B. Abdul-rahman, O. Kristóf, E. Doan-xuan, Q. Vida, A. Nagy et al., AMP-Activated Kinase (AMPK) Activation by AICAR in Human White Adipocytes Derived from Pericardial White Adipose Tissue Stem Cells Induces a Partial Beige-Like Phenotype, PLOS ONE, vol.11, 2016.

G. P. Ables, A. Ouattara, T. G. Hampton, D. Cooke, F. Perodin et al., Dietary Methionine Restriction in Mice Elicits an Adaptive Cardiovascular Response to, Hyperhomocysteinemia. Sci. Rep, vol.5, p.8886, 2015.

K. Acheson, Influence of auonomic nervous system on nutrient-induced thermogenesis in humans, Nutrition, vol.9, pp.373-380, 1993.

S. A. Adibi, The oligopeptide transporter (Pept-1) in human intestine: biology and function, Gastroenterology, vol.113, pp.332-340, 1997.

S. A. Adibi and D. W. Mercer, Protein digestion in human intestine as reflected in luminal, mucosal, and plasma amino acid concentrations after meals, J. Clin. Invest, vol.52, p.1586, 1973.

W. Altorf-van-der-kuil, M. F. Engberink, E. J. Brink, M. A. Van-baak, S. J. Bakker et al., Dietary Protein and Blood Pressure: A Systematic Review, PLoS ONE, vol.5, p.12102, 2010.

G. H. Anderson, S. N. Tecimer, D. Shah, and T. A. Zafar, Protein source, quantity, and time of consumption determine the effect of proteins on short-term food intake in young men, J. Nutr, vol.134, pp.3011-3015, 2004.

K. A. Anderson, T. J. Ribar, F. Lin, P. K. Noeldner, M. F. Green et al., Hypothalamic CaMKK2 Contributes to the Regulation of Energy Balance, Cell Metab, vol.7, pp.377-388, 2008.

T. G. Anthony, Homeostatic responses to amino acid insufficiency, Anim. Nutr, vol.1, pp.135-137, 2015.

T. G. Anthony, J. C. Anthony, F. Yoshizawa, S. R. Kimball, J. et al., Oral administration of leucine stimulates ribosomal protein mRNA translation but not global rates of protein synthesis in the liver of rats, J. Nutr, vol.131, pp.1171-1176, 2001.

T. G. Anthony, B. J. Mcdaniel, R. L. Byerley, B. C. Mcgrath, D. R. Cavener et al., Preservation of Liver Protein Synthesis during Dietary Leucine Deprivation Occurs at the Expense of Skeletal Muscle Mass in Mice Deleted for eIF2 Kinase GCN2, J. Biol. Chem, vol.279, pp.36553-36561, 2004.

Y. Aoyagi, I. Tasaki, J. Okumura, and T. Muramatsu, Energy cost of whole-body protein synthesis measured in vivo in chicks, Comp. Biochem. Physiol, vol.91, pp.765-768, 1988.

S. Aparecida-de-frança, M. P. Santos, M. A. Garófalo, L. C. Navegantes, C. Kettelhut et al., Low protein diet changes the energetic balance and sympathetic activity in brown adipose tissue of growing rats, Nutrition, vol.25, pp.1186-1192, 2009.

S. Aparecida-de-frança, M. Pavani-dos-santos, R. V. Nunes-queiroz-da-costa, M. Froelich, and S. L. Buzelle,

V. E. Chaves, M. A. Giordani, M. P. Pereira, E. M. Colodel, and C. Marlise-balbinotti-andrade, Lowprotein, high-carbohydrate diet increases glucose uptake and fatty acid synthesis in brown adipose tissue of rats, Nutrition, vol.30, pp.473-480, 2014.

T. R. Araujo, I. N. Freitas, J. F. Vettorazzi, T. M. Batista, J. C. Santos-silva et al., Benefits of l-alanine or l-arginine supplementation against adiposity and glucose intolerance in monosodium glutamate-induced obesity, Eur. J. Nutr, 2016.

M. Arnal, B. Beaufrère, R. Benamouzig, Y. Boirie, L. Cynober et al., DOSSIER SCIENTIFIQUE DE L'IFN, 1997.

I. Arrieta-cruz and R. Gutierrez-juarez, The Role of Circulating Amino Acids in the Hypothalamic Regulation of Liver Glucose Metabolism, Adv. Nutr. Int. Rev. J, vol.7, pp.790-797, 2016.

M. M. Assifi, AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats, AJP Endocrinol. Metab, vol.289, pp.794-800, 2005.

J. Averous, A. Bruhat, C. Jousse, V. Carraro, G. Thiel et al., Induction of CHOP Expression by Amino Acid Limitation Requires Both ATF4 Expression and ATF2 Phosphorylation, J. Biol, 2004.

, Chem, vol.279, pp.5288-5297

D. Azzout-marniche, C. Gaudichon, C. Blouet, C. Bos, V. Mathe et al., Liver glyconeogenesis: a pathway to cope with postprandial amino acid excess in high-protein fed rats?, AJP Regul. Integr. Comp. Physiol, vol.292, pp.1400-1407, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01611429

T. D. Baird and R. C. Wek, Eukaryotic Initiation Factor 2 Phosphorylation and Translational Control in Metabolism, Adv. Nutr. Int. Rev. J, vol.3, pp.307-321, 2012.

H. Bando, Phosphorylation of the 6-Phosphofructo-2-Kinase/Fructose 2,6-Bisphosphatase/PFKFB3 Family of Glycolytic Regulators in Human Cancer, Clin. Cancer Res, vol.11, pp.5784-5792, 2005.

A. Baquet, A. Lavoinne, H. , and L. , Comparison of the effects of various amino acids on glycogen synthesis, lipogenesis and ketogenesis in isolated rat hepatocytes, Biochem J, vol.273, pp.57-62, 1991.

U. S. Barzel and L. K. Massey, Excess dietary protein can adversely affect bone, J. Nutr, vol.128, pp.1051-1053, 1998.

E. Batistela, M. P. Pereira, J. T. Siqueira, S. Paula-gomes, N. M. Zanon et al.,

I. C. Kettelhut, C. M. Andrade, and N. H. Kawashita, Decreased rate of protein synthesis, p.3, 2014.

, ubiquitin-proteasome proteolysis in soleus muscles from growing rats fed a low-protein, highcarbohydrate diet. Can, J. Physiol. Pharmacol, vol.92, pp.445-454

R. L. Batterham, H. Heffron, S. Kapoor, J. E. Chivers, K. Chandarana et al., Critical role for peptide YY in protein-mediated satiation and bodyweight regulation, Cell Metab, vol.4, pp.223-233, 2006.

J. I. Baum, D. K. Layman, G. G. Freund, K. A. Rahn, M. T. Nakamura et al., A reduced carbohydrate, increased protein diet stabilizes glycemic control and minimizes adipose tissue glucose disposal in rats, J. Nutr, vol.136, pp.1855-1861, 2006.

W. B'chir, A. Maurin, V. Carraro, J. Averous, C. Jousse et al., The eIF2 /ATF4 pathway is essential for stress-induced autophagy gene expression, Nucleic Acids Res, vol.41, pp.7683-7699, 2013.

N. Bellissimo and T. Akhavan, Effect of Macronutrient Composition on Short-Term Food Intake and Weight Loss, Adv. Nutr. Int. Rev. J, vol.6, pp.302-308, 2015.

A. Bensaïd, D. Tomé, D. Gietzen, P. Even, C. Morens et al., Protein is more potent than carbohydrate for reducing appetite in rats, Physiol. Behav, vol.75, pp.577-582, 2002.

A. Bensa?d, D. Tomé, D. L'heureux-bourdon, P. Even, D. Gietzen et al., A high-protein diet enhances satiety without conditioned taste aversion in the rat, Physiol. Behav, vol.78, pp.311-320, 2003.

W. G. Bergen, Small-intestinal or colonic microbiota as a potential amino acid source in animals, Amino Acids, vol.47, pp.251-258, 2015.

R. Bergeron, S. F. Previs, G. W. Cline, P. Perret, I. Russell et al., , 2001.

, Effect of 5-aminoimidazole-4-carboxamide-1-?-D-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats, Diabetes, vol.50, pp.1076-1082

J. Bernier, J. Adrain, and N. Vidon, Les aliments dans le tube digestif, 1988.

S. Bilsborough and N. Mann, A review of issues of dietary protein intake in humans, Int. J. Sport Nutr. Exerc. Metab, vol.16, p.129, 2006.

K. Block and A. Harper, High Levels of Dietary Amino and Branched-Chain a-Keto Acids Alter Plasma and Brain Amino Acid Concentrations in Rats, J. Nutr, vol.121, pp.663-671, 1991.

W. A. Blom, A. Lluch, A. Stafleu, S. Vinoy, J. J. Holst et al., Effect of a high-protein breakfast on the postprandial ghrelin response, Am. J. Clin. Nutr, vol.83, pp.211-220, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00416311

C. Blouet, F. Mariotti, D. Azzout-marniche, C. Bos, V. Mathé et al., The reduced energy intake of rats fed a high-protein low-carbohydrate diet explains the lower fat deposition, but macronutrient substitution accounts for the improved glycemic control, J. Nutr, vol.136, pp.1849-1854, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01611434

C. Blouet, H. Ono, and G. J. Schwartz, , 2008.

Y. Boirie, M. Dangin, P. Gachon, M. Vasson, J. Maubois et al., Slow and fast dietary proteins differently modulate postprandial protein accretion, Proc. Natl. Acad. Sci, vol.94, pp.14930-14935, 1997.

S. Broer, Amino Acid Transport Across Mammalian Intestinal and Renal Epithelia, Physiol. Rev, vol.88, pp.249-286, 2008.

J. T. Brosnan, Interorgan amino acid transport and its regulation, J. Nutr, vol.133, pp.2068-2072, 2003.

N. F. Brown, M. Stefanovic-racic, I. J. Sipula, and G. Perdomo, The mammalian target of rapamycin regulates lipid metabolism in primary cultures of rat hepatocytes, Metabolism, vol.56, pp.1500-1507, 2007.

