L. W. Peterson and D. Artis, Intestinal epithelial cells: regulators of barrier function and immune homeostasis, Nat Rev Immunol, vol.14, pp.141-53, 2014.

D. Lee, L. Albenberg, C. Compher, R. Baldassano, D. Piccoli et al., Diet in the pathogenesis and treatment of inflammatory bowel diseases, Gastroenterology, vol.148, pp.1087-106, 2015.

J. A. Gibson, G. E. Sladen, and A. M. Dawson, Protein absorption and ammonia production: the effects of dietary protein and removal of the colon, Br J Nutr, vol.35, pp.61-66, 1976.

K. R. Silvester and J. H. Cummings, Does digestibility of meat protein help explain large bowel cancer risk?, Nutr Cancer, vol.24, pp.279-88, 1995.

M. Bax, C. Buffière, N. Hafnaoui, C. Gaudichon, I. Savary-auzeloux et al., Effects of meat cooking, and of ingested amount, on protein digestion speed and entry of residual proteins into the colon: a study in minipigs, PloS One, vol.8, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01547489

W. R. Russell, S. W. Gratz, S. H. Duncan, G. Holtrop, J. Ince et al., High-protein, reducedcarbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health, Am J Clin Nutr, vol.93, 2011.

X. Liu, J. Blouin, A. Santacruz, A. Lan, M. Andriamihaja et al., High-protein diet modifies colonic microbiota and luminal environment but not colonocyte metabolism in the rat model: the increased luminal bulk connection, Am J Physiol Gastrointest Liver Physiol, vol.307, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01173417

C. Mu, Y. Yang, Z. Luo, L. Guan, and W. Zhu, The Colonic Microbiome and Epithelial Transcriptome Are Altered in Rats Fed a High-Protein Diet Compared with a Normal-Protein Diet, J Nutr, vol.146, pp.474-83, 2016.

B. Geypens, D. Claus, P. Evenepoel, M. Hiele, B. Maes et al., Influence of dietary protein supplements on the formation of bacterial metabolites in the colon, Gut, vol.41, pp.70-76, 1997.

M. Andriamihaja, A. Davila, M. Eklou-lawson, N. Petit, S. Delpal et al., Colon luminal content and epithelial cell morphology are markedly modified in rats fed with a high-protein diet, Am J Physiol Gastrointest Liver Physiol, vol.299, pp.1030-1037, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01173385

A. Davila, F. Blachier, M. Gotteland, M. Andriamihaja, P. Benetti et al., Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host, Pharmacol Res Off J Ital Pharmacol Soc, vol.68, pp.95-107, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01001597

K. J. Portune, M. Beaumont, A. Davila, D. Tomé, F. Blachier et al., Gut microbiota role in dietary protein metabolism and health-related outcomes: the two sides of the coin, Trends Food Sci Technol, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01488443

M. Andriamihaja, A. Lan, M. Beaumont, M. Audebert, X. Wong et al., The deleterious metabolic and genotoxic effects of the bacterial metabolite p-cresol on colonic epithelial cells, Free Radic Biol Med, vol.85, pp.219-246, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01568625

M. Beaumont, M. Andriamihaja, A. Lan, N. Khodorova, M. Audebert et al., Detrimental effects for colonocytes of an increased exposure to luminal hydrogen sulfide: The adaptive response, Free Radic Biol Med, vol.93, pp.155-64, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01568610

T. Bansal, R. C. Alaniz, T. K. Wood, and A. Jayaraman, The bacterial signal indole increases epithelial-cell tightjunction resistance and attenuates indicators of inflammation, Proc Natl Acad Sci, vol.107, pp.228-261, 2010.

Y. Shimada, M. Kinoshita, K. Harada, M. Mizutani, K. Masahata et al., Commensal BacteriaDependent Indole Production Enhances Epithelial Barrier Function in the Colon, PLoS ONE, vol.8, p.80604, 2013.

A. Lan, M. Andriamihaja, J. Blouin, X. Liu, V. Descatoire et al., High-protein diet differently modifies intestinal goblet cell characteristics and mucosal cytokine expression in ileum and colon, J Nutr Biochem, vol.26, pp.91-99, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01535233

R. Pieper, S. Kröger, J. F. Richter, J. Wang, L. Martin et al., Fermentable fiber ameliorates fermentable protein-induced changes in microbial ecology, but not the mucosal response, in the colon of piglets, J Nutr, vol.142, pp.661-668, 2012.

C. Villodre-tudela, C. Boudry, F. Stumpff, J. R. Aschenbach, W. Vahjen et al., Down-regulation of monocarboxylate transporter 1 (MCT1) gene expression in the colon of piglets is linked to bacterial protein fermentation and pro-inflammatory cytokine-mediated signalling, Br J Nutr, vol.113, pp.610-617, 2015.

J. F. Richter, R. Pieper, S. S. Zakrzewski, D. Günzel, J. D. Schulzke et al., Diets high in fermentable protein and fibre alter tight junction protein composition with minor effects on barrier function in piglet colon, Br J Nutr, vol.111, pp.1040-1049, 2014.

K. Windey, D. Preter, V. Louat, T. Schuit, F. Herman et al., Modulation of protein fermentation does not affect fecal water toxicity: a randomized cross-over study in healthy subjects, PloS One, vol.7, p.52387, 2012.

B. Benassi-evans, P. Clifton, M. Noakes, and M. Fenech, High-protein/high red meat and high-carbohydrate weight-loss diets do not differ in their effect on faecal water genotoxicity tested by use of the WIL2-NS cell line and with other biomarkers of bowel health, Mutat Res, vol.703, pp.130-136, 2010.

S. Toden, A. R. Bird, D. L. Topping, and M. A. Conlon, Differential effects of dietary whey, casein and soya on colonic DNA damage and large bowel SCFA in rats fed diets low and high in resistant starch, Br J Nutr, vol.97, pp.535-578, 2007.

M. Taciak, M. Barszcz, A. Tu?nio, and B. Pastuszewska, Interactive Effects of Indigestible Carbohydrates, Protein Type, and Protein Level on Biomarkers of Large Intestine Health in Rats, PLOS ONE, vol.10, p.142176, 2015.

P. Chomczynski and N. Sacchi, Single-step method of RNA isolation by acid guanidinium thiocyanatephenol-chloroform extraction, Anal Biochem, vol.162, pp.90021-90023, 1987.

M. E. Ritchie, B. Phipson, D. Wu, Y. Hu, C. W. Law et al., limma powers differential expression analyses for RNA-sequencing and microarray studies, Nucleic Acids Res, vol.43, p.47, 2015.

Y. Benjamini and Y. Hochberg, Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing, J R Stat Soc Ser B Methodol, vol.57, pp.289-300, 1995.

M. Cherian, Metallothioneins in human tumors and potential roles in carcinogenesis, Mutat Res Mol Mech Mutagen, vol.533, pp.201-210, 2003.

Z. Kovacevic, S. Sivagurunathan, H. Mangs, S. Chikhani, D. Zhang et al., The metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), upregulates p21 via p53-independent mechanisms, Carcinogenesis, vol.32, 2011.

R. Sutherland, D. Delia, C. Schneider, R. Newman, J. Kemshead et al., Ubiquitous cell-surface glycoprotein on tumor cells is proliferation-associated receptor for transferrin, Proc Natl Acad Sci U S A, vol.78, pp.4515-4524, 1981.

S. Shen, H. Yue, Y. Li, J. Qin, K. Li et al., Upregulation of miR-136 in human non-small cell lung cancer cells promotes Erk1/2 activation by targeting PPP2R2A, Tumour Biol J Int Soc Oncodevelopmental Biol Med, vol.35, pp.631-671, 2014.

J. Cao, J. Schulte, A. Knight, N. R. Leslie, A. Zagozdzon et al., Prdx1 inhibits tumorigenesis via regulating PTEN/AKT activity, EMBO J, vol.28, pp.1505-1522, 2009.

W. E. Roediger, Utilization of nutrients by isolated epithelial cells of the rat colon, Gastroenterology, vol.83, pp.424-433, 1982.

J. Beyerle, E. Frei, M. Stiborova, N. Habermann, and C. M. Ulrich, Biotransformation of xenobiotics in the human colon and rectum and its association with colorectal cancer, Drug Metab Rev, vol.47, pp.199-221, 2015.

R. Hakem, DNA-damage repair; the good, the bad, and the ugly, EMBO J, vol.27, pp.589-605, 2008.

C. Gaudichon, C. Bos, C. Morens, K. J. Petzke, F. Mariotti et al., Ileal losses of nitrogen and amino acids in humans and their importance to the assessment of amino acid requirements, Gastroenterology, vol.123, pp.50-59, 2002.

M. Lacroix, J. Léonil, C. Bos, G. Henry, G. Airinei et al., Heat markers and quality indexes of industrially heat-treated [15N] milk protein measured in rats, J Agric Food Chem, vol.54, pp.1508-1525, 2006.

B. Lönnerdal, Nutritional and physiologic significance of human milk proteins, Am J Clin Nutr, vol.77, pp.1537-1543, 2003.

