G. Tosello and C. Fritz, Les dessins noirs de la grotte Chauvet-Pont-d'Arc : essai sur leur originalité dans le site et leur place dans l'art aurignacien. Bulletin de la Société préhistorique française, pp.102-103, 2005.

C. Ferrier, E. Debard, B. Kervazo, A. Brodard, P. Guibert et al., Les parois chauées de la grotte Chauvet-Pont d'Arc (Ardèche) : caractérisation et chronologie, p.25, 2014.

D. Drysdale, An introduction to re dynamics, 2011.

J. Wang and T. Xu, A new Calculation Model of Detection Time for Heat Detector in Long and Narrow Space, Procedia Engineering, vol.52, p.355362, 2013.

F. H. Clauser, The turbulent boundary layer, Advances in Applied Mechanics, vol.4, p.151, 1956.

S. D. Walsh, I. Lomov, and J. J. Roberts, Geomechanical Modeling for Thermal Spallation Drilling, GRC Trans, vol.35, p.277282, 2011.

. Openfoam-thermocouple, , 2016.

B. R. Stanmore, J. F. Brilhac, and P. Gilot, The oxidation of soot : a review of experiments, mechanisms and models, 2001.
URL : https://hal.archives-ouvertes.fr/hal-01844750

F. Salmon, D. Lacanette, J. Mindeguia, C. Sirieix, A. Bellivier et al., Localized re in a gallery : model development and validation, International Journal of Thermal Science, vol.139, p.144159, 2019.

V. Babrauskas, SFPE Handbook of Fire Protection Engineering, chapter Heat Release Rates

. Springer, , 2016.

C. Ferrier, E. Debard, B. Kervazo, N. Aujoulat, D. Baer et al., L'art pléistocène dans le monde / Pleistocene art of the world / Arte pleistoceno en el mundo, septembre 2010, Symposium Datation et taphonomie de l'art pléistocène, p.1071, 2010.

J. P. Holman, McGraw-Hill Series in Mechanical Engineering, 2010.

S. Beresnev and V. Chernyak, Thermophoresis of a spherical particle in a rareed gas : Numerical analysis based on the model kinetic equations, Physics of Fluids, vol.7, p.17431756, 1995.

J. A. Gowlett, J. C. Chambers, J. Hallos, and T. R. Pumphrey, Beeches Pit : rst views of the archaeology of a Middle Pleistocene site in Suolk, UK, in European context, Anthropologie, vol.36, issue.1, p.9197, 1998.

M. C. Stahlschmidt, C. E. Miller, B. Ligouis, U. Hambach, P. Goldberg et al., On the evidence for human use and control of re at Schöningen, Journal of Human Evolution, vol.89, p.181201, 2015.

Y. Yokoyama, C. Falgueres, and J. P. Quaegebeur, ESR dating of quartz from quaternary sediments : First attempt, Nuclear Tracks and Radiation Measurements, vol.10, p.921928, 1982.

J. Monnier, A new regional group of the Lower Palaeolithic in Brittany (France), recently dated by electron spin resonance, Série II : Sciences de la Terre et des Planètes, vol.319, p.155160, 1994.
URL : https://hal.archives-ouvertes.fr/halshs-00409151

B. Hallegouët, S. Hinguant, A. Gebhardt, and J. Monnier, premiers résultats des fouilles. Bulletin de la Société préhistorique française, vol.1, pp.89-92, 1992.

W. Roebroeks and P. Villa, On the earliest evidence for habitual use of re in Europe, Proceedings of the National Academy of Sciences, vol.108, issue.13, p.52095214, 2011.

S. Verheyden, J. Jaubert, D. Genty, M. Soulier, C. Hai et al., Early Neanderthal constructions deep in Bruniquel Cave in southwestern France, Nature, vol.534, p.111115, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01457213

M. A. Medina-alcaide, D. Garate-maidagan, A. Ruiz-redondo, and J. L. Sanchidrian-torti, Beyond art : The internal archaeological context in Paleolithic decorated caves, Journal of Anthropological Archaeology, vol.49, p.114128, 2018.

