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Abstract

Nowadays, robots have become increasingly important to investigate hazardous and dangerous

environments. A group of collaborating robots can often deal with tasks that are difficult, or even

impossible, to be accomplished by a single robot. Multiple robots working in a cooperative manner

is called as a Multi-Agent System (MAS). The interaction between agents to achieve a global task is

a key in cooperative control. Cooperative control of MASs poses significant theoretical and practical

challenges. One of the fundamental topics in cooperative control is the consensus where the objective

is to design control protocols between agents to achieve a state agreement. This thesis improves the

navigation scheme for MASs, while taking into account some practical constraints (robot model and

temporal constraints) in the design of cooperative controllers for each agent, in a fully decentralized

way. In this thesis, two directions are investigated.

On one hand, the convergence rate is an important performance specification to design the con-

troller for a dynamical system. As an important performance measure for the coordination control

of MASs, fast convergence is always pursued to achieve better performance and robustness. Most of

the existing consensus algorithms focus on asymptotic convergence, where the settling time is infinite.

However, many applications require a high speed convergence generally characterized by a finite-time

control strategy. Moreover, finite-time control allows some advantageous properties but the settling

time depend on the initial states of agents. The objective here is to design a fixed-time leader-follower

consensus protocol for MASs described in continuous-time. This problem is studied using the powerful

theory of fixed-time stabilization, which guarantee that the settling time is upper bounded regardless

to the initial conditions. Sliding mode controllers and sliding mode observers are designed for each

agent to solve the fixed-time consensus tracking problem when the leader is dynamic.

On the other hand, compared with continuous-time systems, consensus problem in a discrete-time

framework is more suitable for practical applications due to the limitation of computational resources

for each agent. Model Predictive Control (MPC) has the ability to handle control and state constraints

for discrete-time systems. In this thesis, this method is applied to deal with the consensus problem in

discrete-time by letting each agent to solve, at each step, a constrained optimal control problem involv-

ing only the state of neighboring agents. The tracking performances are also improved in this thesis

by adding new terms in the classical MPC technique. The proposed controllers will be simulated and

implemented on a team of multiple Mini-Lab Enova Robots using ROS (Robotic Operating System)

which is an operating system for mobile robots. ROS provides not only standard operating system

services but also high-level functionalities. In this thesis, some solutions corresponding to problem of

connection between multiple mobile robots in a decentralized way for a wireless robotic network, of

tuning of the sampling periods and control parameters are also discussed.

KEYWORDS: Cooperative control; Multi-agent system; Leader-Follower consensus; Mobile robot; Fixed-

time stability; Model predictive control; Robotic Operating System (ROS)



Résumé

Un groupe de robots collaboratifs peut gérer des tâches qui sont difficiles, voire impossibles, à

accomplir par un seul. On appelle un ensemble de robots coopérant un système multi-agents (SMA).

L’interaction entre agents est un facteur clé dans la commande coopérative qui pose d’importants défis

théoriques et pratiques. L’une des tâches du contrôle coopératif est le consensus dont l’objectif est de

concevoir des protocoles de commande afin de parvenir à un accord entre leurs états respectifs. Cette

thèse améliore la navigation pour les SMA, tout en tenant compte de certaines contraintes pratiques

(modèle du robot et contraintes temporelles) dans la conception de contrôleurs coopératifs pour chaque

agent, de manière décentralisée. Dans cette thèse, deux directions sont étudiées.

D’une part, le taux de convergence est une spécification de performance importante pour la con-

ception du contrôleur pour un système dynamique. La convergence rapide est toujours recherchée

pour améliorer les performances et la robustesse. La plupart des algorithmes de consensus existants

se concentrent sur la convergence asymptotique, où le temps d’établissement est infini. Cependant,

de nombreuses applications nécessitent une convergence rapide généralement caractérisée par une

stratégie de commande à temps fini. De plus, la commande à temps fini autorise certaines propriétés

intéressantes, mais le temps de stabilisation dépend des conditions initiales des agents. L’objectif ici

est de concevoir un protocole de consensus leader-follower à temps fixe pour les SMA décrits en temps

continu. Ce problème est étudié en utilisant la théorie de la stabilisation à temps fixe, qui garantit

que le temps de stabilisation est borné quelles que soient les conditions initiales. Les contrôleurs et les

observateurs à modes glissants sont conçus pour que chaque agent résolve le problème du consensus à

temps fixe lorsque le leader est dynamique.

D’autre part, par rapport aux systèmes à temps continu, le problème du consensus dans un cadre

à temps discret convient mieux aux applications pratiques en raison de la limitation des ressources de

calcul pour chaque agent. Le modèle de commande prédictive (MPC) permet de gérer les contraintes

de commande et d’état des systèmes. Dans cette thèse, cette méthode est appliquée pour traiter le

problème du consensus en temps discret en laissant chaque agent résoudre, à chaque étape, un problème

de commande optimale contraint impliquant uniquement l’état des agents voisins. Les performances

de suivi sont également améliorées dans cette thèse en ajoutant de nouveaux termes à partir du MPC

classique. Les contrôleurs proposés sont simulés et implémentés sur un groupe composé de plusieurs

robots réels en utilisant ROS (Robotic Operating System). Dans cette thèse, quelques solutions cor-

respondant au problème de la connexion entre plusieurs robots mobiles de manière décentralisée, du

réglage des périodes d’échantillonnage et des paramètres de contrôle sont également abordées.

MOTS-CLES: Contrôle coopératif; Système multi-agents; Consensus Meneur/Suiveur; Robot mobile;

Stabilité à temps fixe; Commande prédictive; Robotic Operating System (ROS)
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General Introduction

This chapter illustrates some general introductory knowledge about cooperative control of multi-agent

systems (MASs). The research work was done in Automation and Control Department of LAMIH

UMR CNRS 8201 (Laboratory of Industrial and Human Automation control, Mechanical engineering

and Computer Science) which has been structured into two complementary themes: Robustness Com-

plexity (ROC) and Cooperating Intelligent Systems (SIC). Since we deal with MASs, this research

work is in the intersection of Robustness Complexity and Cooperating Intelligent Systems themes.

More precisely, it deals with decentralized cooperative control for MASs while taking into account the

time constraints.

Context

Nowadays, mobile robots become more and more complex, integrate capacities of perception, com-

munication and adaptation to diverse situations and aim at bigger and bigger requirements in terms

of robustness, ergonomics and safety. Through the last century, robots have changed the structure of

the society and have allowed for safer conditions for work.

For the society, robots can assist humans by taking place on the jobs that are dirty, dull or dan-

gerous. Beyond the factory floor, robots have been instrumental in performing tasks that would be

impossible for humans. In automobile industry, robots are used to assist in building cars. These

high-powered machines have mechanical arms with tools, wheels and sensors that make them ideal for

assembly line jobs. Not only robots save more money in manufacturing systems, but they also perform

tough tasks at a pace no human could possibly do. Robots have become increasingly important for

investigating hazardous and dangerous environments. These robots are capable of entering an active

volcano to collect data or a burning building to search for victims. In addition, the implementation

of advanced robotics in the military and NASA fields has changed the landscape of national defense

and space exploration.

The introduction of multiple robots increases robustness through redundancy. A group of collabo-

11



rating robots can often deal with tasks that are difficult, or even impossible, to be accomplished by a

single robot. The problem of cooperative control between various robots around a common objective is

a stake both from the economic and the scientific point of view. Multiple robots working in a cooper-

ative manner is called as Multi-Agent System (MAS). We denote any system with sensing, computing

and communicating capabilities, such as robots, sensors with the word “agent”. This set of agents

interact with each other, situated in a common environment, eventually, building or participating to,

an organisation.

There are many applications of MASs (see Fig. 1). It usually concerns robots in hostile environ-

ments realizing dangerous or very painful tasks for men. A classical application is the monitoring of

a geographical area by measuring the temperature, pollution or humidity of a specified area. Mining

robotics, certain applications of robotics in the construction field (i.e. the transport of heavy ob-

jects by means of several autonomous vehicles), or robotics in high-risk areas (i.e. mine clearance,

intervention in a radioactive environment) also belong to this kind of applications.

Figure 1: Applications of MASs.

The interaction between agents to achieve a global task is a key in cooperative control. Cooperative

control of MASs poses significant theoretical and practical challenges. One of the fundamental topics

in cooperative control is the consensus where the objective is to design control protocols between

agents to achieve a state agreement, such as position and velocity. Since the exchange of information

can only occur between the agent and its neighbours, the state consensus control of MASs becomes

difficult and challenging.

12



Objectives and Motivation

In this thesis, we will improve the navigation scheme for Multi-Agent Systems, while taking into

account some practical constraints. We are mainly interested in designing cooperative controllers for

each agent, in a fully decentralized way, while considering the robot model and temporal constraints.

To consider the temporal constraints, two directions will be investigated:

• The consensus problem in a fixed-time framework. Indeed, for many practical appli-

cations (including manufacturing systems, missile guidance, spacecraft, etc.), the convergence

rate is an important performance specification to design the controller for a dynamical system.

As an important performance measure also for coordination control of multi-agent systems, fast

convergence is always pursued to achieve better performance and robustness, such as hybrid

formation flying, consensus subject to switching topology, etc. In practice, the communication

bandwidth and connectivity of multiple agents are often limited and the information exchange

among agents may be unreliable. In manufacturing systems, the navigation of multi-agents

while taking into account the temporal constraints is very important. Hence, it is interesting

to achieve consensus in a predefined-time, i.e. the settling time is uniformly bounded and in-

dependent of initial conditions. The estimation of the settling time could be very useful when

switching topology or networks of clusters are considered.

Most of the existing consensus algorithms focus on asymptotic convergence, where the settling

time is infinite. However, many applications require a high speed convergence generally charac-

terized by a finite-time control strategy. Moreover, finite-time control allows some advantageous

properties such as good disturbance rejection and good robustness against uncertainties. For in-

stance, a recursive terminal sliding mode controller has been introduced for the tracking control

of unicycle-type mobile robots in finite-time. The finite-time consensus problem for multi-agent

systems has been studied for single integrator, double integrator and inherent non-linear dynam-

ics.

Using finite time controller, an estimation of the settling time could be very useful when switch-

ing topology or networks of clusters are considered. It is worthy of noting that, for the above-

mentioned works, the explicit expressions for the bound of the settling time depend on the initial

states of agents. Therefore, the knowledge of these initial conditions usually prevent us from the

estimation of the settling time using distributed architectures. A new approach, called fixed-time

stability has been recently proposed to define algorithms which guarantee that the settling time

is upper bounded regardless to the initial conditions.

13



Based on the above observations, the objective will be to design a fixed-time leader-follower con-

sensus protocol for MASs described in continuous-time. This problem will be studied using the

powerful theory of fixed-time stabilization. Sliding mode controllers and sliding mode observers

will be designed for each follower to solve the fixed-time consensus tracking problem when the

leader is dynamic.

• The consensus problem in a discrete-time framework. Compared with continuous-time

systems, discrete-time systems are more suitable for practical applications. The limitation of

computational resources of each agent becomes a significant challenge. If the communication

network among agents allows continuous communication or if the communication bandwidth

is sufficiently large, then the information state update of each agent can be modeled using a

differential equation. On the other hand, if the communication data arrives in discrete packets,

then the information state update is modeled using a difference equation.

The dynamic behavior of discrete-time multi-agent systems with general communication topolo-

gies and the associated consensus problem have been considered by many researchers. It was

proved that the states of internal agents converge to a convex combination of boundary agents

in the case of communication time delays. Furthermore, Model Predictive Control (MPC) has

ability to handle control and state constraints for discrete-time systems. This method can be

applied for the control of a group of agents by letting each agent solve, at each step, a constrained

finite-time optimal control problem involving the state of neighboring agents. MPC is a form of

control in which the output of the system can be predicted from some prediction horizon. The

output of the MPC controller is determined based on input and output at a previous time and

the control signal along the control horizon.

Here, the motivation of this research direction comes from the lack of decentralized discrete-time

controllers which solve the consensus problem for multi-agent systems with double integrator

dynamics. The proposed methodology will be based on decentralized model predictive control.

Furthermore, in contrast to classical model predictive controllers, we propose to modify the clas-

sical methodology in order to improve the tracking performances.

Finally, the proposed controllers will be implemented on a team of mobile robots using multiple Mini-

Lab Enova Robots and ROS (Robotic Operating System).
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Previously, every robotics designer and researcher have spent a considerable amount of time to

design the embedded software within a robot, as well as the hardware itself. This requires skills in

mechanical engineering, electronics and embedded programming (to name a few). There was a consid-

erable re-use of programs, as they were strongly linked to the underlying hardware. The main idea of

a robotics OS is to avoid continuously reinventing and to offer standardized functionalities performing

hardware abstraction, just like a conventional OS for PCs.

Robot Operating System (ROS) is an operating system for robots. In the same way as operating

systems for PCs, servers or standalone devices, ROS is a full operating system for service robotics.

It provides not only standard operating system services (hardware abstraction, contention manage-

ment, process management), but also high-level functionalities (asynchronous and synchronous calls,

centralised database, a robot configuration system, etc.).

Some of the theoretical results on the consensus problem will be experimentally implemented and

validated on a mobile actuator and sensor network platform using ROS using a wireless network. This

research motivation comes from the challenge of the implementation of our proposed controllers in a

decentralized way using Mini-Lab mobile robots in the ROS environment. This implementation will

require the resolution of some problems corresponding to the connection of multiple mobile robots

in a decentralized way in wireless robotic networks, finding good sampling to implement the control

algorithm, etc.

Thesis Outline

The remainder of this thesis is organized into five chapters as follows:

Chapter 1. The first chapter is a brief overview on multi-agent systems, fixed-time control strat-

egy and model predictive control. First, the formal definition of consensus for multi-agent systems

is given. After, some recalls on fixed-time stability, the concepts of stability for fixed-time control

are discussed. We will present some results on fixed-time stability to establish the foundation for the

understanding of our work. At the end, an overview on model predictive control for discrete-time

multi-agents systems is given.

Chapter 2. In this chapter, we will propose fixed-time control strategies to solve the tracking problem

for a mobile robot. Then, the fixed-time approach is applied to solve the leader-follower consensus

problem for multi-agent systems in this chapter. A decentralized observer-based control protocol is

proposed for each agent to solve the leader-follower consensus problem in a fixed-time. Some simula-

tions will show the effectiveness of the proposed scheme.

Chapter 3. We analyse in this chapter the consensus for multi-agent systems using distributed
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MPC. In the first part, we will deal with the consensus control problem for multi-agent systems with

single-integrator dynamics. We will present, the distributed MPC scheme. The criteria function is

designed using the difference between two consecutive inputs. Furthermore, multi-agent systems with

double-integrator dynamics will discuss. Illustrative examples will be given.

Chapter 4. We will present in this chapter an experimental platform for the implementation of the

theoretical results using mini-lab robots. Also, the architecture of multi-master ROS and the wireless

robot network connectivity will be discussed in this chapter.

Chapter 5. In this chapter, we apply the consensus-based design scheme to two applications, single

agent and multi-agents systems. In single agent application, we design node of path planning in ROS

such that the robot can track the desired trajectory in termd of fixed-time tracking. In multiple mo-

bile robots application, we explore issues and challenges in cooperative control with communication

constraints.

General conclusion and perspectives. This chapter is a general conclusion. A contribution of the

works performed in this thesis and the results given in the study of consensus under time constraints

will be presented as well as perspectives on future works. Several problems and methods remain open

and need to be developed.
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Chapter 1

State of the art

In this chapter, at first we will introduce some basic concepts of algebraic graph theory. Then, we will

make a brief state of the art on the consensus control problem in cooperative control for multi-agent

systems. The literature review of convergence rate analysis will be then presented. Since the study

of MASs under the discrete-time framework is very convenient for a discrete-time implementation,

we will recall, the concepts of consensus for multi-agent systems in continuous-time and discrete-time

separately. At the end of this chapter, we will introduce some concepts on model predictive control

as a solution of the multi-agent consensus problem in discrete-time.

1.1 Algebraic Graph Theory Background

Cooperative control studies the dynamics of multi-agent dynamical systems linked to each other by a

communication graph. The graph represents the allowed information flow between the agents.

1.1.1 Graph Theory Basics

Here, we present some basic graph theory concepts that are essential in the study of multi-agent

dynamical systems. Suppose that there are n mobile robots in the group of MAS which interact with

each other through a communication or sensing network or a combination of both. The interaction

pattern between agents can be modeled by describing the communication topology in the form of a

graph. A graph is built from a finite set, where each set has a finite number of elements. Each element

is called a vertex and denoted by V. The set of vertices can have several vertices and are represented

by Vn.

A graph can be defined by Gn , (Vn, En), where Vn , {1, . . . , n} defines the set of nodes, cor-

responding to the agents and En ⊆ Vn × Vn defines the edge set, called edges. Figure 1.1 shows an

undirected graph of 5 agents.
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Figure 1.1: A communication graph of MAS with 5 vertices and 6 edges.

It is natural to model the interaction among agents by directed or undirected graphs. A link (i, j)

in the edge set of a directed graph denotes that agent j can obtain information from agent i, but not

necessarily vice versa. Self-edges (i, i) are not allowed unless otherwise indicated. For the edge (i, j),

i is the parent node and j is the child node. If an edge (i, j) ∈ E , then node i is a neighbor of node

j. The set of neighbors of node i is denoted as Ni = {j 6= i : (j, i) ∈ E}. In contrast to a directed

graph, the pairs of nodes in an undirected graph are unordered, where the edge (i, j) denotes that

agents i and j can obtain information from each other. Note that an undirected graph can be viewed

as a special case of a directed graph, where an edge (i, j) in the undirected graph corresponds to the

edges (i, j) and (j, i) in the directed graph. A weighted graph associates a weight with every edge in

the graph. The union of a collection of graphs is a graph whose node and edge sets are the unions of

the node and edge sets of the graphs in the collection.

Figure 1.2 shows the communication graph among 4 agents in the directed graph. An arrow from

node i to node j indicates that agent j receives information from agent i.

Figure 1.2: A directed graph with 4 vertices.

A directed path is a sequence of edges in a directed graph of the form (i1, i2), (i2, i3), .... An undi-

rected path in an undirected graph is defined analogously. In a directed graph, a cycle is a directed

path that starts and ends at the same node. A directed graph is strongly connected if there is a

directed path from every node to every other node. An undirected graph is connected if there is an

undirected path between every pair of distinct nodes. An undirected graph is fully connected if there

is an edge between every pair of distinct nodes. A directed graph is complete if there is an edge from
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every node to every other node. A directed tree is a directed graph in which every node has exactly

one parent except for one node, called the root, which has no parent and which has directed paths to

all other nodes. Note that a directed tree has no cycle because every edge is oriented away from the

root. In undirected graphs, a tree is a graph in which every pair of nodes is connected by exactly one

undirected path.

A subgraph (V1, E1) of (V, E) is a graph such that V1 ⊆ V and E1 ⊆ E ∩ (V1×V1). A directed span-

ning tree (V1, E1) of the directed graph (V, E) is a subgraph of (V, E) such that (V1, E1) is a directed

tree and V1 = V . An undirected spanning tree of an undirected graph is defined analogously. The

directed graph (V, E) has or contains a directed spanning tree if a directed spanning tree is a subgraph

of (V, E). Note that the directed graph (V, E) has a directed spanning tree if and only if (V, E) has

at least one node with directed paths to all other nodes. In undirected graphs, the existence of an

undirected spanning tree is equivalent to being connected. However, in directed graphs, the existence

of a directed spanning tree is a weaker condition than being strongly connected.

Graphs, can also be represented by a matrix for further analysis. For undirected graphs Gn, the

degree of vertex d(vi) is related to the neighbor set Ni, and equals to the number of adjacent vertices

with vertex vi in graph Gn. In Figure 1.1, the degree of vertex is:

d(v1) = 3; d(v2) = 2; d(v3) = 3; d(v4) = 2; d(v5) = 1

The vertex degree above can be expressed with a degree matrix 4(G), in the form of a diagonal

matrix measuring n× n whose diagonal component is the degree of vertex in graph G, as:

4(G) =


d(v1) 0 · · · 0

0 d(v2) · · · 0
...

...
. . .

...

0 0 · · · d(vn)

 (1.1)

1.1.2 Adjacency Matrices

The adjacency matrix A , [aij ] ∈ Rn×n of a directed graph (V, E) is defined such that aij is a pos-

itive weight if (j, i) ∈ E and aij = 0 if (j, i) /∈ E . Self-edges are not allowed (i.e., aii = 0) unless

otherwise indicated. The adjacency matrix of an undirected graph is defined analogously except that

aij = aji for all i 6= j because (j, i) ∈ E implies (i, j) ∈ E . Note that aji denotes the weight for the

edge (j, i) ∈ E . If the weight is not relevant, then aji is set equal to 1 if (j, i) ∈ E . The in-degree

and out-degree of node i are defined as, respectively,
∑n

j=1 aij and
∑n

j=1 aji. A node i is balanced if∑n
j=1 aij =

∑n
j=1 aji. A graph is balanced if

∑n
j=1 aij =

∑n
j=1 aji, for all i. For an undirected graph,
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A is symmetric, and thus every undirected graph is balanced.

Here below are the degree matrix and the adjacency matrix for the undirected graph given in

Figure 1.1:

4(G) =



3 0 0 0 0

0 2 0 0 0

0 0 4 0 0

0 0 0 2 0

0 0 0 0 1


A(G) =



0 1 1 1 0

1 0 1 0 0

1 1 0 1 1

1 0 1 0 0

0 0 1 0 0


For the directed graph in Figure 1.2, the degree matrix and the adjacency matrix are as follows:

4(D) =


2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 A(D) =


0 1 1 0

0 0 0 0

0 0 0 1

0 0 0 0


1.1.3 Laplacian Matrices

Many properties of a graph may be studied in terms of its Laplacian. In fact, we shall see that the

Laplacian matrix is of extreme importance in the study of cooperative control of multi-agent systems.

Define the matrix L , [lij ] ∈ Rn×n as

lii =
n∑

j=1,j 6=i
aij , lij = −aij , i 6= j (1.2)

Note that if (j, i) /∈ E then lij = −aij = 0. The matrix L satisfies

lij ≤ 0, i 6= j,
n∑
j=1

lij = 0, i = 1, ..., n. (1.3)

L is called the Laplacian matrix. For an undirected graph, L is symmetric. However, for a directed

graph, L is not necessarily symmetric and is sometimes called the nonsymmetric Laplacian matrix or

directed Laplacian matrix. In both the undirected and directed cases, since L has zero row sums, 0 is

an eigenvalue of L with the associated eigenvector 1 , [1, . . . , 1]T , the n × 1 column vector of ones.

Note that L is diagonally dominant and has nonnegative diagonal entries. If follows from Gershgorin’s

disc theorem [?] that, for an undirected graph, all of the nonzero eigenvalues of L are positive (L is

positive semidefinite), whereas, for a directed graph, all of the nonzero eigenvalues of L have positive

real parts. Therefore, all of the nonzero eigenvalues of −L have negative real parts.
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For example, the Laplacian matrix for the undirected graph in Figure 1.1 is:

L(G) = 4(G)−A(G) =



3 −1 −1 −1 0

−1 2 −1 0 0

−1 −1 4 −1 0

−1 0 −1 2 0

0 0 −1 0 1


For Figure 1.2, the Laplacian matrix is:

L(D) = 4(D)−A(D) =


2 −1 −1 0

0 1 0 0

0 0 1 −1

0 0 0 1


For an undirected graph, 0 is a simple eigenvalue of L if and only if the undirected graph is

connected [?]. For a directed graph, 0 is a simple eigenvalue of L if the directed graph is strongly

connected [5, Proposition 3], although the converse does not hold. For an undirected graph, let λi(L)

be the ith smallest eigenvalue of L with λ1(L) ≤ λ2(L) ≤ . . . ≤ λn(L) so that λ1(L) = 0. For an

undirected graph, λ2(L) is the algebraic connectivity, which is positive if and only if the undirected

graph is connected [?]. The algebraic connectivity quantifies the convergence rate of a consensus

algorithm [?].