M. Pasparakis, Role of NF-?B in epithelial biology, Immunol Rev, vol.246, pp.346-58, 2012.

M. Johansson, H. Sjövall, and G. C. Hansson, The gastrointestinal mucus system in health and disease, Nat Rev Gastroenterol Hepatol, vol.10, pp.352-61, 2013.

S. S. Thomas, K. W. Makar, L. Li, Y. Zheng, P. Yang et al., Tissue-specific patterns of gene expression in the epithelium and stroma of normal colon in healthy individuals in an aspirin intervention trial, BMC Med Genet, vol.16, 2015.

E. Kwon, S. Shin, Y. Cho, U. J. Jung, E. Kim et al., Time-course microarrays reveal early activation of the immune transcriptome and adipokine dysregulation leads to fibrosis in visceral adipose depots during diet-induced obesity, BMC Genomics, vol.13, p.1, 2012.

B. Mouille, Adaptative increase of ornithine production and decrease of ammonia metabolism in rat colonocytes after hyperproteic diet ingestion, AJP Gastrointest Liver Physiol, vol.287, pp.344-51, 2004.

N. Traverso, R. Ricciarelli, M. Nitti, B. Marengo, A. L. Furfaro et al., Role of Glutathione in Cancer Progression and Chemoresistance, Oxid Med Cell Longev, 2013.

J. R. Marchesi, D. H. Adams, and F. Fava, The gut microbiota and host health: a new clinical frontier, Gut, vol.65, pp.330-339, 2016.

K. J. Portune, A. Benítez-páez, D. Pulgar, and E. , Gut microbiota, diet and obesity-related disorders -the good, the bad and the future challenges, Mol Nutr Food Res, 2016.

J. A. Gibson, G. E. Sladen, and A. M. Dawson, Protein absorption and ammonia production: the effects of dietary protein and removal of the colon, Br J Nutr, vol.35, pp.61-66, 1976.

D. H. Pesta and V. T. Samuel, A high-protein diet for reducing body fat: mechanisms and possible caveats, Nutr Metab, vol.11, p.53, 2014.

K. R. Silvester and J. H. Cummings, Does digestibility of meat protein help explain large bowel cancer risk?, Nutr Cancer, vol.24, pp.279-88, 1995.

G. D. Brinkworth, M. Noakes, and P. M. Clifton, Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations, Br J Nutr, vol.101, p.1493, 2009.

S. H. Duncan, A. Belenguer, and G. Holtrop, Reduced Dietary Intake of Carbohydrates by Obese Subjects Results in Decreased Concentrations of Butyrate and Butyrate-Producing Bacteria in Feces, Appl Environ Microbiol, vol.73, pp.1073-1081, 2007.

W. R. Russell, S. W. Gratz, and S. H. Duncan, High-protein, reduced-carbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health, Am J Clin Nutr, vol.93, pp.1062-72, 2011.

K. Windey, D. Preter, V. Louat, and T. , Modulation of protein fermentation does not affect fecal water toxicity: a randomized cross-over study in healthy subjects, PloS One, vol.7, p.52387, 2012.

J. H. Cummings, M. J. Hill, and E. S. Bone, The effect of meat protein and dietary fiber on colonic function and metabolism. II. Bacterial metabolites in feces and urine, Am J Clin Nutr, vol.32, pp.2094-101, 1979.

B. Geypens, D. Claus, and P. Evenepoel, Influence of dietary protein supplements on the formation of bacterial metabolites in the colon, Gut, vol.41, pp.70-76, 1997.

A. Davila, F. Blachier, and M. Gotteland, Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host, Pharmacol Res Off J Ital Pharmacol Soc, vol.68, pp.95-107, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01001597

K. J. Portune, M. Beaumont, and A. Davila, Gut microbiota role in dietary protein metabolism and health-related outcomes: the two sides of the coin, Trends Food Sci Technol Published Online First, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01488443

F. Blachier, F. Mariotti, and J. F. Huneau, Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences, Amino Acids, vol.33, pp.547-62, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01186779

M. Andriamihaja, A. Lan, and M. Beaumont, The deleterious metabolic and genotoxic effects of the bacterial metabolite p-cresol on colonic epithelial cells, Free Radic Biol Med, vol.85, pp.219-246, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01568625

M. Beaumont, M. Andriamihaja, and A. Lan, Detrimental effects for colonocytes of an increased exposure to luminal hydrogen sulfide: The adaptive response, Free Radic Biol Med, vol.93, pp.155-64, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01568610

H. C. Lin and W. J. Visek, Colon mucosal cell damage by ammonia in rats, J Nutr, vol.121, pp.887-93, 1991.

T. Bansal, R. C. Alaniz, and T. K. Wood, The bacterial signal indole increases epithelial-cell tightjunction resistance and attenuates indicators of inflammation, Proc Natl Acad Sci, vol.107, pp.228-261, 2010.

Y. Shimada, M. Kinoshita, and K. Harada, Commensal Bacteria-Dependent Indole Production Enhances Epithelial Barrier Function in the Colon, PLoS ONE, vol.8, p.80604, 2013.

M. Venkatesh, S. Mukherjee, and H. Wang, Symbiotic Bacterial Metabolites Regulate Gastrointestinal Barrier Function via the Xenobiotic Sensor PXR and Toll-like Receptor 4, Immunity, vol.41, pp.296-310, 2014.

M. S. Westerterp-plantenga, S. G. Lemmens, and K. R. Westerterp, Dietary protein -its role in satiety, energetics, weight loss and health, Br J Nutr, vol.108, pp.105-117, 2012.

M. Andriamihaja, A. Davila, and M. Eklou-lawson, Colon luminal content and epithelial cell morphology are markedly modified in rats fed with a high-protein diet, Am J Physiol Gastrointest Liver Physiol, vol.299, pp.1030-1037, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01173385

A. Lan, M. Andriamihaja, and J. Blouin, High-protein diet differently modifies intestinal goblet cell characteristics and mucosal cytokine expression in ileum and colon, J Nutr Biochem, vol.26, pp.91-99, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01535233

J. F. Richter, R. Pieper, and S. S. Zakrzewski, Diets high in fermentable protein and fibre alter tight junction protein composition with minor effects on barrier function in piglet colon, Br J Nutr, vol.111, pp.1040-1049, 2014.

B. Benassi-evans, P. Clifton, and M. Noakes, High-protein/high red meat and high-carbohydrate weight-loss diets do not differ in their effect on faecal water genotoxicity tested by use of the WIL2-NS cell line and with other biomarkers of bowel health, Mutat Res, vol.703, pp.130-136, 2010.

P. Jantchou, S. Morois, and F. Clavel-chapelon, Animal protein intake and risk of inflammatory bowel disease: The E3N prospective study, Am J Gastroenterol, vol.105, pp.2195-201, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00486175

S. L. Jowett, C. J. Seal, and M. S. Pearce, Influence of dietary factors on the clinical course of ulcerative colitis: a prospective cohort study, Gut, vol.53, pp.1479-84, 2004.

C. Spooren, M. J. Pierik, and M. P. Zeegers, Review article: the association of diet with onset and relapse in patients with inflammatory bowel disease, Aliment Pharmacol Ther, vol.38, pp.1172-87, 2013.

C. Gaudichon, S. Mahé, and R. Benamouzig, Net postprandial utilization of [15N]-labeled milk protein nitrogen is influenced by diet composition in humans, J Nutr, vol.129, pp.890-895, 1999.

F. Mariotti, S. Mahé, and R. Benamouzig, Nutritional value of [15N]-soy protein isolate assessed from ileal digestibility and postprandial protein utilization in humans, J Nutr, vol.129, pp.1992-1999, 1999.

H. J. Leidy, P. M. Clifton, and A. Astrup, The role of protein in weight loss and maintenance, Am J Clin Nutr, vol.101, pp.1320-1329, 2015.

A. Klindworth, E. Pruesse, and T. Schweer, Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies, Nucleic Acids Res, vol.41, p.1, 2013.

O. Cloarec, M. Dumas, and A. Craig, Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1H NMR data sets, Anal Chem, vol.77, pp.1282-1291, 2005.

X. Liu, J. Blouin, and A. Santacruz, High-protein diet modifies colonic microbiota and luminal environment but not colonocyte metabolism in the rat model: the increased luminal bulk connection, Am J Physiol Gastrointest Liver Physiol, vol.307, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01173417

A. M. Birkett, G. P. Jones, and J. G. Muir, Simple high-performance liquid chromatographic analysis of phenol and p-cresol in urine and feces, J Chromatogr B Biomed Appl, vol.674, pp.187-91, 1995.

P. Chomczynski and N. Sacchi, Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction, Anal Biochem, vol.162, pp.156-165, 1987.

V. R. Young, A. E. El-khoury, and C. A. Raguso, Rates of urea production and hydrolysis and leucine oxidation change linearly over widely varying protein intakes in healthy adults, J Nutr, vol.130, pp.761-767, 2000.

