, Assessment of metastatic disease status at death in 435 patients with large choroidal melanoma in the Collaborative Ocular Melanoma Study (COMS): COMS report no. 15, Arch. Ophthalmol, vol.119, pp.670-676, 1960.

A. D. Singh and A. Topham, Incidence of uveal melanoma in the United States: 1973-1997, Ophthalmology, vol.110, pp.956-61, 2003.

A. D. Singh and A. Topham, Survival rates with uveal melanoma in the United States: 1973-1997, Ophthalmology, vol.110, pp.962-967, 2003.

C. Chattopadhyay, Uveal melanoma: From diagnosis to treatment and the science in between, Cancer, vol.122, pp.2299-312, 2016.

M. D. Onken, L. A. Worley, M. D. Tuscan, and J. W. Harbour, An accurate, clinically feasible multi-gene expression assay for predicting metastasis in uveal melanoma

, Mol. Diagn, vol.12, pp.461-469, 2010.

A. G. Robertson, Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma, Cancer Cell, vol.32, 2017.

C. Laurent, High PTP4A3 phosphatase expression correlates with metastatic risk in uveal melanoma patients, Cancer Res, vol.71, pp.666-74, 2011.

U. A. Miskad, High PRL-3 expression in human gastric cancer is a marker of metastasis and grades of malignancies: an in situ hybridization study, Virchows Arch, vol.450, pp.303-310, 2007.

F. Polato, PRL-3 phosphatase is implicated in ovarian cancer growth, Clin. Cancer Res, vol.11, pp.6835-6844, 2005.

S. Yamashita, Down-regulation of the human PRL-3 gene is associated with the metastasis of primary non-small cell lung cancer, Ann. Thorac. Cardiovasc. Surg, vol.13, pp.236-245, 2007.

L. Kong, Q. Li, L. Wang, Z. Liu, and T. Sun, The value and correlation between PRL-3 expression and matrix metalloproteinase activity and expression in human gliomas, Neuropathology, vol.27, pp.516-521, 2007.

J. Zhou, S. Wang, J. Lu, J. Li, and Y. Ding, Over-expression of phosphatase of regenerating liver-3 correlates with tumor progression and poor prognosis in nasopharyngeal carcinoma, Int. J. Cancer, vol.124, pp.1879-1886, 2009.

D. C. Bessette, D. Qiu, and C. J. Pallen, PRL PTPs: mediators and markers of cancer progression, Cancer Metastasis Rev, vol.27, pp.231-252, 2008.

A. Q. Al-aidaroos and Q. Zeng, PRL-3 phosphatase and cancer metastasis, J. Cell. Biochem, vol.111, pp.1087-98, 2010.

S. Maacha, Protein Tyrosine Phosphatase 4A3 (PTP4A3) Promotes Human Uveal Melanoma Aggressiveness Through Membrane Accumulation of Matrix Metalloproteinase 14 (MMP14), Investig. Opthalmology Vis. Sci, vol.57, p.1982, 2016.

E. Mizuuchi, S. Semba, Y. Kodama, and H. Yokozaki, Down-modulation of keratin 8 phosphorylation levels by PRL-3 contributes to colorectal carcinoma progression

, J. Cancer, vol.124, pp.1802-1812, 2009.

E. Forte, Ezrin is a specific and direct target of protein tyrosine phosphatase PRL-3, Biochim. Biophys. Acta, vol.1783, pp.334-378, 2008.

P. Zheng, Stathmin, a new target of PRL-3 identified by proteomic methods, plays a key role in progression and metastasis of colorectal cancer, J. Proteome Res, vol.9, pp.4897-905, 2010.

R. Khanna, Opening Pandora's jar: a primer on the putative roles of CRMP2 in a panoply of neurodegenerative, sensory and motor neuron, and central disorders

, Future Neurol, vol.7, pp.749-771, 2012.

Y. Fukata, CRMP-2 binds to tubulin heterodimers to promote microtubule assembly, Nat. Cell Biol, vol.4, pp.583-591, 2002.

S. Patrakitkomjorn, Neurofibromatosis type 1 (NF1) tumor suppressor, neurofibromin, regulates the neuronal differentiation of PC12 cells via its associating References 1

D. Hanahan, R. Weinberg, and S. Francisco, The Hallmarks of Cancer Review University of California at San Francisco, vol.100, pp.57-70, 2000.

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: The next generation, Cell, vol.144, pp.646-674, 2011.

P. Friedl and K. Wolf, Tumour-cell invasion and migration: diversity and escape mechanisms, Nat. Rev. Cancer, vol.3, pp.362-74, 2003.

A. Alonso, Protein Tyrosine Phosphatases in the Human Genome, Cell, vol.117, pp.699-711, 2004.

A. Östman, C. Hellberg, and F. D. Böhmer, Protein-tyrosine phosphatases and cancer, Nat. Rev. Cancer, vol.6, pp.307-320, 2006.

P. Rios, X. Li, and M. Köhn, Molecular mechanisms of the PRL phosphatases, FEBS J, vol.280, pp.505-529, 2013.

M. Lin, Expression of phosphatase of regenerating liver family genes during embryogenesis: an evolutionary developmental analysis among Drosophila, amphioxus, and zebrafish, BMC Dev. Biol, vol.13, p.18, 2013.

Q. Zeng, W. Hong, and Y. H. Tan, Mouse PRL-2 and PRL-3, Two Potentially Prenylated Protein Tyrosine Phosphatases Homologous to PRL-1, Biochem. Biophys. Res. Commun, vol.244, pp.421-427, 1998.

D. C. Bessette, D. Qiu, and C. J. Pallen, PRL PTPs: mediators and markers of cancer progression, Cancer Metastasis Rev, vol.27, pp.231-52, 2008.

C. A. Cates, Prenylation of oncogenic human PTPcaax protein tyrosine phosphatases, Cancer Lett, vol.110, pp.49-55, 1996.

Q. Zeng, Prenylation-dependent Association of Protein-tyrosine Phosphatases PRL-1, -2, and -3 with the Plasma Membrane and the Early Endosome, J. Biol. Chem, vol.275, pp.21444-21452, 2000.

R. H. Diamond, D. E. Cressman, T. M. Laz, C. S. Abrams, and R. Taub, PRL-1, a unique nuclear protein tyrosine phosphatase, affects cell growth, Mol. Cell. Biol, vol.14, pp.3752-62, 1994.

U. Fagerli, Overexpression and involvement in migration by the metastasisassociated phosphatase PRL-3 in human myeloma cells, Blood, vol.111, pp.806-815, 2008.

W. F. Matter, Role of PRL-3, a human muscle-specific tyrosine phosphatase, in angiotensin-II signaling, Biochem. Biophys. Res. Commun, vol.283, pp.1061-1069, 2001.

J. Sun, Phosphatase Activity, Trimerization, and the C-terminal Polybasic Region Are All Required for PRL1-mediated Cell Growth and Migration, J. Biol. Chem, vol.282, pp.29043-29051, 2007.

J. J. Fiordalisi, P. J. Keller, and A. D. Cox, PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility, Cancer Res, vol.66, pp.3153-61, 2006.

R. Song, Phosphatase of Regenerating Liver-3 Localizes to Cyto-Membrane and Is Required for B16F1 Melanoma Cell Metastasis In Vitro and In Vivo, PLoS One, vol.4, p.4450, 2009.

M. Foy, O. Anézo, S. Saule, and N. Planque, PRL-3 / PTP4A3 phosphatase regulates integrin ? 1 in adhesion structures during migration of human ocular melanoma cells, Exp. Cell Res, vol.353, pp.88-99, 2017.

S. Saha, A Phosphatase Associated with Metastasis of Colorectal Cancer. Science (80-. ), vol.294, pp.1343-1346, 2001.

U. A. Miskad, High PRL-3 expression in human gastric cancer is a marker of metastasis and grades of malignancies: an in situ hybridization study, Virchows Arch, vol.450, pp.303-310, 2007.

F. Polato, PRL-3 phosphatase is implicated in ovarian cancer growth, Clin. Cancer Res, vol.11, pp.6835-6844, 2005.

T. Ren, Prognostic Significance of Phosphatase of Regenerating Liver-3 Expression in Ovarian Cancer, Pathol. Oncol. Res, vol.15, pp.555-560, 2009.

Y. Ma and B. Li, Expression of phosphatase of regenerating liver-3 in squamous cell carcinoma of the cervix, Med. Oncol, vol.28, pp.775-780, 2011.

J. Ming, N. Liu, Y. Gu, X. Qiu, and E. Wang, PRL-3 facilitates angiogenesis and metastasis by increasing ERK phosphorylation and up-regulating the levels and activities of Rho-A/C in lung cancer, Pathology, vol.41, pp.118-144, 2009.

Y. Xu, Expression and Prognostic Value of PRL-3 in Human Intrahepatic Cholangiocarcinoma, Pathol. Oncol. Res, vol.16, pp.169-175, 2010.

W. Zhao, Y. Li, X. Liu, L. Zhang, and X. Wang, Evaluation of PRL-3 expression, and its correlation with angiogenesis and invasion in hepatocellular carcinoma, Int. J. Mol. Med, vol.22, pp.187-92, 2008.

L. Kong, Q. Li, L. Wang, Z. Liu, and T. Sun, The value and correlation between PRL-3 expression and matrix metalloproteinase activity and expression in human gliomas, Neuropathology, vol.27, pp.516-521, 2007.

J. Zhou, S. Wang, J. Lu, J. Li, and Y. Ding, Over-expression of phosphatase of regenerating liver-3 correlates with tumor progression and poor prognosis in nasopharyngeal carcinoma, Int. J. Cancer, vol.124, pp.1879-1886, 2009.

Y. Liu, H. Li, X. Lou, and J. Lei, Expression of phosphatase of regenerating liver 1 and 3 mRNA in esophageal squamous cell carcinoma, Arch. Pathol. Lab. Med, vol.132, pp.1307-1319, 2008.

T. E. Buffart, DNA copy number changes at 8q11-24 in metastasized colorectal cancer, Cell. Oncol, vol.27, pp.57-65, 2005.

A. Bardelli, PRL-3 expression in metastatic cancers, Clin. Cancer Res, vol.9, pp.5607-5622, 2003.

I. Radke, Expression and prognostic impact of the protein tyrosine phosphatases PRL-1, PRL-2 and PRL-3 in breast cancer, Br. J. Cancer, vol.95, pp.347-354, 2006.

C. Laurent, High PTP4A3 phosphatase expression correlates with metastatic risk in uveal melanoma patients, Cancer Res, vol.71, pp.666-74, 2011.

A. Q. Al-aidaroos and Q. Zeng, PRL-3 phosphatase and cancer metastasis, J. Cell. Biochem, vol.111, pp.1087-1098, 2010.

Q. Dong, X. Ding, B. Chang, H. Wang, and A. Wang, PRL-3 promotes migration and invasion and is associated with poor prognosis in salivary adenoid cystic carcinoma, J. Oral Pathol. Med, vol.45, pp.111-119, 2016.

S. Qu, Independent oncogenic and therapeutic significance of phosphatase PRL-3 in FLT3-ITD-negative acute myeloid leukemia, Cancer, vol.120, pp.2130-2141, 2014.

A. Broyl, Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients, Blood, vol.116, pp.2543-2553, 2010.

H. Kitano, A. Funahashi, Y. Matsuoka, and K. Oda, Using process diagrams for the graphical representation of biological networks, Nat. Biotechnol, vol.23, pp.961-966, 2005.

N. Novère and . Le, The Systems Biology Graphical Notation, Nat. Biotechnol, vol.27, pp.735-741, 2009.

M. Hucka, The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models, Bioinformatics, vol.19, pp.524-555, 2003.

A. Zinovyev, E. Viara, L. Calzone, and E. Barillot, BiNoM: a Cytoscape plugin for manipulating and analyzing biological networks, Bioinformatics, vol.24, pp.876-883, 2008.

P. Shannon, Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks, Genome Res, vol.13, pp.2498-2504, 2003.

P. Vera-licona, E. Bonnet, E. Barillot, and A. Zinovyev, OCSANA: optimal combinations of interventions from network analysis, Bioinformatics, vol.29, pp.1571-1574, 2013.

S. Basak, The metastasis-associated gene Prl-3 is a p53 target involved in cellcycle regulation, Mol. Cell, vol.30, pp.303-317, 2008.

S. Min, Downregulation of p53 by phosphatase of regenerating liver 3 is mediated by MDM2 and PIRH2, Life Sci, vol.86, pp.66-72, 2010.

H. Xie and H. Wang, PRL-3 promotes breast cancer progression by downregulating p14ARF-mediated p53 expression, Oncol. Lett, vol.15, pp.2795-2800, 2017.

S. Lian, PRL-3 activates NF-?B signaling pathway by interacting with RAP1, Biochem. Biophys. Res. Commun, vol.430, pp.196-201, 2013.

W. Lai, PRL-3 promotes the proliferation of LoVo cells via the upregulation of KCNN4 channels, Oncol. Rep, vol.26, pp.909-926, 2011.

H. H. Gari, G. D. Degala, M. S. Lucia, and J. R. Lambert, Loss of the oncogenic phosphatase PRL-3 promotes a TNF-R1 feedback loop that mediates triple-negative breast cancer growth, Oncogenesis, vol.5, p.255, 2016.

L. Wang, PTP4A3 is a target for inhibition of cell proliferatin, migration and invasion through Akt/mTOR signaling pathway in glioblastoma under the regulation of miR-137, Brain Res, vol.1646, pp.441-50, 2016.

Z. Ye, PRL-3 activates mTORC1 in Cancer Progression, Sci. Rep, vol.5, p.17046, 2015.

J. Zhou, A loss-of-function genetic screening reveals synergistic targeting of AKT/mTOR and WTN/?-catenin pathways for treatment of AML with high PRL-3 phosphatase, J. Hematol. Oncol, vol.11, p.36, 2018.

Z. Sun and P. Bu, Downregulation of phosphatase of regenerating liver-3 is involved in the inhibition of proliferation and apoptosis induced by emodin in the SGC-7901 human gastric carcinoma cell line, Exp. Ther. Med, vol.3, pp.1077-1081, 2012.

A. Q. Al-aidaroos, Metastasis-associated PRL-3 induces EGFR activation and addiction in cancer cells, J. Clin. Invest, vol.123, pp.3459-71, 2013.

T. S. Slørdahl, The phosphatase of regenerating liver-3 (PRL-3) is important for IL-6-mediated survival of myeloma cells, Oncotarget, vol.7, pp.27295-306, 2016.

J. Zhang, miR-21, miR-17 and miR-19a induced by phosphatase of regenerating liver-3 promote the proliferation and metastasis of colon cancer, Br. J. Cancer, vol.107, pp.352-361, 2012.

K. Guo, PRL-3 initiates tumor angiogenesis by recruiting endothelial cells in vitro and in vivo, Cancer Res, vol.66, pp.9625-9660, 2006.

J. Xu, VEGF promotes the transcription of the human PRL-3 gene in HUVEC through transcription factor MEF2C, PLoS One, vol.6, p.27165, 2011.

M. W. Zimmerman, Protein-tyrosine phosphatase 4A3 (PTP4A3) promotes vascular endothelial growth factor signaling and enables endothelial cell motility, J. Biol. Chem, vol.289, pp.5904-5917, 2014.

J. Ming, Y. Jiang, G. Jiang, and H. Zheng, Phosphatase of regenerating liver-3 induces angiogenesis by increasing extracellular signal-regulated kinase phosphorylation in endometrial adenocarcinoma, Pathobiology, vol.81, pp.1-7, 2014.

L. Peng, Identification of integrin alpha1 as an interacting protein of protein tyrosine phosphatase PRL-3, Biochem. Biophys. Res. Commun, vol.342, pp.179-83, 2006.

L. Peng, PRL-3 promotes the motility, invasion, and metastasis of LoVo colon cancer cells through PRL-3-integrin beta1-ERK1/2 and-MMP2 signaling, Mol. Cancer, vol.8, p.110, 2009.

W. Tian, Phosphatase of regenerating liver-3 directly interacts with integrin ?1 and regulates its phosphorylation at tyrosine 783, BMC Biochem, vol.13, p.22, 2012.

H. Liu, PRL-3 suppresses c-Fos and integrin ?2 expression in ovarian cancer cells, BMC Cancer, vol.13, p.80, 2013.

H. Wang, PRL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial-mesenchymal transition, Cancer Res, vol.67, pp.2922-2928, 2007.

D. Krndija, The phosphatase of regenerating liver 3 (PRL-3) promotes cell migration through Arf-activity-dependent stimulation of integrin ?5 recycling, J. Cell Sci, vol.125, pp.3883-92, 2012.

S. Lian, PRL-3 promotes cell adhesion by interacting with JAM2 in colon cancer, Oncol. Lett, vol.12, pp.1661-1666, 2016.

M. A. Hjort, Phosphatase of regenerating liver-3 is expressed in acute lymphoblastic leukemia and mediates leukemic cell adhesion, migration and drug resistance, 2017.

V. Mcparland, The metastasis-promoting phosphatase PRL-3 shows activity toward phosphoinositides, Biochemistry, vol.50, pp.7579-90, 2011.

Y. Cao, RNAi-mediated knockdown of PRL-3 inhibits cell invasion and downregulates ERK 1/2 expression in the human gastric cancer cell line, p.7901

, Mol. Med. Rep, vol.7, pp.1805-1816, 2013.

E. Forte, Ezrin is a specific and direct target of protein tyrosine phosphatase PRL-3, Biochim. Biophys. Acta, vol.1783, pp.334-378, 2008.

E. Mizuuchi, S. Semba, Y. Kodama, and H. Yokozaki, Down-modulation of keratin 8 phosphorylation levels by PRL-3 contributes to colorectal carcinoma progression, Int. J. Cancer, vol.124, pp.1802-1812, 2009.

P. Zheng, Stathmin, a new target of PRL-3 identified by proteomic methods, plays a key role in progression and metastasis of colorectal cancer, J. Proteome Res, vol.9, pp.4897-905, 2010.

J. J. Fiordalisi, B. J. Dewar, L. M. Graves, J. P. Madigan, and A. D. Cox, Src-mediated phosphorylation of the tyrosine phosphatase PRL-3 is required for PRL-3 promotion of Rho activation, motility and invasion, PLoS One, vol.8, p.64309, 2013.

P. Zhang, Expression and it's Relationship of PRL-3 and RhoC in Non-small Cell Lung Cancer, Chinese J. Lung Cancer, vol.13, pp.598-601, 2010.

S. Maacha, Protein tyrosine phosphatase 4A3 (PTP4A3) is required for Xenopus laevis cranial neural crest migration in vivo, PLoS One, vol.8, p.84717, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01183649

J. Xiong, PRL-3 promotes the peritoneal metastasis of gastric cancer through the PI3K/Akt signaling pathway by regulating PTEN, Oncol. Rep, vol.36, pp.1819-1847, 2016.

S. Ren, PRL-3 Is Involved in Estrogen-and IL-6-Induced Migration of Endometrial Stromal Cells From Ectopic Endometrium, Reprod. Sci, 2016.

Y. Jiang, Phosphatase PRL-3 is a direct regulatory target of TGFbeta in colon cancer metastasis, Cancer Res, vol.71, pp.234-278, 2011.

Y. Huang, A role of autophagy in PTP4A3-driven cancer progression, Autophagy, vol.10, pp.1-14, 2014.

Y. Liu, PRL-3 promotes epithelial mesenchymal transition by regulating cadherin directly, Cancer Biol. Ther, vol.8, pp.1352-1361, 2009.

A. Pryczynicz, K. Guzi?ska-ustymowicz, K. Niewiarowska, D. Cepowicz, and A. Kemona, PRL-3 and E-cadherin show mutual interactions and participate in lymph node metastasis formation in gastric cancer, Tumour Biol, vol.35, pp.6587-92, 2014.

X. Fang, PRL-3 Promotes the Malignant Progression of Melanoma via Triggering Dephosphorylation and Cytoplasmic Localization of NHERF1, J. Invest. Dermatol, vol.135, pp.2273-82, 2015.

W. Lai, KCNN4 channels participate in the EMT induced by PRL-3 in colorectal cancer, Med. Oncol, vol.30, p.566, 2013.

P. S. Chong, LEO1 is regulated by PRL-3 and mediates its oncogenic properties in acute myelogenous leukemia, Cancer Res, vol.74, pp.3043-53, 2014.

