E. S. Amirian, G. N. Armstrong, R. Zhou, C. C. Lau, E. B. Claus et al., The Glioma International CaseControl Study: A Report From the Genetic Epidemiology of Glioma International Consortium, Am J Epidemiol. 15 janv, vol.183, issue.2, pp.85-91, 2016.

D. Gigineishvili, N. Shengelia, G. Shalashvili, S. Rohrmann, A. Tsiskaridze et al., Primary brain tumour epidemiology in Georgia: first-year results of a population-based study, J Neurooncol. avr, vol.112, issue.2, pp.241-247, 2013.

S. Zouaoui, V. Rigau, H. Mathieu-daudé, A. Darlix, F. Bessaoud et al.,

, Neurochirurgie. févr, vol.58, issue.1, pp.4-13, 2012.

P. Rajaraman, B. S. Melin, Z. Wang, R. Mckean-cowdin, D. S. Michaud et al., Genome-wide association study of glioma and meta-analysis, Hum Genet. déc, vol.131, issue.12, pp.1877-88, 2012.

J. L. Fisher, J. A. Schwartzbaum, M. Wrensch, and J. L. Wiemels, Epidemiology of brain tumors, Neurol Clin, vol.25, issue.4, pp.867-90, 2007.

L. Hardell, M. Carlberg, F. Söderqvist, K. H. Mild, and L. L. Morgan, Long-term use of cellular phones and brain tumours: increased risk associated with use for > or =10 years, Occup Environ Med. sept, vol.64, issue.9, pp.626-658, 2007.

H. Al-serori, M. Kundi, F. Ferk, M. Mi?ík, A. Nersesyan et al., Evaluation of the potential of mobile phone specific electromagnetic fields (UMTS) to produce micronuclei in human glioblastoma cell lines, Toxicol In Vitro. avr, vol.40, pp.264-71, 2017.

N. Upadhyay and A. D. Waldman, Conventional MRI evaluation of gliomas, Br J Radiol. déc, vol.84, issue.2, pp.107-111, 2011.

M. N. Khan, A. M. Sharma, M. Pitz, S. K. Loewen, H. Quon et al., High-grade glioma management and response assessment-recent advances and current challenges, Curr Oncol. août, vol.23, issue.4, pp.383-391, 2016.

J. Pallud, E. Mandonnet, H. Duffau, M. Kujas, R. Guillevin et al., Prognostic value of initial magnetic resonance imaging growth rates for World Health Organization grade II gliomas, Ann Neurol. sept, vol.60, issue.3, pp.380-383, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00163977

P. Zonari, P. Baraldi, and G. Crisi, Multimodal MRI in the characterization of glial neoplasms: the combined role of single-voxel MR spectroscopy, diffusion imaging and echo-planar perfusion imaging. Neuroradiology, vol.49, pp.795-803, 2007.

R. Guillevin, C. Menuel, S. Taillibert, L. Capelle, R. Costalat et al., Predicting the outcome of grade II glioma treated with temozolomide using proton magnetic resonance spectroscopy, Br J Cancer. 7 juin, vol.104, issue.12, pp.1854-61, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01469461

C. Colavolpe, P. Metellus, J. Mancini, M. Barrie, C. Béquet-boucard et al., Independent prognostic value of pre-treatment 18-FDG-PET in high-grade gliomas, J Neurooncol. mai, vol.107, issue.3, pp.527-562, 2012.

D. Chiro, G. Brooks, and R. A. , PET-FDG of untreated and treated cerebral gliomas, J Nucl Med. mars, vol.29, issue.3, pp.421-424, 1988.

T. Toyonaga, S. Yamaguchi, K. Hirata, K. Kobayashi, O. Manabe et al., Hypoxic glucose metabolism in glioblastoma as a potential prognostic factor, Eur J Nucl Med Mol Imaging. avr, vol.44, issue.4, pp.611-620, 2017.

C. Bell, N. Dowson, M. Fay, P. Thomas, S. Puttick et al., Hypoxia imaging in gliomas with 18F-fluoromisonidazole PET: toward clinical translation, Semin Nucl Med. mars, vol.45, issue.2, pp.136-50, 2015.

K. M. Schmainda, Z. Zhang, M. Prah, B. S. Snyder, M. R. Gilbert et al., Dynamic susceptibility contrast MRI measures of relative cerebral blood volume as a prognostic marker for overall survival in recurrent glioblastoma: results from the ACRIN 6677/RTOG 0625 multicenter trial, Neuro-oncology. août, vol.17, issue.8, pp.1148-56, 2015.

M. Essig, N. Anzalone, S. E. Combs, À. Dörfler, S. Lee et al., MR imaging of neoplastic central nervous system lesions: review and recommendations for current practice, AJNR Am J Neuroradiol. mai, vol.33, issue.5, pp.803-820, 2012.

F. Yamasaki, K. Kurisu, T. Aoki, M. Yamanaka, Y. Kajiwara et al., Advantages of high b-value diffusionweighted imaging to diagnose pseudo-responses in patients with recurrent glioma after bevacizumab treatment, Eur J Radiol, vol.81, issue.10, pp.2805-2815, 2012.

N. Shen, L. Zhao, J. Jiang, R. Jiang, C. Su et al., Intravoxel incoherent motion diffusion-weighted imaging analysis of diffusion and microperfusion in grading gliomas and comparison with arterial spin labeling for evaluation of tumor perfusion, J Magn Reson Imaging. sept, vol.44, issue.3, pp.620-652, 2016.

J. Arevalo-perez, K. K. Peck, R. J. Young, A. I. Holodny, S. Karimi et al., Dynamic Contrast-Enhanced Perfusion MRI and Diffusion-Weighted Imaging in Grading of Gliomas, J Neuroimaging, vol.25, issue.5, pp.792-800, 2015.

B. T. Ragel, T. C. Ryken, S. N. Kalkanis, M. Ziu, D. Cahill et al., The role of biopsy in the management of patients with presumed diffuse low grade glioma: A systematic review and evidence-based clinical practice guideline, J Neurooncol. déc, vol.125, issue.3, pp.481-501, 2015.

D. N. Louis, A. Perry, G. Reifenberger, A. Von-deimling, D. Figarella-branger et al., The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary, Acta Neuropathol, vol.131, issue.6, pp.803-823, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01479018

J. W. Kernohan and R. F. Mabon, A simplified classification of the gliomas, Proc Staff Meet Mayo Clin. 2 févr

P. Kleihues, P. C. Burger, and B. W. Scheithauer, The new WHO classification of brain tumours, Brain Pathol. juill

D. N. Louis, H. Ohgaki, O. D. Wiestler, W. K. Cavenee, P. C. Burger et al., WHO Classification of Tumours of the Central Nervous System, Acta Neuropathologica. 12 juill, vol.114, issue.2, pp.97-109, 2007.

P. Bailey and H. Cushing, A classification of tumors of the glioma groupo on a histogenetic basis with a correlation study of prognosis (1926), J.B Lippincott Co. 28. Zülch KJ. Types histologiques des tumeurs du système nerveux central. Genève: Organisation mondiale de la santé, 1979.

J. Balss, J. Meyer, W. Mueller, A. Korshunov, C. Hartmann et al., Analysis of the IDH1 codon 132 mutation in brain tumors, Acta Neuropathol. déc, vol.116, issue.6, pp.597-602, 2008.

D. Figarella-branger, C. C. Coulibaly, B. Quilichini, B. , M. De-paula et al., Classification histologique et moléculaire des gliomes, Revue Neurologique. juin, vol.164, issue.6-7, pp.505-520, 2008.

P. Kleihues and H. Ohgaki, Primary and secondary glioblastomas: from concept to clinical diagnosis, Neuro-oncology

H. Ohgaki and P. Kleihues, Genetic pathways to primary and secondary glioblastoma, Am J Pathol. mai, vol.170, issue.5, pp.1445-53, 2007.

T. Homma, T. Fukushima, S. Vaccarella, Y. Yonekawa, D. Patre et al., 34. van den Bent MJ. Interobserver variation of the histopathological diagnosis in clinical trials on glioma: a clinician's perspective, J Neuropathol Exp Neurol. sept, vol.65, issue.9, pp.297-304, 2006.

D. N. Louis, A. Perry, P. Burger, D. W. Ellison, G. Reifenberger et al., International Society Of Neuropathology--Haarlem consensus guidelines for nervous system tumor classification and grading, Brain Pathol. sept, vol.24, issue.5, pp.429-464, 2014.

N. K. Kloosterhof, L. Bralten, H. J. Dubbink, P. J. French, and M. J. Van-den-bent, Isocitrate dehydrogenase-1 mutations: a fundamentally new understanding of diffuse glioma?, Lancet Oncol. janv, vol.12, issue.1, pp.83-91, 2011.

A. L. Cohen, S. L. Holmen, and H. Colman, IDH1 and IDH2 Mutations in Gliomas. Current Neurology and Neuroscience Reports, 2013.

T. Watanabe, S. Nobusawa, P. Kleihues, and H. Ohgaki, IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas, Am J Pathol. avr, vol.174, issue.4, pp.1149-53, 2009.

S. Zhao, Y. Lin, W. Xu, W. Jiang, Z. Zha et al., Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha, Science. 10 avr, vol.324, issue.5924, pp.261-266, 2009.

T. A. Juratli, M. Kirsch, K. Robel, S. Soucek, K. Geiger et al., IDH mutations as an early and consistent marker in low-grade astrocytomas WHO grade II and their consecutive secondary high-grade gliomas, J Neurooncol. juill, vol.108, issue.3, pp.403-413, 2012.

D. W. Parsons, S. Jones, X. Zhang, J. Lin, R. J. Leary et al., An integrated genomic analysis of human glioblastoma multiforme, Science. 26 sept, vol.321, issue.5897, pp.1807-1819, 2008.

F. E. Bleeker, N. A. Atai, S. Lamba, A. Jonker, D. Rijkeboer et al., The prognostic IDH1( R132 ) mutation is associated with reduced NADP+-dependent IDH activity in glioblastoma, Acta Neuropathol. avr, vol.119, issue.4, pp.487-94, 2010.

H. Yan, D. D. Bigner, V. Velculescu, and D. W. Parsons, Mutant metabolic enzymes are at the origin of gliomas, Cancer Res. 15 déc, vol.69, issue.24, pp.9157-9166, 2009.

K. Ichimura, D. M. Pearson, S. Kocialkowski, L. M. Bäcklund, R. Chan et al., IDH1 mutations are present in the majority of common adult gliomas but rare in primary glioblastomas, Neuro-oncology. août, vol.11, issue.4, pp.341-348, 2009.

P. Birner, K. Toumangelova-uzeir, S. Natchev, and M. Guentchev, Expression of mutated isocitrate dehydrogenase-1

, in gliomas is associated with p53 and EGFR expression, Folia Neuropathol, vol.49, issue.2, pp.88-93, 2011.

M. Sanson, Y. Marie, S. Paris, A. Idbaih, J. Laffaire et al., Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas, J Clin Oncol. 1 sept, vol.27, issue.25, pp.4150-4154, 2009.

C. Hartmann, J. Meyer, J. Balss, D. Capper, W. Mueller et al., Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas, Acta Neuropathol, vol.118, issue.4, pp.469-74, 2009.

D. J. Brat, R. Verhaak, K. D. Aldape, W. Yung, and S. R. Salama, Cancer Genome Atlas Research Network

, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas, N Engl J Med. 25 juin, vol.372, issue.26, pp.2481-98, 2015.

R. B. Jenkins, H. Blair, K. V. Ballman, C. Giannini, R. M. Arusell et al., A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma, Cancer Res, vol.66, issue.20, pp.9852-61, 2006.

J. G. Cairncross, M. Wang, R. B. Jenkins, E. G. Shaw, C. Giannini et al., Benefit from procarbazine, lomustine, and vincristine in oligodendroglial tumors is associated with mutation of IDH, 51. van den Bent MJ, vol.32, pp.1276-84, 2003.

J. Felsberg, A. Erkwoh, M. C. Sabel, L. Kirsch, R. Fimmers et al., Oligodendroglial tumors: refinement of candidate regions on chromosome arm 1p and correlation of 1p/19q status with survival, Brain Pathol. avr, vol.14, issue.2, pp.121-151, 2004.

I. Lavon, D. Zrihan, B. Zelikovitch, Y. Fellig, D. Fuchs et al., Longitudinal assessment of genetic and epigenetic markers in oligodendrogliomas, Clin Cancer Res. 1 mars, vol.13, issue.5, pp.1429-1466, 2007.

S. Eustermann, J. Yang, M. J. Law, R. Amos, L. M. Chapman et al., Combinatorial readout of histone H3 modifications specifies localization of ATRX to heterochromatin, Nat Struct Mol Biol. 12 juin, vol.18, issue.7, pp.777-82, 2011.

P. W. Lewis, S. J. Elsaesser, K. Noh, S. C. Stadler, and C. D. Allis, Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres, Proc Natl Acad Sci, vol.107, issue.32, pp.14075-80, 2010.

D. Clynes, D. R. Higgs, and R. J. Gibbons, The chromatin remodeller ATRX: a repeat offender in human disease, Trends Biochem Sci. sept, vol.38, issue.9, pp.461-467, 2013.

C. M. Heaphy, R. F. De-wilde, Y. Jiao, A. P. Klein, B. H. Edil et al., Altered telomeres in tumors with ATRX and DAXX mutations, Science. 22 juill, vol.333, issue.6041, p.425, 2011.

X. Liu, N. Gerges, A. Korshunov, N. Sabha, D. Khuong-quang et al., Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations, Acta Neuropathol, vol.124, issue.5, pp.615-640, 2012.

D. Clynes and R. J. Gibbons, ATRX and the replication of structured DNA, Curr Opin Genet Dev. juin, vol.23, issue.3, pp.289-94, 2013.

S. Takano, E. Ishikawa, N. Sakamoto, M. Matsuda, H. Akutsu et al.,

. Atrx, Ki-67 substitute molecular genetic testing and predict patient prognosis in grade III adult diffuse gliomas, Brain Tumor Pathol. avr, vol.33, issue.2, pp.107-123, 2016.

H. Xu, H. Zong, C. Ma, X. Ming, M. Shang et al., Epidermal growth factor receptor in glioblastoma, Oncology Letters. juill, vol.14, issue.1, pp.512-518, 2017.

C. W. Brennan, R. Verhaak, A. Mckenna, B. Campos, H. Noushmehr et al., The somatic genomic landscape of glioblastoma, Cell, vol.155, issue.2, pp.462-77, 2013.

H. Ohgaki, P. Dessen, B. Jourde, S. Horstmann, T. Nishikawa et al., Genetic pathways to glioblastoma: a population-based study, Cancer Res, vol.64, pp.6892-6901, 2004.

G. Zadeh, K. Bhat, and K. Aldape, EGFR and EGFRvIII in glioblastoma: partners in crime, Cancer Cell, vol.24, issue.4, pp.403-407, 2013.

R. Nishikawa, X. D. Ji, R. C. Harmon, C. S. Lazar, G. N. Gill et al., A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity, Proc Natl Acad Sci, vol.91, issue.16, pp.7727-7758, 1994.

N. Sugawa, A. J. Ekstrand, C. D. James, and V. P. Collins, Identical splicing of aberrant epidermal growth factor receptor transcripts from amplified rearranged genes in human glioblastomas, Proc Natl Acad Sci, vol.87, issue.21, pp.8602-8608, 1990.

M. Nagane, F. Coufal, H. Lin, O. Bögler, W. K. Cavenee et al., A common mutant epidermal growth factor

N. Shinojima, K. Tada, S. Shiraishi, T. Kamiryo, M. Kochi et al., Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme, Cancer Res, vol.63, issue.20, pp.6962-70, 2003.

S. A. Weppler, Y. Li, L. Dubois, N. Lieuwes, B. Jutten et al., Expression of EGFR variant vIII promotes both radiation resistance and hypoxia tolerance, Radiother Oncol. juin, vol.83, issue.3, pp.333-342, 2007.

A. Von-deimling, A. Korshunov, and C. Hartmann, The next generation of glioma biomarkers: MGMT methylation, BRAF fusions and IDH1 mutations, Brain Pathol. janv, vol.21, issue.1, pp.74-87, 2011.

C. Chen, F. Wang, Y. Cheng, Y. Cheng, X. Ren et al., Predictive value of MGMT promoter methylation status in Asian and Caucasian patients with malignant gliomas: a meta-analysis, Int J Clin Exp Med, vol.8, issue.4, pp.6553-62, 2015.

G. Minniti, M. Salvati, A. Arcella, F. Buttarelli, D. 'elia et al., Correlation between O6-methylguanine

, DNA methyltransferase and survival in elderly patients with glioblastoma treated with radiotherapy plus concomitant and adjuvant temozolomide, J Neurooncol. avr, vol.102, issue.2, pp.311-317, 2011.

S. Boots-sprenger, A. Sijben, J. Rijntjes, B. Tops, A. J. Idema et al., , pp.1-19

, co-deletion, IDH1 mutation and MGMT promoter methylation in gliomas: use with caution, Mod Pathol. juill, vol.26, issue.7, pp.922-931, 2013.

X. Hu, W. Miao, Y. Zou, W. Zhang, Y. Zhang et al., Expression of p53, epidermal growth factor receptor, Ki-67 and O6-methylguanine-DNA methyltransferase in human gliomas, Oncology Letters. juill, vol.6, issue.1, pp.130-134, 2013.

Y. Jiao, C. Shi, B. H. Edil, R. F. De-wilde, D. S. Klimstra et al., DAXX/ATRX, MEN1, and mTOR pathway genes are frequently altered in pancreatic neuroendocrine tumors, Acta Neuropathol. janv, vol.331, issue.6021, pp.133-179, 2011.

A. Lai, S. Kharbanda, W. B. Pope, A. Tran, O. E. Solis et al., Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin, J Clin Oncol. 1 déc, vol.29, issue.34, pp.4482-90, 2011.

L. Chen, Z. Voronovich, K. Clark, I. Hands, J. Mannas et al., Predicting the likelihood of an isocitrate dehydrogenase 1 or 2 mutation in diagnoses of infiltrative glioma, Neuro-oncology, vol.16, issue.11, pp.1478-83, 2014.

R. Stupp, M. E. Hegi, W. P. Mason, M. J. Van-den-bent, M. Taphoorn et al., Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial, Lancet Oncol. mai, vol.10, issue.5, pp.459-66, 2009.

J. Zhang, M. Stevens, and T. D. Bradshaw, Temozolomide: mechanisms of action, repair and resistance, Curr Mol Pharmacol. janv, vol.5, issue.1, pp.102-116, 2012.

M. D. Prados, S. A. Byron, N. L. Tran, J. J. Phillips, A. M. Molinaro et al., Toward precision medicine in glioblastoma: the promise and the challenges, Neuro-Oncology. août, vol.17, issue.8, pp.1051-63, 2015.

E. Franceschi, A. Tosoni, S. Bartolini, V. Mazzocchi, A. Fioravanti et al., Treatment options for recurrent glioblastoma: pitfalls and future trends, Expert Rev Anticancer Ther. mai, vol.9, issue.5, pp.613-622, 2009.

R. Stupp, M. Brada, M. J. Van-den-bent, J. Tonn, G. Pentheroudakis et al., High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up, Ann Oncol. sept, vol.25, issue.3, pp.93-101, 2014.

I. J. Barani and D. A. Larson, Radiation therapy of glioblastoma, Cancer Treat Res, vol.163, pp.49-73, 2015.

H. Sun, S. Du, G. Liao, X. Xie, C. Ren et al., Do glioma patients derive any therapeutic benefit from taking a higher cumulative dose of temozolomide regimens?: a meta-analysis, Medicine (Baltimore). mai, vol.94, issue.20, pp.1032-1040, 2012.