1.2 Consensus Control Strategy

1.2.1 Overview of Cooperative Control

A multi-agent system is a system that consists of multiple intelligent agents and their environment.

The word “agent” represents any system with sensing, computing and communicating capabilities,

such as a wheeled mobile robot, an unmanned air vehicle (UAV), an autonomous underwater vehicle

(AUV), a manipulator or sensors. The agents interact with one-another to achieve a global task. To

successfully interact, they will require the ability to cooperate, coordinate and negotiate with each

other. The interaction between agents to achieve a global task is called cooperative control. Figure 1.3

shows different types of agents (Figure 1.3(a) for wheeled mobile robots, Figure 1.3(b) for unmanned

air vehicles, Figure 1.3(c) for autonomous underwater vehicles).

Over the last decade, an enormous amount of researchers have drawn great interest on cooper-

ative control of MAS) because of its variety of applications in several areas, e.g., unmanned aerial

vehicle surveillance, hazardous material handling, mine-sweeping and deep sea exploration. Figure

1.4 illustrates some applications of MAS. To enable these applications, various cooperative control
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(a) (b)

(c)

Figure 1.3: Example of different agents.

capabilities need to be developed, including target tracking [?] [?] [?] [?] [?], flocking [?] [?] [?] [?],

swarming [?] [?], rendezvous [?] [?], area coverage [?] [?] [?], monitoring [?] [?], formation control [?] [?]

[?] [?] [?], etc. In these works, it has been shown that the use of multi-agent cooperative systems en-

ables to accomplish complex tasks which are difficult or impossible compared to the use of a single one.

Figure 1.4: Multi-agent system applications.

Cooperative control of multi-agent systems poses significant theoretical and practical challenges.

Indeed, the objective is to develop a system of subsystems rather than a single system that has team

goals and individual goals which have to be negotiated, while taking into account the limited computa-
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tional resources of each individual agent, the locally sensed information, and limited inter-component

communications. The consensus/agreement/synchronization/rendezvous problem is one fundamental

research topic of cooperative control of MASs, which focuses on designing distributed controllers to

drive agents to achieve state agreement or forcing a group of agents states to reach an agreement on

a quantity of interest such as the rendezvous position, velocity and heading direction. It is crucial to

design appropriate control protocols for agents with information interactions over the network.

In Figure 1.5, we show a MAS consisting of four mobile robot labeled from 1 to 4. The information

transmission can be either unidirectional or bidirectional as indicated by the arrow directions. The

figure shows that agent 3 receives information from agent 2, but the information of agent 3 can not

be transmitted to agent 2. The bidirectional communication channel between agent 1 and 2 or agent

3 and 4 means that two agents can receive information from each other.

Figure 1.5: Illustration of a MAS: A group of five mobile robots.

1.2.2 Communication Graphs and Consensus

A network may be considered as a set of nodes or agents that collaborate to achieve a common

objective. To capture the notion of dynamical agents, each node i of a graph endowed with a time-

varying state vector xi(t) ∈ Rn. A graph with node dynamics [10] is G(x) with (G being a graph having

n nodes and x = [xT1 , ..., x
T
n ]T a global state vector, where the state of each node evolves according to

the following differential equation:

ẋi(t) = F (xi(t), ui(t)) with i = 1, 2, ..., n. (1.4)

where ui(t) ∈ Rm is the control input of agent i (resp. control input) of the multi-agent system,

F : Rn × Rm → Rn.
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Definition 1 Decentralized Control Protocol. The control given by ui = ki(xi1, xi2, ..., ximi)

for some function ki(.) is said to be distributed if mi < n, ∀i, that is, the control input of each

node depends on some proper subset of all the nodes. It is said to be a protocol with topology G if

ui = ki(xi, {xj |j ∈ Ni}), that is, each node can obtain information about the state only of itself and

its neighbors.

Cooperative control, or control of distributed dynamical systems on graphs, refers to the situation

where each node can obtain information for control design only from itself and its neighbors. The

graph might represent a communication network topology that restricts the allowed communications

between the nodes. This has also been referred to as multi-agent control, but is not the same as the

notion of multi-agent systems used by the Computer Science community [20].

1.2.3 Consensus Algorithm

When agents reach an agreement on a certain common feature, they are said to have reached consen-

sus. Information consensus guarantees that agents sharing information over a network topology have

a consistent view of information that is critical to the coordination task. To achieve consensus, there

must be a shared variable of feature, called the information state, as well as appropriate algorith-

mic methods for negotiating to reach consensus on the value of that variable, called the consensus

algorithm. The information state represents an instantiation of the coordination variable for the team.

The basic idea of a consensus algorithm is to impose similar dynamics on the information states

of each agents. If the communication network among agents allows continuous communication or if

the communication bandwidth is sufficiently large, then the information state update of each agent is

modeled using a differential equation. On the other hand, if the communication data arrive in discrete

packets, then the information state update is modeled using a difference equation.

A basic control design objective is the following.

Definition 2 Consensus Problem. Find a distributed control protocol that drives several or all

states to the same values xi = xj , ∀i, j . This value is known as a consensus value.

The most common continuous-time consensus algorithm [?],[?] [?] [?] [?] is given by:

ẋi(t) = −
n∑
j=1

aij [xi(t)− xj(t)], i = 1, . . . , n. (1.5)

where aij(t) is the (i, j) entry of adjacency matrixA ∈ Rn×n associated with G and xi is the information

state of the ith agent. A consequence of Equation (1.5) is that the information state xi(t) of agent i

is driven toward the information state xj(t) of its neighbors j.
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Average Consensus

The average consensus is discussed in [?], [?], [?], [?]. All agents in the MAS will converge to the

exact average value of their initial states. When an agent moves, the average value of the states can

remain constant by changing another agent’s states with the same magnitude in the opposite direction

[?], [?]. More complicated situations such as switching topologies, time-varying delays in the average

consensus problem are discussed in [?]. Figure 1.6 illustrated the average consensus problem where

the state of all agents converge to an average value.

Figure 1.6: Average Consensus.

1.2.4 Leaderless and Leader-Follower Consensus

According to the number of leaders in a group of multi-agent system, current researches about the

consensus problem are classified into three fields, i.e., leaderless consensus, leader-following consensus

problem with a single leader, and containment control with multiple leaders.

Leaderless Consensus

In leaderless consensus, all agents have the same role. For leaderless consensus, control strategies are

proposed for first-order [?] [?], second-order [?] [?], high-order [?] [?] multi-agent systems. In [?], it

has been shown that for MAS represented by a simple integrator, the algebraic connectivity, that

is to say, the smallest positive eigenvalue of the Laplacian graph, determines the convergence time.

[?] provides an overview of consensus for first-order multi-agent systems and also some theoretical
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results on information consensus-seeking under both time-invariant and time-varying communication

topologies. Figure 1.7 described the leaderless consensus problem where the state of all agents converge

to a consensus point.

Figure 1.7: Leaderless Consensus.

Leader-Following Consensus

In leader-following consensus problem, there are consensus regulation problem with static leaders and

consensus tracking problem with dynamic leaders. The leader-follower consensus problem has been

firstly introduced in [?]. Figure 1.8 illustrated the interaction graph for five followers and one leader.

Not all the followers are connected to the leader (node 0). Only followers one and two are connected

to the leader in this example.

Figure 1.8: Graph of Leader Follower Model

For leader-following consensus problem with a single leader, control strategies are proposed in [?]

[?] where distributed tracking control schemes have been developed for second-order MAS considering

directed interconnection topology. A consensus tracking protocol has been proposed in [?] for second-

order MAS with matched perturbations. In [?], the leader-follower consensus problem for linear MAS

has been studied using distributed impulsive control.
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Figure 1.9: Leader Follower Consensus

Containment Control

The objective of containment control is to drive the states of followers into a convex hull spanned by

those multiple leaders. In practical scenarios, it is sometimes more interesting if followers move to an

area stretched by several leaders instead of tracking a specific desired path [?]. One possible scenario

is that groups of vehicles moves from one place to a target while only a small portion of vehicles has

sensing capabilities to detect dangerous obstacles. In this case, all groups have to safely reach the

destination as long as followers (vehicles without sensing capabilities) remain in the safe zone formed

by leaders (vehicles with sensing capabilities). Some results are reported on the containment control

problem for single-integrator [?] or double-integrator [?] multi-agent systems.

1.3 Convergence Rate Analysis

The consensus problem of multi-agent systems has received much attention in recent years and many

interesting results have been discussed from different directions. An important topic in the study

of the consensus problem is the settling time, which characterizes the rate of convergence rate of a

closed-loop system. It is well recognized as one of the performance specifications for the control system

design. Fast convergence is usually pursued in practice in order to achieve better performance and

robustness. It is clear that for the cooperative control of MAS, the convergence rate is one critical

index to evaluate the proposed control methods.

To illustrate this important specification index, let us consider the first-order system

ẋ = u (1.6)

where x ∈ R is the state and u ∈ R is the control input. Figure 1.10 shows the trajectory of system

(1.6) under different control input (u = −x, u = −sign(x) and u = −(|x|2 + 1)sign(x)). One can see

the asymptotic, finite-time and fixed-time properties of the corresponding closed-loop system.
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Figure 1.10: Asymptotic, finite-time and fixed-time properties of the first-order system

1.3.1 Asymptotic stability

Most of the existing consensus control algorithms for multi-agent systems are asymptotic consensus

algorithms. It means that the convergence rate is at best exponential with infinite settling time. In

other words, the states cannot reach a consensus in finite time. In the context of cooperative control,

an initial result [?] shows that for MAS represented by a simple integrator, the algebraic connectivity,

that is to say, the smallest eigenvalue of the Laplacian graph, determines the convergence rate. In

[?], the authors have proposed an approach to increase this algebraic connectivity. However, linear

algorithms have only focused on asymptotic convergence, where the time to reach consensus can be

arbitrarily large. In [?], the convergence rate can be enhanced by maximizing the algebraic connectivity

of the communication topology.

1.3.2 Finite-time stability

Most aforementioned consensus works can only achieve state agreement over an infinite time horizon,

which fails to meet specific convergence requirements in an unknown environment. Nevertheless, in

some practical cases, finite-time convergence is very interesting in terms of accuracy (which depends

on the sampling period) and robustness against perturbations [?].

Before giving a brief state of the art on finite-time consensus, let us recall some basics on finite-

time stability. The key point in finite time stability is that the power exponent should be less than one.

Generally, consider the following system{
ẋ(t) = F (t, x(t))

x(0) = x0

(1.7)

where x ∈ Rn is the state, F : R+ × Rn → Rn is an upper semicontinuous mapping in an open
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neighborhood F (t, 0) = 0 for t > 0. The solution of system (1.7) are understood in the Filippov sense

[?] if F (t, x) is discontinuous. Let x(t, x0) be an arbitrary solution of the Cauchy problem of system

(1.7).

Definition 3 [?] The origin of system (1.7) is a globally finite-time equilibrium if there is a function

T : Rn → R+ such that for all x0 ∈ Rn, the solution x(t, x0) of system (1.7) is defined and x(t, x0) ∈ Rn

for t ∈ [0, T (x0)) {
limt→T (x0) x(t, x0) = 0

x(t, x0) = 0 ∀t > T (x0)
(1.8)

T (x0) is called the settling time function.

Finite-time stability of the origin implies the asymptotic stability of the origin.

Lemma 1 [?] Assume that there exists a continuously differentiable positive definite and radially

unbounded function V : Rn → R+ such that

V̇ (x) ≤ −αV p(x) (1.9)

with α > 0 and 0 < p < 1. Then, the origin of system (1.7) is globally finite-time stable with settling

time estimate

T (x0) ≤ 1

α(1− p)
V 1−p(x0) (1.10)

In [?], the authors provide a finite-time consensus protocol for single-integrator MAS using an

appropriate Lyapunov function and time-varying weighted directed graphs. In [?], the authors have

introduced a terminal-sliding mode controller to deal with the finite-time consensus problem of second-

order linear uncertain systems. In [?], [?], the finite-time tracking problem has been addressed for

second-order MAS. In [?], a recursive terminal sliding mode controller has been introduced for the

tracking control problem of uncertain chained-form systems in finite-time. Nevertheless, in these

studies, the estimated bound of the settling time depends on the initial states of all the agents.

Therefore, this bound cannot be a priori estimated in decentralized architectures. Hence, in some

practical applications, it is required to achieve consensus in a prescribed time.

1.3.3 Fixed-time stability

Although finite-time consensus has many advantages, the estimation of convergence time depends on

initial states of the networked agents. This will give limitation in practice since the knowledge of initial

conditions is usually unavailable. This motivation gives rise to provide the convergence information in

advance to yield more options for designers. According to this issue, a new strategy called fixed-time

consensus is proposed.
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Let us first recall the basics on fixed-time stability. Let us consider system{
ẋ(t) = F (t, x(t))

x(0) = x0

(1.11)

where x ∈ Rn is the state, F : R+ × Rn → Rn is a nonlinear function and F (t, 0) = 0 for t > 0. The

solution of (1.11) are understood in the Filippov sense [?].

Definition 4 [?] The origin of system (1.11) is a globally fixed-time equilibrium if it is globally finite-

time stable and the settling time function T (x0) is bounded by a positive number Tmax > 0, i.e.

T (x0) ≤ Tmax, ∀x0 ∈ Rn

Lemma 2 [?] Assume that there exists a continuously differentiable positive definite and radially

unbounded function V : Rn → R+ such that

V̇ (x) ≤ −αV p(x)− βV q(x) (1.12)

with α > 0, β > 0, 0 < p < 1 and q > 1. Then, the origin of system (1.11) is globally fixed-time stable

with settling time estimate

T (x0) ≤ Tmax =
1

α(1− p)
+

1

β(q − 1)
(1.13)

Remark 1 [?] If p = 1 − 1
µ and q = 1 + 1

µ with µ > 1, the settling time can be estimated by a less

conservative bound:

T (x0) ≤ Tmax =
πµ

2
√
αβ

(1.14)

The concept of fixed-time stability has been introduced to design controllers such that the conver-

gence time is upper bounded independently of the initial conditions of the system [?] [?] [?] [?]. In

[?], a faster fixed-time nonsingular terminal sliding mode control scheme is proposed and the results

are applied to suppress chaotic oscillation in power systems.

Fixed-time consensus protocols have been investigated for first-order MAS [?] with external pertur-

bations in [?], [?], [?], for first-order switched MAS with continuous-time and discrete-time subsystems

in [?], for second-order dynamics in [?], [?], [?], [?] and high-order integrator dynamics in [?]. In [?],

for second-order multi-agent systems with directed topologies, a guaranteed settling time independent

of initial conditions is obtained by using global well-defined nonlinear consensus protocols with the

help of a sliding surface. An extended result is presented in [?] with a newly designed sliding manifold

with external disturbances.

For nonlinear MAS, the fixed-time consensus is further investigated under a weighted undirected

graph and uncertain disturbances in [?]. In [?] the interactions between agents are not only cooper-

ative but also antagonistic. Under this circumstance, a distributed nonlinear protocol is proposed to
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guarantee the state agreement in a fixed time as long as the interaction topologies are both struc-

turally balanced and structurally unbalanced. Few consensus protocols consider nonlinear MAS (such

as chained-form dynamics), which can model dynamics of robots. In [?], a class of multi-scale coor-

dination control problem is solved by using a fixed-time controller such that the multi vehicles with

disturbances are guaranteed to achieve consensus on a common quantity but of their own scales. Re-

cently, a switching strategy has been introduced to deal with the fixed-time consensus problem for

multiple nonholonomic agents [?]. However, in this work, the leader was static and no uncertainty

was considered.

1.4 Consensus in Discrete-time

Consensus problems can be studied in different time domains: continuous-time and discrete-time.

Many research studies are focused on continuous-time consensus protocols. On the other hand, it

becomes more convenient and popular to study MASs under the discrete-time framework due to the

development of the digital signal processing and communication technologies. Compared with the

continuous-time systems, discrete-time systems are more suitable for practical applications.

Some interesting works related to the topic of first-order discrete-time consensus stability analysis

were reported in [?] [?] [?]. The main objective of [?] was to theoretically study the coordination of a

group of autonomous agents using the Vicsek model. In [?], some consensus protocols for discrete-time

systems with switching topology were provided and the robustness against time delays was analyzed.

These two kinds of protocols are based using the same data at two time-steps. The dynamic behavior

of discrete-time multi-agent systems with general communication topologies was considered in [?]. For

topologies that have a spanning tree, the consensus problem was studied. It was proved that the states

of internal agents converge to a convex combination of boundary agents in the case of communication

time delays. Much attention on discrete-time consensus can be found in [?] [?] [?], etc.

Despite much effort has been produced for the two types of time domain above, the solutions are

not yet satisfied because MASs are usually operated using the analog measurement and embedded

microcontrollers to process digital signals. In sampled-data control system, the work requires both

continuous-time dynamics and discrete-time controllers. The sampling is usually assumed periodic

and synchronized for all agents [?] [?].

1.4.1 Notation and Basic Definition

We use Z+ to denote the set of all nonnegative integers. Euclidean norm is denoted simply as | · |.
For any function φ : Z+ → Rn, ‖φ‖ = sup{|φ(k)| : k ∈ Z+} ≤ ∞. Br is the closed ball of radius r, i.e.

Br = {x ∈ Rn||x| ≤ r}. A continuous function α(·) : R+ → R+ is a K function if α(0) = 0, α(s) > 0
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for all s > 0 and it is strictly increasing. A continuous function β : R+ × Z+ → R+ is a KL function

if β(s, t) is a K function in s for any t ≥ 0 and for each s > 0 β(s, ·) is decreasing and β(s, t) → 0 as

t→∞. MΩ is the set of signals in some subset Ω.

Definition 5 [?] [?] (Stability) Given the discrete-time dynamic system

x(k + 1) = f(x(k)) (1.15)

where the origin x∗ = 0 ∈ Ω ⊂ Rn is an equilibrium point. If there exists a function V : Rn → R+ and

functions α and β of class K such that

α(||x||) ≤ V (x) ≤ β(||x||), ∀x ∈ Ω ⊂ Rn (1.16)

Then, the origin of system (1.15) is said

1. Stable if

∆V (x(k)) ≤ 0, ∀x ∈ Ω, x 6= 0 (1.17)

with

∆V (x(k)) = V (x(k + 1))− V (x(k)) = V (f(x(k)))− V (x(k)) (1.18)

2. Asymptotically stable if there exists a function ϕ of class K such that

∆V (x(k)) ≤ −ϕ(||x||), x ∈ Ω, x(k) 6= 0 (1.19)

3. Exponentially stable if there exists a constants α1, α2, α3, p > 0 such that the following properties

are satisfied for all x ∈ Ω ⊂ Rn

α2||x||p ≤ V (x) ≤ α1||x||p (1.20)

and

∆V (x(k)) ≤ −α3||x||p (1.21)

1.4.2 Discrete-time Consensus Algorithm

When interaction among agents occurs at discrete instants, the information state is updated using a

difference equation. The most common discrete-time consensus algorithm has the following form [?]

[?] [?] [?]:

xi(k + 1) = −
n∑
j=1

aij(xi(k)− xj(k)), i = 1, . . . , n. (1.22)

where k denotes a sampling variable, aij is the (i, j) entry of the adjacency matrix of the graph that

represents the communication topology. Intuitively, the information state of each vehicle is updated

as the weighted average of its current state and the current states of its neighbors. Note that a vehicle
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maintains its current information state if it does not exchange information with other vehicles at that

sampling time instant. The discrete-time consensus algorithm (1.22) is written in matrix form as

x(k + 1) = −Lx(k)

where L is the Laplacian matrix. Similar to the continuous case, consensus is achieved if, for all xi(0)

and for all i, j = 1, . . . , n, |xi(k)− xj(k)| → 0 as k →∞.

One interesting scheme to design the consensus algorithm for discrete-time multi-agent systems is

to use a model predictive controller. This is the main topic of the next subsection.

1.5 Model Predictive Control (MPC)

A brief history of MPC techniques is shown in Figure 1.11. It depicts the evolution of the most sig-

nificant MPC algorithms, illustrating their connections in a concise way. The story begins with the

modern control concept of the Kalman’s work, i.e. a great solution of the problem known as Linear

Quadratic Gaussian (LQG) controller. The first description of MPC applications was presented by

Richalet et al. in 1976. They described their approach as model predictive heuristic control (MPHC).

The solution software was referred to as IDCOM, an acronym for Identification and Command [?].

Then, engineers at Shell Oil developed their own independent MPC approach in the early 1970s, with

an initial application in 1973. Cutler and Ramaker presented details of an unconstrained multivari-

able control algorithm which they named dynamic matrix control (DMC) at the 1979 National AIChE

meeting [?]. In the late 1980’s, engineers at Shell Research in France developed the Shell Multivari-

able Optimizing Controller (SMOC) which they described as a bridge between state-space and MPC

algorithms [?].

Figure 1.11: Evolution of the most significant MPC algorithms.

Model Predictive Control (MPC), also known as receding horizon control (RHC) or Generalized

Predictive Control (GPC) or Dynamical Matrix Control (DMC), as solution for the consensus prob-
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lem of MAS has also received great interest [1]. MPC is a form of control in which the output of

the system can be predicted from some prediction horizon. The output of the MPC controller is

determined based on input and output at a previous time and the control signal along the control

horizon. Control algorithms of MPC are based on numerically solving an optimization problem at

each step through constrained optimization. However, the control update rates use plenty of time for

the necessary on-line computations [?].

Figure 1.12: MPC concepts.

Figure 1.12 shows the general concepts of MPC algorithm for a single-input-single-output (SISO)

system. At current time, say k, the system’s future response (predicted output) yp(k) on a finite

horizon Hp, say [k|k+Hp], is predicted using the system model and the predicted control input up(k),

[k|k+Hu]. Hp is named as the prediction horizon and Hu is named as the control horizon (Hu ≤ Hp).

Usually, the system’s future response is expected to return to a desired set point s(k) by following

a reference trajectory r(k) from the current states. The difference between the predicted output yp(k)

and the reference trajectory r(k) is called the predicted error. A finite horizon optimal control problem

with a performance index that usually penalizes the predicted control input and the predicted error

is solved online and an optimal control input u∗(k), [k|k + Hu], is obtained. Only the first element

of u∗(k) is implemented to the plant. All the other elements are discarded. Then, at the next time

k + 1, the whole procedure is repeated. The predicted control input up(k + 1) at time k + 1 can be

built by u∗(k) with linear extrapolation. Since the prediction horizon and control horizon move one

step further into future at each time interval, MPC is also named as receding horizon control (RHC).
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For cooperative behavior mechanism and effective control of MAS, MPC technique has several

advantages such as the acceleration of the convergence speed, the possible consideration of multi-

variable constraints and the increase of the range of sampling periods. In a distributed architecture,

each agent uses only local information. According to their own and neighbors’s information (both

actual and past), MPC may precisely reflect the autonomy of an agent. The predictive mechanism

of MPC is used to predict the output state in the short-term prediction horizon. Each agent solves

an optimization problem using its own and neighbor information data, to design the control input at

each moment, and then realize the cooperative control.

One of the major advantages of the MPC approach is that the cooperative control will be conducted

from an optimization point of view. Some physical limits such as input bounds, safety regions for the

collision avoidance can be formulated as constraints in the optimization problem. MPC has the ability

to handle control and state constraints for discrete-time systems [?]. This method can be applied for

the control of a group of agents by letting each agent solve, at each step, a constrained finite-time

optimal control problem involving the state of neighboring agents. For agents modeled by a discrete-

time system, [?] proposed decentralized MPC schemes with control input constraints and showed that

under the proposed decentralized schemes, multi-agent systems with single- and double-integrator dy-

namics asymptotically achieves consensus under mild assumptions. However, it was assumed that the

control horizon equals the prediction control, which reduced the degree of freedom for the controller

design. To remove the problem in degree of freedom for the controller design, [1] proposed a consensus

scheme for discrete-time single-integrator MAS under switching directed interaction graphs where the

control horizon can be arbitrarily picked from one to prediction horizon. Another result of MPC is

[?] which proposed a MPC strategy to increase the consensus convergence rate in MASs under some

special communication networks.

