, Reductase Candidates of the Fatty Acid Elongase, Plant Physiol, vol.150, pp.1174-1191

T. Beeckman, Annual Plant Reviews, 2009.

T. Beeckman, S. Burssens, and D. Inze, The peri-cell-cycle in Arabidopsis, J. Exp. Bot, vol.52, pp.403-411, 2001.

T. Beeckman and I. De-smet, Pericycle. Curr. Biol, vol.24, pp.378-379, 2014.

Y. Bellec, Y. Harrar, C. Butaeye, S. Darnet, C. Bellini et al., Pasticcino2 is a protein tyrosine phosphatase-like involved in cell proliferation and differentiation in Arabidopsis, Plant J, vol.32, pp.713-722, 2002.

C. Bellini, D. I. Pacurar, and I. Perrone, Adventitious Roots and Lateral Roots: Similarities and Differences, Annu. Rev. Plant Biol, vol.65, pp.639-666, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01204095

S. Bencivenga, S. Simonini, E. Benkova, and L. Colombo, The Transcription Factors BEL1 and SPL Are Required for Cytokinin and Auxin Signaling During Ovule Development in Arabidopsis, Plant Cell, vol.24, pp.2886-2897, 2012.

Y. Benitez-alfonso, Symplastic intercellular transport from a developmental perspective, J. Exp. Bot, vol.65, pp.1857-1863, 2014.

Y. Benitez-alfonso, C. Faulkner, A. Pendle, S. Miyashima, Y. Helariutta et al., Symplastic Intercellular Connectivity Regulates Lateral Root Patterning, Dev. Cell, vol.26, pp.136-147, 2013.

E. Benková, M. Michniewicz, M. Sauer, T. Teichmann, D. Seifertová et al., Local, Efflux-Dependent Auxin Gradients as a Common Module for Plant Organ Formation, Cell, vol.115, pp.591-602, 2003.

B. Berckmans, Auxin-Dependent Cell Cycle Reactivation through Transcriptional Regulation of Arabidopsis E2Fa by Lateral Organ Boundary Proteins, Plant Cell, vol.23, pp.3671-3683, 2011.

A. Bielach, K. Podle?áková, P. Marhavý, J. Duclercq, C. Cuesta et al., Spatiotemporal Regulation of Lateral Root Organogenesis in Arabidopsis by Cytokinin, Plant Cell, vol.24, pp.3967-3981, 2012.

K. D. Birnbaum, How many ways are there to make a root?, Curr. Opin. Plant Biol, vol.34, pp.61-67, 2016.

A. Bishopp, H. Help, S. El-showk, D. Weijers, B. Scheres et al., A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots, Curr. Biol, vol.21, pp.917-926, 2011.

A. Bishopp, S. Lehesranta, A. Vatén, H. Help, S. El-showk et al., Phloem-transported cytokinin regulates polar auxin transport and maintains vascular pattern in the root meristem, Curr. Biol, vol.21, pp.927-932, 2011.

B. J. Blacklock and J. G. Jaworski, Substrate specificity of Arabidopsis 3-ketoacylCoA synthases, Biochem. Biophys. Res. Commun, vol.346, pp.583-590, 2006.

I. Blilou, J. Xu, M. Wildwater, V. Willemsen, I. Paponov et al., The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots, Nature, vol.433, pp.39-44, 2005.

D. Bouyer, F. Roudier, M. Heese, E. D. Andersen, D. Gey et al.,

P. Che, S. Lall, D. Nettleton, and S. H. Howell, Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture, Plant Physiol, vol.141, pp.620-657, 2006.

D. Chiatante, T. Rost, J. Bryant, and G. S. Scippa, Regulatory networks controlling the development of the root system and the formation of lateral roots: a comparative analysis of the roles of pericycle and vascular cambium, Ann. Bot, pp.1-14, 2018.

G. Choe and J. Y. Lee, Push-pull strategy in the regulation of postembryonic root development, Curr. Opin. Plant Biol, vol.35, pp.158-164, 2017.

S. J. Clough and A. F. Bent, Floral dip: A simplified method for Agrobacteriummediated transformation of Arabidopsis thaliana, Plant J, vol.16, pp.735-743, 1998.

H. Cui, M. P. Levesque, T. Vernoux, J. W. Jung, A. J. Paquette et al., An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants, vol.316, pp.421-425, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00412589

D. Van-damme, B. De-rybel, G. Gudesblat, D. Demidov, W. Grunewald et al., Arabidopsis ? Aurora Kinases Function in Formative Cell Division Plane Orientation, Plant Cell, vol.23, pp.4013-4024, 2011.

D. Dembinsky, Transcriptomic and Proteomic Analyses of Pericycle Cells of the Maize Primary Root, Plant Physiol, vol.145, pp.575-588, 2007.

Q. Deng, X. Wang, D. Zhang, X. Wang, C. Feng et al., BRS1 function in facilitating lateral root emergence in arabidopsis, Int. J. Mol. Sci, vol.18, pp.1-11, 2017.

M. Derkacheva and L. Hennig, Variations on a theme: Polycomb group proteins in plants, J. Exp. Bot, vol.65, pp.2769-2784, 2014.

R. J. Didonato, E. Arbuckle, S. Buker, J. Sheets, J. Tobar et al., Arabidopsis ALF4 encodes a nuclear-localized protein required for lateral root formation, Plant J, vol.37, pp.340-353, 2004.

F. A. Ditengou, W. D. Teale, P. Kochersperger, K. A. Flittner, I. Kneuper et al., Mechanical induction of lateral root initiation in Arabidopsis thaliana, Proc. Natl. Acad. Sci, vol.105, pp.18818-18823, 2008.

P. Doerner, Root development: quiescent center not so mute after all, Curr. Biol, vol.8, pp.42-44, 1998.

L. Dolan, K. Janmaat, V. Willemsen, P. Linstead, S. Poethig et al., Cellular organisation of the Arabidopsis thaliana root, Development, vol.119, pp.71-84, 1993.

S. De-dorlodot, B. Forster, L. Pagès, A. Price, R. Tuberosa et al., Root system architecture: opportunities and constraints for genetic improvement of crops, Trends Plant Sci, vol.12, pp.474-481, 2007.

Y. Du and B. Scheres, Lateral root formation and the multiple roles of auxin, J. Exp. Bot, 2017.

Y. Du and B. Scheres, PLETHORA transcription factors orchestrate de novo organ patterning during Arabidopsis lateral root outgrowth, Proc. Natl. Acad. Sci, vol.114, 2017.

J. G. Dubrovsky, Pericycle Cell Proliferation and Lateral Root Initiation in Arabidopsis, Plant Physiol, vol.124, pp.1648-1657, 2000.

J. G. Dubrovsky and B. G. Forde, Quantitative Analysis of Lateral Root Development: Pitfalls and How to Avoid Them, Plant Cell, vol.24, pp.4-14, 2012.

J. G. Dubrovsky, G. A. Gambetta, A. Hernández-barrera, S. Shishkova, and I. González, Lateral root initiation in Arabidopsis: Developmental window, spatial patterning, density and predictability, Ann. Bot, vol.97, pp.903-915, 2006.

J. G. Dubrovsky, T. L. Rost, A. Colón-carmona, and P. Doerner, Early primordium morphogenesis during lateral root initiation in Arabidopsis thaliana, Planta, vol.214, pp.30-36, 2001.

J. G. Dubrovsky, M. Sauer, S. Napsucialy-mendivil, M. G. Ivanchenko, J. Friml et al., Auxin acts as a local morphogenetic trigger to specify lateral root founder cells, Proc. Natl. Acad. Sci, vol.105, pp.8790-8794, 2008.

S. El-showk, H. Help-rinta-rahko, T. Blomster, R. Siligato, A. F. Marée et al., Parsimonious Model of Vascular Patterning Links Transverse Hormone Fluxes to Lateral Root Initiation: Auxin Leads the Way, while Cytokinin Levels Out, vol.11, pp.1-40, 2015.

