. Arai, and M. Fujita, Nat. Chem, vol.2, p.780, 2010.

B. H. Northrop, H. Yang, and P. J. Stang, Chem. Commun, pp.5896-5908, 2008.

S. R. Seidel and P. J. Stang, Acc. Chem. Res, vol.35, pp.972-983, 2002.

M. Albrecht, Chem. Rev, vol.101, pp.3457-3498, 2001.

R. Chakrabarty, P. S. Mukherjee, and P. J. Stang, Chem. Rev, vol.111, pp.6810-6918, 2011.

Y. Yamauchi, M. Yoshizawa, and M. Fujita, J. Am. Chem. Soc, vol.130, pp.5832-5833, 2008.

H. W. Hellinga, Curr. Opin. Biotechnol, vol.7, pp.437-441, 1996.

C. S. Mocny and V. L. Pecoraro, Acc. Chem. Res, vol.48, pp.2388-2396, 2015.

E. N. Salgado, R. J. Radford, and F. A. Tezcan, Acc. Chem. Res, vol.43, pp.661-672, 2010.

J. D. Brodin, X. I. Ambroggio, C. Tang, K. N. Parent, T. S. Baker et al.,

. Chem, , vol.4, p.375, 2012.

W. J. Song and F. A. Tezcan, Science, vol.346, pp.1525-1528, 2014.

W. J. Song, J. Yu, and F. A. Tezcan, J. Am. Chem. Soc, vol.139, pp.16772-16779, 2017.

L. A. Churchfield, R. G. Alberstein, L. M. Williamson, and F. A. Tezcan, J. Am. Chem. Soc, vol.140, pp.10043-10053, 2018.

L. A. Churchfield, A. Medina-morales, J. D. Brodin, A. Perez, F. A. Tezcan et al.,

. Soc, , vol.138, pp.13163-13166, 2016.

L. A. Churchfield and F. A. Tezcan, Acc. Chem. Res, vol.52, pp.345-355, 2019.

T. Sawada, M. Yamagami, K. Ohara, K. Yamaguchi, M. Fujita et al., Angew. Chem. Int. Ed, vol.125, issue.18, pp.3448-3449, 2003.

T. R. Cook, V. Vajpayee, M. H. Lee, P. J. Stang, and K. Chi, Acc. Chem. Res, vol.46, pp.2464-2474, 2013.

A. M. Kendhale, L. Poniman, Z. Dong, K. Laxmi-reddy, B. Kauffmann et al., The Journal of Organic Chemistry, vol.76, pp.195-200, 2011.

N. Delsuc, T. Kawanami, J. Lefeuvre, A. Shundo, H. Ihara et al., ChemPhysChem, vol.9, pp.1882-1890, 2008.

P. Bonakdarzadeh, F. Topi?, E. Kalenius, S. Bhowmik, S. Sato et al., Inorg. Chem, vol.54, pp.6055-6061, 2015.