E. Franceschi, M. Bartolotti, A. Tosoni, S. Bartolini, C. Sturiale et al., The effect of re-operation on survival in patients with recurrent glioblastoma, Anticancer Res. mars, vol.35, issue.3, pp.1743-1751, 2015.

M. Brada, S. Stenning, R. Gabe, L. C. Thompson, D. Levy et al., Temozolomide versus procarbazine, lomustine, and vincristine in recurrent high-grade glioma, J Clin Oncol, vol.28, issue.30, pp.4601-4609, 2010.

J. G. Wolbers, Novel strategies in glioblastoma surgery aim at safe, supra-maximum resection in conjunction with local therapies, Chin J Cancer. janv, vol.33, issue.1, pp.8-15, 2014.

R. H. Bobo, D. W. Laske, A. Akbasak, P. F. Morrison, R. L. Dedrick et al., Convection-enhanced delivery of macromolecules in the brain, Proc Natl Acad Sci USA. 15 mars, vol.91, issue.6, pp.2076-80, 1994.

A. Jahangiri, A. T. Chin, P. M. Flanigan, R. Chen, K. Bankiewicz et al., Convection-enhanced delivery in glioblastoma: a review of preclinical and clinical studies, J Neurosurg. janv, vol.126, issue.1, pp.191-200, 2017.

J. B. Wolinsky, Y. L. Colson, and M. W. Grinstaff, Local drug delivery strategies for cancer treatment: gels, nanoparticles, polymeric films, rods, and wafers, J Control Release. 10 avr, vol.159, issue.1, pp.14-26, 2012.

A. K. Vellimana, V. R. Recinos, L. Hwang, K. D. Fowers, K. W. Li et al., Combination of paclitaxel thermal gel depot with temozolomide and radiotherapy significantly prolongs survival in an experimental rodent glioma model, J Neurooncol. févr, vol.111, issue.3, pp.229-265, 2013.

M. Westphal, D. C. Hilt, E. Bortey, P. Delavault, R. Olivares et al., A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma, Neurooncology, vol.5, issue.2, pp.79-88, 2003.

Y. Zhang, R. Dai, Z. Chen, Y. Zhang, X. He et al., Efficacy and safety of carmustine wafers in the treatment of glioblastoma multiforme: a systematic review, Turk Neurosurg, vol.24, issue.5, pp.639-684, 2014.

W. Xing, C. Shao, Z. Qi, C. Yang, and Z. Wang, The role of Gliadel wafers in the treatment of newly diagnosed GBM: a meta-analysis, Drug Des Devel Ther, vol.9, pp.3341-3349, 2015.

Y. Akiyama, Y. Kimura, R. Enatsu, T. Mikami, M. Wanibuchi et al., Advantages and Disadvantages of Combined Chemotherapy with Carmustine Wafer and Bevacizumab in Patients with Newly Diagnosed Glioblastoma: A SingleInstitutional Experience, World Neurosurg. mai, vol.113, pp.508-522, 2018.

D. S. Nørøxe, H. S. Poulsen, and U. Lassen, Hallmarks of glioblastoma: a systematic review

E. Majewska and M. Szeliga, AKT/GSK3? Signaling in Glioblastoma, Neurochem Res. mars, vol.42, issue.3, pp.918-942, 2017.

M. Westphal, O. Heese, J. P. Steinbach, O. Schnell, G. Schackert et al., A randomised, open label phase III trial with nimotuzumab, an anti-epidermal growth factor receptor monoclonal antibody in the treatment of newly diagnosed adult glioblastoma, Eur J Cancer. mars, vol.51, issue.4, pp.522-554, 2015.

J. L. Clarke, A. M. Molinaro, J. J. Phillips, N. A. Butowski, S. M. Chang et al., A single-institution phase II trial of radiation, temozolomide, erlotinib, and bevacizumab for initial treatment of glioblastoma, Neuro-oncology. juill, vol.16, issue.7, pp.984-90, 2014.

J. J. Raizer, P. Giglio, J. Hu, M. Groves, R. Merrell et al., A phase II study of bevacizumab and erlotinib after radiation and temozolomide in MGMT unmethylated GBM patients, J Neurooncol. janv, vol.126, issue.1, pp.185-92, 2016.

D. M. Peereboom, M. S. Ahluwalia, X. Ye, J. G. Supko, S. L. Hilderbrand et al., NABTT 0502: a phase II and pharmacokinetic study of erlotinib and sorafenib for patients with progressive or recurrent glioblastoma multiforme, Neuro-oncology. avr, vol.15, issue.4, pp.490-496, 2013.

A. Chakravarti, M. Wang, H. I. Robins, T. Lautenschlaeger, W. J. Curran et al., , vol.0211

, study of radiation therapy with concurrent gefitinib for newly diagnosed glioblastoma patients, Int J Radiat Oncol Biol Phys. 1 avr, vol.85, issue.5, pp.1206-1217, 2013.

J. H. Uhm, K. V. Ballman, W. Wu, C. Giannini, J. C. Krauss et al., Phase II evaluation of gefitinib in patients with newly diagnosed Grade 4 astrocytoma: Mayo/North Central Cancer Treatment Group Study N0074, Int J Radiat Oncol Biol Phys. 1 juin, vol.80, issue.2, pp.347-53, 2011.

D. A. Reardon, L. B. Nabors, W. P. Mason, J. R. Perry, W. Shapiro et al., Phase I/randomized phase II study of afatinib, an irreversible ErbB family blocker, with or without protracted temozolomide in adults with recurrent glioblastoma, Neuro-oncology. mars, vol.17, issue.3, pp.430-439, 2015.

B. Thiessen, C. Stewart, M. Tsao, S. Kamel-reid, P. Schaiquevich et al., A phase I/II trial of GW572016

, (lapatinib) in recurrent glioblastoma multiforme: clinical outcomes, pharmacokinetics and molecular correlation, Cancer Chemother Pharmacol. janv, vol.65, issue.2, pp.353-61, 2010.

A. Yu, N. Faiq, S. Green, A. Lai, R. Green et al., Report of safety of pulse dosing of lapatinib with temozolomide and radiation therapy for newly-diagnosed glioblastoma in a pilot phase II study, J Neurooncol. sept, vol.134, issue.2, pp.357-62, 2017.

M. Jo, Y. G. Kim, Y. Kim, S. J. Lee, M. H. Kim et al., Combined therapy of temozolomide and ZD6474 (vandetanib) effectively reduces glioblastoma tumor volume through anti-angiogenic and anti-proliferative mechanisms, Mol Med Rep. juill, vol.6, issue.1, pp.88-92, 2012.

E. Q. Lee, T. J. Kaley, D. G. Duda, D. Schiff, A. B. Lassman et al., Phase II, Randomized, Noncomparative Clinical Trial of Radiation and Temozolomide with or without Vandetanib in Newly Diagnosed Glioblastoma Patients, Clin Cancer Res. 15 août, vol.21, issue.16, pp.3610-3618, 2015.

A. Tivnan, T. Heilinger, E. C. Lavelle, and J. Prehn, Advances in immunotherapy for the treatment of glioblastoma, J Neurooncol, vol.131, issue.1, pp.1-9, 2017.

J. Schuster, R. K. Lai, L. D. Recht, D. A. Reardon, N. A. Paleologos et al., A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study, Neuro-oncology. juin, vol.17, issue.6, pp.854-61, 2015.

M. Weller, N. Butowski, D. D. Tran, L. D. Recht, M. Lim et al., Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial, Lancet Oncol, vol.18, issue.10, pp.1373-85, 2017.

S. Genßler, M. C. Burger, C. Zhang, S. Oelsner, I. Mildenberger et al., Dual targeting of glioblastoma with chimeric antigen receptor-engineered natural killer cells overcomes heterogeneity of target antigen expression and enhances antitumor activity and survival, Oncoimmunology. avr, vol.5, issue.4, p.1119354, 2016.

D. A. Reardon, G. Dresemann, S. Taillibert, M. Campone, M. Van-den-bent et al., Multicentre phase II studies evaluating imatinib plus hydroxyurea in patients with progressive glioblastoma, Br J Cancer. 15 déc, vol.101, issue.12, pp.1995-2004, 2009.

A. B. Lassman, S. L. Pugh, M. R. Gilbert, K. D. Aldape, S. Geinoz et al., Phase 2 trial of dasatinib in targetselected patients with recurrent glioblastoma (RTOG 0627), Neuro-oncology. juill, vol.17, issue.7, pp.992-1000, 2015.

Y. Odia, J. Sul, J. H. Shih, T. N. Kreisl, J. A. Butman et al., A Phase II trial of tandutinib (MLN 518) in combination with bevacizumab for patients with recurrent glioblastoma, CNS Oncol, vol.5, issue.2, pp.59-67, 2016.

T. T. Batchelor, E. R. Gerstner, X. Ye, S. Desideri, D. G. Duda et al., Feasibility, phase I, and phase II studies of tandutinib, an oral platelet-derived growth factor receptor-? tyrosine kinase inhibitor, in patients with recurrent glioblastoma, Neuro-oncology, vol.01, issue.4, pp.567-75, 2017.

S. Grisanti, V. D. Ferrari, M. Buglione, G. M. Agazzi, R. Liserre et al., Second line treatment of recurrent glioblastoma with sunitinib: results of a phase II study and systematic review of literature, J Neurosurg Sci. 28 sept, 2016.

C. Balaña, M. J. Gil, P. Perez, G. Reynes, O. Gallego et al., Sunitinib administered prior to radiotherapy in patients with non-resectable glioblastoma: results of a phase II study, Target Oncol. déc, vol.9, issue.4, pp.321-330, 2014.

U. Lassen, M. Sorensen, T. B. Gaziel, B. Hasselbalch, and H. S. Poulsen, Phase II study of bevacizumab and temsirolimus combination therapy for recurrent glioblastoma multiforme, Anticancer Res. avr, vol.33, issue.4, pp.1657-60, 2013.

E. Q. Lee, J. Kuhn, K. R. Lamborn, L. Abrey, L. M. Deangelis et al., Phase I/II study of sorafenib in combination with temsirolimus for recurrent glioblastoma or gliosarcoma: North American Brain Tumor Consortium study 05-02, Neuro-oncology. déc, vol.14, issue.12, pp.1511-1519, 2012.

W. Wick, T. Gorlia, P. Bady, M. Platten, M. J. Van-den-bent et al., Phase II Study of Radiotherapy and Temsirolimus versus Radiochemotherapy with Temozolomide in Patients with Newly Diagnosed Glioblastoma without MGMT Promoter Hypermethylation (EORTC 26082), Clin Cancer Res, vol.22, pp.4797-806, 2016.

A. Arcella, F. Biagioni, A. Oliva, M. Bucci, D. Frati et al., Rapamycin inhibits the growth of glioblastoma, Brain Res. 7 févr, vol.1495, pp.37-51, 2013.

D. A. Reardon, A. Desjardins, J. J. Vredenburgh, S. Gururangan, A. H. Friedman et al., Phase 2 trial of erlotinib plus sirolimus in adults with recurrent glioblastoma, J Neurooncol. janv, vol.96, issue.2, pp.219-249, 2010.

D. J. Ma, E. Galanis, S. K. Anderson, D. Schiff, T. J. Kaufmann et al., A phase II trial of everolimus, temozolomide, and radiotherapy in patients with newly diagnosed glioblastoma: NCCTG N057K, Neuro-oncology. sept, vol.17, issue.9, pp.1261-1270, 2015.

J. Kahn, T. J. Hayman, M. Jamal, B. H. Rath, T. Kramp et al., The mTORC1/mTORC2 inhibitor AZD2014 enhances the radiosensitivity of glioblastoma stem-like cells, Neuro-oncology. janv, vol.16, issue.1, pp.29-37, 2014.

F. Shi, H. Guo, R. Zhang, H. Liu, L. Wu et al., The PI3K inhibitor GDC-0941 enhances radiosensitization and reduces chemoresistance to temozolomide in GBM cell lines, Neuroscience. 27 mars, vol.346, pp.298-308, 2017.

M. Speranza, M. O. Nowicki, P. Behera, C. Cho, E. A. Chiocca et al., BKM-120 (Buparlisib): A Phosphatidyl

I. A. Netland, H. E. Førde, L. Sleire, L. Leiss, M. A. Rahman et al., Treatment with the PI3K inhibitor buparlisib (NVP-BKM120) suppresses the growth of established patient-derived GBM xenografts and prolongs survival in nude rats, Kinase Inhibitor with Anti-Invasive Properties in Glioblastoma. Sci Rep. 5 févr, vol.6, pp.57-66, 2016.

D. Koul, R. Shen, Y. Kim, Y. Kondo, Y. Lu et al., Cellular and in vivo activity of a novel PI3K inhibitor, PX-866, against human glioblastoma, Neuro-oncology. juin, vol.12, issue.6, pp.559-69, 2010.

M. W. Pitz, E. A. Eisenhauer, M. V. Macneil, B. Thiessen, J. C. Easaw et al., Phase II study of PX-866 in recurrent glioblastoma, Neuro-oncology. sept, vol.17, issue.9, pp.1270-1274, 2015.

P. Y. Wen, A. Omuro, M. S. Ahluwalia, H. M. Fathallah-shaykh, N. Mohile et al., Phase I dose-escalation study of the PI3K/mTOR inhibitor voxtalisib (SAR245409, XL765) plus temozolomide with or without radiotherapy in patients with high-grade glioma, Neuro-oncology. sept, vol.17, issue.9, pp.1275-83, 2015.

W. P. Mason, K. Belanger, G. Nicholas, I. Vallières, D. Mathieu et al., A phase II study of the Ras-MAPK signaling pathway inhibitor TLN-4601 in patients with glioblastoma at first progression, J Neurooncol. avr, vol.107, issue.2, pp.343-352, 2012.

J. Jakubowicz-gil, D. B?dziul, E. Langner, I. Wertel, A. Zaj?c et al., Temozolomide and sorafenib as programmed cell death inducers of human glioma cells, Pharmacol Rep. août, vol.69, issue.4, pp.779-87, 2017.

F. Zustovich, L. Landi, G. Lombardi, C. Porta, L. Galli et al., Sorafenib plus daily low-dose temozolomide for relapsed glioblastoma: a phase II study, Anticancer Res. août, vol.33, issue.8, pp.3487-94, 2013.

E. Galanis, S. K. Anderson, J. M. Lafky, J. H. Uhm, C. Giannini et al., Phase II study of bevacizumab in combination with sorafenib in recurrent glioblastoma (N0776): a north central cancer treatment group trial, Clin Cancer Res. 1 sept, vol.19, issue.17, pp.4816-4839, 2013.

J. D. Hainsworth, T. Ervin, E. Friedman, V. Priego, P. B. Murphy et al., Concurrent radiotherapy and temozolomide followed by temozolomide and sorafenib in the first-line treatment of patients with glioblastoma multiforme, Cancer. 1 août, vol.116, issue.15, pp.3663-3672, 2010.

P. Peng, W. Wei, C. Long, and J. Li, Atorvastatin augments temozolomide's efficacy in glioblastoma via prenylationdependent inhibition of Ras signaling, Biochem Biophys Res Commun, vol.29, issue.3, pp.293-301, 2017.

M. Onishi, K. Kurozumi, T. Ichikawa, and I. Date, Mechanisms of tumor development and anti-angiogenic therapy in glioblastoma multiforme, Neurol Med Chir (Tokyo), vol.53, issue.11, pp.755-63, 2013.

J. J. Vredenburgh, A. Desjardins, J. E. Herndon, J. Marcello, D. A. Reardon et al., Bevacizumab plus irinotecan in recurrent glioblastoma multiforme, J Clin Oncol, vol.25, issue.30, pp.4722-4731, 2007.

H. S. Friedman, M. D. Prados, P. Y. Wen, T. Mikkelsen, D. Schiff et al., Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma, J Clin Oncol, vol.27, issue.28, pp.4733-4773, 2009.

A. Desjardins, D. A. Reardon, A. Coan, J. Marcello, J. E. Herndon et al., Bevacizumab and daily temozolomide for recurrent glioblastoma, Cancer. 1 mars, vol.118, issue.5, pp.1302-1314, 2012.

D. A. Reardon, A. Desjardins, K. B. Peters, S. Gururangan, J. H. Sampson et al., Phase II study of carboplatin, irinotecan, and bevacizumab for bevacizumab naïve, recurrent glioblastoma, J Neurooncol. mars, vol.107, issue.1, pp.155-64, 2012.

W. Taal, H. M. Oosterkamp, A. Walenkamp, H. J. Dubbink, L. V. Beerepoot et al., Single-agent bevacizumab or lomustine versus a combination of bevacizumab plus lomustine in patients with recurrent glioblastoma (BELOB trial): a randomised controlled phase 2 trial, The Lancet Oncology. août, vol.15, issue.9, pp.943-53, 2014.

L. Dirven, M. J. Van-den-bent, A. Bottomley, N. Van-der-meer, B. Van-der-holt et al., The impact of bevacizumab on health-related quality of life in patients treated for recurrent glioblastoma: results of the randomised controlled phase 2 BELOB trial, Eur J Cancer. juill, vol.51, issue.10, pp.1321-1351, 2015.

O. Schnell, J. Thorsteinsdottir, D. F. Fleischmann, M. Lenski, W. Abenhardt et al., Bevacizumab in combination with radiotherapy and temozolomide for patients with newly diagnosed glioblastoma multiforme, Oncologist. févr, vol.130, issue.3, pp.107-115, 2015.

O. L. Chinot, W. Wick, W. Mason, R. Henriksson, F. Saran et al., Bevacizumab plus RadiotherapyTemozolomide for Newly Diagnosed Glioblastoma, New England Journal of Medicine. 20 févr, vol.370, issue.8, pp.709-731, 2014.

D. E. Ney, J. A. Carlson, D. M. Damek, L. E. Gaspar, B. D. Kavanagh et al., Phase II trial of hypofractionated intensity-modulated radiation therapy combined with temozolomide and bevacizumab for patients with newly diagnosed glioblastoma, J Neurooncol. mars, vol.122, issue.1, pp.135-178, 2015.

M. R. Gilbert, J. J. Dignam, T. S. Armstrong, J. S. Wefel, D. T. Blumenthal et al., A Randomized Trial of Bevacizumab for Newly Diagnosed Glioblastoma, New England Journal of Medicine. 20 févr, vol.370, issue.8, pp.699-708, 2014.

U. Herrlinger, N. Schäfer, J. P. Steinbach, A. Weyerbrock, P. Hau et al., Bevacizumab Plus Irinotecan Versus Temozolomide in Newly Diagnosed O6-Methylguanine-DNA Methyltransferase Nonmethylated Glioblastoma: The Randomized GLARIUS Trial, J Clin Oncol, vol.10, issue.14, pp.1611-1620, 2016.

C. Balana, R. De-las-penas, J. M. Sepúlveda, M. J. Gil-gil, R. Luque et al., Bevacizumab and temozolomide versus temozolomide alone as neoadjuvant treatment in unresected glioblastoma: the GENOM 009 randomized phase II trial, J Neurooncol. mai, vol.127, issue.3, pp.569-79, 2016.

F. M. Iwamoto, K. R. Lamborn, H. I. Robins, M. P. Mehta, S. M. Chang et al., Phase II trial of pazopanib (GW786034), an oral multi-targeted angiogenesis inhibitor, for adults with recurrent glioblastoma (North American Brain Tumor Consortium Study 06-02), Neuro-oncology. août, vol.12, issue.8, pp.855-61, 2010.

A. Muhic, H. S. Poulsen, M. Sorensen, K. Grunnet, and U. Lassen, Phase II open-label study of nintedanib in patients with recurrent glioblastoma multiforme, J Neurooncol. janv, vol.111, issue.2, pp.205-217, 2013.