J. F. Emery, S. K. Floyd, J. Alvarez, Y. Eshed, N. P. Hawker et al., Radial Patterning of Arabidopsis Shoots by Class III HD-ZIP and KANADI Genes, Curr. Biol, vol.13, pp.1768-1774, 2003.

M. Fan, C. Xu, K. Xu, and Y. Hu, LATERAL ORGAN BOUNDARIES DOMAIN transcription factors direct callus formation in Arabidopsis regeneration, Cell Res, vol.22, pp.1169-1180, 2012.

J. D. Faure, P. Vittorioso, V. Santoni, V. Fraisier, E. Prinsen et al., The PASTICCINO genes of Arabidopsis thaliana are involved in the control of cell division and differentiation, Development, vol.125, pp.909-918, 1998.

Z. Feng, X. Sun, G. Wang, H. Liu, and J. Zhu, LBD29 regulates the cell cycle progression in response to auxin during lateral root formation in Arabidopsis thaliana, Ann. Bot, vol.110, pp.1-10, 2012.

M. Fernández-marcos, B. Desvoyes, C. Manzano, L. M. Liberman, P. N. Benfey et al., Control of Arabidopsis lateral root primordium boundaries by MYB36, New Phytol, vol.213, pp.105-112, 2017.

A. Fernandez, A. Drozdzecki, K. Hoogewijs, A. Nguyen, T. Beeckman et al., Transcriptional and Functional Classification of the GOLVEN/ROOT GROWTH FACTOR/CLE-Like Signaling Peptides Reveals Their Role in Lateral Root and Hair Formation, Plant Physiol, vol.161, pp.954-970, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01190620

A. Fernandez, A. Drozdzecki, K. Hoogewijs, V. Vassileva, A. Madder et al., The GLV6/RGF8/CLEL2 peptide regulates early pericycle divisions during lateral root initiation, J. Exp. Bot, vol.66, pp.5245-5256, 2015.

A. Fiebig, J. A. Mayfield, N. L. Miley, S. Chau, R. L. Fischer et al., Alterations in CER6, a gene identical to CUT1, differentially affect long-chain lipid content on the surface of pollen and stems, Plant Cell, vol.12, pp.2001-2009, 2000.

A. P. Fisher and R. Sozzani, Uncovering the networks involved in stem cell maintenance and asymmetric cell division in the Arabidopsis root, Curr. Opin. Plant Biol, vol.29, pp.38-43, 2016.

J. Friml, A. Vieten, M. Sauer, D. Weijers, H. Schwarz et al., Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis, Nature, vol.426, pp.147-153, 2003.

H. Fukaki, S. Tameda, H. Masuda, and M. Tasaka, Lateral root formation is blocked by a gain-of-function mutation in the solitary-root/IAA14 gene of Arabidopsis, Plant J, vol.29, pp.153-168, 2002.

H. Fukaki, N. Taniguchi, and M. Tasaka, PICKLE is required for SOLITARY-ROOT/IAA14-mediated repression of ARF7 and ARF19 activity during Arabidopsis lateral root initiation, Plant J, vol.48, pp.380-389, 2006.

C. Galinha, G. Bilsborough, and M. Tsiantis, Hormonal input in plant meristems: A balancing act, Semin. Cell Dev. Biol, vol.20, pp.1149-1156, 2009.

C. Galinha, H. Hofhuis, M. Luijten, V. Willemsen, I. Blilou et al., PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development, Nature, vol.449, pp.1053-1057, 2007.

N. Geldner, Casparian strips, Curr. Biol, vol.23, pp.1025-1026, 2013.

N. Geldner, The Endodermis, Annu. Rev. Plant Biol, vol.64, pp.531-558, 2013.

N. Geldner, N. Anders, H. Wolters, J. Keicher, W. Kornberger et al., The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth, Cell, vol.112, pp.219-249, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00134323

P. Genschik, K. Marrocco, L. Bach, S. Noir, and M. C. Criqui, Selective protein degradation: A rheostat to modulate cell-cycle phase transitions, J. Exp. Bot, vol.65, pp.2603-2615, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01048701

H. C. Godfray, J. R. Beddington, I. R. Crute, L. Haddad, D. Lawrence et al., Food Security: The Challenge of Feeding 9 Billion People, Science, vol.327, pp.812-818, 2010.

T. Goh, S. Joi, T. Mimura, and H. Fukaki, The establishment of asymmetry in Arabidopsis lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ASL proteins, Development, vol.139, pp.883-893, 2012.

T. Goh, H. Kasahara, T. Mimura, Y. Kamiya, and H. Fukaki, Multiple AUX/IAA-ARF modules regulate lateral root formation: The role of Arabidopsis SHY2/IAA3-mediated auxin signalling, Philos. Trans. R. Soc. B Biol. Sci, vol.367, pp.1461-1468, 2012.

T. Goh, K. Toyokura, D. M. Wells, K. Swarup, M. Yamamoto et al., Quiescent center initiation in the Arabidopsis lateral root primordia is dependent on the SCARECROW transcription factor, Development, vol.143, pp.3363-3371, 2016.

J. E. Gray, G. H. Holroyd, F. M. Van-der-lee, A. R. Bahrami, P. C. Sijmons et al., The HIC signalling pathway links CO2 perception to stomatal development, Nature, vol.408, pp.713-716, 2000.

J. B. Green and J. Sharpe, Positional information and reaction-diffusion: two big ideas in developmental biology combine, Development, vol.142, pp.1203-1211, 2015.

X. Gu, T. Xu, and Y. He, A Histone H3 Lysine-27 Methyltransferase Complex Represses Lateral Root Formation in Arabidopsis thaliana, Mol. Plant, vol.7, pp.977-988, 2014.

B. E. Gunning, J. E. Hughes, and A. R. Hardham, Formative and proliferative cell divisions, cell differentiation, and developmental changes in the meristem of Azolla roots, Planta, vol.143, pp.121-144, 1978.

L. Gutierrez, G. Mongelard, K. Floková, D. I. P?curar, O. Novák et al., Auxin Controls Arabidopsis Adventitious Root Initiation by Regulating Jasmonic Acid Homeostasis, Plant Cell, vol.24, pp.2515-2527, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004178

S. Guyomarc'h, S. Leran, M. Auzon-cape, F. Perrine-walker, M. Lucas et al., Early development and gravitropic response of lateral roots in Arabidopsis thaliana, Philos. Trans. R. Soc. B Biol. Sci, vol.367, pp.1509-1516, 2012.

G. Haberer, S. Erschadi, and R. A. Torres-ruiz, The Arabidopsis gene PEPINO/PASTICCINO2 is required for proliferation control of meristematic and nonmeristematic cells and encodes a putative anti-phosphatase, Dev. Genes Evol, vol.212, pp.542-550, 2002.

A. Haecker, R. Gross-hardt, B. Geiges, A. Sarkar, H. Breuninger et al., Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana, Development, vol.131, pp.657-68, 2004.

G. L. Hammer, Z. Dong, G. Mclean, A. Doherty, C. Messina et al., Can changes in canopy and/or root system architecture explain historical maize yield trends in the, Crop Sci, vol.49, pp.299-312, 2009.

Y. Harrar, Y. Bellec, C. Bellini, and J. Faure, Hormonal control of cell proliferation requires PASTICCINO genes, Plant Physiol, vol.132, pp.1217-1227, 2003.

T. M. Haslam and L. Kunst, Extending The Story Of Very-Long-Chain Fatty Acid Elongation, Plant Sci, vol.210, pp.93-107, 2013.

D. Hegebarth, C. Buschhaus, J. Joubès, D. Thoraval, D. Bird et al., Arabidopsis ketoacyl-CoA synthase 16 (KCS16) forms C36/C38acyl precursors for leaf trichome and pavement surface wax, Plant Cell Environ, vol.40, pp.1761-1776, 2017.