J. Wittwer, I. Rubio-aliaga, and B. Hoeft, Nutrigenomics in human intervention studies: Current status, lessons learned and future perspectives, Mol Nutr Food Res, vol.55, pp.341-58, 2011.

J. Keijer, Y. Van-helden, and A. Bunschoten, Transcriptome analysis in benefit-risk assessment of micronutrients and bioactive food components, Mol Nutr Food Res, vol.54, pp.240-248, 2010.

H. A. Barker, Amino acid degradation by anaerobic bacteria, Annu Rev Biochem, vol.50, pp.23-40, 1981.

M. Derrien, C. Belzer, and W. M. De-vos, Akkermansia muciniphila and its role in regulating host functions, Microb Pathog, 2016.

G. D. Wu, C. Compher, and E. Z. Chen, Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production, Gut, vol.65, pp.63-72, 2016.

A. Koh, D. Vadder, F. Kovatcheva-datchary, and P. , From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites, Cell, vol.165, pp.1332-1377, 2016.

K. R. Silvester, S. A. Bingham, and J. Pollock, Effect of meat and resistant starch on fecal excretion of apparent N "nitroso compounds and ammonia from the human large bowel, Nutr Cancer, vol.29, pp.13-23, 1997.

H. L. Newmark and J. R. Lupton, Determinants and consequences of colonic luminal pH: Implications for colon cancer, Nutr Cancer, vol.14, pp.161-73, 1990.

K. Windey, D. Preter, V. Verbeke, and K. , Relevance of protein fermentation to gut health, Mol Nutr Food Res, vol.56, pp.184-96, 2012.

E. A. Smith and G. T. Macfarlane, Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism, J Appl Bacteriol, vol.81, pp.288-302, 1996.

E. E. Elamin, A. A. Masclee, and J. Dekker, Ethanol metabolism and its effects on the intestinal epithelial barrier, Nutr Rev, vol.71, pp.483-99, 2013.

J. R. Pearson, C. I. Gill, and I. R. Rowland, Diet, fecal water, and colon cancer -development of a biomarker, Nutr Rev, vol.67, pp.509-535, 2009.

H. A. Barker, D. 'ari, L. Kahn, and J. , Enzymatic reactions in the degradation of 5-aminovalerate by Clostridium aminovalericum, J Biol Chem, vol.262, pp.8994-9003, 1987.

H. J. Lees, J. R. Swann, and I. D. Wilson, Hippurate: the natural history of a mammalian-microbial cometabolite, J Proteome Res, vol.12, pp.1527-1573, 2013.

R. Pieper, S. Kröger, and J. F. Richter, Fermentable fiber ameliorates fermentable protein-induced changes in microbial ecology, but not the mucosal response, in the colon of piglets, J Nutr, vol.142, pp.661-668, 2012.

M. Johansson, H. Sjövall, and G. C. Hansson, The gastrointestinal mucus system in health and disease, Nat Rev Gastroenterol Hepatol, vol.10, pp.352-61, 2013.

C. Mu, Y. Yang, and Z. Luo, The Colonic Microbiome and Epithelial Transcriptome Are Altered in Rats Fed a High-Protein Diet Compared with a Normal-Protein Diet, J Nutr, vol.146, pp.474-83, 2016.

C. Bonnans, J. Chou, and Z. Werb, Remodelling the extracellular matrix in development and disease
URL : https://hal.archives-ouvertes.fr/hal-01952416

, Nat Rev Mol Cell Biol, vol.15, pp.786-801, 2014.

M. L. Circu and T. Y. Aw, Redox biology of the intestine, Free Radic Res, vol.45, pp.1245-66, 2011.

!. %&'()*%'+,%$--./)*%'+ and %. ,

*. , %. $-9-;-/&'1+, %. $. :'+,#70$-;,($+, and %. , , p.471

%. =+/#, , vol.471

. 5#40*+1,

. !!"#$%4,

!. %&,

-. &>-$.&'*"$+*+$,

$. and &. #65,

. Bibliographie-!-1, AFSSA (Agence Française de Sécurité Sanitaire des Aliments). « Apport en protéines : consommation, qualité, besoins et recommandations, 2007.

, Agence nationale de sécurité sanitaire, de l'alimentation, de l'environnement et du travail), ANSES, 2010.

D. H. Pesta and V. T. Samuel, A high-protein diet for reducing body fat: mechanisms and possible caveats, Nutr Metab, vol.11, issue.1, p.53, 2014.

M. S. Westerterp-plantenga, A. Nieuwenhuizen, D. Tomé, S. Soenen, and K. R. Westerterp, Dietary Protein, Weight Loss, and Weight Maintenance, Annu Rev Nutr, vol.29, issue.1, pp.21-41, 2009.

C. Gaudichon, C. Bos, C. Morens, K. J. Petzke, F. Mariotti et al., Ileal losses of nitrogen and amino acids in humans and their importance to the assessment of amino acid requirements, Gastroenterology, vol.123, issue.1, pp.50-59, 2002.

J. A. Gibson, G. E. Sladen, and A. M. Dawson, Protein absorption and ammonia production: the effects of dietary protein and removal of the colon, Br J Nutr, vol.35, issue.1, pp.61-66, 1976.

F. Blachier, F. Mariotti, J. F. Huneau, and D. Tomé, Effects of amino acid-derived luminal metabolites on the colonic epithelium and physiopathological consequences, Amino Acids, vol.33, issue.4, pp.547-62, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01186779

K. R. Silvester and J. H. Cummings, Does digestibility of meat protein help explain large bowel cancer risk?, Nutr Cancer, vol.24, issue.3, pp.279-88, 1995.

M. Andriamihaja, A. Davila, M. Eklou-lawson, N. Petit, S. Delpal et al., Colon luminal content and epithelial cell morphology are markedly modified in rats fed with a high-protein diet, Am J Physiol Gastrointest Liver Physiol, vol.299, issue.5, pp.1030-1037, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01173385

A. Lan, M. Andriamihaja, J. Blouin, X. Liu, V. Descatoire et al., Highprotein diet differently modifies intestinal goblet cell characteristics and mucosal cytokine expression in ileum and colon, J Nutr Biochem, vol.26, issue.1, pp.91-99, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01535233

X. Liu, J. Blouin, A. Santacruz, A. Lan, M. Andriamihaja et al., High-protein diet modifies colonic microbiota and luminal environment but not colonocyte metabolism in the rat model: the increased luminal bulk connection, Am J Physiol Gastrointest Liver Physiol, vol.307, issue.4, pp.459-70, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01173417

W. R. Russell, S. W. Gratz, S. H. Duncan, G. Holtrop, J. Ince et al., High-protein, reducedcarbohydrate weight-loss diets promote metabolite profiles likely to be detrimental to colonic health, Am J Clin Nutr, vol.93, issue.5, pp.1062-72, 2011.

K. Windey, D. Preter, V. Louat, T. Schuit, F. Herman et al., Modulation of protein fermentation does not affect fecal water toxicity: a randomized cross-over study in healthy subjects, PloS One, vol.7, issue.12, p.52387, 2012.

P. J. Reeds, Dispensable and indispensable amino acids for humans, J Nutr, 2000.

G. Wu, Dietary protein intake and human health, Food Funct, vol.7, issue.3, pp.1251-65, 2016.

M. S. Westerterp-plantenga, S. G. Lemmens, and K. R. Westerterp, Dietary protein -its role in satiety, energetics, weight loss and health, Br J Nutr, vol.108, issue.S2, pp.105-117, 2012.

T. Morenga, L. Mann, and J. , The role of high-protein diets in body weight management and health

, Br J Nutr, vol.108, issue.S2, pp.130-138, 2012.

H. J. Leidy, P. M. Clifton, A. Astrup, T. P. Wycherley, M. S. Westerterp-plantenga et al., The role of protein in weight loss and maintenance, Am J Clin Nutr, vol.101, issue.6, pp.1320-1329, 2015.

B. H. Hirst, Dietary regulation of intestinal nutrient carriers, Proc Nutr Soc, vol.52, issue.2, pp.315-339, 1993.

W. G. Bergen and G. Wu, Intestinal Nitrogen Recycling and Utilization in Health and Disease, J Nutr, vol.139, issue.5, pp.821-826, 2009.

M. Fuller, Determination of protein and amino acid digestibility in foods including implications of gut microbial amino acid synthesis, Br J Nutr, vol.108, issue.S2, pp.238-284, 2012.

A. Davila, F. Blachier, M. Gotteland, M. Andriamihaja, P. Benetti et al., Intestinal luminal nitrogen metabolism: role of the gut microbiota and consequences for the host, Pharmacol Res Off J Ital Pharmacol Soc, vol.68, issue.1, pp.95-107, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01001597

A. Chacko and J. H. Cummings, Nitrogen losses from the human small bowel: obligatory losses and the effect of physical form of food, Gut, vol.29, issue.6, pp.809-824, 1988.

C. Gaudichon, S. Mahé, R. Benamouzig, C. Luengo, H. Fouillet et al., Net postprandial utilization of [15N]-labeled milk protein nitrogen is influenced by diet composition in humans, J Nutr, vol.129, issue.4, pp.890-895, 1999.