T. T. Batchelor, D. G. Duda, E. Di-tomaso, M. Ancukiewicz, S. R. Plotkin et al., Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma, J Clin Oncol. 10 juin, vol.28, issue.17, pp.2817-2840, 2010.

N. Brown, C. Mcbain, S. Nash, K. Hopkins, P. Sanghera et al.,

, Comparing Cediranib plus Gefitinib with Cediranib plus Placebo in Subjects with Recurrent/Progressive Glioblastoma, PLoS ONE, vol.11, issue.5, p.156369, 2016.

N. Schäfer, G. H. Gielen, S. Kebir, A. Wieland, A. Till et al., Phase I trial of dovitinib (TKI258) in recurrent glioblastoma, J Cancer Res Clin Oncol. juill, vol.142, issue.7, pp.1581-1590, 2016.

T. Thanasupawat, S. Natarajan, A. Rommel, A. Glogowska, H. Bergen et al., Dovitinib enhances temozolomide efficacy in glioblastoma cells, Mol Oncol. août, vol.11, issue.8, pp.1078-98, 2017.

T. Cloughesy, G. Finocchiaro, C. Belda-iniesta, L. Recht, A. A. Brandes et al., Double-Blind, Placebo-Controlled, Multicenter Phase II Study of Onartuzumab Plus Bevacizumab Versus Placebo Plus Bevacizumab in Patients With Recurrent Glioblastoma: Efficacy, Safety, and Hepatocyte Growth Factor and O6-Methylguanine-DNA Methyltransferase Biomarker Analyses, J Clin Oncol. 20 janv, vol.35, issue.3, pp.343-51, 2017.

P. Y. Wen, D. Schiff, T. F. Cloughesy, J. J. Raizer, J. Laterra et al., A phase II study evaluating the efficacy and safety of AMG 102 (rilotumumab) in patients with recurrent glioblastoma, Neuro-oncology. avr, vol.13, issue.4, pp.437-483, 2011.

J. F. De-groot, High-Dose Antiangiogenic Therapy for Glioblastoma: Less May Be More? Clinical Cancer Research, vol.17, pp.6109-6120, 2011.

U. Lassen, O. L. Chinot, C. Mcbain, M. Mau-sørensen, V. A. Larsen et al., Phase 1 dose-escalation study of the antiplacental growth factor monoclonal antibody RO5323441 combined with bevacizumab in patients with recurrent glioblastoma, Neuro-oncology. juill, vol.17, issue.7, pp.1007-1022, 2015.

M. S. Gordon, F. Robert, D. Matei, D. S. Mendelson, J. W. Goldman et al., An open-label phase Ib doseescalation study of TRC105 (anti-endoglin antibody) with bevacizumab in patients with advanced cancer, Clin Cancer Res. 1 déc, vol.20, issue.23, pp.5918-5944, 2014.

R. Stupp, M. E. Hegi, B. Neyns, R. Goldbrunner, U. Schlegel et al., Phase I/IIa study of cilengitide and temozolomide with concomitant radiotherapy followed by cilengitide and temozolomide maintenance therapy in patients with newly diagnosed glioblastoma, J Clin Oncol. 1 juin, vol.28, issue.16, pp.2712-2720, 2010.

L. B. Nabors, T. Mikkelsen, M. E. Hegi, X. Ye, T. Batchelor et al., A safety run-in and randomized phase 2

R. Stupp, M. E. Hegi, T. Gorlia, S. C. Erridge, J. Perry et al., Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, Lancet Oncol. sept, vol.15, issue.10, pp.1100-1108, 2014.

L. B. Nabors, K. L. Fink, T. Mikkelsen, D. Grujicic, R. Tarnawski et al., Two cilengitide regimens in combination with standard treatment for patients with newly diagnosed glioblastoma and unmethylated MGMT gene promoter: results of the open-label, controlled, randomized phase II CORE study, Neuro-oncology. mai, vol.17, issue.5, pp.708-725, 2015.

L. Arko, I. Katsyv, G. E. Park, W. P. Luan, and J. K. Park, Experimental approaches for the treatment of malignant gliomas

, Pharmacol Ther, vol.128, issue.1, pp.1-36, 2010.

D. Stieber, A. Golebiewska, L. Evers, E. Lenkiewicz, N. Brons et al., Glioblastomas are composed of genetically divergent clones with distinct tumourigenic potential and variable stem cell-associated phenotypes, Acta Neuropathol. févr, vol.127, issue.2, pp.203-222, 2014.

D. J. Aum, D. H. Kim, T. L. Beaumont, E. C. Leuthardt, G. P. Dunn et al., Molecular and cellular heterogeneity: the hallmark of glioblastoma, Neurosurg Focus. déc, vol.37, issue.6, p.11, 2014.

R. Bonavia, M. Inda, W. K. Cavenee, and F. B. Furnari, Heterogeneity maintenance in glioblastoma: a social network

, Cancer Res. 15 juin, vol.71, issue.12, pp.4055-60, 2011.

H. S. Phillips, S. Kharbanda, R. Chen, W. F. Forrest, R. H. Soriano et al., Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis, Cancer Cell. mars, vol.9, issue.3, pp.157-73, 2006.

R. Verhaak, K. A. Hoadley, E. Purdom, V. Wang, Y. Qi et al., Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1, Cancer Cell. 19 janv, vol.17, issue.1, pp.98-110, 2010.

Q. Wang, B. Hu, X. Hu, H. Kim, M. Squatrito et al., Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment, Cancer Cell. juill, vol.32, issue.1, pp.42-56, 2017.

K. Gabrusiewicz, B. Rodriguez, J. Wei, Y. Hashimoto, L. M. Healy et al., Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype, JCI Insight, vol.1, issue.2, 2016.

T. Ozawa, M. Riester, Y. Cheng, J. T. Huse, M. Squatrito et al., Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma, Cancer Cell. 11 août, vol.26, issue.2, pp.288-300, 2014.

H. Ohgaki and P. Kleihues, The definition of primary and secondary glioblastoma, Clin Cancer Res. 15 févr, vol.19, issue.4, pp.764-72, 2013.

M. Ranjit, K. Motomura, F. Ohka, T. Wakabayashi, and A. Natsume, Applicable advances in the molecular pathology of glioblastoma, Brain Tumor Pathol. juill, vol.32, issue.3, pp.153-62, 2015.

M. A. Qazi, P. Vora, C. Venugopal, S. S. Sidhu, J. Moffat et al., Intratumoral heterogeneity: pathways to treatment resistance and relapse in human glioblastoma, Ann Oncol. 1 juill, vol.28, issue.7, pp.1448-56, 2017.

K. Abou-el-ardat, M. Seifert, K. Becker, S. Eisenreich, M. Lehmann et al., Comprehensive molecular characterization of multifocal glioblastoma proves its monoclonal origin and reveals novel insights into clonal evolution and heterogeneity of glioblastomas, Neuro-oncology, vol.01, issue.4, pp.546-57, 2017.

M. Aubry, M. De-tayrac, A. Etcheverry, A. Clavreul, S. Saikali et al., From the core to beyond the margin: a genomic picture of glioblastoma intratumor heterogeneity, Oncotarget. 20 mai, vol.6, issue.14, pp.12094-109, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01117090

A. Sottoriva, I. Spiteri, S. Piccirillo, A. Touloumis, V. P. Collins et al., Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics, Proc Natl Acad Sci, vol.110, issue.10, pp.4009-4023, 2013.

A. P. Patel, I. Tirosh, J. J. Trombetta, A. K. Shalek, S. M. Gillespie et al., Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma, Science. 20 juin, vol.344, issue.6190, pp.1396-401, 2014.

J. Lemée, A. Clavreul, and P. Menei, Intratumoral heterogeneity in glioblastoma: don't forget the peritumoral brain zone, Neuro-oncology, vol.17, issue.10, pp.1322-1354, 2015.

A. Roos, Z. Ding, J. C. Loftus, and N. L. Tran, Molecular and Microenvironmental Determinants of Glioma Stem-Like Cell Survival and Invasion, Front Oncol, vol.7, p.120, 2017.

S. Piccirillo, S. Dietz, B. Madhu, J. Griffiths, S. J. Price et al., Fluorescence-guided surgical sampling of glioblastoma identifies phenotypically distinct tumour-initiating cell populations in the tumour mass and margin, Br J Cancer. 24 juill, vol.107, issue.3, pp.462-470, 2012.

B. J. Gill, D. J. Pisapia, H. R. Malone, H. Goldstein, L. Lei et al., MRI-localized biopsies reveal subtypespecific differences in molecular and cellular composition at the margins of glioblastoma, Proc Natl Acad Sci, vol.111, issue.34, pp.12550-12555, 2014.

H. P. Ellis, M. Greenslade, B. Powell, I. Spiteri, A. Sottoriva et al., Current Challenges in Glioblastoma: Intratumour Heterogeneity, Residual Disease, and Models to Predict Disease Recurrence, Front Oncol, vol.5, p.251, 2015.

S. G. Piccirillo, I. Spiteri, A. Sottoriva, A. Touloumis, S. Ber et al., Contributions to drug resistance in glioblastoma derived from malignant cells in the sub-ependymal zone, Cancer Res. 1 janv, vol.75, issue.1, p.35262, 2012.

J. Kim, I. Lee, H. J. Cho, C. Park, Y. Jung et al., Spatiotemporal Evolution of the Primary Glioblastoma Genome, Cancer Cell. 14 sept, vol.28, issue.3, pp.318-346, 2015.

J. Lee, J. Wang, J. K. Sa, E. Ladewig, H. Lee et al., Spatiotemporal genomic architecture informs precision oncology in glioblastoma, Nat Genet. avr, vol.49, issue.4, pp.594-603, 2017.

J. Wang, E. Cazzato, E. Ladewig, V. Frattini, D. Rosenbloom et al., Clonal evolution of glioblastoma under therapy, Nat Genet, vol.48, issue.7, pp.768-76, 2016.

R. R. Zhang, K. B. Pointer, J. S. Kuo, and R. J. Dempsey, Mutational analysis reveals the origin and therapy-driven evolution of recurrent glioma, Neurosurgery. déc, vol.75, issue.6, pp.9-10, 2014.

M. Meyer, J. Reimand, X. Lan, R. Head, X. Zhu et al., Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity, Proc Natl Acad Sci, vol.112, issue.3, pp.851-857, 2015.

M. Gerstung, N. Eriksson, J. Lin, B. Vogelstein, and N. Beerenwinkel, The Temporal Order of Genetic and Pathway Alterations in Tumorigenesis, Toland AE, éditeur. PLoS ONE, vol.6, issue.11, p.27136, 2011.

M. Inda, R. Bonavia, and J. Seoane, Glioblastoma multiforme: a look inside its heterogeneous nature. Cancers (Basel), janv, vol.27, issue.1, pp.226-265, 2014.

H. Kim, S. Zheng, S. S. Amini, S. M. Virk, T. Mikkelsen et al., Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution, Genome Res. mars, vol.25, issue.3, pp.316-343, 2015.

N. R. Parker, P. Khong, J. F. Parkinson, V. M. Howell, H. R. Wheeler et al., Molecular Heterogeneity in Glioblastoma: Potential Clinical Implications. Frontiers in Oncology, Oncogene. 24 mars, vol.5, issue.12, pp.1504-1520, 2016.

K. Bhat, V. Balasubramaniyan, B. Vaillant, R. Ezhilarasan, K. Hummelink et al., Expression of CD133 and CD44 in glioblastoma stem cells correlates with cell proliferation, phenotype stability and intra-tumor heterogeneity, Cancer Cell. 9 sept, vol.24, issue.3, p.172791, 2013.

S. E. Little, S. Popov, A. Jury, D. A. Bax, L. Doey et al., Receptor tyrosine kinase genes amplified in glioblastoma exhibit a mutual exclusivity in variable proportions reflective of individual tumor heterogeneity, Cancer Res. 1 avr, vol.72, issue.7, pp.1614-1634, 2012.

R. Nishikawa, T. Sugiyama, Y. Narita, F. Furnari, W. K. Cavenee et al., Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity, J Clin Oncol. 1 sept, vol.21, issue.2, pp.4189-99, 2004.

N. J. Szerlip, A. Pedraza, D. Chakravarty, M. Azim, J. Mcguire et al., Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response, Proc Natl Acad Sci, vol.109, issue.8, pp.3041-3047, 2012.

E. Scribner, O. Saut, P. Province, A. Bag, T. Colin et al., Effects of anti-angiogenesis on glioblastoma growth and migration: model to clinical predictions, PLoS ONE, vol.9, issue.12, p.115018, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01101651

R. Reinartz, S. Wang, S. Kebir, D. J. Silver, A. Wieland et al., Functional Subclone Profiling for Prediction of

, Treatment-Induced Intratumor Population Shifts and Discovery of Rational Drug Combinations in Human Glioblastoma, Clin Cancer Res. 15 janv, vol.23, issue.2, pp.562-74, 2017.

C. Bettegowda, M. Sausen, R. J. Leary, I. Kinde, Y. Wang et al., Detection of circulating tumor DNA in early-and late-stage human malignancies, Sci Transl Med. 19 févr, vol.6, issue.224, pp.224-248, 2014.

J. Skog, T. Würdinger, S. Van-rijn, D. H. Meijer, L. Gainche et al., Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers, Nat Cell Biol. déc, vol.10, issue.12, pp.1470-1476, 2008.

K. M. Macarthur, G. D. Kao, S. Chandrasekaran, M. Alonso-basanta, C. Chapman et al., Detection of brain tumor cells in the peripheral blood by a telomerase promoter-based assay, Cancer Res. 15 avr, vol.74, issue.8, pp.2152-2161, 2014.

M. L. Cruceru, M. Neagu, J. Demoulin, and S. N. Constantinescu, Therapy targets in glioblastoma and cancer stem cells: lessons from haematopoietic neoplasms, J Cell Mol Med, vol.17, issue.10, pp.1218-1253, 2013.

T. N. Ignatova, V. G. Kukekov, E. D. Laywell, O. N. Suslov, F. D. Vrionis et al., Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro, Glia. sept, vol.39, issue.3, pp.193-206, 2002.

A. Morokoff, W. Ng, A. Gogos, and A. H. Kaye, Molecular subtypes, stem cells and heterogeneity: Implications for personalised therapy in glioma, J Clin Neurosci. août, vol.22, issue.8, pp.1219-1245, 2015.

N. Thon, K. Damianoff, J. Hegermann, S. Grau, B. Krebs et al., Presence of pluripotent CD133+ cells correlates with malignancy of gliomas, Mol Cell Neurosci. janv, vol.43, issue.1, pp.51-60, 2010.

R. Dehcordi, S. Ricci, A. , D. Vitantonio, H. et al., Stemness Marker Detection in the Periphery of Glioblastoma and Ability of Glioblastoma to Generate Glioma Stem Cells: Clinical Correlations, World Neurosurg. sept, vol.105, pp.895-905, 2017.

H. Koso, H. Takeda, C. Yew, J. M. Ward, N. Nariai et al., Transposon mutagenesis identifies genes that transform neural stem cells into glioma-initiating cells, Proc Natl Acad Sci, vol.109, issue.44, pp.2998-3007, 2012.

A. Llaguno, S. Chen, J. Kwon, C. , J. E. Li et al., Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model, Cancer Cell. 6 janv, vol.15, issue.1, pp.45-56, 2009.

A. Fidoamore, L. Cristiano, A. Antonosante, M. Angelo, D. Giacomo et al., Glioblastoma Stem Cells Microenvironment: The Paracrine Roles of the Niche in Drug and Radioresistance, Stem Cells Int, p.6809105, 2016.

C. J. Sandberg, G. Altschuler, J. Jeong, K. K. Strømme, B. Stangeland et al., Comparison of glioma stem cells to neural stem cells from the adult human brain identifies dysregulated Wnt-signaling and a fingerprint associated with clinical outcome, Exp Cell Res. 15 août, vol.319, issue.14, pp.2230-2273, 2013.

M. Katoh and M. Katoh, WNT signaling pathway and stem cell signaling network, Clin Cancer Res. 15 juill, vol.13, issue.14, pp.4042-4047, 2007.

B. Ju, W. Chen, J. M. Spitsbergen, J. Lu, P. Vogel et al., Activation of Sonic hedgehog signaling in neural progenitor cells promotes glioma development in the zebrafish optic pathway, Oncogenesis. 31 mars, vol.3, p.96, 2014.

X. Mao, M. Hütt-cabezas, B. A. Orr, M. Weingart, I. Taylor et al., LIN28A facilitates the transformation of human neural stem cells and promotes glioblastoma tumorigenesis through a pro-invasive genetic program, Oncotarget. juill, vol.4, issue.7, pp.1050-64, 2013.

R. M. Bachoo, E. A. Maher, K. L. Ligon, N. E. Sharpless, S. S. Chan et al., Epidermal growth factor receptor and

/. Ink4a and . Arf, convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis, Cancer Cell. avr, vol.1, issue.3, pp.269-77, 2002.

I. Sancho-martinez, E. Nivet, Y. Xia, T. Hishida, A. Aguirre et al., Establishment of human iPSC-based models for the study and targeting of glioma initiating cells, Nat Commun. 22 févr, vol.7, p.10743, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01477820

P. Wang, W. Wan, S. Xiong, H. Feng, and N. Wu, Cancer stem-like cells can be induced through dedifferentiation under hypoxic conditions in glioma, hepatoma and lung cancer, Cell Death Discov, vol.3, p.16105, 2017.

R. S. Schmid, J. M. Simon, M. Vitucci, R. S. Mcneill, R. E. Bash et al., Core pathway mutations induce dedifferentiation of murine astrocytes into glioblastoma stem cells that are sensitive to radiation but resistant to temozolomide, Neuro-oncology, vol.18, issue.7, pp.962-73, 2016.

D. Friedmann-morvinski, E. A. Bushong, E. Ke, Y. Soda, T. Marumoto et al., Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice, Science, vol.338, issue.6110, pp.1080-1084, 2012.

P. Li, C. Zhou, L. Xu, and H. Xiao, Hypoxia enhances stemness of cancer stem cells in glioblastoma: an in vitro study

, Int J Med Sci, vol.10, issue.4, pp.399-407, 2013.

Y. Iwadate, Plasticity in Glioma Stem Cell Phenotype and Its Therapeutic Implication, Neurol Med Chir (Tokyo). 15 févr, vol.58, issue.2, pp.61-70, 2018.

P. Dahan, M. Gala, J. Delmas, C. Monferran, S. Malric et al., Ionizing radiations sustain glioblastoma cell dedifferentiation to a stem-like phenotype through survivin: possible involvement in radioresistance, Cell Death & Disease. nov, vol.5, issue.11, pp.1543-1543, 2014.

Y. Kawamura, J. Takouda, K. Yoshimoto, and K. Nakashima, New aspects of glioblastoma multiforme revealed by similarities between neural and glioblastoma stem cells, Cell Biol Toxicol. 31 janv, 2018.

T. J. Pierfelice, K. C. Schreck, C. G. Eberhart, N. Gaiano, and . Notch, Neural Stem Cells, and Brain Tumors, Cold Spring Harbor Symposia on Quantitative Biology. 1 janv, vol.73, issue.0, pp.367-75, 2008.

J. Yu, H. Jiang, and R. Zhan, Aberrant Notch signaling in glioblastoma stem cells contributes to tumor recurrence and invasion, Mol Med Rep. août, vol.14, issue.2, pp.1263-1271, 2016.

N. S. Bayin, J. D. Frenster, R. Sen, S. Si, A. S. Modrek et al., Notch signaling regulates metabolic heterogeneity in glioblastoma stem cells, Oncotarget [Internet], vol.12, issue.2017

R. Kopan, Notch: a membrane-bound transcription factor, J Cell Sci. 15 mars, vol.115, pp.1095-1102, 2002.

S. Yahyanejad, H. King, V. S. Iglesias, P. V. Granton, L. Barbeau et al., NOTCH blockade combined with radiation therapy and temozolomide prolongs survival of orthotopic glioblastoma, Oncotarget. 5 juill, vol.7, issue.27, pp.41251-64, 2016.