1.6 Conclusion

We have discussed in this chapter the basic concepts of algebraic graph theory for describing the

communication topology among the agents. Consensus control problem in cooperative control for

multi-agent systems has been also introduced. Convergence rates are discussed, which motivates us

to conduct a more in-depth study to investigate how a fast controller can be designed. The concepts

of consensus for multi-agent systems in continuous-time and discrete-time are separately discussed

where discrete-time systems are more suitable for practical applications. Model predictive control as

a solution of the multi-agent consensus problem in discrete-time has been introduced.
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Chapter 2

Fixed-Time Leader-Follower Consensus

Control Strategy for MAS

2.1 Introduction

This chapter is concerned with the fixed-time leader-follower consensus problem of multi-agent systems.

The first part of this chapter formulates the general control objective and the considered assumptions

to solve the fixed-time leader-follower consensus problem. The second and third part of this chapter

deal with the consensus tracking problem for linear multi-agent systems (i.e. single-integrator and

double-integrator dynamics). Here, the leader (which can be dynamic) only transmits its state to its

neighbors. A decentralized controller, which uses the available local information, is designed to track

the desired trajectory of the leader in a prescribed time. Using the proposed controller, an upper

bound of the settling time is provided regardless of the initial conditions.

The fourth part of this chapter studies the fixed-time tracking problem for a single unicycle-type

mobile robot. First, the resulting tracking error dynamics is transformed into two second-order cou-

pled subsystems. Then, the two subsystems are studied and a step-by-step fixed-time control strategy

is designed. An upper bound of the settling time, which only depends on the controller parameters is

estimated regardless of the initial conditions. Finally, some simulation results are given to show the

effectiveness of the proposed controller.

The fifth part is concerned with the fixed-time consensus problem of multi-agent system for

unicycle-type mobile robots. For each agent, a distributed observer is designed to estimate the leader

state in a fixed-time. Contrary to finite-time schemes, the estimation of the settling time does not

require the knowledge of the initial state, allowing a step by step design for the controller. A decentral-

ized observer-based control protocol is proposed for each agent to solve the leader-follower consensus
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problem in a fixed-time.

The main contributions of the proposed scheme can be summarized as follows:

i) To remove the problem of the communication loop due to the dependence of the control inputs

of the followers on the inputs of its neighbors in [?][?], distributed observers are designed to

estimate the leader state in a prescribed time which does not depend on the initial state contrary

to existing finite-time observers.

ii) A new decentralized observer-based control protocol is proposed for each follower to solve the

fixed-time consensus tracking problem when the leader is dynamic.

iii) Robustness properties against matched perturbations are guaranteed.

iv) An upper bound of the settling time, which only depends on the controller parameters is esti-

mated independently of the initial conditions, contrary to existing finite-time controllers.

The remaining parts of this chapter are organized as follows. Section 2.2 introduces some as-

sumptions and formulates the general control objective. The main theoretical results on the consensus

tracking problem are presented for single-integrator and double-integrator dynamics in Section 2.3 and

2.4. In Section 2.5, a fixed-time tracking control law for a single agent with unicycle-type dynamics is

provided. In section 2.6, the main theoretical results on the consensus tracking problem are presented

for unicycle-type dynamics. Section 2.7 concludes this chapter.

2.2 Problem Statement and Assumptions

Let us consider a group of N + 1 agents with one leader (which could be virtual) labeled by 0 and

N followers, labeled by i ∈ {1, . . . , N}. The dynamics of the leader is given by the following general

system

ẋ0(t) = F (x0(t), u0(t)) (2.1)

where x0 ∈ Rn is the leader state and u0 ∈ Rm is the leader control input. F : Rn × Rm → Rn is

known. Here, it should be highlighted that solutions of (2.1) are understood in the Filippov sense [?].

The dynamics of the ith follower is as follows

ẋi(t) = F (xi(t), ui(t)) with i = 1, 2, . . . , N. (2.2)

where xi ∈ Rn is the state and ui ∈ Rm is the control input of the ith follower. The unknown pertur-

bation of the ith agent is given by di(t) ∈ Rn. Here, it should be highlighted that solutions of (2.2)
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are understood in the Filippov sense [?].

Among the N followers, the communication topology can be represented by graph G = {V, E}
where V = {1, . . . , N} defines the set of nodes, corresponding to the followers, and E ⊆ {V × V}
defines the edge set. A link (j, i) ∈ E , with i 6= j, exists if agent i receive information from its

neighbor j. The adjacency matrix A = (aij) ∈ RN×N satisfies aij > 0 if (j, i) ∈ E and aij = 0,

otherwise. The corresponding Laplacian matrix is given by L = (lij) ∈ RN×N with lii =
∑N

j=1, j 6=i aij

and lij = −aij for i 6= j. The links between the leader and the followers are characterized by matrix

B = diag(b1, . . . , bN ) where bi > 0 if the leader state is available to follower i and where bi = 0

otherwise.

Hereafter, it is assumed that the following hypotheses hold to derive the proposed fixed-time

controllers.

Assumption 1 It is assumed that the communication topology among the N followers is undirected,

fixed, connected. It means that the adjacency matrix A is symmetric. It is also assumed that there is

at least one strictly positive parameter bi.

Assumption 2 The followers do not know the leader control input u0. Nevertheless, its neighboring

agents know its upper bounds.

Assumption 3 For each follower, the perturbation di(t) is unknown but it is bounded by a known

constant.

Remark 2 Assumption 1 is conventional to deal with the leader-follower consensus problem. Hypoth-

esis 2-3 are not restrictive since the bounds of perturbations and leader input can be estimated a priori

for any system.

Here, the purpose is to derive a decentralized controller ui (i = 1, . . . , N) for each follower, based

on available information, such that the leader-follower consensus problem is solved in a fixed-time, in

spite of matched external perturbations. It means that there exists a positive constant T , such that

∀xi(0), ∀i = 1, . . . , N ,

limt→T ‖xi(t)− x0(t)‖ = 0

xi(t) = x0(t), ∀t ≥ T
(2.3)

Remark 3 One can note that the settling time T does not depend on the initial states of the agents. It

removes some limitations on existing finite-time consensus schemes for the application in decentralized

architectures. The settling time can be prescribed according to some high-level policies (for instance

in flexible manufacturing systems, when an operation should be performed before a deadline), or when

cluster networks or switching communication topologies are considered [?].
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2.3 Consensus of MAS with Single-Integrator Dynamics

Let us first consider a holonomic mobile robot moving in a two-dimensional plane. The axes of

the workspace are shown in Figure 2.1. Since we assume that motions along the x and y-axes are

Figure 2.1: Top view of the considered mobile robot

decoupled, the system dynamics can be modeled as

ẋi(t) = ux(t)

ẏi(t) = uy(t)
(2.4)

where xi(t) ∈ R and yi(t) ∈ R are the position, ux(t) ∈ R and uy(t) ∈ R are the control inputs along

the x-axis and y-axis, respectively.

Remark 4 In the following, let us only consider the dynamics along the x-direction.

Along the x-direction, the leader dynamics is given by the following single-integrator system

ẋ0(t) = u0(t) (2.5)

where x0 ∈ R (resp. u0 ∈ R) is the leader state (resp. leader control input). Along the x-direction,

the dynamics of the ith follower is as follows

ẋi(t) = ui(t) + di(t) (2.6)

where xi ∈ R (resp. ui ∈ R) is the state (resp. control input) of the ith follower. The unknown

perturbation of the ith agent is given by di ∈ R.

2.3.1 Fixed-Time Observer-Based Consensus Protocol

For single-integrator dynamics MAS under matched perturbations, we propose an observer-based

consensus protocol to deal with the leader-follower consensus problem.
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Distributed fixed-time observer

To estimate the leader state in a prescribed time, distributed observers are designed for each follower

i ∈ {1, . . . , N}. Indeed, the leader state is only available to its neighboring followers. Let us introduce

the following observer

˙̂xi = ρ sign

 N∑
j=1

aij(x̂j − x̂i) + bi(x0 − x̂i)

+ σ


N∑
j=1

aij(x̂j − x̂i) + bi(x0 − x̂i)

2

(2.7)

where x̂i is the estimation of the leader state x0 for the ith follower, ρ and σ are positive constants,

which will be given hereafter.

The fixed-time stabilization of the estimation errors

x̃i = x̂i − x0 (i = {1, . . . , N}) (2.8)

is introduced in the following theorem.

Theorem 1 Suppose that Assumptions 1-2 are satisfied. If the gains of the distributed observer (2.7)

verify  σ = ε
√
N

(2λmin(L+B))
3
2

ρ = umax0 + ε
√

λmax(L+B)
2λmin(L+B)

(2.9)

with ε > 0, then, for any initial condition, the estimation errors (2.8) converge to zero. An upper

bound of the convergence time can be given as

To =
π

ε
(2.10)

Proof. Using (2.7), the dynamics of the observation error is given by

˙̃xi = ρ sign

 N∑
j=1

aij(x̃j − x̃i)− bix̃i

+ σ


N∑
j=1

aij(x̃j − x̃i)− bix̃i

2

− u0 (2.11)

Let us denote

x̃ = [x̃1, . . . , x̃N ]T (2.12)

Then, for x̃, one can obtain

˙̃x = −ρ sign ((L+B)x̃)− σ d(L+B)x̃c2 − 1u0 (2.13)

We complete the proof by consider the candidate Lyapunov function for system (2.13)

V1 =
1

2
x̃T (L+B)x̃ (2.14)
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Its time derivative is given by

V̇1 = x̃T (L+B)
(
−ρ sign ((L+B)x̃)− σ d(L+B)x̃c2 − 1u0

)
≤ −(ρ− umax0 )‖(L+B)x̃‖1 − σN−

1
2 (2λmin(L+B))

3
2V

3
2

≤ −εV
1
2

1 − εV
3
2

1

Using Lemma 2, this inequality ensures that x̃ converges to zero in a finite-time bounded by π
ε .

Remark 5 The conditions (2.9) on the observer gains are relatively strong since global information

like N , λmin(L + B) and λmax(L + B) is required to guarantee the fixed-time convergence. Hence,

each agent must have some global knowledge about the communication topology similarly to existing

works on fixed-time consensus. One should highlight that such global information is needed to provide

an explicit estimate of the settling time (which is a very interesting feature of the proposed scheme).

It is worthy of noting that if a prescribed convergence time To is required, one can easily tune the

observer gains according to (2.9) to estimate the leader state. Similarly to the work of [?], parameter

ε should be tuned to obtain a good compromise between robustness against measurement noises (in the

presence of measurement noises, only a neighborhood of the origin of the observation error system,

which depends on the size of noise and ε, could be fixed-time stable) and sufficiently fast estimation.

When the observer gains are selected, through conditions (2.9), the proposed scheme can be considered

as a decentralized one since each neighboring agent only exchanges local information during the process.

Decentralized fixed-time controller

From Theorem 1, one can conclude that x̂i = x0 for all t ≥ To. Hence, after time To, each follower is

able to indirectly access to the state of the leader and uses the estimate x̂i in the consensus protocol.

Let us denote the tracking errors as follows

ei = xi − x̂i = xi − x0 − x̃i (2.15)

From (2.5)-(2.6) and using Theorem 1, for each follower i = {1, . . . , N} and for all t ≥ To, the tracking

error dynamics becomes

ėi = ui + di − u0 (2.16)

It is clear that dynamics (2.16) is a first-order system.

In the following theorem, the control strategy is derived to solve the leader-follower consensus

problem for MAS with single-integrator dynamics, in a fixed-time, in spite of the presence of matched

perturbations.
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Theorem 2 Let us consider the leader-follower system (2.5)-(2.6). Suppose that Assumptions 1-3 are

satisfied and the gains of the distributed observer (2.7) verify Eq. (2.9). The leader-follower consensus

problem is solved in a fixed-time using the decentralized controller

ui =

{
0 ,∀t < To

−(α+ ai)beie2 − β sign (ei) ,∀t ≥ To
(2.17)

where α, β are positive constants and ai is a positive constant given hereafter. The settling time is

explicitly defined as

T = To +
π√
αβ

(2.18)

Proof. We complete the proof by showing that the origin is fixed-time stable with the settling

time estimate T under the control law (2.17). It will be also proved that in spite of the presence of

matched perturbations, the fixed-time leader-follower consensus problem is solved.

Let us first consider system (2.16).

ėi = ui + di − u0

According to Assumptions 2-3, let us denote ai as

ai ≥ di + u0 (2.19)

Following [?], let us consider the candidate Lyapunov function V2 = 1
2 |ei|

2. Its derivative is,

V̇2 ≤ −α|ei|3 + β|ei|
≤ −α(2V2)

3
2 + β(2V2)

1
2

(2.20)

It is clear using Lemma 2 that ei = 0 when t ≥ T .

This concludes the proof.

2.3.2 Simulation Results

The simulation results for all the following subsections (i.e. simple integrator, double integrator,

chained-form system) are done using the same topology. A multi-agent system with N = 6 followers

labeled by 1 − 6 and one leader labeled by 0 is considered. Figure 2.2 shows the communication

topology. One can see that it is fixed and connected. It is characterized by the following Laplacian L

and the matrix B which describes links between the leader and the followers given as follows

L =



2 −1 0 0 0 −1

−1 2 −1 0 0 0

0 −1 3 −1 0 −1

0 0 −1 1 0 0

0 0 0 0 1 −1

−1 0 −1 0 −1 3


, B =



0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0


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Figure 2.2: Communication topology for the considered MAS.

From matrix B, it is clear that agents 1, 3, 4 and 6 do not have direct link with agent 0. Assumption

1 is satisfied.

The performances of the proposed observer-based leader-follower consensus controller for single in-

tegrator are studied through numerical simulations. The dynamics of the leader (resp. the followers)

is given by Eq. (2.5) (resp. Eq. (2.6)).

Let us set α = β = 0.5 and ai = 0.3 for protocol (2.17). Using Theorem 1, the distributed observer

(2.7) guarantees the stabilization of the estimation errors (2.8) to the origin in a finite-time bounded

by To = 1s. Figure 2.3 shows that the distributed observers accurately reconstruct the leader state

for each agent before To. One can obtain T = 7.28s. Hence, the origin of the closed-loop system is

globally finite-time stable contrary to existing controllers which only provide semi-global finite-time

stability property. Furthermore, since T does not depend on the initial states of agents, the proposed

protocol is distributed.

The tracking errors are depicted in Figure 2.4. One can see that the tracking errors between

each follower and the leader converge to zero before T . One can conclude that using the proposed

controller, the leader-follower consensus is achieved in a prescribed time. The control inputs for each

agent are shown in Figure 2.5. One can note that the magnitude of control inputs may be large during

the transients to achieve a fast convergence of the sliding surfaces given by the different steps of the

consensus protocol. Hence, the control parameters should be adjusted to obtain a good compromise

between magnitude of the control inputs and settling time.
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Figure 2.3: Evolution of the estimation errors (2.8) for each follower

Figure 2.4: Evolution of the tracking errors between each agent and the leader.

Figure 2.5: Control input for each agent
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2.4 Consensus of MAS with Double-Integrator Dynamics

Consider a multi-agent system consisting of a leader (which could be virtual) labeled by 0, and N

followers, labeled by i ∈ {1, . . . , N}. In the following, let us only consider the dynamics along the

x-direction. The leader dynamics is given by the following double-integrator system{
ẋ1,0(t) = x2,0(t)

ẋ2,0(t) = u0(t)
(2.21)

where x0 = [x1,0, x2,0]T ∈ R2 (resp. u0 ∈ R) is the leader state (resp. leader control input) along the

x-axis. The dynamics of the ith follower is as follows{
ẋ1,i(t) = x2,i(t)

ẋ2,i(t) = ui(t) + di(t)
(2.22)

where xi = [x1,i, x2,i]
T ∈ R2 (resp. ui ∈ R) is the state (resp. control input) of the ith follower. The

unknown perturbation of the ith agent is given by di ∈ R.

2.4.1 Fixed-Time Observer-Based Consensus Protocol

For double-integrator dynamics MAS under matched perturbations, we propose an observer-based

consensus protocol to deal with the leader-follower consensus problem.

Distributed fixed-time observer

To estimate the leader state in a prescribed time, distributed observers are designed for each follower

i ∈ {1, . . . , N}. Indeed, the leader state is only available to its neighboring followers. Let us introduce

the following observer as follows

˙̂x1,i = x̂2,i + ρ1 sign
(∑N

j=1 aij(x̂1,j − x̂1,i) + bi(x1,0 − x̂1,i)
)

+σ1

⌈∑N
j=1 aij(x̂1,j − x̂1,i) + bi(x1,0 − x̂1,i)

⌋2

˙̂x2,i = ρ2 sign
(∑N

j=1 aij(x̂2,j − x̂2,i) + bi(x2,0 − x̂2,i)
)

+σ2

⌈∑N
j=1 aij(x̂2,j − x̂2,i) + bi(x2,0 − x̂2,i)

⌋2

(2.23)

where x̂k,i (k = {1, 2}) is the estimation of the leader state xk,0 for the ith follower, ρk and σk are

positive constants, which will be given hereafter.

The fixed-time stabilization of the estimation errors

x̃k,i = x̂k,i − xk,0 (i = {1, . . . , N}, k = {1, 2}) (2.24)

is introduced in the following theorem.
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Theorem 3 Suppose that Assumptions 1-2 are satisfied. If the gains of the distributed observer (2.23)

verify 
σk = ε

√
N

(2λmin(L+B))
3
2
, ∀k = 1, 2

ρ1 = ε
√

λmax(L+B)
2λmin(L+B)

ρ2 = umax0 + ε
√

λmax(L+B)
2λmin(L+B)

(2.25)

with ε > 0, then, for any initial condition, the estimation errors (2.24) converge to zero. An upper

bound of the convergence time can be given as

To =
2π

ε
(2.26)

Proof. Using (2.23), the dynamics of the observation error is given by

˙̃x1,i = x̃2,i + ρ1 sign
(∑N

j=1 aij(x̃1,j − x̃1,i)− bix̃1,i

)
+σ1

⌈∑N
j=1 aij(x̃1,j − x̃1,i)− bix̃1,i

⌋2

˙̃x2,i = ρ2 sign
(∑N

j=1 aij(x̃2,j − x̃2,i)− bix̃2,i

)
+σ2

⌈∑N
j=1 aij(x̃2,j − x̃2,i)− bix̃2,i

⌋2
− u0

(2.27)

Let us denote

x̃k = [x̃k,1, . . . , x̃k,N ]T (2.28)

Then, for x̃1 and x̃2, one can obtain

˙̃x1 = x̃2 − ρ1 sign ((L+B)x̃1)− σ1 d(L+B)x̃1c2 (2.29)

˙̃x2 = −ρ2 sign ((L+B)x̃2)− σ2 d(L+B)x̃2c2 − 1u0 (2.30)

We complete the proof by two steps.

• Let us system (2.30). Consider a candidate Lyapunov function for subsystem (2.30) similar to

the previous subsection. Using Lemma 2, one can prove that x̃2 converges to zero in a finite-time

bounded by π
ε .

• After x̃2 converges to zero (i.e. when t ≥ π
ε ), the dynamics of x̃1 becomes

˙̃x1 = −ρ1 sign ((L+B)x̃1)− σ1 d(L+B)x̃1c2 (2.31)

Similarly to the previous step, the x̃1 dynamics converges to zero. Indeed, consider the candidate

Lyapunov function for system (2.31)

V3 =
1

2
x̃T1 (L+B)x̃1 (2.32)
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Its time derivative along (2.31) is given by

V̇3 = x̃T1 (L+B)
(
−ρ1 sign ((L+B)x̃1)− σ1 d(L+B)x̃1c2

)
≤ −ρ1‖(L+B)x̃1‖1 − σ1N

− 1
2 (2λmin(L+B))

3
2V

3
2

2

≤ −εV
1
2

3 − εV
3
2

3

Hence, one can conclude that x̃1 converges to zero and after that x̃2 converges to zero in a

finite-time bounded by 2πε .

Hence, one can conclude that the estimation errors (2.24) converge to zero in a fixed-time bounded

by To.

Decentralized fixed-time controller

From Theorem 3, one can conclude that x̂i = [x̂1,i, x̂2,i]
T = x0 for all t ≥ To. Hence, after time To,

each follower is able to indirectly access to the state of the leader and uses the estimate x̂i in the

consensus protocol.

Let us denote the tracking errors as follows

ek,i = xk,i − x̂k,i = xk,i − xk,0 − x̃k,i (i = {1, 2}, k = {1, 2}) (2.33)

From (2.21)-(2.22) and using Theorem 3, for each follower i = {1, . . . , N} and for all t ≥ To, the

tracking error dynamics becomes

(Σ1)
ė1,i = e2,i

ė2,i = ui + di − u0

(2.34)

It is clear that dynamics (2.34) is a second-order subsystem. To deal with the observer-based consensus

tracking problem, for each follower i = {1, . . . , N}, the control objective is to design ui such that the

origin of system Σ1 is fixed-time stable with the settling time estimate T in spite of the presence of

matched perturbations.

Theorem 4 Let us consider the leader-follower system (2.21)-(2.22). Suppose that Assumptions 1-3

are satisfied and the gains of the distributed observer (2.23) verify Eq. (2.25). The leader-follower

consensus problem is solved in a fixed-time using the decentralized controllers

ui =

{
0 , ∀t < To

−α1+3β1e21,i+2ai
2 sign (si)− bα2si + β2bsie3e

1
2 ,∀t ≥ To

(2.35)

with the sliding surface

si = e2,i + bbe2,ie2 + α1e1,i + β1be1,ie3e
1
2 (2.36)
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where α1, α2, β1 and β2 are positive constants, ai is a positive constant given hereafter. The settling

time is explicitly defined as

T = To +
2√
α2

+
2√
β2

+
2
√

2√
α1

+
2
√

2√
β1

(2.37)

Proof. We complete the proof by two steps.

• Following [?], let us consider the candidate Lyapunov function V4 = |s1,i|. Its derivative is,

V̇4 = ė2,i sign (si) +
|e2,i|ė2,i sign (si) +

α1+3β1e21,i
2 e2,i sign (si)

|be2,ie2 + α1e1,i + β1be1,ie3|
1
2

(2.38)

Since

bα2si + β2bsie3e
1
2 sign (si) = (α2|si|+ β2|si|3)

1
2

one has

ė2,i sign (si) = (ui + di − u0) sign (si)

= −α1+3β1e21,i
2

−(α2|si|+ β2|si|3)
1
2 − (ai − (di − u0) sign (si))

Setting

ai ≥ di + u0 (2.39)

one can conclude that

V̇4 ≤ −(α2V4 + β2V
3

4 )
1
2 (2.40)

From Lemma 2, it is clear that si = 0 when t ≥ To + 2√
α2

+ 2√
β2

.

• The sliding dynamics (si = 0) can be expressed as

ė1,i = −
⌊α1e1,i + β1be1,ie3

2

⌉ 1
2

(2.41)

Using the candidate Lyapunov function V5 = |e1,i|, one can obtain

V̇5 = −(
α1

2
V5 +

β1

2
V 3

5 )
1
2 (2.42)

It is clear using Lemma 2 that e1,i = 0 when t ≥ Ts. Furthermore, since e1,i = 0 and si = 0,

then e2,i = 0.

This concludes the proof.
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2.4.2 Simulation Results

In this subsection, some simulation results are provided to verify the theoretical analysis. We consider

the leader-follower MAS with double-integrator dynamics (2.22). We use the same topology as in the

previous section, where agents 1, 3, 4 and 6 do not have direct link with agent 0. Assumption 1 is

satisfied.

The trajectory of the leader is generated by (2.21) with u0(t) = 0.1 sin(t). From the control input

of the leader, one can see that Assumption 2 is verified. The control objective is that the followers,

described by Eq. (2.22) track the leader in spite of matched perturbations ith di = 0.2 sin(t). It is clear

that Assumption 3 is also verified. The control parameter are selected as: α1 = 20, α2 = 10, β1 = 20,

β2 = 10, ai = 0.3 and ε = 4.18. For the simulation purpose, the initial leader state x0(0) = [3, 2]T .