K. Himanen, Auxin-Mediated Cell Cycle Activation during Early Lateral Root Initiation, PLANT CELL ONLINE, vol.14, pp.2339-2351, 2002.

K. Himanen, M. Vuylsteke, S. Vanneste, S. Vercruysse, E. Boucheron et al., Transcript profiling of early lateral root initiation, Proc Natl Acad Sci U S A, vol.101, pp.5146-5151, 2004.

A. Hirota, T. Kato, H. Fukaki, M. Aida, and M. Tasaka, The Auxin-Regulated AP2/EREBP Gene PUCHI Is Required for Morphogenesis in the Early Lateral Root Primordium of Arabidopsis, Plant Cell Online, vol.19, pp.2156-2168, 2007.

K. K. Ho, H. Zhang, B. L. Golden, and J. Ogas, PICKLE is a CHD subfamily II ATPdependent chromatin remodeling factor, Biochim. Biophys. Acta -Gene Regul. Mech, vol.1829, pp.199-210, 2013.

H. Hofhuis, M. Laskowski, Y. Du, K. Prasad, S. Grigg et al., Phyllotaxis and rhizotaxis in Arabidopsis are modified by three plethora transcription factors, Curr. Biol, vol.23, pp.956-962, 2013.

C. A. Ten-hove, K. Lu, and D. Weijers, Building a plant: cell fate specification in the early Arabidopsis embryo, Development, vol.142, pp.420-430, 2015.

C. A. Ten-hove, V. Willemsen, W. J. De-vries, A. Van-dijken, B. Scheres et al., SCHIZORIZA Encodes a Nuclear Factor Regulating Asymmetry of Stem Cell Divisions in the Arabidopsis Root, Curr. Biol, vol.20, pp.452-457, 2010.

B. Hu, G. Zhang, W. Liu, J. Shi, H. Wang et al., Divergent regeneration-competent cells adopt a common mechanism for callus initiation in angiosperms, Regeneration, vol.4, pp.132-139, 2017.

C. Hu, A group of receptor kinases are essential for CLAVATA signalling to maintain stem cell homeostasis, Nat. Plants, vol.4, pp.205-211, 2018.

X. Hu and L. Xu, Transcription Factors WOX11/12 Directly Activate WOX5/7 to Promote Root Primordia Initiation and Organogenesis, Plant Physiol, vol.172, pp.2363-2373, 2016.

N. B. Ivanova, Response to Comments on " 'Stemness': Transcriptional Profiling of Embryonic and Adult Stem Cells" and "A Stem Cell Molecular Signature, Science (80-. ), vol.302, pp.393-393, 2003.

H. Iwakawa, A. Shinmyo, and M. Sekine, Arabidopsis CDKA;1, a cdc2 homologue, controls proliferation of generative cells in male gametogenesis, Plant J, vol.45, pp.819-831, 2006.

L. Jansen, B. Parizot, and T. Beeckman, Inducible System for Lateral Roots in Arabidopsis thaliana and Maize, Plant Organogenesis: Methods and Protocols, I. De Smet, pp.149-158, 2013.

L. Jansen, I. Roberts, R. De-rycke, and T. Beeckman, Phloem-associated auxin response maxima determine radial positioning of lateral roots in maize, Philos. Trans. R. Soc. B Biol. Sci, vol.367, pp.1525-1533, 2012.

J. Jeon, C. Cho, M. R. Lee, N. Van-binh, K. et al., CYTOKININ RESPONSE FACTOR2 ( CRF2 ) and CRF3 Regulate Lateral Root Development in Response to Cold Stress in Arabidopsis, Plant Cell, vol.28, pp.1828-1843, 2016.

J. Jiang, T. Wang, Z. Wu, J. Wang, C. Zhang et al., The Intrinsically Disordered Protein BKI1 Is Essential for Inhibiting BRI1 Signaling in Plants, Mol. Plant, vol.8, pp.1675-1678, 2015.

J. Jin, F. Tian, D. C. Yang, Y. Q. Meng, L. Kong et al., PlantTFDB 4.0: Toward a central hub for transcription factors and regulatory interactions in plants, Nucleic Acids Res, vol.45, pp.1040-1045, 2017.

J. Joubès, S. Raffaele, B. Bourdenx, C. Garcia, J. Laroche-traineau et al., The VLCFA elongase gene family in Arabidopsis thaliana: Phylogenetic analysis, 3D modelling and expression profiling, Plant Mol. Biol, vol.67, pp.547-566, 2008.

N. Y. Kang, H. W. Lee, K. , and J. , The AP2/EREBP gene PUCHI co-acts with LBD16/ASL18 and LBD18/ASL20 downstream of ARF7 and ARF19 to regulate lateral root development in arabidopsis, Plant Cell Physiol, vol.54, pp.1326-1334, 2013.

Y. H. Kang and C. S. Hardtke, Arabidopsis MAKR5 is a positive effector of BAM3-dependent CLE45 signaling, EMBO Rep, vol.17, pp.1145-1154, 2016.

A. Kareem, K. Durgaprasad, K. Sugimoto, Y. Du, A. J. Pulianmackal et al., , 2015.

, PLETHORA genes control regeneration by a two-step mechanism, Curr. Biol, vol.25, pp.1017-1030

M. R. Karim, A. Hirota, D. Kwiatkowska, M. Tasaka, A. et al., A Role for Arabidopsis PUCHI in Floral Meristem Identity and Bract Suppression, Plant Cell Online, vol.21, pp.1360-1372, 2009.

R. A. Kerstetter, K. Bollman, R. A. Taylor, K. Bomblies, and R. S. Poethig, KANADI regulates organ polarity in Arabidopsis, Nature, vol.411, pp.706-709, 2001.

J. Kim, J. H. Jung, S. B. Lee, Y. S. Go, H. J. Kim et al., Arabidopsis 3-Ketoacyl-Coenzyme A Synthase9 Is Involved in the Synthesis of Tetracosanoic Acids as Precursors of Cuticular Waxes, Suberins, Sphingolipids, and Phospholipids, Plant Physiol, vol.162, pp.567-580, 2013.

S. Komaki and K. Sugimoto, Control of the plant cell cycle by developmental and environmental cues, Plant Cell Physiol, vol.53, pp.953-964, 2012.

M. Koornneef and D. Meinke, The development of Arabidopsis as a model plant, Plant J, vol.61, pp.909-921, 2010.

D. K. Kosma, J. Murmu, F. M. Razeq, P. Santos, R. Bourgault et al., AtMYB41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types, Plant J, vol.80, pp.216-229, 2014.

A. Krichevsky, A. Zaltsman, S. V. Kozlovsky, G. W. Tian, and V. Citovsky, Regulation of Root Elongation by Histone Acetylation in Arabidopsis, J. Mol. Biol, vol.385, pp.45-50, 2009.

N. T. Krogan, D. Marcos, A. I. Weiner, and T. Berleth, The auxin response factor MONOPTEROS controls meristem function and organogenesis in both the shoot and root through the direct regulation of PIN genes, New Phytol, vol.212, pp.42-50, 2016.

M. Kucukoglu and O. Nilsson, CLE peptide signaling in plants -the power of moving around, Physiol. Plant, vol.155, pp.74-87, 2015.

R. C. Kuijken, F. A. Van-eeuwijk, L. F. Marcelis, and H. J. Bouwmeester, Root phenotyping: From component trait in the lab to breeding, J. Exp. Bot, vol.66, pp.5389-5401, 2015.

R. S. Lamb and V. F. Irish, Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages, Proc. Natl. Acad. Sci, vol.100, pp.6558-6563, 2003.

L. Laplaze, Cytokinins Act Directly on Lateral Root Founder Cells to Inhibit Root Initiation, Plant Cell Online, vol.19, pp.3889-3900, 2007.