J. Li, R. Sainson, C. E. Oon, H. Turley, R. Leek et al., DLL4-Notch signaling mediates tumor resistance to anti-VEGF therapy in vivo, Cancer Res. 15 sept, vol.71, issue.18, pp.6073-83, 2011.

M. Staberg, S. R. Michaelsen, L. S. Olsen, M. K. Nedergaard, M. Villingshøj et al., Combined EGFRand notch inhibition display additive inhibitory effect on glioblastoma cell viability and glioblastoma-induced endothelial cell sprouting in vitro, Cancer Cell International, vol.16, issue.1

B. W. Purow, T. K. Sundaresan, M. J. Burdick, B. A. Kefas, L. D. Comeau et al., Notch-1 regulates transcription of the epidermal growth factor receptor through p53, Carcinogenesis. mai, vol.29, issue.5, pp.918-943, 2008.

N. Saito, K. Aoki, N. Hirai, S. Fujita, J. Iwama et al., Effect of Notch expression in glioma stem cells on therapeutic response to chemo-radiotherapy in recurrent glioblastoma, Brain Tumor Pathol. juill, vol.32, issue.3, pp.176-83, 2015.

K. Lai, B. K. Kaspar, F. H. Gage, and D. V. Schaffer, Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo, Nat Neurosci. janv, vol.6, issue.1, pp.21-28, 2003.

G. Yan, Y. L. Lv, Y. Shi, Y. Shen, L. Yao et al., Endothelial cells promote stem-like phenotype of glioma cells through activating the Hedgehog pathway, J Pathol. sept, vol.234, issue.1, pp.11-22, 2014.

B. Auffinger, D. Spencer, P. Pytel, A. U. Ahmed, and M. S. Lesniak, The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence, Expert Rev Neurother, vol.15, issue.7, pp.741-52, 2015.

Y. Tu, M. Niu, P. Xie, C. Yue, N. Liu et al., Smoothened is a poor prognosis factor and a potential therapeutic target in glioma, Sci Rep. 14 févr, vol.7, p.42630, 2017.

M. H. Shahi, S. Farheen, M. Mariyath, and J. S. Castresana, Potential role of Shh-Gli1-BMI1 signaling pathway nexus in glioma chemoresistance, Tumour Biol, vol.37, issue.11, pp.15107-15121, 2016.

J. Li, J. Cai, S. Zhao, K. Yao, Y. Sun et al., GANT61, a GLI inhibitor, sensitizes glioma cells to the temozolomide treatment, J Exp Clin Cancer Res, vol.28, issue.1, p.184, 2016.

R. Nusse, Wnt signaling and stem cell control, Cell Res. mai, vol.18, issue.5, pp.523-530, 2008.

D. Piccin and C. M. Morshead, Wnt signaling regulates symmetry of division of neural stem cells in the adult brain and in response to injury, Stem Cells. mars, vol.29, issue.3, pp.528-566, 2011.

Y. Lee, J. Lee, S. H. Ahn, J. Lee, and D. Nam, WNT signaling in glioblastoma and therapeutic opportunities, Lab Invest. févr, vol.96, issue.2, pp.137-50, 2016.

M. Mccord, Y. Mukouyama, M. R. Gilbert, and S. Jackson, Targeting WNT Signaling for Multifaceted Glioblastoma Therapy, Front Cell Neurosci, vol.11, p.318, 2017.

C. Yu, G. Liang, P. Du, and Y. Liu, Lgr4 promotes glioma cell proliferation through activation of Wnt signaling

, Asian Pac J Cancer Prev, vol.14, issue.8, pp.4907-4918, 2013.

M. Zuccarini, P. Giuliani, S. Ziberi, M. Carluccio, P. D. Iorio et al., The Role of Wnt Signal in Glioblastoma Development and Progression: A Possible New Pharmacological Target for the Therapy of This Tumor, Genes (Basel). 17 févr, vol.9, issue.2, 2018.

M. Wu, J. Guan, C. Li, S. Gunter, L. Nusrat et al., Aberrantly activated Cox-2 and Wnt signaling interact to maintain cancer stem cells in glioblastoma, Oncotarget, vol.8, issue.47, pp.82217-82247, 2017.

B. Hu, L. Emdad, T. P. Kegelman, X. Shen, S. K. Das et al., Astrocyte Elevated Gene-1 Regulates ?-Catenin Signaling to Maintain Glioma Stem-like Stemness and Self-Renewal, Mol Cancer Res, vol.15, issue.2, pp.225-258, 2017.

N. Kaur, S. Chettiar, S. Rathod, P. Rath, D. Muzumdar et al., Wnt3a mediated activation of Wnt/?-catenin signaling promotes tumor progression in glioblastoma, Mol Cell Neurosci. mai, vol.54, pp.44-57, 2013.

B. E. Stopschinski, C. P. Beier, and D. Beier, Glioblastoma cancer stem cells--from concept to clinical application, Cancer Lett. 10 sept, vol.338, issue.1, pp.32-40, 2013.

L. Caja, K. Tzavlaki, M. S. Dadras, E. Tan, G. Hatem et al., Snail regulates BMP and TGF? pathways to control the differentiation status of glioma-initiating cells, Oncogene. mai, vol.37, pp.2515-2546, 2018.

A. Audia, S. Conroy, R. Glass, and K. Bhat, The Impact of the Tumor Microenvironment on the Properties of Glioma Stem-Like Cells, Front Oncol, vol.7, p.143, 2017.

Y. Yi, I. Hsieh, X. Huang, J. Li, W. Zhao et al., Direct In Vivo Evidence for Tumor Propagation by Glioblastoma Cancer Stem Cells. Ulasov I, éditeur, Glioblastoma Stem-Like Cells: Characteristics, Microenvironment, and Therapy. Frontiers in Pharmacology, vol.7, p.24807, 2011.

S. K. Singh, I. D. Clarke, M. Terasaki, V. E. Bonn, C. Hawkins et al., Identification of a cancer stem cell in human brain tumors, Cancer Res. 15 sept, vol.63, issue.18, pp.5821-5829, 2003.

A. U. Ahmed, B. Auffinger, and M. S. Lesniak, Understanding glioma stem cells: rationale, clinical relevance and therapeutic strategies, Expert Rev Neurother. mai, vol.13, issue.5, pp.545-55, 2013.

B. Wee, A. Pietras, T. Ozawa, E. Bazzoli, O. Podlaha et al., ABCG2 regulates self-renewal and stem cell marker expression but not tumorigenicity or radiation resistance of glioma cells, Sci Rep, vol.26, p.25956, 2016.

, Multiforme Stem Cell Characteristics, Differentiation, and Microglia Marker Genes with Patient Survival, Stem Cells International, vol.2018, pp.1-19, 2018.

M. D. Sørensen, S. Fosmark, S. Hellwege, D. Beier, B. W. Kristensen et al., Chemoresistance and chemotherapy targeting stem-like cells in malignant glioma, Adv Exp Med Biol, vol.853, pp.111-149, 2015.

C. Calabrese, H. Poppleton, M. Kocak, T. L. Hogg, C. Fuller et al., A perivascular niche for brain tumor stem cells, Cancer Cell. janv, vol.11, issue.1, pp.69-82, 2007.

T. S. Zhu, M. A. Costello, C. E. Talsma, C. G. Flack, J. G. Crowley et al., Endothelial cells create a stem cell niche in glioblastoma by providing NOTCH ligands that nurture self-renewal of cancer stem-like cells, Cancer Res. 15 sept, vol.71, issue.18, pp.6061-72, 2011.

R. Würth, A. Bajetto, J. K. Harrison, F. Barbieri, and T. Florio, CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment, Front Cell Neurosci, vol.8, p.144, 2014.

M. Rabenstein, J. Hucklenbroich, A. Willuweit, A. Ladwig, G. R. Fink et al., Osteopontin mediates survival, proliferation and migration of neural stem cells through the chemokine receptor CXCR4, Stem Cell Res Ther. 22 mai, vol.6, p.99, 2015.

J. D. Lathia, J. Gallagher, J. M. Heddleston, J. Wang, C. E. Eyler et al., Integrin alpha 6 regulates glioblastoma stem cells, Cell Stem Cell. 7 mai, vol.6, issue.5, pp.421-453, 2010.

E. Codrici, A. Enciu, I. Popescu, S. Mihai, and C. Tanase, Glioma Stem Cells and Their Microenvironments: Providers of Challenging Therapeutic Targets, Stem Cells International, vol.2016, pp.1-20, 2016.

O. J. Becher, D. Hambardzumyan, E. I. Fomchenko, H. Momota, L. Mainwaring et al., Gli activity correlates with tumor grade in platelet-derived growth factor-induced gliomas, Cancer Res. 1 avr, vol.68, issue.7, pp.2241-2250, 2008.

N. Charles, T. Ozawa, M. Squatrito, A. Bleau, C. W. Brennan et al., Perivascular nitric oxide activates notch signaling and promotes stem-like character in PDGF-induced glioma cells, Cell Stem Cell. 5 févr, vol.6, issue.2, pp.141-52, 2010.

C. Thirant, E. Galan-moya, L. G. Dubois, S. Pinte, P. Chafey et al., Differential proteomic analysis of human glioblastoma and neural stem cells reveals HDGF as a novel angiogenic secreted factor, Stem Cells. mai, vol.30, issue.5, pp.845-53, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01541440

V. Hira, K. J. Ploegmakers, F. Grevers, U. Verbov?ek, C. Silvestre-roig et al., CD133+ and Nestin+ Glioma Stem-Like Cells Reside Around CD31+ Arterioles in Niches that Express SDF-1?, CXCR4, Osteopontin and Cathepsin K, J Histochem Cytochem, vol.63, issue.7, pp.481-93, 2015.

R. Wang, K. Chadalavada, J. Wilshire, U. Kowalik, K. E. Hovinga et al., Glioblastoma stem-like cells give rise to tumour endothelium, Nature. 9 déc, vol.468, issue.7325, pp.829-862, 2010.

S. El-hallani, C. C. , E. Houfi, Y. Idbaih, A. Boisselier et al., Tumor and endothelial cell hybrids participate in glioblastoma vasculature, Biomed Res Int, p.827327, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01308223

G. Bergers and S. Song, The role of pericytes in blood-vessel formation and maintenance, Neuro-Oncology

L. Cheng, Z. Huang, W. Zhou, Q. Wu, S. Donnola et al., Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth, Cell. 28 mars, vol.153, issue.1, pp.139-52, 2013.

A. Svensson, I. Özen, G. Genové, G. Paul, and J. Bengzon, Endogenous Brain Pericytes Are Widely Activated and Contribute to Mouse Glioma Microvasculature. Castro MG, éditeur, PLOS ONE. 13 avr, vol.10, issue.4, p.123553, 2015.

D. Yi, W. Xiang, Q. Zhang, Y. Cen, Q. Su et al., Human Glioblastoma-Derived Mesenchymal Stem Cell

, Pericytes Transition and Angiogenic Capacity in Glioblastoma Microenvironment, Cell Physiol Biochem, vol.46, issue.1, pp.279-90, 2018.

Y. Zhao, J. Chen, X. Dai, H. Cai, J. X. Sheng et al., Human glioma stem-like cells induce malignant transformation of bone marrow mesenchymal stem cells by activating TERT expression, Oncotarget, vol.8, issue.61, pp.104418-104447, 2017.

D. J. Silver and J. D. Lathia, Revealing the glioma cancer stem cell interactome, one niche at a time, J Pathol. mars, vol.244, issue.3, pp.260-264, 2018.

L. J. Brooks and S. Parrinello, Vascular regulation of glioma stem-like cells: a balancing act, Curr Opin Neurobiol. déc, vol.47, pp.8-15, 2017.

S. Piccirillo, R. Combi, L. Cajola, A. Patrizi, S. Redaelli et al., Distinct pools of cancer stem-like cells coexist within human glioblastomas and display different tumorigenicity and independent genomic evolution

, Oncogene. 16 avr, vol.28, issue.15, pp.1807-1818, 2009.

J. L. Rubenstein, J. Kim, T. Ozawa, M. Zhang, M. Westphal et al., Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption, Neoplasia. août, vol.2, issue.4, pp.306-320, 2000.

O. Keunen, M. Johansson, A. Oudin, M. Sanzey, S. Rahim et al., Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma, Proc Natl Acad Sci, vol.108, issue.9, pp.3749-54, 2011.

E. M. Ahmed, G. Bandopadhyay, B. Coyle, and A. Grabowska, A HIF-independent, CD133-mediated mechanism of cisplatin resistance in glioblastoma cells, Cell Oncol (Dordr). juin, vol.41, issue.3, pp.319-347, 2018.

P. J. Kallio, W. J. Wilson, S. O'brien, Y. Makino, and L. Poellinger, Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway, J Biol Chem. 5 mars, vol.274, issue.10, pp.6519-6544, 1999.

G. L. Semenza, Defining the role of hypoxia-inducible factor 1 in cancer biology and therapeutics. Oncogene. 4 févr, vol.29, pp.625-659, 2010.

B. Kaur, F. W. Khwaja, E. A. Severson, S. L. Matheny, D. J. Brat et al., Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis, Neuro-oncology. avr, vol.7, issue.2, pp.134-53, 2005.

J. M. Heddleston, Z. Li, R. E. Mclendon, A. B. Hjelmeland, and J. N. Rich, The hypoxic microenvironment maintains

T. M. Thomas and J. S. Yu, Metabolic regulation of glioma stem-like cells in the tumor micro-environment, Cancer Lett, vol.01, pp.174-81, 2017.

Q. Liu and P. Cao, Clinical and prognostic significance of HIF-1? in glioma patients: a meta-analysis, Int J Clin Exp Med, vol.8, issue.12, pp.22073-83, 2015.

L. Qiang, T. Wu, H. Zhang, N. Lu, R. Hu et al., HIF-1? is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway, Cell Death Differ. févr, vol.19, issue.2, pp.284-94, 2012.

F. Pistollato, S. Abbadi, E. Rampazzo, L. Persano, D. Puppa et al., Intratumoral hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma, Stem Cells. mai, vol.28, issue.5, pp.851-62, 2010.

A. Soeda, M. Park, D. Lee, A. Mintz, A. Androutsellis-theotokis et al., Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha, Oncogene, vol.12, issue.45, pp.3949-59, 2009.

P. Wang, C. Lan, S. Xiong, X. Zhao, Y. Shan et al., HIF1? regulates single differentiated glioma cell dedifferentiation to stem-like cell phenotypes with high tumorigenic potential under hypoxia, Oncotarget. 25 avr, vol.8, issue.17, pp.28074-92, 2017.

X. Lu and Y. Kang, Hypoxia and hypoxia-inducible factors: master regulators of metastasis, Clin Cancer Res. 15 déc, vol.16, issue.24, pp.5928-5963, 2010.

S. Seidel, B. K. Garvalov, V. Wirta, V. Stechow, L. Schänzer et al., A hypoxic niche regulates glioblastoma stem cells through hypoxia inducible factor 2 alpha, Brain. avr, vol.133, pp.983-95, 2010.

M. Bhagat, J. K. Palanichamy, P. Ramalingam, M. Mudassir, K. Irshad et al., HIF-2? mediates a marked increase in migration and stemness characteristics in a subset of glioma cells under hypoxia by activating an Oct-4/Sox-2-Mena (INV) axis, Int J Biochem Cell Biol. mai, vol.74, pp.60-71, 2016.

K. L. Covello, J. Kehler, H. Yu, J. D. Gordan, A. M. Arsham et al., HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth, Genes Dev. 1 mars, vol.20, issue.5, pp.557-70, 2006.

Z. Li, S. Bao, Q. Wu, H. Wang, C. Eyler et al., Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells, Cancer Cell. 2 juin, vol.15, issue.6, pp.501-514, 2009.

P. J. Richardson and G. Cxcr4, Anticancer Agents Med Chem, vol.16, issue.1, pp.59-74, 2016.

S. Wang, J. Hong, C. Hsueh, and C. Chiang, Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model, Lab Invest. janv, vol.92, issue.1, pp.151-62, 2012.

A. Wu, J. Wei, L. Kong, Y. Wang, W. Priebe et al., Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro-oncology, vol.12, pp.1113-1138, 2010.

J. Wei, J. Barr, L. Kong, Y. Wang, A. Wu et al., Glioblastoma cancer-initiating cells inhibit T-cell proliferation and effector responses by the signal transducers and activators of transcription 3 pathway, Mol Cancer Ther. janv, vol.9, issue.1, pp.67-78, 2010.

B. Otvos, D. J. Silver, E. E. Mulkearns-hubert, A. G. Alvarado, S. M. Turaga et al., Cancer Stem Cell

, Secreted Macrophage Migration Inhibitory Factor Stimulates Myeloid Derived Suppressor Cell Function and Facilitates Glioblastoma Immune Evasion, Stem Cells, vol.34, issue.8, pp.2026-2065, 2016.

A. G. Alvarado, P. S. Thiagarajan, E. E. Mulkearns-hubert, D. J. Silver, J. S. Hale et al., Glioblastoma Cancer Stem Cells Evade Innate Immune Suppression of Self-Renewal through Reduced TLR4 Expression, Cell Stem Cell, p.6

P. Brescia, B. Ortensi, L. Fornasari, D. Levi, G. Broggi et al., CD133 is essential for glioblastoma stem cell maintenance, Stem Cells. mai, vol.31, issue.5, pp.857-69, 2013.

S. K. Singh, I. D. Clarke, T. Hide, and P. B. Dirks, Cancer stem cells in nervous system tumors, Oncogene. 20 sept, vol.23, issue.43, pp.7267-73, 2004.

A. Barrantes-freer, M. Renovanz, M. Eich, A. Braukmann, B. Sprang et al., CD133 Expression Is Not Synonymous to Immunoreactivity for AC133 and Fluctuates throughout the Cell Cycle in Glioma Stem-Like Cells

J. K. Harrison, É. Plos, and . One, 18 juin, vol.10, issue.6, p.130519, 2015.

F. Gambelli, F. Sasdelli, I. Manini, C. Gambarana, G. Oliveri et al., Identification of cancer stem cells from human glioblastomas: growth and differentiation capabilities and CD133/prominin-1 expression, Cell Biol Int. janv, vol.36, issue.1, pp.29-38, 2012.

R. Chen, M. C. Nishimura, S. M. Bumbaca, S. Kharbanda, W. F. Forrest et al., A hierarchy of self-renewing tumor-initiating cell types in glioblastoma, Cancer Cell. 13 avr, vol.17, issue.4, pp.362-75, 2010.

D. Beier, P. Hau, M. Proescholdt, A. Lohmeier, J. Wischhusen et al., CD133(+) and CD133(-) glioblastoma

C. Lottaz, D. Beier, K. Meyer, P. Kumar, A. Hermann et al., Transcriptional profiles of CD133+ and CD133-glioblastoma-derived cancer stem cell lines suggest different cells of origin, Cancer Res. 1 mars, vol.70, issue.5, pp.2030-2070, 2010.

T. Yang and K. Rycaj, Targeted therapy against cancer stem cells, Oncol Lett. juill, vol.10, issue.1, pp.27-33, 2015.

P. Mao, K. Joshi, J. Li, S. Kim, P. Li et al., Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3, Proc Natl Acad Sci, vol.110, issue.21, pp.8644-8653, 2013.

D. V. Brown, P. M. Daniel, D. 'abaco, G. M. Gogos, A. Ng et al., Coexpression analysis of CD133 and CD44 identifies proneural and mesenchymal subtypes of glioblastoma multiforme, Oncotarget. 20 mars, vol.6, issue.8, pp.6267-80, 2015.