G. J. Browne, S. G. Finn, and C. G. Proud, Stimulation of the AMP-activated Protein Kinase Leads to Activation of Eukaryotic Elongation Factor 2 Kinase and to Its Phosphorylation at a Novel Site, Serine 398, J. Biol. Chem, vol.279, pp.12220-12231, 2004.

R. W. Brownsey, A. N. Boone, J. E. Elliott, J. E. Kulpa, and W. M. Lee, Regulation of acetyl-CoA carboxylase, Biochem. Soc. Trans, vol.34, pp.223-227, 2006.

M. G. Buse, R. , and S. S. , Leucine. A possible regulator of protein turnover in muscle, J. Clin. Invest, vol.56, p.1250, 1975.

S. L. Buzelle, M. P. Santos, A. M. Baviera, C. F. Lopes, M. A. Garófalo et al.,

V. E. Chaves and N. H. Kawashita, A low-protein, high-carbohydrate diet increases the adipose lipid content without increasing the glycerol-3-phosphate or fatty acid content in growing rats, Can. J. Physiol. Pharmacol, vol.88, pp.1157-1165, 2010.

B. Cannon and J. Nedergaard, Nonshivering thermogenesis and its adequate measurement in metabolic studies, J. Exp. Biol, vol.214, pp.242-253, 2011.

J. J. Cao and F. H. Nielsen, Acid diet (high-meat protein) effects on calcium metabolism and bone health: Curr. Opin, Clin. Nutr. Metab. Care, vol.13, pp.698-702, 2010.

D. Carling and D. Hardie, The substrate and sequence specificity of the AMP-activated protein kinase. Phosphorylation of glycogen synthase and phosphorylase kinase, Biochim. Biophys. Acta, vol.1012, pp.81-86, 1989.

P. Cayot, P. Finot, D. Fouques, J. Gueguen, D. Lorient et al., Caractéristiques des différentes sources de protéines alimentaires, 1997.

T. Chalvon-demersay, P. C. Even, D. Tomé, C. Chaumontet, J. Piedcoq et al.,

D. Marniche, Low-protein diet induces, whereas high-protein diet reduces hepatic FGF21 production in mice, but glucose and not amino acids up-regulate FGF21 in cultured hepatocytes, J. Nutr. Biochem, vol.36, pp.60-67, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01568615

C. Chaveroux, S. Lambert-langlais, Y. Cherasse, J. Averous, L. Parry et al., Molecular mechanisms involved in the adaptation to amino acid limitation in mammals, Biochimie, vol.92, pp.736-745, 2010.

L. Chevalier, C. Bos, C. Gryson, C. Luengo, S. Walrand et al., , 2009.

, High-protein diets differentially modulate protein content and protein synthesis in visceral and peripheral tissues in rats, Nutr. Burbank Los Angel. Cty. Calif, vol.25, pp.932-939

L. Chevalier, C. Bos, D. Azzout-marniche, D. Dardevet, D. Tome et al., Dietary protein regulates hepatic constitutive protein anabolism in rats in a dose-dependent manner and independently of energy nutrient composition, AJP Regul. Integr. Comp. Physiol, vol.299, pp.1720-1730, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00967163

N. Chotechuang, Le rôle des acides aminés dans le métabolisme protéique du foie sous régime hyper protéique: identification du signal des acides aminés et des voies de transduction associées, 2010.

N. Chotechuang, D. Azzout-marniche, C. Bos, C. Chaumontet, N. Gausseres et al.,

D. Tome, mTOR, AMPK, and GCN2 coordinate the adaptation of hepatic energy metabolic pathways in response to protein intake in the rat, AJP Endocrinol. Metab, vol.297, pp.1313-1323, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01611428

N. Chotechuang, D. Azzout-marniche, C. Bos, C. Chaumontet, C. Gaudichon et al., Downregulation of the ubiquitin-proteasome proteolysis system by amino acids and insulin involves the adenosine monophosphate-activated protein kinase and mammalian target of rapamycin pathways in rat hepatocytes, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01004560

, Amino Acids, vol.41, pp.457-468

H. Clark, D. Carling, and D. Saggerson, Covalent activation of heart AMP-activated protein kinase in response to physiological concentrations of long-chain fatty acids: Activation of AMPK by fatty acids, Eur. J. Biochem, vol.271, pp.2215-2224, 2004.

P. M. Clifton, K. Bastiaans, and J. B. Keogh, High protein diets decrease total and abdominal fat and improve CVD risk profile in overweight and obese men and women with elevated triacylglycerol, Nutr. Metab. Cardiovasc. Dis, vol.19, pp.548-554, 2009.

M. Coëffier, S. Claeyssens, B. Hecketsweiler, A. Lavoinne, P. Ducrotté et al., Enteral glutamine stimulates protein synthesis and decreases ubiquitin mRNA level in human gut mucosa, Am. J. Physiol. -Gastrointest. Liver Physiol, vol.285, pp.266-273, 2003.

P. Combris, M. , and P. , L'évolution de la consommation des protéines dans le monde. La croissance de la consommation des protéines animales peut-elle se généraliser ?, 2013.

L. Corr, R. Berstan, and R. Evershed, Optimisation of derivatisation procedures for the determination of delta13C values of amino acids by gas chromatography/combustion/isotope ratio mass spectrometry, vol.21, pp.3759-3771, 2007.

D. Cota, Hypothalamic mTOR Signaling Regulates Food Intake, Science, vol.312, pp.927-930, 2006.

D. Cota, E. K. Matter, S. C. Woods, and R. J. Seeley, The Role of Hypothalamic Mammalian Target of Rapamycin Complex 1 Signaling in Diet-Induced Obesity, J. Neurosci, vol.28, pp.7202-7208, 2008.

O. Coux and M. Piechaczyk, Le système ubiquitine/protéasome: un ensemble (de) complexe (s) pour dégrader les protéines, 2000.

A. Cuervo, Autophagy: Many paths to the same end, Mol. Cell. Biochem, vol.263, pp.55-72, 2004.

G. Curhan, W. Willett, E. Rimm, and M. Stampfer, A prospective study of dietary calcium and other nutrients and the risk of symptomatic kidney stones, N. Engl. J. Med, vol.328, pp.833-838, 1993.

D. Darmaun, Intestin et métabolisme de la glutamine, 1993.

A. J. Darragh and S. M. Hodgkinson, Quantifying the digestibility of dietary protein, J. Nutr, vol.130, pp.1850-1856, 2000.

D. Sousa-coelho, A. L. Marrero, P. F. Haro, and D. , Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation, Biochem. J, vol.443, pp.165-171, 2012.

D. Deng, K. Yao, W. Chu, T. Li, R. Huang et al., Impaired translation initiation activation and reduced protein synthesis in weaned piglets fed a low-protein diet, J. Nutr. Biochem, vol.20, pp.544-552, 2009.

W. Derave, H. Ai, J. Ihlemann, L. A. Witters, S. Kristiansen et al., Dissociation of AMP-activated protein kinase activation and glucose transport in contracting slow-twitch muscle, Diabetes, vol.49, pp.1281-1287, 2000.

O. Dériaz, G. Fournier, A. Tremblay, J. Després, and C. Bouchard, Lean-body-mass composition and resting energy expenditure before and after long-term overfeeding, Am. J. Clin. Nutr, vol.56, pp.840-847, 1992.

T. E. Dever and A. G. Hinnebusch, GCN2 Whets the Appetite for, Amino Acids. Mol. Cell, vol.18, pp.141-142, 2005.

J. Dice, Peptide sequences that target cytosolic protein for lysosomal proteolysis, Trends Biochem. Sci, vol.15, pp.305-309, 1990.

F. Du, D. A. Higginbotham, and B. D. White, Food intake, energy balance and serum leptin concentrations in rats fed low-protein diets, J. Nutr, vol.130, pp.514-521, 2000.

M. Du, Q. W. Shen, M. J. Zhu, and S. P. Ford, Leucine stimulates mammalian target of rapamycin signaling in C2C12 myoblasts in part through inhibition of adenosine monophosphate-activated protein kinase, J. Anim. Sci, vol.85, pp.919-927, 2006.

P. F. Dubbelhuis and A. J. Meijer, Hepatic amino acid-dependent signaling is under the control of AMPdependent protein kinase, FEBS Lett, vol.521, pp.39-42, 2002.

W. A. Dunn, Autophagy and related mechanisms of lysosome-mediated protein degradation, Trends Cell Biol, vol.4, pp.139-143, 1994.

A. Elorza, I. Soro-arnáiz, F. Meléndez-rodríguez, V. Rodríguez-vaello, G. Marsboom et al.,

B. Acosta-iborra, L. Albacete-albacete, A. Ordóñez, and L. Serrano-oviedo, HIF2? Acts as an mTORC1 Activator through the Amino Acid Carrier SLC7A5, Mol. Cell, vol.48, pp.681-691, 2012.

M. Endo, S. Kasaoka, M. Takizawa, K. Goto, S. Nakajima et al.,

S. Nakamura, Suppressed Fat Accumulation in Rats Fed a Histidine-Enriched Diet, J. Food Sci. Nutr, vol.15, pp.1-6, 2010.

R. H. Erickson and Y. S. Kim, Digestion and absorption of dietary protein, Annu. Rev. Med, vol.41, pp.133-139, 1990.

E. Eschwege, M. Charles, and A. Basdevant, Enquête épidémiologique nationale sur le surpoids et l'obésité, 2012.

J. Escobar, Regulation of cardiac and skeletal muscle protein synthesis by individual branched-chain amino acids in neonatal pigs, AJP Endocrinol. Metab, vol.290, pp.612-621, 2005.

A. M. Esposito, M. Mateyak, D. He, M. Lewis, A. N. Sasikumar et al., Eukaryotic Polyribosome Profile Analysis, J. Vis. Exp, 2010.