F. Liang, PRL3 promotes cell invasion and proliferation by down-regulation of Csk leading to Src activation, J. Biol. Chem, vol.282, pp.5413-5422, 2007.

F. Liang, Translational control of C-terminal Src kinase (Csk) expression by PRL3 phosphatase, J. Biol. Chem, vol.283, pp.10339-10385, 2008.

C. D. Walls, Phosphatase of Regenerating Liver 3 (PRL3) Provokes a Tyrosine Phosphoproteome to Drive Prometastatic Signal Transduction, Mol. Cell. Proteomics, vol.12, pp.3759-3777, 2013.

H. H. Gari, G. D. Degala, R. Ray, M. S. Lucia, and J. R. Lambert, PRL-3 engages the focal adhesion pathway in triple-negative breast cancer cells to alter actin structure and substrate adhesion properties critical for cell migration and invasion, Cancer Lett, vol.380, pp.505-512, 2016.

S. Lee, Phosphatase of regenerating liver-3 promotes migration and invasion by upregulating matrix metalloproteinases-7 in human colorectal cancer cells, Int. J. Cancer, vol.131, pp.190-203, 2012.

N. Mu, PRL-3 is a potential glioblastoma prognostic marker and promotes glioblastoma progression by enhancing MMP7 through the ERK and JNK pathways, Theranostics, vol.8, pp.1527-1539, 2018.

S. Maacha, Protein tyrosine phosphatase 4A3 (PTP4A3) promotes human uveal melanoma aggressiveness through membrane accumulation of matrix metalloproteinase 14 (MMP14), Investig. Ophthalmol. Vis. Sci, vol.57, pp.1982-1990, 2016.

Q. Lan, CCL26 Participates in the PRL-3-Induced Promotion of Colorectal Cancer Invasion by Stimulating Tumor-Associated Macrophage Infiltration, Mol. Cancer Ther, vol.17, pp.276-289, 2018.

A. Sica and V. Bronte, Altered macrophage differentiation and immune dysfunction in tumor development, J. Clin. Invest, vol.117, pp.1155-66, 2007.

I. Kuperstein, Atlas of Cancer Signalling Network: a systems biology resource for integrative analysis of cancer data with Google Maps, Oncogenesis, vol.4, p.160, 2015.

M. Gomez and L. C. , Application of Atlas of Cancer Signalling Network in preclinical studies, Brief. Bioinform, 2018.

A. Mazein, Systems medicine disease maps: community-driven comprehensive representation of disease mechanisms, npj Syst. Biol. Appl, vol.4, p.21, 2018.

M. Ostaszewski, Community-driven roadmap for integrated disease maps, Brief. Bioinform, 2018.

D. Stehelin, H. E. Varmus, J. M. Bishop, and P. K. Vogt, DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA, Nature, vol.260, issue.5547, pp.170-173, 1976.

C. J. Tabin, S. M. Bradley, C. I. Bargmann, R. A. Weinberg, A. G. Papageorge et al., Mechanism of activation of a human oncogene, Nature, vol.300, issue.5888, pp.143-149, 1982.

L. A. Garraway and E. S. Lander, Lessons from the cancer genome, Cell, vol.153, issue.1, pp.17-37, 2013.

S. Negrini, V. G. Gorgoulis, and T. D. Halazonetis, Genomic instability -an evolving hallmark of cancer, Nat. Rev. Mol. Cell Biol, vol.11, issue.3, pp.220-228, 2010.

E. Y. Lee and W. J. Muller, Oncogenes and tumor suppressor genes, Cold Spring Harb. Perspect. Biol, vol.2, issue.10, p.3236, 2010.

B. Vogelstein, N. Papadopoulos, V. E. Velculescu, S. Zhou, L. Diaz et al., Cancer Genome Lanscapes, Science (80-. ), vol.339, issue.6127, pp.1546-1558, 2013.

D. Hanahan, R. Weinberg, and S. Francisco, The Hallmarks of Cancer Review University of California at San Francisco, vol.100, pp.57-70, 2000.

L. Yang, Y. Pang, and H. L. Moses, TGF-beta and immune cells: an important regulatory axis in the tumor microenvironment and progression, Trends Immunol, vol.31, issue.6, pp.220-227, 2010.

M. Vander-heiden, L. Cantley, and C. Thompson, Understanding the Warburg effect: The metabolic Requiremetns of cell proliferation, Science (80-. ), vol.324, issue.5930, pp.1029-1033, 2009.

R. G. Jones and C. B. Thompson, Tumor suppressors and cell metabolism: a recipe for cancer growth, Genes Dev, vol.23, issue.5, pp.537-548, 2009.

J. Yang and R. A. Weinberg, Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis, Dev. Cell, vol.14, issue.6, pp.818-847, 2008.

C. L. Chaffer and R. A. Weinberg, A Perspective on Cancer Cell Metastasis, Science (80-. ), vol.331, issue.6024, pp.1559-1564, 2011.

D. Hanahan and R. A. Weinberg, Hallmarks of cancer: The next generation, Cell, vol.144, issue.5, pp.646-674, 2011.

A. Méjean and T. Lebret, La cascade métastatique : angiogenèse et nouveaux concepts, Prog. en Urol, vol.18, issue.7, pp.156-166, 2008.

T. Lebret and A. Méjean, Physiopathologie de la métastase : du primitif au secondaire, Prog. en Urol, vol.18, issue.7, pp.147-155, 2008.

P. Polakis, The many ways of Wnt in cancer, Curr. Opin. Genet. Dev, vol.17, issue.1, pp.45-51, 2007.

T. Reya and H. Clevers, Wnt signalling in stem cells and cancer, Nature, vol.434, issue.7035, pp.843-850, 2005.

G. A. Wildenberg, M. R. Dohn, R. H. Carnahan, M. A. Davis, N. A. Lobdell et al., p120-catenin and p190RhoGAP regulate cell-cell adhesion by coordinating antagonism between Rac and Rho, Cell, vol.127, issue.5, pp.1027-1066, 2006.

N. K. Noren, C. M. Niessen, B. M. Gumbiner, and K. Burridge, Cadherin engagement regulates Rho family GTPases, J. Biol. Chem, vol.276, issue.36, pp.33305-33313, 2001.

P. Friedl and K. Wolf, Tumour-cell invasion and migration: diversity and escape mechanisms, Nat. Rev. Cancer, vol.3, issue.5, pp.362-74, 2003.

L. Blanchoin, K. J. Amann, H. N. Higgs, J. Marchand, D. A. Kaiser et al., Direct observation of dendritic actin filament networks nucleated by Arp2/3 complex and WASP/Scar proteins, Nature, vol.404, issue.6781, pp.1007-1011, 2000.

R. Rohatgi, L. Ma, H. Miki, M. Lopez, T. Kirchhausen et al., The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly, Cell, vol.97, issue.2, pp.221-252, 1999.

K. Kaibuchi, S. Kuroda, and M. Amano, Regulation of the Cytoskeleton and Cell Adhesion by the Rho Family GTPases in Mammalian Cells, Annu. Rev. Biochem, vol.68, issue.1, pp.459-486, 1999.

C. D. Nobes and A. Hall, Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia, Cell, vol.81, issue.1, pp.53-62, 1995.

E. Zamir and B. Geiger, Molecular complexity and dynamics of cell-matrix adhesions, J. Cell Sci, vol.114, pp.3583-90, 2001.

S. Miyamoto, H. Teramoto, O. A. Coso, J. S. Gutkind, P. D. Burbelo et al., Integrin function: molecular hierarchies of cytoskeletal and signaling molecules, J. Cell Biol, vol.131, issue.3, pp.791-805, 1995.

M. A. Schwartz and S. J. Shattil, Signaling networks linking integrins and rho family GTPases, Trends Biochem. Sci, vol.25, issue.8, pp.388-91, 2000.

D. Lli?, Y. Furuta, S. Kanazawa, N. Takeda, K. Sobue et al., Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice, Nature, vol.377, issue.6549, pp.539-544, 1995.

S. C. Mueller, G. Ghersi, S. K. Akiyama, Q. X. Sang, L. Howard et al., A novel protease-docking function of integrin at invadopodia, J. Biol. Chem, vol.274, issue.35, pp.24947-52, 1999.

P. Friedl and K. Wolf, Proteolytic and non-proteolytic migration of tumour cells and leucocytes, Biochem. Soc. Symp, issue.70, pp.277-85, 2003.

E. Ohuchi, K. Imai, Y. Fujii, H. Sato, M. Seiki et al., Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules, J. Biol. Chem, vol.272, issue.4, pp.2446-51, 1997.

K. Katoh, Y. Kano, M. Amano, H. Onishi, K. Kaibuchi et al., Rho-kinase--mediated contraction of isolated stress fibers, J. Cell Biol, vol.153, issue.3, pp.569-84, 2001.

T. Kaneko-kawano, F. Takasu, H. Naoki, Y. Sakumura, S. Ishii et al., Dynamic regulation of myosin light chain phosphorylation by Rhokinase, PLoS One, vol.7, issue.6, p.39269, 2012.

M. A. Wear, D. A. Schafer, and J. A. Cooper, Actin dynamics: Assembly and disassembly of actin networks, Curr. Biol, vol.10, issue.24, pp.891-895, 2000.

L. Zeng, X. Si, W. Yu, H. T. Le, K. P. Ng et al., PTP? regulates integrin-stimulated FAK autophosphorylation and cytoskeletal rearrangement in cell spreading and migration, J. Cell Biol, vol.160, issue.1, pp.137-146, 2003.

D. A. Potter, J. S. Tirnauer, R. Janssen, D. E. Croall, C. N. Hughes et al., Calpain regulates actin remodeling during cell spreading, J. Cell Biol, vol.141, issue.3, pp.647-62, 1998.

M. Pfaff, X. Du, and M. H. Ginsberg, Calpain cleavage of integrin beta cytoplasmic domains, FEBS Lett, vol.460, issue.1, pp.17-22, 1999.

M. S. Bretscher, Getting membrane flow and the cytoskeleton to cooperate in moving cells, Cell, vol.87, issue.4, pp.601-607, 1996.

H. T. Enterline and D. R. Coman, The ameboid motility of human and animal neoplastic cells, Cancer, vol.3, issue.6, pp.1033-1041, 1950.

J. P. Thiery, Epithelial-mesenchymal transitions in tumour progression, Nat. Rev. Cancer, vol.2, issue.6, pp.442-454, 2002.

L. A. Davidson and R. E. Keller, Neural tube closure in Xenopus laevis involves medial migration, directed protrusive activity, cell intercalation and convergent extension, Development, vol.126, issue.20, pp.4547-56, 1999.

Y. Hegerfeldt, M. Tusch, E. Bröcker, and P. Friedl, Collective cell movement in primary melanoma explants: plasticity of cell-cell interaction, beta1-integrin function, and migration strategies, Cancer Res, vol.62, issue.7, pp.2125-2155, 2002.

K. Nabeshima, T. Inoue, Y. Shimao, H. Kataoka, and M. Koono, Cohort migration of carcinoma cells: differentiated colorectal carcinoma cells move as coherent cell clusters or sheets, Histol. Histopathol, vol.14, issue.4, pp.1183-97, 1999.

M. Polette, C. Gilles, S. De-bentzmann, D. Gruenert, J. M. Tournier et al., Association of fibroblastoid features with the invasive phenotype in human bronchial cancer cell lines, Clin. Exp. Metastasis, vol.16, issue.2, pp.105-117, 1998.

A. M. Tester, N. Ruangpanit, R. L. Anderson, and E. W. Thompson, MMP-9 secretion and MMP-2 activation distinguish invasive and metastatic sublines of a mouse mammary carcinoma system showing epithelial-mesenchymal transition traits, Clin. Exp. Metastasis, vol.18, issue.7, pp.553-60, 2000.

E. Putz, K. Witter, S. Offner, P. Stosiek, A. Zippelius et al., Phenotypic characteristics of cell lines derived from disseminated cancer cells in bone marrow of patients with solid epithelial tumors: establishment of working models for human micrometastases, Cancer Res, vol.59, issue.1, pp.241-249, 1999.

E. Cukierman, R. Pankov, D. R. Stevens, and K. M. Yamada, Taking Cell-Matrix Adhesions to the Third Dimension, Science (80-. ), vol.294, issue.5547, pp.1708-1712, 2001.

I. Rabinovitz and A. M. Mercurio, The integrin alpha6beta4 functions in carcinoma cell migration on laminin-1 by mediating the formation and stabilization of actin-containing motility structures, J. Cell Biol, vol.139, issue.7, pp.1873-84, 1997.

C. M. Waterman-storer, R. A. Worthylake, B. P. Liu, K. Burridge, and E. D. Salmon, Microtubule growth activates Rac1 to promote lamellipodial protrusionin fibroblasts, Nat. Cell Biol, vol.1, issue.1, pp.45-50, 1999.

S. Etienne-manneville and A. Hall, Rho GTPases in cell biology, Nature, vol.420, issue.6916, pp.629-635, 2002.

A. Efimov, N. Schiefermeier, I. Grigoriev, R. Ohi, M. C. Brown et al., Paxillin-dependent stimulation of microtubule catastrophes at focal adhesion sites, J. Cell Sci, vol.121, issue.2, pp.196-204, 2008.

X. D. Ren, W. B. Kiosses, and M. A. Schwartz, Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton, EMBO J, vol.18, issue.3, p.578, 1999.

C. M. Waterman-storer and E. Salmon, Positive feedback interactions between microtubule and actin dynamics during cell motility, Curr. Opin. Cell Biol, vol.11, issue.1, pp.61-68, 1999.

S. Etienne-manneville, Microtubules in cell migration, Annu. Rev. Cell Dev. Biol, vol.29, pp.471-99, 2013.

O. C. Rodriguez, A. W. Schaefer, C. A. Mandato, P. Forscher, W. M. Bement et al., Conserved microtubule|[ndash]|actin interactions in cell movement and morphogenesis, vol.5, pp.599-609, 2003.

S. P. Chiang, R. M. Cabrera, and J. E. Segall, Tumor cell intravasation, Am. J. Physiol. Cell Physiol, vol.311, issue.1, pp.1-14, 2016.

W. Guo and F. G. Giancotti, Integrin signalling during tumour progression, Nat. Rev. Mol. Cell Biol, vol.5, issue.10, pp.816-826, 2004.

B. Strilic and S. Offermanns, Intravascular Survival and Extravasation of Tumor Cells, Cancer Cell, vol.32, issue.3, pp.282-293, 2017.

M. Tichet, V. Prod'homme, N. Fenouille, D. Ambrosetti, A. Mallavialle et al.,

J. Michiels, M. Borg, S. Deckert, and . Tartare-deckert, Tumour-derived SPARC drives vascular permeability and extravasation through endothelial VCAM1 signalling to promote metastasis, Nat. Commun, vol.6, issue.1, p.6993, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01295443

B. Strilic, L. Yang, J. Albarrán-juárez, L. Wachsmuth, K. Han et al., Tumour-cell-induced endothelial cell necroptosis via death receptor 6 promotes metastasis, Nature, vol.536, issue.7615, pp.215-218, 2016.

J. Massagué and A. C. Obenauf, , vol.529, pp.298-306, 2016.

M. Labelle, S. Begum, and R. O. Hynes, Direct Signaling between Platelets and Cancer Cells Induces an Epithelial-Mesenchymal-Like Transition and Promotes Metastasis, Cancer Cell, vol.20, issue.5, pp.576-590, 2011.

D. Schumacher, B. Strilic, K. K. Sivaraj, N. Wettschureck, and S. Offermanns, Platelet-Derived Nucleotides Promote Tumor-Cell Transendothelial Migration and Metastasis via P2Y2 Receptor, Cancer Cell, vol.24, issue.1, pp.130-137, 2013.

I. J. Fidler, The organ microenvironment and cancer metastasis, Differentiation, vol.70, issue.9, pp.498-505, 2002.

L. Ossowski and J. A. Aguirre-ghiso, Dormancy of metastatic melanoma, Pigment Cell Melanoma Res, vol.23, issue.1, pp.41-56, 2010.

A. F. Chambers, A. C. Groom, and I. C. Macdonald, Metastasis: Dissemination and growth of cancer cells in metastatic sites, Nat. Rev. Cancer, vol.2, issue.8, pp.563-572, 2002.

Y. Kang, P. M. Siegel, W. Shu, M. Drobnjak, S. M. Kakonen et al., A multigenic program mediating breast cancer metastasis to bone, Cancer Cell, vol.3, issue.6, pp.537-586, 2003.

A. J. Minn, G. P. Gupta, P. M. Siegel, P. D. Bos, W. Shu et al., Genes that mediate breast cancer metastasis to lung, Nature, vol.436, issue.7050, pp.518-524, 2005.

J. P. Sleeman, B. Cady, and K. Pantel, The connectivity of lymphogenous and hematogenous tumor cell dissemination: biological insights and clinical implications, Clin. Exp. Metastasis, vol.29, issue.7, pp.737-746, 2012.

C. Lugassy, B. P. Eyden, L. Christensen, and J. P. Escande, Angio-tumoral complex in human malignant melanoma characterised by free laminin: ultrastructural and immunohistochemical observations, J. Submicrosc. Cytol. Pathol, vol.29, issue.1, pp.19-28, 1997.

C. Lugassy, R. L. Barnhill, and L. Christensen, Melanoma and extravascular migratory metastasis, J. Cutan. Pathol, vol.27, issue.9, p.481, 2000.

L. A. Bentolila, R. Prakash, D. Mihic-probst, M. Wadehra, H. K. Kleinman et al., Imaging of Angiotropism/Vascular Co-Option in a Murine Model of Brain Melanoma: Implications for Melanoma Progression along Extravascular Pathways, Nat. Publ. Gr, 2016.

P. C. Stapor, R. S. Sweat, D. C. Dashti, A. M. Betancourt, and W. L. Murfee, Pericyte dynamics during angiogenesis: new insights from new identities, J. Vasc. Res, vol.51, issue.3, pp.163-74, 2014.

M. Crisan, S. Yap, L. Casteilla, C. Chen, M. Corselli et al.,

L. Giacobino, J. Lazzari, B. Huard, and . Péault, A Perivascular Origin for Mesenchymal Stem Cells in Multiple Human Organs, Cell Stem Cell, vol.3, issue.3, pp.301-313, 2008.

T. Bald, T. Quast, J. Landsberg, M. Rogava, N. Glodde et al.,

M. Barnhill, B. K. Koch, I. Fleischmann, W. Förster, W. Kastenmüller et al., Ultraviolet-radiation-induced inflammation promotes angiotropism and metastasis in melanoma, Nature, vol.507, issue.7490, pp.109-113, 2014.

R. K. Singh, M. Gutman, R. Reich, and M. Bar-eli, Ultraviolet B irradiation promotes tumorigenic and metastatic properties in primary cutaneous melanoma via induction of interleukin 8, Cancer Res, vol.55, issue.16, pp.3669-74, 1995.

C. Gebhardt, M. Averbeck, A. Viertel, F. Kauer, A. Saalbach et al., Ultraviolet-B irradiation enhances melanoma cell motility via induction of autocrine interleukin 8 secretion, Exp. Dermatol, vol.16, issue.8, pp.636-643, 2007.

C. Lugassy, S. Zadran, L. A. Bentolila, M. Wadehra, R. Prakash et al., Angiotropism, pericytic mimicry and extravascular migratory metastasis in melanoma: an alternative to intravascular cancer dissemination, Cancer Microenviron, vol.7, issue.3, pp.139-52, 2014.

Q. Schwarz, C. H. Maden, J. M. Vieira, and C. Ruhrberg, Neuropilin 1 signaling guides neural crest cells to coordinate pathway choice with cell specification, Proc. Natl. Acad. Sci, vol.106, issue.15, pp.6164-6169, 2009.

C. M. Bailey, J. A. Morrison, and P. M. Kulesa, Melanoma revives an embryonic migration program to promote plasticity and invasion, Pigment Cell Melanoma Res, vol.25, issue.5, pp.573-583, 2012.

R. Perris and D. Perissinotto, Role of the extracellular matrix during neural crest cell migration, Mech. Dev, vol.95, issue.1-2, pp.3-21, 2000.

S. Paget, THE DISTRIBUTION OF SECONDARY GROWTHS IN CANCER OF THE BREAST, Lancet, vol.133, issue.3421, pp.571-573, 1889.

R. L. Barnhill and C. Lugassy, Angiotropic malignant melanoma and extravascular migratory metastasis: description of 36 cases with emphasis on a new mechanism of tumour spread, Pathology, vol.36, issue.5, pp.485-490, 2004.