M. Oberli, A. Marsset-baglieri, G. Airinei, V. Sante-lhoutellier, N. Khodorova et al.,

, High True Ileal Digestibility but Not Postprandial Utilization of Nitrogen from Bovine Meat Protein in Humans Is Moderately Decreased by High-Temperature, Long-Duration Cooking, J Nutr, vol.145, issue.10, pp.2221-2229, 2015.

M. Lacroix, J. Léonil, C. Bos, G. Henry, G. Airinei et al., Heat markers and quality indexes of industrially heat-treated [15N] milk protein measured in rats, J Agric Food Chem, vol.54, issue.4, pp.1508-1525, 2006.

F. Mariotti, S. Mahé, R. Benamouzig, C. Luengo, S. Daré et al., Nutritional value of [15N]-soy protein isolate assessed from ileal digestibility and postprandial protein utilization in humans, J Nutr, vol.129, issue.11, pp.1992-1999, 1999.

C. Bos, G. Airinei, F. Mariotti, R. Benamouzig, S. Bérot et al., The poor digestibility of rapeseed protein is balanced by its very high metabolic utilization in humans, J Nutr, vol.137, issue.3, pp.594-600, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01173370

N. Gausserès, S. Mahè, R. Benamouzig, C. Luengo, H. Drouet et al., The gastro-ileal digestion of 15N-labelled pea nitrogen in adult humans, Br J Nutr, vol.76, issue.1, pp.75-85, 1996.

P. Evenepoel, C. D. Geypens, B. Hiele, M. Geboes, K. Rutgeerts et al., Amount and fate of egg protein escaping assimilation in the small intestine of humans, Am J Physiol, vol.277, issue.5, pp.935-978, 1999.

D. C. Dallas, M. R. Sanctuary, Y. Qu, S. H. Khajavi, A. E. Van-zandt et al., Personalizing Protein Nourishment, Crit Rev Food Sci Nutr, pp.0-00, 2015.

M. Bax, C. Buffière, N. Hafnaoui, C. Gaudichon, I. Savary-auzeloux et al., Effects of meat cooking, and of ingested amount, on protein digestion speed and entry of residual proteins into the colon: a study in minipigs, PloS One, vol.8, issue.4, p.61252, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01547489

M. Oberli, A. Lan, N. Khodorova, V. Santé-lhoutellier, F. Walker et al., Compared with Raw Bovine Meat, Boiling but Not Grilling, Barbecuing, or Roasting Decreases Protein Digestibility without Any Major Consequences for Intestinal Mucosa in Rats, although the Daily Ingestion of Bovine Meat Induces Histologic Modifications in the Colon, J Nutr, vol.146, issue.8, pp.1506-1519, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01455213

J. Fallingborg, Intraluminal pH of the human gastrointestinal tract, Dan Med Bull, 1999.

G. T. Macfarlane and S. Macfarlane, Human Colonic Microbiota: Ecology, Physiology and Metabolic Potential of Intestinal Bacteria, Scand J Gastroenterol, vol.32, issue.sup222, pp.3-9, 1997.

L. Albenberg, T. V. Esipova, C. P. Judge, K. Bittinger, J. Chen et al., Correlation Between Intraluminal Oxygen Gradient and Radial Partitioning of Intestinal Microbiota, Gastroenterology, vol.147, issue.5, pp.1055-63, 2014.

M. G. Espey, Role of oxygen gradients in shaping redox relationships between the human intestine and its microbiota, Free Radic Biol Med, vol.55, pp.130-170, 2013.

N. Barker, Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration, Nat Rev Mol Cell Biol, vol.15, issue.1, pp.19-33, 2013.

P. Paoli, E. Giannoni, and P. Chiarugi, 40. van der Flier LG, Clevers H. Stem Cells, Self-Renewal, and Differentiation in the Intestinal Epithelium, Biochim Biophys Acta BBA -Mol Cell Res, vol.1833, issue.12, pp.241-60, 2009.

J. Tomas, J. Reygner, C. Mayeur, R. Ducroc, S. Bouet et al., Early colonizing Escherichia coli elicits remodeling of rat colonic epithelium shifting toward a new homeostatic state, ISME J, vol.9, issue.1, pp.46-58, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01194140

F. Martin-belmonte and M. Perez-moreno, Epithelial cell polarity, stem cells and cancer, Nat Rev Cancer, vol.12, issue.1, pp.23-38, 2012.

K. R. Groschwitz and S. P. Hogan, Intestinal barrier function: molecular regulation and disease pathogenesis, J Allergy Clin Immunol, vol.124, issue.1, pp.3-20, 2009.

J. R. Turner, Intestinal mucosal barrier function in health and disease, Nat Rev Immunol, 2009.

M. Camilleri, K. Madsen, R. Spiller, B. G. Van-meerveld, and G. N. Verne, Intestinal barrier function in health and gastrointestinal disease: Intestinal barrier function, Neurogastroenterol Motil, vol.24, issue.6, pp.503-515, 2012.

I. C. Teller and J. F. Beaulieu, Interactions between laminin and epithelial cells in intestinal health and disease, Expert Rev Mol Med, vol.3, issue.24, pp.1-18, 2001.

M. Heyman, J. Abed, C. Lebreton, and N. Cerf-bensussan, Intestinal permeability in coeliac disease: insight into mechanisms and relevance to pathogenesis, Gut, vol.61, issue.9, pp.1355-64, 2012.

M. Johansson, H. Sjövall, and G. C. Hansson, The gastrointestinal mucus system in health and disease, Nat Rev Gastroenterol Hepatol, vol.10, issue.6, pp.352-61, 2013.

M. Johansson and G. C. Hansson, Immunological aspects of intestinal mucus and mucins, Nat Rev Immunol, 2016.

M. Van-der-sluis, D. Koning, B. , D. Bruijn, A. Velcich et al., Muc2-Deficient Mice Spontaneously Develop Colitis, Indicating That MUC2 Is Critical for Colonic Protection, Gastroenterology, vol.131, issue.1, pp.117-146, 2006.

L. W. Peterson and D. Artis, Intestinal epithelial cells: regulators of barrier function and immune homeostasis, Nat Rev Immunol, vol.14, issue.3, pp.141-53, 2014.

J. O. Lundberg and E. Weitzberg, Biology of nitrogen oxides in the gastrointestinal tract, Gut, 2013.

C. Szabo, Gasotransmitters in cancer: from pathophysiology to experimental therapy, Nat Rev Drug Discov, vol.15, issue.3, pp.185-203, 2015.

M. Pasparakis, Role of NF-?B in epithelial biology, Immunol Rev, vol.246, issue.1, pp.346-58, 2012.

O. Pabst, V. Cerovic, and M. Hornef, Secretory IgA in the Coordination of Establishment and Maintenance of the Microbiota, Trends Immunol, vol.37, issue.5, pp.287-96, 2016.

F. Blachier, C. Boutry, C. Bos, and D. Tomé, Metabolism and functions of L-glutamate in the epithelial cells of the small and large intestines, Am J Clin Nutr, vol.90, issue.3, pp.814-821, 2009.

W. E. Roediger, Utilization of nutrients by isolated epithelial cells of the rat colon, Gastroenterology, vol.83, issue.2, pp.424-433, 1982.

M. D. Brand and D. G. Nicholls, Assessing mitochondrial dysfunction in cells, Biochem J, vol.435, issue.2, pp.297-312, 2011.

A. S. Divakaruni and M. D. Brand, The regulation and physiology of mitochondrial proton leak

M. Physiol-bethesda, , vol.26, pp.192-205, 2011.

D. R. Donohoe, N. Garge, X. Zhang, W. Sun, T. M. O'connell et al., The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon, Cell Metab, vol.13, issue.5, pp.517-543, 2011.

C. E. Cooper and G. C. Brown, The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance, J Bioenerg Biomembr, vol.40, issue.5, pp.533-542, 2008.

W. Roediger, A. Duncan, O. Kapaniris, and S. Millard, Sulphide impairment of substrate oxidation in rat colonocytes: a biochemical basis for ulcerative colitis?, Clin Sci, vol.85, issue.5, pp.623-630, 1993.

S. P. Colgan and C. T. Taylor, Hypoxia: an alarm signal during intestinal inflammation, Nat Rev Gastroenterol Hepatol, vol.7, issue.5, pp.281-288, 2010.

L. A. Sena and N. S. Chandel, Physiological Roles of Mitochondrial Reactive Oxygen Species, Mol Cell, vol.48, issue.2, pp.158-67, 2012.

T. Irrazábal, A. Belcheva, S. E. Girardin, A. Martin, and D. J. Philpott, The multifaceted role of the intestinal microbiota in colon cancer, Mol Cell, vol.54, issue.2, pp.309-329, 2014.