Using Theorem 3, the distributed observer (2.23) guarantees the stabilization of the estimation

errors (2.27) to the origin in a finite-time bounded by To = 1.5s. Figure 2.6 shows that the distributed

observers accurately reconstruct the leader state for each agent before To

Using Theorem 4, the origin of the closed-loop system is globally finite-time stable contrary to

existing controllers which only provide semi-global finite-time stability property. Furthermore, the

settling time T = 4s does not depend on the initial states of agents. Also, the proposed protocol

is distributed. The tracking errors are depicted in Figure 2.4. One can see that the tracking errors

between each follower and the leader converge to zero before Ts. One can conclude that using the

proposed controller, the leader-follower consensus is achieved in a prescribed time. The control inputs

for each agent are shown in Figure 2.8. One can note that the magnitude of control inputs may be

large during the transients to achieve a fast convergence of the sliding surfaces given by the different

steps of the consensus protocol. Hence, the control parameters should be adjusted to obtain a good

compromise between magnitude of the control inputs and settling time.

(a) (b)

Figure 2.6: Evolution of the estimation errors (2.27) for each follower.
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(a) (b)

Figure 2.7: Evolution of the tracking errors between each agent and the leader.

Figure 2.8: Control input for each agent.

2.5 Consensus of MAS with Unicycle-Type Dynamics

Let us now consider a nonholonomic mobile robot moving in a two-dimensional plane. The axes of

the workspace are shown in Figure 2.9. The kinematics of the unicycle-type mobile robot is described

under the nonholonomic constraints (contains the time derivatives of the generalized coordinates of

the system and is not integrable). The configuration of the robot i can be represented by:

qi(t) = (xi(t), yi(t), θi(t))
T (2.43)

where xi(t) ∈ R, yi(t) ∈ R describe the robot position and θi(t) is its orientation in the global frame.

The pure rolling and nonslipping conditions are described by:

GT (qi)q̇i = 0 with GT (qi) = (− sin(θi) cos(θi) 0) (2.44)
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Under the hypothesis of pure rolling and nonslipping condition, the kinematic equations can be written

as follows:

q̇i(t) = f(qi(t), ui(t)) (2.45)

where vector field f : R3 × R2 → R3 and control inputs ui are defined as:
f(qi(t), ui(t)) =


cos(θi) 0

sin(θi) 0

0 1

ui(t)

ui(t) = (υi(t), ωi(t))
T

(2.46)

υi(t) and ωi(t) are the linear and angular velocities, respectively.

Figure 2.9: Top view of the considered mobile robot.

Before designing the consensus protocol, let us consider the classical transformation

qi1(t) = θi(t)

qi2(t) = xi sin(θi(t))− yi cos(θi(t))

qi3(t) = xi cos(θi(t)) + yi sin(θi(t))

ui1(t) = ωi(t)

ui2(t) = υi(t)− qi2(t)ωi(t)

(2.47)

Using (2.47), system (2.45) can be written in chained-form as follows:

q̇i1(t) = ui1(t)

q̇i2(t) = qi3(t)ui1(t)

q̇i3(t) = ui2(t)

(2.48)

To deal with the robustness properties, some matched perturbations are added. Furthermore, for

the purpose of the controller design, an additional dynamic extension is added to the chained-form

dynamics. Therefore, the dynamics (2.48) becomes:

ẋ1(t) = x2(t)

ẋ2(t) = u1(t) + d1(t)

ẋ3(t) = x4(t)x2(t)

ẋ4(t) = u2(t) + d2(t)

(2.49)
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where x = [x1, x2, x3, x4]T ∈ R4 (resp. u = [u1, u2]T ∈ R2) is the state (resp. control input) of the

chained-form unicycle-type mobile robot, d = [d1, d2]T ∈ R2 represents the unknown disturbances of

the chained-form dynamics.

The dynamics of the desired trajectory is generated using the following system:

ẋ1,d(t) = x2,d(t)

ẋ2,d(t) = u1,d(t)

ẋ3,d(t) = x4,d(t)x2,d(t)

ẋ4,d(t) = u2,d(t)

(2.50)

where xd = [x1,d, x2,d, x3,d, x4,d]
T ∈ R4 (resp. ud = [u1,d, u2,d]

T ∈ R2) is the state (resp. control input)

of the desired trajectory.

Before dealing with the consensus tracking problem, let us study the fixed-time trajectory tracking

problem for only one single unicycle-type mobile robot. Figure 2.10 illustrates the control objective

studied in the next subsection, i.e. the unicycle-type mobile robot tracks a desired trajectory in a

prescribed-time.

Figure 2.10: Illustration of the fixed-time trajectory tracking problem for a single agent.

2.5.1 Fixed-time trajectory tracking problem for a single unicycle-type mobile

robot

In this subsection, let us first study the fixed-time trajectory tracking problem for only one single

unicycle-type mobile robot. The control objective is to design a fixed-time trajectory tracking con-

troller such that system (2.49) tracks the trajectory of system (2.50) in spite of the presence of matched

perturbations.
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Assumption 4 It is assumed that the perturbations d1(t) and d2(t) are unknown but are bounded by

known constants (i.e. d1,max and d2,max).

Assumption 5 It is assumed that the desired state x2,d satisfies the following condition

x2,d(t) 6= 0 (2.51)

Remark 6 Hypothesis 4 is not restrictive since the bounds of perturbations can be estimated a priori

for any system. Assumption 10 is relatively not restrictive since only the case x2,d(t) 6= 0 is not

considered in the proposed scheme. Therefore, the motion planner for the desired trajectory should

take into account this constraint (to avoid any loss of controllability). Indeed, when x2,d(t) = 0, we

loose controllability since the state x3,d cannot be controlled. Since the agent track the leader, it also

looses controllability in this case.

Remark 7 Note that there exist several tools to plan the trajectory for the leader. For instance, in

[?], based on nonlinear programming and flatness properties, a constrained receding horizon planner is

applied to design the state and the control input of the leader. One can easily extend this work while

taking into account constraints given in Assumptions 4-10.

Let us define the tracking errors as

e(t) = x(t)− xd(t) (2.52)

with e = [e1, e2, e3, e4]T ∈ R4. The tracking error dynamics satisfy the following differential equations:

(Σ1)
ė1(t) = x2(t)− x2,d(t)

ė2(t) = u1(t) + d1(t)− u1,d(t)

(Σ2)
ė3(t) = x4(t)x2(t)− x4,d(t)x2,d(t)

ė4(t) = u2(t) + d2(t)− u2,d(t)

(2.53)

To simplify the controller design, dynamics (2.53) is divided into two second-order coupled sub-

systems. To solve the fixed-time trajectory tracking problem, two steps are defined:

• Stabilization of subsystem Σ1 in a fixed time Ts using control u1,

• After t > Ts, stabilization of subsystem Σ2 in a fixed time T using control u2.

Figure 2.11 illustrated how the fixed-time trajectory tracking problem solved.

To design the fixed-time consensus tracking algorithm for a single unicycle-type mobile robot, the

following theorem is derived.
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Figure 2.11: Stabilization of the two subsystems.

Theorem 5 Assuming that Assumptions 4-10 hold. Consider system (2.53) with the trajectory track-

ing control law defined as:

u1 = u1,d + ϕ1

(
e1, e2

)

u2 =

{
1 ,∀t < Ts

u2,d −
e4u1,d
x2,d

+ 1
x2,d

ϕ2

(
e3, ζ4

)
,∀t ≥ Ts

(2.54)

with ζ4 = e4x2,d.

The sliding mode controllers are as follows:

ϕ1

(
e1, e2

)
= −α1+3β1e21+2d1,max

2 sign
(
s1

(
e1, e2

))
−bα2s1

(
e1, e2

)
+ β2bs1

(
e1, e2

)
e3e

1
2

ϕ2

(
e3, ζ4

)
= −α1+3β1e23+2d2,max

2 sign
(
s2

(
e3, ζ4

))
−bα2s2

(
e3, ζ4

)
+ β2bs2

(
e3, ζ4

)
e3e

1
2

(2.55)

with sliding surfaces

s1

(
e1, e2

)
= e2 + bbe2e2 + α1e1 + β1be1e3e

1
2

s2

(
e3, ζ4

)
= ζ4 + bbζ4e2 + α1e3 + β1be3e3e

1
2

(2.56)

The switching time is Ts = 2√
α2

+ 2√
β2

+ 2
√

2√
α1

+ 2
√

2√
β1

and constants αi, βi (i = 1, 2) are positive.

Then, the origin of system (2.53) is globally fixed-time stable with settling time:

T = 2Ts (2.57)

Hence, the fixed-time trajectory tracking problem is solved.

Proof. The proof is divided into two steps.

• Let us first consider the time interval t ∈ [0, Ts]. Using controller (2.54), it is clear that subsystem

Σ1 has been already discussed in the section double-integrator system. One can conclude that

e1 = 0 and e2 = 0.
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• Let us now consider t > Ts. From previously, subsystem Σ2 can be written as:

ė3 = e4x2,d

ė4 = u2 + d2 − u2,d

(2.58)

Setting ζ4 = e4x2,d, system (2.58) can be expressed as:

ė3 = ζ4

ζ̇4 = (u2 + d2 − u2,d)x2,d + e4u1,d

(2.59)

Using controller (2.54), system (2.59) becomes:

ė3 = ζ4

ζ̇4 = ϕ2 + d2x2,d

(2.60)

Using Assumptions 4-10 and following the same procedure as in the first step, one can conclude

that the origin of system (2.59) is globally fixed-time state with settling time T given by Eq.

(2.57). It is clear that the origin of system (2.53) is globally fixed-time stable with settling time

T .

Remark 8 It should be highlighted that since the settling time T is independent of the initial sys-

tem conditions and can be estimated a priori, global finite-time stability of the closed-loop system is

guaranteed (contrary to many existing works which only guarantee semi-global finite-time stability).

2.5.2 Simulation Results

In this subsection, some simulation results are provided to verify the theoretical analysis.

We consider the unicycle-type mobile robot (2.49) where the perturbations are d1 = sin(20t) and

d2 = 10 cos(10t). The desired trajectory is generated by (2.50) with xd(0) = [0, 2, 0, 0]T , u1,d(t) =

2 + sin(t) and u2,d(t) = 1. The control objective is that system (2.49) follows its derived trajectory

xd. It is clear that Assumptions 4-10 are verified. The control parameter are selected as: α1 = 20,

α2 = 10, β1 = 20, β2 = 10 and Ts = 2.5s. For the simulation purpose, the initial conditions of

system (2.49) are set as: x(0) = [10, 1, 3, 1]T . Using Theorem 5, the robust controller (2.54) solves

the fixed-time trajectory tracking problem with an estimation of the settling time T = 4.5s. Figure

2.12 shows that the origin of subsystem Σ1 is globally fixed-time stable with a settling time less than

Ts = 2.5s.

Figure 2.13 shows that the origin of subsystem Σ2 is globally fixed-time stable with a settling time

less than T = 5s.

Figure 2.14 displays the tracking errors. It can be seen that the trajectory tracking problem is

solve in fixed-time.
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(a) (b)

Figure 2.12: Actual trajectory x1, x2 and desired state trajectories x1,d, x2,d

(a) (b)

Figure 2.13: Actual trajectory x3, x4 and desired state trajectories x3,d, x4,d

2.6 Consensus of MAS with Unicycle-Type Mobile Robot Dynamics

Consider a multi-agent system consisting of a leader (which could be virtual) labeled by 0, and N

followers, labeled by i ∈ {1, . . . , N}. The leader dynamics is given by the following chained-form

unicycle-type mobile robot 
ẋ1,0(t) = x2,0(t)

ẋ2,0(t) = u1,0(t)

ẋ3,0(t) = x4,0(t)x2,0(t)

ẋ4,0(t) = u2,0(t)

(2.61)

59



Figure 2.14: Tracking errors e

where x0 = [x1,0, x2,0, x3,0, x4,0]T ∈ R4 (resp. u0 = [u1,0, u2,0]T ∈ R2) is the leader state (resp. leader

control input). The dynamics of the ith follower is as follows
ẋ1,i(t) = x2,i(t)

ẋ2,i(t) = u1,i(t) + d1,i(t)

ẋ3,i(t) = x4,i(t)x2,i(t)

ẋ4,i(t) = u2,i(t) + d2,i(t)

(2.62)

where xi = [x1,i, x2,i, x3,i, x4,i]
T ∈ R4 (resp. ui = [u1,i, u2,i]

T ∈ R2) is the state (resp. control input)

of the ith follower. The unknown perturbation of the ith chained-form is given by di = [d1,i, d2,i]
T ∈ R2.

Figure 2.15 provides an illustration of fixed-time consensus tracking problem. To solve this prob-

lem, the following assumptions are considered.

Assumption 6 It is assumed that the communication topology among the N followers is undirected,

fixed, connected. It means that the adjacency matrix A is symmetric. It is also assumed that there is

at least one strictly positive parameter bi.

Assumption 7 The followers do not known the leader control input. Nevertheless, its neighboring

agents know its upper bounds u1,0 and u2,0, defined as follows{
|u1,0(t)| ≤ umax1,0

|u2,0(t)| ≤ umax2,0

(2.63)

with umax1,0 , umax2,0 ∈ R+.
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Figure 2.15: Illustration of the fixed-time consensus tracking problem.

Assumption 8 For each follower, the perturbation di(t) is unknown but it is bounded as follows

{
|d1,i(t)| ≤ dmax1,i

|d2,i(t)| ≤ dmax2,i

(2.64)

with dmax1,i , dmax2,i ∈ R+.

Assumption 9 It is assumed that the leader state x2,0 satisfies the following condition

x2,0(t) 6= 0 (2.65)

2.6.1 Fixed-Time Observer-Based Consensus Protocol

For chained-form dynamics MAS under matched perturbations, we propose an observer-based consen-

sus protocol to deal with the leader-follower consensus problem. Figure 2.16 illustrates the proposed

control strategy to solve the consensus problem of MAS with chained-form dynamics.

Distributed fixed-time observer

To estimate the leader state in a prescribed time, distributed observers are designed for each follower

i ∈ {1, . . . , N}. Indeed, the leader state is only available to its neighboring followers. Let us introduce
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Figure 2.16: Proposed control strategy to solve the consensus problem of MAS with chained-form

dynamics.

the following observer as follows



˙̂x1,i = x̂2,i + ρ1 sign
(∑N

j=1 aij(x̂1,j − x̂1,i) + bi(x1,0 − x̂1,i)
)

+σ1

⌈∑N
j=1 aij(x̂1,j − x̂1,i) + bi(x1,0 − x̂1,i)

⌋2

˙̂x2,i = ρ2 sign
(∑N

j=1 aij(x̂2,j − x̂2,i) + bi(x2,0 − x̂2,i)
)

+σ2

⌈∑N
j=1 aij(x̂2,j − x̂2,i) + bi(x2,0 − x̂2,i)

⌋2

˙̂x3,i = x̂4,ix̂2,i + ρ3 sign
(∑N

j=1 aij(x̂3,j − x̂3,i) + bi(x3,0 − x̂3,i)
)

+σ3

⌈∑N
j=1 aij(x̂3,j − x̂3,i) + bi(x3,0 − x̂3,i)

⌋2

˙̂x4,i = ρ4 sign
(∑N

j=1 aij(x̂4,j − x̂4,i) + bi(x4,0 − x̂4,i)
)

+σ4

⌈∑N
j=1 aij(x̂4,j − x̂4,i) + bi(x4,0 − x̂4,i)

⌋2

(2.66)

where x̂k,i (k = {1, . . . , 4}) is the estimation of the leader state xk,0 for the ith follower, ρk and σk are

positive constants, which will be given hereafter.

The fixed-time stabilization of the estimation errors

x̃k,i = x̂k,i − xk,0 (i = {1, . . . , N}, k = {1, . . . , 4}) (2.67)

is introduced in the following theorem.

Theorem 6 Suppose that Assumptions 6-7 are satisfied. If the gains of the distributed observer (2.66)
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verify 

σk = ε
√
N

(2λmin(L+B))
3
2
, ∀k = 1, . . . , 4

ρ1 = ε
√

λmax(L+B)
2λmin(L+B)

ρ2 = umax1,0 + ε
√

λmax(L+B)
2λmin(L+B)

ρ3 = ε
√

λmax(L+B)
2λmin(L+B)

ρ4 = umax2,0 + ε
√

λmax(L+B)
2λmin(L+B)

(2.68)

with ε > 0, then, for any initial condition, the estimation errors (2.67) converge to zero. An upper

bound of the convergence time can be given as

To =
2π

ε
(2.69)

Proof. Using (2.66), the dynamics of the observation error is given by

˙̃x1,i = x̃2,i + ρ1 sign
(∑N

j=1 aij(x̃1,j − x̃1,i)− bix̃1,i

)
+σ1

⌈∑N
j=1 aij(x̃1,j − x̃1,i)− bix̃1,i

⌋2

˙̃x2,i = ρ2 sign
(∑N

j=1 aij(x̃2,j − x̃2,i)− bix̃2,i

)
+σ2

⌈∑N
j=1 aij(x̃2,j − x̃2,i)− bix̃2,i

⌋2
− u1,0

˙̃x3,i = ρ3 sign
(∑N

j=1 aij(x̃3,j − x̃3,i)− bix̃3,i

)
+σ3

⌈∑N
j=1 aij(x̃3,j − x̃3,i)− bix̃3,i

⌋2
+ x̂4,ix̂2,i − x4,0x2,0

˙̃x4,i = ρ4 sign
(∑N

j=1 aij(x̃4,j − x̃4,i)− bix̃4,i

)
+σ4

⌈∑N
j=1 aij(x̃4,j − x̃4,i)− bix̃4,i

⌋2
− u2,0

(2.70)

Let us denote

x̃k = [x̃k,1, . . . , x̃k,N ]T (2.71)

Then, for x̃1, x̃2 and x̃4, one can obtain

˙̃x1 = x̃2 − ρ1 sign ((L+B)x̃1)− σ1 d(L+B)x̃1c2 (2.72)

˙̃x2 = −ρ2 sign ((L+B)x̃2)− σ2 d(L+B)x̃2c2 − 1u1,0 (2.73)

˙̃x4 = −ρ4 sign ((L+B)x̃4)− σ4 d(L+B)x̃4c2 − 1u2,0 (2.74)

We complete the proof by three steps.

• Let us first study subsystems (2.72)-(2.73). Consider the candidate Lyapunov function for sub-

system (2.73):

V5 =
1

2
x̃T2 (L+B)x̃2 (2.75)
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Its time derivative is given by

V̇5 = −ρ2x̃
T
2 (L+B) sign ((L+B)x̃2)

+x̃T2 (L+B)
(
−σ2 d(L+B)x̃2c2 − 1u1,0

)
≤ −(ρ2 − umax1,0 )‖(L+B)x̃2‖1

−β2N
− 1

2 (2λmin(L+B))
3
2V

3
2

5

≤ −εV
1
2

5 − εV
3
2

5

Using Lemma 2, this inequality guarantees that x̃2 is fixed-time stable at the origin with the

settling time bounded by π
ε .

After x̃2 converges to zero (i.e. when t ≥ π
ε ), the dynamics of x̃1 reduces to

˙̃x1 = −ρ1 sign ((L+B)x̃1)− σ1 d(L+B)x̃1c2 (2.76)

Similarly to the previous step, the x̃1 dynamics converges to zero. Indeed, consider the Lyapunov

function:

V6 =
1

2
x̃T1 (L+B)x̃1 (2.77)

Its time derivative is given by

V̇6 = −ρ1x̃
T
1 (L+B) sign ((L+B)x̃1)

−σ1x̃
T
1 (L+B) d(L+B)x̃1c2

≤ −ρ1‖(L+B)x̃1‖1

−σ1N
− 1

2 (2λmin(L+B))
3
2V

3
2

6

≤ −εV
1
2

6 − εV
3
2

6

Hence, one can conclude that x̃2 converges to zero and after that x̃1 converges to zero in a

fixed-time bounded by 2πε .

• Let us now study subsystem (2.74).

The time derivative of the following candidate Lyapunov function

V7 =
1

2
x̃T4 (L+B)x̃4 (2.78)

is given by

V̇7 = x̃T4 (L+B)
(
−ρ4 sign ((L+B)x̃4)− σ4 d(L+B)x̃4c2 − 1u2,0

)
≤ −(ρ4 − umax2,0 )‖(L+B)x̃4‖1 − σ4N

− 1
2 (2λmin(L+B))

3
2V

3
2

7

≤ −εV
1
2

7 − εV
3
2

7

Using Lemma 2, this inequality ensures that x̃4 converges to zero in a finite-time bounded by π
ε .
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• After x̃2 and x̃4 converge to zero (i.e. when t ≥ π
ε ), the dynamics of x̃3 becomes

˙̃x3 = −ρ3 sign ((L+B)x̃3)− σ3 d(L+B)x̃3c2 (2.79)

Similarly to previously, considering the candidate Lyapunov function V8 = 1
2 x̃

T
3 (L+B)x̃3 yields

in the fixed-time stable at the origin of x̃3 with the settling time bounded by 2πε .

Hence, one can conclude that the estimation errors (2.67) converge to zero in a fixed-time bounded

by To.

Decentralized fixed-time controller

From Theorem 6, one can conclude that x̂i = [x̂1,i, x̂2,i, x̂3,i, x̂4,i]
T = x0 for all t ≥ To. Hence, after

time To, each follower is able to indirectly access to the state of the leader and uses the estimate x̂i in

the consensus protocol.

Let us denote the tracking errors as follows

ek,i = xk,i − x̂k,i = xk,i − xk,0 − x̃k,i (i = {1, . . . , N}, k = {1, . . . , 4}) (2.80)

For each follower i = {1, . . . , N} and for all t ≥ To, the tracking error dynamics becomes

(Σ1)
ė1,i = e2,i

ė2,i = u1,i + d1,i − u1,0

(Σ2)
ė3,i = e4,ix2,0 + (e4,i + x4,0)e2,i

ė4,i = u2,i + d2,i − u2,0

(2.81)

It is clear that dynamics (2.81) is divided into two coupled second-order subsystems (i.e. Σ1 and Σ2).

To deal with the observer-based consensus tracking problem, for each follower i = {1, . . . , N}, the

following two steps are introduced:

• Design u1,i such that the origin of subsystem Σ1 is fixed-time stable with the settling time

estimate T1 < T .

• For t ≥ T1, design u2,i such that the origin of subsystem Σ2 is fixed-time stable with the settling

time estimate T . Note that for t ≥ T1, subsystem Σ2 becomes

ė3,i = e4,ix2,0

ė4,i = u2,i + d2,i − u2,0

(2.82)

It is clear that for t ≥ T1, the two subsystems are decoupled.

In the following theorem, the control strategy is derived to solve the leader-follower consensus

problem for MAS with chained-form dynamics, in a fixed-time, in spite of the presence of matched

perturbations.
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Theorem 7 Let us consider the leader-follower system (2.61)-(2.62). Suppose that Assumptions 6-9

are satisfied and the gains of the distributed observer (2.66) verify Eq. (2.68). The leader-follower

consensus problem is solved in a fixed-time using the decentralized controllers

u1,i =

{
0 , ∀t < To

−α1+3β1e21,i+2ai
2 sign (s1,i)− bα2s1,i + β2bs1,ie3e

1
2 ,∀t ≥ To

(2.83)

with the sliding surface

s1,i = e2,i + bbe2,ie2 + α1e1,i + β1be1,ie3e
1
2 (2.84)

and

u2,i =

{ 0 ,∀t < Ts

− 1
x̂2,0

(
e4,i

˙̂x2,0 +
α1+3β1e23,i+2bi

2 sign (s2,i) + bα2s2,i + β2bs2,ie3e
1
2

)
,∀t ∈ [Ts, T ]

−bi sign (e4,i) ,∀t > T

(2.85)

with the sliding surface

s2,i = e4,ix2,0 + bbe4,ix2,0e2 + γ1e3,i + µ1be3,ie3e
1
2 (2.86)

where α1, α2, β1 and β2 are positive constants, ai and bi are positive constants given hereafter, and

the switching time is explicitly defined as

Ts = To +
2√
α2

+
2√
β2

+
2
√

2√
α1

+
2
√

2√
β1

(2.87)

Proof. We complete the proof by three steps. First, it will be shown that the origin of subsystem

Σ1 is fixed-time stable with the settling time estimate Ts under the control law (2.83)-(2.84). Then, the

protocol (2.83)-(2.86) guarantees that the origin of subsystem Σ2 is fixed-time stable with the settling

time estimate T . At last, it will be proved that in spite of the presence of matched perturbations, the

fixed-time leader-follower consensus problem is solved.