L. Laplaze, B. Parizot, A. Baker, L. Ricaud, A. Martinière et al., GAL4-GFP enhancer trap lines for genetic manipulation of lateral root development in Arabidopsis thaliana, J. Exp. Bot, vol.56, pp.2433-2442, 2005.

M. Laskowski, V. A. Grieneisen, H. Hofhuis, C. A. Ten-hove, P. Hogeweg et al., Root system architecture from coupling cell shape to auxin transport, PLoS Biol, vol.6, pp.2721-2735, 2008.

M. Laskowski and K. H. Ten-tusscher, Periodic Lateral Root Priming: What Makes It Tick?, Plant Cell, vol.29, pp.432-444, 2017.

M. J. Laskowski, M. E. Williams, H. C. Nusbaum, and I. M. Sussex, Formation of lateral root meristems is a two-stage process, Development, vol.121, pp.3303-3313, 1995.

S. Lau, I. Smet, . De, M. Kolb, H. Meinhardt et al., Auxin triggers a genetic switch, Nat. Cell Biol, vol.13, pp.611-615, 2011.

T. Laux, The stem cell concept in plants: A matter of debate, Cell, vol.113, pp.281-283, 2003.

J. Lavenus, Inference of the Arabidopsis Lateral Root Gene Regulatory Network Suggests a Bifurcation Mechanism That Defines Primordia Flanking and Central Zones, Plant Cell, vol.27, pp.1368-1388, 2015.

J. Lavenus, T. Goh, I. Roberts, S. Guyomarc'h, M. Lucas et al., Lateral root development in Arabidopsis: Fifty shades of auxin, Trends Plant Sci, vol.18, pp.1360-1385, 2013.

J. Lavenus, M. Lucas, L. Laplaze, and S. Guyomarc'h, The Dicot Root as a Model System for Studying Organogenesis, Plant Organogenesis: Methods and Potocols, pp.235-245, 2013.

V. V. Lavrekha, T. Pasternak, V. B. Ivanov, K. Palme, and V. V. Mironova, 3D analysis of mitosis distribution highlights the longitudinal zonation and diarch symmetry in proliferation activity of the Arabidopsis thaliana root meristem, Plant J, vol.92, pp.834-845, 2017.

H. W. Lee and J. Kim, EXPANSINA17 Up-Regulated by LBD18/ASL20 promotes lateral root formation during the auxin response, Plant Cell Physiol, vol.54, pp.1600-1611, 2013.

H. W. Lee, N. Y. Kim, D. J. Lee, K. , and J. , LBD18/ASL20 Regulates Lateral Root Formation in Combination with LBD16/ASL18 Downstream of ARF7 and ARF19 in Arabidopsis, Plant Physiol, vol.151, pp.1377-1389, 2009.

K. Lee, O. S. Park, and P. J. Seo, Arabidopsis ATXR2 deposits H3K36me3 at the promoters of LBD genes to facilitate cellular dedifferentiation, Sci. Signal, vol.10, pp.1-11, 2017.

K. Lee, O. S. Park, and P. J. Seo, ATXR2 as a core regulator of de novo root organogenesis, Plant Signal. Behav, vol.13, 2018.

K. Lee, O. S. Park, and P. J. Seo, JMJ30-mediated demethylation of H3K9me3 drives tissue identity changes to promote callus formation in Arabidopsis, Plant J, vol.95, pp.961-975, 2018.

M. M. Lee and J. Schiefelbein, WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning, Cell, vol.99, pp.473-83, 1999.

S. B. Lee, S. J. Jung, Y. S. Go, H. U. Kim, J. K. Kim et al., Two Arabidopsis 3-ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress, Plant J, vol.60, pp.462-475, 2009.

Y. Lee, W. S. Lee, and S. Kim, Hormonal regulation of stem cell maintenance in roots, J. Exp. Bot, vol.64, pp.1153-1165, 2013.

Y. Li-beisson, Acyl-Lipid Metabolism, Arab. B, vol.11, p.161, 2013.

B. Li, T. Kamiya, L. Kalmbach, M. Yamagami, K. Yamaguchi et al., Role of LOTR1 in Nutrient Transport through Organization of Spatial Distribution of Root Endodermal Barriers, Curr. Biol, vol.27, pp.758-765, 2017.

G. Li, V. Santoni, and C. Maurel, Plant aquaporins: Roles in plant physiology, Biochim. Biophys. Acta -Gen. Subj, vol.1840, pp.1574-1582, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00962141

L. M. Liberman, E. E. Sparks, M. A. Moreno-risueno, J. J. Petricka, and P. N. Benfey, MYB36 regulates the transition from proliferation to differentiation in the Arabidopsis root, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.12099-104, 2015.

J. Liu, X. Hu, P. Qin, K. Prasad, Y. Hu et al., The WOX11 -LBD16 Pathway Promotes Pluripotency Acquisition in Callus Cells during de Novo Shoot Regeneration in Tissue Culture, Plant Cell Physiol, vol.59, pp.734-743, 2018.

J. Liu, L. Sheng, Y. Xu, J. Li, Z. Yang et al., WOX11 and 12 Are Involved in the First-Step Cell Fate Transition during de Novo Root Organogenesis in Arabidopsis, Plant Cell, vol.26, pp.1081-1093, 2014.

K. Ljung, Sites and Regulation of Auxin Biosynthesis in Arabidopsis Roots, Plant Cell Online, vol.17, pp.1090-1104, 2005.

G. Lobet, L. Pagès, and X. Draye, A Novel Image-Analysis Toolbox Enabling Quantitative Analysis of Root System Architecture, Plant Physiol, vol.157, pp.29-39, 2011.

M. Louveaux, J. Julien, V. Mirabet, A. Boudaoud, and O. Hamant, Cell division plane orientation based on tensile stress in Arabidopsis thaliana, Proc. Natl. Acad. Sci, vol.113, pp.4294-4303, 2016.

M. Lucas, Lateral root morphogenesis is dependent on the mechanical properties of the overlaying tissues, Proc. Natl. Acad. Sci, vol.110, pp.5229-5234, 2013.
URL : https://hal.archives-ouvertes.fr/cea-00848569

M. Lucas, SHORT-ROOT Regulates Primary, Lateral, and Adventitious Root Development in Arabidopsis, Plant Physiol, vol.155, pp.384-398, 2011.
URL : https://hal.archives-ouvertes.fr/cea-00848574

M. Lucas, Y. Guédon, C. Jay-allemand, C. Godin, and L. Laplaze, An auxin transport-based model of root branching in Arabidopsis thaliana, PLoS One, vol.3, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00831804

M. A. De-luis-balaguer, A. P. Fisher, N. M. Clark, M. G. Fernandez-espinosa, B. K. Möller et al., , 2017.

, Predicting gene regulatory networks by combining spatial and temporal gene expression data in Arabidopsis root stem cells, Proc. Natl. Acad. Sci, vol.114, pp.7632-7640

A. Lux, S. Morita, J. Abe, and K. Ito, An improved method for clearing and staining free-hand sections and whole-mount samples, Ann. Bot, vol.96, pp.989-996, 2005.

J. Lynch, Root Architecture and Plant Productivity, Plant Physiol, vol.109, pp.7-13, 1995.

J. P. Lynch, Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems, Ann. Bot, vol.112, pp.347-357, 2013.

J. P. Lynch, TURNER REVIEW No. 14. Roots of the Second Green Revolution, Aust. J. Bot, vol.55, p.493, 2007.

S. Maere, K. Heymans, and M. Kuiper, BiNGO: A Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks, Bioinformatics, vol.21, pp.3448-3449, 2005.

J. E. Malamy, Intrinsic and environmental response pathways that regulate root system architecture, Plant, Cell Environ, vol.28, pp.67-77, 2005.

J. E. Malamy and P. N. Benfey, Organization and cell differentiation in lateral roots of Arabidopsis thaliana, Development, vol.124, pp.33-44, 1997.