C. Lugassy, B. Péault, M. Wadehra, H. K. Kleinman, and R. L. Barnhill, Could pericytic mimicry represent another type of melanoma cell plasticity with embryonic properties?, Pigment Cell Melanoma Res, vol.26, issue.5, pp.746-754, 2013.

A. Farin, S. O. Suzuki, M. Weiker, J. E. Goldman, J. N. Bruce et al., Transplanted glioma cells migrate and proliferate on host brain vasculature: A dynamic analysis, Glia, vol.53, issue.8, pp.799-808, 2006.

P. Wesseling, D. J. Ruiter, and P. C. Burger, Angiogenesis in brain tumors; pathobiological and clinical aspects, J. Neurooncol, vol.32, issue.3, pp.253-65, 1997.

C. Lugassy, R. I. Haroun, H. Brem, B. M. Tyler, R. Jones et al., Pericytic-like angiotropism of glioma and melanoma cells, Am. J. Dermatopathol, vol.24, issue.6, pp.473-481, 2002.

M. J. Levy, F. C. Gleeson, and L. Zhang, Endoscopic Ultrasound Fine-Needle Aspiration Detection of Extravascular Migratory Metastasis From a Remotely Located Pancreatic Cancer, Clin. Gastroenterol. Hepatol, vol.7, issue.2, pp.246-248, 2009.

C. Liebig, G. Ayala, J. A. Wilks, D. H. Berger, and D. Albo, Perineural invasion in cancer, Cancer, vol.115, issue.15, pp.3379-3391, 2009.

C. Lugassy, S. E. Vernon, J. W. Warner, C. Q. Le, M. Manyak et al., Angiotropism of human prostate cancer cells: implications for extravascular migratory metastasis, BJU Int, vol.95, issue.7, pp.1099-1103, 2005.

J. M. Dyke, M. L. Crook, M. Platten, and C. J. Stewart, Extravascular migratory metastasis in gynaecological carcinosarcoma, Histopathology, vol.65, issue.3, pp.363-370, 2014.

M. Mravic, G. Asatrian, C. Soo, C. Lugassy, R. L. Barnhill et al., From pericytes to perivascular tumours: correlation between pathology, stem cell biology, and tissue engineering, Int. Orthop, vol.38, issue.9, pp.1819-1824, 2014.

G. Fornabaio, R. L. Barnhill, C. Lugassy, L. A. Bentolila, N. Cassoux et al., Angiotropism and extravascular migratory metastasis in cutaneous and uveal melanoma progression in a zebrafish model, Sci. Rep, vol.8, issue.1, p.10448, 2018.

N. M. Le-douarin, E. Dupin, A. Baroffio, and C. Dulac, New Insights into the Development of Neural Crest Derivatives, Int. Rev. Cytol, vol.138, pp.269-314, 1992.

L. S. Gammill and M. Bronner-fraser, Neural crest specification: migrating into genomics, Nat. Rev. Neurosci, vol.4, issue.10, pp.795-805, 2003.

S. P. Delaney, L. M. Julian, and W. L. Stanford, The neural crest lineage as a driver of disease heterogeneity in Tuberous Sclerosis Complex and Lymphangioleiomyomatosis, Front. cell Dev. Biol, vol.2, p.69, 2014.

A. Locascio and M. A. Nieto, Cell movements during vertebrate development: integrated tissue behaviour versus individual cell migration, Curr. Opin. Genet. Dev, vol.11, issue.4, pp.464-473, 2001.

D. Meulemans and M. Bronner-fraser, Gene-Regulatory Interactions in Neural Crest Evolution and Development, Dev. Cell, vol.7, issue.3, pp.291-299, 2004.

R. E. Boissy and T. J. Hornyak, Extracutaneous Melanocytes, The Pigmentary System, pp.91-107, 2006.

T. Herrling, K. Jung, and J. Fuchs, The role of melanin as protector against free radicals in skin and its role as free radical indicator in hair, Spectrochim. Acta Part A Mol. Biomol. Spectrosc, vol.69, issue.5, pp.1429-1435, 2008.

Y. Yamaguchi and V. J. Hearing, Melanocytes and Their Diseases, Cold Spring Harb. Perspect. Med, vol.4, issue.5, pp.17046-017046, 2014.

P. J. Waardenburg, A new syndrome combining developmental anomalies of the eyelids, eyebrows and nose root with pigmentary defects of the iris and head hair and with congenital deafness, Am. J. Hum. Genet, vol.3, issue.3, pp.195-253, 1951.

F. Mouriaux, M. Hamedani, T. Hurbli, Y. Uteza, A. Oubaaz et al., J. Fr. Ophtalmol, vol.22, issue.7, pp.799-809, 1999.

M. Tassabehji, V. E. Newton, X. Z. Liu, A. Brady, D. Donnai et al., The mutational spectrum in Waardenburg syndrome, Hum. Mol. Genet, vol.4, issue.11, pp.2131-2138, 1995.

V. Pingault, N. Bondurand, K. Kuhlbrodt, D. E. Goerich, M. Préhu et al., SOX10 mutations in patients with Waardenburg-Hirschsprung disease, vol.18, pp.171-173, 1998.

E. G. Puffenberger, K. Hosoda, S. S. Washington, K. Nakao, D. Dewit et al., A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung's disease, Cell, vol.79, issue.7, pp.1257-66, 1994.

M. L. Mcham and A. Fulton, Albinism, Int. Ophthalmol. Clin, vol.32, issue.1, pp.185-200, 1992.

S. Park, D. M. Albert, and J. L. Bolognia, Ocular manifestations of pigmentary disorders, Dermatol. Clin, vol.10, issue.3, pp.609-631, 1992.

F. Mouriaux, S. Saule, L. Desjardins, and F. Mascarelli, Les mélanocytes choroïdiens normaux et malins : de la cellule à la clinique, J. Fr. Ophtalmol, pp.781-793, 2005.

J. R. Gonder, J. A. Shields, D. M. Albert, J. J. Augsburger, and P. T. Lavin, Uveal malignant melanoma associated with ocular and oculodermal melanocytosis, Ophthalmology, vol.89, issue.8, pp.953-60, 1982.

C. L. Shields, J. G. Kels, and J. A. Shields, Melanoma of the eye: revealing hidden secrets, one at a time, Clin. Dermatol, vol.33, issue.2, pp.183-96, 2015.

A. D. Singh, P. Kalyani, and A. Topham, Estimating the risk of malignant transformation of a choroidal nevus, Ophthalmology, vol.112, issue.10, pp.1784-1789, 2005.

L. E. Zimmerman and I. A. Mclean, , pp.75-82, 1891.

R. Murali, T. Wiesner, M. K. Rosenblum, and B. C. Bastian, GNAQ and GNA11 mutations in melanocytomas of the central nervous system, Acta Neuropathol, vol.123, issue.3, pp.457-466, 2012.

T. Van-den and . Bosch, Genetic Prognostic Factors and Follow-up in Uveal Melanoma, 2012.

C. C. Mclaughlin, X. Wu, A. Jemal, H. J. Martin, L. M. Roche et al., , vol.103, pp.1000-1007, 2005.

P. Isager, A. Østerlind, G. Engholm, S. Heegaard, J. Lindegaard et al., Uveal and Conjunctival Malignant Melanoma in Denmark, 1943-97: Incidence and Validation Study, Ophthalmic Epidemiol, vol.12, issue.4, pp.223-232, 2005.

B. A. Krantz, N. Dave, K. M. Komatsubara, B. P. Marr, and R. D. , Uveal melanoma: epidemiology, etiology, and treatment of primary disease, Clin. Ophthalmol, vol.11, pp.279-289, 2017.

S. Eskelin, S. Pyrhönen, P. Summanen, M. Hahka-kemppinen, and T. Kivelä, Tumor doubling times in metastatic malignant melanoma of the uvea: tumor progression before and after treatment, Ophthalmology, vol.107, issue.8, pp.1443-1452, 2000.

S. Kaliki, C. L. Shields, and J. A. Shields, Uveal melanoma: estimating prognosis, Indian J. Ophthalmol, vol.63, issue.2, pp.93-102, 2015.

, OMF -disease, p.4, 2018.

R. P. Gallagher, J. M. Elwood, J. Rootman, J. J. Spinelli, G. B. Hill et al., Risk factors for ocular melanoma: Western Canada Melanoma Study, J Natl Cancer Inst, vol.74, issue.4, pp.775-778, 1985.

A. Schmidt-pokrzywniak, K. Jöckel, N. Bornfeld, W. Sauerwein, and A. Stang, Positive Interaction Between Light Iris Color and Ultraviolet Radiation in Relation to the Risk of Uveal Melanoma, Ophthalmology, vol.116, issue.2, pp.340-348, 2009.

M. A. Tucker, J. A. Shields, P. Hartge, J. Augsburger, R. N. Hoover et al., Sunlight Exposure as Risk Factor for Intraocular Malignant Melanoma, N. Engl. J. Med, vol.313, issue.13, pp.789-792, 1985.

W. Li, H. Judge, E. S. Gragoudas, J. M. Seddon, and K. M. Egan, Patterns of tumor initiation in choroidal melanoma, Cancer Res, vol.60, issue.14, pp.3757-60, 2000.

W. S. Manning, P. G. Greenlee, and J. N. Norton, Ocular melanoma in a Long Evans rat, Contemp. Top. Lab. Anim. Sci, vol.43, issue.1, pp.44-50, 2004.

J. A. Marshall, K. D. Gordon, C. S. Mccauley, J. P. De-souza-filho, and M. N. Burnier, The effect of blue light exposure and use of intraocular lenses on human uveal melanoma cell lines, Melanoma Res, vol.16, issue.6, pp.537-541, 2006.

C. M. Vajdic, A. Kricker, M. Giblin, J. Mckenzie, J. Aitken et al., Sun exposure predicts risk of ocular melanoma in Australia, Int. J. Cancer, vol.101, issue.2, pp.175-182, 2002.

R. A. Wiznia, J. K. Freedman, A. D. Mancini, and J. A. Shields, Malignant melanoma of the choroid in neurofibromatosis, Am. J. Ophthalmol, vol.86, issue.5, pp.684-691, 1978.

A. D. Singh, M. X. Wang, L. A. Donoso, C. L. Shields, P. Potter et al., Familial Uveal Melanoma, III, Arch. Ophthalmol, vol.114, issue.9, p.1101, 1996.

P. L. Triozzi, C. Eng, and A. D. Singh, Targeted therapy for uveal melanoma, Cancer Treat. Rev, vol.34, issue.3, p.132, 2008.

B. Damato, Does ocular treatment of uveal melanoma influence survival, Br. J. Cancer, vol.103, issue.3, pp.285-290, 2010.

S. J. and S. C. , Current management of posterior uveal melanoma, Mayo Clin. Proc, vol.68, issue.12, pp.1196-1200, 1993.

J. W. Gamel, I. W. Mclean, and J. B. Mccurdy, Biologic distinctions between cure and time to death in 2892 patients with intraocular melanoma, Cancer, vol.71, issue.7, pp.2299-305, 1993.

A. Schmittel, N. E. Bechrakis, P. Martus, D. Mutlu, C. Scheibenbogen et al., Independent prognostic factors for distant metastases and survival in patients with primary uveal melanoma, Eur. J. Cancer, vol.40, issue.16, pp.2389-2395, 2004.

B. Damato, C. Duke, S. E. Coupland, P. Hiscott, P. A. Smith et al., Cytogenetics of Uveal Melanoma. A 7-Year Clinical Experience, Ophthalmology, vol.114, issue.10, pp.1925-1932, 2007.

B. Damato, Does ocular treatment of uveal melanoma influence survival?, Br. J. Cancer, vol.103, issue.3, pp.285-290, 2010.

I. W. Mclean, V. S. Saraiva, and M. N. Burnier, Pathological and prognostic features of uveal melanomas, Can. J. Ophthalmol, vol.39, issue.4, pp.343-50, 2004.

L. Tarmann, W. Wackernagel, A. Avian, C. Mayer, M. Schneider et al., Ruthenium-106 plaque brachytherapy for uveal melanoma, Br. J. Ophthalmol, vol.99, issue.12, pp.1644-1649, 2015.

M. Marinkovic, N. Horeweg, M. Fiocco, F. P. Peters, L. W. Sommers et al., Ruthenium-106 brachytherapy for choroidal melanoma without transpupillary thermotherapy: Similar efficacy with improved visual outcome, Eur. J. Cancer, vol.68, pp.106-113, 2016.

A. Mashayekhi, C. L. Shields, P. Rishi, H. T. Atalay, M. Pellegrini et al., Primary Transpupillary Thermotherapy for Choroidal Melanoma in 391 Cases, Ophthalmology, vol.122, issue.3, pp.600-609, 2015.

S. Turcotte, D. Bergeron, A. P. Rousseau, and F. Mouriaux, Primary transpupillary thermotherapy for choroidal indeterminate melanocytic lesions, Can. J. Ophthalmol. / J. Can. d'Ophtalmologie, vol.49, issue.5, pp.464-467, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01626283

, The COMS Randomized Trial of Iodine 125 Brachytherapy for Choroidal Melanoma, Arch. Ophthalmol, vol.124, issue.12, p.1684, 2006.

J. Yang, D. K. Manson, B. P. Marr, and R. D. , Treatment of uveal melanoma: where are we now?, Ther. Adv. Med. Oncol, vol.10, p.1758834018757175, 2018.

, Assessment of Metastatic Disease Status at Death in 435 Patients With Large Choroidal Melanoma in the Collaborative Ocular Melanoma Study (COMS), Arch. Ophthalmol, vol.119, issue.5, p.670, 2001.

M. Diener-west, S. M. Reynolds, D. J. Agugliaro, R. Caldwell, K. Cumming et al., Screening for Metastasis From Choroidal Melanoma: The Collaborative Ocular Melanoma Study Group Report 23, J. Clin. Oncol, vol.22, issue.12, pp.2438-2444, 2004.

E. S. Gragoudas, Proton Beam Irradiation of Uveal Melanomas: The First 30 Years The Weisenfeld Lecture, Investig. Opthalmology Vis. Sci, vol.47, issue.11, p.4666, 2006.

S. Landreville, O. A. Agapova, and J. W. Harbour, Emerging insights into the molecular pathogenesis of uveal melanoma, Futur. Oncol, vol.4, issue.5, pp.629-636, 2008.

C. L. Shields, A. Ganguly, C. G. Bianciotto, K. Turaka, A. Tavallali et al., Prognosis of Uveal Melanoma in 500 Cases Using Genetic Testing of Fine-Needle Aspiration Biopsy Specimens, Ophthalmology, vol.118, issue.2, pp.396-401, 2011.

C. A. Klein, Framework models of tumor dormancy from patient-derived observations, Curr. Opin. Genet. Dev, vol.21, issue.1, pp.42-49, 2011.

M. Diener-west, S. M. Reynolds, D. J. Agugliaro, R. Caldwell, K. Cumming et al., Development of Metastatic Disease After Enrollment in the COMS Trials for Treatment of Choroidal Melanoma, Arch. Ophthalmol, vol.123, issue.12, p.1639, 2005.

S. Eskelin, S. Pyrhönen, M. Hahka-kemppinen, S. Tuomaala, and T. Kivelä, A prognostic model and staging for metastatic uveal melanoma, Cancer, vol.97, issue.2, pp.465-475, 2003.

J. Couturier and S. Saule, Genetic determinants of uveal melanoma, Curr. Concepts Uveal Melanoma, vol.49, pp.150-165, 2011.

E. Kilic, W. Van-gils, E. Lodder, H. B. Beverloo, M. E. Van-til et al., Clinical and Cytogenetic Analyses in Uveal Melanoma, Investig. Opthalmology Vis. Sci, vol.47, issue.9, p.3703, 2006.

J. W. Harbour, Molecular Prognostic Testing and Individualized Patient Care in Uveal Melanoma, American journal of ophtalmology, vol.148, issue.6, pp.823-832, 2009.

T. Häusler, A. Stang, G. Anastassiou, K. Jöckel, S. Mrzyk et al., Loss of heterozygosity of 1p in uveal melanomas with monosomy 3, Int. J. Cancer, vol.116, issue.6, pp.909-913, 2005.

E. Kilic, N. C. Naus, W. Van-gils, C. C. Klaver, M. E. Van-til et al., Concurrent Loss of Chromosome Arm 1p and Chromosome 3 Predicts a Decreased Disease-Free Survival in Uveal Melanoma Patients, Investig. Opthalmology Vis. Sci, vol.46, issue.7, p.2253, 2005.

E. Kilic, H. T. Brüggenwirth, M. Meier, N. C. Naus, H. B. Beverloo et al., Increased expression of p73?ex2 transcript in uveal melanoma with loss of chromosome 1p, Melanoma Res, vol.18, issue.3, pp.208-213, 2008.

N. Cassoux, M. J. Rodrigues, C. Plancher, B. Asselain, C. Levy-gabriel et al., Genome-wide profiling is a clinically relevant and affordable prognostic test in posterior uveal melanoma, Br. J. Ophthalmol, vol.98, issue.6, pp.769-774, 2014.

T. Van-den, E. Bosch, D. Kilic, A. Paridaens, and . De-klein, Genetics of Uveal Melanoma and Cutaneous Melanoma: Two of a Kind?, Dermatol. Res. Pract, vol.2010, pp.1-13, 2010.

Y. Aalto, L. Eriksson, S. Seregard, O. Larsson, and S. Knuutila, Concomitant loss of chromosome 3 and whole arm losses and gains of chromosome 1, 6, or 8 in metastasizing primary uveal melanoma, Invest. Ophthalmol. Vis. Sci, vol.42, issue.2, pp.313-320, 2001.

B. Damato, J. Dopierala, A. Klaasen, M. Van-dijk, J. Sibbring et al., Multiplex Ligation-Dependent Probe Amplification of Uveal Melanoma: Correlation with Metastatic Death, Investig. Opthalmology Vis. Sci, vol.50, issue.7, p.3048, 2009.

V. A. White, J. D. Chambers, P. D. Courtright, W. Y. Chang, and D. E. Horsman, Correlation of cytogenetic abnormalities with the outcome of patients with uveal melanoma, Cancer, vol.83, issue.2, pp.354-363, 1998.

J. P. Ehlers, L. Worley, M. D. Onken, and J. W. Harbour, Integrative genomic analysis of aneuploidy in uveal melanoma, Clin. Cancer Res, vol.14, issue.1, pp.115-122, 2008.

P. Parrella, D. Sidransky, and S. L. Merbs, Allelotype of posterior uveal melanoma: implications for a bifurcated tumor progression pathway, Cancer Res, vol.59, issue.13, pp.3032-3039, 1999.

G. Prescher, N. Bornfeld, W. Friedrichs, S. Seeber, and R. Becher, Cytogenetics of twelve cases of uveal melanoma and patterns of nonrandom anomalies and isochromosome formation, Cancer Genet. Cytogenet, vol.80, issue.1, pp.40-46, 1995.

M. D. Onken, L. Worley, J. P. Ehlers, and J. W. Harbour, Gene Expression Profiling in Uveal Melanoma Reveals Two Molecular Classes and Predicts Metastatic Death Advances in Brief Gene Expression Profiling in Uveal Melanoma Reveals Two Molecular Classes and Predicts Metastatic Death, Cancer Res, pp.7205-7209, 2004.

J. P. Ehlers and J. W. Harbour, NBS1 Expression as a Prognostic Marker in Uveal Melanoma, Clin. Cancer Res, vol.11, issue.5, pp.1849-1853, 2005.

J. P. Ehlers, L. Worley, M. D. Onken, and J. W. Harbour, DDEF1 Is Located in an Amplified Region of Chromosome 8q and Is Overexpressed in Uveal Melanoma, Clin. Cancer Res, vol.11, issue.10, pp.3609-3613, 2005.

C. Laurent, F. Valet, N. Planque, L. Silveri, S. Maacha et al., High PTP4A3 phosphatase expression correlates with metastatic risk in uveal melanoma patients, Cancer Res, vol.71, issue.3, pp.666-74, 2011.

S. Hughes, B. E. Damato, I. Giddings, P. S. Hiscott, J. Humphreys et al., Microarray comparative genomic hybridisation analysis of intraocular uveal melanomas identifies distinctive imbalances associated with loss of chromosome 3, Br. J. Cancer, vol.93, issue.10, pp.1191-1197, 2005.