• Let us first consider subsystem Σ1. Following [?], let us consider the candidate Lyapunov function

V9 = |s1,i|. Its derivative is,

V̇9 = ė2,i sign (s1,i) +
|e2,i|ė2,i sign (s1,i) +

α1+3β1e21,i
2 e2,i sign (s1,i)

|be2,ie2 + α1e1,i + β1be1,ie3|
1
2

(2.88)

Since

bα2s1,i + β2bs1,ie3e
1
2 sign (s1,i) = (α2|s1,i|+ β2|s1,i|3)

1
2

one has

ė2,i sign (s1,i) = (u1,i + d1,i − u1,0) sign (s1,i)

= −α1+3β1e21,i
2

−(α2|s1,i|+ β2|s1,i|3)
1
2 − (ai − (d1,i − u1,0) sign (s1,i))
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Setting

ai ≥ dmax1,i + umax1,0 (2.89)

one can conclude that

V̇9 ≤ −(α2V9 + β2V
3

9 )
1
2 (2.90)

From Lemma 2, it is clear that s1,i = 0 when t ≥ To + 2√
α2

+ 2√
β2

.

The sliding dynamics (s1,i = 0) can be expressed as

ė1,i = −
⌊α1e1,i + β1be1,ie3

2

⌉ 1
2

(2.91)

Using the candidate Lyapunov function V10 = |e1,i|, one can obtain

V̇10 = −(
α1

2
V10 +

β1

2
V 3

10)
1
2 (2.92)

It is clear using Lemma 2 that e1,i = 0 when t ≥ Ts. Furthermore, since e1,i = 0 and s1,i = 0,

then e2,i = 0.

• Let us now consider subsystem Σ2 for t ∈ [Ts, T ]. In this case, since e1,i = e2,i = 0, subsystem

Σ2 becomes (2.82). Note that Assumption 4 is introduced to avoid singularity problem in the

controller design. Hence, let us set ζi = e4,ix2,0. Dynamics (2.82) can be written as follows,

ė3,i = ζi

ζ̇i = e4,iẋ2,0 + x2,0(u2,i + d2,i − u2,0)
(2.93)

Setting

bi ≥ dmax2,i + umax2,0 (2.94)

and using the controller (2.85)-(2.86), similarly to the previous step, one can easily deduce that

e3,i = 0 for all t ≥ T = Ts + 2√
α2

+ 2√
β2

+ 2
√

2√
α1

+ 2
√

2√
β1

. Furthermore, since e3,i = 0 and s2,i = 0,

then e4,i = 0.

• The last step is to study subsystem Σ2 for t > T . From subsystem Σ2, one can obtain

ė4,i = −bi sign (e4,i) + d2,i − u2,0 (2.95)

The controller u2,i is used to reject the effect of uncertain terms d2,i and u2,0. Let us consider

the candidate Lyapunov function V11 = 1
2e

2
4,i. Its derivative is given by

V̇11 = −bi|e4,i|+ e4,i (d2,i − u2,0)

≤ −(bi + dmax2,i + umax2,0 )|e4,i|
≤ 0

(2.96)

For the previous step, one has e3,i(T ) = e4,i(T ) = 0. Hence, one can conclude that for any initial

condition, the tracking errors converge to zero in a finite-time bounded by T and remains there

in spite of the presence of matched perturbations.
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This concludes the proof.

Remark 9 When the settling time T is prescribed, the switching time Ts should be appropriately tuned

using α1, α2, β1 and β2 through Eq. (2.87).

Remark 10 In the presence of measurement noise or unmatched perturbations, only practical con-

sensus (i.e. uniformly ultimate boundedness of the tracking errors) can be achieved.

Remark 11 The design guidelines for our fixed-time controller are as follows:

• Select the parameter ε. Parameter ε should be tuned to obtain a good compromise between

robustness against measurement noises and sufficiently fast estimation (To can be computed

according to Eq. (2.69)).

• Design the observer gain parameters using Eq. (2.68).

• Select the settling time T . This parameter T should be tuned to obtain a good compromise between

the control magnitudes and sufficiently fast convergence for the tracking errors.

• Select the switching time Ts as follows:

Ts =
T − To

2

It enables to divide the time interval [To, Ts] into two equal parts. This is useful for our two

steps procedure described previously (i.e. fixed-time stabilization of system Σ1 and system Σ2

described in Eq. (2.81)).

• Knowing To and Ts, select the parameters γ1, γ2, µ1 and µ2 according to (2.87). A possible

choice for these parameters is the following:

(µ1/2) = µ2 = (γ1/2) = γ2 =
64

(Ts − To)2
(2.97)

• Select the control parameters ai and bi which satisfy inequalities (2.89) and (2.94).

2.6.2 Simulation Results

Here, the performances of the proposed observer-based leader-follower consensus controller are studied

through numerical simulations. Suppose that the MAS is composed of N = 6 followers labeled by 1−6

and one leader labeled by 0. The nonlinear dynamics of the leader (resp. the followers) is given by Eq.

(2.61) (resp. Eq. (2.62)). Hereafter, the leader control input is set as u0 = [0.1 sin(t),−0.5 cos(0.5t)].

Each follower is affected by the unknown perturbation di =
[
0.2 sin(x1,i), 0.3e

−t)
]
. Therefore, one can

easily verify that Assumptions 7-8 are fulfilled with u1,max = 0.1, u2,max = 0.5, d1,max = 0.2 and

d2,max = 0.3.
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Using the same topology as previous section, from matrix B, it is clear that agents 1, 3, 4 and

6 do not have direct link with agent 0. Assumption 6 is satisfied. The initial leader state is set as

x0(0) = [3, 2, 2, 0.5]T . From the control input of the leader, one can see that Assumption 9 is verified.

The parameters of the distributed observer are selected as ρ1 = ρ3 = 10, ρ2 = 10.1, ρ4 = 10.5

and σk = 24, ∀k = 1, . . . , 4. The parameters of the decentralized controller are chosen as follows:

α1 = 5.12, β1 = 5.12, α2 = 2.56, β2 = 2.56, ai = 0.3 and bi = 0.8.

Using Theorem 6, the distributed observer (2.66) guarantees the stabilization of the estimation

errors (2.67) to the origin in a finite-time bounded by To = 1s. Figure 2.17 shows that the distributed

observers accurately reconstruct the leader state for each agent before To. Contrary to [?, ?], the

proposed fixed-time observer removes the problem of the communication loop due to the dependence

of the control inputs of the followers on the inputs of its neighbors. The switching time can be

calculated using Eq. (2.69). One can obtain Ts = 4.5s. Hence, the origin of the closed-loop system is

globally finite-time stable contrary to existing controllers which only provide semi-global finite-time

stability property. Furthermore, since Ts does not depend on the initial states of agents, the proposed

protocol is distributed.

Here, an upper bound of the settling time, independently of the initial conditions, can be estimated

using Eq. (2.87), i.e. T = 9s from Theorem 7. The tracking errors are depicted in Fig. 2.18. One can

see that the tracking errors between each follower and the leader converge to zero before T . From Fig.

2.18, one can conclude that using the proposed controller, the leader-follower consensus is achieved in

a prescribed time. The control inputs for each agent are shown in Fig. 2.19. One can note that the

magnitude of control inputs may be large during the transients to achieve a fast convergence of the

sliding surfaces given by the different steps of the consensus protocol. Hence, the control parameters

should be adjusted to obtain a good compromise between magnitude of the control inputs and settling

time.

Based on the simulation results, one can see that the proposed observer-based controller achieves

the fixed-time leader-follower consensus for MAS with chained-form dynamics in spite of the presence

of matched perturbations.

2.7 Conclusion

For the second and third section, the fixed-time consensus problem of linear multi-agent systems (i.e.

single-integrator and double-integrator dynamics) has been considered. The proposed distributed ob-

servers has been used to estimate the leader state in a fixed-time. A decentralized controller has been

designed for each agent to solve the leader-follower consensus problem in a prescribed-time.

For the fourth section, the fixed-time trajectory tracking problem for unicycle-type mobile robots

has been considered. A switching controller has been proposed to solve this problem. An upper bound
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(a) (b)

(c) (d)

Figure 2.17: Evolution of the estimation errors (2.67) for each follower

of the settling time, which only depends on the controller parameters has been estimated regardless

of the initial conditions. Some simulation results have been given to show the effectiveness of the

proposed controller.

In the fifth section, the fixed-time consensus problem of multiple unicycle-type mobile robots under

matched perturbations has been considered. Thanks to the proposed distributed observers, the leader

state has been estimated in a fixed-time. A decentralized observer-based control protocol has been

proposed for each agent to solve the leader-follower consensus problem in a fixed-time.
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(a) (b)

(c) (d)

Figure 2.18: Evolution of the tracking errors between each agent and the leader.

(a) (b)

Figure 2.19: Control input for each agent
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Chapter 3

Consensus for Multi-Agent Systems

Using Distributed Model Predictive

Control

3.1 Introduction

This chapter is concerned with the consensus problem for a group of mobile agents which have a

discrete-time dynamics using distributed model predictive control (DMPC). The first part of this

chapter formulates the general control objective and the considered assumptions to solve the con-

sensus problem under switching topologies. The second and third part of this chapter deal with the

consensus problem for linear multi-agent systems (i.e. single-integrator and double-integrator dynam-

ics). The proposed consensus control protocol is distributed and is designed by combining graph

theory with a predictive control algorithm to take into account the switches on the communication

topology. The predictive strategy is used to estimate input and output of agent through a receding

horizon. Contrary to many existing works, the cost function is designed using the difference between

two consecutive inputs. The controller has integrator properties to eliminate steady-state errors.

The objective is to develop a DMPC protocol such that the states of all agents reach an agreement

eventually. The main features of the proposed scheme can be summarized as follows:

i) The control horizon can be arbitrarily picked from one to less than the prediction horizon, which

increases the degree of freedom in controller design.

ii) The communication topolgy is assumed to be directed and dynamically switching.

iii) The sampling period can be arbitrarily large provided that each communication topology has a

directed spanning tree.
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The remaining parts of this chapter are organized as follows. Section 3.2 introduces some assump-

tions and formulates the general control objective. The distributed model predictive controller based

consensus strategy is introduced in Section 3.3. Some simulation results are given in Section 3.4 to

illustrate the effectiveness and advantages of the proposed scheme for single and double integrator

dynamic. Section 3.5 concludes this chapter.

3.2 Problem statement and considered assumptions

Let us consider a group of N agents labeled by i ∈ {1, . . . , N}. The dynamics of each agent is expressed

by the following discrete-time equation

xi(k + 1) = F (xi(k), ui(k)) (3.1)

where xi(k) ∈ Rn is the state of agent i and ui(k) ∈ Rm is the control input of agent i. F : Rn×Rm →
Rn is known. T ∈ R+ is the sampling period.

Among the N agents, at time t = kT , the communication topology can be represented by the

time-varying digraph G(k) = {V, E(k)} where V = {1, . . . , N} defines the set of nodes, corresponding

to the agents, and E(k) ⊆ {V × V} defines the edge set at time kT . An edge (j, i) ∈ E(k), with i 6= j,

exists if at time kT agent i receive information from its neighbor j. At time k, the set of neighbors to

the node i ∈ V is Ni(k) = {j ∈ V : (j, i) ∈ E(k)} and |Ni(k)|, i ∈ V, is the valency or degree of i-th node

at time k. The adjacency matrix A(k) = (aij(k)) ∈ RN×N satisfies aij(k) > 0 if (j, i) ∈ E at time kT

and aij(k) = 0, otherwise. The corresponding Laplacian matrix is given by L(k) = (lij(k)) ∈ RN×N

with lii(k) =
∑N

j=1, j 6=i aij(k) and lij(k) = −aij(k) for i 6= j.

Hereafter, it is assumed that the following hypothesis holds to derive the proposed DMPC scheme.

Assumption 10 It is assumed that the communication topology among the N agents is directed and

dynamical switching and at each time kT it contains a directed spanning tree.

Such time-varying graphs can be found in many engineering applications due to the creation or failure

of communication links, reconfiguration of formations, presence of obstacles and so on.

Here, the purpose is to derive a decentralized controller ui (i = 1, . . . , N) for each agent, based on

available information, such that the consensus problem is solved. It means that

lim
k→∞

‖xi(k)− xj(k)‖ = 0 ∀i, j ∈ V, i 6= j (3.2)

3.3 Distributed model predictive controller based consensus

3.3.1 Generalities on model predictive controller

MPC (Model Predictive Control) is a kind of finite horizon optimal control. It solves a finite horizon

optimal control and applies the first part of the resulting optimal control sequence to the plant at
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every sampling instant.

In this subsection, the general structure of MPC is briefly introduced. Let us consider a discrete-

time linear system described by

x(k + 1) = Ax(k) +Bu(k) (3.3)

where x(k) ∈ Rn and u(k) ∈ Rm are the state and control input, respectively. A ∈ Rn×n and

B ∈ Rn×m are the state and input matrices, respectively.

The MPC implementation can be formulated by introducing the following optimization problem

at every time instant kT :

minu(.) J(Hp,Hu)(k) (3.4)

subject to

x(k + l|k) = Ax(k + l − 1|k) +Bu(k + l − 1|k), l = 1, 2, . . . ,Hp

xmin ≤ x(k + l|k) ≤ xmax, l = 1, 2, . . . ,Hp

umin ≤ u(k + l|k) ≤ umax, l = 0, 1, 2, . . . ,Hu − 1

(3.5)

The performance index is defined as

J(Hp,Hu)(k) =

Hp∑
l=1

xT (k + l|k)Qx(k + l|k) +

Hu−1∑
l=0

uT (k + l|k)Ru(k + l|k) (3.6)

where Q ∈ Rn×n and R ∈ Rm×m are the weighting matrices, with Q = QT > 0, R = RT > 0. Hp

and Hu denote the length of the prediction horizon and the length of the control horizon, respectively.

Usually, Hp ≥ Hu. The first term is called the state penalty while the second one is called the control

penalty.

Equations (3.3)-(3.8) define a quadratic optimization problem and many algorithms and software

packages are available to solve it. When the optimal control sequence u(k + l|k), l = 0, . . . ,Hu − 1 is

obtained, only the first control input uk|k)(0|x(k) is applied to the system at time kT according to

the so-called receding horizon principle. The rest of the control sequence is discarded. Then, at the

next time (k + 1)T a new quadratic optimization problem (Equation (3.4)) begins and the process is

repeated.

The generic MPC algorithm can be described as follows,

1. At current time kT , measure the current state x(k).

2. Solve the optimization control problem (3.4) with the initial condition x(k). It yields the optimal

control sequence u(k + l|k) over the control horizon.

3. Apply the first element in control sequence u(k+ l|k) to the system. The remaining elements of

the control sequence is discarded.

4. At time (k + 1)T , repeat from step 1.
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3.3.2 Further improvements on MPC

In classical MPC, the control objective is to minimize the cost function (3.4). In the following, in

order to improve the performances in terms of steady state error, we introduce in the cost function

the difference ∆u between two consecutive inputs.

Therefore, let us define the following optimization problem at every time instant kT :

minu(.) J(Hp,Hu)(k) (3.7)

subject to

x(k + l|k) = Ax(k + l − 1|k) +B(∆u(k + l − 1|k) + u(k + l − 1|k)), l = 1, 2, . . . ,Hp

xmin ≤ x(k + l|k) ≤ xmax, l = 1, 2, . . . ,Hp

umin ≤ u(k + l|k) ≤ umax, l = 0, 1, 2, . . . ,Hu − 1

(3.8)

The performance index is defined as

J(Hp,Hu)(k) =

Hp∑
l=1

xT (k + l|k)Qx(k + l|k) +

Hu−1∑
l=0

∆uT (k + l|k)R∆u(k + l|k) (3.9)

The difference ∆u between two consecutive inputs is as follows

∆u(k + l|k) =

{
u(k + l|k)− u(k + l − 1|k) 0 ≤ l ≤ Hu − 1

0 Hu ≤ l ≤ Hp

(3.10)

3.3.3 Distributed MPC for linear MAS

Next, we will introduce the common method to design MPC input ui(k) for agent i at instant k.

Let us consider a group of N agents. The dynamics of each agent is expressed by the following

discrete-time linear equation as:

xi(k + 1) = Axi(k) +Bui(k) ∀i ∈ {1, . . . , N} (3.11)

where xi(k) ∈ Rn and ui(k) ∈ Rm are the state and the control input of agent i, respectively.

Basically, the distributed model predictive control (DMPC) strategy is a model predictive control

(MPC) strategy in the form of a distributed optimization problem for each agent. The proposed

DMPC controller is designed by optimizing a quadratic optimization function which depends on the

difference between the state of the agent and the reference value of the agent state along the prediction

horizon Hp. Hu denotes the control horizon. Using the proposed scheme, each agent in the fleet

design its own control protocol for each DMPC iteration, by only taking into account the state of the

neighbor agents. The proposed method solves the consensus problem even in the presence of switched

communication topologies. Indeed, the proposed DMPC strategy is able to adapt to the changes in
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the MAS parameters (for instance the topology) and to predict the state of the agent up to a few

steps along the prediction horizon Hp.

Define the quadratic cost function as below:

Ji(k) =

Hp∑
l=1

(xTi (k + l|k)− rTi (k))Q(xi(k + l|k)− ri(k)) +

Hu−1∑
l=0

uTi (k + l|k)Rui(k + l|k)

=

Hp∑
l=1

‖xi(k + l|k)− ri(k)‖2Q +

Hu−1∑
l=0

‖u(k + l|k)‖2R

(3.12)

subject to

xi(k + l|k) = Axi(k + l − 1|k) +Bui(k + l − 1|k), l = 1, 2, . . . ,Hp

xi min ≤ xi(k + l|k) ≤ xi max, l = 1, 2, . . . ,Hp

ui min ≤ ui(k + l|k) ≤ ui max, l = 0, 1, 2, . . . ,Hu − 1

(3.13)

The reference state is chosen as

ri(k) =
1

|Ni(k)|+ 1

∑
j∈Ni(k)

⋃
i

xj(k) (3.14)

It is important to note that this reference only depends on the states of the ith agent and its neighbors.

This implies that the cost function is distributed. Furthermore, it evolves during time according to

the communication topology through the set Ni(k).

Similarly to the previous subsection, let us introduce the difference ∆ui between two consecutive

inputs proposed. The control input for each agent is then defined as

∆ui(k + l|k) =

{
ui(k + l|k)− ui(k + l − 1|k) 0 ≤ l ≤ Hu − 1

0 Hu ≤ l ≤ Hp

(3.15)

Hence, the first equation of (3.13) can be rewritten as

xi(k + l|k) = Axi(k + l − 1|k) +B(∆ui(k + l − 1|k) + ui(k + l − 1|k)), l = 1, 2, . . . ,Hp (3.16)
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Therefore, the prediction states xi(k + l|k), (l = 1, 2, ...,Hp) at time k can be derived as follows:

xi(k + 1|k) = Axi(k) +B(∆ui(k) + ui(k))

xi(k + 2|k) = Axi(k + 1|k) +Bui(k + 1)

= A
(
Axi(k) +B(∆ui(k) + ui(k)))

)
+B(∆ui(k + 1) + ∆ui(k) + ui(k))

= A2xi(k) +AB +B)∆ui(k) +B∆ui(k + 1) + (AB +B)ui(k)

xi(k + 3|k) = Axi(k + 2|k) +Bui(k + 2)

= A3xi(k) + (A2B +AB +B)∆ui(k) + (AB +B)∆ui(k + 1) +B∆ui(k + 2)

+(A2B +AB +B)ui(k)

xi(k +Hp|k) = AHpxi(k) +

(Hp−1∑
l=0

AlB

)
∆ui(k) +

(Hp−2∑
l=0

AlB

)
∆ui(k + 1) + . . .

B∆ui(k +Hp − 1) +

(Hp−1∑
l=0

AlB

)
ui(k)

Hence, one can write the previous equalities as follows:

xi(k + 1|k)

xi(k + 2|k)

xi(k + 3|k)
...

xi(k +Hp|k)


=



A

A2

A3

...

AHp


xi(k) +



B

AB +B

A2B +AB +B
...

Hp−1∑
l=0

AlB


ui(k)+



B 0 0 0

AB +B B 0 0

A2B +AB +B AB +B B
...

...
...

. . .
...

Hp−1∑
l=0

AlB
Hp−2∑
l=0

AlB . . . B





∆ui(k)

∆ui(k + 1)

∆ui(k + 2)
...

∆ui(k +Hp − 1)


In a compact form, the dynamic system becomes as follows:

Xi(k) = Pxxi(k) + Puui(k) + P4∆Ui(k) (3.17)

with Xi(k) =



xi(k + 1|k)

xi(k + 2|k)

xi(k + 3|k)
...

xi(k +Hp|k)


, ∆Ui(k) =



∆ui(k)

∆ui(k + 1)

∆ui(k + 2)
...

∆ui(k +Hp − 1)


,
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Px =



A

A2

A3

...

AHp


, Pu =



B

AB +B

A2B +AB +B
...

Hp−1∑
l=0

AlB


and

P4 =



B 0 0 0

AB +B B 0 0

A2B +AB +B AB +B B
...

...
...

. . .
...

Hp−1∑
l=0

AlB
Hp−2∑
l=0

AlB . . . B


.

Then, we select the MPC cost function for agent i as follows:

Ji(k) = ‖Pxxi(k) + PuUi(k)− ri(k)‖2Q + ‖P4∆Ui(k)‖2R (3.18)

where Q and R represent the associated state-weighted matrix and control-weighted matrix with ap-

propriate dimensions, respectively. ri(k) denotes the reference state for agent i over the future Hp

prediction steps.

Furthermore, equation (3.18) is described as follows:

Ji(k) = (Pxxi(k) + PuUi(k)− ri(k))TQ(Pxxi(k) + PuUi(k)− ri(k)) + (P4∆Ui(k))TR(P4∆Ui(k))

= (P Tx x
T
i (k) + P Tu U

T
i (k)− rTi (k))(QPxxi(k) +QPuUi(k)−Qri(k)) + (P T4∆UTi (k)RP4∆Ui(k))

= P Tx x
T
i (k)QPxxi(k) + P Tx x

T
i (k)QPuUi(k)− P Tx xTi (k)Qri(k) + P Tu U

T
i (k)QPxxi(k)

+ P Tu U
T
i (k)QPuUi(k)− P Tu UTi (k)Qri(k)− rTi (k)QPxxi(k)− rTi (k)QPuUi(k) + rTi (k)Qri(k)

+ (P T4∆UTi (k)RP4∆Ui(k))

By letting ∂Ji(k)/∂Ui = 0, one can obtain the optimal control vector

∂Ji(k)/∂Ui(k) = 0

0 = PuQPxxi(k) + P Tu QPxxi(k) + P Tu QPuUi(k) + P Tu Q
TPuUi(k)− P Tu Qri(k)− P Tu QT ri(k)

0 = 2[P Tu QPxxi(k) + P Tu QPuUi(k)− P Tu Qri(k)]

(3.19)

Then, Equation (3.19) yields

P Tu QPuUi(k) = −P Tu QPxxi(k) + P Tu Qri(k)

Ui(k) = [P Tu QPu]−1(−P Tu QPxxi(k) + P Tu Qri(k))

= [P Tu QPu]−1(−P Tu Q[Pxxi(k)− ri(k)])
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Remark 12 It should be notified that the proposed cost function (3.18) is distributed since the refer-

ence state ri(k) only depends on the neighboring agents of agent i at time k.