P. Ambert, J. Gendon, P. Galant, Y. Quinif, A. Gruneisen et al., Attribution des gravures paléolithiques de la grotte d'Aldène (Cesseras, Hérault) à l'Aurignacien par la datation des remplissages géologiques, Comptes Rendus -Palevol, vol.4, issue.3, p.275284, 2005.

D. Baer and M. Girard, Les cavernes d'Arcy-sur-Cure, 1998.

J. Clottes, A. Beltrán, J. Courtin, and H. Cosquer,

, Bulletin de la Société préhistorique française, vol.98128, pp.89-93, 1992.

R. Begouën, C. Fritz, G. Tosello, J. Clottes, A. Pastoors et al., Le sanctuaire secret des bisons, 2009.

C. Ferrier, A. Bellivier, D. Lacanette, J. Leblanc, J. Mindeguia et al., L'utilisation du feu dans l'endokarst au Paléolithique : approche interdisciplinaire et expérimentale (programme CarMoThaP), 2017.

. Openfoam,

. Firefoam,

. Cast3m, , 2016.

I. Théry-parisot and S. Thiébault, Analyses polliniques des sols aurignaciens de la grotte Chauvet (Ardèche). Résultats préliminaires. Bulletin de la Société préhistorique française, vol.102, 2005.

J. Clottes, D. La-grotte, and C. , L'art des origines, Paris, Editions du Seuil, coll. Arts Rupestres, 2001.

B. Sadier, J. Delannoy, L. Benedetti, D. L. Bourlès, S. Jaillet et al., Further constraints on the Chauvet cave artwork elaboration, Proceedings of the National Academy of Sciences of the USA, vol.109, issue.21, p.80028006, 2012.
URL : https://hal.archives-ouvertes.fr/halsde-00702721

E. Debard, C. Ferrier, and B. Kervazo, Grotte Chauvet-Pont d'Arc (Ardèche) : évolution morphosédimentaire de l'entrée. Implication sur les occupations et sur la conservation des vestiges

. Quaternaire, , vol.27, p.314, 2016.

H. Valladas, N. Tisnérat-laborde, H. Cacher, É. Kaltnecker, M. Arnold et al., Bilan des datations carbone 14 eectuées sur des charbons de bois de la grotte Chauvet. Bulletin de la Société préhistorique française, pp.102-103, 2005.

A. Quiles, H. Valladas, J. M. Geneste, J. Clottes, D. Baer et al., Second radiocarbon intercomparison program for the Chauvet-Pont d'Arc cave, Radiocarbon, vol.56, issue.2, p.833850, 2014.

P. J. Reimer, M. G. Baillie, E. Bard, A. Bayliss, J. W. Beck et al., Intcal09 and Marine09 Radiocarbon Age Calibration Curves, 050, Years cal BP. Radiocarbon, vol.51, issue.4, p.11111150, 2009.

A. Quiles, H. Valladas, H. Bocherens, E. Delqué-kolic, J. Van-der-plicht et al., A high-precision chronological model for the decorated Upper Paleolithic cave of Chauvet-Pont d'Arc, Proceedings of the National Academy of Sciences, vol.113, issue.17, p.46704675, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01568508

P. Fosse and M. Philippe, La faune de la grotte Chauvet : paléobiologie et anthropozoologie. Bulletin de la Société préhistorique française, vol.89102, pp.102-103, 2005.

, Site du Ministère de la Culture dédié à la grotte Chauvet-Pont d'Arc. archeologie.culture.fr/chauvet/fr, 2019.

J. Chauvet, E. Brunel-deschamp, and E. C. Hillaire,

. Paris, Éditions du Seuil, coll. Arts Rupestres, vol.118, 1995.

J. Geneste, L'archéologie des vestiges matériels dans la grotte Chauvet-Pont-d'Arc. Bulletin de la Société préhistorique française, pp.102-103, 2005.

E. Debard, C. Ferrier, and B. Kervazo, Étude géologique de la grotte Chauvet-Pont d'Arc. Bilan des travaux de la triennale 2010-2012, Études pluridisciplinaires à la grotte Chauvet-Pont d'Arc (Ardèche). Rapport d'activité, vol.1, p.5998, 2010.