U. R. Chandran, S. Luthra, L. Santana-santos, P. Mao, S. Kim et al., Gene expression profiling distinguishes proneural glioma stem cells from mesenchymal glioma stem cells, Genom Data. 1 sept, vol.5, pp.333-339, 2015.

E. Guadagno, M. Vitiello, P. Francesca, G. Calì, F. Caponnetto et al., PATZ1 is a new prognostic marker of glioblastoma associated with the stem-like phenotype and enriched in the proneural subtype, Oncotarget. 29 août, vol.8, issue.35, pp.59282-300, 2017.

K. E. Sullivan, K. Rojas, R. A. Cerione, I. Nakano, and K. F. Wilson, The stem cell/cancer stem cell marker ALDH1A3 regulates the expression of the survival factor tissue transglutaminase, in mesenchymal glioma stem cells, Oncotarget. 4 avr, vol.8, issue.14, pp.22325-22368, 2017.

G. Marziali, M. Signore, M. Buccarelli, S. Grande, A. Palma et al., Metabolic/Proteomic Signature Defines Two Glioblastoma Subtypes With Different Clinical Outcome, Sci Rep. 9 févr, vol.6, p.21557, 2016.

A. Pietras, A. M. Katz, E. J. Ekström, B. Wee, J. J. Halliday et al., Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth, Cell Stem Cell. 6 mars, vol.14, issue.3, pp.357-69, 2014.

Y. Shiraki, S. Mii, A. Enomoto, H. Momota, Y. Han et al., Significance of perivascular tumour cells defined by CD109 expression in progression of glioma, J Pathol. déc, vol.243, issue.4, pp.468-80, 2017.

R. L. Klank, S. A. Decker-grunke, B. L. Bangasser, C. L. Forster, M. A. Price et al., Biphasic Dependence of Glioma Survival and Cell Migration on CD44 Expression Level, Cell Rep, vol.03, issue.1, pp.23-31, 2017.

S. K. Singh, R. Fiorelli, R. Kupp, S. Rajan, E. Szeto et al.,

, Regulate Glioma Invasion through the TGF-? Pathway, Cell Rep, vol.26, issue.4, pp.950-66, 2016.

F. Xing, Y. Luan, J. Cai, S. Wu, J. Mai et al., The Anti-Warburg Effect Elicited by the cAMP-PGC1? Pathway Drives Differentiation of Glioblastoma Cells into, Astrocytes. Cell Rep, vol.10, issue.2, pp.468-81, 2017.

A. Fidoamore, L. Cristiano, C. Laezza, R. Galzio, E. Benedetti et al., Energy metabolism in glioblastoma stem cells: PPAR? a metabolic adaptor to intratumoral microenvironment, Oncotarget. 12 déc, vol.8, issue.65, pp.108430-50, 2017.

W. A. Flavahan, Q. Wu, M. Hitomi, N. Rahim, Y. Kim et al., Brain tumor initiating cells adapt to restricted nutrition through preferential glucose uptake, Nature Neuroscience, vol.16, issue.10, pp.1373-82, 2013.

J. Chen, Y. Li, T. Yu, R. M. Mckay, D. K. Burns et al., A restricted cell population propagates glioblastoma growth after chemotherapy, Nature. août, vol.488, issue.7412, pp.522-528, 2012.

M. Staberg, R. D. Rasmussen, S. R. Michaelsen, H. Pedersen, K. E. Jensen et al., Targeting glioma stemlike cell survival and chemoresistance through inhibition of lysine-specific histone demethylase KDM2B, Mol Oncol. mars, vol.12, issue.3, pp.406-426, 2018.

E. Meng, A. Hanna, R. S. Samant, and L. A. Shevde, The Impact of Hedgehog Signaling Pathway on DNA Repair Mechanisms in Human Cancer, Cancers (Basel). 21 juill, vol.7, issue.3, pp.1333-1381, 2015.

Z. Xu, K. Wang, X. Li, S. Chen, J. Deng et al., The ABCG2 transporter is a key molecular determinant of the efficacy of sonodynamic therapy with Photofrin in glioma stem-like cells, Ultrasonics. janv, vol.53, issue.1, pp.232-240, 2013.

Y. Liu, Q. Guo, H. Zhang, G. Li, S. Feng et al., Effect of siRNA-Livin on drug resistance to chemotherapy in glioma U251 cells and CD133+ stem cells. Experimental and Therapeutic Medicine, vol.10, pp.1317-1340, 2015.

F. Jin, L. Zhao, Y. Guo, W. Zhao, H. Zhang et al., Influence of Etoposide on anti-apoptotic and multidrug resistance-associated protein genes in CD133 positive U251 glioblastoma stem-like cells, Brain Res. 8 juin, vol.1336, pp.103-114, 2010.

W. Gong, Z. Wang, Y. Wan, L. Shi, and Y. Zhou, Downregulation of ABCG2 protein inhibits migration and invasion in U251 glioma stem cells, Neuroreport. 28 mai, vol.25, issue.8, pp.625-657, 2014.

W. Chen, J. Dong, J. Haiech, M. Kilhoffer, and M. Zeniou, Cancer Stem Cell Quiescence and Plasticity as Major Challenges in Cancer Therapy, Stem Cells International, vol.2016, pp.1-16, 2016.

F. Zeppernick, R. Ahmadi, B. Campos, C. Dictus, B. M. Helmke et al., Stem cell marker CD133 affects clinical outcome in glioma patients, Clin Cancer Res. 1 janv, vol.14, issue.1, pp.123-132, 2008.

S. Bao, Q. Wu, R. E. Mclendon, Y. Hao, Q. Shi et al., Glioma stem cells promote radioresistance by preferential activation of the DNA damage response, Nature. 7 déc, vol.444, issue.7120, pp.756-60, 2006.

J. Liu, Y. Liu, T. Xie, L. Luo, C. Xu et al., Radiation-induced G2/M arrest rarely occurred in glioblastoma stemlike cells, Int J Radiat Biol. avr, vol.94, issue.4, pp.394-402, 2018.

S. Bo, H. Hui, W. Li, L. Hui, X. Hong et al., but not Chk2, is responsible for G2/M phase arrest induced by diallyl disulfide in human gastric cancer BGC823 cells, vol.68, pp.61-70, 2014.

S. Yahyanejad, J. Theys, and M. Vooijs, Targeting Notch to overcome radiation resistance, Oncotarget. 16 févr, vol.7, issue.7, pp.7610-7638, 2016.

B. Auffinger, A. L. Tobias, Y. Han, G. Lee, D. Guo et al., Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy, Cell Death Differ. juill, vol.21, issue.7, pp.1119-1150, 2014.

G. Lee, B. Auffinger, D. Guo, T. Hasan, M. Deheeger et al., Dedifferentiation of Glioma Cells to Glioma Stem-like Cells By Therapeutic Stress-induced HIF Signaling in the Recurrent GBM Model, Mol Cancer Ther, vol.15, issue.12, pp.3064-76, 2016.

V. Adamski, A. Hempelmann, C. Flüh, R. Lucius, M. Synowitz et al., Dormant glioblastoma cells acquire stem cell characteristics and are differentially affected by Temozolomide and AT101 treatment, Oncotarget. 8 déc, vol.8, issue.64, pp.108064-78, 2017.

N. Almog, Molecular mechanisms underlying tumor dormancy, Cancer Lett. 28 août, vol.294, issue.2, pp.139-185, 2010.

N. Kangwan, J. Park, E. Kim, and K. B. Hahm, Chemoquiescence for ideal cancer treatment and prevention: where are we now?, J Cancer Prev. juin, vol.19, issue.2, pp.89-86, 2014.

Q. Huang, Q. Zhang, J. Dong, Y. Wu, Y. Shen et al., Glioma stem cells are more aggressive in recurrent tumors with malignant progression than in the primary tumor, and both can be maintained long-term in vitro, BMC Cancer, vol.8, p.304, 2008.

G. Bhuvanalakshmi, F. Arfuso, M. Millward, A. Dharmarajan, and S. Warrier, Secreted frizzled-related protein 4 inhibits glioma stem-like cells by reversing epithelial to mesenchymal transition, inducing apoptosis and decreasing cancer stem cell properties, PLoS ONE, vol.10, issue.6, p.127517, 2015.

G. R. Sareddy, D. Kesanakurti, P. B. Kirti, and P. P. Babu, Nonsteroidal anti-inflammatory drugs diclofenac and celecoxib attenuates Wnt/?-catenin/Tcf signaling pathway in human glioblastoma cells, Neurochem Res, vol.38, issue.11, pp.2313-2335, 2013.

M. Penas-prado, K. R. Hess, M. J. Fisch, L. W. Lagrone, M. D. Groves et al., Randomized phase II adjuvant factorial study of dose-dense temozolomide alone and in combination with isotretinoin, celecoxib, and/or thalidomide for glioblastoma, Neuro-oncology. févr, vol.17, issue.2, pp.266-73, 2015.

S. Korur, R. M. Huber, B. Sivasankaran, M. Petrich, P. Morin et al., GSK3beta regulates differentiation and growth arrest in glioblastoma, PLoS ONE, vol.4, issue.10, p.7443, 2009.

I. Ramachandran, V. Ganapathy, E. Gillies, I. Fonseca, S. M. Sureban et al., Wnt inhibitory factor 1 suppresses cancer stemness and induces cellular senescence, Cell Death Dis. 22 mai, vol.5, p.1246, 2014.

A. Adamo, D. Fiore, D. Martino, F. Roscigno, G. Affinito et al., RYK promotes the stemness of glioblastoma cells via the WNT/ ?-catenin pathway, Oncotarget. 21 févr, vol.8, issue.8, pp.13476-87, 2017.

P. Kanabur, S. Guo, G. R. Simonds, D. F. Kelly, R. G. Gourdie et al., Patient-derived glioblastoma stem cells respond differentially to targeted therapies, Oncotarget. 27 déc, vol.7, issue.52, pp.86406-86425, 2016.

I. Shih and T. Wang, Notch signaling, gamma-secretase inhibitors, and cancer therapy, Cancer Res. 1 mars, vol.67, issue.5, pp.1879-82, 2007.

N. Saito, J. Fu, S. Zheng, J. Yao, S. Wang et al., A High Notch Pathway Activation Predicts Response to ?

, Secretase Inhibitors in Proneural Subtype of Glioma Tumor-Initiating Cells: Targeting Proneural GBM with Notch Inhibition, vol.32, pp.301-313, 2014.

K. E. Hovinga, F. Shimizu, R. Wang, G. Panagiotakos, M. Van-der-heijden et al., Inhibition of notch signaling in glioblastoma targets cancer stem cells via an endothelial cell intermediate, Stem Cells. juin, vol.28, issue.6, pp.1019-1048, 2010.

S. Tanaka, M. Nakada, D. Yamada, I. Nakano, T. Todo et al., Strong therapeutic potential of ?-secretase inhibitor MRK003 for CD44-high and CD133-low glioblastoma initiating cells, J Drug Target. juill, vol.121, issue.2, pp.523-554, 2015.

Y. Ma, Z. Cheng, J. Liu, T. -. Healy, L. Lathia et al., Inhibition of Farnesyltransferase Potentiates NOTCH-Targeted Therapy against Glioblastoma Stem Cells, Stem Cell Reports, vol.12, issue.6, pp.1948-60, 2017.

E. Pan, J. G. Supko, T. J. Kaley, N. A. Butowski, T. Cloughesy et al., Phase I study of RO4929097 with bevacizumab in patients with recurrent malignant glioma, J Neurooncol, vol.130, issue.3, pp.571-580, 2016.

Y. Lee, K. H. Kim, D. G. Kim, H. J. Cho, Y. Kim et al., FoxM1 Promotes Stemness and Radio-Resistance of Glioblastoma by Regulating the Master Stem Cell Regulator Sox2, PLoS ONE, vol.10, issue.10, p.137703, 2015.

T. K. Rimkus, R. L. Carpenter, S. Qasem, M. Chan, and H. Lo, Targeting the Sonic Hedgehog Signaling Pathway: Review of Smoothened and GLI Inhibitors, Cancers (Basel). 15 févr, vol.8, issue.2, 2016.

E. E. Bar, A. Chaudhry, A. Lin, X. Fan, K. Schreck et al., Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells, vol.25, pp.2524-2557, 2007.

S. Bensalma, C. Chadeneau, T. Legigan, B. Renoux, A. Gaillard et al., Evaluation of cytotoxic properties of a cyclopamine glucuronide prodrug in rat glioblastoma cells and tumors, J Mol Neurosci. janv, vol.55, issue.1, pp.51-61, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01328060

Y. Liu, Y. Ma, W. Zhang, Y. Liang, D. Wu et al., Combination therapy with micellarized cyclopamine and temozolomide attenuate glioblastoma growth through Gli1 down-regulation, Oncotarget. 27 juin, vol.8, issue.26, pp.42495-509, 2017.

J. Ming, B. Sun, Z. Li, L. Lin, X. Meng et al., Aspirin inhibits the SHH/GLI1 signaling pathway and sensitizes malignant glioma cells to temozolomide therapy, Aging, vol.9, issue.4, pp.1233-1280, 2017.

E. Reguera-nuñez, C. Roca, E. Hardy, M. De-la-fuente, N. Csaba et al., Implantable controlled release devices for BMP-7 delivery and suppression of glioblastoma initiating cells, Biomaterials. mars, vol.35, issue.9, pp.2859-67, 2014.

E. Rampazzo, M. Dettin, F. Maule, A. Scabello, L. Calvanese et al., A synthetic BMP-2 mimicking peptide induces glioblastoma stem cell differentiation, Biochim Biophys Acta, vol.1861, issue.9, pp.2282-92, 2017.

J. Lee, M. J. Son, K. Woolard, N. M. Donin, A. Li et al., Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells, Cancer Cell. janv, vol.13, issue.1, pp.69-80, 2008.

N. I. Park, P. Guilhamon, K. Desai, R. F. Mcadam, E. Langille et al., Reorganizes Chromatin

, Direct Neuronal Fate and Suppress Tumorigenicity of Glioblastoma Stem Cells, Cell Stem Cell. 3 août, vol.21, issue.2, pp.209-224, 2017.

T. Mazor, A. Pankov, J. S. Song, and J. F. Costello, Intratumoral Heterogeneity of the Epigenome, Cancer Cell. 11 avr, vol.29, issue.4, pp.440-51, 2016.

S. Daniele, B. Costa, E. Zappelli, D. Pozzo, E. Sestito et al., Combined inhibition of AKT/mTOR and MDM2

, enhances Glioblastoma Multiforme cell apoptosis and differentiation of cancer stem cells, Scientific Reports

, Disponible sur, vol.5, 2015.

K. Masliantsev, B. Pinel, A. Balbous, P. Guichet, G. Tachon et al., Impact of STAT3 phosphorylation in glioblastoma stem cells radiosensitization and patient outcome, Oncotarget [Internet, issue.9, 2018.

, Disponible sur, p.9

O. D. Stechishin, H. A. Luchman, Y. Ruan, M. D. Blough, S. A. Nguyen et al., On-target JAK2/STAT3 inhibition slows disease progression in orthotopic xenografts of human glioblastoma brain tumor stem cells, Neuro-oncology. févr, vol.15, issue.2, pp.198-207, 2013.

L. Y. Pang, L. Saunders, and D. J. Argyle, Epidermal growth factor receptor activity is elevated in glioma cancer stem cells and is required to maintain chemotherapy and radiation resistance, Oncotarget. 22 sept, vol.8, issue.42, pp.72494-512, 2017.

L. E. Stevens, W. Cheung, S. J. Adua, A. Arnal-estapé, M. Zhao et al., Extracellular Matrix Receptor Expression in Subtypes of Lung Adenocarcinoma Potentiates Outgrowth of Micrometastases, Socovich AM, Naba A. The cancer matrisome: From comprehensive characterization to biomarker discovery, vol.15, pp.1905-1922, 2017.

, Semin Cell Dev Biol. 12 juill, 2018.

J. Wang, Q. Du, and C. Li, Bioinformatics analysis of gene expression profiles to identify causal genes in luminal B2 breast cancer, Oncol Lett. déc, vol.14, issue.6, pp.7880-7888, 2017.

S. B. Lim, S. J. Tan, W. Lim, and C. T. Lim, An extracellular matrix-related prognostic and predictive indicator for earlystage non-small cell lung cancer, Nat Commun, vol.8, issue.1, p.1734, 2017.

E. Madrazo, A. C. Conde, and J. Redondo-muñoz, Inside the Cell: Integrins as New Governors of Nuclear Alterations? Cancers (Basel). 6 juill, vol.9, 2017.

A. Parekh, N. S. Ruppender, K. M. Branch, M. K. Sewell-loftin, J. Lin et al., Sensing and modulation of invadopodia across a wide range of rigidities, Biophys J. 2 févr, vol.100, issue.3, pp.573-82, 2011.

H. Hamidi and J. Ivaska, Every step of the way: integrins in cancer progression and metastasis, Nat Rev Cancer. 12 juill, 2018.

J. A. Ju, I. Godet, I. C. Ye, J. Byun, H. Jayatilaka et al., Hypoxia Selectively Enhances Integrin ?5?1 Receptor Expression in Breast Cancer to Promote Metastasis, Mol Cancer Res. juin, vol.15, issue.6, pp.723-757, 2017.

P. M. Rothwell, M. Wilson, J. F. Price, J. Belch, T. W. Meade et al., Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials, Lancet. 28 avr, vol.379, issue.9826, pp.1591-601, 2012.

M. Lavergne, J. -. Bell, E. Schaff, M. Gachet, C. Mangin et al., Platelet Integrins in Tumor Metastasis: Do They Represent a Therapeutic Target? Cancers (Basel). 28 sept, vol.9, 2017.

W. Zhang, S. Dang, T. Hong, J. Tang, J. Fan et al., A humanized single-chain antibody against beta 3 integrin inhibits pulmonary metastasis by preferentially fragmenting activated platelets in the tumor microenvironment, Blood, vol.120, issue.14, pp.2889-98, 2012.

E. Mammadova-bach, P. Zigrino, C. Brucker, C. Bourdon, M. Freund et al., Platelet integrin ?6?1 controls lung metastasis through direct binding to cancer cell-derived ADAM9, JCI Insight, vol.08, issue.14, p.215, 2007.

X. Lu, D. Lu, M. Scully, and V. Kakkar, The role of integrins in cancer and the development of anti-integrin therapeutic agents for cancer therapy, Perspect Medicin Chem. 10 avr, vol.2, pp.57-73, 2008.

A. Tolomelli, P. Galletti, M. Baiula, and D. Giacomini, Can Integrin Agonists Have Cards to Play against Cancer? A Literature Survey of Small Molecules Integrin Activators, Cancers (Basel). 5 juill, vol.9, issue.7, 2017.

N. Miyazaki, K. Iwasaki, and J. Takagi, A systematic survey of conformational states in ?1 and ?4 integrins using negative-stain electron microscopy, J Cell Sci. 22 mai, vol.131, issue.10, 2018.

Y. Su, W. Xia, J. Li, T. Walz, M. J. Humphries et al., Relating conformation to function in integrin ?5?1

, Proc Natl Acad Sci, vol.113, issue.27, pp.3872-3881, 2016.

D. Cox, M. Brennan, and N. Moran, Integrins as therapeutic targets: lessons and opportunities, Nat Rev Drug Discov, vol.9, issue.10, pp.804-824, 2010.

J. Li, Y. Su, W. Xia, Y. Qin, M. J. Humphries et al., Conformational equilibria and intrinsic affinities define integrin activation, EMBO J, vol.01, issue.5, pp.629-674, 2017.

M. Nieberler, U. Reuning, F. Reichart, J. Notni, H. Wester et al., Exploring the Role of RGDRecognizing Integrins in Cancer. Cancers (Basel). 4 sept, vol.9, 2017.