C. Manzano, E. Ramirez-parra, I. Casimiro, S. Otero, B. Desvoyes et al., Auxin and Epigenetic Regulation of SKP2B, an F-Box That Represses Lateral Root Formation, Plant Physiol, vol.160, pp.749-762, 2012.

P. Marhavý, J. C. Montesinos, A. Abuzeineh, D. Van-damme, J. E. Vermeer et al., Targeted cell elimination reveals an auxin-guided biphasic mode of lateral root initiation, Genes Dev, vol.30, pp.471-483, 2016.

P. Marhavý, M. Vanstraelen, B. De-rybel, D. Zhaojun, M. J. Bennett et al., Auxin reflux between the endodermis and pericycle promotes lateral root initiation, EMBO J, vol.32, pp.149-158, 2013.

Y. Matsuzaki, M. Ogawa-ohnishi, A. Mori, and Y. Matsubayashi, Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis. Science (80-. ), vol.329, pp.1065-1067, 2010.

R. A. Mccloy, S. Rogers, C. E. Caldon, T. Lorca, A. Castro et al., Partial inhibition of Cdk1 in G2phase overrides the SAC and decouples mitotic events, Cell Cycle, vol.13, pp.1400-1412, 2014.

J. R. Mcconnell, J. Emery, Y. Eshed, N. Bao, J. Bowman et al., Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots, Nature, vol.411, pp.709-713, 2001.

A. A. Millar, CUT1, an Arabidopsis Gene Required for Cuticular Wax Biosynthesis and Pollen Fertility, Encodes a Very-Long-Chain Fatty Acid Condensing Enzyme, Plant Cell Online, vol.11, pp.825-838, 1999.

A. A. Millar and L. Kunst, Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme, Plant J, vol.12, pp.121-131, 1997.

B. K. Möller, W. Xuan, and T. Beeckman, Dynamic control of lateral root positioning, Curr. Opin. Plant Biol, vol.35, pp.1-7, 2017.

M. A. Moreno-risueno, J. M. Van-norman, A. Moreno, J. Zhang, S. E. Ahnert et al., Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science (80-. ), vol.329, pp.1306-1311, 2010.

C. Morineau, L. Gissot, Y. Bellec, K. Hematy, F. Tellier et al., Dual fatty acid elongase complex interactions in arabidopsis, PLoS One, vol.11, pp.1-20, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01529206

T. Moriwaki, Y. Miyazawa, A. Kobayashi, M. Uchida, C. Watanabe et al., Hormonal Regulation of Lateral Root Development in Arabidopsis Modulated by MIZ1 and Requirement of GNOM Activity for MIZ1 Function, Plant Physiol, vol.157, pp.1209-1220, 2011.

E. C. Morris, Shaping 3D Root System Architecture, Curr. Biol, vol.27, pp.919-930, 2017.

E. Murphy, RALFL34 regulates formative cell divisions in Arabidopsis pericycle during lateral root initiation, J. Exp. Bot, vol.67, pp.4863-4875, 2016.

P. Nacry, G. Canivenc, B. Muller, A. Azmi, H. Van-onckelen et al., A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis, Plant Physiol, vol.138, pp.2061-2074, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00086808

K. Nakajima, G. Sena, T. Nawy, and P. N. Benfey, Intercellular movement of the putative transcription factor SHR in root patterning, Nature, vol.413, pp.307-311, 2001.

S. Napsucialy-mendivil, R. Alvarez-venegas, S. Shishkova, and J. G. Dubrovsky, , 2014.

, Arabidopsis homolog of trithorax1 (ATX1) is required for cell production, patterning, and morphogenesis in root development, J. Exp. Bot, vol.65, pp.6373-6384

S. Naseer, Y. Lee, C. Lapierre, R. Franke, C. Nawrath et al., Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin, Proc. Natl. Acad. Sci, vol.109, pp.10101-10106, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004175

T. Nawy, J. Lee, J. Colinas, J. Y. Wang, S. C. Thongrod et al., Transcriptional profile of the Arabidopsis root quiescent center, Plant Cell, vol.17, pp.1908-1933, 2005.

J. Nieuwland, S. Maughan, W. Dewitte, S. Scofield, L. Sanz et al., , 2009.

, The D-type cyclin CYCD4;1 modulates lateral root density in Arabidopsis by affecting the basal meristem region, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.22528-22533

T. Nobusawa, Y. Okushima, N. Nagata, M. Kojima, H. Sakakibara et al., Synthesis of Very-Long-Chain Fatty Acids in the Epidermis Controls Plant Organ Growth by Restricting Cell Proliferation, PLoS Biol, vol.11, p.1001531, 2013.

J. M. Van-norman, N. W. Breakfield, and P. N. Benfey, Intercellular Communication during Plant Development, Plant Cell, vol.23, pp.855-864, 2011.

J. M. Van-norman, W. Xuan, T. Beeckman, and P. N. Benfey, To branch or not to branch: the role of pre-patterning in lateral root formation, Development, vol.140, pp.4301-4310, 2013.

K. Ohashi-ito and D. C. Bergmann, Regulation of the Arabidopsis root vascular initial population by LONESOME HIGHWAY, Development, vol.134, pp.2959-2968, 2007.

K. Ohashi-ito, M. Matsukawa, and H. Fukuda, An atypical bHLH transcription factor regulates early xylem development downstream of auxin, Plant Cell Physiol, vol.54, pp.398-405, 2013.

K. Ohashi-ito, M. Oguchi, M. Kojima, H. Sakakibara, and H. Fukuda, Auxinassociated initiation of vascular cell differentiation by LONESOME HIGHWAY, Development, vol.140, pp.765-774, 2013.

Y. Okushima, H. Fukaki, M. Onoda, A. Theologis, and M. Tasaka, ARF7 and ARF19 Regulate Lateral Root Formation via Direct Activation of LBD/ASL Genes in Arabidopsis, PLANT CELL ONLINE, vol.19, pp.118-130, 2007.

R. Olmo, J. Cabrera, M. A. Moreno-risueno, H. Fukaki, C. Fenoll et al., Molecular Transducers from Roots Are Triggered in Arabidopsis Leaves by RootKnot Nematodes for Successful Feeding Site Formation: A Conserved Post-Embryogenic De novo, Organogenesis Program? Front. Plant Sci, vol.8, pp.1-14, 2017.

K. J. Oparka, D. A. Prior, and K. M. Wright, Symplastic communication between primary and developing lateral roots of Arabidopsis thaliana, J. Exp. Bot, vol.46, pp.187-197, 1995.

K. S. Osmont, R. Sibout, and C. S. Hardtke, Hidden branches: developments in root system architecture, Annu. Rev. Plant Biol, vol.58, pp.93-113, 2007.

D. Otsuga, B. Deguzman, M. J. Prigge, G. N. Drews, and S. E. Clark, REVOLUTA regulates meristem initiation at lateral positions, Plant J, vol.25, pp.223-236, 2001.

J. Palovaara, T. De-zeeuw, and D. Weijers, Tissue and Organ Initiation in the Plant Embryo: A First Time for Everything, Annu. Rev. Cell Dev. Biol, vol.32, pp.47-75, 2016.

B. Parizot, Diarch Symmetry of the Vascular Bundle in Arabidopsis Root Encompasses the Pericycle and Is Reflected in Distich Lateral Root Initiation, Plant Physiol, vol.146, pp.140-148, 2007.

B. Péret, Auxin regulates aquaporin function to facilitate lateral root emergence, Nat. Cell Biol, vol.14, pp.991-998, 2012.

B. Péret, Sequential induction of auxin efflux and influx carriers regulates lateral root emergence, Mol. Syst. Biol, vol.9, pp.1-15, 2013.

J. Perianez-rodriguez, C. Manzano, and M. A. Moreno-risueno, Post-embryonic organogenesis and plant regeneration from tissues: two sides of the same coin? Front, Plant Sci, vol.5, pp.1-11, 2014.