A. Brodard, P. Guibert, C. Ferrier, E. Debard, B. Kervazo et al., Les rubéfactions des parois de la grotte Chauvet : une histoire de chaue ? Les arts de la Préhistoire : micro-analyses, mises en contextes et conservation, 2014.

P. Guibert, A. Brodard, A. Quiles, J. Geneste, D. Baer et al., When were the walls of the Chauvet-Pont d'Arc Cave heated ? A chronological approach by thermoluminescence, Quaternary Geochronology, vol.29, p.3647, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01743060

M. Müller-hagedorn, H. Bockhorn, L. Krebs, and U. Müller, A comparative kinetic study on the pyrolysis of three dierent wood species, Journal of Analytical and Applied Pyrolysis, pp.68-69, 2003.

Y. Wang, P. Chatterjee, and J. L. De-ris, Large eddy simulation of re plumes, Proceedings of the Combustion Institute, vol.33, p.24732480, 2011.

Z. Chen, J. Wen, B. Xu, and E. S. Dembele, Large eddy simulation of a medium-scale methanol pool re using the extended eddy dissipation concept, International Journal of Heat and Mass Transfer, vol.70, p.389408, 2014.

A. Zaman, R. Alén, and R. Kotilainen, Thermal behavior of scots pine (pinus sylvestris) and silver birch (betula pendula) at 200 ? 230 o C, Wood Fiber Sci, vol.32, issue.2, p.138143, 2000.

M. Janssens, SFPE Handbook of Fire Protection Engineering, chapter Calorimetry, 2016.

M. J. Spearpoint, Predicting the ignition and burning rate of wood in the cone calorimeter using an integral model, 1999.

A. F. Roberts, Caloric values of partially decomposed wood samples, Combustion and Flame, vol.8, issue.3, p.245246, 1964.

F. L. Browne and J. J. Brenden, Heats of combustion of the volatile pyrolysis products of Ponderosa pine, US Forest Service Research Paper FPL, vol.19, 1964.

V. Dréan, G. Auguin, J. -. Leblanc, D. Lacanette, J. -. Mindeguia et al., Numerical modelling of thermal conditions during res in cave-like geometry, Proceedings of the 15th International Conference Fire and Materials, pp.6-8, 2017.

M. Janssens and B. Douglas, Handbook of Building Materials for Fire Protection, chapter Wood and wood products, 2004.

V. Tihay, Y. Perez-ramirez, F. Morandini, P. A. Santoni, and T. Barboni, Heat transfers and energy released in the combustion of ne vegetation fuel beds, 2013.

P. Waage and C. M. Guldberg, Studier over Aniteten. Forhandlinger i Videnskabs-selskabet i Christiania, p.3545, 1864.

J. H. Van't-ho, E. Cohen, and E. T. Ewan, Studies in Chemical Dynamics. Amsterdam : F. Muller

. London,

. Williams-&-norgate, , 1896.

D. Veynante and L. Vervisch, Turbulent combustion modeling, Progress in Energy and Combustion Science, vol.28, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01672225

B. J. Mccarey, Purely buoyant diusion ames : some experimental results, pp.79-1910, 1979.

G. Cox and R. Chitty, A study of the deterministic properties of unbounded re plumes. Combustion and Flame, vol.39, 1980.

E. Zukoski, T. Kubota, and B. Cetegen, Entrainment in re plumes, Fire Safety Journal, vol.3, p.107121, 1981.

G. Heskestad, Luminous heights of turbulent diusion ames, Fire Safety Journal, vol.5, p.103108, 1983.

G. Keskestad, Flame Heights of Fuel Arrays with Combustion in Depth, Fire Safety ScienceProceedings of the Fifth International Symposium, p.427438, 1997.

H. C. Kung and P. Stravrianides, Buoyant plumes of large scale pool res, Proceedings of the Combustion Institute, vol.19, p.905912, 1982.