After the design of the control protocol, one must guarantee that the consensus problem is solved

(i.e. Eq. (3.2)). Equation (3.2) illustrates that a MAS has reached a consensus if for time goes to

infinity, the difference in the state between two agents is zero. It is clear the minimization of the cost

function (3.18) implies that

xi(k + 1) =
1

|Ni(k)|+ 1

∑
j∈Ni(k)

⋃
i

xj(k) (3.20)

In a compact form, Eq. (3.21) is equivalent to

x(k + 1) = D(k)x(k) (3.21)

Due to properties of matrix D, the consensus is achieved.

3.4 Simulation results

The simulation results for all the following subsections (i.e. simple integrator, double integrator) are

done using the switching topology. A multi-agent system with N = 4 followers labeled by 1 − 4 is

considered. Figure 3.1 shows the switching communication topology. One can see that it is switched

and connected. In the following, G(k) periodically switches from G1 to G2 and then to G3 every δ = 0.1

Figure 3.1: Switching communication topologies between agents

seconds. The process then repeats. Note that each graph of the collection {G1,G2,G3} has a directed

spanning tree.

3.4.1 First-order integrator MAS

Consider a multi-agent system consisting of N agents with discrete-time single-integrator model

xi(k + 1) = xi(k) + Tui(k) (3.22)

where T ∈ R+ is the sampling period, xi(k) ∈ Rm and ui(k) ∈ Rm are the state and the control input

to be designed for agent i, respectively.
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Let us define the quadratic optimization problem as (3.18) subject to (3.16). It is clear that

Assumption 10 is satisfied. The initial states of the agents are given as x1(0) = 50, x2(0) = −35,

x3(0) = 60, x4(0) = −200. The parameters are set as Hu = 2 and different values of Hp (i.e.

Hp = 3, 6, 9.

As shown in Figure 3.2, the consensus problem for MAS with dynamics (3.22) is achieve using the

control protocol (3.15). We can see that the state of all agents converge to a consensus point. Figure

3.2.a. shows that the state x converges toward the consensus point.

(a) (b)

(c) (d)

Figure 3.2 illustates the influence of the prediction horizon Hp especially in terms of convergence

time. The higher Hp is, the fast convergence rate for to achieve consensus is. When Hp = 3, the

consensus is achieved at t = 10s and when Hp = 9, the consensus point achieved at t = 6s
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(e) (f)

Figure 3.2: Evolution of agent state x and control input u for a. Hp = 3, b. Hp = 6 and c. Hp = 9

Comparison Results

Hereafter, we give a comparison between the consensus protocol proposed in this chapter and the one

proposed in [1] (without the use of difference between input, i.e. ∆ui). Using the same switching

topology, let us set the same parameters Hp = 10, Hu = 6, sampling time δ = 0.1s and initial state of

agents between the two schemes. The comparison between our proposed controller with [1] is shown

in the following figures.

(a) (b)

Figure 3.3: Evolution of agent state x and control input u using our proposed DMPC

As seen in Figures 3.3 and 3.4, we can see the influence of the controller parameters. Our proposed

controller is designed using the difference between two consecutive inputs. The controller has integrator

properties to eliminate the steady-state errors. In Figure 3.3, the state of all agents converge to a
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Figure 3.4: Evolution of the agent states x and the control input u using [1]

consensus point less then t = 10s while in Figure 3.4, the state of all agents converge to a consensus

point more then t = 30s. Hence, our results shows a faster convergence rate.

3.4.2 Second-order integrator MAS

Consider a multi-agent system consisting of N agents with double-integrator model:

ẋ1,i(t) = x2,i(t)

ẋ2,i(t) = ui(t) i = 1, 2, ..., N
(3.23)

where x1,i(t) ∈ Rn and x2,i(t) ∈ Rn denote the position and the velocity of the ith agent at time

t, respectively. ui(t) ∈ Rn is the corresponding control input. Let us discretize (3.23) using the

forward-difference approximation:

x1,i(k + 1) = x1,i(k) + Tx2,i(k)

x2,i(k + 1) = x2,i(k) + Tui(k)
(3.24)

where T indicates the sampling period and k indicates the discrete-time index. x1,i(k) ∈ Rn, x2,i(k) ∈
Rn and ui(k) ∈ Rn denote, respectively, the position, velocity and the control input of agent i at

t = kT . Following (3.2), the consensus is reached if

limk→∞ ‖x1,i(k)− x1,j(k)‖ = 0

limk→∞ ‖x2,i(k)− x2,j(k)‖ = 0 ∀i, j ∈ V, i 6= j
(3.25)

In a compact form, Eq. (3.24) can be written as, ∀i = 1, . . . , 4,

pi(k + 1) =

(
1 0.1

0 1

)
pi(k) +

(
0.005

0.1

)
ui(k) (3.26)
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The control parameter are selected as Hp = 3, Hp = 6, Hp = 9 and Hu = 2. The initial states of each

agent are given by: x1(0) =

[
10

0

]
, x2(0) =

[
0

0

]
, x3(0) =

[
−2

0

]
, x4(0) =

[
6

0

]

The consensus problem described in Equation 3.25 is achieved using the proposed distributed

model predictive control. We can see that the state of all agents converge to a consensus point. Figure

3.5.a (resp Figure 3.5.b) shows the state x1,i (resp. the state x2,i) . it can be seen that the consensus

is achieved with a convergence time which depends on the value of the prediction horizon Hp. When

Hp = 3, the consensus point of agent position x1,i is achieved at t = 40s. When Hp = 6 and Hp = 9,

the consensus point is achieved at t = 25s and t = 15s. The consensus point for agent velocity x2,i,

with Hp = 3, Hp = 6, Hp = 9 is t = 40s, t = 25s and t = 20s.

(a) (b)

(c) (d)
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(e) (f)

Figure 3.5: Evolution of agent state x1,i and x2,i with a.Hp = 3, b.Hp = 6, c.Hp = 9

The corresponding control input is given in Figure 3.6.

(a) (b)

(c)

Figure 3.6: Evolution of the control input ui
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3.5 Conclusion

In this chapter, a model predictive control protocol is developed for consensus of MASs with discrete-

time linear dynamics under time-varying directed interaction topologies. The control protocol is

distributed and is designed by combining graph theory with a predictive control algorithm to take

into account the switches on the communication topology. The cost function is design using the

difference between two consecutive inputs. The controller has integrator properties to reduce the

steady-state errors. The convergence time of consensus depends on the prediction horizon parameter.

Some simulation results have been given to show the effectiveness of the proposed controller.
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Chapter 4

Experimental Setup

4.1 Introduction

For the reader convenience, this chapter briefly introduces the experimental platform Minilab Robot,

available at the Department of Automation and Control, LAMIH (Laboratory of Industrial and Hu-

man Automation Control, Mechanical Engineering and Computer Science), Université Polytechnique

Hauts-de-France. The platform was used to test and validate the effectiveness of the theoretical re-

sults given in the previous chapters. Figure 4.1 shows the architecture of the experimental platform.

In this process, control algorithms are programmed using ROS (Robotic Operating System) with

Gazebo-ROS as a reality virtual simulation.

Figure 4.1: Multiple Minilab robots with wireless communication architecture.

Experiments were performed on a group of three mobile robots supplied by Enova Robotics to

verify the feasibility and effectiveness of the proposed consensus control strategies. The three robots

consist of one robot which was designated as the leader, and two robots were designated as the
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followers. Figure 4.2 illustrates the experiments which were carried out in an indoor environment.

Figure 4.2: Illustration of the experimental setup.

Generally, in ROS environment, we can control one robot by one or several machines/ workstations.

Except in the case of using Gazebo simulator, we can perform simulation for several robots by only one

workstation. Instead of using multiple machines/ workstation, in this chapter we demonstrate the idea

of gazebo simulator into real robots to reduce cost and utilisation of several workstations. Since we

are working on consensus problem for multi-agent systems and we are using only one workstation, we

need to appropriately select the wifi configuration and design multiple master ROS in a decentralized

architecture for multiple robots. Furthermore, since there are some difficulties to create the leader-

follower topology in this ROS multi-agent system network, we have to propose an algorithm to solve

this problem.

The remainder of this chapter is organized as follows. Section 4.2 describes the Minilab Enova robot

platform. Section 4.3 introduces the robotic operating system (ROS). In Section 4.4, reality virtual

simulation using Gazebo-ROS examples are provided. MiniLab robots as platform for cooperative

control of multi-agent systems are given in Section 4.5. Section 4.6 concludes this chapter.

4.2 Minilab Enova Robot

The Minilab robot, as shown in Figure 4.3, is a medium-sized two wheels mobile robot designed by

Enova Robotics. The left and right wheels, are controlled independently using two DC motors to

design the linear and angular speed such that robot can move in its environment. The robot can

navigate autonomously or be teleoperated using its camera, which transmits video in real time. Each

MiniLab robot is equipped with an intel X86 main board, an hard drive and also a wide variety of parts

and sensors that are useful for navigation tasks, such as 5 ultrasonic sensors, 5 infra-red (IR) distance
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sensors which provide the distance from obstacles to the robot, orbbec depth camera, encoders with

a resolution of 16 bits, LED indicators, buttons and arduino microcontroller.

Figure 4.3: Minilab Enova Robot.

MiniLab is optimized for indoor applications, with dimensions of 0.409m x 0.364m x 0.231m in

width x length x height and weight 11.5kg. It also has a load capacity of 3kg. Figure 4.4 shows the

dimensions of Minilab robot.

Figure 4.4: Minilab physical dimensions.

The control architecture of the Minilab robot is an open-source based on the Robot Operating

System (ROS). ROS is a flexible framework for writing robotic software. It includes several contributed

libraries and packages as localization, mapping, planning, perception, etc. Figure 4.5 shows the

hardware features of Minilab robot.

Table 4.1 illustrates some hardware configurations of the Minilab. Some hardware descriptions of the

Minilab Enova robot will be explained in the following subsection.

4.2.1 MiTAC Board Intel X86

The processing on the Minilab is performed by an Intel X86. Intel Atom is the brand name for a line

of ultra-low-voltage x86-64 microprocessors by Intel Corporation. Atom is mainly used in netbooks,

nettops, embedded applications ranging from health care to advanced robotics, and mobile Internet

devices (MIDs). The line was originally designed in 45 nm complementary metal–oxide–semiconductor

(CMOS) technology and subsequent models, codenamed Cedar, used a 32 nm process. Figure 4.6
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Figure 4.5: Minilab hardware features.

Table 4.1: Parts of the Minilab components

Component Description

Main board Intel X86

Wifi module TL-WR802N 300Mbps Wireless N Nano Router

USB HUB D-Link DGS-105 Gigabit Ethernet Switches

Motors Max speed of the robot is 1.5m/s

Wheels controller Roboteq SDC2130 Controller

Encoders 16 bits resolution

Sensor board Arduino Micro Board

Infrared array 5 SHARP 2Y0A21 F 46 sensors, range from 10 cm to 80 cm

Ultrasound 5 MaxSonar-EZ0 sensors, range from 0 m to 6.45 m, resolution 2.54 cm

ORBBEC depth camera ORBBEC Asrtra pro camera

Batteries 12 Volts/ 10 Ampere-hour, sealed lead/acid battery

depicts the processor board of Intel Atom N2800 1.86GHz Dual-Core 4Gb DDR3-1066MHz Mini ITX

Motherboard.

4.2.2 TL-WR802N 300Mbps Wireless N Nano Router

Each robot equipped with one TL-WR802N wireless router as shown in Figure 4.7 to connect the

Minilab to the network. It allows to design a communication network for multiple robots. This device

performs the functions of a router and also includes functions of wireless access point. It is used to
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Figure 4.6: Intel Atom N2800.

provide access to Internet or a private computer network. This router has 300Mbps wireless data

rate with several operation modes such as router, repeater, client, access point and hotspot. Powered

through a micro USB port by an external power adapter or USB connection to a computer it provides

flexibility for any situation.

Figure 4.7: TL-WR802N Wireless routers.

4.2.3 D-Link USB HUB

The DUB-H7 as shown in Figure 4.8 is fully compliant to USB 2.0 specifications with data transfer

rates of up to 480 Mbps. It is an ideal solution for transferring data between intel x86 and USB

devices (Orbbec Camera and Roboteq controller). The DUB-H7 features 7 USB fast charging ports

which are designed to feed high currents up to 2.4A when the DUB-H7 is powered by the included

power adapter in fast charging mode or of up to 1.5A via battery charging. Power input for this USB

hub is 5 V / 3A DC.

4.2.4 DC Motor

The maximum speed of the robot is 1.5 m/s in both forward and backward movement but for safety

reason maximum allowed speed is 0.8 m/s. The maximum slope angle is 10o. Each wheel has a driving

DC motor mounted on his axis. The wheels have been chosen to provide more accurate odometry
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Figure 4.8: DUB-H7 7-Port USB 2.0 HUB.

localization. The DC motor, shown in Figure 4.9, is brushed moter with permanent magnet. Input

voltage for the motor is 12 V and torque 0.07 Nm. Rotational speed of motor is 3,000 rpm.

Figure 4.9: Buhler Motor DC.

4.2.5 Roboteq Controller

Fitting into a very compact 73x73mm enclosure, Roboteq’s SDC2130 controller is designed to convert

commands received from an RC radio, Analog Joystick, wireless modem, PC (via RS232 or USB) or

microcomputer into high voltage and high current output for driving one or two DC motors. A CAN

bus interface allows up to 127 controllers to communicate at up to 1Mbit/s on a single twisted pair.

Figure 4.10 illustrates the Roboteq controller.

Figure 4.10: Roboteq SDC2130 controller.

The controller features a high-performance 32-bit microcomputer and quadrature encoder inputs

to perform advanced motion control algorithms in open loop or closed loop (speed or position). The

SDC21xx features several analog, pulse and digital I/Os which can be remapped as command or

feedback inputs, limit switches, or many other functions. For mobile robotic applications, the controller

two motor channels can either be operated independently or mixed to set the direction and rotation

of a vehicle by coordinating the motion of each motor.
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4.2.6 Arduino Micro Board

The Arduino Micro board, illustrated in Figure 4.11, is a microcontroller board based on the AT-

mega32u4, developed in conjunction with Adafruit. It has 20 digital input/output pins (of which 7

can be used as PWM outputs and 12 as analog inputs), a 16 MHz crystal oscillator, a micro USB

connection, an ICSP header, and a reset button. It contains everything needed to support the micro-

controller. Micro USB cable is used to connect Arduino board with computer. It has a form factor

that enables it to be easily placed on a breadboard.

The Micro has built-in USB communication, eliminating the need for a secondary processor. This

allows the Micro to appear to a connected computer as a mouse and keyboard, in addition to a virtual

(CDC) serial / COM port. It also has other implications for the behavior of the board.

Figure 4.11: Arduino Micro Board.

4.2.7 Infrared SHARP 2Y0A21

Infrared SHARP as shown in Figure 4.12 is a distance measuring sensor unit, composed of an integrated

combination of PSD (position densitive detector), IRED (infrared emitting diode) and signal processing

circuit. This device outputs the voltage corresponding to the detection distance between 10 to 80 cm.

So this sensor can also be used as a proximity sensor.

Figure 4.12: Infrared sensor SHARP.

4.2.8 Orbbec Astra Pro Camera

Orbbec Astra Pro is optimized for applications that require high RGB stream quality. Astra Pro is

world first 3D sensor that can stream 30 FPS HD RGB stream and VGA depth at the same time

through USB 2.0. Astra Pro now comes in a bundle with the powerful gestural Interaction SDK

by Gestoos. Gestoos interact using C++, Java and Processing to develop and enhance applications.

Figure 4.13 illustrates the camera.
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Figure 4.13: Orbbec Astra Pro Camera.

4.2.9 Power-Sonic Battery

The Minilab use 12V rechargeable batteries for all its system, as shown in Figure 4.14, with 4 hours

of autonomy. Power-Sonic battery are lead-lead dioxide systems. The dilute sulphuric acid electrolyte

is suspended and thus immobilised. Otherwise, the battery is completely sealed and is, therefore,

maintenance-free and leak proof.

Figure 4.14: Power-Sonic Battery

4.3 Robotic Operating System

Robot Operating System (ROS) is an open-source platform, meta-operating system that is widely

used in robotics. The philosophy is to make a piece of software that could work in other robots by

making little changes in the code. What we get with this idea is to create functionalities that can be

shared and used in other robots without much effort so that we do not reinvent the wheel. It provides

libraries and tools to help software developers create robot applications. Primary goal of ROS is to

support code reuse in robotics research and development. ROS framework is easy to implement in

any modern programming language such as Python, C++, and Lisp (experimental libraries in Java

and Lua).

ROS was originally developed in 2007 by the Stanford Artificial Intelligence Laboratory (SAIL)

with the support of the Stanford AI Robot project. As of 2008, development continues primarily at

Willow Garage, a robotics research institute, with more than 20 institutions collaborating within a

federated development model. A lot of research institutions have started to develop projects in ROS

by adding hardware and sharing their code samples. Also, the companies have started to adapt their
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products to be used in ROS.

The sensors and actuators used in robotics have also been adapted to be used with ROS. Every day

an increasing number of devices are supported by this framework. ROS provides standard operating

system facilities such as hardware abstraction, low-level device control, implementation of commonly

used functionalities, message passing between processes, and package management. It is based on

graph architecture with a centralized topology where processing takes place in nodes that may receive

or post, such as multiplex sensor, control, state, planning, actuator, and so on. ROS currently only

runs on Unix-based platforms. Software for ROS is primarily tested on Ubuntu and Mac OS X sys-

tems. While a port to Microsoft Windows for ROS is possible, it has not yet been fully explored.

The ROS architecture has been designed and divided into three sections or levels of concepts:

• File system level

• Computation Graph level

• Community level

More detailed for ROS architecture explanations will be given in the following subsection.

4.3.1 ROS File System Level

The first level is the Filesystem level. In this level, a group of concepts are used to explain how

ROS is internally formed, the folder structure, and the minimum number of files that it needs to work.

Figure 4.15 illustrated level in ROS Filesystem.

Figure 4.15: ROS File System Level.
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Package

Packages are the software organization unit of ROS code. Each package can contain ROS runtime

processes (nodes), a ROS-dependent library, datasets, configuration files, or anything else that is

usefully organized together. ROS uses packages to organize its programs. A package can be describe

as all the files that a specific ROS program contains; all its cpp files, python files, configuration files,

compilation files, launch files, and parameters files.

Catkin is the official build system of ROS and the successor to the original ROS build system,

rosbuild. Catkin combines CMake macros and Python scripts to provide some functionality on top

of CMake’s normal workflow. Catkin was designed to be more conventional than rosbuild, allowing

for better distribution of packages, better cross-compiling support, and better portability. Catkin’s

workflow is very similar to CMake’s but adds support for automatic ’find package’ infrastructure and

building multiple, dependent projects at the same time.

All those files in the package are organized with the following structure:

launch folder Contain launch files

src folder Source files (cpp, phyton)

CMakelist.txt file List of cmake rules for compilation

package.xml file Package information and dependencies

Meta-Package

This is a collection of packages forming a higher level library (previously called stacks). The concept

of stacks was removed with catkin command to simplify the growing code base and to support better

distribution of packages.

Manifests

Manifests (manifest.xml) provide metadata about a package, including its license information and

dependencies, as well as language-specific information such as compiler flags.

Stacks

Stacks are collections of packages that provide aggregate functionality, such as a ”navigation stack”.

Stacks are also how ROS software is released and have associated version numbers.

Stack Manifests

Stack manifests (stack.xml) provide data about a stack, including its license information and its

dependencies on other stacks.
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Message (msg) types

Message descriptions are stored in a package msg MyMessageType.msg. It defines the data structures

for messages sent in ROS.

Service (srv) types

Service descriptions are stored in a package srv MyServiceType.srv. It defines the request and response

data structures for services in ROS.

4.3.2 ROS Computation Graph Level

The second level is the Computation Graph level where communication between processes and

systems happens. In this subsection, we will see all the concepts and mechanisms that ROS has to set

up systems, handle all the processes, and communicate with more than a single computer, and so on.

Figure 4.16: ROS Computation Graph Level.

Figure 4.16 show contents of computation graph level. The illustration on how computation graph

work can be shown in Figure 4.17. More detail information about computation graph will be given in

the following explanations.

Figure 4.17: ROS Computation Graph Level.
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Node

A node is a participant in the ROS graph. ROS nodes use a ROS client library to communicate with

other nodes. Nodes can publish or subscribe to a topic using typed messages. Nodes can also provide

or use a Service. Services means request / response paradigm (think of method or operation) via typed

messages. There are configurable parameters associated with a node. Connections between nodes are

established through a distributed discovery process. Nodes may be located in the same process, in

different processes, or in different machines. Nodes are processes which perform specific computations,

for example: control robot wheel motors, acquire data from laser scanner, acquire images from camera,

perform localisation, perform path planning, provide graphical visualisation of the system

Master

The ROS Master provides name registration and lookup to the rest of the Computation Graph.

Without the Master, nodes would not be able to find each other, exchange messages, or invoke services.

Master is the core node of ROS, called roscore. Roscore is a collection of nodes and programs that

are pre-requisites of a ROS-based system. We must have a roscore running in order for ROS nodes to

communicate. It is launched using the roscore command in the terminal.

Messages

Nodes communicate with each other by passing messages. A message is simply a data structure,

comprising typed fields. Standard primitive types (integer, floating point, boolean, etc.) are supported,

and arrays of primitive types. Messages can include arbitrarily nested structures and arrays (much

like C structs).

Topic

Messages are routed via a transport system with publish / subscribe semantics. A node sends out a

message by publishing it to a given topic. The topic is a name that is used to identify the content

of the message. A node that is interested in a certain kind of data will subscribe to the appropriate

topic. There may be multiple concurrent publishers and subscribers for a single topic, and a single

node may publish and/or subscribe to multiple topics. In general, publishers and subscribers are

not aware of each others’ existence. The idea is to decouple the production of information from its

consumption. Logically, one can think of a topic as a strongly typed message bus. Each bus has a

name, and anyone can connect to the bus to send or receive messages as long as they are the right type.
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Services

The publish / subscribe model is a very flexible communication paradigm, but its many-to-many,

one-way transport is not appropriate for request / reply interactions, which are often required in a

distributed system. Request / reply is done via services, which are defined by a pair of message

structures: one for the request and one for the reply. A providing node offers a service under a name

and a client uses the service by sending the request message and awaiting the reply. ROS client

libraries generally present this interaction to the programmer as if it were a remote procedure call.

Bags

Bags are a format for saving and playing back ROS message data. Bags are an important mechanism

for storing data, such as sensor data, that can be difficult to collect but is necessary for developing

and testing algorithms.

Computation graph example

Figure 4.18 illustrates all explanation for a simple computation graph level. Wheel odometer node

sends out a message of x, y, z robot position by publishing it to /odom topic. The topic type is defined

by the message type publishing on it. Path planner subscribe /odom topic to receive messages as well

as publish messages of linear velocity x, y and angular velocity z to a /cmd vel topic. Then motor

controller subscribe /cmd vel topic to make motor movement.

Figure 4.18: Computation graph for control wheel motor.

To verify computation graph, we can use rqt graph. rqt graph which provides a GUI plugin for

visualizing the ROS computation graph. rqt graph shows the ROS nodes that are currently running,

as well as the ROS topics that connect them. Its components are made generic so that other packages

can depend upon this package. Figure 4.19 shows rqt graph for control wheel motor of minilab3 robot

in the real platform.

Figure 4.19 shows that by using rqt graph, we can perform diagnostic and localize where the

problem occurred. It depicts a chained topic from one node to another. By determining any broken

chain in the graph, we could detect and locate any occurred problem.
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Figure 4.19: rqt graph for control wheel motors.

4.3.3 Community level

The third level is the Community level, which comprises a set of tools and concepts to share

knowledge, algorithms, and code between developers. This level is of great importance. As with most

open source software projects, having a strong community not only improves the ability of newcomers

to understand the intricacies of the software as well as solve the most common issues, it is also the

main force driving its growth.