J. Trolet, P. Hupé, I. Huon, I. Lebigot, C. Decraene et al., Genomic profiling and identification of high-risk uveal melanoma by array CGH analysis of primary tumors and liver metastases, Investig. Ophthalmol. Vis. Sci, vol.50, issue.6, pp.2572-2580, 2009.

M. D. Onken, L. A. Worley, M. D. Tuscan, and J. W. Harbour, An accurate, clinically feasible multigene expression assay for predicting metastasis in uveal melanoma, J. Mol. Diagnostics, vol.12, issue.4, pp.461-468, 2010.

R. Treisman, Regulation of transcription by MAP kinase cascades, Curr. Opin. Cell Biol, vol.8, issue.2, pp.205-220, 1996.

C. D. Van-raamsdonk, K. G. Griewank, M. B. Crosby, M. C. Garrido, S. Vemula et al., Mutations in GNA11 in Uveal Melanoma, vol.363, pp.2191-2199, 2010.

M. D. Onken, L. A. Worley, M. D. Long, S. Duan, M. L. Council et al., Oncogenic Mutations in GNAQ Occur Early in Uveal Melanoma, Investig. Opthalmology Vis. Sci, vol.49, issue.12, p.5230, 2008.

C. D. Van-raamsdonk, K. R. Fitch, H. Fuchs, M. H. De-angelis, and G. S. Barsh, Effects of G-protein mutations on skin color, Nat. Genet, vol.36, issue.9, pp.961-968, 2004.

J. Bauer, E. Kilic, J. Vaarwater, B. C. Bastian, C. Garbe et al., Oncogenic GNAQ mutations are not correlated with disease-free survival in uveal melanoma, Br. J. Cancer, vol.101, issue.5, pp.813-815, 2009.

A. Weber, U. R. Hengge, D. Urbanik, A. Markwart, A. Mirmohammadsaegh et al., Absence of mutations of the BRAF gene and constitutive activation of extracellular-regulated kinase in malignant melanomas of the uvea, Lab. Invest, vol.83, issue.12, pp.1771-1777, 2003.

W. Zuidervaart, F. Van-nieuwpoort, M. Stark, R. Dijkman, L. Packer et al., Activation of the MAPK pathway is a common event in uveal melanomas although it rarely occurs through mutation of BRAF or RAS, Br. J. Cancer, vol.92, issue.11, pp.2032-2038, 2005.

F. Henriquez, C. Janssen, E. G. Kemp, and F. Roberts, The T1799A BRAF Mutation Is Present in Iris Melanoma, Investig. Opthalmology Vis. Sci, vol.48, issue.11, p.4897, 2007.

A. Calipel, F. Mouriaux, A. Glotin, F. Malecaze, A. Faussat et al., Extracellular Signal-regulated Kinase-dependent Proliferation Is Mediated through the Protein Kinase A/B-Raf Pathway in Human Uveal Melanoma Cells, J. Biol. Chem, vol.281, issue.14, pp.9238-9250, 2006.

X. Chen, Q. Wu, P. Depeille, P. Chen, S. Thornton et al., RasGRP3 Mediates MAPK Pathway Activation in GNAQ Mutant Uveal Melanoma, Cancer Cell, vol.31, issue.5, pp.685-696, 2017.

P. Johansson, L. G. Aoude, K. Wadt, W. J. Glasson, S. K. Warrier et al., Deep sequencing of uveal melanoma identifies a recurrent mutation in <i&gt, Oncotarget, vol.7, issue.4, pp.4624-4655, 2016.

A. R. Moore, E. Ceraudo, J. J. Sher, Y. Guan, A. N. Shoushtari et al., Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma, Nat. Genet, vol.48, issue.6, pp.675-680, 2016.

F. Yu and K. Guan, The Hippo pathway: regulators and regulations, Genes Dev, vol.27, issue.4, pp.355-371, 2013.

S. W. Chan, C. J. Lim, K. Guo, C. P. Ng, I. Lee et al., A Role for TAZ in Migration, Invasion, and Tumorigenesis of Breast Cancer Cells, Cancer Res, vol.68, issue.8, pp.2592-2598, 2008.

A. A. Steinhardt, M. F. Gayyed, A. P. Klein, J. Dong, A. Maitra et al., Expression of Yes-associated protein in common solid tumors, Hum. Pathol, vol.39, issue.11, pp.1582-1589, 2008.

B. Zhao, X. Wei, W. Li, R. S. Udan, Q. Yang et al., Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control, Genes Dev, vol.21, issue.21, pp.2747-2761, 2007.

F. Yu, B. Zhao, N. Panupinthu, J. L. Jewell, I. Lian et al., Regulation of the Hippo-YAP Pathway by G-ProteinCoupled Receptor Signaling, Cell, vol.150, issue.4, pp.780-791, 2012.

F. Yu, J. Luo, J. Mo, G. Liu, Y. C. Kim et al.,

, Promote Uveal Melanoma Tumorigenesis by Activating YAP, Cancer Cell, vol.25, issue.6, pp.822-830, 2014.

X. Feng, M. S. Degese, R. Iglesias-bartolome, J. P. Vaque, A. A. Molinolo et al., Hippo-Independent Activation of YAP by the GNAQ Uveal Melanoma Oncogene through a Trio-Regulated Rho GTPase Signaling Circuitry, Cancer Cell, vol.25, issue.6, pp.831-845, 2014.

H. Dudek, S. R. Datta, T. F. Franke, M. J. Birnbaum, R. Yao et al., Regulation of neuronal survival by the serine-threonine protein kinase Akt, Science, vol.275, issue.5300, pp.661-666, 1997.

E. Y. Skolnik, B. Margolis, M. Mohammadi, E. Lowenstein, R. Fischer et al., Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases, Cell, vol.65, issue.1, pp.83-90, 1991.

J. K. Liao, T. Simoncini, A. Hafezi-moghadam, D. P. Brazil, K. Ley et al., Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase, Nature, vol.407, issue.6803, pp.538-541, 2000.

N. Babchia, A. Calipel, F. Mouriaux, A. Faussat, and F. Mascarelli, The PI3K/Akt and mTOR/P70S6K Signaling Pathways in Human Uveal Melanoma Cells: Interaction with B-Raf/ERK, Investig. Opthalmology Vis. Sci, vol.51, issue.1, p.421, 2010.

V. S. Saraiva, A. L. Caissie, L. Segal, C. Edelstein, and M. N. Burnier, Immunohistochemical expression of phospho-Akt in uveal melanoma, Melanoma Res, vol.15, issue.4, pp.245-50, 2005.

M. H. Abdel-rahman, Y. Yang, X. Zhou, E. L. Craig, F. H. Davidorf et al., High Frequency of Submicroscopic Hemizygous Deletion Is a Major Mechanism of Loss of Expression of PTEN in Uveal Melanoma, J. Clin. Oncol, vol.24, issue.2, pp.288-295, 2006.

L. C. Cantley and B. G. Neel, New insights into tumor suppression: PTEN suppresses tumor formation by restraining the phosphoinositide 3-kinase/AKT pathway, Proc. Natl. Acad. Sci. U. S. A, vol.96, issue.8, pp.4240-4245, 1999.

P. L. Dahia, R. C. Aguiar, J. Alberta, J. B. Kum, S. Caron et al., PTEN is inversely correlated with the cell survival factor Akt/PKB and is inactivated via multiple mechanismsin haematological malignancies, Hum. Mol. Genet, vol.8, issue.2, pp.185-93, 1999.

K. E. O&apos;reilly, F. Rojo, Q. She, D. Solit, G. B. Mills et al., mTOR Inhibition Induces Upstream Receptor Tyrosine Kinase Signaling and Activates Akt, vol.66, pp.1500-1508, 2006.

X. Wan, B. Harkavy, N. Shen, P. Grohar, and L. J. Helman, Rapamycin induces feedback activation of Akt signaling through an IGF-1R-dependent mechanism, Oncogene, vol.26, issue.13, pp.1932-1940, 2007.

Q. Zhu, G. M. Pao, A. M. Huynh, H. Suh, N. Tonnu et al., BRCA1 tumour suppression occurs via heterochromatin-mediated silencing, Nature, vol.477, issue.7363, pp.179-184, 2011.

Y. J. Machida, Y. Machida, A. A. Vashisht, J. A. Wohlschlegel, and A. Dutta, The Deubiquitinating Enzyme BAP1 Regulates Cell Growth via Interaction with HCF-1, J. Biol. Chem, vol.284, issue.49, pp.34179-34188, 2009.

S. Misaghi, S. Ottosen, A. Izrael-tomasevic, D. Arnott, M. Lamkanfi et al., Association of C-Terminal Ubiquitin Hydrolase BRCA1-Associated Protein 1 with Cell Cycle Regulator Host Cell Factor 1, Mol. Cell. Biol, vol.29, issue.8, pp.2181-2192, 2009.

Z. M. Eletr and K. D. Wilkinson, An Emerging Model for BAP1's Role in Regulating Cell Cycle Progression, Cell Biochem. Biophys, vol.60, issue.1-2, pp.3-11, 2011.

H. Nishikawa, W. Wu, A. Koike, R. Kojima, H. Gomi et al., BRCA1-Associated Protein 1 Interferes with BRCA1/BARD1 RING Heterodimer Activity, vol.69, pp.111-119, 2009.

J. C. Scheuermann, A. G. De-ayala-alonso, K. Oktaba, N. Ly-hartig, R. K. Mcginty et al., Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB, vol.465, pp.243-247, 2010.

J. W. Harbour, M. D. Onken, E. D. Roberson, S. Duan, L. Cao et al., Frequent Mutation of BAP1 in Metastasizing Uveal Melanomas, Science (80-. ), vol.330, issue.6009, pp.1410-1413, 2010.

A. G. Robertson, J. Shih, C. Yau, E. A. Gibb, J. Oba et al.,

A. D. Chang, L. Cherniack, J. Chin, E. Cho, S. Chuah et al.,

T. Woodman, Y. Wong, L. Wu, L. Yang, C. Yang et al., Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma, Cancer Cell, vol.32, issue.2, pp.204-220, 2017.

H. Yu, N. Mashtalir, S. Daou, I. Hammond-martel, J. Ross et al., The Ubiquitin Carboxyl Hydrolase BAP1 Forms a Ternary Complex with YY1 and HCF-1 and Is a Critical Regulator of Gene Expression, Mol. Cell. Biol, vol.30, issue.21, pp.5071-5085, 2010.

G. D. Te-raa, I. A. Derks, V. Navrkalova, A. Skowronska, P. D. Moerland et al., The impact of SF3B1 mutations in CLL on the DNA-damage response, vol.29, pp.1133-1142, 2015.

C. L. Decatur, E. Ong, N. Garg, H. Anbunathan, A. M. Bowcock et al., Driver Mutations in Uveal Melanoma, JAMA Ophthalmol, vol.134, issue.7, p.728, 2016.

J. W. Harbour, E. D. Roberson, H. Anbunathan, M. D. Onken, L. A. Worley et al., Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma, Nat. Genet, vol.45, issue.2, pp.133-135, 2013.

K. Yoshida, M. Sanada, Y. Shiraishi, D. Nowak, Y. Nagata et al., Frequent pathway mutations of splicing machinery in myelodysplasia, Nature, vol.478, issue.7367, pp.64-69, 2011.

V. Quesada, L. Conde, N. Villamor, G. R. Ordóñez, P. Jares et al., Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia, Nat. Genet, vol.44, issue.1, pp.47-52, 2012.

S. Yavuzyigitoglu, A. E. Koopmans, R. M. Verdijk, J. Vaarwater, B. Eussen et al., Uveal Melanomas with SF3B1 Mutations, Ophthalmology, vol.123, issue.5, pp.1118-1128, 2016.

M. Martin, L. Maßhöfer, P. Temming, S. Rahmann, C. Metz et al., Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3, Nat. Genet, vol.45, issue.8, pp.933-936, 2013.

R. D. Carvajal, G. K. Schwartz, T. Tezel, B. Marr, J. H. Francis et al., Metastatic disease from uveal melanoma: Treatment options and future prospects, Br. J. Ophthalmol, vol.101, issue.1, pp.38-44, 2017.

J. L. Battiste, T. Pestova, C. U. Hellen, and G. Wagner, The eIF1A solution structure reveals a large RNA-binding surface important for scanning function, Mol. Cell, vol.5, issue.1, pp.109-128, 2000.

C. A. Fekete, D. J. Applefield, S. A. Blakely, N. Shirokikh, T. Pestova et al., The eIF1A C-terminal domain promotes initiation complex assembly, scanning and AUG selection in vivo, EMBO J, vol.24, issue.20, pp.3588-3601, 2005.

A. G. Robertson, J. Shih, C. Yau, E. A. Gibb, J. Oba et al.,

A. D. Chang, L. Cherniack, J. Chin, E. Cho, S. Chuah et al.,

C. Heiman, J. M. Helsel, K. A. Hess, S. Hoadley, R. A. Hobensack et al.,

T. Woodman, Y. Wong, L. Wu, L. Yang, C. Yang et al., Integrative Analysis Identifies Four Molecular and Clinical Subsets in Uveal Melanoma, Cancer Cell, vol.32, issue.2, pp.204-220, 2017.

M. G. Field, C. L. Decatur, S. Kurtenbach, G. Gezgin, P. A. Van-der-velden et al., PRAME as an Independent Biomarker for Metastasis in Uveal Melanoma, Clin. Cancer Res, vol.22, issue.5, pp.1234-1276, 2016.

M. G. Field, M. A. Durante, C. L. Decatur, B. Tarlan, K. M. Oelschlager et al., Epigenetic reprogramming and aberrant expression of PRAME are associated with increased metastatic risk in Class 1 and Class 2 uveal melanomas, Oncotarget, vol.7, issue.37, pp.59209-59219, 2016.

D. Reichstein, New concepts in the molecular understanding of uveal melanoma, Curr. Opin. Ophthalmol, vol.28, issue.3, pp.219-227, 2017.

M. G. Field, M. A. Durante, H. Anbunathan, L. Z. Cai, C. L. Decatur et al., Punctuated evolution of canonical genomic aberrations in uveal melanoma, Nat. Commun, vol.9, issue.1, 2018.

Q. Pang, J. Ge, Y. Shao, W. Sun, H. Song et al., Increased expression of long intergenic non-coding RNA LINC00152 in gastric cancer and its clinical significance, Tumor Biol, vol.35, issue.6, pp.5441-5447, 2014.

T. Colombo, L. Farina, G. Macino, and P. Paci, PVT1: A Rising Star among Oncogenic Long Noncoding RNAs, Biomed Res. Int, vol.2015, pp.1-10, 2015.

K. Mallikarjuna, V. Pushparaj, J. Biswas, and S. Krishnakumar, Expression of Epidermal Growth Factor Receptor, Ezrin, Hepatocyte Growth Factor, and c-Met in Uveal Melanoma: An Immunohistochemical Study, Curr. Eye Res, vol.32, issue.3, pp.281-290, 2007.

C. All-ericsson, L. Girnita, A. Müller-brunotte, B. Brodin, S. Seregard et al., c-Kit-dependent growth of uveal melanoma cells: a potential therapeutic target?

, Ophthalmol. Vis. Sci, vol.45, issue.7, pp.2075-82, 2004.

H. Xu, L. P. Stabile, C. T. Gubish, W. E. Gooding, J. R. Grandis et al., Dual Blockade of EGFR and c-Met Abrogates Redundant Signaling and Proliferation in Head and Neck Carcinoma Cells, Clin. Cancer Res, vol.17, issue.13, pp.4425-4438, 2011.

X. Wu, J. Zhou, A. M. Rogers, P. A. Jänne, E. Benedettini et al., c-Met, epidermal growth factor receptor, and insulin-like growth factor-1 receptor are important for growth in uveal melanoma and independently contribute to migration and metastatic potential, Melanoma Res, vol.22, issue.2, pp.123-132, 2012.

M. E. Valsecchi, M. Orloff, R. Sato, I. Chervoneva, C. L. Shields et al., Adjuvant Sunitinib in High-Risk Patients with Uveal Melanoma, Ophthalmology, vol.125, issue.2, pp.210-217, 2018.

S. Landreville, O. A. Agapova, K. A. Matatall, Z. T. Kneass, M. D. Onken et al., Histone Deacetylase Inhibitors Induce Growth Arrest and Differentiation in Uveal Melanoma, Clin. Cancer Res, vol.18, issue.2, pp.408-416, 2012.

X. Guan, H. Wang, F. Ma, H. Qian, Z. Yi et al., The Efficacy and Safety of Programmed Cell Death 1 and Programmed Cell Death 1 Ligand Inhibitors for Advanced Melanoma, Medicine (Baltimore), vol.95, issue.11, p.3134, 2016.

G. Bossi, S. Buisson, J. Oates, B. K. Jakobsen, and N. J. Hassan, ImmTAC-redirected tumour cell killing induces and potentiates antigen cross-presentation by dendritic cells, Cancer Immunol. Immunother, vol.63, issue.5, pp.437-448, 2014.

I. Márquez-rodas, P. Cerezuela, A. Soria, A. Berrocal, A. Riso et al., Immune checkpoint inhibitors: therapeutic advances in melanoma, Ann. Transl. Med, vol.3, issue.18, p.267, 2015.

L. D. Rothermel, A. C. Sabesan, D. J. Stephens, S. S. Chandran, B. C. Paria et al., Identification of an Immunogenic Subset of Metastatic Uveal Melanoma, Clin. Cancer Res, vol.22, issue.9, pp.2237-2249, 2016.

G. Gezgin, S. J. Luk, J. Cao, M. Dogrusöz, D. M. Van-der-steen et al., PRAME as a Potential Target for Immunotherapy in Metastatic Uveal Melanoma, JAMA Ophthalmol, vol.135, issue.6, p.541, 2017.

R. D. Carvajal, J. A. Sosman, J. F. Quevedo, M. M. Milhem, A. M. Joshua et al., Effect of Selumetinib vs Chemotherapy on Progression-Free Survival in Uveal Melanoma, JAMA, vol.311, issue.23, p.2397, 2014.

G. S. Falchook, K. D. Lewis, J. R. Infante, M. S. Gordon, N. J. Vogelzang et al., Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: a phase 1 dose-escalation trial, Lancet Oncol, vol.13, issue.8, pp.782-789, 2012.

G. Ambrosini, E. Musi, A. L. Ho, E. De-stanchina, and G. K. Schwartz, Inhibition of Mutant GNAQ Signaling in Uveal Melanoma Induces AMPK-Dependent Autophagic Cell Death, Mol. Cancer Ther, vol.12, issue.5, pp.768-776, 2013.

E. Musi, G. Ambrosini, E. De-stanchina, and G. K. Schwartz, The Phosphoinositide 3-Kinase Selective Inhibitor BYL719 Enhances the Effect of the Protein Kinase C Inhibitor AEB071 in GNAQ/GNA11-Mutant Uveal Melanoma Cells, Mol. Cancer Ther, vol.13, issue.5, pp.1044-1053, 2014.

G. Carita, E. Frisch-dit-leitz, A. Dahmani, C. Raymondie, N. Cassoux et al., Dual inhibition of protein kinase C and p53-MDM2 or PKC and mTORC1 are novel efficient therapeutic approaches for uveal melanoma, Oncotarget, vol.7, issue.23, pp.33542-56, 2016.

S. Bhatia, J. Moon, K. A. Margolin, J. S. Weber, C. D. Lao et al., Phase II Trial of Sorafenib in Combination with Carboplatin and Paclitaxel in Patients with Metastatic Uveal Melanoma: SWOG S0512, PLoS One, vol.7, issue.11, p.48787, 2012.

N. Herlihy, M. Dogrusoz, T. H. Van-essen, J. W. Harbour, P. A. Van-der-velden et al., Skewed Expression of the Genes Encoding Epigenetic Modifiers in High-Risk Uveal Melanoma, Invest. Ophthalmol. Vis. Sci, vol.56, issue.3, pp.1447-1458, 2015.

L. Fu, M. Tian, X. Li, J. Li, J. Huang et al., Inhibition of BET bromodomains as a therapeutic strategy for cancer drug discovery, Oncotarget, vol.6, issue.8, pp.5501-5517, 2015.