C. L. Beyler, Fire Plumes and Ceiling Jets, Fire Safety Journal, vol.11, p.5375, 1986.

R. L. Alpert, Calculation of response time of ceiling-mounted re detectors, Fire Technology, vol.8, p.181195, 1972.

R. L. Alpert, SFPE Handbook of Fire Protection Engineering, chapter Ceiling Jet Flows, 2016.

G. Heskestad and M. A. Delichatsios, The initial convective ow in re, 17th International Symposium on Combustion, Combustion Institute, p.11131123, 1978.

M. A. Delichatsios, The Flow of Fire Gases Under a Beamed Ceiling, Combustion and Flame, vol.43, p.110, 1981.

E. E. Zukoski and T. Kubota, An Experimental Investigation of the Heat Transfer from Buoyant Plume to a Horizontal Ceiling-Part 2, 1977.

H. Z. You and G. M. Faeth, Ceiling Heat Transfer during Fire Plume and Fire Impingement, Fire and Materials, vol.3, issue.3, p.140147, 1979.

V. Motevalli and C. Ricciuti, Characterization of the Conned Ceiling Jet in the Presence of an Upper Layer in Transient and Steady-State Conditions, 1992.

R. Peacock, W. Jones, R. Bukowski, and G. Forney, CFAST-Consolidated Model of Fire Growth and Smoke Transport (Version 6) Technical Reference Guide, 2005.

W. D. Davis, The Zone Fire Model Jet : A model for the Prediction of Detector Activation and Gas Temperature in the Presence of a Smoke Layer, NISTIR, vol.6324, 1999.

Y. Oka, O. Imazeki, and O. Sugawa, Temperature prole of ceiling jet ow along an inclined unconned ceiling, Fire Safety Journal, vol.45, p.221227, 2010.

Y. Oka and M. Ando, Temperature and velocity properties of a ceiling jet impinging on an unconned inclined ceiling, Fire Safety Journal, vol.55, p.97105, 2013.

Y. Oka and K. Matsuyama, Scale similarity on ceiling jet ow, Fire Safety Journal, vol.61, p.289297, 2013.

Y. Jaluria and L. Y. Cooper, Negatively buoyant wall ows generated in enclosure res, Progress in Energy and Combustion Science, vol.15, p.159182, 1989.

L. Y. Cooper, Ceiling Jet-Driven Wall Flows in Compartment Fires, Combustion Science and Technology, vol.62, p.285296, 1988.

L. Y. Cooper, Ceiling Jet Properties and Wall Heat Transfer in Compartment Fires Near Regions of Ceiling-Jet Wall Impingement, National Bureau of Standards NBSIR, pp.86-3307, 1986.

A. Brodard, D. Lacanette-puyo, P. Guibert, F. Lévêque, A. Burens et al., A new process of reconstructing archaeological res from their impact on sediment : a coupled experimental and numerical approach based on the case study of hearths from the cave of Les Fraux, Archaeological and Anthropological Sciences, vol.8, issue.4, p.673687, 2015.

A. Vaschy, Sur les lois de similitude en physique, Annales Télégraphiques, 1892.

E. Buckingham, On physically similar systems. Illustrations of the use of dimensional equations, Physical Review, vol.4, issue.4, p.345376, 1914.

E. R. Eckert and E. Soehngen, Interferometric Studies on the Stability and Transition to Turbulence of a Free Convection Boundary Layer, Proceedings of the General Discussion on Heat Transfer

E. London, , p.321, 1951.

K. Mcgrattan, S. Hostikka, R. Mcdermott, J. Floyd, C. Weinschenk et al., Fire Dynamics Simulator User's Guide, 2013.

R. Aris, Vectors, Tensors, and the Basic Equations of Fluid Mechanics, 1989.

W. Sutherland, The viscosity of gases and molecular force, Philosophical Magazine, S, vol.5, p.1893

B. E. Poling, J. M. Prausnitz, and J. P. O'connell, The properties of gases and liquids, 1987.

M. W. Chase, NIST-JANAF Thermochemical Tables, 1998.

A. Fick, Über Diusion, Annalen der Physik und Chemie, vol.94, p.1855

G. H. Yeoh and K. K. Yuen, Computational Fluid Dynamics in Fire Engineering. Theory, Modelling and Practice, 2009.

A. Favre, Équations des gaz turbulents compressibles, Journal de Mécanique, vol.4, issue.3, p.361390, 1965.

A. Yoshizawa, Statistical theory for compressible turbulent shear ows, with the application to subgrid modeling, The Physics of Fluids, vol.29, issue.7, p.21522164, 1986.