C. Mas-moruno, F. Rechenmacher, and H. Kessler, Cilengitide: the first anti-angiogenic small molecule drug candidate design, synthesis and clinical evaluation, Anticancer Agents Med Chem. déc, vol.10, issue.10, pp.753-68, 2010.

J. S. Desgrosellier and D. A. Cheresh, Integrins in cancer: biological implications and therapeutic opportunities, Nat Rev Cancer. janv, vol.10, issue.1, pp.9-22, 2010.

M. Canel, A. Serrels, M. C. Frame, and V. G. Brunton, E-cadherin-integrin crosstalk in cancer invasion and metastasis, J Cell Sci. 15 janv, vol.126, issue.2, pp.393-401, 2013.

D. A. Calderwood, I. D. Campbell, and D. R. Critchley, Talins and kindlins: partners in integrin-mediated adhesion, Nat Rev Mol Cell Biol. août, vol.14, issue.8, pp.503-520, 2013.

J. Robertson, G. Jacquemet, A. Byron, M. C. Jones, S. Warwood et al., Defining the phospho-adhesome through the phosphoproteomic analysis of integrin signalling, Nat Commun. 13 févr, vol.6, p.6265, 2015.

J. M. Summy and G. E. Gallick, Src family kinases in tumor progression and metastasis, Cancer Metastasis Rev. déc, vol.22, issue.4, pp.337-58, 2003.

K. L. Yee, V. M. Weaver, and D. A. Hammer, Integrin-mediated signalling through the MAP-kinase pathway, IET Syst Biol. janv, vol.2, issue.1, pp.8-15, 2008.

E. R. Horton, A. Byron, J. A. Askari, D. Ng, A. Millon-frémillon et al., Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly, Nat Cell Biol. déc, vol.17, issue.12, pp.1577-87, 2015.

H. Wolfenson, I. Lavelin, and B. Geiger, Dynamic regulation of the structure and functions of integrin adhesions, Dev Cell. 11 mars, vol.24, issue.5, pp.447-58, 2013.

Y. Ma, J. Qin, C. Wu, and E. F. Plow, Kindlin-2 (Mig-2): a co-activator of beta3 integrins, J Cell Biol. 5 mai, vol.181, issue.3, pp.439-485, 2008.

S. Seetharaman and S. Etienne-manneville, Integrin diversity brings specificity in mechanotransduction, Biol Cell. mars, vol.110, issue.3, pp.49-64, 2018.
URL : https://hal.archives-ouvertes.fr/pasteur-02058751

M. Theodosiou, M. Widmaier, R. T. Böttcher, E. Rognoni, M. Veelders et al., Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin, Elife. 27 janv, vol.5, p.10130, 2016.

D. Missirlis, T. Haraszti, C. Scheele, C. Wiegand, T. Diaz et al., Substrate engagement of integrins ?5?1 and ?v?3 is necessary, but not sufficient, for high directional persistence in migration on fibronectin, Sci Rep. 18 mars, vol.6, p.23258, 2016.

T. Iskratsch, H. Wolfenson, and M. P. Sheetz, Appreciating force and shape-the rise of mechanotransduction in cell biology, Nat Rev Mol Cell Biol, vol.15, issue.12, pp.825-858, 2014.

Z. Sun, S. S. Guo, and R. Fässler, Integrin-mediated mechanotransduction, The Journal of Cell Biology, vol.215, issue.4, pp.445-56, 2016.

M. Vicente-manzanares and F. Sánchez-madrid, Targeting the integrin interactome in human disease, Current Opinion in Cell Biology. déc, vol.55, pp.17-23, 2018.

S. Rahmouni, A. Lindner, F. Rechenmacher, S. Neubauer, T. Sobahi et al., Hydrogel micropillars with integrin selective peptidomimetic functionalized nanopatterned tops: a new tool for the measurement of cell traction forces transmitted through ?v?3-or ?5?1-integrins, Adv Mater Weinheim, vol.25, issue.41, pp.5869-74, 2013.

A. Elosegui-artola, R. Oria, Y. Chen, A. Kosmalska, C. Pérez-gonzález et al., Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity, Nat Cell Biol, vol.18, issue.5, pp.540-548, 2016.

P. Atherton, B. Stutchbury, D. Jethwa, and C. Ballestrem, Mechanosensitive components of integrin adhesions: Role of vinculin, Exp Cell Res, vol.10, issue.1, pp.21-28, 2016.

S. L. Goodman and M. Picard, Integrins as therapeutic targets, Trends Pharmacol Sci. juill, vol.33, issue.7, pp.405-417, 2012.

L. A. Rocha, D. A. Learmonth, R. A. Sousa, and A. J. Salgado, ?v?3 and ?5?1 integrin-specific ligands: From tumor angiogenesis inhibitors to vascularization promoters in regenerative medicine?, Biotechnology Advances. janv, vol.36, issue.1, pp.208-235, 2018.

E. F. Plow, M. D. Pierschbacher, E. Ruoslahti, G. A. Marguerie, and M. H. Ginsberg, The effect of Arg-Gly-Asp-containing peptides on fibrinogen and von Willebrand factor binding to platelets, Proc Natl Acad Sci USA. déc, vol.82, issue.23, pp.8057-61, 1985.

H. M. Gabriel and E. I. Oliveira, Role of abciximab in the treatment of coronary artery disease, Expert Opin Biol Ther. sept, vol.6, issue.9, pp.935-977, 2006.

A. Meyer, J. Auernheimer, A. Modlinger, and H. Kessler, Targeting RGD recognizing integrins: drug development, biomaterial research, tumor imaging and targeting, Curr Pharm Des, vol.12, issue.22, pp.2723-2770, 2006.

K. Ley, J. Rivera-nieves, W. J. Sandborn, and S. Shattil, Integrin-based therapeutics: biological basis, clinical use and new drugs, Nat Rev Drug Discov. mars, vol.15, issue.3, pp.173-83, 2016.

R. O. Hynes, Integrins: bidirectional, allosteric signaling machines, Cell. 20 sept, vol.110, issue.6, pp.673-87, 2002.

A. Blandin, G. Renner, M. Lehmann, I. Lelong-rebel, S. Martin et al., ?1 Integrins as Therapeutic Targets to Disrupt Hallmarks of Cancer, Front Pharmacol, vol.6, p.279, 2015.

A. K. Mitra, K. Sawada, P. Tiwari, K. Mui, K. Gwin et al., Ligand-independent activation of c-Met by fibronectin and ?(5)?(1)-integrin regulates ovarian cancer invasion and metastasis, Oncogene. 31 mars, vol.30, issue.13, pp.1566-76, 2011.

D. Lössner, C. Abou-ajram, A. Benge, and U. Reuning, Integrin ?v?3 mediates upregulation of epidermal growth-factor receptor expression and activity in human ovarian cancer cells, The International Journal of Biochemistry & Cell Biology. janv, vol.40, issue.12, pp.2746-61, 2008.

W. Guo, Y. Pylayeva, A. Pepe, T. Yoshioka, W. J. Muller et al., Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis, Cell. 11 août, vol.126, issue.3, pp.489-502, 2006.

M. Fujita, Y. K. Takada, and Y. Takada, Insulin-like growth factor (IGF) signaling requires ?v?3-IGF1-IGF type 1 receptor (IGF1R) ternary complex formation in anchorage independence, and the complex formation does not require IGF1R and Src activation, J Biol Chem. 1 févr, vol.288, issue.5, pp.3059-69, 2013.

V. Novitskaya, H. Romanska, R. Kordek, P. Potemski, R. Kusi?ska et al., Integrin ?3?1-CD151 complex regulates dimerization of ErbB2 via RhoA, Oncogene. 22 mai, vol.33, issue.21, pp.2779-89, 2014.

V. Morello, S. Cabodi, S. Sigismund, M. P. Camacho-leal, D. Repetto et al., ?1 integrin controls EGFR signaling and tumorigenic properties of lung cancer cells, Oncogene. 29 sept, vol.30, issue.39, pp.4087-96, 2011.

B. L. Carpenter, M. Chen, T. Knifley, K. A. Davis, S. Harrison et al., Integrin ?6?4 Promotes Autocrine Epidermal Growth Factor Receptor (EGFR) Signaling to Stimulate Migration and Invasion toward Hepatocyte Growth Factor (HGF), J Biol Chem, vol.290, issue.45, pp.27228-27266, 2015.

C. Huang, C. C. Park, S. G. Hilsenbeck, R. Ward, M. F. Rimawi et al., ?1 integrin mediates an alternative survival pathway in breast cancer cells resistant to lapatinib, Breast Cancer Res. 31 août, vol.13, issue.4, p.84, 2011.

D. Bianconi, M. Unseld, and G. W. Prager, Integrins in the Spotlight of Cancer, Int J Mol Sci. 6 déc, vol.17, issue.12, 2016.

R. A. Bartolomé, R. Barderas, S. Torres, M. J. Fernandez-aceñero, M. Mendes et al., Cadherin-17 interacts with ?2?1 integrin to regulate cell proliferation and adhesion in colorectal cancer cells causing liver metastasis

, Oncogene. 27 mars, vol.33, issue.13, pp.1658-69, 2014.

X. Zhang, P. C. Cook, E. Zindy, C. J. Williams, T. A. Jowitt et al., Integrin ?4?1 controls G9a activity that regulates epigenetic changes and nuclear properties required for lymphocyte migration, Nucleic Acids Res. 20 avr, vol.44, issue.7, pp.3031-3075, 2016.

B. Lee and E. Ruoslahti, alpha5beta1 integrin stimulates Bcl-2 expression and cell survival through Akt, focal adhesion kinase, and Ca2+/calmodulin-dependent protein kinase IV, J Cell Biochem. 15 août, vol.95, issue.6, pp.1214-1237, 2005.

F. Aoudjit and K. Vuori, Integrin signaling in cancer cell survival and chemoresistance, Chemother Res Pract, p.283181, 2012.

M. T. De-la-fuente, B. Casanova, M. Garcia-gila, A. Silva, and A. Garcia-pardo, Fibronectin interaction with alpha4beta1 integrin prevents apoptosis in B cell chronic lymphocytic leukemia: correlation with Bcl-2 and Bax, Leukemia. févr, vol.13, issue.2, pp.266-74, 1999.

S. Lim, X. L. Chen, Y. Lim, D. A. Hanson, T. Vo et al., Nuclear FAK promotes cell proliferation and survival through FERM-enhanced p53 degradation, Mol Cell. 18 janv, vol.29, issue.1, pp.9-22, 2008.

S. Ponnala, C. Chetty, K. K. Veeravalli, D. H. Dinh, J. D. Klopfenstein et al., MMP-9 silencing regulates hTERT expression via ?1 integrin-mediated FAK signaling and induces senescence in glioma xenograft cells, Cell Signal. déc, vol.23, issue.12, pp.2065-75, 2011.

D. Ili?, E. A. Almeida, D. D. Schlaepfer, P. Dazin, S. Aizawa et al., Extracellular matrix survival signals transduced by focal adhesion kinase suppress p53-mediated apoptosis, J Cell Biol, vol.143, issue.2, pp.547-60, 1998.

M. A. Russo, M. Paolillo, Y. Sanchez-hernandez, D. Curti, E. Ciusani et al., A small-molecule RGD-integrin antagonist inhibits cell adhesion, cell migration and induces anoikis in glioblastoma cells, Int J Oncol. janv

C. L. Buchheit, K. J. Weigel, and Z. T. Schafer, Cancer cell survival during detachment from the ECM: multiple barriers to tumour progression, Nat Rev Cancer. sept, vol.14, issue.9, pp.632-673, 2014.

B. Aslan, P. Monroig, M. Hsu, G. A. Pena, C. Rodriguez-aguayo et al., The ZNF304-integrin axis protects against anoikis in cancer, Nat Commun. 17 juin, vol.6, p.7351, 2015.

M. P. Iwanicki, H. Chen, C. Iavarone, I. K. Zervantonakis, T. Muranen et al., Mutant p53 regulates ovarian cancer transformed phenotypes through autocrine matrix deposition, JCI Insight. 7 juill, vol.1, issue.10, 2016.

J. Alanko, A. Mai, G. Jacquemet, K. Schauer, R. Kaukonen et al., Integrin endosomal signalling suppresses anoikis, Nat Cell Biol, vol.17, issue.11, pp.1412-1433, 2015.

A. Puissant, M. Dufies, N. Fenouille, B. Sahra, I. Jacquel et al., Imatinib triggers mesenchymal-like conversion of CML cells associated with increased aggressiveness, J Mol Cell Biol. août, vol.4, issue.4, pp.207-227, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00771201

D. Lesniak, Y. Xu, J. Deschenes, R. Lai, J. Thoms et al., Beta1-integrin circumvents the antiproliferative effects of trastuzumab in human epidermal growth factor receptor-2-positive breast cancer, Cancer Res, vol.69, issue.22, pp.8620-8628, 2009.

H. Janouskova, A. Maglott, D. Y. Leger, C. Bossert, F. Noulet et al., Integrin ?5?1 plays a critical role in resistance to temozolomide by interfering with the p53 pathway in high-grade glioma, Cancer Res. 15 juill, vol.72, issue.14, pp.3463-70, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00740873

G. Renner, H. Janouskova, F. Noulet, V. Koenig, E. Guerin et al., Integrin ?5?1 and p53 convergent pathways in the control of anti-apoptotic proteins PEA-15 and survivin in high-grade glioma, Cell Death Differ. avr, vol.23, issue.4, pp.640-53, 2016.

W. S. Carbonell, M. Delay, A. Jahangiri, C. C. Park, M. Aghi et al., ?1 integrin targeting potentiates antiangiogenic therapy and inhibits the growth of bevacizumab-resistant glioblastoma, Cancer Res. 15 mai, vol.73, issue.10, pp.4398-405, 2008.

I. Eke, Y. Deuse, S. Hehlgans, K. Gurtner, M. Krause et al., ??Integrin/FAK/cortactin signaling is essential for human head and neck cancer resistance to radiotherapy, J Clin Invest. avr, vol.122, issue.4, pp.1529-1569, 2012.

C. J. Avraamides, B. Garmy-susini, and J. A. Varner, Integrins in angiogenesis and lymphangiogenesis, Nat Rev Cancer. août, vol.8, issue.8, pp.604-621, 2008.

J. Chung, R. E. Bachelder, E. A. Lipscomb, L. M. Shaw, and A. M. Mercurio, Integrin (alpha 6 beta 4) regulation of eIF-4E

, activity and VEGF translation: a survival mechanism for carcinoma cells, J Cell Biol. 8 juill, vol.158, issue.1, pp.165-74, 2002.

M. Friedlander, P. C. Brooks, R. W. Shaffer, C. M. Kincaid, J. A. Varner et al., Definition of two angiogenic pathways by distinct alpha v integrins, Science. 1 déc, vol.270, issue.5241, pp.1500-1502, 1995.

H. S. Lee, S. J. Oh, K. Lee, Y. Lee, E. Ko et al., Gln-362 of angiopoietin-2 mediates migration of tumor and endothelial cells through association with ?5?1 integrin, J Biol Chem, vol.289, issue.45, pp.31330-31370, 2014.

L. E. Reynolds, D. 'amico, G. Lechertier, T. Papachristodoulou, A. Muñoz-félix et al., Dual role of pericyte ?6?1-integrin in tumour blood vessels, J Cell Sci. 1 mai, vol.130, issue.9, pp.1583-95, 2017.

P. Roth, M. Silginer, S. L. Goodman, K. Hasenbach, S. Thies et al., Integrin control of the transforming growth factor-? pathway in glioblastoma, Brain. févr, vol.136, issue.2, pp.564-76, 2013.

A. C. Jung, A. Ray, L. Ramolu, C. Macabre, F. Simon et al., Caveolin-1-negative head and neck squamous cell carcinoma primary tumors display increased epithelial to mesenchymal transition and prometastatic properties, Oncotarget. 8 déc, vol.6, issue.39, pp.41884-901, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01280454

G. Renner, F. Noulet, M. Mercier, L. Choulier, N. Etienne-selloum et al., Expression/activation of ?5?1 integrin is linked to the ?-catenin signaling pathway to drive migration in glioma cells, Oncotarget. 20 sept, vol.7, issue.38, pp.62194-207, 2016.

A. Hoshino, B. Costa-silva, T. Shen, G. Rodrigues, A. Hashimoto et al., Tumour exosome integrins determine organotropic metastasis, Nature, vol.527, issue.7578, pp.329-364, 2015.

G. Yang, K. Xu, Z. Pan, Z. Zhang, Y. Mi et al., Integrin alpha v beta 6 mediates the potential for colon cancer cells to colonize in and metastasize to the liver, Cancer Sci. mai, vol.99, issue.5, pp.879-87, 2008.

N. Ahmed, F. Pansino, C. R. Murthi, P. Quinn, M. A. Rice et al., Overexpression of alpha(v)beta6 integrin in serous epithelial ovarian cancer regulates extracellular matrix degradation via the plasminogen activation cascade, Carcinogenesis. févr, vol.23, issue.2, pp.237-281, 2002.

M. Rolli, E. Fransvea, J. Pilch, A. Saven, and B. Felding-habermann, Activated integrin alphavbeta3 cooperates with metalloproteinase MMP-9 in regulating migration of metastatic breast cancer cells, Proc Natl Acad Sci USA. 5 août, vol.100, issue.16, pp.9482-9489, 2003.

M. Morini, M. Mottolese, N. Ferrari, F. Ghiorzo, S. Buglioni et al., The alpha 3 beta 1 integrin is associated with mammary carcinoma cell metastasis, invasion, and gelatinase B (MMP-9) activity, Int J Cancer. 1 août, vol.87, issue.3, pp.336-378, 2000.

B. Hu, M. J. Jarzynka, P. Guo, Y. Imanishi, D. D. Schlaepfer et al., Angiopoietin 2 induces glioma cell invasion by stimulating matrix metalloprotease 2 expression through the alphavbeta1 integrin and focal adhesion kinase signaling pathway, Cancer Res. 15 janv, vol.66, issue.2, pp.775-83, 2006.

D. Barkan and A. F. Chambers, ?1-integrin: a potential therapeutic target in the battle against cancer recurrence, Clin Cancer Res. 1 déc, vol.17, issue.23, pp.7219-7242, 2011.

H. L. Goel, T. Gritsko, B. Pursell, C. Chang, L. D. Shultz et al., Regulated splicing of the ?6 integrin cytoplasmic domain determines the fate of breast cancer stem cells, Cell Rep. 8 mai, vol.7, issue.3, pp.747-61, 2014.

A. M. Hoogland, E. I. Verhoef, M. J. Roobol, F. H. Schröder, M. F. Wildhagen et al., Validation of stem cell markers in clinical prostate cancer: ?6-integrin is predictive for non-aggressive disease, Prostate. mai, vol.74, issue.5, pp.488-96, 2014.

N. Haraguchi, H. Ishii, K. Mimori, K. Ohta, M. Uemura et al., CD49f-positive cell population efficiently enriches colon cancer-initiating cells, Int J Oncol. août, vol.43, issue.2, pp.425-455, 2013.

T. A. Martin and W. G. Jiang, Evaluation of the expression of stem cell markers in human breast cancer reveals a correlation with clinical progression and metastatic disease in ductal carcinoma, Oncol Rep. janv, vol.31, issue.1, pp.262-72, 2014.

Y. Zheng, C. C. De-la-cruz, L. C. Sayles, C. Alleyne-chin, D. Vaka et al., A rare population of CD24(+)ITGB4(+)Notch(hi) cells drives tumor propagation in NSCLC and requires Notch3 for self-renewal, Cancer Cell. 8 juill, vol.24, issue.1, pp.59-74, 2013.