P. Filippakopoulos, J. Qi, S. Picaud, Y. Shen, W. B. Smith et al.,

J. E. Knapp and . Bradner, Selective inhibition of BET bromodomains, Nature, vol.468, issue.7327, pp.1067-1073, 2010.

G. Ambrosini, A. D. Sawle, E. Musi, and G. K. Schwartz, BRD4-targeted therapy induces Mycindependent cytotoxicity in Gnaq/11-mutatant uveal melanoma cells, Oncotarget, vol.6, issue.32, pp.33397-409, 2015.

A. Alonso, J. Sasin, N. Bottini, I. Friedberg, I. Friedberg et al., Protein Tyrosine Phosphatases in the Human Genome, Cell, vol.117, issue.6, pp.699-711, 2004.

D. C. Bessette, D. Qiu, and C. J. Pallen, PRL PTPs: mediators and markers of cancer progression, Cancer Metastasis Rev, vol.27, issue.2, pp.231-252, 2008.

A. Östman, C. Hellberg, and F. D. Böhmer, Protein-tyrosine phosphatases and cancer, Nat. Rev. Cancer, vol.6, issue.4, pp.307-320, 2006.

P. Rios, X. Li, and M. Köhn, Molecular mechanisms of the PRL phosphatases, FEBS J, vol.280, issue.2, pp.505-529, 2013.

M. Montagna, O. Serova, B. S. Sylla, M. G. Mattei, and G. M. Lenoir, Localization of the human phosphotyrosine phosphatase-related genes (h-PRL-1) to chromosome bands 1p35-p34, 17q12-q21, 11q24-q25 and 12q24, Hum. Genet, vol.98, issue.6, pp.738-778, 1996.

C. A. Cates, R. L. Michael, K. R. Stayrook, K. A. Harvey, Y. D. Burke et al., Prenylation of oncogenic human PTPcaax protein tyrosine phosphatases, Cancer Lett, vol.110, issue.1-2, pp.49-55, 1996.

Q. Zeng, W. Hong, and Y. H. Tan, Mouse PRL-2 and PRL-3, Two Potentially Prenylated Protein Tyrosine Phosphatases Homologous to PRL-1, Biochem. Biophys. Res. Commun, vol.244, issue.2, pp.421-427, 1998.

Q. Zeng, X. Si, H. Horstmann, Y. Xu, W. Hong et al., Prenylation-dependent Association of Protein-tyrosine Phosphatases PRL-1, -2, and -3 with the Plasma Membrane and the Early Endosome, J. Biol. Chem, vol.275, issue.28, pp.21444-21452, 2000.

J. Wang, C. E. Kirby, and R. Herbst, The Tyrosine Phosphatase PRL-1 Localizes to the Endoplasmic Reticulum and the Mitotic Spindle and Is Required for Normal Mitosis, J. Biol. Chem, vol.277, issue.48, pp.46659-46668, 2002.

L. M. Ooms, K. A. Horan, P. Rahman, G. Seaton, R. Gurung et al., The role of the inositol polyphosphate 5-phosphatases in cellular function and human disease, Biochem. J, vol.419, issue.1, pp.29-49, 2009.

J. Sun, W. Wang, H. Yang, S. Liu, F. Liang et al., Structure and biochemical properties of PRL-1, a phosphatase implicated in cell growth, differentiation, and tumor invasion, Biochemistry, vol.44, issue.36, pp.12009-12030, 2005.

J. Sun, Y. Luo, X. Yu, W. Wang, B. Zhou et al., Phosphatase Activity, Trimerization, and the C-terminal Polybasic Region Are All Required for PRL1-mediated Cell Growth and Migration, J. Biol. Chem, vol.282, issue.39, pp.29043-29051, 2007.

G. Kozlov, J. Cheng, E. Ziomek, D. Banville, K. Gehring et al., Structural Insights into Molecular Function of the Metastasis-associated Phosphatase PRL-3, J. Biol. Chem, vol.279, issue.12, pp.11882-11889, 2004.

M. Pascaru, C. Tanase, A. M. Vacaru, P. Boeti, E. Neagu et al., Analysis of molecular determinants of PRL-3, J. Cell. Mol. Med, vol.13, issue.9b, pp.3141-3150, 2009.

K. Kim, J. Song, J. Jee, M. R. Sheen, C. Lee et al., Structure of human PRL-3, the phosphatase associated with cancer metastasis, FEBS Lett, vol.565, issue.1-3, pp.181-187, 2004.

D. G. Jeong, S. J. Kim, J. H. Kim, J. H. Son, M. R. Park et al., Trimeric structure of PRL-1 phosphatase reveals an active enzyme conformation and regulation mechanisms, J. Mol. Biol, vol.345, issue.2, pp.401-414, 2005.

J. S. Laurence, K. Hallenga, and C. V. Stauffacher, Letter to the Editor: 1 H, 15 N, 13 C Resonance Assignments of the Human Protein Tyrosine Phosphatase PRL-1, J. Biomol. NMR, vol.29, issue.3, pp.417-418, 2004.

F. Liang, S. Kumar, and Z. Zhang, Proteomic approaches to studying protein tyrosine phosphatases, Mol. Biosyst, vol.3, issue.5, p.308, 2007.

J. P. Sun, W. Q. Wang, H. Yang, S. Liu, F. Liang et al., Structure and biochemical properties of PRL-1, a phosphatase implicated in cell growth, differentiation, and tumor invasion, Biochemistry, vol.44, issue.36, pp.12009-12021, 2005.

L. Yu, U. Kelly, J. N. Ebright, G. Malek, P. Saloupis et al., Oxidative stress-induced expression and modulation of Phosphatase of Regenerating Liver-1 (PRL-1) in mammalian retina, Biochim. Biophys. Acta -Mol. Cell Res, vol.1773, issue.9, pp.1473-1482, 2007.

Y. Dong, L. Zhang, Y. Bai, H. Zhou, A. M. Campbell et al., Phosphatase of regenerating liver 2 (PRL2) deficiency impairs Kit signaling and spermatogenesis, J. Biol. Chem, vol.289, issue.6, pp.3799-810, 2014.

Y. Dong, L. Zhang, S. Zhang, Y. Bai, H. Chen et al., Phosphatase of Regenerating Liver 2 (PRL2) Is Essential for Placental Development by Down-regulating PTEN (Phosphatase and Tensin Homologue Deleted on Chromosome 10) and Activating Akt Protein, J. Biol. Chem, vol.287, issue.38, pp.32172-32179, 2012.

M. Kobayashi, Y. Bai, Y. Dong, H. Yu, S. Chen et al., PRL2/PTP4A2 phosphatase is important for hematopoietic stem cell self-renewal, Stem Cells, vol.32, issue.7, pp.1956-67, 2014.

S. Maacha, N. Planque, C. Laurent, C. Pegoraro, O. Anezo et al., Protein tyrosine phosphatase 4A3 (PTP4A3) is required for Xenopus laevis cranial neural crest migration in vivo, PLoS One, vol.8, issue.12, p.84717, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01183649

M. W. Zimmerman, G. E. Homanics, and J. S. Lazo, Targeted Deletion of the MetastasisAssociated Phosphatase Ptp4a3 (PRL-3) Suppresses Murine Colon Cancer, PLoS One, vol.8, issue.3, p.58300, 2013.

R. H. Diamond, D. E. Cressman, T. M. Laz, C. S. Abrams, and R. Taub, PRL-1, a unique nuclear protein tyrosine phosphatase, affects cell growth, Mol. Cell. Biol, vol.14, issue.6, pp.3752-62, 1994.

U. Fagerli, R. U. Holt, T. Holien, T. K. Vaatsveen, F. Zhan et al., Overexpression and involvement in migration by the metastasis-associated phosphatase PRL-3 in human myeloma cells, Blood, vol.111, issue.2, pp.806-815, 2008.

J. J. Fiordalisi, P. J. Keller, and A. D. Cox, PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility, Cancer Res, vol.66, issue.6, pp.3153-61, 2006.

R. Song, F. Qian, Y. Li, X. Sheng, S. Cao et al., Phosphatase of Regenerating Liver-3 Localizes to Cyto-Membrane and Is Required for B16F1 Melanoma Cell Metastasis In Vitro and In Vivo, PLoS One, vol.4, issue.2, p.4450, 2009.

M. Foy, O. Anézo, S. Saule, and N. Planque, PRL-3 / PTP4A3 phosphatase regulates integrin ? 1 in adhesion structures during migration of human ocular melanoma cells, Exp. Cell Res, vol.353, issue.2, pp.88-99, 2017.

R. H. Diamond, C. Peters, S. P. Jung, L. E. Greenbaum, B. A. Haber et al., Expression of PRL-1 nuclear PTPase is associated with proliferation in liver but with differentiation in intestine, Am. J. Physiol. Liver Physiol, vol.271, issue.1, pp.121-129, 1996.

W. Kong, G. P. Swain, S. Li, and R. H. Diamond, PRL-1 PTPase expression is developmentally regulated with tissue-specific patterns in epithelial tissues, Am. J. Physiol. Liver Physiol, vol.279, issue.3, pp.613-621, 2000.

T. O. Yarovinsky, D. W. Rickman, R. H. Diamond, R. Taub, G. S. Hageman et al., Expression of the protein tyrosine phosphatase, phosphatase of regenerating liver 1, in the outer segments of primate cone photoreceptors, Brain Res. Mol. Brain Res, vol.77, issue.1, pp.95-103, 2000.

S. Lian, L. Meng, Y. Yang, T. Ma, X. Xing et al., PRL-3 promotes telomere deprotection and chromosomal instability, Nucleic Acids Res, vol.45, issue.11, pp.6546-6571, 2017.

Y. Liu, P. Zheng, Y. Liu, T. Ji, X. Liu et al., An epigenetic role for PRL-3 as a regulator of H3K9 methylation in colorectal cancer, Gut, vol.62, issue.4, pp.571-81, 2013.

X. Fang, R. Song, W. Chen, Y. Yang, Y. Gu et al., PRL-3 Promotes the Malignant Progression of Melanoma via Triggering Dephosphorylation and Cytoplasmic Localization of NHERF1, J. Invest. Dermatol, vol.135, issue.9, pp.2273-82, 2015.

S. Takano, H. Fukuyama, M. Fukumoto, J. Kimura, J. H. Xue et al., PRL-1, a protein tyrosine phosphatase, is expressed in neurons and oligodendrocytes in the brain and induced in the cerebral cortex following transient forebrain ischemia, Brain Res. Mol. Brain Res, vol.40, issue.1, pp.105-120, 1996.

Q. Zeng, W. Hong, and Y. H. Tan, Mouse PRL-2 and PRL-3, Two Potentially Prenylated Protein Tyrosine Phosphatases Homologous to PRL-1, Biochem. Biophys. Res. Commun, vol.244, issue.2, pp.421-427, 1998.

D. A. Carter, Expression of a novel rat protein tyrosine phosphatase gene, Biochim. Biophys. Acta, vol.1442, issue.2-3, pp.405-413, 1998.

M. W. Zimmerman, K. E. Mcqueeney, J. S. Isenberg, B. R. Pitt, K. A. Wasserloos et al., Protein-tyrosine phosphatase 4A3 (PTP4A3) promotes vascular endothelial growth factor signaling and enables endothelial cell motility, J. Biol. Chem, vol.289, issue.9, pp.5904-5917, 2014.

C. M. Dumaual, G. E. Sandusky, P. L. Crowell, and S. K. Randall, Cellular localization of PRL-1 and PRL-2 gene expression in normal adult human tissues, J. Histochem. Cytochem, vol.54, issue.12, pp.1401-1413, 2006.

W. F. Matter, T. Estridge, C. Zhang, R. Belagaje, L. Stancato et al., Role of PRL-3, a human muscle-specific tyrosine phosphatase, in angiotensin-II signaling, Biochem. Biophys. Res. Commun, vol.283, issue.5, pp.1061-1069, 2001.

M. Lin, H. Lee, S. Wang, H. Li, H. Hsien et al., Expression of phosphatase of regenerating liver family genes during embryogenesis: an evolutionary developmental analysis among Drosophila, amphioxus, and zebrafish, BMC Dev. Biol, vol.13, issue.1, p.18, 2013.

A. Q. Al-aidaroos and Q. Zeng, PRL-3 phosphatase and cancer metastasis, J. Cell. Biochem, vol.111, issue.5, pp.1087-1098, 2010.

D. C. Bessette, D. Qiu, and C. J. Pallen, PRL PTPs: mediators and markers of cancer progression, Cancer Metastasis Rev, vol.27, issue.2, pp.231-52, 2008.

Y. Wang and J. S. Lazo, Metastasis-associated phosphatase PRL-2 regulates tumor cell migration and invasion, Oncogene, vol.31, issue.7, pp.818-827, 2012.

S. Hardy, N. N. Wong, W. J. Muller, M. Park, and M. L. Tremblay, Overexpression of the Protein Tyrosine Phosphatase PRL-2 Correlates with Breast Tumor Formation and Progression, Cancer Res, vol.70, issue.21, pp.8959-8967, 2010.

Y. Wang, Z. Li, J. He, Y. Li, G. Zhu et al., Expression of the human phosphatases of regenerating liver (PRLs) in colonic adenocarcinoma and its correlation with lymph node metastasis, Int. J. Colorectal Dis, vol.22, issue.10, pp.1179-1184, 2007.

B. Stephens, H. Han, G. Hostetter, M. J. Demeure, D. D. et al., Small interfering RNAmediated knockdown of PRL phosphatases results in altered Akt phosphorylation and reduced clonogenicity of pancreatic cancer cells, Mol. Cancer Ther, vol.7, issue.1, pp.202-210, 2008.

Y. Luo, F. Liang, and Z. Zhang, PRL1 Promotes Cell Migration and Invasion by Increasing MMP2 and MMP9 Expression through Src and ERK1/2 Pathways ?, Biochemistry, vol.48, issue.8, pp.1838-1846, 2009.

E. Kostantin, S. Hardy, W. C. Valinsky, A. Kompatscher, J. H. De-baaij et al., Inhibition of PRL-2·CNNM3 Protein Complex Formation Decreases Breast Cancer Proliferation and Tumor Growth, J. Biol. Chem, vol.291, issue.20, pp.10716-10741, 2016.

S. Saha, A Phosphatase Associated with Metastasis of Colorectal Cancer, vol.294, pp.1343-1346, 2001.

T. E. Buffart, J. Coffa, M. A. Hermsen, B. Carvalho, J. R. Van-der-sijp et al., DNA copy number changes at 8q11-24 in metastasized colorectal cancer, Cell. Oncol, vol.27, issue.1, pp.57-65, 2005.

A. Bardelli, S. Saha, J. A. Sager, K. E. Romans, B. Xin et al., PRL-3 expression in metastatic cancers, Clin. Cancer Res, vol.9, issue.15, pp.5607-5622, 2003.

G. Zhao, Z. Zhou, W. Lei, C. Wang, X. Zheng et al., Expression of phosphatase of regeneration liver-3 in human colorectal carcinoma and its prognosis value, Zhonghua Wei Chang Wai Ke Za Zhi, vol.11, issue.5, pp.487-91, 2008.

K. Hatate, K. Yamashita, K. Hirai, H. Kumamoto, T. Sato et al., Liver metastasis of colorectal cancer by protein-tyrosine phosphatase type 4A, 3 (PRL-3) is mediated through lymph node metastasis and elevated serum tumor markers such as CEA and CA19-9, Oncol. Rep, vol.20, issue.4, pp.737-780, 2008.

K. Guzinska-ustymowicz, A. Pryczynicz, and A. Kemona, PTP4A3 expression increases strongly in lymph node metastases from colorectal carcinoma, Anticancer Res, vol.29, issue.10, pp.3913-3919, 2009.

U. A. Miskad, S. Semba, H. Kato, and H. Yokozaki, Expression of PRL-3 Phosphatase in Human Gastric Carcinomas: Close Correlation with Invasion and Metastasis, Pathobiology, vol.71, issue.4, pp.176-184, 2004.

Z. Li, Z. Wang, B. Zhu, Y. He, J. Peng et al., Association of Tyrosine PRL-3 Phosphatase Protein Expression with Peritoneal Metastasis of Gastric Carcinoma and Prognosis, Surg. Today, vol.37, issue.8, pp.646-651, 2007.

I. Radke, M. Götte, C. Kersting, B. Mattsson, L. Kiesel et al., Expression and prognostic impact of the protein tyrosine phosphatases PRL-1, PRL-2 and PRL-3 in breast cancer, Br. J. Cancer, vol.95, issue.3, pp.347-354, 2006.

R. Hao, X. Zhang, Y. Pan, H. Liu, Y. Xiang et al., Prognostic and metastatic value of phosphatase of regenerating liver-3 in invasive breast cancer, J. Cancer Res. Clin. Oncol, vol.136, issue.9, pp.1349-1357, 2010.

F. Polato, A. Codegoni, R. Fruscio, P. Perego, C. Mangioni et al., PRL-3 phosphatase is implicated in ovarian cancer growth, Clin. Cancer Res, vol.11, issue.19, pp.6835-6844, 2005.

T. Ren, B. Jiang, X. Xing, B. Dong, L. Peng et al., Prognostic Significance of Phosphatase of Regenerating Liver-3 Expression in Ovarian Cancer, Pathol. Oncol. Res, vol.15, issue.4, pp.555-560, 2009.

Y. Liu, H. Li, X. Lou, and J. Lei, Expression of phosphatase of regenerating liver 1 and 3 mRNA in esophageal squamous cell carcinoma, Arch. Pathol. Lab. Med, vol.132, issue.8, pp.1307-1319, 2008.

A. Ooki, K. Yamashita, S. Kikuchi, S. Sakuramoto, N. Katada et al., Phosphatase of regenerating liver-3 as a convergent therapeutic target for lymph node metastasis in esophageal squamous cell carcinoma, Int. J. Cancer, vol.127, issue.3, pp.543-554, 2010.

Y. Ma and B. Li, Expression of phosphatase of regenerating liver-3 in squamous cell carcinoma of the cervix, Med. Oncol, vol.28, issue.3, pp.775-780, 2011.

J. Zhou, S. Wang, J. Lu, J. Li, and Y. Ding, Over-expression of phosphatase of regenerating liver-3 correlates with tumor progression and poor prognosis in nasopharyngeal carcinoma, Int. J. Cancer, vol.124, issue.8, pp.1879-1886, 2009.

Y. Xu, M. Zhu, S. Zhang, H. Liu, T. Li et al., Expression and Prognostic Value of PRL-3 in Human Intrahepatic Cholangiocarcinoma, Pathol. Oncol. Res, vol.16, issue.2, pp.169-175, 2010.

W. Zhao, Y. Li, X. Liu, L. Zhang, and X. Wang, Evaluation of PRL-3 expression, and its correlation with angiogenesis and invasion in hepatocellular carcinoma, Int. J. Mol. Med, vol.22, issue.2, pp.187-92, 2008.

J. Ming, N. Liu, Y. Gu, X. Qiu, and E. Wang, PRL-3 facilitates angiogenesis and metastasis by increasing ERK phosphorylation and up-regulating the levels and activities of Rho-A/C in lung cancer, Pathology, vol.41, issue.2, pp.118-144, 2009.

L. Kong, Q. Li, L. Wang, Z. Liu, and T. Sun, The value and correlation between PRL-3 expression and matrix metalloproteinase activity and expression in human gliomas, Neuropathology, vol.27, issue.6, pp.516-521, 2007.

Q. Dong, X. Ding, B. Chang, H. Wang, and A. Wang, PRL-3 promotes migration and invasion and is associated with poor prognosis in salivary adenoid cystic carcinoma, J. Oral Pathol. Med, vol.45, issue.2, pp.111-119, 2016.

C. Laurent, F. Valet, N. Planque, L. Silveri, S. Maacha et al., High PTP4A3 phosphatase expression correlates with metastatic risk in uveal melanoma patients, Cancer Res, vol.71, issue.3, pp.666-74, 2011.

S. Qu, B. Liu, X. Guo, H. Shi, M. Zhou et al., Independent oncogenic and therapeutic significance of phosphatase PRL-3 in FLT3-ITD-negative acute myeloid leukemia, Cancer, vol.120, issue.14, pp.2130-2141, 2014.

A. Broyl, D. Hose, H. Lokhorst, Y. De-knegt, J. Peeters et al., Gene expression profiling for molecular classification of multiple myeloma in newly diagnosed patients, Blood, vol.116, issue.14, pp.2543-2553, 2010.

H. Wang, S. Y. Quah, J. M. Dong, E. Manser, J. P. Tang et al., PRL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial-mesenchymal transition, Cancer Res, vol.67, issue.7, pp.2922-2928, 2007.