B. Magnussen and B. Hjertager, On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion, Proc. Combust. Int, p.719729, 1977.

D. B. Spalding, A Single Formula for the "Law of the Wall, Journal of Applied Mechanics, vol.28, p.455458, 1961.

L. Liedgren, G. Hörnberg, T. Magnusson, and L. Östlund, Heat impact and soil colors beneath hearths in northern Sweden, Journal of Archaeological Science, vol.79, p.6272, 2017.

M. P. Pomiès, M. Menu, and C. Vignaud, TEM Observations of Goethite Dehydration : Application to Archaeological Samples, Journal of the European Ceramic Society, vol.19, p.16051614, 1999.

V. Aldeias, H. L. Dibble, D. Sandgathe, P. Goldberg, and S. J. Mcpherron, How heat alters underlying deposits and implications for archaeological re features : A controlled experiment, Journal of Archaeological Science, vol.67, p.6479, 2016.

D. Walter, G. Buxbaum, and W. Laqua, The mechanism of the thermal transformation from goethite to hematite, Journal of Thermal Analysis and Calorimetry, vol.63, 2001.

H. D. Ruan, R. L. Frost, J. T. Kloprogge, and L. Duong, Infrared spectroscopy of goethite dehydroxylation : III. FT-IR microscopy of in situ study of the thermal transformation of goethite to hematite, Spectrochimica Acta Part A, vol.58, p.967981, 2002.

A. F. Gualtieri and P. Venturelli, In situ study of the goethite-hematite phase transformation by real time synchrotron powder diraction, American Mineralogist, vol.84, 1999.

S. Gialanella, F. Girardi, G. Ischia, I. Lonardelli, M. Mattarelli et al., On the goethite to hematite phase transformation, Journal of Thermal Analysis and Calorimetry, vol.102, issue.3, pp.867-873, 2010.

P. C. Beuria, S. K. Biswal, B. K. Mishra, and G. G. Roy, Study on kinetics of thermal decomposition of low LOI goethetic hematite iron ore, International Journal of Mining Science and Technology, vol.27, issue.6, p.10311036, 2017.

M. Avrami, Granulation, Phase Change, and Microstructure Kinetics of Phase Change, III. The Journal of Chemical Physics, vol.9, issue.177, p.1941

B. V. , Erofeev. Compt. Rend. Acad. Sci. URSS, vol.52, p.511, 1946.

L. Diamandescu, D. Mihaila-tarabasanu, S. Calogero, N. Popescu-pogrion, and E. M. Feder, Mechanism and reaction kinetics in the solid phase transformation ? ? F eOOH ? ? ? F e 2 O 3 studied by Mössbauer spectroscopy, Solid State Ionics, p.591596, 1997.

J. Murray, L. Kirwan, M. Loan, and B. K. Hodnett, In-situ synchrotron diraction study of the hydrothermal transformation of goethite to hematite in sodium aluminate solutions, Hydrometallurgy, vol.95, issue.3-4, p.239246, 2009.

K. Przepiera and A. Przepiera, Kinetics of thermal transformations of precipitated magnetite and goethite, Journal of Thermal Analysis and Calorimetry, vol.65, issue.2, p.497503, 2001.

M. Pelino, L. Toro, M. Petroni, A. Florindi, and C. Cantalini, Study of the kinetics of decomposition of goethite in vacuo and pore structure of product particles, Journal of Materials Science, vol.24, issue.2, p.409412, 1989.

C. J. Goss, The kinetics and reaction mechanism of the goethite to hematite transformation, Mineralogical Magazine, vol.51, issue.3, p.437451, 1987.

A. Grenouilleau, P. Guelin, and M. A. Martincica, Cinétique des transformations minéralogiques observables sur les calcaires soumis à une augmentation de température. Mémoire de mission R&D, 2017.