P. Even and S. Nicolaidis, Spontaneous and 2DG induced metabolic changes and feeding: The ischymetric hypothesis, Brain Res. Bull, vol.15, pp.429-435, 1985.

P. C. Even and N. A. Nadkarni, Indirect calorimetry in laboratory mice and rats: principles, practical considerations, interpretation and perspectives, AJP Regul. Integr. Comp. Physiol, vol.303, pp.459-476, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004119

C. Faisy and S. J. Taylor, Dépense énergétique en réanimation, Réanimation, vol.18, pp.477-485, 2009.

M. Faure, D. Moënnoz, F. Montigon, C. Mettraux, D. Breuillé et al., Dietary threonine restriction specifically reduces intestinal mucin synthesis in rats, J. Nutr, vol.135, pp.486-491, 2005.

A. Fereday, N. R. Gibson, M. Cox, P. J. Pacy, and D. J. Millward, Variation in the apparent sensitivity of the insulin-mediated inhibition of proteolysis to amino acid supply determines the efficiency of protein utilization, Clin. Sci, vol.95, pp.725-733, 1998.

J. Fernstorn and R. Wurtman, Brain Serotonin Content: Physiological Regulation by Plasma Neutral Amino Acids, Science, vol.178, pp.414-416, 1972.

E. Ferrannini, The Theoretical Bases of Indirect Calorimetry: A Review, Metabolism, vol.37, pp.287-301, 1988.

, Protein quality evaluation: report of the Joint FAO/WHO Expert Consultation, 1989.

, Dietary protein quality evaluation in human nutrition: report of an FAO expert consultation, 2011.

M. C. Ford, N. P. Gordon, A. Howell, C. E. Green, L. C. Greenspan et al., Obesity Severity, Dietary Behaviors, and Lifestyle Risks Vary by Race/Ethnicity and Age in a Northern California Cohort of Children with Obesity, J. Obes, vol.2016, pp.1-10, 2016.

M. Foretz, N. Ancellin, F. Andreelli, Y. Saintillan, P. Grondin et al., Short-Term Overexpression of a Constitutively Active Form of AMP-Activated Protein Kinase in the Liver Leads to Mild Hypoglycemia and Fatty Liver, Diabetes, vol.54, pp.1331-1339, 2005.

M. Foretz, N. Taleux, B. Guigas, S. Horman, C. Beauloye et al., du métabolisme énergétique par l'AMPK, MS Médecine Sci, vol.22, pp.381-388, 2006.

M. Foretz, S. Hébrard, J. Leclerc, E. Zarrinpashneh, M. Soty et al., Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state, J. Clin. Invest, vol.120, pp.2355-2369, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00495746

M. Foretz, S. Hébrard, J. Leclerc, E. Zarrinpashneh, M. Soty et al., Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state, J. Clin. Invest, vol.120, pp.2355-2369, 2010.
URL : https://hal.archives-ouvertes.fr/inserm-00495746

A. H. Forslund, L. Hambraeus, R. M. Olsson, A. E. El-khoury, Y. Yu et al., The 24-h whole body leucine and urea kinetics at normal and high protein intakes with exercise in healthy adults, Am. J. Physiol.-Endocrinol. Metab, vol.275, pp.310-320, 1998.

H. L. Fox, P. T. Pham, S. R. Kimball, L. S. Jefferson, and C. J. Lynch, Amino acid effects on translational repressor 4E-BP1 are mediated primarily by L-leucine in isolated adipocytes, Am. J. Physiol.-Cell Physiol, vol.275, pp.1232-1238, 1998.

S. A. De-frança, M. P. Santos, F. Przygodda, M. A. Garófalo, I. C. Kettelhut et al., A Low-Protein, High-Carbohydrate Diet Stimulates Thermogenesis in the Brown Adipose Tissue of Rats via ATF-2, Lipids, vol.51, pp.303-310, 2016.

J. W. Frank, J. Escobar, A. Suryawan, S. R. Kimball, H. V. Nguyen et al., , 2005.

, Protein synthesis and translation initiation factor activation in neonatal pigs fed increasing levels of dietary protein, J. Nutr, vol.135, pp.1374-1381

J. W. Frank, J. Escobar, H. V. Nguyen, S. C. Jobgen, W. S. Jobgen et al., Oral Ncarbamylglutamate supplementation increases protein synthesis in skeletal muscle of piglets, J. Nutr, vol.137, pp.315-319, 2007.

M. R. Freedman, J. King, K. , and E. , Popular diets: a scientific review (North American Association for the Study of, Obesity, 2001.

H. J. Freeman, Y. S. Kim, and M. H. Sleisenger, Protein digestion and absorption in man: normal mechanisms and protein-energy malnutrition, Am. J. Med, vol.67, pp.1030-1036, 1979.

A. Freudenberg, K. J. Petzke, K. , and S. , Dietary l-leucine and l-alanine supplementation have similar acute effects in the prevention of high-fat diet-induced obesity, Amino Acids, vol.44, pp.519-528, 2012.

M. Friedman, Control of energy intake by energy metabolism, Am. J. Clin. Nutr, vol.62, pp.1096-1100, 1995.

C. Fromentin, D. Azzout-marniche, D. Tomé, P. Even, C. Luengo et al.,

C. Gaudichon, The postprandial use of dietary amino acids as an energy substrate is delayed after the deamination process in rats adapted for 2 weeks to a high protein diet, Amino Acids, vol.40, pp.1461-1472, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01003272

W. J. Fu, T. E. Haynes, R. Kohli, J. Hu, W. Shi et al., Dietary L-arginine supplementation reduces fat mass in Zucker diabetic fatty rats, J. Nutr, vol.135, pp.714-721, 2005.

R. M. Fulks, J. B. Li, and A. L. Goldberg, Effects of insulin, glucose, and amino acids on protein turnover in rat diaphragm, J. Biol. Chem, vol.250, pp.290-298, 1975.

M. Fuller and D. Tomé, In vivo dermination of amino acid bioavailability in humans an model animals, 2005.

, J. AOAC Int, vol.88, pp.923-934

M. P. Gaidhu and R. B. Ceddia, The role of adenosine monophosphate kinase in remodeling white adipose tissue metabolism, Exerc. Sport Sci. Rev, vol.39, pp.102-108, 2011.

L. Galluzzi, A. López-soto, S. Kumar, and G. Kroemer, Caspases Connect Cell-Death Signaling to Organismal Homeostasis, Immunity, vol.44, pp.221-231, 2016.

M. C. Gannon, The effect of oral casein on hepatic glycogen metabolism in fasted rats, Metabolism, vol.42, pp.649-653, 1993.

M. C. Gannon and F. Q. Nuttall, Physiological doses of oral casein affect hepatic glycogen metabolism in normal food-deprived rats, J. Nutr, vol.125, p.1159, 1995.

G. Gaull, J. Sturman, and N. Räihä, Development of Mammalian Sulfur Metabolism: Absence of Cystathionase in Human Fetal Tissues, Pediatr. Res, vol.6, 1972.

N. Gausserès, S. Mahé, R. Benamouzig, C. Luengo, H. Drouet et al., The gastro-ileal digestion of N-labelled pea nitrogen in adult humans, Br. J. Nutr, vol.76, pp.75-85, 1996.

R. Gebhardt, Metabolic zonation of the liver: Regulation and implications for liver function, Pharmacol. Ther, vol.53, pp.275-354, 1992.

D. W. Gietzen, Neural mechanisms in the responses to amino acid deficiency, J. Nutr.-Baltim. Springf. THEN BETHESDA, vol.123, pp.610-610, 1993.

D. W. Gietzen, C. M. Ross, S. Hao, and J. W. Sharp, Phosphorylation of eIF2? is involved in the signaling of indispensable amino acid deficiency in the anterior piriform cortex of the brain in rats, J. Nutr, vol.134, pp.717-723, 2004.

R. E. Gimeno and D. E. Moller, FGF21-based pharmacotherapy -potential utility for metabolic disorders, Trends Endocrinol. Metab, vol.25, pp.303-311, 2014.

A. Gingras, B. Raught, and N. Sonenberg, eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation, Annu. Rev. Biochem, vol.68, pp.913-963, 1999.

D. E. Goll, V. F. Thompson, H. Li, W. Wei, and J. Cong, The Calpain System, Physiol. Rev, vol.83, pp.731-801, 2003.

D. K. Gonda, A. Bachmair, I. Wünning, J. W. Tobias, W. S. Lane et al., Universality and structure of the N-end rule, J. Biol. Chem, vol.264, pp.16700-16712, 1989.

G. Gray, C. , and H. , Protein digestion and absorption, Gastroenterology, vol.61, pp.535-544, 1971.

G. K. Grimble, P. P. Keohane, B. E. Higgins, M. V. Kaminski, and D. B. Silk, Effect of peptide chain length on amino acid and nitrogen absorption from two lactalbumin hydrolysates in the normal human jejunum, 1986.

, Clin. Sci, vol.71, pp.65-69

R. Groppo and J. D. Richter, Translational control from head to tail, Curr. Opin. Cell Biol, vol.21, pp.444-451, 2009.

J. D. Gross, N. J. Moerke, T. Haar, A. A. Lugovskoy, A. B. Sachs et al., Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E, Cell, vol.115, pp.739-750, 2003.

F. Guo and D. R. Cavener, The GCN2 eIF2? Kinase Regulates Fatty-Acid Homeostasis in the Liver during Deprivation of an Essential Amino Acid, Cell Metab, vol.5, pp.103-114, 2007.

D. M. Gwinn, D. B. Shackelford, D. F. Egan, M. M. Mihaylova, A. Mery et al., AMPK Phosphorylation of Raptor Mediates a Metabolic Checkpoint, Mol. Cell, vol.30, pp.214-226, 2008.

T. L. Halton and F. B. Hu, The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review, J. Am. Coll. Nutr, vol.23, pp.373-385, 2004.