4.3.4 ROS General Communication

In general, Minilab robot has its own ROS network (either wired, wireless or a combination of both),

where a single roscore manages all the communications between all the ROS nodes, either in a single

computer or multiple computers in the same network (depending on the complexity and computational

needs of the system). Figure 4.20 shows a generic hardware setup/ configuration as explained above.

Figure 4.20: MiniLab robot setup for a single ROS system.

Communication among the mobile robots plays an important role in the successful coordination

of a multi-agent system. Minilab provides the ad-hoc peer-to-peer wireless TCP/IP protocol for

multi-vehicle information interactions. Each robots is configured with a predefined unique IP address.

When the power of the Minilab is turned on, the Host PC can detect a network called ML201704001-3

100



(robot1, 2, 3), as shown in Figure 4.21(a) for Minilab1. The IP address of the Host PC is set as shown

in Figure 4.21(b).

(a) (b)

Figure 4.21: Wireless network setup on the host PC.

The connection between robots and the host PC can be checked by the command address of the

Minilab in the terminal run box. Figure 4.22 shows an example of successful connection.

Figure 4.22: Communication checking results.

To download the compiled file into the Minilab, IP addresses of the targets are specified as linux-

verdex targets and the default model URI is replaced by the IP address of the target vehicles, i.e.,

tcpip://182.168.0.101 for Minilab1.

4.4 Gazebo-ROS Simulation

Gazebo-ROS is a robot simulator that allows to accurately design, simulate and test robots in various

environments. It uses the URDF file format, which is an XML format used to describe objects and
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environments in robot simulators and was originally developed specifically for Gazebo. Below we

quickly go through some of the XML tags that are important to understand and show what kind of

environments we use.

With Gazebo we are able to create a 3D scenario on our computer with robots, obstacles and

many other objects. Gazebo also uses a physical engine for illumination, gravity, inertia, etc. We can

evaluate and test our robot in difficult or dangerous scenarios without any harm to our robot. Most

of the time it is faster to run a simulator instead of starting the whole scenario on our real robot.

Originally Gazebo was designed to evaluate algorithms for robots. For many applications it is

essential to do some tests, like error handling, battery life, localization, navigation and grasping.

Gazebo was developed and improved as well as significant requirement on multi-robot simulation.

Gazebo provides a set of ROS APIs that allows users to modify and get information about various

aspects of the simulated world. The complete list of ROS messages and services for gazebo can be

found here also.

The simulation world and minilab objects can be created for only one robot and multiple ones.

Figure 4.23(a) shows visualisation of Gazebo-ROS simulation for one minilab robot and Figure 4.3 (b)

shows visualisation of Gazebo-ROS simulation for multiple-minilab robots.

(a)

(b)

Figure 4.23: Gazebo-ROS simulation for minilab robot.

We verify the computation graph for Gazebo-ROS using rqt graph. Figure 4.24 shows the rqt graph

for controlling minilab3 robot in the Gazebo-ROS simulation. From Figure 4.24, we can verify that

all nodes are connected in the network as required. For example, this figure shows that node minilab3
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Figure 4.24: rqt graph for minilab in Gazebo-ROS

with topic odom and cmd vel are connected and provide data to node recorder. Node controller

move pub Leader and node gazebo are connected and in two way communication to node minilab3.

On the other hand, if there is any broken chained link, using this graph, we can detect and locate the

problem.

4.5 MiniLab as Platform for Cooperative Control of Multi-Agent

Systems

In this section, we will present the procedure for the implementation of the wireless configuration

among robots described in Figure 4.25 and the decentralized communication architecture described in

Figure 4.29. First, we need to configure address reservation and verify the reservation from the PC

workstation. To have a proper configuration of the network, we need to modify the /etc/hosts file for

each robot and PC. Afterward we can start multimaster fkie package for our topology. Then, we

can implement our cooperative control protocol on this ROS network configuration.

4.5.1 Multi-Robots Wireless Configuration

Let we consider Figure 4.25. This is an example of possible hardware configuration for a wireless

decentralized communication architecture between multiple robots. Note that in Figure 4.25, the

multi-agent system consists of master and two slaves which are connected to the master wireless

network and one monitoring workstation which is also connected to the master.

Router Address Reservation

We need to specify a dedicated IP address for all robots and workstation in the ROS Network, such

that all robots and workstation will always receive the same IP address each time when it connects
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Figure 4.25: Network topology for the illustrative example.

to the DHCP (Dynamic Host Configuration Protocol Server) server. Since each MiniLab Enova robot

requires a permanent IP address, we need to configure the address reservation of the router.

First, we open the web browser and in the address bar, we type in: http://192.168.0.254. Then,

we type the username and password in the login page. Then, we should click on DHCP−>Address

Reservation on the left side and click Add New button. The MAC and IP address should be given

and the status should be selected as enabled. This configuration is shown in Figure 4.26.

Note that the MAC address is the MAC address of the device where we want to reserve the

IP address. For our case, we need to know the MAC address of each router in the robot and PC

workstation. The IP address of the robots are reserved with 192.168.0.2xx and for the workstation

192.168.0.11x

Master-slave wireless configuration

To verify the reservation of the IP address for the PC workstation, we have just to connect to the wifi

of the leader. Then, we can check from connection information of the PC workstation as shown in

Figure 4.21(b).

Host name and IP address binding

For each robot and workstation, it is necessary to modify the /etc/hosts file using text editor. Figure

4.27 shows the contents of this file for the workstation for the example presented in Figure 4.25. Figure
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Figure 4.26: TP-Link address reservation.

4.28 shows the contents of this file for each robot for the example presented in Figure 4.1.

Figure 4.27: Contents of the /etc/hosts file for the workstation for the example presented in Fig. 4.1.

Figure 4.28: Contents of the /etc/hosts file for each robot for the example presented in Fig. 4.1.

To verify the appropriate configuration of the network, before launching any ROS nodes, it is

interesting to ping all other robots from the workstation, using both the host name and the IP

address. If all the pings return a reply, the network has been properly configured. Using the current

console, the following command should be executed, where hostname or IP address must be the IP

address or host name of each robot and the workstation.:

$export ROS MASTER URI=http://<host ip>:11311

$ROS MASTER URI command is required to inform the nodes where they able to locate the master.

For all robots and the workstation, we have to verify if the multicast feature (group communication)

is temporary enabled using the following command:
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$sudo sh -c "echo 0 /proc/sys/net/ipv4/icmp echo ignore broadcasts"

If this command returns 0, the multicast feature is enabled. However, when all robots and work-

station restart, this configuration will be lost. Now, the ROS wireless network for multiple robots

has been configured. The next step is to discover and synchronize each robot and the workstation to

obtain a decentralized communication architecture.

4.5.2 Decentralized communication architecture

In multi-agent systems, multiple robots need to exchange information. Using ROS, there is two

possible solutions which can create a single large ROS network managed by a single roscore node or

create a configuration to allow information to be exchanged between ROS sub-systems.

Figure 4.29: MiniLab robot runs its own master managing local communication.

Figure 4.29 illustrates the configuration of 3 robots to allow information to be exchanged between

ROS sub-systems. With this distributed approach, every robot executes its own master. Local inter-

process communication is handled by the local master while global communication between robots is

handled by a special communication package. Robots may communicate directly forming an ad hoc

wireless network and do not rely on a central controller.

Multimaster fkie

ROS multi-master system is built from two or more ROS networks, each one with its own roscore

node. For this purpose, we need a package called multimaster fkie [?]. This package can be easily

installed as shown below:

$sudo apt-get install ros-indigo-multimaster-fkie

This package offers a set of nodes to establish and manage a multi-master network. This requires no
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or minimal configuration. The changes are automatically detected and synchronized. The multimas-

ter fkie allows two substantial nodes: the master discovery and the master sync nodes to run

simultaneously. The main features of master discovery is to send multicast messages periodically

to the ROS network to make the other roscore environments aware of its presence. It also detects

the changes in the local network and informs all roscore about these changes. The other nodes called

master sync enable us to select which hosts, topics and services which should be synchronized or

ignored between different roscore. It also helps to register and update information of topics and

services to the local roscore.

Figure 4.30 presents an illustration of ROS multi-master system. For our experimental setup, we

have four master ROS (workstation, Minilab 1, Minilab 2 and Minilab 3). Each ROS Master will be

detected and discovered by any other master in the network.

Figure 4.30: Multimaster fkie for multiple-minilab robots.

Multi-master Configuration

Now, we can launch the multimaster fkie nodes and take a first look at how it works. First of all,

it is needed to launch a local roscore on each computer, i.e.

$roscore

Then, the master discovery node should be launched in each computer, passing as an argument

the mcast group parameter to specify the multicast address to be used, i.e.

$rosrun master discovery fkie master discovery mcast group:=224.0.0.1

Afterwards, the master sync node should be launched in each computer. Without any additional

parameter, all topics and services on all computers will be synchronized with all others, i.e.

$rosrun master sync fkie master sync
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When both nodes are running on all robots and workstation, the following command will list all

the available ROS masters on the common network:

$rosservice call /master discovery/list masters

Figure 4.31 shows the information reported by this command for the example presented in Figure 4.1.

Figure 4.31: rosservice call command result.

4.5.3 Leader-Follower Node Communication

This subsection deals with node communication in terms of multi-robot configuration. “Node” is the

ROS term for an executable that is connected to the ROS network. Here, we define a publisher node

which will continually broadcast a message and a subscriber node which will continually receive a

message.

Figure 4.32: Communication topology.

Both publisher and subscriber nodes are configured according to the communication topology. For

example, in our case as shown in Figure 4.32, we will define the leader “minilab 3” as a publisher

of his position and velocity to follower “minilab 1”. Furthermore, the follower “minilab 1” is also

configured as a subscriber of the leader “minilab 3”. At the same time, follower “minilab 1” also sets

as a publisher to follower “minilab 2” and follower “minilab 2” is configured as a subscriber of follower

“minilab 1”.

The example code of publisher and subscriber are shown below. The first one is the leader’s code

and the second one is the follower’s code.
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1

2 i n t main ( i n t argc , char ∗∗ argv )
3 {
4 . . .

5

6 ROS INFO(” s t a r t ” ) ;

7

8 ro s : : i n i t ( argc , argv , ”move f ix Leader ” ) ;

9 ro s : : NodeHandle n ;

10 ro s : : Subsc r ibe r sub odometry = n . sub s c r i b e ( ”/mini lab3 /odom” , 10 ,

odomCallbackLeader ) ;

11 ro s : : Pub l i sher movement pub = n . adve r t i s e<geometry msgs : : Twist>(”/mini lab3 /

cmd vel ” ,10) ;

12 // f o r s en so r s the value a f t e r , should be h igher to get a more accurate r e s u l t

( queued )

13 pub pose2d = n . adve r t i s e<geometry msgs : : Pose2D>(”/mini lab3 /pose2d” , 10) ;

14

15 ro s : : Rate ra t e (1000) ; // the l a r g e r the value , the ” smoother”

16

17 . . .

18 }

Listing 4.1: Leader ’s program.

and

1

2 i n t main ( i n t argc , char ∗∗ argv )
3 {
4 . . .

5

6 ROS INFO(” s t a r t ” ) ;

7

8 ro s : : i n i t ( argc , argv , ”move f ix agent1x ” ) ;

9 ro s : : NodeHandle n ;

10

11 ro s : : Subsc r ibe r sub odometryAgent1 = n . sub s c r i b e ( ”/mini lab1 /odom” , 10 ,

odomCallbackagent1 ) ;

12 ro s : : Pub l i sher movement pubAgent1 = n . adve r t i s e<geometry msgs : : Twist>(”/

mini lab1 / cmd vel ” ,10) ;

13 pub pose2dAgent1 = n . adve r t i s e<geometry msgs : : Pose2D>(”/mini lab1 /pose2d” , 10) ;

14

15 ro s : : Rate ra t e (100) ; // the l a r g e r the value , the ” smoother”

16

17 ro s : : Subsc r ibe r sub odometry = n . sub s c r i b e ( ”/mini lab3 /odom” , 10 ,

odomCallbackLeader ) ;

18 pub pose2d = n . adve r t i s e<geometry msgs : : Pose2D>(”/mini lab3 /pose2d” , 10) ;
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19

20 . . .

21 }

Listing 4.2: Follower ’s program.

NodeHandle is the main access point to communications with the ROS system. The first con-

structed NodeHandle will fully initialize this node, and the last destructed NodeHandle will close

down the node.

The advertise() function is how we tell ROS that we want to publish on a given topic name.

This invokes a call to the ROS master node, which keeps a registry of who is publishing and who is

subscribing. After this advertise() call is made, the master node will notify anyone who is trying to

subscribe to this topic name, and they will in turn negotiate a peer-to-peer connection with this node.

advertise() returns a Publisher object which allows us to publish messages on that topic through a

call to publish(). Once all copies of the returned Publisher object are destroyed, the topic will be

automatically unadvertised. The second parameter to advertise() is the size of the message queue

used for publishing messages. If messages are published more quickly than we can send them, the

number here specifies how many messages to buffer up before throwing some away.

4.6 Conclusion

The multi-agent system framework was presented using Robot Operating System (ROS). Due to the

requirements of the proposed consensus algorithms, we first introduce the robot hardware specifica-

tions, communication network configuration and minimum amount of workstation we can use for the

coordination of multi-robots using ROS and multi Minilab robots.

Using a wireless master-slave scheme, it is possible that multiple robots communicate through a

wireless network with only one workstation for monitoring and control. This configuration is a low

cost configuration. For decentralized architectures, multimaster fkie is a solution to the multi-

master ROS problem. Node calling algorithm has allowed to create leader-follower topology in this

ROS multi-agent system network. This algorithm has used a publisher and a subscriber to broadcast

and/or receive messages continually from each other.

In next chapter, a group of Minilab are used to test the decentralized leader-follower consensus

algorithms.
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Chapter 5

Experimental results on Consensus for

a Group of Minilab Robots

5.1 Introduction

In this chapter, using our experimental setup described in the previous chapter, we apply the schemes

designed in Chapter 2 for two applications, e.g. fixed-time trajectory tracking and leader-follower

consensus. First, we study the fixed-time trajectory tracking control algorithms for one agent with

single-integrator dynamics. Then, we analyze the results for the leader-follower consensus algorithms.

The same is done for double-integrator dynamics. At last, since nonholonomic dynamics can better

describe the motion of mobile robots in a real world, we implement the proposed scheme to achieve

fixed-time consensus tracking for a multi-agent system with unicycle-type dynamics.

The fixed-time methodology used in this chapter guarantees that a settling time bound can be

prescribed without depending on the initial states of the agents. More specifically, for the consen-

sus problem, a distributed protocol based on fixed-time stability techniques is implemented for each

follower to accomplish the consensus tracking in a desired time. We provide experiment to demon-

strate the effectiveness of the proposed controllers for fixed-time trajectory tracking and consensus.

Using Gazebo ROS simulation and Minilab Enova robotic platform, the experimental results show the

effectiveness and robustness of the proposed algorithms.

The experiments for all the following subsections (i.e. simple integrator, double integrator, chained-

form dynamics) are done using the same fixed topologies. Figure 5.1 shows the communication topol-

ogy for the leader-follower MAS scenario in ROS-Gazebo. A MAS with N = 6 followers labeled by

1− 6 and one leader labeled by 0 is considered. One can see that the communication topology is fixed

and connected. It is characterized by the following Laplacian L and the matrix B which describes

111



links between the leader and the followers given as follows

L =



2 −1 −1 0 0 0

−1 1 0 0 0 0

−1 0 2 −1 0 0

0 0 −1 1 0 0

0 0 0 0 1 −1

0 0 0 0 −1 1


, B =



1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0


From matrix B, it is clear that agents 2, 3, 4 and 6 do not have direct link with agent 0. Assumption

1 is satisfied.

For the implementation using the available multiple minilab robots, since we have only three

robots, the topology, shown in Figure 5.2 corresponds to node 0 as leader, 1− 2 as followers.

Figure 5.1: Topology of MAS using ROS for six agents.

Figure 5.2: Topology of MAS using using our Minilab Enova robot platform.

The remainder of the chapter is organized as follows. Section 5.2 considers the fixed-time trajectory

tracking and leader-follower consensus problems for agents with single-integrator dynamics. The same

problems are studied for double-integrator dynamics in Section 5.3. In Section 5.4, experimental
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results are provided to verify the effectiveness of the proposed methods for nonholonomic systems.

Section 5.5 concludes this chapter.

5.2 Fixed-Time tracking for agents with Single-Integrator dynamics

In this section, we show some experimental results using Gazebo-ROS and Minilab robot platform for

tracking and consensus with Single-Integrator Dynamics to verify the theoretical analysis.

5.2.1 Fixed-Time trajectory Tracking for Single-Integrator Dynamics

For the trajectory tracking application, the Minilab robots are modeled as a single-integrator system:

ẋ(t) = u(t) (5.1)

where x ∈ R (resp. u ∈ R) is the state (resp. control input) of the single-integrator system. In this

experiment, the state can be described as the robot position x(t) and the control input u(t) as the

linear velocity of the robot.

The dynamics of the desired trajectory is generated using the following system:

ẋd(t) = ud(t) (5.2)

where xd ∈ R (resp. ud ∈ R) is the state (resp. control input) of the desired trajectory. The control

objective is that system (5.1) follows the desired trajectory (5.2) in a fixed-time.

As described in Chapter 2, the fixed-time tracking problem is solved using the following controller:

u = −(α+ a)bee2 − β sign (e) (5.3)

where e = x− xd, α, β and a are positive constants. The settling time is explicitly defined as

T =
π√
αβ

(5.4)

The corresponding algorithm is given in Algorithm 1. At each sampling time instant tk, we

calculate the desired position and determine the error position between the desired trajectory and

the actual robot position. After calculating the controller u, we implement the corresponding linear

velocity input of the robot.

Step Linear Velocity Input for the desired trajectory

The control parameters are selected as: α = β = 0.5 for protocol (5.3). The initial state of the robot

is x = −2. Based on the control parameters, the settling time is T = 6.28s. The desired trajectory is

generated by (5.2) with xd(0) = 0, ud(t) = 0.2. Since a ≥ d+ ud, we set a = 1. The control objective

is that system (5.1) tracks the desired trajectory xd.
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Algorithm 1 Fixed-time Tracking controller for Single Integrator dynamics

Input: xd(tk), x(tk)

Parameters: α, β, a

Output: v(t), tk ≤ t < tk+1

1: if t = tk then

2: Compute e(tk) = x(tk)− xd(tk)
3: Compute u = −(α+ a)bee2 − β sign (e)

4: Implement the linear velocity v(t)

5: end if

x(tk) is the x position of the Minilab robot at instant tk, xd(tk) is the x desired position at instant tk

Using Theorem 1, the tracking controller (5.3) guarantees the stabilization of the tracking errors

to the origin in a finite-time bounded by T = 6.28s. Figure 5.3.a. shows that the actual state

trajectory x accurately tracks the desired state xd before T in spite of the presence of disturbances

and uncertainties inherent to the experimental setup. Hence, the origin of the closed-loop system is

globally finite-time stable. Furthermore, since T does not depend on the initial states, the proposed

protocol is a fixed-time controller.

(a) (b)

Figure 5.3: Experimental results for Algorithm 1: Time response of actual state trajectory x and

desired state trajectory xd with constant linear desired velocity.

The tracking errors are depicted in Figure 5.3. One can see that the tracking errors between

the actual trajectory and the desired trajectory converge to zero at T = 3.5s. Using the proposed

controller, the tracking controller is achieved in a prescribed time before T = 6.28s. The control inputs

for linear x velocity are shown in Figure 5.3.b. One can note that the magnitude of control inputs

may be large during the transients to achieve a fast convergence of the sliding surface e. The control
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parameters should be adjusted to obtain a good compromise between magnitude of the control input

and the settling time.

Sinusoidal Linear Velocity Input for the desired trajectory

The control parameters are selected as: α = β = 1 and a = 1 for protocol (5.3). The initial state of

the robot is x = −1.5. Based on the control parameters, the settling time is T = 3.14s. The desired

trajectory is generated by (5.2) with xd(0) = 0, ud(t) = 0.2sin(2πt). The control objective is that

system (5.1) tracks the desired trajectory xd.

Figure 5.4 shows that the tracking controller (5.3) guarantees the stabilization of the tracking

errors to the origin in a finite-time bounded by T = 3.14s. From Figure 5.4.b., one can see that the

actual state trajectory x accurately tracks the desired state xd before 2.5s.

(a) (b)

(c)

Figure 5.4: Experimental results for Algorithm 1: Time response of actual state trajectory x and

desired state trajectory xd with sinusoidal linear desired velocity.
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5.2.2 Fixed-Time Consensus for MAS with Single-Integrator Dynamics

For the consensus tracking application, the Minilab robots are modeled as system (5.1). The dynamics

of the leader is generated by (5.2). The control objective is that system (5.1) follows the leader (5.2) in

a fixed-time using only local exchanged information. The communication topology is given by Figure

5.1.

The initial position of the robots is given by the following vector x(0) = [3, 2, 1,−1,−2,−3]T .

Recall that To is time needed for an agent to estimate the leader state (prescribed time observation).

It should be noted that the estimation in (2.10) depends on the gains of observer. The settling time

is explicitly defined as T = To + π√
αβ

.

The corresponding fixed-time algorithm for MAS with single integrator dynamics is given in Al-

gorithm 2. At each sampling time instant tk, based on local exchanged information, each agent i

estimates the leader position x̂i and compute the tracking error between the leader, itself and neigh-

boring agents. After calculating the controller u, we implement the corresponding linear velocity input

of the robot.

Algorithm 2 Fixed-time consensus for MAS with Single Integrator dynamics

For each agent i,

Input: x0(tk) (if bi = 1), xi(tk), xj(tk) (for all j such that aij 6= 0)

Parameters: ρ, σ, α, β, ai

Output: vi(t), tk ≤ t < tk+1

1: if t = tk then

2: When t < To, vi(t) = 0

3: Agent i samples its current states xi(t), its estimate of the leader x̂i(t) and broadcasts it to its

neighbors

4: Compute the estimation error x̃i = x̂i − x0

5: Update the distributed observer (2.7) (convergence in time To)

6: When t ≥ To, compute the tracking error ei = xi − x̂i
7: Compute u = −(α+ ai)beie2 − β sign (ei)

8: Implement the linear velocity

9: end if

xi(tk) is the x position of Minilab robot i at instant tk, x0(tk) is x leader position at instant tk

The performances of the proposed observer-based leader-follower consensus controller for single

integrator MAS are studied through the following experimental results.
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Step Linear Velocity Input for the leader trajectory

The control parameters are selected as: α = β = 1 for protocol (2.17). The initial state of the robots is

x(0) = [3, 2, 1,−1,−2,−3]T . The desired trajectory of the leader is generated by (2.5) with x0(0) = 0,

u0(t) = 0.2. Since ai ≥ di + u0, we set ai = 1. The control objective is that each system (2.6) tracks

the leader x0 using only local information.

Using Theorem 1, the distributed observer (2.7) guarantees the stabilization of the estimation

errors (2.8) to the origin in a finite-time bounded by To = 5s. The distributed observers accurately

reconstruct the leader state for each agent before To. Using Theorem 2, the tracking controller

guarantees the stabilization of the tracking errors to the origin in a finite-time bounded by T = 15s.

Figure 5.5.a. shows that the actual state trajectory x accurately tracks the leader state x0 before T

in spite of the presence of disturbances and uncertainties inherent to the experimental setup. One can

conclude that using the proposed controller, the leader-follower consensus is achieved in a prescribed

time. The control inputs for each agent are shown in Figure 5.5.b. One can note that the magnitude

of control inputs may be large during the transients to achieve a fast convergence of the sliding

surface given by the different steps of the consensus protocol. Hence, the control parameters should

be adjusted to obtain a good compromise between magnitude of the control input and the settling

time. The origin of the closed-loop system is globally finite-time stable contrary to existing controllers

which only provide semi-global finite-time stability property. Furthermore, since T does not depend

on the initial states of agents, the proposed protocol is distributed.