J. S. Desgrosellier, J. Lesperance, L. Seguin, M. Gozo, S. Kato et al., Integrin ?v?3 drives slug activation and stemness in the pregnant and neoplastic mammary gland, Dev Cell. 11 août, vol.30, issue.3, pp.295-308, 2014.

F. Vaillant, M. Asselin-labat, M. Shackleton, N. C. Forrest, G. J. Lindeman et al., The mammary progenitor marker CD61/beta3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis, Cancer Res, vol.68, pp.7711-7718, 2008.

X. Ming, L. Fu, L. Zhang, Y. Qin, T. Cao et al., Integrin ?7 is a functional cancer stem cell surface marker in oesophageal squamous cell carcinoma, Nature Communications. 7 déc, vol.7, p.13568, 2016.

P. A. Guerrero, J. H. Tchaicha, Z. Chen, J. E. Morales, N. Mccarty et al., Glioblastoma stem cells exploit the ?v?8 integrin-TGF?1 signaling axis to drive tumor initiation and progression, Stem Cell Investig, vol.23, issue.47, pp.6568-80, 2017.

T. L. Haas, M. R. Sciuto, L. Brunetto, C. Valvo, M. Signore et al., Integrin ?7 Is a Functional Marker and Potential Therapeutic Target in Glioblastoma, Cell Stem Cell, vol.06, issue.1, pp.35-50, 2017.

M. Nakada, E. Nambu, N. Furuyama, Y. Yoshida, T. Takino et al., Integrin ?3 is overexpressed in glioma stem-like cells and promotes invasion, Br J Cancer. 25 juin, vol.108, issue.12, pp.2516-2540, 2013.

M. Kobayashi, K. Sawada, and T. Kimura, Potential of Integrin Inhibitors for Treating Ovarian Cancer: A Literature Review, Cancers (Basel). 8 juill, vol.9, issue.7, 2017.

A. Dingemans, V. Van-den-boogaart, B. A. Vosse, R. Van-suylen, A. W. Griffioen et al., Integrin expression profiling identifies integrin alpha5 and beta1 as prognostic factors in early stage non-small cell lung cancer, Mol Cancer. 17 juin, vol.9, p.152, 2010.

I. Breuksch, F. Prosinger, F. Baehr, F. Engelhardt, H. Bauer et al., Integrin ?5 triggers the metastatic potential in renal cell carcinoma, Oncotarget. 8 déc, vol.8, issue.64, pp.107530-107572, 2017.

J. Ren, S. Xu, D. Guo, J. Zhang, and S. Liu, Increased expression of ?5?1-integrin is a prognostic marker for patients with gastric cancer, Clinical and Translational Oncology. juill, vol.16, issue.7, pp.668-74, 2014.

J. Nam, Y. Onodera, M. J. Bissell, and C. C. Park, Breast cancer cells in three-dimensional culture display an enhanced radioresponse after coordinate targeting of integrin alpha5beta1 and fibronectin, Cancer Res. 1 juill, vol.70, issue.13, pp.5238-5286, 2010.

F. Schaffner, A. M. Ray, and M. Dontenwill, Integrin ?5?1, the Fibronectin Receptor, as a Pertinent Therapeutic Target in Solid Tumors, Cancers (Basel). 15 janv, vol.5, issue.1, pp.27-47, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00783158

F. Qian, Z. Zhang, X. Wu, Y. Li, and Q. Xu, Interaction between integrin alpha(5) and fibronectin is required for metastasis of B16F10 melanoma cells, Biochem Biophys Res Commun. 12 août, vol.333, issue.4, pp.1269-75, 2005.

J. Roman, J. D. Ritzenthaler, S. Roser-page, X. Sun, and S. Han, alpha5beta1-integrin expression is essential for tumor progression in experimental lung cancer, Am J Respir Cell Mol Biol. déc, vol.43, issue.6, pp.684-91, 2010.

J. A. Mckenzie, T. Liu, J. Y. Jung, B. B. Jones, H. A. Ekiz et al., Survivin promotion of melanoma metastasis requires upregulation of ?5 integrin, Carcinogenesis. sept, vol.34, issue.9, pp.2137-2181, 2013.

H. Zhu, A. Chen, S. Li, X. Tao, B. Sheng et al., Predictive role of galectin-1 and integrin ?5?1 in cisplatinbased neoadjuvant chemotherapy of bulky squamous cervical cancer, Biosci Rep, vol.37, issue.5, 2017.

T. Xu, L. Qin, Z. Zhu, X. Wang, Y. Liu et al., MicroRNA-31 functions as a tumor suppressor and increases sensitivity to mitomycin-C in urothelial bladder cancer by targeting integrin &#x3B1, Oncotarget, vol.5, issue.10, 2016.

H. Yao, Z. Zeng, K. S. Fay, D. M. Veine, E. D. Staszewski et al., Role of ?(5)?(1) Integrin Up-regulation in Radiation-Induced Invasion by Human Pancreatic Cancer Cells, Transl Oncol, vol.4, issue.5, pp.282-92, 2011.

A. Unnikrishnan, E. Papaemmanuil, D. Beck, N. P. Deshpande, A. Verma et al., Integrative Genomics Identifies the Molecular Basis of Resistance to Azacitidine Therapy in Myelodysplastic Syndromes, Cell Reports. juill, vol.20, issue.3, pp.572-85, 2017.

L. Qin, X. Chen, Y. Wu, Z. Feng, T. He et al., Steroid receptor coactivator-1 upregulates integrin ?? expression to promote breast cancer cell adhesion and migration, Cancer Res. 1 mars, vol.71, issue.5, pp.1742-51, 2011.

T. Haber, E. Jöckel, F. C. Roos, K. Junker, D. Prawitt et al., Bone Metastasis in Renal Cell Carcinoma is Preprogrammed in the Primary Tumor and Caused by AKT and Integrin ?5 Signaling, J Urol. août, vol.194, issue.2, pp.539-585, 2015.

S. Mcfarlane, C. Mcfarlane, N. Montgomery, A. Hill, and D. Waugh, CD44-mediated activation of ?5?1-integrin, cortactin and paxillin signaling underpins adhesion of basal-like breast cancer cells to endothelium and fibronectinenriched matrices, Oncotarget, vol.6, issue.34, pp.36762-73, 2015.

C. Huang, S. Verhulst, Y. Shen, Y. Bu, Y. Cao et al., AKR1B10 promotes breast cancer metastasis through integrin ?5/?-catenin mediated FAK/Src/Rac1 signaling pathway, Oncotarget. 12 juill, vol.7, issue.28, pp.43779-91, 2016.

J. Xie, J. Guo, Z. Wu, X. Xu, J. Wu et al., Integrin ?5 promotes tumor progression and is an independent unfavorable prognostic factor in esophageal squamous cell carcinoma, Hum Pathol. févr, vol.48, pp.69-75, 2016.

R. Joshi, E. Goihberg, W. Ren, M. Pilichowska, and P. Mathew, Proteolytic fragments of fibronectin function as matrikines driving the chemotactic affinity of prostate cancer cells to human bone marrow mesenchymal stromal cells via the ?5?1 integrin, Cell Adhesion & Migration. 4 juill, vol.11, issue.4, pp.305-320, 2017.

M. M. Zutter, S. A. Santoro, W. D. Staatz, and Y. L. Tsung, Re-expression of the alpha 2 beta 1 integrin abrogates the malignant phenotype of breast carcinoma cells, Proc Natl Acad Sci USA. 1 août, vol.92, issue.16, pp.7411-7416, 1995.

M. A. Schwartz, K. Mcroberts, M. Coyner, K. L. Andarawewa, H. F. Frierson et al., Integrin agonists as adjuvants in chemotherapy for melanoma, Clin Cancer Res, vol.14, pp.6193-6200, 2008.

M. Trikha, Z. Zhou, J. A. Nemeth, Q. Chen, C. Sharp et al., CNTO 95, a fully human monoclonal antibody that inhibits alphav integrins, has antitumor and antiangiogenic activity in vivo, Int J Cancer. 20 juin, vol.110, issue.3, pp.326-361, 2004.

S. A. Mullamitha, N. C. Ton, G. Parker, A. Jackson, P. J. Julyan et al., Phase I evaluation of a fully human anti-alphav integrin monoclonal antibody (CNTO 95) in patients with advanced solid tumors, Clin Cancer Res. 1 avr, vol.13, issue.7, pp.2128-2163, 2007.

F. M. Chu, J. Picus, P. M. Fracasso, R. Dreicer, Z. Lang et al., A phase 1, multicenter, open-label study of the safety of two dose levels of a human monoclonal antibody to human ?(v) integrins, intetumumab, in combination with docetaxel and prednisone in patients with castrate-resistant metastatic prostate cancer, Invest New Drugs. août, vol.29, issue.4, pp.674-683, 2011.

S. O'day, A. Pavlick, C. Loquai, D. Lawson, R. Gutzmer et al., A randomised, phase II study of intetumumab, an anti-?v-integrin mAb, alone and with dacarbazine in stage IV melanoma, Br J Cancer. 26 juill, vol.105, issue.3, pp.346-52, 2011.

A. Heidenreich, S. K. Rawal, K. Szkarlat, N. Bogdanova, L. Dirix et al., A randomized, double-blind, multicenter, phase 2 study of a human monoclonal antibody to human ?? integrins (intetumumab) in combination with docetaxel and prednisone for the first-line treatment of patients with metastatic castration-resistant prostate cancer

, Ann Oncol. févr, vol.24, issue.2, pp.329-365, 2013.

P. Hersey, J. Sosman, S. O'day, J. Richards, A. Bedikian et al., A randomized phase 2 study of etaracizumab, a monoclonal antibody against integrin alpha(v)beta(3), + or -dacarbazine in patients with stage IV metastatic melanoma, Cancer. 15 mars, vol.116, issue.6, pp.1526-1560, 2010.

M. Hussain, L. Moulec, S. Gimmi, C. Bruns, R. Straub et al.,

, Targeting Integrins: Randomized Phase II Trial of Abituzumab in Patients with Metastatic Castration-Resistant Prostate Cancer, Clin Cancer Res. 1 juill, vol.22, issue.13, pp.3192-200, 2016.

E. Élez, I. Kocáková, T. Höhler, U. M. Martens, C. Bokemeyer et al., Abituzumab combined with cetuximab plus irinotecan versus cetuximab plus irinotecan alone for patients with KRAS wild-type metastatic colorectal cancer: the randomised phase I/II POSEIDON trial, Ann Oncol. janv, vol.26, issue.1, pp.132-172, 2015.

P. A. Burke, S. J. Denardo, L. A. Miers, K. R. Lamborn, S. Matzku et al., Cilengitide targeting of alpha(v)beta(3)

, integrin receptor synergizes with radioimmunotherapy to increase efficacy and apoptosis in breast cancer xenografts, Cancer Res. 1 août, vol.62, issue.15, pp.4263-72, 2002.

J. M. Albert, C. Cao, L. Geng, L. Leavitt, D. E. Hallahan et al., Integrin alpha v beta 3 antagonist Cilengitide enhances efficacy of radiotherapy in endothelial cell and non-small-cell lung cancer models, Int J Radiat Oncol Biol Phys. 1 août, vol.65, issue.5, pp.1536-1579, 2006.

A. Gvozdenovic, A. Boro, D. Meier, B. Bode-lesniewska, W. Born et al., Targeting ?v?3 and ?v?5 integrins

T. J. Macdonald, G. Vezina, C. F. Stewart, D. Turner, C. R. Pierson et al., Phase II study of cilengitide in the treatment of refractory or relapsed high-grade gliomas in children: a report from the Children's Oncology Group, Neurooncology, vol.15, issue.10, pp.1438-1482, 2013.

A. Alva, S. Slovin, S. Daignault, M. Carducci, R. Dipaola et al., Phase II study of cilengitide (EMD 121974, NSC 707544) in patients with non-metastatic castration resistant prostate cancer, NCI-6735. A study by the DOD/PCF prostate cancer clinical trials consortium, Invest New Drugs. avr, vol.30, issue.2, pp.749-57, 2012.

H. Friess, J. M. Langrehr, H. Oettle, J. Raedle, M. Niedergethmann et al., A randomized multi-center phase II trial of the angiogenesis inhibitor Cilengitide (EMD 121974) and gemcitabine compared with gemcitabine alone in advanced unresectable pancreatic cancer, vol.6, 2006.

K. B. Kim, V. Prieto, R. W. Joseph, A. H. Diwan, G. E. Gallick et al., A randomized phase II study of cilengitide (EMD 121974) in patients with metastatic melanoma, Melanoma Res. août, vol.22, issue.4, pp.294-301, 2012.

C. Manegold, J. Vansteenkiste, F. Cardenal, W. Schuette, P. J. Woll et al., Randomized phase II study of three doses of the integrin inhibitor cilengitide versus docetaxel as second-line treatment for patients with advanced non-small-cell lung cancer, Invest New Drugs. févr, vol.31, issue.1, pp.175-82, 2013.

J. Vansteenkiste, F. Barlesi, C. F. Waller, J. Bennouna, C. Gridelli et al., Cilengitide combined with cetuximab and platinum-based chemotherapy as first-line treatment in advanced non-small-cell lung cancer (NSCLC) patients: results of an open-label, randomized, controlled phase II study (CERTO), Ann Oncol. août, vol.26, issue.8, pp.1734-1774, 2015.

H. H. Truong, J. Xiong, V. Ghotra, E. Nirmala, L. Haazen et al., ?1 integrin inhibition elicits a prometastatic switch through the TGF?-miR-200-ZEB network in E-cadherin-positive triple-negative breast cancer, Sci Signal. 11 févr, vol.7, issue.312, p.15, 2014.

S. Ji, Y. Zheng, G. Shao, Y. Zhou, and S. Liu, Integrin ?(v)??-targeted radiotracer (99m)Tc-3P-RGD? useful for noninvasive monitoring of breast tumor response to antiangiogenic linifanib therapy but not anti-integrin ?(v)?? RGD? therapy, Theranostics, vol.3, issue.11, pp.816-846, 2013.

L. Bello, M. Francolini, P. Marthyn, J. Zhang, R. S. Carroll et al., Alpha(v)beta3 and alpha(v)beta5 integrin expression in glioma periphery, Neurosurgery. août, vol.49, issue.2, pp.380-389, 2001.

O. Schnell, B. Krebs, E. Wagner, A. Romagna, A. J. Beer et al., Expression of integrin alphavbeta3 in gliomas correlates with tumor grade and is not restricted to tumor vasculature, Brain Pathol. juill, vol.18, issue.3, pp.378-86, 2008.

J. Schittenhelm, E. I. Schwab, J. Sperveslage, M. Tatagiba, R. Meyermann et al., Longitudinal expression analysis of ?v integrins in human gliomas reveals upregulation of integrin ?v?3 as a negative prognostic factor, J Neuropathol Exp Neurol. mars, vol.72, issue.3, pp.194-210, 2013.

S. Monferran, N. Skuli, C. Delmas, G. Favre, J. Bonnet et al., Alphavbeta3 and alphavbeta5 integrins control glioma cell response to ionising radiation through ILK and RhoB, Int J Cancer. 15 juill, vol.123, issue.2, pp.357-64, 2008.

T. G. Kapp, F. Rechenmacher, S. Neubauer, O. V. Maltsev, E. A. Cavalcanti-adam et al., A Comprehensive Evaluation of the Activity and Selectivity Profile of Ligands for RGD-binding, Integrins. Sci Rep, vol.11, p.39805, 2017.

D. Heckmann, B. Laufer, L. Marinelli, V. Limongelli, E. Novellino et al., Breaking the dogma of the metalcoordinating carboxylate group in integrin ligands: introducing hydroxamic acids to the MIDAS to tune potency and selectivity, Angew Chem Int Ed Engl, vol.48, issue.24, pp.4436-4476, 2009.

V. J. Hruby, Conformational restrictions of biologically active peptides via amino acid side chain groups, Life Sciences. juill, vol.31, issue.3, pp.189-99, 1982.

M. A. Dechantsreiter, E. Planker, B. Mathä, E. Lohof, G. Hölzemann et al., N-Methylated cyclic RGD peptides as highly active and selective alpha(V)beta(3) integrin antagonists, J Med Chem. 12 août, vol.42, issue.16, pp.3033-3073, 1999.

C. Mas-moruno, J. G. Beck, L. Doedens, A. O. Frank, L. Marinelli et al., Increasing ?v?3 selectivity of the anti-angiogenic drug cilengitide by N-methylation, Angew Chem Int Ed Engl. 26 sept, vol.50, issue.40, pp.9496-500, 2011.

S. Neubauer, F. Rechenmacher, R. Brimioulle, D. Leva, F. S. Bochen et al., Pharmacophoric Modifications Lead to Superpotent ?v?3 Integrin Ligands with Suppressed ?5?1 Activity, Journal of Medicinal Chemistry. 24 avr, vol.57, issue.8, pp.3410-3417, 2014.

J. C. Smith and . Merck, Curr Opin Investig Drugs. juin, vol.4, issue.6, pp.741-746, 2003.

T. Taga, A. Suzuki, I. Gonzalez-gomez, F. H. Gilles, M. Stins et al., alpha v-Integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascin, Int J Cancer. 10 avr, vol.98, issue.5, pp.690-697, 2002.

G. D. Maurer, I. Tritschler, B. Adams, G. Tabatabai, W. Wick et al., Cilengitide modulates attachment and viability of human glioma cells, but not sensitivity to irradiation or temozolomide in vitro, Neuro-oncology. déc, vol.11, issue.6, pp.747-56, 2009.

T. J. Macdonald, T. Taga, H. Shimada, P. Tabrizi, B. V. Zlokovic et al., Preferential susceptibility of brain tumors to the antiangiogenic effects of an alpha(v) integrin antagonist, Neurosurgery. janv, vol.48, issue.1, pp.151-158, 2001.

S. Yamada, X. Bu, V. Khankaldyyan, I. Gonzales-gomez, J. G. Mccomb et al., Effect of the angiogenesis inhibitor Cilengitide (EMD 121974) on glioblastoma growth in nude mice, Neurosurgery. déc, vol.59, issue.6, pp.1304-1316, 2006.

T. Mikkelsen, C. Brodie, S. Finniss, M. E. Berens, J. L. Rennert et al., Radiation sensitization of glioblastoma by cilengitide has unanticipated schedule-dependency, Int J Cancer. 1 juin, vol.124, issue.11, pp.2719-2746, 2009.

J. Ishida, M. Onishi, K. Kurozumi, T. Ichikawa, K. Fujii et al., AI-14 * THE ANTI ANGIOGENIC AND INVASIVE EFFECTS OF AN INTEGRIN INHIBITOR AGAINST BEVACIZUMAB-INDUCED INVASIVE GLIOMA, Neuro-Oncology, vol.16, issue.5, pp.4-4, 2014.

L. B. Nabors, T. Mikkelsen, S. S. Rosenfeld, F. Hochberg, N. S. Akella et al., Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma, J Clin Oncol. 1 mai, vol.25, issue.13, pp.1651-1658, 2007.

E. R. Gerstner, X. Ye, D. G. Duda, M. A. Levine, T. Mikkelsen et al., A phase I study of cediranib in combination with cilengitide in patients with recurrent glioblastoma, Neuro-oncology, vol.17, issue.10, pp.1386-92, 2015.

D. A. Reardon, K. L. Fink, T. Mikkelsen, T. F. Cloughesy, A. O'neill et al., Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme, J Clin Oncol. 1 déc, vol.26, issue.34, pp.5610-5617, 2008.

R. Stupp, M. E. Hegi, B. Neyns, R. Goldbrunner, U. Schlegel et al., Phase I/IIa study of cilengitide and temozolomide with concomitant radiotherapy followed by cilengitide and temozolomide maintenance therapy in patients with newly diagnosed glioblastoma, J Clin Oncol. 1 juin, vol.28, issue.16, pp.2712-2720, 2010.