M. P. Harber, S. Schenk, A. L. Barkan, and J. F. Horowitz, Effects of Dietary Carbohydrate Restriction with High Protein Intake on Protein Metabolism and the Somatotropic Axis, J. Clin. Endocrinol. Metab, vol.90, pp.5175-5181, 2005.

D. G. Hardie, The AMP-activated protein kinase pathway -new players upstream and downstream, J. Cell Sci, vol.117, pp.5479-5487, 2004.

H. P. Harding, I. Novoa, Y. Zhang, H. Zeng, R. Wek et al., Regulated translation initiation controls stress-induced gene expression in mammalian cells, Mol. Cell, vol.6, pp.1099-1108, 2000.

B. E. Hasek, L. K. Stewart, T. M. Henagan, A. Boudreau, N. R. Lenard et al.,

V. L. Malloy and E. P. Plaisance, Dietary methionine restriction enhances metabolic flexibility and increases uncoupled respiration in both fed and fasted states, AJP Regul. Integr. Comp. Physiol, vol.299, pp.728-739, 2010.

B. E. Hasek, A. Boudreau, J. Shin, D. Feng, M. Hulver et al., Remodeling the Integration of Lipid Metabolism Between Liver and Adipose Tissue by Dietary Methionine Restriction in Rats, Diabetes, vol.62, pp.3362-3372, 2013.

C. M. Hasenour, D. E. Ridley, C. C. Hughey, F. D. James, E. P. Donahue et al., , 2014.

, Glucose Production, but Not Energy Metabolism, Is Independent of Hepatic AMPK in Vivo, J. Biol. Chem, vol.289, pp.5950-5959

S. A. Hawley, M. Davison, A. Woods, S. P. Davies, R. K. Beri et al., , 1996.

, Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase, J. Biol. Chem, vol.271, pp.27879-27887

S. A. Hawley, D. A. Pan, K. J. Mustard, L. Ross, J. Bain et al., Calmodulin-dependent protein kinase kinase-? is an alternative upstream kinase for AMP-activated protein kinase, Cell Metab, vol.2, pp.9-19, 2005.

N. Hay and N. Sonenberg, Upstream and downstream of mTOR, Genes Dev, vol.18, pp.1926-1945, 2004.

M. A. Hediger, M. F. Romero, J. Peng, A. Rolfs, H. Takanaga et al., The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteins, Pfleg. Arch. Eur. J. Physiol, vol.447, pp.465-468, 2004.

S. B. Helliwell, P. Wagner, J. Kunz, M. Deuter-reinhard, R. Henriquez et al., TOR1 and TOR2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast, 1994.

, Mol. Biol. Cell, vol.5, pp.105-118

T. M. Henagan, T. Laeger, A. M. Navard, D. Albarado, R. C. Noland et al.,

C. D. Morrison, Hepatic autophagy contributes to the metabolic response to dietary protein restriction, Metabolism, vol.65, pp.805-815, 2016.

A. G. Hinnebusch, Translational regulation of GCN4 and the general amino acid control of yeast*, Annu Rev Microbiol, vol.59, pp.407-450, 2005.

Y. Hotta, H. Nakamura, M. Konishi, Y. Murata, H. Takagi et al., Fibroblast Growth Factor 21 Regulates Lipolysis in White Adipose Tissue But Is Not Required for Ketogenesis and Triglyceride Clearance in Liver, Endocrinology, vol.150, pp.4625-4633, 2009.

C. A. Hu, Z. Wu, W. , and J. , Amino acids and autophagy: their crosstalk, 2015.

, Amino Acids, vol.47, pp.2035-2036

X. Huang, D. P. Hancock, A. K. Gosby, A. C. Mcmahon, S. M. Solon et al.,

D. Raubenheimer and S. J. Simpson, Effects of dietary protein to carbohydrate balance on energy intake, fat storage, and heat production in mice, Obesity, vol.21, pp.85-92, 2013.

E. Hudson, D. Pan, J. James, J. Lucocq, S. Hawley et al., A Novel Domain in AMP-Activated Protein Kinase Causes Glycogen Storage Bodies Similar to Those Seen in Hereditary Cardiac Arrhythmias, Curr. Biol, vol.13, pp.861-866, 2003.

A. J. Hulbert, E. , and P. L. , Basal metabolic rate: history, composition, regulation, and usefulness, Physiol. Biochem. Zool, vol.77, pp.869-876, 2004.

S. M. Hutson, A. J. Sweatt, and K. F. Lanoue, Branched-chain amino acid metabolism: implications for establishing safe intakes, J. Nutr, vol.135, pp.1557-1564, 2005.

C. Ijichi, T. Matsumura, T. Tsuji, and Y. Eto, Branched-chain amino acids promote albumin synthesis in rat primary hepatocytes through the mTOR signal transduction system, Biochem. Biophys. Res. Commun, vol.303, pp.59-64, 2003.

S. I. Itani, A. K. Saha, T. G. Kurowski, H. R. Coffin, K. Tornheim et al., , 2003.

, Autoregulates Its Uptake in Skeletal Muscle Involvement of AMP-Activated Protein Kinase, Diabetes, vol.52, pp.1635-1640

C. Jean, S. Rome, V. Mathé, J. Huneau, N. Aattouri et al., Metabolic evidence for adaptation to a high protein diet in rats, J. Nutr, vol.131, pp.91-98, 0191.

W. Jiang, Z. Zhu, and H. J. Thompson, Modulation of the activities of AMP-activated protein kinase, protein kinase B, and mammalian target of rapamycin by limiting energy availability with 2-deoxyglucose, Mol. Carcinog, vol.47, pp.616-628, 2008.

W. Jobgen, C. J. Meininger, S. C. Jobgen, P. Li, M. Lee et al.,

L. Dietary, Arginine Supplementation Reduces White Fat Gain and Enhances Skeletal Muscle and Brown Fat Masses in Diet-Induced Obese Rats, J. Nutr, vol.139, pp.230-237

, Protein and amino acid requirements in human nutrition: report of a joint WHO/FAO/UNU Expert Consultation, 2007.

, WHO), 2002.

M. Journel, C. Chaumontet, N. Darcel, G. Fromentin, T. et al., Brain Responses to High-Protein Diets, Adv. Nutr. Int. Rev. J, vol.3, pp.322-329, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01004192

R. Jungas, M. Halperin, and J. Brosnan, Quantitative analysis of amino acid oxidation and related gluconeogenesis in humans.docx, Physiol. Rev, vol.72, pp.419-448, 1992.

L. D. Kapp, J. R. Lorsch, and . ;-t-he-m-olecular-m-echanics-of-e-ukaryotic-t-ranslation, Annu. Rev. Biochem, vol.73, pp.657-704, 2004.

S. Kasaoka, N. Tsuboyama-kasaoka, Y. Kawahara, S. Inoue, M. Tsuji et al., Histidine supplementation suppresses food intake and fat accumulation in rats, Nutrition, vol.20, pp.991-996, 2004.

B. S. Kasinath, M. M. Mariappan, K. Sataranatarajan, M. J. Lee, and D. Feliers, mRNA Translation: Unexplored Territory in Renal Science, J. Am. Soc. Nephrol, vol.17, pp.3281-3292, 2006.

T. Kawaguchi, K. Osatomi, H. Yamashita, T. Kabashima, and K. Uyeda, Mechanism for Fatty Acid "Sparing" Effect on Glucose-induced Transcription: Regulation of carbohydrate-responsive element-binding protein by AMP-activated protein kinase, J. Biol. Chem, vol.277, pp.3829-3835, 2002.

D. E. Kelley and L. J. Mandarino, Fuel selection in human skeletal muscle in insulin resistance: a reexamination, Diabetes, vol.49, pp.677-683, 2000.

B. J. Kerr and R. A. Easter, Effect of feeding reduced protein, amino acid-supplemented diets on nitrogen and energy balance in grower pigs, J. Anim. Sci, vol.73, pp.3000-3008, 1995.

A. Kharitonenkov, T. L. Shiyanova, A. Koester, A. M. Ford, R. Micanovic et al.,

L. J. Hammond, J. S. Moyers, and R. A. Owens, FGF-21 as a novel metabolic regulator, J. Clin. Invest, vol.115, pp.1627-1635, 2005.

M. S. Kilberg, Y. Pan, H. Chen, and V. Leung-pineda, NUTRITIONAL CONTROL OF GENE EXPRESSION: How Mammalian Cells Respond to Amino Acid Limitation*, Annu. Rev. Nutr, vol.25, pp.59-85, 2005.

D. Kim, D. D. Sarbassov, S. M. Ali, J. E. King, R. R. Latek et al.,

D. M. Sabatini, mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery, Cell, vol.110, pp.163-175, 2002.

D. Kim, D. D. Sarbassov, S. M. Ali, R. R. Latek, K. V. Guntur et al.,

D. M. Sabatini, G?L, a positive regulator of the rapamycin-sensitive pathway required for the nutrientsensitive interaction between raptor and mTOR, Mol. Cell, vol.11, pp.895-904, 2003.

E. Kim, I. Miller, S. Aja, L. E. Landree, M. Pinn et al., C75, a Fatty Acid Synthase Inhibitor, Reduces Food Intake via Hypothalamic AMP-activated Protein Kinase, J. Biol. Chem, vol.279, pp.19970-19976, 2004.

J. Kim, M. Kundu, B. Viollet, and K. Guan, AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1, Nat. Cell Biol, vol.13, pp.132-141, 2011.

J. Kim, L. Sands, M. Slebodnik, L. O'connor, and W. Campbell, Effects of high-protein weight loss diets on fat-free mass changes in older adults: a systematic review, FASEB J, vol.28, pp.371-375, 2014.

S. R. Kimball, Regulation of global and specific mRNA translation by amino acids, J. Nutr, vol.132, pp.883-886, 2002.

S. R. Kimball, Glucagon Represses Signaling through the Mammalian Target of Rapamycin in Rat Liver by Activating AMP-activated Protein Kinase, J. Biol. Chem, vol.279, pp.54103-54109, 2004.