S. Perilli, R. Di-mambro, and S. Sabatini, Growth and development of the root apical meristem, Curr. Opin. Plant Biol, vol.15, pp.17-23, 2012.

J. Petrasek and J. Friml, Auxin transport routes in plant development, Development, vol.136, pp.2675-2688, 2009.

J. J. Petricka, C. M. Winter, and P. N. Benfey, Control of Arabidopsis Root Development, Annu. Rev. Plant Biol, vol.63, pp.563-590, 2012.

L. Pi, E. Aichinger, E. Van-der-graaff, C. I. Llavata-peris, D. Weijers et al., Organizer-Derived WOX5 Signal Maintains Root Columella Stem Cells through Chromatin-Mediated Repression of CDF4 Expression, Dev. Cell, vol.33, pp.576-588, 2015.

S. Porco, Lateral root emergence in Arabidopsis is dependent on transcription factor LBD29 regulation of auxin influx carrier LAX3, Development, vol.143, pp.3340-3349, 2016.

M. J. Prigge, D. Otsuga, J. M. Alonso, J. R. Ecker, G. N. Drews et al., , 2005.

, Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development, Plant Cell, vol.17, pp.61-76

R. E. Pruitt, J. Vielle-calzada, S. E. Ploense, U. Grossniklaus, and S. J. Lolle, , 2000.

, FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis, encodes a putative lipid biosynthetic enzyme, Proc. Natl. Acad. Sci, vol.97, pp.1311-1316

Y. Qin, C. Hu, Y. Pang, A. J. Kastaniotis, J. K. Hiltunen et al., Saturated Very-Long-Chain Fatty Acids Promote Cotton Fiber and Arabidopsis Cell Elongation by Activating Ethylene Biosynthesis, Plant Cell Online, vol.19, pp.3692-3704, 2007.

K. Ranathunge and L. Schreiber, Water and solute permeabilities of Arabidopsis roots in relation to the amount and composition of aliphatic suberin, J. Exp. Bot, vol.62, pp.1961-1974, 2011.

K. Ranathunge, L. Schreiber, and R. Franke, Suberin research in the genomics eraNew interest for an old polymer, Plant Sci, vol.180, pp.339-413, 2011.

A. M. Rashotte, S. R. Brady, R. C. Reed, S. J. Ante, and G. K. Muday, Basipetal Auxin Transport Is Required for Gravitropism in Roots of Arabidopsis, Plant Physiol, vol.122, pp.481-490, 2000.

H. Reinhardt, C. Hachez, M. D. Bienert, A. Beebo, K. Swarup et al., Tonoplast aquaporins facilitate lateral root emergence, Plant Physiol, p.1635, 2015.

C. Riou-khamlichi, R. Huntley, A. Jacqmard, and J. A. Murray, Cytokinin activation of Arabidopsis cell division through a D-type cyclin, Science, vol.283, pp.1541-1544, 1999.

I. Roberts, , 2016.

, J. Exp. Bot, vol.67, pp.4889-4899

E. D. Rogers and P. N. Benfey, Regulation of plant root system architecture: Implications for crop advancement, Curr. Opin. Biotechnol, vol.32, pp.93-98, 2015.

O. Rosspopoff, L. Chelysheva, J. Saffar, L. Lecorgne, D. Gey et al., Direct conversion of root primordium into shoot meristem relies on timing of stem cell niche development, Development, vol.144, pp.1187-1200, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01605725

F. Roudier, Very-Long-Chain Fatty Acids Are Involved in Polar Auxin Transport and Developmental Patterning in Arabidopsis, Plant Cell, vol.22, pp.364-375, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00856101

B. De-rybel, A novel Aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity, Curr. Biol, vol.20, pp.1697-1706, 2010.

S. Sabatini, R. Heidstra, M. Wildwater, and B. Scheres, SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem, Genes Dev, vol.17, pp.354-362, 2003.

R. Sablowski, The dynamic plant stem cell niches, Curr. Opin. Plant Biol, vol.10, pp.639-644, 2007.

L. Sanz, The Arabidopsis D-Type Cyclin CYCD2;1 and the Inhibitor ICK2/KRP2, 2011.

, Modulate Auxin-Induced Lateral Root Formation. Plant Cell, vol.23, pp.641-660

A. K. Sarkar, M. Luijten, S. Miyashima, M. Lenhard, T. Hashimoto et al., Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers, Nature, vol.446, pp.811-814, 2007.

M. Sassi and J. Traas, When biochemistry meets mechanics: A systems view of growth control in plants, Curr. Opin. Plant Biol, vol.28, pp.137-143, 2015.

M. Schena, M. Lloyd, and R. W. Davis, A steroid-inducible gene expression system for plant cells, Proc. Natl. Acad. Sci. U. S. A, vol.88, pp.10421-10425, 1991.

B. Scheres, Stem-cell niches: Nursery rhymes across kingdoms, Nat. Rev. Mol. Cell Biol, vol.8, pp.345-354, 2007.

B. Scheres and B. A. Krizek, Coordination of growth in root and shoot apices by AIL/PLT transcription factors, Curr. Opin. Plant Biol, vol.41, pp.95-101, 2018.

B. Scheres and M. Laskowski, Root patterning: It takes two to tangle, J. Exp. Bot, vol.67, pp.1201-1203, 2016.

J. Schindelin, Fiji: An open-source platform for biological-image analysis, Nat. Methods, vol.9, pp.676-682, 2012.

A. Schlereth, B. Möller, W. Liu, M. Kientz, J. Flipse et al., MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor, Nature, vol.464, pp.913-916, 2010.

B. Schuettengruber, H. M. Bourbon, L. Di-croce, and G. Cavalli, Genome Regulation by Polycomb and Trithorax: 70 Years and Counting, Cell, vol.171, pp.34-57, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01596016

B. Shang, C. Xu, X. Zhang, H. Cao, W. Xin et al., Very-long-chain fatty acids restrict regeneration capacity by confining pericycle competence for callus formation in Arabidopsis, Proc. Natl. Acad. Sci, vol.113, pp.5101-5106, 2016.

P. Shannon, Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks, Genome Res, vol.13, pp.2498-2504, 2003.

L. Sheng, X. Hu, Y. Du, G. Zhang, H. Huang et al., Noncanonical WOX11 -mediated root branching contributes to plasticity in Arabidopsis root system architecture, Development, vol.144, pp.3126-3133, 2017.

L. Sheng, X. Hu, Y. Du, G. Zhang, H. Huang et al., Noncanonical WOX11 -mediated root branching contributes to plasticity in Arabidopsis root system architecture, 2017.

S. Singh, A. Singh, S. Roy, and A. K. Sarkar, SWP1 negatively regulates lateral root initiation and elongation in Arabidopsis, Plant Signal. Behav, vol.7, 2012.

I. De-smet, Lateral root initiation: One step at a time, New Phytol, vol.193, pp.867-873, 2012.

D. Smet and I. , Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis, Development, vol.134, pp.681-690, 2007.

D. Smet and I. , Bimodular auxin response controls organogenesis in Arabidopsis, Proc. Natl. Acad. Sci, vol.107, pp.2705-2710, 2010.

D. Smet and I. , Receptor-Like Kinase ACR4 Restricts Formative Cell Divisions in the Arabidopsis Root. Science (80-. ), vol.322, pp.594-597, 2008.

D. Smet, I. Beeckman, and T. , Asymmetric cell division in land plants and algae: The driving force for differentiation, Nat. Rev. Mol. Cell Biol, vol.12, pp.177-188, 2011.

D. Smet, I. Vanneste, S. Inzé, D. Beeckman, and T. , Lateral root initiation or the birth of a new meristem, Plant Mol. Biol, vol.60, pp.871-887, 2006.

D. L. Smith and N. Fedoroff, LRP1, a gene expressed in lateral and adventitious root primordia of arabidopsis, Plant Cell, vol.7, pp.735-745, 1995.