M. Schieber and N. S. Chandel, ROS Function in Redox Signaling and Oxidative Stress, Curr Biol

M. L. Circu and T. Y. Aw, Redox biology of the intestine, Free Radic Res, vol.45, pp.1245-66, 2011.

J. Beyerle, E. Frei, M. Stiborova, N. Habermann, and C. M. Ulrich, Biotransformation of xenobiotics in the human colon and rectum and its association with colorectal cancer, Drug Metab Rev, vol.47, issue.2, pp.199-221, 2015.

C. L. Sears and W. S. Garrett, Microbes, microbiota, and colon cancer. Cell Host Microbe, vol.15, pp.317-345, 2014.

R. Hakem, DNA-damage repair; the good, the bad, and the ugly, EMBO J, vol.27, issue.4, pp.589-605, 2008.

L. Khoury, D. Zalko, and M. Audebert, Validation of high-throughput genotoxicity assay screening using ?H2AX in-cell western assay on HepG2 cells, Environ Mol Mutagen, vol.54, issue.9, pp.737-783, 2013.

N. P. Singh, M. T. Mccoy, R. R. Tice, and E. L. Schneider, A simple technique for quantitation of low levels of DNA damage in individual cells, Exp Cell Res, vol.175, issue.1, pp.184-91, 1988.

A. Negroni, S. Cucchiara, and L. Stronati, Apoptosis, Necrosis, and Necroptosis in the Gut and Intestinal Homeostasis, Mediators Inflamm, vol.2015, pp.1-10, 2015.

V. Andersen, A. Olsen, F. Carbonnel, A. Tjønneland, and U. Vogel, Diet and risk of inflammatory bowel disease. Dig Liver Dis Off J Ital Soc Gastroenterol Ital Assoc Study Liver, vol.44, pp.185-94, 2012.

K. J. Maloy and F. Powrie, Intestinal homeostasis and its breakdown in inflammatory bowel disease, Nature, vol.474, issue.7351, pp.298-306, 2011.

I. I. Singer, D. W. Kawka, S. Scott, J. R. Weidner, R. A. Mumford et al., Expression of inducible nitric oxide synthase and nitrotyrosine in colonic epithelium in inflammatory bowel disease, Gastroenterology, vol.111, issue.4, pp.871-85, 1996.

R. A. Risques, L. A. Lai, T. A. Brentnall, L. Li, Z. Feng et al., Ulcerative colitis is a disease of accelerated colon aging: evidence from telomere attrition and DNA damage, Gastroenterology, 2008.

G. P. Donaldson, S. M. Lee, and S. K. Mazmanian, Gut biogeography of the bacterial microbiota, Nat Rev Microbiol, vol.14, issue.1, pp.20-32, 2015.

R. Sender, S. Fuchs, and R. Milo, Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans, Cell, vol.164, issue.3, pp.337-377, 2016.

A. W. Walker, S. H. Duncan, P. Louis, and H. J. Flint, Phylogeny, culturing, and metagenomics of the human gut microbiota, Trends Microbiol, vol.22, issue.5, pp.267-74, 2014.

M. Arumugam, J. Raes, E. Pelletier, L. Paslier, D. Yamada et al., Enterotypes of the human gut microbiome, Nature, vol.473, issue.7346, pp.174-80, 2011.
URL : https://hal.archives-ouvertes.fr/cea-00903625

J. Qin, R. Li, J. Raes, M. Arumugam, K. S. Burgdorf et al., A human gut microbial gene catalogue established by metagenomic sequencing, Nature, vol.464, issue.7285, pp.59-65, 2010.
URL : https://hal.archives-ouvertes.fr/cea-00908974

P. B. Eckburg, E. M. Bik, C. N. Bernstein, E. Purdom, L. Dethlefsen et al., Diversity of the human intestinal microbial flora, science, vol.308, issue.5728, pp.1635-1643, 2005.

V. Tremaroli and F. Bäckhed, Functional interactions between the gut microbiota and host metabolism, Nature, vol.489, issue.7415, pp.242-251, 2012.

H. M. Roager, L. Hansen, M. I. Bahl, H. L. Frandsen, V. Carvalho et al., Colonic transit time is related to bacterial metabolism and mucosal turnover in the gut, Nat Microbiol, vol.1, p.16093, 2016.

G. D. Wu, J. Chen, C. Hoffmann, K. Bittinger, Y. Chen et al., Linking long-term dietary patterns with gut microbial enterotypes, Science, vol.334, issue.6052, pp.105-113, 2011.

J. J. Faith, J. L. Guruge, M. Charbonneau, S. Subramanian, H. Seedorf et al., The LongTerm Stability of the Human Gut Microbiota, Science, vol.341, issue.6141, pp.1237439-1237439, 2013.

R. E. Ley, P. J. Turnbaugh, S. Klein, and J. I. Gordon, Microbial ecology: human gut microbes associated with obesity, Nature, vol.444, issue.7122, pp.1022-1025, 2006.

J. Tap, S. Mondot, F. Levenez, E. Pelletier, C. Caron et al., Towards the human intestinal microbiota phylogenetic core, Environ Microbiol, vol.11, issue.10, pp.2574-84, 2009.

L. G. Albenberg and G. D. Wu, Diet and the Intestinal Microbiome: Associations, Functions, and Implications for Health and Disease, Gastroenterology, vol.146, issue.6, pp.1564-72, 2014.

H. Sokol, B. Pigneur, L. Watterlot, O. Lakhdari, L. G. Bermúdez-humarán et al.,

, Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients, Proc Natl Acad Sci, vol.105, issue.43, pp.16731-16737, 2008.

L. A. David, C. F. Maurice, R. N. Carmody, D. B. Gootenberg, J. E. Button et al., Diet rapidly and reproducibly alters the human gut microbiome, Nature, vol.505, issue.7484, pp.559-63, 2013.

K. J. Portune, A. Benítez-páez, D. Pulgar, E. Cerrudo, V. Sanz et al., Gut microbiota, diet and obesity-related disorders -the good, the bad and the future challenges, Mol Nutr Food Res, 2016.

A. W. Walker, J. Ince, S. H. Duncan, L. M. Webster, G. Holtrop et al., Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men, ISME J, vol.5, issue.2, pp.2218-2248, 2011.

H. J. Flint, K. P. Scott, P. Louis, and S. H. Duncan, The role of the gut microbiota in nutrition and health, Nat Rev Gastroenterol Hepatol, vol.9, issue.10, pp.577-89, 2012.

S. H. Duncan, A. Belenguer, G. Holtrop, A. M. Johnstone, H. J. Flint et al., Reduced Dietary Intake of Carbohydrates by Obese Subjects Results in Decreased Concentrations of Butyrate and Butyrate-Producing Bacteria in Feces, Appl Environ Microbiol, vol.73, issue.4, pp.1073-1081, 2007.

G. D. Brinkworth, M. Noakes, P. M. Clifton, and A. R. Bird, Comparative effects of very lowcarbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal shortchain fatty acids and bacterial populations, Br J Nutr, vol.101, issue.10, p.1493, 2009.

R. Pieper, S. Kröger, J. F. Richter, J. Wang, L. Martin et al., Fermentable fiber ameliorates fermentable protein-induced changes in microbial ecology, but not the mucosal response, in the colon of piglets, J Nutr, vol.142, issue.4, pp.661-668, 2012.

L. Zhou, L. Fang, Y. Sun, Y. Su, and W. Zhu, Effects of the dietary protein level on the microbial composition and metabolomic profile in the hindgut of the pig, Anaerobe, vol.38, pp.61-70, 2016.

C. Mu, Y. Yang, Z. Luo, L. Guan, and W. Zhu, The Colonic Microbiome and Epithelial Transcriptome Are Altered in Rats Fed a High-Protein Diet Compared with a Normal-Protein Diet, J Nutr, vol.146, issue.3, pp.474-83, 2016.

S. Miquel, R. Martín, C. Bridonneau, V. Robert, H. Sokol et al., Ecology and metabolism of the beneficial intestinal commensal bacterium Faecalibacterium prausnitzii, Gut Microbes, vol.5, issue.2, pp.146-51, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00961711

D. N. Butteiger, A. A. Hibberd, N. J. Mcgraw, N. Napawan, J. M. Hall-porter et al., Soy Protein Compared with Milk Protein in a Western Diet Increases Gut Microbial Diversity and Reduces Serum Lipids in Golden Syrian Hamsters, J Nutr, vol.146, issue.4, pp.697-705, 2016.

Y. Zhu, X. Lin, F. Zhao, X. Shi, H. Li et al., Meat, dairy and plant proteins alter bacterial composition of rat gut bacteria. Sci Rep, vol.5, p.15220, 2015.

V. Gaboriau-routhiau, S. Rakotobe, E. Lécuyer, I. Mulder, A. Lan et al., The Key Role of Segmented Filamentous Bacteria in the Coordinated Maturation of Gut Helper T Cell Responses, Immunity, vol.31, issue.4, pp.677-89, 2009.

J. Li, H. Jia, X. Cai, H. Zhong, Q. Feng et al., An integrated catalog of reference genes in the human gut microbiome, Nat Biotechnol, vol.32, issue.8, pp.834-875, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01195478

H. M. Hamer, D. Preter, V. Windey, K. Verbeke, and K. , Functional analysis of colonic bacterial metabolism: relevant to health?, AJP Gastrointest Liver Physiol, vol.302, issue.1, pp.1-9, 2012.