S. R. Kimball, J. , and L. S. , Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis, J. Nutr, vol.136, pp.227-231, 2006.

S. R. Kimball, S. Ravi, B. S. Gordon, M. D. Dennis, J. et al., Amino Acid-Induced Activation of mTORC1 in Rat Liver Is Attenuated by Short-Term Consumption of a High-Fat Diet, J. Nutr, vol.145, pp.2496-2502, 2015.

L. Kisselev, M. Ehrenberg, and L. Frolova, Termination of translation: interplay of mRNA, rRNAs and release factors?, EMBO J, vol.22, pp.175-182, 2003.

S. Koo, L. Flechner, L. Qi, X. Zhang, R. A. Screaton et al.,

P. Brindle, The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism, Nature, vol.437, pp.1109-1111, 2005.

J. D. Kopple and M. E. Swendseid, Evidence that histidine is an essential amino acid in normal and chronically uremic man, J. Clin. Invest, vol.55, p.881, 1975.

E. W. Kraegen, Increased malonyl-CoA and diacylglycerol content and reduced AMPK activity accompany insulin resistance induced by glucose infusion in muscle and liver of rats, AJP Endocrinol. Metab, vol.290, pp.471-479, 2005.

M. Krebs, A. Brehm, M. Krssak, C. Anderwald, E. Bernroider et al., Direct and indirect effects of amino acids on hepatic glucose metabolism in humans, Diabetologia, vol.46, pp.917-925, 2003.

M. Lacroix, A long-term high-protein diet markedly reduces adipose tissue without major side effects in Wistar male rats, AJP Regul. Integr. Comp. Physiol, vol.287, pp.934-942, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02179739

T. Laeger, S. D. Reed, T. M. Henagan, D. H. Fernandez, M. Taghavi et al., Leucine acts in the brain to suppress food intake but does not function as a physiological signal of low dietary protein, AJP Regul. Integr. Comp. Physiol, vol.307, pp.310-320, 2014.

T. Laeger, T. M. Henagan, D. C. Albarado, L. M. Redman, G. A. Bray et al., FGF21 is an endocrine signal of protein restriction, J. Clin. Invest, vol.124, pp.3913-3922, 2014.

T. Laeger, T. M. Henagan, D. C. Albarado, L. M. Redman, G. A. Bray et al., FGF21 is an endocrine signal of protein restriction, J. Clin. Invest, vol.124, pp.3913-3922, 2014.

T. Laeger, T. M. Henagan, D. C. Albarado, L. M. Redman, G. A. Bray et al., FGF21 is an endocrine signal of protein restriction, J. Clin. Invest, vol.124, pp.3913-3922, 2014.

T. Laeger, D. C. Albarado, S. J. Burke, L. Trosclair, J. W. Hedgepeth et al., Metabolic Responses to Dietary Protein Restriction Require an Increase in FGF21 that Is Delayed by the Absence of GCN2, Cell Rep, vol.16, pp.707-716, 2016.

M. D. Lane, M. Wolfgang, S. Cha, and Y. Dai, Regulation of food intake and energy expenditure by hypothalamic malonyl-CoA, Int. J. Obes, vol.32, pp.49-54, 2008.

M. Laplante and D. M. Sabatini, An Emerging Role of mTOR in Lipid Biosynthesis, Curr. Biol, vol.19, pp.1046-1052, 2009.

B. Laurent, L. Moldawer, V. Young, B. Bistrian, and G. Blackburn, Whole-body leucine and muscle protein kinetics in rats fed varying protein intakes, Am. J. Physiol, vol.246, pp.444-451, 1984.

I. N. Lavrik, Caspases: pharmacological manipulation of cell death, J. Clin. Invest, vol.115, pp.2665-2672, 2005.

I. Leclerc and G. Rutter, AMP-Activated Protein Kinase: A New B-Cell Glucose Sensor?, Diabetes, vol.53, pp.67-74, 2004.

D. E. Leib and Z. A. Knight, Re-examination of Dietary Amino Acid Sensing Reveals a GCN2-Independent Mechanism, Cell Rep, vol.13, pp.1081-1089, 2015.

M. P. Lejeune, K. R. Westerterp, T. C. Adam, N. D. Luscombe-marsh, and M. S. Westerterp-plantenga, , 2006.

, Ghrelin and glucagon-like peptide 1 concentrations, 24-h satiety, and energy and substrate metabolism during a high-protein diet and measured in a respiration chamber, Am. J. Clin. Nutr, vol.83, pp.89-94

J. Li, J. , and L. , Influence of amino acid availability on protein turnover in perfused skeletal muscle, Biochim. Biophys. Acta, vol.544, pp.351-359, 1978.

R. Liang, Y. Fei, P. Prasad, S. Ramamoorthy, H. Han et al., Human Intestinal H+/Peptide Cotransporter, J. Biol. Chem, vol.270, pp.6456-6463, 1995.

R. A. Liddle, Cholecystokinin cells, Annu. Rev. Physiol, vol.59, pp.221-242, 1997.

X. Lin, Hepatic triglyceride contents are genetically determined in mice: results of a strain survey, AJP Gastrointest. Liver Physiol, vol.288, pp.1179-1189, 2005.

Y. Liu, L. Zhang, Y. Li, Y. Cheng, X. Zhu et al., Activation of mTOR signaling mediates the increased expression of AChE in high glucose condition: in vitro and in vivo evidences, 2015.

, Mol. Neurobiol

X. Long, Y. Lin, S. Ortiz-vega, K. Yonezawa, A. et al., Rheb binds and regulates the mTOR kinase, Curr. Biol. CB, vol.15, pp.702-713, 2005.

M. López-lastra, A. Rivas, and M. I. Barría, Protein synthesis in eukaryotes: the growing biological relevance of cap-independent translation initiation, Biol. Res, vol.38, pp.121-146, 2005.

D. S. Ludwig, J. A. Majzoub, A. Al-zahrani, G. E. Dallal, I. Blanco et al., High glycemic index foods, overeating, and obesity, Pediatrics, vol.103, pp.26-26, 1999.

Z. Luo, A. K. Saha, X. Xiang, and N. B. Ruderman, AMPK, the metabolic syndrome and cancer, Trends Pharmacol. Sci, vol.26, pp.69-76, 2005.

C. J. Lynch, Leucine in food mediates some of the postprandial rise in plasma leptin concentrations, AJP Endocrinol. Metab, vol.291, pp.621-630, 2006.

C. J. Lynch, S. M. Hutson, B. J. Patson, A. Vaval, and T. C. Vary, Tissue-specific effects of chronic dietary leucine and norleucine supplementation on protein synthesis in rats, Am. J. Physiol. -Endocrinol. Metab, vol.283, pp.824-835, 2002.

G. Macfarlane and S. Macfarlane, Bacteria, Colonic Fermentation, and Gastrointestinal Health, J. AOAC Int, vol.95, pp.50-60, 2012.

P. A. Maclennan, R. A. Brown, R. , and M. J. , A positive relationship between protein synthetic rate and intracellular glutamine concentration in perfused rat skeletal muscle, FEBS Lett, vol.215, pp.187-191, 1987.

E. L. Macleod and D. M. Ney, Prise en charge nutritionnelle de la phénylcétonurie, Ann. Nestlé Ed Fr, vol.68, pp.60-71, 2010.

I. Maire, Le système lysosomial dans la protéolyse : panorama des maladies lysosomiales, Bull Acad Natle Méd, vol.196, pp.1561-1574, 2012.

V. L. Malloy, R. A. Krajcik, S. J. Bailey, G. Hristopoulos, J. D. Plummer et al., , 2006.

, Methionine restriction decreases visceral fat mass and preserves insulin action in aging male Fischer 344 rats independent of energy restriction, Aging Cell, vol.5, pp.305-314

S. Mandayam, M. , and W. E. , Dietary protein restriction benefits patients with chronic kidney disease (Review Article), Nephrology, vol.11, pp.53-57, 2006.

F. Mariotti, S. Mahé, R. Benamouzig, C. Luengo, S. Daré et al., Nutritional value of [15N]-soy protein isolate assessed from ileal digestibility and postprandial protein utilization in humans, 1999.

, J. Nutr, vol.129, pp.1992-1997

K. R. Markan, M. C. Naber, M. K. Ameka, M. D. Anderegg, D. J. Mangelsdorf et al., Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding, Diabetes, vol.63, pp.4057-4063, 2014.

C. Marmonier, D. Chapelot, and J. Louis-sylvestre, Effects of macronutrient content and energy density of snacks consumed in a satiety state on the onset of the next meal, Appetite, vol.34, pp.161-168, 2000.

A. S. Marsin, L. Bertrand, M. H. Rider, J. Deprez, C. Beauloye et al., Phosphorylation and activation of heart PFK-2 by AMPK has a role in the stimulation of glycolysis during ischaemia, Curr. Biol, vol.10, pp.1247-1255, 2000.

R. Masanes, J. Fernandez-lopez, M. Alemany, X. Remesar, and I. Rafecas, Effect of dietary protein content on tissue protein synthesis rates in Zucker lean rats, Nutr. Res, vol.19, pp.1017-1026, 1999.

F. L. Mashili, R. L. Austin, A. S. Deshmukh, T. Fritz, K. Caidahl et al.,

D. E. Moller and A. Kharitonenkov, Direct effects of FGF21 on glucose uptake in human skeletal muscle: implications for type 2 diabetes and obesity, Diabetes Metab. Res. Rev, vol.27, pp.286-297, 2011.

D. Matthews, H. Schwarz, R. Yang, Y. Motil, V. Young et al., Relationship of Plasma Leucine and a-Ketoisocaproate During a L-[ l-13C]Leucine Infusion in Man: A Method for Measuring Human Intracellular Leucine Tracer Enrichment, Metabolism, vol.31, pp.1105-1112, 1982.