S. Smith and I. De-smet, Root system architecture: insights from Arabidopsis and cereal crops, Philos. Trans. R. Soc. B Biol. Sci, vol.367, pp.1441-1452, 2012.

M. Smolarkiewicz and P. Dhonukshe, Formative cell divisions: Principal determinants of plant morphogenesis, Plant Cell Physiol, vol.54, pp.333-342, 2013.

R. Sozzani and A. Iyer-pascuzzi, Postembryonic control of root meristem growth and development, Curr. Opin. Plant Biol, vol.17, pp.7-12, 2014.

A. Spradling, D. Drummond-barbosa, K. , and T. , Stem cells find their niche, Nature, vol.414, pp.98-104, 2001.

Y. Stahl, Moderation of arabidopsis root stemness by CLAVATA1 and ARABIDOPSIS CRINKLY4 receptor kinase complexes, Curr. Biol, vol.23, pp.362-371, 2013.

Y. Stahl and R. Simon, Plant stem cell niches, Int. J. Dev. Biol, vol.49, pp.479-489, 2005.

D. Stoeckle, M. Thellmann, and J. E. Vermeer, Breakout -lateral root emergence in Arabidopsis thaliana, Curr. Opin. Plant Biol, vol.41, pp.67-72, 2018.

K. Sugimoto, Y. Jiao, and E. M. Meyerowitz, Arabidopsis Regeneration from Multiple Tissues Occurs via a Root Development Pathway, Dev. Cell, vol.18, pp.463-471, 2010.

K. Swarup, The auxin influx carrier LAX3 promotes lateral root emergence, Nat Cell Biol, vol.10, pp.946-954, 2008.
URL : https://hal.archives-ouvertes.fr/cea-00848585

A. P. Tai, M. V. Martin, and C. L. Heald, Threat to future global food security from climate change and ozone air pollution, Nat. Clim. Chang, vol.4, pp.817-821, 2014.

L. P. Tang, C. Zhou, S. S. Wang, J. Yuan, X. S. Zhang et al., FUSCA3 interacting with LEAFY COTYLEDON2 controls lateral root formation through regulating YUCCA4 gene expression in Arabidopsis thaliana, New Phytol, vol.213, pp.1740-1754, 2017.

C. J. Thieme, M. Rojas-triana, E. Stecyk, C. Schudoma, W. Zhang et al., Endogenous Arabidopsis messenger RNAs transported to distant tissues, Nat. Plants, vol.1, pp.1-8, 2015.

H. Tian, Y. Jia, T. Niu, Q. Yu, and Z. Ding, The key players of the primary root growth and development also function in lateral roots in Arabidopsis, Plant Cell Rep, vol.33, pp.745-753, 2014.

H. Tian, I. De-smet, and Z. Ding, Shaping a root system: Regulating lateral versus primary root growth, Trends Plant Sci, vol.19, pp.426-431, 2014.

J. Todd, D. Post-beittenmiller, and J. G. Jaworski, KCS1encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis inArabidopsis thaliana, Plant J, vol.17, pp.119-130, 1999.

H. Tokunaga, M. Kojima, T. Kuroha, T. Ishida, K. Sugimoto et al., Arabidopsis lonely guy (LOG) multiple mutants reveal a central role of the LOG-dependent pathway in cytokinin activation, Plant J, vol.69, pp.355-365, 2012.

K. Toyokura, Lateral Inhibition by a Peptide Hormone-Receptor Cascade during Arabidopsis Lateral Root Founder Cell Formation, Dev. Cell, pp.1-12, 2018.

S. Trenkamp, W. Martin, and K. Tietjen, Specific and differential inhibition of verylong-chain fatty acid elongases from Arabidopsis thaliana by different herbicides, Proc. Natl. Acad. Sci, vol.101, pp.11903-11908, 2004.

S. Tresch, M. Heilmann, N. Christiansen, R. Looser, and K. Grossmann, Inhibition of saturated very-long-chain fatty acid biosynthesis by mefluidide and perfluidone, selective inhibitors of 3-ketoacyl-CoA synthases, Phytochemistry, vol.76, pp.162-171, 2012.

C. D. Trinh, L. Laplaze, and S. Guyomarc'h, Lateral Root Formation: Building a Meristem de novo, Annual Plant Reviews online, pp.1-44, 2018.

T. Ulmasov, J. Murfett, G. Hagen, and T. J. Guilfoyle, Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements, Plant Cell, vol.9, pp.1963-71, 1997.

S. Vanneste, Cell cycle progression in the pericycle is not sufficient for SOLITARY ROOT/IAA14-mediated lateral root initiation in Arabidopsis thaliana, Plant Cell, vol.17, pp.3035-50, 2005.

M. Vanstraelen and E. Benková, Hormonal Interactions in the Regulation of Plant Development, Annu. Rev. Cell Dev. Biol, vol.28, pp.463-487, 2012.

J. Vaughan-hirsch, B. Goodall, and A. Bishopp, mapping vascular tissues onto the Arabidopsis root, Curr. Opin. Plant Biol, vol.41, pp.16-22, 2018.

J. E. Vermeer, D. Von-wangenheim, M. Barberon, Y. Lee, E. H. Stelzer et al., A spatial accommodation by neighboring cells is required for organ initiation in arabidopsis, Science, vol.343, pp.178-183, 2014.

T. Vernoux, , 2011.

J. Vilarrasa-blasi, M. P. González-garcía, D. Frigola, N. Fàbregas, K. G. Alexiou et al., Regulation of plant stem cell quiescence by a brassinosteroid signaling module, Dev. Cell, vol.30, pp.36-47, 2014.

S. J. Vishwanath, C. Delude, F. Domergue, R. , and O. , Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier, Plant Cell Rep, vol.34, pp.573-586, 2015.

U. Voß, The circadian clock rephases during lateral root organ initiation in Arabidopsis thaliana, Nat. Commun, vol.6, 2015.

T. Wada, T. Kurata, R. Tominaga, Y. Koshino-kimura, T. Tachibana et al., Role of a positive regulator of root hair development, CAPRICE, in Arabidopsis root epidermal cell differentiation, Development, vol.129, pp.5409-5428, 2002.

J. Waese, ePlant: Visualizing and Exploring Multiple Levels of Data for Hypothesis Generation in Plant Biology, Plant Cell, vol.29, 2017.

G. Wang and E. Bieberich, Morphogenetic Sphingolipids in Stem Cell Differentiation and Embryo Development, Lipidomics of Stem Cells, pp.11-40, 2017.

J. Wang, C. Tian, C. Zhang, X. Cao, T. Zhang et al., Cytokinin Signaling Activates WUSCHEL Expression during Axillary Meristem Initiation, Plant Cell, vol.29, 2016.

X. Wang and J. Chory, Brassinosteroids Regulate Dissociation of BKI1, a Negative Regulator of BRI1 Signaling, from the Plasma Membrane. Science (80-. ), vol.313, pp.1118-1122, 2006.

V. Wangenheim, D. Fangerau, J. Schmitz, A. Smith, R. S. Leitte et al., Rules and self-organizing properties of post-embryonic plant organ cell division patterns, Curr. Biol, vol.26, pp.439-449, 2016.

D. Von-wangenheim, T. Goh, D. Dietrich, and M. J. Bennett, Plant Biology: Building Barriers? in Roots, Curr. Biol, vol.27, pp.172-174, 2017.

V. Wattelet-boyer, L. Brocard, K. Jonsson, N. Esnay, J. Joubès et al., Enrichment of hydroxylated C24-and C26-acyl-chain sphingolipids mediates PIN2 apical sorting at trans-Golgi network subdomains, Nat. Commun, vol.7, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01608825

D. Weijers, A. Schlereth, J. S. Ehrismann, G. Schwank, M. Kientz et al., Auxin triggers transient local signaling for cell specification in Arabidopsis embryogenesis, Dev. Cell, vol.10, pp.265-270, 2006.