J. Zhou, S. H. Toh, Z. Chan, J. Y. Quah, J. Chooi et al., A loss-of-function genetic screening reveals synergistic targeting of AKT/mTOR and WTN/?-catenin pathways for treatment of AML with high PRL-3 phosphatase, J. Hematol. Oncol, vol.11, issue.1, p.36, 2018.

Z. Ye, A. Q. Al-aidaroos, J. E. Park, H. F. Yuen, S. D. Zhang et al., PRL-3 activates mTORC1 in Cancer Progression, Sci. Rep, vol.5, p.17046, 2015.

A. Q. Al-aidaroos, H. F. Yuen, K. Guo, S. D. Zhang, T. Chung et al., Metastasis-associated PRL-3 induces EGFR activation and addiction in cancer cells, J. Clin. Invest, vol.123, issue.8, pp.3459-71, 2013.

J. Ming, Y. Jiang, G. Jiang, and H. Zheng, Phosphatase of regenerating liver-3 induces angiogenesis by increasing extracellular signal-regulated kinase phosphorylation in endometrial adenocarcinoma, Pathobiology, vol.81, issue.1, pp.1-7, 2014.

M. W. Zimmerman, K. E. Mcqueeney, J. S. Isenberg, B. R. Pitt, K. A. Wasserloos et al., Protein-tyrosine phosphatase 4A3 (PTP4A3) promotes vascular endothelial growth factor signaling and enables endothelial cell motility, J. Biol. Chem, vol.289, issue.9, pp.5904-5917, 2014.

S. Basak, S. B. Jacobs, A. J. Krieg, N. Pathak, Q. Zeng et al., The metastasis-associated gene Prl-3 is a p53 target involved in cell-cycle regulation, Mol. Cell, vol.30, issue.3, pp.303-317, 2008.

H. Xie and H. Wang, PRL-3 promotes breast cancer progression by downregulating p14ARF-mediated p53 expression, Oncol. Lett, vol.15, issue.3, pp.2795-2800, 2017.

S. Min, D. M. Kim, Y. Heo, H. M. Kim, I. Kim et al., Downregulation of p53 by phosphatase of regenerating liver 3 is mediated by MDM2 and PIRH2, Life Sci, vol.86, issue.1-2, pp.66-72, 2010.

F. Liang, J. Liang, W. Wang, J. Sun, E. Udho et al., PRL3 promotes cell invasion and proliferation by down-regulation of Csk leading to Src activation, J. Biol. Chem, vol.282, issue.8, pp.5413-5422, 2007.

T. S. Slørdahl, P. Abdollahi, E. N. Vandsemb, C. Rampa, K. Misund et al., The phosphatase of regenerating liver-3 (PRL-3) is important for IL-6-mediated survival of myeloma cells, Oncotarget, vol.7, issue.19, pp.27295-306, 2016.

P. Zhang, Z. Zhang, X. Li, J. Lei, K. Su et al., Expression and its relationship of PRL-3 and RhoC in non-small cell lung cancer, Zhongguo Fei Ai Za Zhi, vol.13, issue.6, pp.598-601, 2010.

P. Zhang, P. Zhang, Z. Zhang, X. Li, J. Lei et al., Expression and it's Relationship of PRL-3 and RhoC in Non-small Cell Lung Cancer, Chinese J. Lung Cancer, vol.13, issue.6, pp.598-601, 2010.

E. Forte, L. Orsatti, F. Talamo, G. Barbato, R. D. Francesco et al., Ezrin is a specific and direct target of protein tyrosine phosphatase PRL-3, Biochim. Biophys. Acta, vol.1783, issue.2, pp.334-378, 2008.

S. Lian, L. Meng, X. Xing, Y. Yang, L. Qu et al., PRL-3 promotes cell adhesion by interacting with JAM2 in colon cancer, Oncol. Lett, vol.12, issue.3, pp.1661-1666, 2016.

L. Peng, G. Jin, L. Wang, J. Guo, L. Meng et al., Identification of integrin alpha1 as an interacting protein of protein tyrosine phosphatase PRL-3, Biochem. Biophys. Res. Commun, vol.342, issue.1, pp.179-83, 2006.

W. Tian, L. Qu, L. Meng, C. Liu, J. Wu et al., Phosphatase of regenerating liver-3 directly interacts with integrin ?1 and regulates its phosphorylation at tyrosine 783, BMC Biochem, vol.13, p.22, 2012.

P. Zheng, Y. Liu, L. Chen, X. Liu, Z. Xiao et al., Stathmin, a new target of PRL-3 identified by proteomic methods, plays a key role in progression and metastasis of colorectal cancer, J. Proteome Res, vol.9, issue.10, pp.4897-905, 2010.

E. Mizuuchi, S. Semba, Y. Kodama, and H. Yokozaki, Down-modulation of keratin 8 phosphorylation levels by PRL-3 contributes to colorectal carcinoma progression, Int. J. Cancer, vol.124, issue.8, pp.1802-1812, 2009.

D. Krndija, C. Münzberg, U. Maass, M. Hafner, G. Adler et al., The phosphatase of regenerating liver 3 (PRL-3) promotes cell migration through Arf-activity-dependent stimulation of integrin ?5 recycling, J. Cell Sci, vol.125, pp.3883-92, 2012.

S. Lian, L. Meng, C. Liu, X. Xing, Q. Song et al., PRL-3 activates NF-?B signaling pathway by interacting with RAP1, Biochem. Biophys. Res. Commun, vol.430, issue.1, pp.196-201, 2013.

V. Mcparland, G. Varsano, X. Li, J. Thornton, J. Baby et al., The metastasis-promoting phosphatase PRL-3 shows activity toward phosphoinositides, Biochemistry, vol.50, issue.35, pp.7579-90, 2011.

P. Hollander, K. Rawls, A. Tsimelzon, J. Shepherd, A. Mazumdar et al., Phosphatase PTP4A3 Promotes Triple-Negative Breast Cancer Growth and Predicts Poor Patient Survival, Cancer Res, vol.76, issue.7, pp.1942-1953, 2016.

J. Zhou, P. S. Chong, X. Lu, L. Cheong, C. Bi et al., Phosphatase of regenerating liver-3 is regulated by signal transducer and activator of transcription 3 in acute myeloid leukemia, Exp. Hematol, vol.42, issue.12, pp.1041-52, 2014.

T. Rubio and M. Köhn, Regulatory mechanisms of phosphatase of regenerating liver (PRL)-3, Biochem. Soc. Trans, vol.44, issue.5, pp.1305-1312, 2016.

C. Haferlach, F. Dicker, H. Herholz, S. Schnittger, W. Kern et al., Mutations of the TP53 gene in acute myeloid leukemia are strongly associated with a complex aberrant karyotype, Leukemia, vol.22, issue.8, pp.1539-1541, 2008.

P. Zheng, H. Meng, W. Gao, L. Chen, X. Liu et al., Snail as a key regulator of PRL-3 gene in colorectal cancer, Cancer Biol. Ther, vol.12, issue.8, pp.742-751, 2011.

J. Xu, S. Cao, L. Wang, R. Xu, G. Chen et al., VEGF promotes the transcription of the human PRL-3 gene in HUVEC through transcription factor MEF2C, PLoS One, vol.6, issue.11, p.27165, 2011.

Y. Jiang, X. Liu, A. Rajput, L. Geng, M. Ongchin et al., Phosphatase PRL-3 is a direct regulatory target of TGFbeta in colon cancer metastasis, Cancer Res, vol.71, issue.1, pp.234-278, 2011.

Z. Li, G. Zhang, D. Li, Z. Jie, H. Chen et al., Methylation-associated silencing of miR-495 inhibit the migration and invasion of human gastric cancer cells by directly targeting PRL-3, Biochem. Biophys. Res. Commun, vol.456, issue.1, pp.344-50, 2015.

Z. Li, Y. Cao, Z. Jie, Y. Liu, Y. Li et al., miR-495 and miR-551a inhibit the migration and invasion of human gastric cancer cells by directly interacting with PRL-3, Cancer Lett, vol.323, issue.1, pp.41-48, 2012.

L. Wang, J. Liu, Z. Zhong, X. Gong, W. Liu et al., PTP4A3 is a target for inhibition of cell proliferatin, migration and invasion through Akt/mTOR signaling pathway in glioblastoma under the regulation of miR-137, Brain Res, vol.1646, pp.441-50, 2016.

H. Wang, L. A. Vardy, C. P. Tan, J. M. Loo, K. Guo et al., PCBP1 suppresses the translation of metastasis-associated PRL-3 phosphatase, Cancer Cell, vol.18, issue.1, pp.52-62, 2010.

G. H. Peters, T. M. Frimurer, and O. H. Olsen, Electrostatic Evaluation of the Signature Motif (H/V)CX 5 R(S/T) in Protein?Tyrosine Phosphatases ?, Biochemistry, vol.37, issue.16, pp.5383-5393, 1998.

T. Ishii, Y. Funato, and H. Miki, Thioredoxin-related Protein 32 (TRP32) Specifically Reduces Oxidized Phosphatase of Regenerating Liver (PRL), J. Biol. Chem, vol.288, issue.10, pp.7263-7270, 2013.

R. A. Klinghoffer, C. Sachsenmaier, J. A. Cooper, and P. Soriano, Src family kinases are required for integrin but not PDGFR signal transduction, EMBO J, vol.18, issue.9, pp.2459-71, 1999.

J. J. Fiordalisi, B. J. Dewar, L. M. Graves, J. P. Madigan, and A. D. Cox, Src-mediated phosphorylation of the tyrosine phosphatase PRL-3 is required for PRL-3 promotion of Rho activation, motility and invasion, PLoS One, vol.8, issue.5, p.64309, 2013.

P. Adamson, C. J. Marshall, A. Hall, and P. A. Tilbrook, Post-translational modifications of p21rho proteins, J. Biol. Chem, vol.267, issue.28, pp.20033-20041, 1992.

A. Nishimura and M. E. Linder, Identification of a Novel Prenyl and Palmitoyl Modification at the CaaX Motif of Cdc42 That Regulates RhoGDI Binding, Mol. Cell. Biol, vol.33, issue.7, pp.1417-1429, 2013.

J. Greaves and L. H. Chamberlain, DHHC palmitoyl transferases: substrate interactions and (patho)physiology, Trends Biochem. Sci, vol.36, issue.5, pp.245-253, 2011.

M. Choi, S. Min, H. Jung, J. D. Lee, T. H. Lee et al., The essential role of FKBP38 in regulating phosphatase of regenerating liver 3 (PRL-3) protein stability, Biochem. Biophys. Res. Commun, vol.406, issue.2, pp.305-314, 2011.

Y. Huang, A. Q. Al-aidaroos, H. Yuen, S. Zhang, H. Shen et al., A role of autophagy in PTP4A3-driven cancer progression, Autophagy, vol.10, issue.10, pp.1-14, 2014.

C. Xing, X. Lu, P. Guo, T. Shen, S. Zhang et al., Ubiquitin-Specific Protease 4-Mediated Deubiquitination and Stabilization of PRL-3 Is Required for Potentiating Colorectal Oncogenesis, Cancer Res, vol.76, issue.1, pp.83-95, 2016.

M. K. Moon, Y. Han, Y. Lee, L. H. Lee, J. H. Yang et al., Inhibitory activities of anthraquinones from Rubia akane on phosphatase regenerating liver-3, Arch. Pharm. Res, vol.33, issue.11, pp.1747-1751, 2010.

H. Park, S. Jung, D. G. Jeong, S. E. Ryu, and S. J. Kim, Discovery of novel PRL-3 inhibitors based on the structure-based virtual screening, Bioorg. Med. Chem. Lett, vol.18, issue.7, pp.2250-2255, 2008.

S. Daouti, W. Li, H. Qian, K. Huang, J. Holmgren et al., A Selective Phosphatase of Regenerating Liver Phosphatase Inhibitor Suppresses Tumor Cell Anchorage-Independent Growth by a Novel Mechanism Involving p130Cas Cleavage, Cancer Res, vol.68, issue.4, pp.1162-1169, 2008.

M. K. Pathak, D. Dhawan, D. J. Lindner, E. C. Borden, C. Farver et al., Pentamidine is an inhibitor of PRL phosphatases with anticancer activity, Mol. Cancer Ther, vol.1, issue.14, pp.1255-64, 2002.

L. F. Zerbini, M. K. Bhasin, J. F. De-vasconcellos, J. D. Paccez, X. Gu et al., Computational Repositioning and Preclinical Validation of Pentamidine for Renal Cell Cancer, Mol. Cancer Ther, vol.13, issue.7, pp.1929-1941, 2014.

J. Smith, B. J. Stewart, S. Glaysher, K. Peregrin, L. A. Knight et al., The effect of pentamidine on melanoma ex vivo, Anticancer. Drugs, vol.21, issue.2, pp.181-186, 2010.

E. Capoccia, C. Cirillo, A. Marchetto, S. Tiberi, Y. Sawikr et al., S100B-p53 disengagement by pentamidine promotes apoptosis and inhibits cellular migration via aquaporin-4 and metalloproteinase-2 inhibition in C6 glioma cells, Oncol. Lett, vol.9, issue.6, pp.2864-2870, 2015.

C. Cirillo, E. Capoccia, T. Iuvone, R. Cuomo, G. Sarnelli et al., S100B Inhibitor Pentamidine Attenuates Reactive Gliosis and Reduces Neuronal Loss in a Mouse Model of Alzheimer's Disease, Biomed Res. Int, vol.2015, pp.1-11, 2015.

J. Kobayashi, A. Kato, Y. Ota, R. Ohba, and K. Komatsu, Bisbenzamidine derivative, pentamidine represses DNA damage response through inhibition of histone H2A acetylation, Mol. Cancer, vol.9, issue.1, p.34, 2010.

G. Min, S. Lee, H. Kim, Y. Han, R. Lee et al., Rhodanine-based PRL-3 inhibitors blocked the migration and invasion of metastatic cancer cells, Bioorg. Med. Chem. Lett, vol.23, issue.13, pp.3769-3774, 2013.

Y. Han, S. Lee, D. G. Jeong, S. E. Ryu, D. C. Han et al., Emodin inhibits migration and invasion of DLD-1 (PRL-3) cells via inhibition of PRL-3 phosphatase activity, Bioorg. Med. Chem. Lett, vol.22, issue.1, pp.323-329, 2012.

J. H. Ahn, S. J. Kim, W. S. Park, S. Y. Cho, J. Ha et al., Synthesis and biological evaluation of rhodanine derivatives as PRL-3 inhibitors, Bioorg. Med. Chem. Lett, vol.16, issue.11, pp.2996-2999, 2006.

L. Wang, Y. Shen, R. Song, Y. Sun, J. Xu et al., An Anticancer Effect of Curcumin Mediated by Down-Regulating Phosphatase of Regenerating Liver-3 Expression on Highly Metastatic Melanoma Cells, Mol. Pharmacol, vol.76, issue.6, pp.1238-1245, 2009.

S. Choi, H. Oh, S. Lee, D. G. Jeong, S. E. Ryu et al., Biflavonoids inhibited phosphatase of regenerating liver-3 (PRL-3), Nat. Prod. Res, vol.20, issue.4, pp.341-347, 2006.

S. Stadlbauer, P. Rios, K. Ohmori, K. Suzuki, and M. Köhn, Procyanidins Negatively Affect the Activity of the Phosphatases of Regenerating Liver, PLoS One, vol.10, issue.7, p.134336, 2015.

K. Guo, J. P. Tang, C. P. Tan, H. Wang, and Q. Zeng, Monoclonal antibodies target intracellular PRL phosphatases to inhibit cancer metastases in mice, Cancer Biol. Ther, vol.7, issue.5, pp.750-757, 2008.

M. Thura, A. Q. Al-aidaroos, W. P. Yong, K. Kono, A. Gupta et al., PRL3-zumab, a first-in-class humanized antibody for cancer therapy, JCI Insight, vol.1, issue.9, p.87607, 2016.

P. A. Konstantinopoulos, M. V. Karamouzis, and A. G. Papavassiliou, Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets, Nat. Rev. Drug Discov, vol.6, issue.7, pp.541-555, 2007.

E. C. Lerner, Y. Qian, M. A. Blaskovich, R. D. Fossum, A. Vogt et al., Ras CAAX peptidomimetic FTI-277 selectively blocks oncogenic Ras signaling by inducing cytoplasmic accumulation of inactive Ras-Raf complexes, J. Biol. Chem, vol.270, issue.45, pp.26802-26808, 1995.

T. F. Gajewski, A. K. Salama, D. Niedzwiecki, J. Johnson, G. Linette et al., Phase II study of the farnesyltransferase inhibitor R115777 in advanced melanoma (CALGB 500104), J. Transl. Med, vol.10, issue.1, p.246, 2012.

Y. Goshima, F. Nakamura, P. Strittmatter, and S. M. Strittmatter, Collapsin-induced growth cone collapse mediated by an intracellular protein related to UNC-33, Nature, vol.376, issue.6540, pp.509-514, 1995.

J. E. Minturn, H. J. Fryer, D. H. Geschwind, and S. Hockfield, TOAD-64, a gene expressed early in neuronal differentiation in the rat, is related to unc-33, a C. elegans gene involved in axon outgrowth, J. Neurosci, vol.15, issue.10, pp.6757-66, 1995.

N. Hamajima, K. Matsuda, S. Sakata, N. Tamaki, M. Sasaki et al., A novel gene family defined by human dihydropyrimidinase and three related proteins with differential tissue distribution, Gene, vol.180, issue.1-2, pp.157-63, 1996.

T. T. Quach, B. Mosinger, D. Ricard, N. G. Copeland, D. J. Gilbert et al., Collapsin response mediator protein-3/unc-33-like protein-4 gene: organization, chromosomal mapping and expression in the developing mouse brain, Gene, vol.242, issue.1-2, pp.175-82, 2000.

D. Ricard, V. Rogemond, E. Charrier, M. Aguera, D. Bagnard et al., Isolation and expression pattern of human Unc-33-like phosphoprotein 6/collapsin response mediator protein 5 (Ulip6/CRMP5): coexistence with Ulip2/CRMP2 in Sema3a-sensitive oligodendrocytes, J. Neurosci, vol.21, issue.18, pp.7203-7217, 2001.

T. Byk, T. Dobransky, C. Cifuentes-diaz, and . Sobel, Identification and molecular characterization of Unc-33-like phosphoprotein (Ulip), a putative mammalian homolog of the axonal guidance-associated unc-33 gene product, J. Neurosci, vol.16, issue.2, pp.688-701, 1996.

F. Coulier, C. Popovici, R. Villet, and D. Birnbaum, MetaHoxgene clusters, J. Exp. Zool, vol.288, issue.4, pp.345-351, 2000.

M. Fukada, I. Watakabe, J. Yuasa-kawada, H. Kawachi, A. Kuroiwa et al., Molecular Characterization of CRMP5, a Novel Member of the Collapsin Response Mediator Protein Family, J. Biol. Chem, vol.275, issue.48, pp.37957-37965, 2000.

R. C. Deo, E. F. Schmidt, A. Elhabazi, H. Togashi, S. K. Burley et al., Structural bases for CRMP function in plexin-dependent semaphorin3A signaling, EMBO J, vol.23, issue.1, pp.9-22, 2004.

L. Wang and S. M. Strittmatter, Brain CRMP Forms Heterotetramers Similar to Liver Dihydropyrimidinase, J Neurochem, vol.69, issue.6, pp.2261-2270, 1997.

R. Ponnusamy and B. Lohkamp, Insights into the oligomerization of CRMPs: Crystal structure of human collapsin response mediator protein 5, J. Neurochem, vol.125, issue.6, pp.855-868, 2013.

P. Stenmark, D. Ogg, S. Flodin, A. Flores, T. Kotenyova et al., The structure of human collapsin response mediator protein 2, a regulator of axonal growth, J. Neurochem, vol.101, issue.4, pp.906-917, 2007.

S. Petratos and J. Y. Lee, Stop CRMPing my style: A new competitive model of CRMP oligomerization, J. Neurochem, vol.125, issue.6, pp.800-802, 2013.

S. Liu, S. Huang, Y. Hsu, S. Pan, Y. Chen et al., Structure of human collapsin response mediator protein 1: a possible role of its C-terminal tail, Acta Crystallogr. Sect. F Struct. Biol. Commun, vol.71, issue.8, pp.938-945, 2015.