A. Maurin, C. Jousse, J. Averous, L. Parry, A. Bruhat et al., The GCN2 kinase biases feeding behavior to maintain amino acid homeostasis in omnivores, Cell Metab, vol.1, pp.273-277, 2005.

A. Maurin, A. Benani, A. Lorsignol, X. Brenachot, L. Parry et al., Hypothalamic eIF2? Signaling Regulates Food Intake, Cell Rep, vol.6, pp.438-444, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01065490

M. F. Mccarty, The moderate essential amino acid restriction entailed by low-protein vegan diets may promote vascular health by stimulating FGF21 secretion. Horm, Mol. Biol. Clin. Investig, 2016.

A. J. Meijer and P. F. Dubbelhuis, Amino acid signalling and the integration of metabolism, Biochem. Biophys. Res. Commun, vol.313, pp.397-403, 2004.

D. Meley, C. Bauvy, J. H. Houben-weerts, P. F. Dubbelhuis, M. T. Helmond et al., AMP-activated Protein Kinase and the Regulation of Autophagic Proteolysis, J. Biol. Chem, vol.281, pp.34870-34879, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00158593

S. Mellinkoff and M. Frankland, Relationship Between Serum Amino Acid Concentration and Fluctuations in Appetite, J. Appl. Physiol, vol.8, pp.535-538, 1956.

L. Menaker and J. M. Navia, Appetite regulation in the rat under various physiological conditions: the role of dietary protein and calories, J. Nutr, vol.103, pp.347-352, 1973.

S. Ménard, N. Cerf-bensussan, and M. Heyman, , 2010.

, Mucosal Immnuology, vol.3, pp.247-259

A. L. Menezes, M. P. Pereira, S. L. Buzelle, M. P. Santos, S. A. De-frança et al., A low-protein, high-carbohydrate diet increases de novo fatty acid synthesis from glycerol and glycerokinase content in the liver of growing rats, Nutr. Res, vol.33, pp.494-502, 2013.

O. Meyuhas, Synthesis of the translational apparatus is regulated at the translational level, Eur. J. Biochem, vol.267, pp.6321-6330, 2000.

P. B. Mikkelsen, S. Toubro, A. , and A. , Effect of fat-reduced diets on 24-h energy expenditure: comparisons between animal protein, vegetable protein, and carbohydrate, Am. J. Clin. Nutr, vol.72, pp.1135-1141, 2000.

Y. Minokoshi, T. Alquier, N. Furukawa, Y. Kim, A. Lee et al.,

M. J. Birnbaum, AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus, Nature, vol.428, pp.569-574, 2004.

Y. Minokoshi, T. Shiuchi, S. Lee, A. Suzuki, and S. Okamoto, Role of hypothalamic AMP-kinase in food intake regulation, Nutr. Burbank Los Angel. Cty. Calif, vol.24, pp.786-790, 2008.

M. Momcilovic, S. Hong, and M. Carlson, Mammalian TAK1 Activates Snf1 Protein Kinase in Yeast and Phosphorylates AMP-activated Protein Kinase in Vitro, J. Biol. Chem, vol.281, pp.25336-25343, 2006.

C. Morens, C. Bos, M. E. Pueyo, R. Benamouzig, N. Gausserès et al., Increasing habitual protein intake accentuates differences in postprandial dietary nitrogen utilization between protein sources in humans, J. Nutr, vol.133, pp.2733-2740, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00416302

C. Morrison and T. Laeger, Protein-dependent regulation of feeding and metabolism, Trends Endocrinol. Metab, vol.26, pp.256-262, 2015.

C. D. Morrison, X. Xi, C. L. White, J. Ye, and R. J. Martin, Amino acids inhibit Agrp gene expression via an mTOR-dependent mechanism, AJP Endocrinol. Metab, vol.293, pp.165-171, 2007.

C. D. Morrison, S. D. Reed, and T. M. Henagan, Homeostatic regulation of protein intake: in search of a mechanism, AJP Regul. Integr. Comp. Physiol, vol.302, pp.917-928, 2012.

G. Morris-stiff and A. E. Feldstein, Fibroblast growth factor 21 as a biomarker for NAFLD: Integrating pathobiology into clinical practice, J. Hepatol, vol.53, pp.795-796, 2010.

E. P. Mottillo, E. M. Desjardins, J. D. Crane, B. K. Smith, A. E. Green et al.,

I. A. Rebalka, A. Razi, and K. Sakamoto, Lack of Adipocyte AMPK Exacerbates Insulin Resistance and Hepatic Steatosis through Brown and Beige Adipose Tissue Function, Cell Metab, vol.24, pp.118-129, 2016.

M. R. Munday, M. R. Milic, S. Takhar, M. J. Holness, and M. C. Sugden, The short-term regulation of hepatic acetyl-CoA carboxylase during starvation and re-feeding in the rat, Biochem J, vol.280, pp.733-737, 1991.

D. Muoio, K. Seefeld, L. Witters, C. , and R. , AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target, Biochem J, vol.338, pp.783-791, 1999.

N. A. Nadkarni, C. Chaumontet, D. Azzout-marniche, J. Piedcoq, G. Fromentin et al., The Carbohydrate Sensitive Rat as a Model of Obesity, PLoS ONE, vol.8, p.68436, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01186846

S. Nakajima, N. Tanaka, M. Hamada, T. Tsuchiya, and H. Okuda, Correlation between energy and histidine intake in female living in Setouchi area, J Jpn Soc Stud Obes, vol.7, pp.276-282, 2001.

K. Nakashima, Y. Yakabe, A. Ishida, M. Yamazaki, A. et al., Suppression of myofibrillar proteolysis in chick skeletal muscles by ?-ketoisocaproate, Amino Acids, vol.33, pp.499-503, 2007.

D. Nelson and M. Cox, CourseSmart International E-Book for Principles of Biochemistry, 2013.

P. Nicklin, P. Bergman, B. Zhang, E. Triantafellow, H. Wang et al., Bidirectional Transport of Amino Acids Regulates mTOR and Autophagy. Cell, vol.136, pp.521-534, 2009.

M. Nilsson, J. J. Holst, and I. M. Björck, Metabolic effects of amino acid mixtures and whey protein in healthy subjects: studies using glucose-equivalent drinks, Am. J. Clin. Nutr, vol.85, pp.996-1004, 2007.

T. Nishimura, Y. Nakatake, M. Konishi, and N. Itoh, Identi¢cation of a novel FGF, FGF-21, preferentially expressed in the liver, Biochim. Biophys. Acta, pp.203-206, 2000.

S. Nixon and G. Mawer, The digestion and absorption of protein in man, Br. J. Nutr, vol.24, pp.227-240, 1970.

N. N. Noda, Y. Ohsumi, and F. Inagaki, ATG Systems from the Protein Structural Point of View, Chem. Rev, vol.109, pp.1587-1598, 2009.

O. A. Obeid, L. K. Boukarim, R. M. Awar, and N. Hwalla, Postprandial glycogen and lipid synthesis in prednisolone-treated rats maintained on high-protein diets with varied carbohydrate levels, Nutrition, vol.22, pp.288-294, 2006.

M. Oberer, A. Marintchev, and G. Wagner, Structural basis for the enhancement of eIF4A helicase activity by eIF4G, Genes Dev, vol.19, pp.2212-2223, 2005.

M. H. Ögmundsdóttir, S. Heublein, S. Kazi, B. Reynolds, S. M. Visvalingam et al., Proton-Assisted Amino Acid Transporter PAT1 Complexes with Rag GTPases and Activates TORC1 on Late Endosomal and Lysosomal Membranes, PLoS ONE, vol.7, p.36616, 2012.

H. Ono, A. Pocai, Y. Wang, H. Sakoda, T. Asano et al., , 2008.

, Activation of hypothalamic S6 kinase mediates diet-induced hepatic insulin resistance in rats, J. Clin. Invest

J. M. Overton, Phenotyping small animals as models for the human metabolic syndrome: thermoneutrality matters, Int. J. Obes, vol.34, pp.53-58, 2010.

S. S. Palii, C. E. Kays, C. Deval, A. Bruhat, P. Fafournoux et al., Specificity of amino acid regulated gene expression: analysis of genes subjected to either complete or single amino acid deprivation, Amino Acids, vol.37, pp.79-88, 2009.

M. Palou, T. Priego, J. Sánchez, E. Villegas, A. M. Rodríguez et al., Sequential changes in the expression of genes involved in lipid metabolism in adipose tissue and liver in response to fasting. Pflüg. Arch. -Eur, J. Physiol, vol.456, pp.825-836, 2008.

M. S. Patel and M. Srinivasan, Metabolic Programming in the Immediate Postnatal Life, 2011.

. Metab, , vol.58, pp.18-28

D. H. Pesta and V. T. Samuel, A high-protein diet for reducing body fat: mechanisms and possible caveats, Nutr. Metab, vol.11, pp.1-8, 2014.

J. C. Peters and A. E. Harper, Adaptation of rats to diets containing different levels of protein: effects on food intake, plasma and brain amino acid concentrations and brain neurotransmitter metabolism, J. Nutr, vol.115, pp.382-398, 1985.

K. J. Petzke, C. Riese, K. , and S. , Short-term, increasing dietary protein and fat moderately affect energy expenditure, substrate oxidation and uncoupling protein gene expression in rats, J. Nutr. Biochem, vol.18, pp.400-407, 2007.

L. Pichon, J. Huneau, G. Fromentin, and D. Tomé, A high-protein, high-fat, carbohydrate-free diet reduces energy intake, hepatic lipogenesis, and adiposity in rats, J. Nutr, vol.136, pp.1256-1260, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02179734

A. Planavila, I. Redondo-angulo, F. Ribas, G. Garrabou, J. Casademont et al., Fibroblast growth factor 21 protects the heart from oxidative stress, Cardiovasc. Res, vol.106, pp.19-31, 2015.