D. Weijers and D. Wagner, Transcriptional Responses to the Auxin Hormone, Annu. Rev. Plant Biol, vol.67, pp.539-574, 2016.

V. Willemsen, M. Bauch, T. Bennett, A. Campilho, H. Wolkenfelt et al., The NAC Domain Transcription Factors FEZ and SOMBRERO Control the Orientation of Cell Division Plane in Arabidopsis Root Stem Cells, Dev. Cell, vol.15, pp.913-922, 2008.

D. Winter, B. Vinegar, H. Nahal, R. Ammar, G. V. Wilson et al., An 202 "Electronic Fluorescent Pictograph" Browser for Exploring and Analyzing Large-Scale Biological Data Sets, PLoS One, vol.2, p.718, 2007.

J. Wisniewska, J. Xu, D. Seifertová, P. B. Brewer, K. Ruzicka et al., Polar PIN localization directs auxin flow in plants, Science, vol.312, p.883, 2006.

G. Wu, W. Lin, T. Huang, R. S. Poethig, P. S. Springer et al., KANADI1 regulates adaxial-abaxial polarity in Arabidopsis by directly repressing the transcription of ASYMMETRIC LEAVES2, Proc. Natl. Acad. Sci, vol.105, pp.16392-16397, 2008.

R. Wu and V. Citovsky, Adaptor proteins GIR1 and GIR2. I. Interaction with the repressor GLABRA2 and regulation of root hair development, Biochem. Biophys. Res. Commun, vol.488, pp.547-553, 2017.

C. Xu, H. Cao, E. Xu, S. Zhang, and Y. Hu, Genome-Wide Identification of Arabidopsis LBD29 Target Genes Reveals the Molecular Events behind Auxin-Induced Cell Reprogramming during Callus Formation, Plant Cell Physiol, vol.59, pp.744-755, 2018.

C. Xu, H. Cao, Q. Zhang, H. Wang, W. Xin et al., Control of auxin-induced callus formation by bZIP59-LBD complex in Arabidopsis regeneration, Nat. Plants, vol.4, pp.108-115, 2018.

J. Xu, H. Hofhuis, R. Heidstra, M. Sauer, J. Friml et al., A molecular framework for plant regeneration, Science, vol.311, pp.385-388, 2006.

W. Xuan, Cyclic programmed cell death stimulates hormone signaling and root development in Arabidopsis. Science (80-. ), vol.351, pp.384-387, 2016.

W. Xuan, D. Audenaert, B. Parizot, B. K. Möller, M. F. Njo et al., Curr. Biol, vol.25, pp.1381-1388, 2015.

V. Yadav, I. Molina, K. Ranathunge, I. Q. Castillo, S. J. Rothstein et al., ABCG Transporters Are Required for Suberin and Pollen Wall Extracellular Barriers in Arabidopsis, Plant Cell, vol.26, pp.3569-3588, 2014.

T. Yamauchi, K. Shiono, M. Nagano, A. Fukazawa, M. Ando et al., Ethylene Biosynthesis Is Promoted by Very-Long-Chain Fatty Acids during Lysigenous Aerenchyma Formation in Rice Roots, Plant Physiol, vol.169, pp.180-193, 2015.

Y. L. Yamaguchi, T. Ishida, and S. Sawa, CLE peptides and their signaling pathways in plant development, J. Exp. Bot, vol.67, pp.4813-4826, 2016.

S. Yoshida, P. Barbierdereuille, B. Lane, G. W. Bassel, P. Prusinkiewicz et al., Genetic control of plant development by overriding a geometric division rule, Dev. Cell, vol.29, pp.75-87, 2014.

J. Yu, W. Liu, J. Liu, P. Qin, and L. Xu, Auxin Control of Root Organogenesis from Callus in Tissue Culture, Front. Plant Sci, vol.8, pp.1-4, 2017.

P. Yu, J. Baldauf, A. Lithio, C. Marcon, D. Nettleton et al., Root type specific reprogramming of maize pericycle transcriptomes by local high nitrate results in disparate lateral root branching patterns, Plant Physiol, vol.170, p.1885, 2015.

P. Yu, K. Eggert, N. Von-wirén, C. Li, and F. Hochholdinger, Cell Type-Specific Gene Expression Analyses by RNA Sequencing Reveal Local High Nitrate-Triggered Lateral Root Initiation in Shoot-Borne Roots of Maize by Modulating Auxin-Related Cell Cycle Regulation, 2015.

K. Yue, PP2A-3 interacts with ACR4 and regulates formative cell division in the Arabidopsis root, Proc. Natl. Acad. Sci, vol.113, pp.1447-1452, 2016.

K. Yue and T. Beeckman, Cell-to-cell communication during lateral root development, Mol. Plant, vol.7, pp.758-760, 2014.

A. Zhan, H. Schneider, and J. P. Lynch, Reduced Lateral Root Branching Density Improves Drought Tolerance in Maize, Plant Physiol, vol.168, pp.1603-1615, 2015.

W. Zhang, R. Swarup, M. Bennett, G. E. Schaller, and J. J. Kieber, Cytokinin induces cell division in the quiescent center of the arabidopsis root apical meristem, Curr. Biol, vol.23, pp.1979-1989, 2013.

Y. Zhao, Auxin Biosynthesis and Its Role in Plant Development, Annu. Rev. Plant Biol, vol.61, pp.49-64, 2010.

H. Zheng, Disruptions of the Arabidopsis Enoyl-CoA Reductase Gene Reveal an Essential Role for Very-Long-Chain Fatty Acid Synthesis in Cell Expansion during Plant Morphogenesis, Plant Cell Online, vol.17, pp.1467-1481, 2005.

D. Zipori, The nature of stem cells: State rather than entity, Nat. Rev. Genet, vol.5, pp.873-878, 2004.

A. Zografidis, G. Kapolas, V. Podia, D. Beri, K. Papadopoulou et al., Transcriptional regulation and functional involvement of the Arabidopsis pescadillo ortholog AtPES in root development, Plant Sci, vol.229, pp.53-65, 2014.

E. Zurcher, D. Tavor-deslex, D. Lituiev, K. Enkerli, P. T. Tarr et al., A Robust and Sensitive Synthetic Sensor to Monitor the Transcriptional Output of the Cytokinin Signaling Network in Planta, Plant Physiol, vol.161, pp.1066-1075, 2013.

. Roudier, AT3G54010 PAS1 Yes Interact with other VLCFA enzymes to form the elongase complex, 2010.

. Roudier, Mutant: severely affected, reduced lateral root formation and growth, 2010.

. Morineau, AT5G59770 PTPLA Yes PAS2-like function but in root vascular tissues. Required for VLCFA biosynthesis, 2016.

C. D. Trinh, L. Laplaze, and S. Guyomarc'h, Lateral Root Formation: Building a Meristem de novo, Annual Plant Reviews online, pp.1-44, 2018.

C. Duy, J. Trinh, Q. Lavenus, V. Drogue, M. Vaissayre et al.,

, Congress Of The International Plant Molecular Biology (IPMB2108), pp.5-10, 2017.

, Vietnam 3 Laboratory of Plant Developmental Signaling, UMR "Diversite? Adaptation et Développement des plantes, 2012.

. Lavenus, , 2015.

J. E. Malamy and P. N. Benfey, , p.9006065, 1997.

. Hirota, systems biology approach, we discovered that expression of very long chain fatty acid (VLCFA) biosynthesis genes is induced downstream of PUCHI, a transcription factor controlling cell division and morphogenesis during lateral root formation. We also show that the PUCHI-mediated regulation of VLCFA biosynthesis is also involved in root derived callus formation, the first step in in vitro plant regeneration. More experiments are on-going to corroborate the hypothesis such as VLCFA quantification in WT and puchi-1 roots, 2007.

. Voss, , 2015.

K. Haslam, , 2013.

. Shang, , 2016.