Z. He, K. C. Wang, V. Koprivica, G. Ming, and H. Song, Knowing How to Navigate: Mechanisms of Semaphorin Signaling in the Nervous System, Sci. Signal, vol.2002, issue.119, pp.1-1, 2002.

T. Skutella and R. Nitsch, New molecules for hippocampal development, Trends Neurosci, vol.24, issue.2, pp.107-120, 2001.

I. Gavazzi, Semaphorin-neuropilin-1 interactions in plasticity and regeneration of adult neurons, Cell Tissue Res, vol.305, issue.2, pp.275-284, 2001.

Z. He and M. Tessier-lavigne, Neuropilin is a receptor for the axonal chemorepellent Semaphorin III, Cell, vol.90, issue.4, pp.739-51, 1997.

A. L. Kolodkin and D. D. Ginty, Steering clear of semaphorins: neuropilins sound the retreat, Neuron, vol.19, issue.6, pp.1159-62, 1997.

E. F. Schmidt and S. M. Strittmatter, The CRMP family of proteins and their role in Sema3A signaling, Adv. Exp. Med. Biol, vol.600, pp.1-11, 2007.

P. Lin, P. M. Chan, C. Hall, and E. Manser, Collapsin response mediator proteins (CRMPs) are a new class of microtubule-associated protein (MAP) that selectively interacts with assembled microtubules via a taxol-sensitive binding interaction, J. Biol. Chem, vol.286, issue.48, pp.41466-78, 2011.

Y. Gu, N. Hamajima, and Y. Ihara, Neurofibrillary tangle-associated collapsin response mediator protein-2 (CRMP-2) is highly phosphorylated on Thr-509, Ser-518, and Ser-522, Biochemistry, vol.39, issue.15, pp.4267-75, 2000.

Y. Fukata, T. J. Itoh, T. Kimura, C. Ménager, T. Nishimura et al., CRMP-2 binds to tubulin heterodimers to promote microtubule assembly, Nat. Cell Biol, vol.4, issue.8, pp.583-591, 2002.

S. Niwa, F. Nakamura, Y. Tomabechi, M. Aoki, H. Shigematsu et al., Structural basis for CRMP2-induced axonal microtubule formation, Sci. Rep, vol.7, issue.1, p.10681, 2017.

Z. Zhang, V. Majava, A. Greffier, R. L. Hayes, P. Kursula et al., Collapsin response mediator protein-2 is a calmodulin-binding protein, Cell. Mol. Life Sci, vol.66, issue.3, pp.526-562, 2009.

S. O. Tone, Y. Z. Alabed, and A. E. Fournier, The role of CRMP4 in nerve regenerations, Clin. Investig. Med, vol.30, issue.4, p.91, 2007.

V. Rosslenbroich, L. Dai, S. L. Baader, A. A. Noegel, V. Gieselmann et al., Collapsin response mediator protein-4 regulates F-actin bundling, Exp. Cell Res, vol.310, issue.2, pp.434-444, 2005.

M. Tan, C. Cha, Y. Ye, J. Zhang, S. Li et al., CRMP4 and CRMP2 Interact to Coordinate Cytoskeleton Dynamics, Regulating Growth Cone Development and Axon Elongation, Neural Plast, vol.2015, p.947423, 2015.

J. Yuasa-kawada, R. Suzuki, F. Kano, T. Ohkawara, M. Murata et al., Axonal morphogenesis controlled by antagonistic roles of two CRMP subtypes in microtubule organization, Eur. J. Neurosci, vol.17, issue.11, pp.2329-2343, 2003.

H. Yu-kemp and W. M. Brieher, Collapsin Response Mediator Protein-1 Regulates Arp2/3-dependent Actin Assembly, J. Biol. Chem, vol.291, issue.2, pp.658-664, 2016.

S. Pan, Y. Chao, P. Hung, H. Chen, S. Yang et al.,

W. Wang, Y. Chan, T. Wu, L. Che, C. Wang et al., The ability of LCRMP-1 to promote cancer invasion by enhancing filopodia formation is antagonized by CRMP-1, J. Clin. Invest, vol.121, issue.8, pp.3189-205, 2011.

W. L. Wang, T. M. Hong, Y. L. Chang, C. T. Wu, S. H. Pan et al., Phosphorylation of LCRMP-1 by GSK3?? promotes filopoda formation, migration and invasion abilities in lung cancer cells, PLoS One, vol.7, issue.2, pp.1-10, 2012.

A. Hotta, R. Inatome, J. Yuasa-kawada, Q. Qin, H. Yamamura et al., Critical role of collapsin response mediator protein-associated molecule CRAM for filopodia and growth cone development in neurons, Mol. Biol. Cell, vol.16, issue.1, pp.32-41, 2005.

T. Kimura, H. Watanabe, A. Iwamatsu, and K. Kaibuchi, Tubulin and CRMP-2 complex is transported via Kinesin-1, J. Neurochem, vol.93, issue.6, pp.1371-82, 2005.

T. Nishimura, Y. Fukata, K. Kato, T. Yamaguchi, Y. Matsuura et al., CRMP-2 regulates polarized Numb-mediated endocytosis for axon growth, Nat. Cell Biol, vol.5, issue.9, pp.819-845, 2003.

N. Arimura, A. Hattori, T. Kimura, S. Nakamuta, Y. Funahashi et al., CRMP-2 directly binds to cytoplasmic dynein and interferes with its activity, J. Neurochem, vol.111, issue.2, pp.380-90, 2009.

J. Rahajeng, S. S. Giridharan, N. Naslavsky, and S. Caplan, Collapsin response mediator protein-2 (Crmp2) regulates trafficking by linking endocytic regulatory proteins to dynein motors, J. Biol. Chem, vol.285, issue.42, pp.31918-31922, 2010.

J. M. Brittain, A. D. Piekarz, Y. Wang, T. Kondo, T. R. Cummins et al., An Atypical Role for Collapsin Response Mediator Protein 2 (CRMP-2) in Neurotransmitter Release via Interaction with Presynaptic Voltage-gated Calcium Channels, J. Biol. Chem, vol.284, issue.45, pp.31375-31390, 2009.

X. X. Chi, B. S. Schmutzler, J. M. Brittain, Y. Wang, C. M. Hingtgen et al., Regulation of N-type voltage-gated calcium channels (Cav2.2) and transmitter release by collapsin response mediator protein-2 (CRMP-2) in sensory neurons, J. Cell Sci, vol.122, issue.23, pp.4351-4362, 2009.

A. Moutal, L. Sun, X. Yang, W. Li, S. Cai et al., CRMP2-Neurofibromin Interface Drives NF1-related Pain, Neuroscience, vol.381, pp.79-90, 2018.

P. Vincent, Y. Collette, R. Marignier, C. Vuaillat, V. Rogemond et al., A role for the neuronal protein collapsin response mediator protein 2 in T lymphocyte polarization and migration, J. Immunol, vol.175, issue.11, pp.7650-60, 2005.

M. Varrin-doyer, P. Vincent, S. Cavagna, N. Auvergnon, N. Noraz et al., Phosphorylation of collapsin response mediator protein 2 on Tyr-479 regulates CXCL12-induced T lymphocyte migration, J. Biol. Chem, vol.284, issue.19, pp.13265-76, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00398974

P. Giraudon, A. Nicolle, S. Cavagna, C. Benetollo, R. Marignier et al., Insight into the role of CRMP2 (collapsin response mediator protein 2) in T lymphocyte migration: the particular context of virus infection, Cell Adh. Migr, vol.7, issue.1, pp.38-43, 2013.

A. R. Sarhan, J. Szyroka, S. Begum, M. G. Tomlinson, N. A. Hotchin et al., Quantitative Phosphoproteomics Reveals a Role for Collapsin Response Mediator Protein 2 in PDGF-Induced Cell Migration, Sci. Rep, pp.1-12, 2016.

A. Aylsworth, S. X. Jiang, A. Desbois, and S. T. Hou, Characterization of the role of full-length CRMP3 and its calpain-cleaved product in inhibiting microtubule polymerization and neurite outgrowth, Exp. Cell Res, vol.315, issue.16, pp.2856-2868, 2009.

S. T. Hou, S. X. Jiang, A. Aylsworth, M. Cooke, and L. Zhou, Collapsin response mediator protein 3 deacetylates histone H4 to mediate nuclear condensation and neuronal death, Sci. Rep, vol.3, issue.1, p.1350, 2013.

T. T. Quach, Y. Wang, R. Khanna, N. Chounlamountri, N. Auvergnon et al., Effect of CRMP3 expression on dystrophic dendrites of hippocampal neurons, Mol. Psychiatry, vol.16, issue.7, pp.689-691, 2011.

T. T. Quach, G. Massicotte, M. Belin, J. Honnorat, E. R. Glasper et al., CRMP3 is required for hippocampal CA1 dendritic organization and plasticity, FASEB J, vol.22, issue.2, pp.401-409, 2008.

T. T. Quach, S. M. Wilson, V. Rogemond, N. Chounlamountri, P. E. Kolattukudy et al., Mapping CRMP3 domains involved in dendrite morphogenesis and voltage-gated calcium channel regulation, J. Cell Sci, vol.126, issue.18, pp.4262-4273, 2013.

Y. Chen, H. Sheng, Y. Xu, Y. Zhang, and X. Ni, Activation of CRHR2 exerts an inhibitory effect on the expression of collapsin response mediator protein 3 in hippocampal neurons, Neuropeptides, vol.46, issue.2, pp.93-98, 2012.

S. Brot, V. Rogemond, V. Perrot, N. Chounlamountri, C. Auger et al., CRMP5 interacts with tubulin to inhibit neurite outgrowth, thereby modulating the function of CRMP2, J. Neurosci, vol.30, issue.32, pp.10639-54, 2010.

A. Veyrac, S. Reibel, J. Sacquet, M. Mutin, J. Camdessanche et al., CRMP5 Regulates Generation and Survival of Newborn Neurons in Olfactory and Hippocampal Neurogenic Areas of the Adult Mouse Brain, PLoS One, vol.6, issue.10, p.23721, 2011.

M. Morgan-fisher, J. R. Couchman, and A. Yoneda, Phosphorylation and mRNA splicing of collapsin response mediator protein-2 determine inhibition of rho-associated protein kinase (ROCK) II function in carcinoma cell migration and invasion, J. Biol. Chem, vol.288, issue.43, pp.31229-31269, 2013.

A. Yoneda, M. Morgan-fisher, R. Wait, J. R. Couchman, and U. M. Wewer, A collapsin response mediator protein 2 isoform controls myosin II-mediated cell migration and matrix assembly by trapping ROCK II, Mol. Cell. Biol, vol.32, issue.10, pp.1788-804, 2012.

H. Guo and B. Xia, Collapsin response mediator protein 4 isoforms (CRMP4a and CRMP4b) have opposite effects on cell proliferation, migration, and invasion in gastric cancer, BMC Cancer, vol.16, issue.1, p.565, 2016.

V. Rogemond, C. Auger, P. Giraudon, M. Becchi, N. Auvergnon et al., Processing and nuclear localization of CRMP2 during brain development induce neurite outgrowth inhibition, J. Biol. Chem, vol.283, issue.21, pp.14751-14761, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00266794

S. X. Jiang, J. Kappler, B. Zurakowski, A. Desbois, A. Aylsworth et al., Calpain cleavage of collapsin response mediator proteins in ischemic mouse brain, Eur. J. Neurosci, vol.26, issue.4, pp.801-809, 2007.

Z. Zhang, A. K. Ottens, S. Sadasivan, F. H. Kobeissy, T. Fang et al., Calpain-Mediated Collapsin Response Mediator Protein-1, -2, And -4 Proteolysis after Neurotoxic And Traumatic Brain Injury, J. Neurotrauma, vol.24, issue.3, pp.460-472, 2007.

K. Taghian, J. Y. Lee, and S. Petratos, Phosphorylation and Cleavage of the Family of Collapsin Response Mediator Proteins May Play a Central Role in Neurodegeneration after CNS Trauma, J. Neurotrauma, vol.29, issue.9, pp.1728-1735, 2012.

J. Zhang and J. C. Koch, Collapsin response mediator protein-2 plays a major protective role in acute axonal degeneration, Neural Regen. Res, vol.12, issue.5, pp.692-695, 2017.

Y. Zheng, R. Sethi, L. S. Mangala, C. Taylor, J. Goldsmith et al., Tuning microtubule dynamics to enhance cancer therapy by modulating FER-mediated CRMP2 phosphorylation, Nat. Commun, vol.9, issue.1, p.476, 2018.

S. X. Jiang, J. Kappler, B. Zurakowski, A. Desbois, A. Aylsworth et al., Calpain cleavage of collapsin response mediator proteins in ischemic mouse brain, Eur. J. Neurosci, vol.26, issue.4, pp.801-809, 2007.

S. Bretin, V. Rogemond, P. Marin, M. Maus, Y. Torrens et al., Calpain product of WT-CRMP2 reduces the amount of surface NR2B NMDA receptor subunit, J. Neurochem, vol.98, issue.4, pp.1252-1265, 2006.

S. T. Hou, S. X. Jiang, A. Aylsworth, G. Ferguson, J. Slinn et al., CaMKII phosphorylates collapsin response mediator protein 2 and modulates axonal damage during glutamate excitotoxicity, J. Neurochem, vol.111, issue.3, pp.870-881, 2009.

K. Vosseller, K. C. Hansen, R. J. Chalkley, J. C. Trinidad, L. Wells et al., Quantitative analysis of both protein expression and serine?/?threonine post-translational modifications through stable isotope labeling with dithiothreitol, Proteomics, vol.5, issue.2, pp.388-398, 2005.

Y. Zheng, R. Sethi, L. S. Mangala, C. Taylor, J. Goldsmith et al., Tuning microtubule dynamics to enhance cancer therapy by modulating FERmediated CRMP2 phosphorylation, Nat. Commun, vol.9, issue.1, p.476, 2018.

T. Yoshimura, Y. Kawano, N. Arimura, S. Kawabata, A. Kikuchi et al., GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity, Cell, vol.120, issue.1, pp.137-186, 2005.

N. Arimura, N. Inagaki, K. Chihara, C. Menager, N. Nakamura et al., Phosphorylation of Collapsin Response Mediator Protein-2 by Rhokinase: evidence for two separate signaling pathways for growth cone collapse, J. Biol. Chem, vol.275, issue.31, pp.23973-23980, 2000.

N. Arimura, C. Menager, Y. Kawano, T. Yoshimura, S. Kawabata et al., Phosphorylation by Rho Kinase Regulates CRMP-2 Activity in Growth Cones, Mol. Cell. Biol, vol.25, issue.22, pp.9973-9984, 2005.

N. Yamashita, T. Ohshima, F. Nakamura, P. Kolattukudy, J. Honnorat et al., Phosphorylation of CRMP2 (collapsin response mediator protein 2) is involved in proper dendritic field organization, J. Neurosci, vol.32, issue.4, pp.1360-1365, 2012.

M. V. Astle, L. M. Ooms, A. R. Cole, L. C. Binge, J. M. Dyson et al., Identification of a Proline-rich Inositol Polyphosphate 5-Phosphatase (PIPP)·Collapsin Response Mediator Protein 2 (CRMP2) Complex That Regulates Neurite Elongation, J. Biol. Chem, vol.286, issue.26, pp.23407-23418, 2011.

L. Zhu, H. Zheng, C. Peng, D. Liu, H. Li et al., Protein phosphatase 2A facilitates axonogenesis by dephosphorylating CRMP2, J. Neurosci, vol.30, issue.10, pp.3839-3887, 2010.

A. R. Cole, M. P. Soutar, M. Rembutsu, L. Van-aalten, C. J. Hastie et al., Relative Resistance of Cdk5-phosphorylated CRMP2 to Dephosphorylation, J. Biol. Chem, vol.283, issue.26, pp.18227-18237, 2008.

T. Sumi, T. Imasaki, M. Aoki, N. Sakai, E. Nitta et al., Structural Insights into the Altering Function of CRMP2 by Phosphorylation, Cell Struct. Funct, vol.43, issue.1, pp.15-23, 2018.

R. N. Cole and G. W. Hart, Cytosolic O-glycosylation is abundant in nerve terminals, J. Neurochem, vol.79, issue.5, pp.1080-1089, 2001.

K. Kanninen, G. Goldsteins, S. Auriola, I. Alafuzoff, and J. Koistinaho, Glycosylation changes in Alzheimer's disease as revealed by a proteomic approach, Neurosci. Lett, vol.367, issue.2, pp.235-240, 2004.

S. Brenner, The genetics of Caenorhabditis elegans, Genetics, vol.77, issue.1, pp.71-94, 1974.

D. Tsuboi, T. Hikita, H. Qadota, M. Amano, and K. Kaibuchi, Regulatory machinery of UNC-33 Ce-CRMP localization in neurites during neuronal development in Caenorhabditis elegans, J. Neurochem, vol.95, issue.6, pp.1629-1641, 2005.

Y. Sun, T. Fei, T. Yang, F. Zhang, Y. Chen et al., The Suppression of CRMP2 Expression by Bone Morphogenetic Protein (BMP)-SMAD Gradient Signaling Controls Multiple Stages of Neuronal Development, J. Biol. Chem, vol.285, issue.50, pp.39039-39050, 2010.

Y. Kodama, Y. Murakumo, M. Ichihara, K. Kawai, Y. Shimono et al., Induction of CRMP-2 by GDNF and analysis of the CRMP-2 promoter region, Biochem. Biophys. Res. Commun, vol.320, issue.1, pp.108-115, 2004.

L. H. Wang and S. M. Strittmatter, A family of rat CRMP genes is differentially expressed in the nervous system, J. Neurosci, vol.16, issue.19, pp.6197-207, 1996.

J. E. Minturn, D. H. Geschwind, H. J. Fryer, and S. Hockfield, Early postmitotic neurons transiently express TOAD-64, a neural specific protein, J. Comp. Neurol, vol.355, issue.3, pp.369-379, 1995.

D. Ricard, B. Stankoff, D. Bagnard, M. Aguera, V. Rogemond et al., Differential Expression of Collapsin Response Mediator Proteins (CRMP/ULIP) in Subsets of Oligodendrocytes in the Postnatal Rodent Brain, Mol. Cell. Neurosci, vol.16, issue.4, pp.324-337, 2000.

R. J. Pasterkamp, F. Winter, A. J. Holtmaat, and J. Verhaagen, Evidence for a role of the chemorepellent semaphorin III and its receptor neuropilin-1 in the regeneration of primary olfactory axons, J. Neurosci, vol.18, issue.23, pp.9962-76, 1998.

J. Nacher, D. R. Rosell, and B. S. Mcewen, Widespread expression of rat collapsin responsemediated protein 4 in the telencephalon and other areas of the adult rat central nervous system, J. Comp. Neurol, vol.424, issue.4, pp.628-667, 2000.

A. R. Cole, W. Noble, L. Van-aalten, F. Plattner, R. Meimaridou et al., Collapsin response mediator protein-2 hyperphosphorylation is an early event in Alzheimer's disease progression, J. Neurochem, vol.103, issue.3, pp.1132-1144, 2007.

M. Medina and J. Avila, New insights into the role of glycogen synthase kinase-3 in Alzheimer's disease, Expert Opin. Ther. Targets, vol.18, issue.1, pp.69-77, 2014.

A. Barzilai, R. Zilkha-falb, D. Daily, N. Stern, D. Offen et al., The molecular mechanism of dopamine-induced apoptosis: identification and characterization of genes that mediate dopamine toxicity, J. Neural Transm. Suppl, issue.60, pp.59-76, 2000.

W. Fang, G. Gao, H. Zhao, Y. Xia, X. Guo et al., Role of the Akt/GSK-3?/CRMP-2 pathway in axon degeneration of dopaminergic neurons resulting from MPP+ toxicity, Brain Res, vol.1602, pp.9-19, 2015.

Y. Liu, X. Pham, L. Zhang, P. Chen, G. Burzynski et al., Functional variants in DPYSL2 sequence increase risk of schizophrenia and suggest a link to mTOR signaling, G3 (Bethesda), vol.5, issue.1, pp.61-72, 2014.

T. T. Quach, J. Honnorat, P. E. Kolattukudy, R. Khanna, and A. M. Duchemin, CRMPs: Critical molecules for neurite morphogenesis and neuropsychiatric diseases, Mol. Psychiatry, vol.20, issue.9, pp.1037-1045, 2015.

N. L. Johnston-wilson, C. D. Sims, J. Hofmann, L. Anderson, A. D. Shore et al., Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder and major depressive disorder, Mol. Psychiatry, vol.5, issue.2, pp.142-149, 2000.