G. Polekhina, A. Gupta, B. Michell, B. Van-denderen, S. Murthy et al., AMPK B Subunit Targets Metabolic Stress Sensing to Glycogen, Curr. Biol, vol.13, pp.867-871, 2003.

J. Poortmans and O. Delalieux, Do Regular High Protein Diets Have Potential Health Risks on Kidney Function in Athletes?, Int. J. Sport Nutr. Exerc. Metab, vol.10, pp.28-38, 2000.

A. M. Pritchett, J. P. Foreyt, and D. L. Mann, Treatment of the metabolic syndrome: the impact of lifestyle modification, Curr. Atheroscler. Rep, vol.7, pp.95-102, 2005.

C. G. Proud, mTOR-mediated regulation of translation factors by amino acids, Biochem. Biophys. Res. Commun, vol.313, pp.429-436, 2004.

P. J. Randle, P. B. Garland, C. N. Hales, and E. A. Newsholme, The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus, Lancet Lond. Engl, vol.1, pp.785-789, 1963.

F. Reggiori and D. J. Klionsky, Autophagy in the Eukaryotic Cell, Eukaryot. Cell, vol.1, pp.11-21, 2002.

D. A. Rivas, B. B. Yaspelkis, J. A. Hawley, and S. J. Lessard, Lipid-induced mTOR activation in rat skeletal muscle reversed by exercise and 5'-aminoimidazole-4-carboxamide-1--D-ribofuranoside, J. Endocrinol, vol.202, pp.441-451, 2009.

S. Rogers, R. Wells, and M. Rechsteiner, Amino Acid Sequences Common to Rapidly Degraded Proteins: he PEST Hypothesis, Science, vol.234, pp.364-368, 1986.

P. R. Romano, M. T. Garcia-barrio, X. Zhang, Q. Wang, D. R. Taylor et al.,

J. Qin and A. G. Hinnebusch, Autophosphorylation in the activation loop is required for full kinase activity in vivo of human and yeast eukaryotic initiation factor 2? kinases PKR and GCN2, Mol. Cell. Biol, vol.18, pp.2282-2297, 1998.

E. R. Ropelle, J. R. Pauli, M. F. Fernandes, S. A. Rocco, R. M. Marin et al., A Central Role for Neuronal AMP-Activated Protein, 2008.

, Kinase (AMPK) and Mammalian Target of Rapamycin (mTOR) in High-Protein Diet-Induced Weight Loss, Diabetes, vol.57, pp.594-605

W. Rose, The amino acid requirements of adult man, Nutr Abstr Rev, vol.27, pp.631-647, 1957.

P. Rozin, Are carbohydrates and protein separately regulated?, J. Comp. Physiol. Psychol, vol.65, pp.23-29, 1968.

Z. Ruan, Y. Yang, Y. Wen, Y. Zhou, X. Fu et al., , 2014.

, Metabolomic analysis of amino acid and fat metabolism in rats with l-tryptophan supplementation, Amino Acids

R. Russell, R. Bergeron, G. Shulman, Y. , and L. , Translocation of myocardial GLUT-4 and increased glucose uptake through activation of AMPK by AICAR, Am. J. Physiol. -Heart Circ. Physiol, vol.277, pp.643-649, 1999.

F. M. Sacks, G. A. Bray, V. J. Carey, S. R. Smith, D. H. Ryan et al., Comparison of weight-loss diets with different compositions of fat, protein, and carbohydrates, N. Engl. J. Med, vol.360, pp.859-873, 2009.

K. Sakamoto, A. Mccarthy, D. Smith, K. A. Green, D. G. Hardie et al., , 2005.

, Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction

, EMBO J, vol.24, pp.1810-1820

J. Salas-marco and D. M. Bedwell, GTP Hydrolysis by eRF3 Facilitates Stop Codon Decoding during Eukaryotic Translation Termination, Mol. Cell. Biol, vol.24, pp.7769-7778, 2004.

J. Salway, Metabolism at a Glance, 2013.

R. J. Samms, M. Murphy, M. J. Fowler, S. Cooper, P. Emmerson et al., Dual effects of fibroblast growth factor 21 on hepatic energy metabolism, J. Endocrinol, vol.227, pp.37-47, 2015.

M. J. Sanders, P. O. Grondin, B. D. Hegarty, M. A. Snowden, and D. Carling, Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade, Biochem. J, vol.403, p.139, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00478681

M. P. Santos, E. Batistela, M. P. Pereira, S. Paula-gomes, N. M. Zanon et al.,

C. M. Andrade, S. A. De-frança, and A. M. Baviera, Higher insulin sensitivity in EDL muscle of rats fed a low-protein, high-carbohydrate diet inhibits the caspase-3 and ubiquitin-proteasome proteolytic systems but does not increase protein synthesis, J. Nutr. Biochem, vol.34, pp.89-98, 2016.

D. D. Sarbassov, S. M. Ali, D. Kim, D. A. Guertin, R. R. Latek et al.,

D. M. Sabatini, Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptorindependent pathway that regulates the cytoskeleton, Curr. Biol, vol.14, pp.1296-1302, 2004.

D. A. Sarruf, J. P. Thaler, G. J. Morton, J. German, J. D. Fischer et al., , 2010.

, Fibroblast Growth Factor 21 Action in the Brain Increases Energy Expenditure and Insulin Sensitivity in Obese Rats, Diabetes, vol.59, pp.1817-1824

F. Sassi, L'obésité: Tendances passées et projections pour l'avenir. L'obésité et l'économie de la prévention: objectif santé, 2010.

J. Schwarz, D. Tomé, A. Baars, G. J. Hooiveld, and M. Müller, Dietary Protein Affects Gene Expression and Prevents Lipid Accumulation in the Liver in Mice, PLoS ONE, vol.7, p.47303, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01173383

R. C. Scott, O. Schuldiner, and T. P. Neufeld, Role and regulation of starvation-induced autophagy in the Drosophila fat body, Dev. Cell, vol.7, pp.167-178, 2004.

R. J. Shaw, The Kinase LKB1 Mediates Glucose Homeostasis in Liver and Therapeutic Effects of Metformin, Science, vol.310, pp.1642-1646, 2005.

K. Shigemitsu, Y. Tsujishita, H. Miyake, S. Hidayat, N. Tanaka et al., , 1999.

, Structural requirement of leucine for activation of p70 S6 kinase, FEBS Lett, vol.447, pp.303-306

T. Shintani and D. J. Klionsky, Autophagy in health and disease: a double-edged sword, Science, vol.306, pp.990-995, 2004.

A. K. Sikalidis, J. Lee, and M. H. Stipanuk, Gene expression and integrated stress response in, 2011.

, HepG2/C3A cells cultured in amino acid deficient medium, Amino Acids, vol.41, pp.159-171

S. J. Simpson and D. Raubenheimer, Obesity: the protein leverage hypothesis, Obes. Rev, vol.6, pp.133-142, 2005.

L. V. Sinclair, J. Rolf, E. Emslie, Y. Shi, P. M. Taylor et al., Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation, Nat. Immunol, vol.14, pp.500-508, 2013.

M. Singh, Y. Shin, X. Yang, B. Zehr, P. Chakrabarti et al., 4E-BPs Control Fat Storage by Regulating the Expression of Egr1 and ATGL, J. Biol. Chem, vol.290, pp.17331-17338, 2015.

A. R. Skov, S. Toubro, B. Rønn, L. Holm, A. et al., Randomized trial on protein vs carbohydrate in ad libitum fat reduced diet for the treatment of obesity, Int. J. Obes, vol.23, pp.528-536, 1999.

S. M. Solon-biet, A. C. Mcmahon, J. W. Ballard, K. Ruohonen, L. E. Wu et al., The Ratio of Macronutrients, Not Caloric Intake, Dictates Cardiometabolic Health, Aging, and Longevity in Ad Libitum-Fed Mice, Cell Metab, vol.19, pp.418-430, 2014.

R. Sood, A. Porter, D. Olsen, D. Cavener, and R. Wek, A mammalian homologue of GCN2 protein kinase important for translational control by phosphorylation of eukaryotic initiation factor-2alpha, Genetics, vol.154, issue.2, pp.787-801, 2000.

M. Stepien, C. Gaudichon, D. Azzout-marniche, G. Fromentin, D. Tome et al., Postprandial Nutrient Partitioning but Not Energy Expenditure Is Modified in Growing Rats during Adaptation to a HighProtein Diet, J. Nutr, vol.140, pp.939-945, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01611426

M. Stepien, C. Gaudichon, G. Fromentin, P. Even, D. Tomé et al., Increasing Protein at the Expense of Carbohydrate in the Diet Down-Regulates Glucose Utilization as Glucose Sparing Effect in Rats, PLoS ONE, vol.6, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01186829

N. P. Steyn, Z. Mchiza, J. Hill, Y. D. Davids, I. Venter et al.,

P. Jacobs, Nutritional contribution of street foods to the diet of people in developing countries: a systematic review, Public Health Nutr, vol.17, pp.1363-1374, 2014.

B. Stoll, J. Henry, P. J. Reeds, H. Yu, F. Jahoor et al., Catabolism dominates the first-pass intestinal metabolism of dietary essential amino acids in milk protein-fed piglets, J. Nutr, vol.128, pp.606-614, 1998.

K. P. Stone, D. Wanders, M. Orgeron, C. C. Cortez, and T. W. Gettys, Mechanisms of increased in vivo insulin sensitivity by dietary methionine restriction in mice, Diabetes, vol.63, pp.3721-3733, 2014.

J. Sturman, G. Gaull, and N. Räihä, Absence of Cystathionase in Human Fetal Liver: Is Cystine Essential? Science, pp.74-76, 1970.

G. Suchankova, M. Tekle, A. K. Saha, N. B. Ruderman, S. D. Clarke et al., Dietary polyunsaturated fatty acids enhance hepatic AMP-activated protein kinase activity in rats, Biochem. Biophys. Res. Commun, vol.326, pp.851-858, 2005.