X. Zheng, G. Xie, A. Zhao, L. Zhao, C. Yao et al., The footprints of gut microbial-! 213

, mammalian co-metabolism, J Proteome Res, vol.10, issue.12, pp.5512-5534, 2011.

C. Macfarlane, The colonic flora, fermentation and large bowel digestive function, The large intestine: physiology, pathophysiology and disease Raven Press NewYork, pp.51-92, 1991.

A. Bernalier-donadille, Fermentative metabolism by the human gut microbiota

, Gastroentérologie Clin Biol, vol.34, issue.1, pp.16-22, 2010.

K. P. Scott, S. W. Gratz, P. O. Sheridan, H. J. Flint, and S. H. Duncan, The influence of diet on the gut microbiota, Pharmacol Res, vol.69, issue.1, pp.52-60, 2013.

G. D. Wu, C. Compher, E. Z. Chen, S. A. Smith, R. D. Shah et al., Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production, Gut, vol.65, issue.1, pp.63-72, 2016.

S. Vieira-silva, G. Falony, Y. Darzi, G. Lima-mendez, G. Yunta et al., Speciesfunction relationships shape ecological properties of the human gut microbiome, Nat Microbiol, vol.13, issue.8, p.16088, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01518385

J. Ou, F. Carbonero, E. G. Zoetendal, J. P. Delany, M. Wang et al., Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans, Am J Clin Nutr, vol.98, issue.1, pp.111-131, 2013.

S. O'keefe, J. V. Li, L. Lahti, J. Ou, F. Carbonero et al., Fat, fibre and cancer risk in African Americans and rural Africans, Nat Commun, vol.6, p.6342, 2015.

K. A. Verbeke, A. R. Boobis, A. Chiodini, C. A. Edwards, A. Franck et al., Towards microbial fermentation metabolites as markers for health benefits of prebiotics, Nutr Res Rev, vol.28, issue.01, pp.42-66, 2015.

A. Koh, D. Vadder, F. Kovatcheva-datchary, P. Bäckhed, and F. , From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites, Cell, vol.165, issue.6, pp.1332-1377, 2016.

E. N. Bergman, Energy contributions of volatile fatty acids from the gastrointestinal tract in various species, Physiol Rev, vol.70, issue.2, pp.567-90, 1990.

C. J. Kelly, L. Zheng, E. L. Campbell, B. Saeedi, C. C. Scholz et al., Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function, Cell Host Microbe, vol.17, issue.5, pp.662-71, 2015.

N. Singh, A. Gurav, S. Sivaprakasam, E. Brady, R. Padia et al., Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis, Immunity, vol.40, issue.1, pp.128-167, 2014.

S. Sivaprakasam, P. D. Prasad, and N. Singh, Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis, Pharmacol Ther, vol.164, pp.144-51, 2016.

K. Windey, D. Preter, V. Verbeke, and K. , Relevance of protein fermentation to gut health, Mol Nutr Food Res, vol.56, issue.1, pp.184-96, 2012.

E. A. Smith and G. T. Macfarlane, Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism, J Appl Bacteriol, vol.81, issue.3, pp.288-302, 1996.

H. E. Amos, C. O. Little, and G. E. Mitchell, Proline utilization during cellulose fermentation by rumen microorganisms, J Agric Food Chem, vol.19, issue.1, pp.112-117, 1971.

S. Toden, A. R. Bird, D. L. Topping, and M. A. Conlon, Resistant starch attenuates colonic DNA damage induced by higher dietary protein in rats, Nutr Cancer, vol.51, issue.1, pp.45-51, 2005.

T. Sakurazawa and T. Ohkusa, Cytotoxicity of organic acids produced by anaerobic intestinal bacteria on cultured epithelial cells, J Gastroenterol, vol.40, issue.6, pp.600-609, 2005.

G. Boudry, A. Jamin, L. Chatelais, C. Gras-le-guen, C. Michel et al., Dietary Protein Excess during Neonatal Life Alters Colonic Microbiota and Mucosal Response to Inflammatory Mediators Later in Life in Female Pigs, J Nutr, vol.143, issue.8, pp.1225-1257, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01594355

B. Geypens, D. Claus, P. Evenepoel, M. Hiele, B. Maes et al., Influence of dietary protein supplements on the formation of bacterial metabolites in the colon, Gut, vol.41, issue.1, pp.70-76, 1997.

J. H. Cummings, M. J. Hill, E. S. Bone, W. J. Branch, and D. J. Jenkins, The effect of meat protein and dietary fiber on colonic function and metabolism. II. Bacterial metabolites in feces and urine, Am J Clin Nutr, vol.32, issue.10, pp.2094-101, 1979.

B. Benassi-evans, P. Clifton, M. Noakes, and M. Fenech, High-protein/high red meat and highcarbohydrate weight-loss diets do not differ in their effect on faecal water genotoxicity tested by use of the WIL2-NS cell line and with other biomarkers of bowel health, Mutat Res, vol.703, issue.2, pp.130-136, 2010.

P. Bikker, A. Dirkzwager, J. Fledderus, P. Trevisi, I. Le-huërou-luron et al., The effect of dietary protein and fermentable carbohydrates levels on growth performance and intestinal characteristics in newly weaned piglets, J Anim Sci, vol.84, issue.12, p.3337, 2006.

H. C. Lin and W. J. Visek, Large intestinal pH and ammonia in rats: dietary fat and protein interactions, J Nutr, vol.121, issue.6, pp.832-875, 1991.

E. F. Lhoste, I. Catala, M. Fiszlewicz, A. M. Gueugneau, P. Vaissade et al., Influence of caecal microflora and of two dietary protein levels on the adaptation of the exocrine pancreas: comparative study in germ-free and conventional rats, Br J Nutr, vol.75, issue.03, pp.433-477, 1996.
URL : https://hal.archives-ouvertes.fr/hal-01821851

M. Taciak, M. Barszcz, A. Tu?nio, and B. Pastuszewska, Interactive Effects of Indigestible Carbohydrates, Protein Type, and Protein Level on Biomarkers of Large Intestine Health in Rats, PLOS ONE, vol.10, issue.11, p.142176, 2015.

J. D. Cremin, M. D. Fitch, and S. E. Fleming, Glucose alleviates ammonia-induced inhibition of shortchain fatty acid metabolism in rat colonic epithelial cells, Am J Physiol Gastrointest Liver Physiol, vol.285, issue.1, pp.105-119, 2003.

C. Villodre-tudela, C. Boudry, F. Stumpff, J. R. Aschenbach, W. Vahjen et al., Downregulation of monocarboxylate transporter 1 (MCT1) gene expression in the colon of piglets is linked to bacterial protein fermentation and pro-inflammatory cytokine-mediated signalling, Br J Nutr, vol.113, issue.4, pp.610-617, 2015.

B. Mouille, Adaptative increase of ornithine production and decrease of ammonia metabolism in rat colonocytes after hyperproteic diet ingestion, AJP Gastrointest Liver Physiol, vol.287, issue.2, pp.344-51, 2004.

H. Ichikawa and T. Sakata, Stimulation of epithelial cell proliferation of isolated distal colon of rats by continuous colonic infusion of ammonia or short-chain fatty acids is nonadditive, J Nutr, vol.128, issue.5, pp.843-850, 1998.

H. C. Lin and W. J. Visek, Colon mucosal cell damage by ammonia in rats, J Nutr, vol.121, issue.6, pp.887-93, 1991.

R. Hughes, M. J. Kurth, V. Mcgilligan, H. Mcglynn, and I. Rowland, Effect of colonic bacterial metabolites on Caco-2 cell paracellular permeability in vitro, Nutr Cancer, vol.60, issue.2, pp.259-66, 2008.

M. Eklou-lawson, F. Bernard, N. Neveux, C. Chaumontet, C. Bos et al., Colonic luminal ammonia and portal blood L-glutamine and L-arginine concentrations: a possible link between colon mucosa and liver ureagenesis, Amino Acids, vol.37, issue.4, pp.751-60, 2009.

K. R. Silvester, S. A. Bingham, J. Pollock, J. H. Cummings, O. Neill et al., Effect of meat and resistant starch on fecal excretion of apparent N "nitroso compounds and ammonia from the human large bowel, Nutr Cancer, vol.29, issue.1, pp.13-23, 1997.

W. R. Russell, S. H. Duncan, L. Scobbie, G. Duncan, L. Cantlay et al., Major phenylpropanoid-derived metabolites in the human gut can arise from microbial fermentation of protein, Mol Nutr Food Res, vol.57, issue.3, pp.523-558, 2013.

B. S. Ramakrishna, I. C. Roberts-thomson, P. R. Pannall, and W. E. Roediger, Impaired sulphation of phenol by the colonic mucosa in quiescent and active ulcerative colitis, Gut, vol.32, issue.1, pp.46-55, 1991.