J. J. Dimatelis, D. J. Stein, and V. A. Russell, Chronic Exposure to Light Reverses the Effect of Maternal Separation on Proteins in the Prefrontal Cortex, J. Mol. Neurosci, vol.51, issue.3, pp.835-843, 2013.

M. Föcking, P. Dicker, J. A. English, K. O. Schubert, M. J. Dunn et al., Common Proteomic Changes in the Hippocampus in Schizophrenia and Bipolar Disorder and Particular Evidence for Involvement of Cornu Ammonis Regions 2 and 3, Arch. Gen. Psychiatry, vol.68, issue.5, p.477, 2011.

L. Doan, Voltage-gated calcium channels and pain, Tech. Reg. Anesth. Pain Manag, vol.14, issue.2, pp.42-47, 2010.

T. Czech, J. Yang, E. Csaszar, J. Kappler, C. Baumgartner et al., Reduction of hippocampal collapsin response mediated protein-2 in patients with mesial temporal lobe epilepsy, Neurochem. Res, vol.29, issue.12, pp.2189-96, 2004.

Y. Wang, J. M. Brittain, B. W. Jarecki, K. D. Park, S. M. Wilson et al., In silico docking and electrophysiological characterization of lacosamide binding sites on collapsin response mediator protein-2 identifies a pocket important in modulating sodium channel slow inactivation, J. Biol. Chem, vol.285, issue.33, pp.25296-307, 2010.

F. Shinkai-ouchi, Y. Yamakawa, H. Hara, M. Tobiume, M. Nishijima et al., Identification and structural analysis of C-terminally truncated collapsin response mediator protein-2 in a murine model of prion diseases, Proteome Sci, vol.8, p.53, 2010.

J. Castilla, A. Gutiérrez-adán, A. Brun, D. Doyle, B. Pintado et al., Subclinical Bovine Spongiform Encephalopathy Infection in Transgenic Mice Expressing Porcine Prion Protein, J. Neurosci, vol.24, issue.21, pp.5063-5069, 2004.

K. K. Li, Y. Qi, T. Xia, Y. Yao, L. Zhou et al., CRMP1 Inhibits Proliferation of Medulloblastoma and Is Regulated by HMGA1, PLoS One, vol.10, issue.5, p.127910, 2015.

L. Ren, F. Li, M. Di, Y. Fu, Y. Hui et al., MicroRNA-187 regulates gastric cancer progression by targeting the tumor suppressor CRMP1, Biochem. Biophys. Res. Commun, vol.482, issue.4, pp.597-603, 2017.

G. Cai, D. Wu, Z. Wang, Z. Xu, K. Wong et al., Collapsin response mediator protein-1 (CRMP1) acts as an invasion and metastasis suppressor of prostate cancer via its suppression of epithelial-mesenchymal transition and remodeling of actin cytoskeleton organization, Oncogene, vol.36, issue.4, pp.546-558, 2017.

J. Shih, S. Yang, T. Hong, A. Yuan, J. J. Chen et al., Collapsin Response Mediator Protein-1 and the Invasion and Metastasis of Cancer Cells, JNCI J. Natl. Cancer Inst, vol.93, issue.18, pp.1392-1400, 2001.

J. Mukherjee, L. V. Desouza, J. Micallef, Z. Karim, S. Croul et al., Loss of collapsin response mediator protein1, as detected by iTRAQ analysis, promotes invasion of human gliomas expressing mutant EGFRvIII, Cancer Res, vol.69, issue.22, pp.8545-8554, 2009.

A. Moutal, L. S. Villa, S. K. Yeon, K. T. Householder, K. D. Park et al., CRMP2 Phosphorylation Drives Glioblastoma Cell Proliferation, Mol. Neurobiol, pp.1-14, 2017.

C. Couderc, J. Bollard, Y. Couté, P. Massoma, G. Poncet et al.,

J. Sanchez, J. Scoazec, C. Diaz, and . Roche, Mechanisms of local invasion in enteroendocrine tumors: Identification of novel candidate cytoskeleton-associated proteins in an experimental mouse model by a proteomic approach and validation in human tumors, Mol. Cell. Endocrinol, vol.399, pp.154-63, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02135101

K. Shimada, T. Ishikawa, F. Nakamura, D. Shimizu, T. Chishima et al., Collapsin response mediator protein 2 is involved in regulating breast cancer progression, Breast Cancer, vol.21, issue.6, pp.715-738, 2014.

E. Oliemuller, R. Peláez, S. Garasa, M. J. Pajares, J. Agorreta et al., Phosphorylated tubulin adaptor protein CRMP-2 as prognostic marker and candidate therapeutic target for NSCLC, Int. J. Cancer, vol.132, pp.1986-1995, 2013.

N. J. Grant, P. J. Coates, Y. L. Woods, S. E. Bray, N. A. Morrice et al., Phosphorylation of a splice variant of collapsin response mediator protein 2 in the nucleus of tumour cells links cyclin dependent kinase-5 to oncogenesis, BMC Cancer, vol.15, issue.1, p.885, 2015.

C. C. Wu, H. C. Chen, S. J. Chen, H. P. Liu, Y. Y. Hsieh et al., Identification of collapsin response mediator protein-2 as a potential marker of colorectal carcinoma by comparative analysis of cancer cell secretomes, Proteomics, vol.8, issue.2, pp.316-332, 2008.

V. Rosslenbroich, L. Dai, S. L. Baader, A. A. Noegel, V. Gieselmann et al., Collapsin response mediator protein-4 regulates F-actin bundling, vol.310, pp.434-444, 2005.

X. Gao, Y. Mao, C. Xiao, K. Li, W. Liu et al., Calpain-2 triggers prostate cancer metastasis via enhancing CRMP4 promoter methylation through NF-?B/DNMT1 signaling pathway, Prostate, vol.78, issue.9, pp.682-690, 2018.

Z. Chen, Q. Liang, J. Wang, Q. Huang, J. Chen et al., Collapsin response mediator protein 4 promotor methylation level as a potential predictor for diagnosing primary malignant lymphoma of the prostate, Cancer Cell Int, vol.18, issue.1, p.3, 2018.

B. Li and C. Li, Suppression of Prostate Cancer Metastasis by DPYSL3-Targeted saRNA, Advances in experimental medicine and biology, vol.983, pp.207-216, 2017.

Y. Zhou, R. Li, H. Yu, R. Wang, and Z. Shen, microRNA-130a is an oncomir suppressing the expression of <em>CRMP4 </em>in gastric cancer, Onco. Targets. Ther, vol.10, pp.3893-3905, 2017.

S. Chen, X. Zhang, J. Peng, E. Zhai, Y. He et al., VEGF promotes gastric cancer development by upregulating CRMP4, Oncotarget, vol.7, issue.13, pp.17074-86, 2016.

S. Sato, F. Nakamura, Y. Hiroshima, Y. Nagashima, I. Kato et al., Caerulein-induced pancreatitis augments the expression and phosphorylation of collapsin response mediator protein 4, J. Hepatobiliary. Pancreat. Sci, vol.23, issue.7, pp.422-431, 2016.

Y. Hiroshima, F. Nakamura, H. Miyamoto, R. Mori, K. Taniguchi et al., Collapsin Response Mediator Protein 4 Expression is Associated with Liver Metastasis and Poor Survival in Pancreatic Cancer, Ann. Surg. Oncol, vol.20, issue.S3, pp.369-378, 2013.

A. Moutal, J. Honnorat, P. Massoma, P. Desormeaux, C. Bertrand et al., CRMP5 Controls Glioblastoma Cell Proliferation and Survival through Notch-Dependent Signaling, Cancer Res, vol.75, issue.17, pp.3519-3528, 2015.

S. Brot, C. Malleval, C. Benetollo, C. Auger, D. Meyronet et al., Identification of a new CRMP5 isoform present in the nucleus of cancer cells and enhancing their proliferation, Exp. Cell Res, vol.319, issue.5, pp.588-599, 2013.

D. Meyronet, P. Massoma, F. Thivolet, L. Chalabreysse, V. Rogemond et al., Extensive Expression of Collapsin Response Mediator Protein 5 (CRMP5) is a Specific Marker of High-grade Lung Neuroendocrine Carcinoma, Am. J. Surg. Pathol, vol.32, issue.11, pp.1699-1708, 2008.

D. Dubey, V. A. Lennon, A. Gadoth, S. J. Pittock, E. P. Flanagan et al., Autoimmune CRMP5 neuropathy phenotype and outcome defined from 105 cases, Neurology, vol.90, issue.2, pp.103-110, 2018.

C. Werry, F. Götz, U. Wurster, M. Stangel, R. Giess et al., Paraneoplastic autoimmune encephalitis associated with CV2/CRMP-5 IgG antineuronal antibodies in a patient with thymoma, J. Neurol, vol.256, issue.1, pp.129-160, 2009.

A. Aliprandi, A. Terruzzi, A. Rigamonti, E. Bazzigaluppi, L. Tremolizzo et al., Paraneoplastic cerebellar degeneration with anti-CV2/CRMP5 antibodies and prostate adenocarcinoma, Neurol. Sci, vol.36, issue.8, pp.1501-1503, 2015.

M. Lawal, F. A. Olotu, and M. E. Soliman, Across the blood-brain barrier: Neurotherapeutic screening and characterization of Naringenin as a novel CRMP-2 inhibitor in the treatment of Alzheimer's disease using bioinformatics and computational tools, Comput. Biol. Med, vol.98, pp.168-177, 2018.

S. M. Wilson and R. Khanna, Specific binding of lacosamide to collapsin response mediator protein 2 (CRMP2) and direct impairment of its canonical function: implications for the therapeutic potential of lacosamide, Mol. Neurobiol, vol.51, issue.2, pp.599-609, 2015.

A. Moutal, L. François-moutal, S. Perez-miller, K. Cottier, L. A. Chew et al., Lacosamide Binding to Collapsin Response Mediator Protein 2 (CRMP2) Regulates CaV2.2 Activity by Subverting Its Phosphorylation by Cdk5, Mol. Neurobiol, vol.53, issue.3, pp.1959-1976, 2016.

A. Moutal, N. Eyde, E. Telemi, K. D. Park, J. Y. Xie et al., Efficacy of (S)-Lacosamide in preclinical models of cephalic pain, Pain reports, vol.1, issue.1, 2016.

A. Moutal, L. A. Chew, X. Yang, Y. Wang, S. K. Yeon et al., )-lacosamide inhibition of CRMP2 phosphorylation reduces postoperative and neuropathic pain behaviors through distinct classes of sensory neurons identified by constellation pharmacology, Pain, vol.157, issue.S, pp.1448-63, 2016.

A. Moutal, X. Yang, W. Li, K. B. Gilbraith, S. Luo et al., CRISPR/Cas9 editing of Nf1 gene identifies CRMP2 as a therapeutic target in neurofibromatosis type 1-related pain that is reversed by (S)-Lacosamide, Pain, vol.158, issue.12, pp.2301-2319, 2017.

J. Y. Xie, L. A. Chew, X. Yang, Y. Wang, C. Qu et al., Sustained relief of ongoing experimental neuropathic pain by a CRMP2 peptide aptamer with low abuse potential, Pain, vol.157, issue.9, pp.2124-2140, 2016.

A. Moutal, Y. Wang, X. Yang, Y. Ji, S. Luo et al., Dissecting the role of the CRMP2-neurofibromin complex on pain behaviors, Pain, vol.158, issue.11, pp.2203-2221, 2017.

X. Khawaja, J. Xu, J. Liang, and J. E. Barrett, Proteomic analysis of protein changes developing in rat hippocampus after chronic antidepressant treatment: Implications for depressive disorders and future therapies, J. Neurosci. Res, vol.75, issue.4, pp.451-460, 2004.

K. Hensley, K. Venkova, A. Christov, W. Gunning, and J. Park, Collapsin response mediator protein-2: An emerging pathologic feature and therapeutic target for neurodisease indications, Mol. Neurobiol, vol.43, issue.3, pp.180-191, 2011.

S. Kedracka-krok, B. Swiderska, U. Jankowska, B. Skupien-rabian, J. Solich et al., Clozapine influences cytoskeleton structure and calcium homeostasis in rat cerebral cortex and has a different proteomic profile than risperidone, J. Neurochem, vol.132, issue.6, pp.657-676, 2015.

K. Hensley, A. Christov, S. Kamat, X. C. Zhang, K. W. Jackson et al., Proteomic Identification of Binding Partners for the Brain Metabolite Lanthionine Ketimine (LK) and Documentation of LK Effects on Microglia and Motoneuron Cell Cultures, J. Neurosci, vol.30, issue.8, pp.2979-2988, 2010.

J. L. Dupree, P. E. Polak, K. Hensley, D. Pelligrino, and D. L. Feinstein, Lanthionine ketimine ester provides benefit in a mouse model of multiple sclerosis, J. Neurochem, vol.134, issue.2, pp.302-316, 2015.

I. Kuperstein, D. P. Cohen, S. Pook, E. Viara, L. Calzone et al., NaviCell: a web-based environment for navigation, curation and maintenance of large molecular interaction maps, BMC Syst. Biol, vol.7, p.100, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00872428

H. Kitano, A. Funahashi, Y. Matsuoka, and K. Oda, Using process diagrams for the graphical representation of biological networks, Nat. Biotechnol, vol.23, issue.8, pp.961-966, 2005.

E. Demir, M. P. Cary, S. Paley, K. Fukuda, C. Lemer et al., Nat. Biotechnol, vol.28, issue.9, pp.935-942, 2010.

M. Kondratova, N. Sompairac, E. Barillot, A. Zinovyev, and I. Kuperstein, Signalling maps in cancer research: construction and data analysis, Database (Oxford), vol.2018, 2018.

I. Kuperstein, E. Bonnet, H. Nguyen, D. Cohen, E. Viara et al., Atlas of Cancer Signalling Network: a systems biology resource for integrative analysis of cancer data with Google Maps, Oncogenesis, vol.4, issue.7, p.160, 2015.

E. Bonnet, L. Calzone, D. Rovera, G. Stoll, E. Barillot et al., BiNoM 2.0, a Cytoscape plugin for accessing and analyzing pathways using standard systems biology formats, BMC Syst. Biol, vol.7, p.18, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00820930

R. L. Barnhill, M. Ye, A. Batistella, M. Stern, S. Roman-roman et al., The biological and prognostic significance of angiotropism in uveal melanoma, Lab. Investig, vol.97, issue.6, pp.746-759, 2017.

M. A. Economou, C. All-ericsson, V. Bykov, L. Girnita, A. Bartolazzi et al., Receptors for the Liver Synthesized Growth Factors IGF-1 and HGF/SF in Uveal Melanoma: Intercorrelation and Prognostic Implications, Investig. Opthalmology Vis. Sci, vol.46, issue.12, p.4372, 2005.

F. P. Gardner, D. J. Serie, D. R. Salomao, K. J. Wu, S. N. Markovic et al., c-MET expression in primary and liver metastases in uveal melanoma, Melanoma Res, vol.24, issue.6, pp.617-620, 2014.

H. Li, W. Yang, P. W. Chen, H. Alizadeh, and J. Y. Niederkorn, Inhibition of Chemokine Receptor Expression on Uveal Melanomas by CXCR4 siRNA and Its Effect on Uveal Melanoma Liver Metastases, Investig. Opthalmology Vis. Sci, vol.50, issue.12, p.5522, 2009.

P. S. Leventhal and E. L. Feldman, Insulin-like Growth Factors as Regulators of Cell Motility Signaling Mechanisms, Trends Endocrinol. Metab, vol.8, issue.1, pp.1-6, 1997.

D. Zhang, M. Bar-eli, S. Meloche, and P. Brodt, Dual Regulation of MMP-2 Expression by the Type 1 Insulin-like Growth Factor Receptor, J. Biol. Chem, vol.279, issue.19, pp.19683-19690, 2004.

C. All-ericsson, L. Girnita, S. Seregard, A. Bartolazzi, M. J. Jager et al., Insulin-like growth factor-1 receptor in uveal melanoma: a predictor for metastatic disease and a potential therapeutic target, Invest. Ophthalmol. Vis. Sci, vol.43, issue.1, pp.1-8, 2002.

A. Girnita, C. All-ericsson, M. A. Economou, K. Åström, M. Axelson et al., The insulin-like growth factor-I receptor inhibitor picropodophyllin causes tumor regression and attenuates mechanisms involved in invasion of uveal melanoma cells, Acta Ophthalmol, vol.86, issue.thesis4, pp.26-34, 2008.

D. P. Bottaro, J. S. Rubin, D. L. Faletto, A. M. Chan, T. E. Kmiecik et al., Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product, Science, vol.251, issue.4995, pp.802-806, 1991.

K. A. Furge, Y. Zhang, and G. F. Vande-woude, Met receptor tyrosine kinase: enhanced signaling through adapter proteins, Oncogene, vol.19, issue.49, pp.5582-5589, 2000.

C. Birchmeier, W. Birchmeier, E. Gherardi, and G. F. Vande-woude, Met, metastasis, motility and more, Nat. Rev. Mol. Cell Biol, vol.4, issue.12, pp.915-925, 2003.

Y. Zhang and G. F. Vande-woude, HGF/SF-met signaling in the control of branching morphogenesis and invasion, J. Cell. Biochem, vol.88, issue.2, pp.408-417, 2003.

B. Peruzzi and D. P. Bottaro, Targeting the c-Met Signaling Pathway in Cancer, Clin. Cancer Res, vol.12, issue.12, pp.3657-3660, 2006.

K. Yasumoto, K. Koizumi, A. Kawashima, Y. Saitoh, Y. Arita et al., Role of the CXCL12/CXCR4 Axis in Peritoneal Carcinomatosis of Gastric Cancer, Cancer Res, vol.66, issue.4, pp.2181-2187, 2006.

S. Di-cesare, J. Marshall, P. Logan, E. Antecka, D. Faingold et al., Expression and migratory analysis of 5 human uveal melanoma cell lines for CXCL12, CXCL8, CXCL1, J. Carcinog, vol.6, issue.2, 2007.

S. Scala, C. Ieranò, A. Ottaiano, R. Franco, A. Mura et al., CXC chemokine receptor 4 is expressed in uveal malignant melanoma and correlates with the epithelioid-mixed cell type, Cancer Immunol. Immunother, vol.56, issue.10, pp.1589-1595, 2007.

S. S. Giridharan, B. Cai, N. Naslavsky, and S. Caplan, Trafficking cascades mediated by Rab35 and its membrane hub effector, MICAL-L1, Commun. Integr. Biol, vol.5, issue.4, pp.384-387, 2012.

C. D. Walls, A. Iliuk, Y. Bai, M. Wang, W. A. Tao et al., Phosphatase of Regenerating Liver 3 (PRL3) Provokes a Tyrosine Phosphoproteome to Drive Prometastatic Signal Transduction, Mol. Cell. Proteomics, vol.12, issue.12, pp.3759-3777, 2013.

S. Pellegrin, H. Mellor, P. Barry, P. Andrews, and J. Jester, Actin stress fibres, J. Cell Sci, vol.120, pp.3491-3500, 2007.

S. Maacha, O. Anezo, M. Foy, G. Liot, L. Mery et al., Protein Tyrosine Phosphatase 4A3 (PTP4A3) Promotes Human Uveal Melanoma Aggressiveness Through Membrane Accumulation of Matrix Metalloproteinase, p.167

, Investig. Opthalmology Vis. Sci, vol.57, issue.4, p.1982, 2016.

J. H. Yoo, D. S. Shi, A. H. Grossmann, L. K. Sorensen, Z. Tong et al., ARF6 Is an Actionable Node that Orchestrates Oncogenic GNAQ Signaling in Uveal Melanoma, Cancer Cell, vol.29, issue.6, pp.889-904, 2016.

V. Marchesin, A. Castro-castro, C. Lodillinsky, A. Castagnino, J. Cyrta et al., ARF6-JIP3/4 regulate endosomal tubules for MT1-MMP exocytosis in cancer invasion, J. Cell Biol, vol.211, issue.2, pp.339-358, 2015.

A. Mazouzi, A. Stukalov, A. C. M?, J. Colinge, K. L. Bennett et al., A Comprehensive Analysis of the Dynamic Response to Aphidicolin-Mediated Replication Stress Uncovers Targets for ATM and ATMIN, Cell Rep, vol.15, issue.4, pp.893-908, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02297707