(a) (b)

Figure 5.5: Experimental results for Algorithm 2: Time response of the actual state trajectory of the

followers and of the leader with a step linear leader trajectory.
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Sinusoidal Linear Velocity Input for the leader trajectory

The control parameters are selected as: α = β = 1.5, ai = 1, ε = 0.52 for protocol (2.17). The initial

state of the robots is x(0) = [3, 2, 1,−1,−2,−3]T . The desired trajectory of the leader is generated

by (2.5) with x0(0) = 0, u0(t) = 0.2sin(2πt). Based on the control parameters, the settling time is

T = 10.71s (To = 6s). The control objective is that each system (2.6) tracks the leader x0 using only

local information.

The fixed-time consensus tracking performance of the MAS with single-integrator dynamics when

the leader input has a sinusoidal linear velocity is shown in Figure 5.6. Using Theorem 2, the robust

controller 2.17 solves the fixed-time trajectory tracking problem with an estimation of the settling

time less than T . Figure 5.6(a) shows that the tracking controller guarantees the stabilization of the

tracking errors to the origin in a finite-time bounded by Ts (a zoom is given in Figure 5.6(b)). From

Figure 5.7, one can see that the corresponding control inputs.

(a) (b)

Figure 5.6: Experimental results for Algorithm 2: Time response of the actual state trajectory of the

followers and of the leader with a sinusoidal linear leader trajectory.

5.3 Fixed-Time Tracking for agents with Double-Integrator Dynam-

ics

In this section, we show some experimental results using Gazebo-ROS and Minilab robot platform for

tracking and consensus with double-integrator dynamics to verify the theoretical analysis.
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(a) (b)

Figure 5.7: Experimental results for Algorithm 2: Control input for each agent and the leader.

5.3.1 Fixed-Time trajectory Tracking for Double-Integrator Dynamics

For the trajectory tracking application, the Minilab robots are modeled as a double-integrator system:

ẋ1(t) = x2(t)

ẋ2(t) = u(t)
(5.5)

where x = [x1, x2]T ∈ R2 (resp. u ∈ R) is the state (resp. control input) of the double-integrator

system. In this experiment, the state can be described as the robot position x1(t) and the linear

velocity x2(t) with the control input u(t) as the linear acceleration of the robot.

The dynamics of the desired trajectory is generated using the following system:

ẋ1,d(t) = x2,d(t)

ẋ2,d(t) = ud(t)
(5.6)

where xd = [x1,d, x2,d]
T ∈ R2 (resp. ud ∈ R) is the state (resp. control input) of the desired trajectory.

The control objective is that system (5.5) follows the desired trajectory (5.6) in a fixed-time.

Let us define the tracking errors as

e(t) = x(t)− xd(t) (5.7)

As described in Chapter 2, the fixed-time tracking problem is solved using the following controller:

u = ud + ϕ
(
e
)

(5.8)

with
ϕ
(
e
)

= −α1+3β1e21+2dmax

2 sign
(
s1

(
e1, e2

))
−bα2s

(
e1, e2

)
+ β2bs

(
e1, e2

)
e3e

1
2

(5.9)
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and

s
(
e1, e2

)
= e2 + bbe2e2 + αe1 + β1be1e3e

1
2 (5.10)

where α1, α2, β1, β2 and a are positive constants. The settling time is explicitly defined as

T =
2√
α2

+
2√
β2

+
2
√

2√
α1

+
2
√

2√
β1

(5.11)

The corresponding algorithm is given in Algorithm 3. At each sampling time instant tk, the robot

calculates the desired position and velocity. Then, it determines the error position between the desired

trajectory and the actual robot position and velocity. After calculating the controller u, we implement

the corresponding input of the robot.

Algorithm 3 Fixed-time Tracking for Double-Integrator dynamics

Input: x1,d(tk), x2,d(tk), x1(tk), x2(tk)

Parameter: α1, β1, α2, β2, a

Output: v(t), tk ≤ t < tk+1

1: if t = tk then

2: Compute e(tk) = x(tk)− xd(tk)
3: Compute ϕ(e), u = ud + ϕ(e)

4: Implement the linear velocity v(t)

5: end if

x(tk) is x position of the Minilab robot at instant tk, xd(tk) is x desired position at instant tk

Step Linear Acceleration Input for the desired trajectory

The initial state of the robot is x = [x1 = −1.5, x2 = 0]T ∈ R2. Based on the control parameters, the

settling time is T = 3.05s. The desired trajectory is generated by (5.6) with xd(0) = 0, ud(t) = 0.2.

Since a ≥ d+ud, we set a = 1. The control objective is that system (5.5) follows the desired trajectory

xd.

Using Theorem 4, the tracking controller (5.8) guarantees the stabilization of the tracking errors to

the origin in a finite-time bounded by T = 3.05s. Figure 5.8.a. shows that the actual state trajectory

x accurately tracks the desired state xd at 1.2s for the first state and from Figure 5.8.b. for the second

state at 1.25s. Hence, the origin of the closed-loop system is globally finite-time stable. Furthermore,

since T does not depend on the initial states, the proposed protocol is a fixed-time controller. The

control inputs for linear x acceleration are shown in Figure 5.8.c.

Sinusoidal Linear acceleration Input for the desired trajectory

The initial state of the robot is x = [x1 = −1.5, x2 = 0]T ∈ R2. Based on the control parameters,

the settling time is T = 2.67s. The desired trajectory is generated by (5.6) with xd(0) = 0, ud(t) =
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(a) (b)

(c)

Figure 5.8: Experimental results for Algorithm 3: Time response of actual state trajectory x and

desired state trajectory xd with constant linear desired control input.

0.2sin(2πt). The control objective is that system (5.5) follows the desired trajectory xd.

Figure 5.9 shows that the tracking controller (5.8) guarantees the stabilization of the tracking

errors to the origin in a finite-time bounded by T = 2.67s for all the state. Figure 5.9 shows the actual

and desired state position trajectories (convergence at 1.25s). Figure 5.10.a. shows the actual and

desired velocities (convergence at 1.3s). The control inputs are shown in Figure 5.10.b.

5.3.2 Fixed-Time Consensus for MAS with Double-Integrator Dynamics

Similarly as previously, the communication topology is given by Figure 5.1. It is fixed and connected

where the agent 2, 3, 4 and 6 do not have direct link with agent 0. Assumption 1 is satisfied. For the

consensus tracking application, the Minilab robots are modeled as system (5.5). The dynamics of the

leader is generated by (5.6). The control objective is that system (5.5) follows the leader (5.6) in a

121



(a) (b)

Figure 5.9: Experimental results for Algorithm 3: Time response of actual position trajectory x1 and

desired position trajectory x1,d with sinusoidal linear desired control input.

(a) (b)

Figure 5.10: Experimental results of Algorithm 3: Time response of actual velocity trajectory x2 and

desired velocity trajectory x2,d and the corresponding control inputs.

fixed-time using only local exchanged information.

The initial position of the robots is given by the following vector x(0) = [3, 2, 1,−1,−2,−3]T .

Recall that To is time needed for an agent to estimate the leader state (prescribed time observation).

It should be noted that the estimation in (2.26) depends on the gains of observer. The settling time

is explicitly defined as T = To + 2√
α2

+ 2√
β2

+ 2
√

2√
α1

+ 2
√

2√
β1

.

The corresponding fixed-time algorithm for MAS with double integrator dynamics is given in

Algorithm 4. At each sampling time instant tk, based on local exchanged information, each agent

i estimates the leader position x̂i and compute the tracking error between the leader, itself and
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neighboring agents. After calculating the controller u, we implement the corresponding linear velocity

input of the robot.

Algorithm 4 Fixed-time consensus for MAS with Double Integrator dynamics

For each agent i, Input: x1,0(tk), x2,0(tk) (if bi = 1), x1,i(tk), x2,i(tk), x1,j(tk), x2,j(tk) (for all j such

that aij 6= 0)

Parameter: ρ1 and σ1, ρ2 and σ2, α1, β1, α2, β2, a

Output: vi(t), tk ≤ t < tk+1

1: if t = tk then

2: When t < To, vi(t) = 0

3: Agent i samples its current states xi(t), its estimate of the leader x̂i(t) and broadcasts it to its

neighbors

4: Compute the estimation error x̃i = x̂i − x0

5: Update the distributed observer (2.23) (convergence in time To)

6: When t ≥ To, compute the tracking error ei = xi − x̂i
7: Compute u according to Equation (2.35)

8: Implement the linear velocity

9: end if

x1,i(tk) is x position of Minilab robot i and x1,0(tk) is x leader position at instant tk. x2,i(tk) is x

linear velocity of Minilab robot i and x2,0(tk) is x leader velocity at instant tk.

The performances of the proposed observer-based leader-follower consensus controller for double

integrator MAS are studied through the following experimental results.

Step Linear Input for the leader trajectory

The control parameter are selected as: α1 = α2 = β1 = β2 = 10 for protocols 2.35. The initial position

of the robots is [3, 2, 1,−1,−2,−3]T while the initial velocity is 0. The desired trajectory is generated

by (5.6) with x1,0(0) = 0, x2,0(t) = 0.2. Hence, we set a = 1. The control objective is that each system

(5.5) tracks the leader x0 using only local information.

Using Theorem 3, the distributed observer (2.23) guarantees the stabilization of the estimation

errors to the origin in a finite-time bounded by To = 1s. The distributed observers accurately recon-

struct the leader state for each agent before To. Using Theorem 4, the tracking controller guarantees

the stabilization of the estimation errors to the origin in a finite-time bounded by T = 6.55s. Figure

5.11 shows that the actual state trajectory accurately tracks the leader state before T in spite of the

presence of disturbances and uncertainties inherent to the experimental setup. One can conclude that

using the proposed controller, the leader-follower consensus is achieved in a prescribed time. The
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origin of the closed-loop system is globally finite-time stable contrary to existing controllers which

only provide semi-global finite-time stability property. Furthermore, since T does not depend on the

initial states of agents, the proposed protocol is distributed.

(a) (b)

Figure 5.11: Experimental results for Algorithm 4: Time response of the actual state trajectory of the

followers and of the leader with a step linear leader trajectory.

Sinusoidal Linear Input for the leader trajectory

The control parameters are selected as: α1 = α2 = β1 = β2 = 2 and a = 1 for protocol 2.35. The initial

position of the robots is [3, 2, 1,−1,−2,−3]T while the initial velocity is 0. The desired trajectory of

the leader is generated by (5.6) with u0(t) = 0.2 sin(2πt). Based on the control parameters, the settling

time is T = 15s (To = 5s). The control objective is that each system (5.5) tracks the leader x0 using

only local information.

The fixed-time consensus tracking performance of the MAS with double-integrator dynamics when

the leader input has a sinusoidal linear input is shown in Figure 5.12. Using Theorem 4, the robust

controller (2.35) solves the fixed-time trajectory tracking problem with an estimation of the settling

time less than T . Figure 5.12.(a) shows that the tracking controller guarantees the stabilization of

the tracking errors in position to the origin in a finite-time bounded by T . Figure 5.12.(b) shows the

tracking errors in velocity.

5.4 Fixed-Time Tracking for agents with Unicycle-type Dynamics

In this section, we show some experimental results using Gazebo-ROS and Minilab robot platform for

tracking and consensus with unicycle-type dynamics to verify the theoretical analysis.
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(a) (b)

Figure 5.12: Experimental results for Algorithm 4: Time response of the actual state trajectory of the

followers and of the leader with a sinusoidal leader trajectory.

5.4.1 Fixed-Time Trajectory Tracking for Unicycle-type Dynamics

The algorithm for trajectory tracking is given in Algorithm 5. At each sampling time instant tk, the

robot calculates the desired position and velocity. Then, it determines the error position between

the desired trajectory and its actual position. After calculating the controller u, we implement the

corresponding linear and angular velocity input of the robot.

Algorithm 5 Fixed-time Tracking for Unicycle-type Dynamics

Input: x1(tk), x2(tk), x3(tk), x4(tk), x1,d(tk), x2,d(tk), x3,d(tk), x4,d(tk)

Parameters: α1, β1, α2, β2, a

Output: vlinear x(t), vangular(t), tk ≤ t < tk+1

1: if t = tk then

2: Compute the tracking errors e(t) = x(t)− xd(t)
3: Compute s1, ϕ1, u1

4: Compute s2, ϕ2, u2

5: Implement the linear velocity

6: Implement the angular velocity

7: end if

First, the desired trajectory is illustrated in Figure 5.13. It is composed of a line and a circle (see

the curve in blue color). The control parameter are selected as: α1 = β1 = 20, α2 = β2 = 10, a = b = 1

for controller (2.54). The initial state of the robot is x(0) = −2, y(0) = −2, θ(0) = 0. Based on the

control parameters, the settling time is T = 2.6s. Figure 5.13 shows the time response of x and y

position of the robot. The robot successfully tracks the desired trajectory with an offset 0.25m (which
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has been added for collision avoidance consideration).

Using Theorem 5, the tracking controller (2.54) guarantees the stabilization of the tracking errors to

the origin in a finite-time bounded by T = 2.6s. Figure 5.14 shows the actual and desired trajectories

in x (both in position and velocity). It is shown that the actual position x accurately tracks the

desired state xd before T (i.e. 0.8s) in spite of the presence of disturbances and uncertainties inherent

to the experimental setup.

Figure 5.13: Actual and desired trajectory of the robot in the plane

(a) (b)

Figure 5.14: Time evolution of the x position and x velocity

Figure 5.15 shows the actual and desired trajectories in θ (both in position and velocity). It is

shown that the actual position θ accurately tracks the desired state θd before T (i.e. 0.8s) in spite of

the presence of disturbances and uncertainties inherent to the experimental setup. Hence, the origin

of the closed-loop system is globally finite-time stable. Furthermore, since T does not depend on the
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initial position and linear velocity, the proposed protocol is fixed-time.

(a) (b)

Figure 5.15: Time evolution of the θ position and angular velocity

5.4.2 Fixed-Time Consensus for MAS with Unicycle-type Dynamics

The communication topology is given in Figure 5.2. Assumption 1 is satisfied. For the consensus

tracking application, the Minilab robots are modeled as system (2.49). The dynamics of the leader

is generated by (2.61). The control objective is that systems (2.49) follow the leader in a fixed-time

using only local exchanged information.

The initial x − y position of the robots is given by the following vector (−1,−1) and (1, 1) for

robot 1 and 2 respectively. Recall that To is time needed for agents to estimate the leader state (in

a prescribed time). It should be note that the estimation in (2.26) depends on the gains of observer.

The settling time is explicitly defined as T = To + 2√
α2

+ 2√
β2

+ 2
√

2√
α1

+ 2
√

2√
β1

.

The corresponding fixed-time algorithm for MAS with unicycle-type is given in Algorithm 6. At

each sampling time instant tk, based on local exchanged information, each agent i estimates the leader

position x̂i and compute the tracking error between the leader, itself and neighboring agents. After

calculating the controller u, we implement the corresponding linear and angular velocity input of the

robot.
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Algorithm 6 Fixed-time consensus algorithm for MAS with Unicycle-type dynamics

For each agent i, Input: x1,0(tk), x2,0(tk), x3,0(tk), x4,0(tk) (if bi = 1), x1,i(tk), x2,i(tk), x3,i(tk), x4,i(tk),

x1,j(tk), x2,j(tk), x3,j(tk), x4,j(tk) (for all j such that aij 6= 0)

Parameter: ρ1 and σ1, ρ2 and σ2, α1, β1, α2, β2, a

Output: vlinear,i(t), vangular,i(t), tk ≤ t < tk+1

1: if t = tk then

2: Agent i samples its current states, its estimate of the leader and broadcasts it to its neighbors

3: Compute the estimation error x̃i = x̂i − x0

4: Update the distributed observer (convergence in time To)

5: When t ≥ To, compute the tracking error

6: Compute the control inputs

7: Implement the linear and angular velocities

8: end if

The performances of the proposed observer-based leader-follower consensus controller for unicycle-

type are studied through experimental results. The control parameter are selected as: α1 = β1 =

12, α2 = β2 = 12 for protocols (2.85). The desired trajectory is generated by (2.61) with initial desired

position (0,0), ulinear d(t) = 0.2 and uangular d(t) = 0.8. Hence, since a ≥ d1 + u1,d and b ≥ d2 + u2,d,

we set a = b = 1. The control objective is that system (2.62) tracks the leader x0 and y0 using only

local information. Based on the control parameters, the settling time is T = 6.78s.

(a) (b)

Figure 5.16: Time response of the tracking for x position and vx linear velocity

Using Theorem 6, the distributed observer (2.66) guarantees the stabilization of the estimation

errors (2.67) to the origin in a finite-time bounded by To = 4s. Figure 5.16 shows the distributed

observers accurately reconstruct the leader state for each agent before To. Using Theorem 7, the

128



tracking controller guarantees the stabilization of the estimation errors (2.67) to the origin in a finite-

time bounded by T = 6s.

(a) (b)

Figure 5.17: Time response of the tracking for y position and vy linear velocity

Figures 5.18 (a) and (b) show that the real orientation θi and angular velocity ωi have converged

to their respective desired trajectories θd and ωd.

(a) (b)

Figure 5.18: Time response of the tracking for θ position and ω angular velocity

Unlike the previous sections, the results presented herein have proven the consensus to be harder

to achieve due to multiple hardware constraints. In fact, the maximum sampling rate in the Minilab

robots are limited to 10 Hz maximum, and collisions often occurred while agents tried to achieve their

convergence.
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5.5 Conclusion

In this chapter, the fixed-time consensus tracking problem for a group of Minilab robots is investigated.

Both of tracking and consensus algorithms for single-integrator, double-integrator, and unicycle-type

systems was developed respectively. The observer gains are properly chosen and sufficient conditions

are established in terms of the graph connectivity to ensure consensus. The effectiveness is validated

by experimental results.

However, when it came to real robot experimentations, hardware constraints imposed limitations

on the proposed scheme, and therefor, convergence was harder to attain in optimal conditions. The

robots’ sampling rates restrict the performances of our proposed controller and prevent it from working

properly. The collisions have often occurred while robots tried to achieve their convergence. The real

robot experiments also depend on the performance of the workstation. The latter is responsible for the

control as well as monitoring the experiments. An increasing amount of robots would require better

workstation performances.
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General conclusion and perspectives

The work of this thesis has been focussed on the study of the navigation scheme for MAS, while

taking into account some practical constraints. We were mainly interested in designing cooperative

controllers for each agent, in a fully decentralized way, while considering the robot model and temporal

constraints. The temporal constraints have been investigated in two directions: consensus problem in

a fixed-time framework and consensus problem in a discrete-time framework.

General conclusion

The main results of this thesis are summarized as follows:

• In the first chapter, we have presented the basic concepts of algebraic graph theory for describing

the communication topology among the agents. Furthermore, we have given a brief general

overview on MAS and consensus control problem in cooperative control both in continuous-time

and discrete-time. Convergence rates motivated us to investigate how a fast controller can be

designed.

• In the second chapter, it was considered fixed-time leader-follower consensus tracking problem

for MAS. Over a fixed topology, distributed observers and decentralized controllers have been de-

signed for each agent to solve the leader-follower consensus problem in a fixed time. Distributed

observers have been proposed for each agent to estimate the leader state in a fixed-time. A

switching controller has been proposed to solve the consensus problem. An upper bound of the

settling time, which only depends on the controller parameters has been estimated regardless of

the initial conditions. First, the study of fixed-time leader-follower consensus has been addressed

for linear MAS (i.e. single-integrator and double-integrator dynamics). Subsequently, the fixed-

time consensus tracking problem has been investigated for multiple unicycle-type mobile robots

under matched perturbations.
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• In chapter 3, we have proposed a distributed model predictive control protocol for consensus of

MAS with discrete-time linear dynamics under time-varying directed topologies. The control

protocol is designed by combining graph theory with a predictive control algorithm to take into

account the switches on the communication topology. Our proposed controller has been designed

using the difference between two consecutive inputs. The controller has also integrator properties

to eliminate the steady-state errors. The convergence time of the closed-loop system depends

on the prediction horizon parameters. First, the study of distributed model predictive control

consensus protocol has focussed on MAS with single-integrator dynamics. Some comparative

studies have shown the advantage of the proposed scheme compared to existing ones. Then, the

extension to MAS with double-integrator dynamics have been successfully done.

• In chapter 4, we have discussed about the implementation of the proposed control schemes for

MAS. Due to the requirements of the proposed consensus algorithms, we have first introduced

the robot hardware specifications, communication network configuration and minimum amount

of workstations we can use for the coordination of multi-robots using Robot Operating System

(ROS) and multiple Minilab robots. Multiple robots communicate through a wireless network

with only one workstation for monitoring and control using a wireless master-slave scheme. This

configuration is a low cost configuration.

In this ROS MAS network, decentralized architectures were solved using multi-master ROS. The

package of multimaster fkie is shown as a solution for a decentralized implementation. Node calling

algorithm has allowed to create the leader-follower topology. This algorithm has used a publisher and a

subscriber to broadcast and/or receive messages continually from each other.

• In chapter 5, we have experimentally implemented and validated the fixed-time consensus tracking con-

troller on a group of Minilab robots using ROS with a wireless network. The sampling rate of the minilab

robot is only 10 Hz. Both tracking and consensus algorithms for single-integrator, double-integrator,

and unicycle-type systems were successfully implemented. The effectiveness of the theoretical results was

validated by experimental results.

Perspectives

Despite the results that have been proposed in this thesis, there are still several aspects that could

be further investigated in future works. Some of related topics for future research are highlighted as

follows.

• In chapter 2, we have dealt with the fixed-time leader-follower consensus problem for MAS with

linear dynamics and multiple unicycle-type mobile robots under matched perturbations. It will

be possible to investigate the fixed-time leader-follower consensus control problem for MAS with
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chained-form dynamics in consideration of unmatched perturbations and noise measurement.

We have also dealt with fixed topology and undirected graph. Hence, it would be an interesting

direction if the communication network is switching and include a collection of directed graphs.

Obviously, new controllers and Lyapunov functions should be designed to deal with general

switching directed graphs.

We have investigated the fixed-time leader-follower consensus problem for MAS with single-

integrator, double-integrator and unicycle-type mobile robot dynamics separately. However, in

a leader-following architecture, it is possible that leaders have different dynamics from the fol-

lowers. In fact, in the group of leaders or followers, the dynamics could also be different to build

a complex network. Hence, it will be interesting to investigate the fixed-time leader-follower

consensus problem for MAS with heterogeneous dynamics.

The fixed-time leader-follower consensus developed in this thesis is achieved and guarantees that

the settling time is estimated regardless of the initial condition of the agents. However, this esti-

mate is sometimes too large. To improve this estimate, the concept of predefined-time stability

could be interesting to obtain the least upper bound of the settling time.

• In chapter 3, we have studied a distributed model predictive control protocol consensus for

MASs with discrete-time linear dynamics under time-varying directed topologies. The proposed

controller has only focused on the leaderless case. We plan to extend the results to the leader-

follower consensus problem. Another interesting concern for the future work of Chapter 3 can be

design of distributed model predictive control protocol consensus for MASs with unicycle-type

dynamics. A proof of stability should also be investigated.

• The works presented in Chapters 4 and 5 have focused on the implementation of consensus

protocols for a group of multiple Minilab robots. This work for the coordination between robots

only use the odometry sensors of each minilab robot. Hence, it may be interesting to develop a

visual based motion for future works.

Due to the method of multimaster fkie, the obtained results depend on the specification of the Mas-

ter Workstation. It will be interesting to have good specifications for the Master Workstation. Another

physical limitation is the sampling rate which significantly influences the performances of the proposed

controllers. Interesting extensions of this work can also be pursued to consider physical hardware speci-

fications of the agents and workstation.
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It should be noted that in our experiments, the results of fixed-time leader-following consensus are ob-

tained without considering the collision avoidance. Collision between agents and obstacle avoidance are

not discussed in this thesis, which motivates us to conduct a more in-depth study to investigate consensus

while avoiding collisions.
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