W. R. Wikoff, A. T. Anfora, J. Liu, P. G. Schultz, S. A. Lesley et al., Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites, Proc Natl Acad Sci, vol.106, issue.10, pp.3698-703, 2009.

R. Poesen, H. A. Mutsaers, K. Windey, P. H. Van-den-broek, V. Verweij et al., The Influence of Dietary Protein Intake on Mammalian Tryptophan and Phenolic Metabolites, PloS One, vol.10, issue.10, p.140820, 2015.

I. C. Mccall, A. Betanzos, D. A. Weber, P. Nava, G. W. Miller et al., Effects of phenol on barrier function of a human intestinal epithelial cell line correlate with altered tight junction protein localization, Toxicol Appl Pharmacol, issue.1, pp.61-70, 2009.

G. Pedersen, J. Brynskov, and T. Saermark, Phenol toxicity and conjugation in human colonic epithelial cells, Scand J Gastroenterol, vol.37, issue.1, pp.74-83, 2002.

A. Ramezani, Z. A. Massy, B. Meijers, P. Evenepoel, R. Vanholder et al., Role of the Gut Microbiome in Uremia: A Potential Therapeutic Target, Am J Kidney Dis, vol.67, issue.3, pp.483-98, 2016.

T. Bansal, R. C. Alaniz, T. K. Wood, and A. Jayaraman, The bacterial signal indole increases epithelialcell tight-junction resistance and attenuates indicators of inflammation, Proc Natl Acad Sci, vol.107, issue.1, pp.228-261, 2010.

G. T. Macfarlane, G. R. Gibson, and J. H. Cummings, Comparison of fermentation reactions in different regions of the human colon, J Appl Bacteriol, vol.72, issue.1, pp.57-64, 1992.

M. Venkatesh, S. Mukherjee, H. Wang, H. Li, K. Sun et al., Symbiotic Bacterial Metabolites Regulate Gastrointestinal Barrier Function via the Xenobiotic Sensor PXR and Toll-like Receptor 4, Immunity, vol.41, issue.2, pp.296-310, 2014.

T. Zelante, R. G. Iannitti, C. Cunha, D. Luca, A. Giovannini et al., Tryptophan Catabolites from Microbiota Engage Aryl Hydrocarbon Receptor and Balance Mucosal Reactivity via Interleukin-22, Immunity, vol.39, issue.2, pp.372-85, 2013.

Y. Shimada, M. Kinoshita, K. Harada, M. Mizutani, K. Masahata et al., Commensal Bacteria-Dependent Indole Production Enhances Epithelial Barrier Function in the Colon, PLoS ONE, vol.8, issue.11, p.80604, 2013.

S. P. Claus, T. M. Tsang, Y. Wang, O. Cloarec, E. Skordi et al., Systemic multicompartmental effects of the gut microbiome on mouse metabolic phenotypes, Mol Syst Biol, vol.4, p.219, 2008.

H. J. Lees, J. R. Swann, I. D. Wilson, J. K. Nicholson, and E. Holmes, Hippurate: the natural history of a mammalian-microbial cometabolite, J Proteome Res, vol.12, issue.4, pp.1527-1573, 2013.

C. Allison and G. T. Macfarlane, Influence of pH, nutrient availability, and growth rate on amine production by Bacteroides fragilis and Clostridium perfringens, Appl Environ Microbiol, vol.55, issue.11, pp.2894-2902, 1989.

P. Fan, L. Li, A. Rezaei, S. Eslamfam, C. D. Ma et al., Metabolites of Dietary Protein and Peptides by Intestinal Microbes and their Impacts on Gut, Curr Protein Pept Sci, vol.16, issue.7, pp.646-54, 2015.

F. Blachier, A. M. Davila, R. Benamouzig, and T. D. , Channelling of arginine in NO and polyamine pathways in colonocytes and consequences, Front Biosci Landmark Ed, vol.16, pp.1331-1374, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01001463

M. Levy, C. A. Thaiss, D. Zeevi, L. Dohnalová, G. Zilberman-schapira et al., MicrobiotaModulated Metabolites Shape the Intestinal Microenvironment by Regulating NLRP6 Inflammasome Signaling, Cell, vol.163, issue.6, pp.1428-1471, 2015.

F. Bouillaud and F. Blachier, Mitochondria and sulfide: a very old story of poisoning, feeding, and signaling? Antioxid Redox Signal, vol.15, pp.379-91, 2011.

J. L. Wallace and R. Wang, Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter, Nat Rev Drug Discov, vol.14, issue.5, pp.329-374, 2015.

M. D. Levitt, J. Springfield, J. Furne, T. Koenig, and F. L. Suarez, Physiology of sulfide in the rat colon: use of bismuth to assess colonic sulfide production, J Appl Physiol Bethesda Md, 1985.

F. Carbonero, A. C. Benefiel, A. H. Alizadeh-ghamsari, and H. R. Gaskins, Microbial pathways in colonic sulfur metabolism and links with health and disease, Front Physiol, vol.3, p.448, 2012.

F. Blachier, A. Davila, S. Mimoun, P. Benetti, C. Atanasiu et al., Luminal sulfide and large intestine mucosa: friend or foe? Amino Acids, vol.39, pp.335-382, 2010.

D. R. Linden, Hydrogen sulfide signaling in the gastrointestinal tract, Antioxid Redox Signal, vol.20, issue.5, pp.818-848, 2014.

G. M. Nava, F. Carbonero, J. Ou, A. C. Benefiel, S. J. O'keefe et al., Hydrogenotrophic microbiota distinguish native Africans from African and European Americans: Diet and colonic hydrogenotrophs, Environ Microbiol Rep, vol.4, issue.3, pp.307-322, 2012.

S. Devkota, Y. Wang, M. W. Musch, V. Leone, H. Fehlner-peach et al., Dietary-fatinduced taurocholic acid promotes pathobiont expansion and colitis in Il10-/-mice, Nature, vol.487, issue.7405, pp.104-112, 2012.

M. Medani, D. Collins, N. G. Docherty, A. W. Baird, P. R. O?connell et al., Emerging role of hydrogen sulfide in colonic physiology and pathophysiology: Inflamm Bowel Dis, vol.17, pp.1620-1625, 2011.

J. Jørgensen and P. B. Mortensen, Hydrogen sulfide and colonic epithelial metabolism: implications for ulcerative colitis, Dig Dis Sci, vol.46, issue.8, pp.1722-1754, 2001.

E. A. Magee, C. J. Richardson, R. Hughes, and J. H. Cummings, Contribution of dietary protein to sulfide production in the large intestine: an in vitro and a controlled feeding study in humans, Am J Clin Nutr, vol.72, issue.6, pp.1488-94, 2000.

M. Goubern, M. Andriamihaja, T. Nübel, F. Blachier, and F. Bouillaud, Sulfide, the first inorganic substrate for human cells, FASEB J Off Publ Fed Am Soc Exp Biol, vol.21, issue.8, pp.1699-706, 2007.

E. Lagoutte, S. Mimoun, M. Andriamihaja, C. Chaumontet, F. Blachier et al., Oxidation of hydrogen sulfide remains a priority in mammalian cells and causes reverse electron transfer in colonocytes, Biochim Biophys Acta, issue.8, pp.1500-1511, 1797.

S. Mimoun, M. Andriamihaja, C. Chaumontet, C. Atanasiu, R. Benamouzig et al., Detoxification of H(2)S by differentiated colonic epithelial cells: implication of the sulfide oxidizing unit and of the cell respiratory capacity, Antioxid Redox Signal, vol.17, issue.1, pp.1-10, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00966772

S. Ramasamy, S. Singh, P. Taniere, M. Langman, and M. C. Eggo, Sulfide-detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentiation, Am J Physiol Gastrointest Liver Physiol, vol.291, issue.2, pp.288-96, 2006.

X. Leschelle, M. Goubern, M. Andriamihaja, H. M. Blottière, E. Couplan et al.,

M. , Adaptative metabolic response of human colonic epithelial cells to the adverse effects of the luminal compound sulfide, Biochim Biophys Acta, vol.1725, issue.2, pp.201-213, 2005.

S. U. Christl, H. D. Eisner, G. Dusel, H. Kasper, and W. Scheppach, Antagonistic effects of sulfide and butyrate on proliferation of colonic mucosa: a potential role for these agents in the pathogenesis of ulcerative colitis, Dig Dis Sci, vol.41, issue.12, pp.2477-81, 1996.

B. Deplancke and H. R. Gaskins, Hydrogen sulfide induces serum-independent cell cycle entry in nontransformed rat intestinal epithelial cells, FASEB J Off Publ Fed Am Soc Exp Biol, vol.17, issue.10, pp.1310-1312, 2003.

W. Cai, M. Wang, L. Ju, C. Wang, and Y. Zhu, Hydrogen sulfide induces human colon cancer cell proliferation: role of Akt, ERK and p21, Cell Biol Int, vol.34, issue.6, pp.565-72, 2010.