D. F. Legler, G. Wiedle, F. P. Ross, and B. A. Imhof, Superactivation of integrin alphavbeta3 by low antagonist concentrations, J Cell Sci. avr, vol.114, pp.1545-53, 2001.

A. R. Reynolds, I. R. Hart, A. R. Watson, J. C. Welti, R. G. Silva et al., Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors, Nat Med. avr, vol.15, issue.4, pp.392-400, 2009.

P. Wong, F. Demircioglu, E. Ghazaly, W. Alrawashdeh, M. Stratford et al., Dual-action combination therapy enhances angiogenesis while reducing tumor growth and spread, Cancer Cell. 12 janv, vol.27, issue.1, pp.123-160, 2015.

M. Christmann, K. Diesler, D. Majhen, C. Steigerwald, N. Berte et al., Integrin ?V?3 silencing sensitizes malignant glioma cells to temozolomide by suppression of homologous recombination repair, Oncotarget. 25 avr, vol.8, issue.17, pp.27754-71, 2017.

É. Cosset, S. Ilmjärv, V. Dutoit, K. Elliott, V. Schalscha et al., Glut3 Addiction Is a Druggable Vulnerability for a Molecularly Defined Subpopulation of Glioblastoma, Cancer Cell. 11 déc, vol.32, issue.6, pp.856-868, 2017.

P. Zhou, S. Erfani, Z. Liu, C. Jia, Y. Chen et al., CD151-?3?1 integrin complexes are prognostic markers of glioblastoma and cooperate with EGFR to drive tumor cell motility and invasion, Oncotarget, vol.6, issue.30, pp.29675-93, 2015.

S. B. Reyes, A. S. Narayanan, H. S. Lee, J. H. Tchaicha, K. D. Aldape et al., ?v?8 integrin interacts with RhoGDI1 to regulate Rac1 and Cdc42 activation and drive glioblastoma cell invasion, Mol Biol Cell. févr, vol.24, issue.4, pp.474-82, 2013.

J. H. Tchaicha, S. B. Reyes, J. Shin, M. G. Hossain, F. F. Lang et al., Glioblastoma angiogenesis and tumor cell invasiveness are differentially regulated by ?8 integrin, Cancer Res, vol.71, issue.20, pp.6371-81, 2011.

L. Malric, S. Monferran, J. Gilhodes, S. Boyrie, P. Dahan et al., Interest of integrins targeting in glioblastoma according to tumor heterogeneity and cancer stem cell paradigm: an update, Oncotarget, vol.8, issue.49, pp.86947-68, 2017.

L. Marinelli, A. Meyer, D. Heckmann, A. Lavecchia, E. Novellino et al., Ligand Binding Analysis for Human ?5?1

. Integrin, Strategies for Designing New ?5?1 Integrin Antagonists, Journal of Medicinal Chemistry. juin, vol.48, issue.13, pp.4204-4211, 2005.

B. L. Bader, H. Rayburn, D. Crowley, and R. O. Hynes, Extensive vasculogenesis, angiogenesis, and organogenesis precede lethality in mice lacking all alpha v integrins, Cell, vol.95, issue.4, pp.507-526, 1998.

L. E. Reynolds, L. Wyder, J. C. Lively, D. Taverna, S. D. Robinson et al., Enhanced pathological angiogenesis in mice lacking beta3 integrin or beta3 and beta5 integrins, Nat Med. janv, vol.8, issue.1, pp.27-34, 2002.

R. O. Hynes and K. M. Hodivala-dilke, Insights and questions arising from studies of a mouse model of Glanzmann thrombasthenia, Thromb Haemost. août, vol.82, issue.2, pp.481-486, 1999.

A. R. Reynolds, L. E. Reynolds, T. E. Nagel, J. C. Lively, S. D. Robinson et al., Elevated Flk1 (vascular endothelial growth factor receptor 2) signaling mediates enhanced angiogenesis in beta3-integrin-deficient mice, Cancer Res. 1 déc, vol.64, issue.23, pp.8643-50, 2004.

S. J. Atkinson, T. S. Ellison, V. Steri, E. Gould, and S. D. Robinson, Redefining the role(s) of endothelial ?v?3-integrin in angiogenesis, Biochem Soc Trans. déc, vol.42, issue.6, pp.1590-1595, 2014.

S. E. Francis, K. L. Goh, K. Hodivala-dilke, B. L. Bader, M. Stark et al., Central roles of alpha5beta1 integrin and fibronectin in vascular development in mouse embryos and embryoid bodies, Arterioscler Thromb Vasc Biol. 1 juin, vol.22, issue.6, pp.927-960, 2002.

S. Kim, K. Bell, S. A. Mousa, and J. A. Varner, Regulation of angiogenesis in vivo by ligation of integrin alpha5beta1 with the central cell-binding domain of fibronectin, Am J Pathol. avr, vol.156, issue.4, pp.1345-62, 2000.

H. Tanjore, E. M. Zeisberg, B. Gerami-naini, and R. Kalluri, Beta1 integrin expression on endothelial cells is required for angiogenesis but not for vasculogenesis, Dev Dyn. janv, vol.237, issue.1, pp.75-82, 2008.

J. Notni, K. Steiger, F. Hoffmann, D. Reich, T. G. Kapp et al., Selective PET Imaging of Integrin Subtypes ?5?1 and ?v?3 Using 68Ga-Aquibeprin and 68Ga-Avebetrin, Am J Pathol. juill, vol.57, issue.3, pp.193-211, 2005.

A. Lal, A. E. Lash, S. F. Altschul, V. Velculescu, L. Zhang et al., A public database for gene expression in human cancers, Cancer Res, vol.59, issue.21, pp.5403-5410, 1999.

P. Castellani, L. Borsi, B. Carnemolla, A. Birò, A. Dorcaratto et al., Differentiation between high-and lowgrade astrocytoma using a human recombinant antibody to the extra domain-B of fibronectin, Am J Pathol, vol.161, issue.5, pp.1695-700, 2002.

E. Serres, F. Debarbieux, F. Stanchi, L. Maggiorella, D. Grall et al., Fibronectin expression in glioblastomas promotes cell cohesion, collective invasion of basement membrane in vitro and orthotopic tumor growth in mice
URL : https://hal.archives-ouvertes.fr/hal-00862133

, Oncogene. 26 juin, vol.33, issue.26, pp.3451-62, 2014.

R. Stragies, F. Osterkamp, G. Zischinsky, D. Vossmeyer, H. Kalkhof et al., Design and Synthesis of a New Class of Selective Integrin ?5?1 Antagonists, Journal of Medicinal Chemistry. août, vol.50, issue.16, pp.3786-94, 2007.

O. Stoeltzing, W. Liu, N. Reinmuth, F. Fan, G. C. Parry et al., Inhibition of integrin alpha5beta1 function with a small peptide (ATN-161) plus continuous 5-FU infusion reduces colorectal liver metastases and improves survival in mice, Int J Cancer. 20 avr, vol.104, issue.4, pp.496-503, 2003.

A. D. Ricart, A. W. Tolcher, G. Liu, K. Holen, G. Schwartz et al., Volociximab, a chimeric monoclonal antibody that specifically binds alpha5beta1 integrin: a phase I, pharmacokinetic, and biological correlative study, Clin Cancer Res. 1 déc, vol.14, issue.23, pp.7924-7933, 2008.

K. M. Bell-mcguinn, C. M. Matthews, S. N. Ho, M. Barve, L. Gilbert et al., A phase II, single-arm study of the anti-?5?1 integrin antibody volociximab as monotherapy in patients with platinum-resistant advanced epithelial ovarian or primary peritoneal cancer, Gynecol Oncol. 1 mai, vol.121, issue.2, pp.273-282, 2011.

W. Wang, F. Wang, F. Lu, S. Xu, W. Hu et al., The antiangiogenic effects of integrin alpha5beta1 inhibitor (ATN-161) in vitro and in vivo, Invest Ophthalmol Vis Sci. 14 sept, vol.52, issue.10, pp.7213-7233, 2011.

F. Doñate, G. C. Parry, Y. Shaked, H. Hensley, X. Guan et al., Pharmacology of the novel antiangiogenic peptide ATN-161 (Ac-PHSCN-NH2): observation of a U-shaped dose-response curve in several preclinical models of angiogenesis and tumor growth, Clin Cancer Res. 1 avr, vol.14, issue.7, pp.2137-2181, 2008.

P. Khalili, A. Arakelian, G. Chen, M. L. Plunkett, I. Beck et al., A non-RGD-based integrin binding peptide (ATN-161) blocks breast cancer growth and metastasis in vivo, Mol Cancer Ther. sept, vol.5, issue.9, pp.2271-80, 2006.

N. Zhang, Y. Xia, Y. Zou, W. Yang, J. Zhang et al., ATN-161 Peptide Functionalized Reversibly Cross-Linked Polymersomes Mediate Targeted Doxorubicin Delivery into Melanoma-Bearing C57BL/6 Mice, Molecular Pharmaceutics. 7 août, vol.14, issue.8, pp.2538-2585, 2017.

D. Heckmann, A. Meyer, L. Marinelli, G. Zahn, R. Stragies et al., Probing Integrin Selectivity: Rational Design of Highly Active and Selective Ligands for the ?5?1 and ?v?3 Integrin Receptor, Angewandte Chemie International Edition. 4 mai, vol.46, pp.3571-3575, 2007.

D. Heckmann, A. Meyer, B. Laufer, G. Zahn, R. Stragies et al., Rational design of highly active and selective ligands for the alpha5beta1 integrin receptor, Chembiochem. 16 juin, vol.9, issue.9, pp.1397-407, 2008.

A. Ray, F. Schaffner, H. Janouskova, F. Noulet, D. Rognan et al., Single cell tracking assay reveals an opposite effect of selective small non-peptidic ?5?1 or ?v?3/?5 integrin antagonists in U87MG glioma cells, Biochim Biophys Acta. sept, vol.1840, issue.9, pp.2978-87, 2014.

A. Blandin, F. Noulet, G. Renner, M. Mercier, L. Choulier et al., Glioma cell dispersion is driven by ?5 integrin-mediated cell-matrix and cell-cell interactions, Cancer Lett, vol.01, issue.2, pp.328-366, 2016.

E. Martinkova, A. Maglott, D. Y. Leger, D. Bonnet, M. Stiborova et al., alpha5beta1 integrin antagonists reduce chemotherapy-induced premature senescence and facilitate apoptosis in human glioblastoma cells, Int J Cancer. 1 sept, vol.127, issue.5, pp.1240-1248, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00508230

R. S. Holmes and U. K. Rout, Comparative studies of vertebrate Beta integrin genes and proteins: ancient genes in vertebrate evolution, Biomolecules, vol.23, 2011.

J. D. Lathia, M. Li, M. Sinyuk, A. G. Alvarado, W. A. Flavahan et al., High-throughput flow cytometry screening

R. Verhaak, K. A. Hoadley, E. Purdom, V. Wang, Y. Qi et al., Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR, and NF1, Cancer Cell. janv, vol.17, issue.1, pp.98-110, 2010.

S. A. Louis, R. L. Rietze, L. Deleyrolle, R. E. Wagey, T. E. Thomas et al., Enumeration of neural stem and progenitor cells in the neural colony-forming cell assay, Stem Cells. avr, vol.26, issue.4, pp.988-96, 2008.

A. M. Nunes, P. Barraza-flores, C. R. Smith, and D. J. Burkin, Integrin ?7: a major driver and therapeutic target for glioblastoma malignancy, Stem Cell Investig, vol.4, p.97, 2017.

M. Inda, R. Bonavia, A. Mukasa, Y. Narita, D. Sah et al., Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma, Genes & Development. 15 août, vol.24, issue.16, pp.1731-1776, 2010.

X. Wang, B. C. Prager, Q. Wu, L. Kim, R. C. Gimple et al., Reciprocal Signaling between Glioblastoma Stem Cells and Differentiated Tumor Cells Promotes Malignant Progression, Cell Stem Cell. 5 avr, vol.22, issue.4, pp.514-528, 2018.

C. Colin, N. Baeza, C. Bartoli, F. Fina, N. Eudes et al., Identification of genes differentially expressed in glioblastoma versus pilocytic astrocytoma using Suppression Subtractive Hybridization, Oncogene. 4 mai, vol.25, pp.2818-2844, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00153723

K. M. Naeini, W. B. Pope, T. F. Cloughesy, R. J. Harris, A. Lai et al., Identifying the mesenchymal molecular subtype of glioblastoma using quantitative volumetric analysis of anatomic magnetic resonance images, NeuroOncology. 1 mai, vol.15, issue.5, pp.626-660, 2013.

L. Cooper, D. A. Gutman, C. Chisolm, C. Appin, J. Kong et al., The tumor microenvironment strongly impacts master transcriptional regulators and gene expression class of glioblastoma, Am J Pathol. mai, vol.180, issue.5, pp.2108-2127, 2012.

S. Conroy, M. Wagemakers, A. Walenkamp, F. Kruyt, and W. Den-dunnen, Novel insights into vascularization patterns and angiogenic factors in glioblastoma subclasses, J Neurooncol, vol.131, issue.1, pp.11-20, 2017.

A. Prabhu, P. Kesarwani, S. Kant, S. F. Graham, and P. Chinnaiyan, Histologically defined intratumoral sequencing uncovers evolutionary cues into conserved molecular events driving gliomagenesis, Neuro-oncology, vol.19, issue.12, pp.1599-606, 2017.

S. Riffle, R. N. Pandey, M. Albert, and R. S. Hegde, Linking hypoxia, DNA damage and proliferation in multicellular tumor spheroids. BMC Cancer, vol.18, p.338, 2017.

M. Weller, L. B. Nabors, T. Gorlia, H. Leske, E. Rushing et al., Cilengitide in newly diagnosed glioblastoma: biomarker expression and outcome, Oncotarget. 22 mars, vol.7, issue.12, pp.15018-15050, 2016.

H. Wang, C. Z. Wang, Z. Wang, H. Huang, and L. , Prognostic significance of ?5?1-integrin expression in cervical cancer, Asian Pac J Cancer Prev, vol.14, issue.6, pp.3891-3896, 2013.

E. L. Franco, N. F. Schlecht, and D. Saslow, The epidemiology of cervical cancer, Cancer J. oct, vol.9, issue.5, pp.348-59, 2003.

H. Li, X. Wu, and X. Cheng, Advances in diagnosis and treatment of metastatic cervical cancer, J Gynecol Oncol. juill, vol.27, issue.4, p.43, 2016.

K. Fetcko, D. Gondim, J. Bonnin, and M. Dey, Cervical cancer metastasis to the brain: A case report and review of literature, Surgical Neurology International, vol.8, issue.1, p.181, 2017.

S. Chen, Y. Chang, S. Nieh, C. Liu, Y. Lin et al., Nonadhesive culture system as a model of rapid sphere formation with cancer stem cell properties, PLoS ONE, vol.7, issue.2, p.31864, 2012.

J. López, A. Poitevin, V. Mendoza-martínez, C. Pérez-plasencia, and A. García-carrancá, Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance, BMC Cancer. 28 janv, vol.12, p.48, 2012.

L. Wang, H. Guo, C. Lin, L. Yang, and X. Wang, Enrichment and characterization of cancer stem-like cells from a cervical cancer cell line, Mol Med Rep. juin, vol.9, issue.6, pp.2117-2140, 2014.

E. K. Rofstad, T. G. Simonsen, R. Huang, L. Andersen, K. Galappathi et al., Patient-derived xenograft models of squamous cell carcinoma of the uterine cervix, Cancer Lett. 10 avr, vol.373, issue.2, pp.147-55, 2016.

R. Huang and E. K. Rofstad, Cancer stem cells (CSCs), cervical CSCs and targeted therapies, Oncotarget. 23 mai, vol.8, issue.21, pp.35351-67, 2017.

J. M. Bailey, P. K. Singh, and M. A. Hollingsworth, Cancer metastasis facilitated by developmental pathways: Sonic hedgehog, Notch, and bone morphogenic proteins, J Cell Biochem, vol.102, issue.4, pp.829-868, 2007.

S. Marquardt, M. Solanki, A. Spitschak, J. Vera, and B. M. Pützer, Emerging functional markers for cancer stem cell-based therapies: Understanding signaling networks for targeting metastasis, Semin Cancer Biol. 30 juin, 2018.

S. Barkeer, S. Chugh, S. K. Batra, and M. P. Ponnusamy, Glycosylation of Cancer Stem Cells: Function in Stemness, Tumorigenesis, and Metastasis, Neoplasia. août, vol.20, issue.8, pp.813-838, 2018.

P. Gong, C. Hu, X. Zhou, R. Wang, and Z. Duan, TAT-mediated si-hWAPL inhibits the invasion and metastasis of cervical cancer stem cells, Exp Ther Med. déc, vol.14, issue.6, pp.5452-5460, 2017.

L. Wu, L. Han, C. Zhou, W. Wei, X. Chen et al., TGF-?1-induced CK17 enhances cancer stem cell-like properties rather than EMT in promoting cervical cancer metastasis via the ERK1/2-MZF1 signaling pathway, FEBS J, vol.284, issue.18, pp.3000-3017, 2017.

Y. Xiao, Y. Li, H. Tao, B. Humphries, A. Li et al., Integrin ?5 down-regulation by miR-205 suppresses triple negative breast cancer stemness and metastasis by inhibiting the Src/Vav2/Rac1 pathway, Cancer Lett, vol.433, pp.199-209, 2018.

X. Li, J. Lu, C. Tan, Q. Wang, and Y. Feng, RUNX2 promotes breast cancer bone metastasis by increasing integrin ?5-mediated colonization, Cancer Lett, vol.28, issue.1, pp.78-86, 2016.

X. Liu, C. Li, S. Wu, X. Shi, and J. Zhao, Involvement of ?5 integrin in survivin-mediated osteosarcoma metastasis

, Asian Pac J Trop Med. mai, vol.9, issue.5, pp.478-83, 2016.

X. Zhang, L. Song, H. Wen, X. Bai, Z. Li et al., Upregulation of microRNA-31 targeting integrin ?5

L. Larzabal, A. L. De-aberasturi, M. Redrado, P. Rueda, M. J. Rodriguez et al., TMPRSS4 regulates levels of integrin ?5 in NSCLC through miR-205 activity to promote metastasis, Br J Cancer. 4 févr, vol.110, issue.3, pp.764-74, 2014.

X. Zhijun, Z. Shulan, and Z. Zhuo, Expression and significance of the protein and mRNA of metastasis suppressor gene ME491/CD63 and integrin alpha5 in ovarian cancer tissues, Eur J Gynaecol Oncol, vol.28, issue.3, pp.179-83, 2007.

Y. Wang, S. Shenouda, S. Baranwal, R. Rathinam, P. Jain et al., Integrin subunits alpha5 and alpha6 regulate cell cycle by modulating the chk1 and Rb/E2F pathways to affect breast cancer metastasis, Mol Cancer. 13 juill, vol.10, p.84, 2011.

J. Zhang, G. Zheng, L. Zhou, P. Li, M. Yun et al., Notch signalling induces epithelial-mesenchymal transition to promote metastasis in oral squamous cell carcinoma, International Journal of Molecular Medicine, vol.12, issue.2018

D. Sur,

K. Sawada, A. K. Mitra, A. R. Radjabi, V. Bhaskar, E. O. Kistner et al., Loss of E-cadherin promotes ovarian cancer metastasis via alpha 5-integrin, which is a therapeutic target, Cancer Res. 1 avr, vol.68, issue.7, pp.2329-2368, 2008.

E. Nam, Y. Lee, Y. Park, J. W. Lee, and S. Kim, ZEB2 upregulates integrin ?5 expression through cooperation with Sp1 to induce invasion during epithelial-mesenchymal transition of human cancer cells, Carcinogenesis. mars, vol.33, issue.3, pp.563-71, 2012.