R. Swick and N. Benevenga, Labile Protein Reserves and Protein Turnover, J. Dairy Sci, vol.60, pp.505-515, 1977.

D. Taillandier, C. Guezennec, P. Patureau-mirand, X. Bigard, M. Arnal et al., A high protein diet does not improve protein synthesis in the nonweight-bearing rat tibialis anterior muscle, J. Nutr, vol.126, pp.266-272, 1996.

P. M. Taylor, Role of amino acid transporters in amino acid sensing, Am. J. Clin. Nutr, vol.99, pp.223-230, 2014.

M. E. Tischler, M. Desautels, and A. L. Goldberg, Does leucine, leucyl-tRNA, or some metabolite of leucine regulate protein synthesis and degradation in skeletal and cardiac muscle, J Biol Chem, vol.257, pp.1613-1621, 1982.

A. Tremblay and J. Chaput, About unsuspected potential determinants of obesity, Appl. Physiol. Nutr. Metab, vol.33, pp.791-796, 2008.

J. Twombly and J. Meyer, Endogenous nitrogen secretions into the digestive tract, J. Nutr, vol.74, 1961.

K. Uno, T. Yamada, Y. Ishigaki, J. Imai, Y. Hasegawa et al., A hepatic amino acid/mTOR/S6K-dependent signalling pathway modulates systemic lipid metabolism via neuronal signals, Nat. Commun, vol.6, p.7940, 2015.

R. J. Valentine, K. A. Coughlan, N. B. Ruderman, and A. K. Saha, Insulin inhibits AMPK activity and phosphorylates AMPK Ser485/491 through Akt in hepatocytes, myotubes and incubated rat skeletal muscle, Arch. Biochem. Biophys, vol.562, pp.62-69, 2014.

B. Vandanmagsar, J. D. Warfel, S. E. Wicks, S. Ghosh, J. M. Salbaum et al., Impaired Mitochondrial Fat Oxidation Induces FGF21 in Muscle, Cell Rep, vol.15, pp.1686-1699, 2016.

G. Velasco, M. J. Geelen, and M. Guzmán, Control of hepatic fatty acid oxidation by 5?-AMP-activated protein kinase involves a malonyl-CoA-dependent and a malonyl-CoA-independent mechanism, Arch. Biochem. Biophys, vol.337, pp.169-175, 1997.

M. Veldhorst, A. Smeets, S. Soenen, A. Hochstenbach-waelen, R. Hursel et al.,

N. Luscombe-marsh and M. Westerterp-plantenga, Protein-induced satiety: Effects and mechanisms of different proteins, Physiol. Behav, vol.94, pp.300-307, 2008.

M. A. Veldhorst, K. R. Westerterp, and M. S. Westerterp-plantenga, Gluconeogenesis and proteininduced satiety, Br. J. Nutr, vol.107, pp.595-600, 2012.

R. Viana, C. Aguado, I. Esteban, D. Moreno, B. Viollet et al., Role of AMPactivated protein kinase in autophagy and proteasome function, Biochem. Biophys. Res. Commun, vol.369, pp.964-968, 2008.

B. Viollet, M. Foretz, B. Guigas, S. Horman, R. Dentin et al., , 2006.

, Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders, J. Physiol, vol.574, pp.41-53

B. Viollet, R. Mounier, J. Leclerc, A. Yazigi, M. Foretz et al., Targeting AMP-activated protein kinase as a novel therapeutic approach for the treatment of metabolic disorders, Diabetes Metab, vol.33, pp.395-402, 2007.

B. Viollet, M. Foretz, and U. Schlattner, Bypassing AMPK Phosphorylation, Chem. Biol, vol.21, pp.567-569, 2014.
URL : https://hal.archives-ouvertes.fr/inserm-01171798

M. Wang, Role of PP2C in cardiac lipid accumulation in obese rodents and its prevention by troglitazone, AJP Endocrinol. Metab, vol.288, pp.216-221, 2004.

X. Wang, S. Qiao, Y. Yin, L. Yue, Z. Wang et al., A deficiency or excess of dietary threonine reduces protein synthesis in jejunum and skeletal muscle of young pigs, J. Nutr, vol.137, pp.1442-1446, 2007.

M. Watford and G. Wu, Glutamine metabolism in uricotelic species: variation in skeletal muscle glutamine synthetase, glutaminase, glutamine levels and rates of protein synthesis, Comp. Biochem. Physiol. B Biochem. Mol. Biol, vol.140, pp.607-614, 2005.

M. J. Watt, G. R. Steinberg, Z. Chen, B. E. Kemp, and M. A. Febbraio, Fatty acids stimulate AMPactivated protein kinase and enhance fatty acid oxidation in L6 myotubes: Fatty acid activation of AMPK, J. Physiol, vol.574, pp.139-147, 2006.

I. D. Weiner, W. E. Mitch, and J. M. Sands, Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion, Clin. J. Am. Soc. Nephrol, vol.10, pp.1444-1458, 2015.

J. Weir and V. De, New methods for calculating metabolic rate with special reference to protein metabolism, 1949.

, J. Physiol, vol.109, p.1

A. G. Wessels, H. Kluge, F. Hirche, A. Kiowski, A. Schutkowski et al., High Leucine Diets Stimulate Cerebral Branched-Chain Amino Acid Degradation and Modify Serotonin and Ketone Body Concentrations in a Pig Model, PLOS ONE, vol.11, 2016.

K. R. Westerterp, Diet induced thermogenesis, Nutr. Metab, vol.1, p.1, 2004.

M. S. Westerterp-plantenga, Protein intake and energy balance, Regul. Pept, vol.149, pp.67-69, 2008.

M. S. Westerterp-plantenga, M. P. Lejeune, I. Nijs, M. Van-ooijen, and E. M. Kovacs, High protein intake sustains weight maintenance after body weight loss in humans, Int. J. Obes, vol.28, pp.57-64, 2004.

W. C. Willett, Is dietary fat a major determinant of body fat?, Am. J. Clin. Nutr, vol.67, pp.556-562, 1998.

W. W. Winder, H. A. Wilson, D. G. Hardie, B. B. Rasmussen, C. A. Hutber et al., Phosphorylation of rat muscle acetyl-CoA carboxylase by AMP-activated protein kinase and protein kinase A, J. Appl. Physiol, vol.82, pp.219-225, 1997.

J. F. Wojtaszewski, S. B. Jørgensen, Y. Hellsten, D. G. Hardie, and E. A. Richter, Glycogen-dependent effects of 5-aminoimidazole-4-carboxamide (AICA)-riboside on AMP-activated protein kinase and glycogen synthase activities in ratskeletal muscle, Diabetes, vol.51, pp.284-292, 2002.

G. Wu, Amino acids: metabolism, functions, and nutrition, Amino Acids, vol.37, pp.1-17, 2009.

G. Wu, Dietary protein intake and human health, Food Funct, vol.7, pp.1251-1265, 2016.

G. Wu, D. A. Knabe, and S. W. Kim, Arginine nutrition in neonatal pigs, J. Nutr, vol.134, pp.2783-2790, 2004.

Y. Wu, P. Song, J. Xu, M. Zhang, and M. Zou, Activation of Protein Phosphatase 2A by Palmitate Inhibits AMP-activated Protein Kinase, J. Biol. Chem, vol.282, pp.9777-9788, 2007.

L. J. Wykes, M. Fiorotto, D. G. Burrin, and M. Rosario, Chronic low protein intake reduces tissue protein synthesis in a pig model of protein malnutrition, J. Nutr, vol.126, p.1481, 1996.

Y. Xia, H. Y. Wen, M. E. Young, P. H. Guthrie, H. Taegtmeyer et al., Mammalian Target of Rapamycin and Protein Kinase A Signaling Mediate the Cardiac Transcriptional Response to Glutamine, J. Biol. Chem, vol.278, pp.13143-13150, 2003.

X. Xu, J. Hu, B. C. Mcgrath, and D. R. Cavener, GCN2 regulates the CCAAT enhancer binding protein beta and hepatic gluconeogenesis, AJP Endocrinol. Metab, vol.305, pp.1007-1017, 2013.

K. Yao, Y. Yin, W. Chu, Z. Liu, D. Deng et al., , 2008.

, Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs, J. Nutr, vol.138, pp.867-872

J. Ye, M. Kumanova, L. Hart, K. Sloane, A. Zhang et al., The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation, EMBO J, vol.29, pp.2082-2096, 2010.

M. Yoon, The Emerging Role of Branched-Chain Amino Acids in Insulin Resistance and Metabolism, Nutrients, vol.8, p.405, 2016.

F. Yoshizawa, S. R. Kimball, T. C. Vary, J. , and L. S. , Effect of dietary protein on translation initiation in rat skeletal muscle and liver, Am. J. Physiol.-Endocrinol. Metab, vol.275, pp.814-820, 1998.

M. Zang, A. Zuccollo, X. Hou, D. Nagata, K. Walsh et al.,

R. A. Cohen, AMP-activated Protein Kinase Is Required for the Lipid-lowering Effect of Metformin in Insulin-resistant Human HepG2 Cells, J. Biol. Chem, vol.279, pp.47898-47905, 2004.

Y. Zhang, K. Guo, R. E. Leblanc, D. Loh, G. J. Schwartz et al., Increasing Dietary Leucine Intake Reduces Diet-Induced Obesity and Improves Glucose and Cholesterol Metabolism in Mice via Multimechanisms, Diabetes, vol.56, pp.1647-1654, 2007.

S. Zhu, L. Ma, Y. Wu, X. Ye, T. Zhang et al., , 2014.

, FGF21 treatment ameliorates alcoholic fatty liver through activation of AMPK-SIRT1 pathway, Acta Biochim. Biophys. Sin, vol.46, pp.1041-1048

R. Zoncu, L. Bar-peled, A. Efeyan, S. Wang, Y. Sancak et al., mTORC1 Senses Lysosomal Amino Acids Through an Inside-Out Mechanism That Requires the Vacuolar H+-ATPase. Science, 2011.