Y. C. Wu, X. J. Wang, L. Yu, F. Chan, A. Cheng et al., Hydrogen Sulfide Lowers Proliferation and Induces Protective Autophagy in Colon Epithelial Cells, PLoS ONE, vol.7, issue.5, p.37572, 2012.

M. S. Attene-ramos, E. D. Wagner, M. J. Plewa, and H. R. Gaskins, Evidence that hydrogen sulfide is a genotoxic agent, Mol Cancer Res MCR, vol.4, issue.1, pp.9-14, 2006.

M. S. Attene-ramos, G. M. Nava, M. G. Muellner, E. D. Wagner, M. J. Plewa et al., DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells, Environ Mol Mutagen, vol.51, issue.4, pp.304-318, 2010.

M. S. Attene-ramos, E. D. Wagner, H. R. Gaskins, and M. J. Plewa, Hydrogen sulfide induces direct radical-associated DNA damage, Mol Cancer Res MCR, vol.5, issue.5, pp.455-464, 2007.

N. Ijssennagger, C. Belzer, G. J. Hooiveld, J. Dekker, S. Van-mil et al., Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon, Proc Natl Acad Sci, vol.112, issue.32, pp.10038-10081, 2015.

F. Carbonero, A. C. Benefiel, and H. R. Gaskins, Contributions of the microbial hydrogen economy to colonic homeostasis, Nat Rev Gastroenterol Hepatol, vol.9, issue.9, pp.504-522, 2012.

S. L. Jowett, C. J. Seal, M. S. Pearce, E. Phillips, W. Gregory et al., Influence of dietary factors on the clinical course of ulcerative colitis: a prospective cohort study, Gut, vol.53, issue.10, pp.1479-84, 2004.

I. Arijs, W. Vanhove, P. Rutgeerts, F. Schuit, K. Verbeke et al., Decreased mucosal sulfide detoxification capacity in patients with Crohn's disease, Inflamm Bowel Dis, vol.19, issue.5, pp.70-72, 2013.

D. Preter, V. Arijs, I. Windey, K. Vanhove, W. Vermeire et al., Decreased mucosal sulfide detoxification is related to an impaired butyrate oxidation in ulcerative colitis, Inflamm Bowel Dis, vol.18, issue.12, pp.2371-80, 2012.

P. A. Mackowiak, Recycling metchnikoff: probiotics, the intestinal microbiome and the quest for long life, Front Public Health, vol.1, p.52, 2013.

M. J. Govers, J. A. Lapré, D. Vries, H. T. Van-der-meer, and R. , Dietary soybean protein compared with casein damages colonic epithelium and stimulates colonic epithelial proliferation in rats, J Nutr, vol.123, issue.10, pp.1709-1722, 1993.

B. H. Bajka, J. M. Clarke, L. Cobiac, and D. L. Topping, Butyrylated starch protects colonocyte DNA against dietary protein-induced damage in rats, Carcinogenesis, vol.29, issue.11, pp.2169-74, 2008.

S. Toden, A. R. Bird, D. L. Topping, and M. A. Conlon, Differential effects of dietary whey, casein and soya on colonic DNA damage and large bowel SCFA in rats fed diets low and high in resistant starch, Br J Nutr, vol.97, issue.3, pp.535-578, 2007.

H. L. Newmark and J. R. Lupton, Determinants and consequences of colonic luminal pH: Implications for colon cancer, Nutr Cancer, vol.14, issue.3-4, pp.161-73, 1990.

N. Steck, K. Mueller, M. Schemann, and D. Haller, Bacterial proteases in IBD and IBS, Gut, vol.61, issue.11, pp.1610-1618, 2012.

N. M. Bastide, F. Pierre, and D. E. Corpet, Heme Iron from Meat and Risk of Colorectal Cancer: A Meta-analysis and a Review of the Mechanisms Involved, Cancer Prev Res, vol.4, issue.2, pp.177-84, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00543808

K. Windey, I. François, W. Broekaert, D. Preter, V. Delcour et al., High dose of prebiotics reduces fecal water cytotoxicity in healthy subjects, Mol Nutr Food Res, vol.58, issue.11, pp.2206-2224, 2014.

K. Windey, D. Preter, V. Huys, G. Broekaert, W. F. Delcour et al., Wheat bran extract alters colonic fermentation and microbial composition, but does not affect faecal water toxicity: a randomised controlled trial in healthy subjects, Br J Nutr, vol.113, issue.2, pp.225-263, 2015.

D. Delacour, J. Salomon, S. Robine, and D. Louvard, Plasticity of the brush border -the yin and yang of intestinal homeostasis, Nat Rev Gastroenterol Hepatol, vol.13, issue.3, pp.161-74, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01305659

J. F. Richter, R. Pieper, S. S. Zakrzewski, D. Günzel, J. D. Schulzke et al., Diets high in fermentable protein and fibre alter tight junction protein composition with minor effects on barrier function in piglet colon, Br J Nutr, vol.111, issue.6, pp.1040-1049, 2014.

M. Faure, D. Moënnoz, F. Montigon, C. Mettraux, D. Breuillé et al., Dietary threonine restriction specifically reduces intestinal mucin synthesis in rats, J Nutr, vol.135, issue.3, pp.486-91, 2005.

P. Jantchou, S. Morois, F. Clavel-chapelon, M. Boutron-ruault, and F. Carbonnel, Animal protein intake and risk of inflammatory bowel disease: The E3N prospective study, Am J Gastroenterol, vol.105, issue.10, pp.2195-201, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00486175

A. Tragnone, D. Valpiani, F. Miglio, G. Elmi, G. Bazzocchi et al., Dietary habits as risk factors for inflammatory bowel disease, Eur J Gastroenterol Hepatol, vol.7, issue.1, pp.47-51, 1995.

R. Shoda, K. Matsueda, S. Yamato, and N. Umeda, Epidemiologic analysis of Crohn disease in Japan: increased dietary intake of n-6 polyunsaturated fatty acids and animal protein relates to the increased incidence of Crohn disease in Japan, Am J Clin Nutr, vol.63, issue.5, pp.741-746, 1996.

C. Spooren, M. J. Pierik, M. P. Zeegers, E. Feskens, A. Masclee et al., Review article: the association of diet with onset and relapse in patients with inflammatory bowel disease, Aliment Pharmacol Ther, vol.38, issue.10, pp.1172-87, 2013.

V. Rist, E. Weiss, N. Sauer, R. Mosenthin, and M. Eklund, Effect of dietary protein supply originating from soybean meal or casein on the intestinal microbiota of piglets, Anaerobe, vol.25, pp.72-81, 2014.

J. Wittwer, I. Rubio-aliaga, B. Hoeft, I. Bendik, P. Weber et al., Nutrigenomics in human intervention studies: Current status, lessons learned and future perspectives, Mol Nutr Food Res, vol.55, issue.3, pp.341-58, 2011.

J. Keijer, Y. Van-helden, A. Bunschoten, and E. M. Van-schothorst, Transcriptome analysis in benefit-risk assessment of micronutrients and bioactive food components, Mol Nutr Food Res, vol.54, issue.2, pp.240-248, 2010.

A. Lan, A. Blais, D. Coelho, J. Capron, M. Maarouf et al., Dual effects of a highprotein diet on DSS-treated mice during colitis resolution phase, Am J Physiol Gastrointest Liver Physiol, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01488439

E. Kim, D. Coelho, and F. Blachier, Review of the association between meat consumption and risk of colorectal cancer, Nutr Res, vol.33, issue.12, pp.983-94, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01173388

R. L. Santarelli, F. Pierre, and D. E. Corpet, Processed meat and colorectal cancer: a review of epidemiologic and experimental evidence, Nutr Cancer, vol.60, issue.2, pp.131-175, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00334544

D. D. Alexander, C. A. Cushing, K. A. Lowe, B. Sceurman, and M. A. Roberts, Meta-analysis of animal fat or animal protein intake and colorectal cancer, Am J Clin Nutr, vol.89, issue.5, pp.1402-1411, 2009.

L. Leu, R. K. Brown, I. L. Hu, Y. Morita, T. Esterman et al., Effect of dietary resistant starch and protein on colonic fermentation and intestinal tumourigenesis in rats, Carcinogenesis, 2006.

, Jul, vol.8, issue.2, pp.240-245

, Food, nutrition, physical activity and the prevention of cancer: a global perspective: a project of World Cancer Research Fund International, vol.517, 2007.

J. V. Li, H. Ashrafian, M. Bueter, J. Kinross, C. Sands et al., Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk, Gut, vol.60, issue.9, pp.1214-1237, 2011.

I. Mack, U. Cuntz, C. Grämer, S. Niedermaier, C. Pohl et al., Weight gain in anorexia nervosa does not ameliorate the faecal microbiota, branched chain fatty acid profiles, and gastrointestinal complaints. Sci Rep, vol.6, p.26752, 2016.

L. Altieri, C. Neri, R. Sacco, P. Curatolo, A. Benvenuto et al., Urinary p-cresol is elevated in small children with severe autism spectrum disorder, Biomark Biochem Indic Expo Response Susceptibility Chem, vol.16, issue.3, pp.252-60, 2011.