R. P. Borg, M. Hajpal, and A. Török, The re performance of limestone, Application of Structural Fire Engineering, vol.6, 2013.

B. Chakrabarti, T. Yates, and E. A. Lewry, Eect of re damage on natural stonework in buildings, Construction and Building Materials, vol.10, issue.7, 1996.

H. Yavuz, S. Demirdag, and E. S. Caran, Thermal eect on the physical properties of carbonate rocks, International Journal of Rock Mechanics & Mining Sciences, vol.47, p.94103, 2010.

F. W. Preston and H. E. White, Observations on spalling, Journal of the American Ceramic Society, vol.17, p.137144, 1938.

R. E. Williams, The thermal spallation drilling process, Geothermics, vol.15, issue.1, 1986.

R. M. Rauenzahn and J. W. Tester, Rock Failure Mechanisms of Flame-Jet Thermal Spallation Drilling-Theory and Experimental Testing, International Journal of Rock Mechanics and Mining Sciences, vol.26, issue.5, p.381399, 1989.

R. M. Rauenzahn and J. W. Tester, Numerical simulation and eld testing of ame-jet thermal spallation drilling-1. Model development, International Journal of Heat and Mass Transfer, vol.34, issue.3, p.795808, 1991.

J. C. Mindeguia, H. Carré, P. Pimienta, and C. L. Borderie, Experimental discussion on the mechanisms behind the re spalling of concrete, Fire And Materials, vol.39, p.619635, 2015.

G. A. Khoury, Eect of re on concrete and concrete structures, Progress in Structural Engineering and Materials, 2000.

A. G. Smith and P. J. Pells, Impact of re on tunnels in Hawkesbury sandstone. Tunnelling and Underground Space Technology, vol.23, p.6574, 2008.

A. G. Smith and P. J. Pells, Discussion of the paper "Impact of re on tunnels in Hawkesbury sandstone" by Smith and Pells, Tunnelling and Underground Space Technology, vol.23, pp.65-74, 2008.

, Tunnelling and Underground Space Technology, vol.24, p.112114, 2009.

P. Zhang, E. Nordlund, G. Mainali, and C. Saiang, Experimental study of thermal spalling of rock blocks exposed to re, 2010.

N. Khoylou and G. L. England, The eect of moisture on spalling of normal and high strength concretes, 1996.

E. Nordlund, P. Zhang, S. Dineva, D. Saiang, and G. Mainali, Impact of re on the stability of hard rock tunnels in Sweden, 2015.

D. Lacanette, J. C. Mindeguia, A. Brodard, C. Ferrier, P. Guibert et al., Simulation of an experimental re in an underground limestone quarry for the study of Paleolithic res, International Journal of Thermal Sciences, vol.120, p.118, 2017.

Z. Bazant and M. F. Kaplan, Concrete at high temperature : material properties and mathematical models, 1996.

H. D. Vosteen and R. Schellschmidt, Inuence of temperature on thermal conductivity, thermal capacity and thermal diusivity for dierent types of rock, Physics and Chemistry of the Earth, Parts A/B/C, vol.28, issue.9, p.499509, 2003.

D. Wang, X. Lu, Y. Song, R. Shao, and T. Qi, Inuence of the température dependence of thermal parameters of heat conduction models on the reconstruction of thermal history of igneousintrusion-bearing basins, Computers & Geosciences, vol.36, issue.10, p.13391344, 2010.

C. Verdet, Y. Anguy, C. Sirieix, R. Clément, and C. Gaborieau, On the eect of electrode nitness in small scale electrical resistivity imaging, 2018.

C. Bonacina, G. Comini, A. Fasano, and M. Primicerio, Numerical solution of phase-change problems, International Journal of Heat and Mass Transfer, vol.16, p.18251832, 1973.

Z. Kompanikova, M. Gomez-heras, J. Michnova, T. Durmekova, and J. Vicko, Sandstone alterations triggered by re-related temperatures, Envrionmental Earth Sciences, vol.72, issue.7, p.25692581, 2014.

C. Poon, S. Azhar, M. Anson, and Y. Wong, Performance of metakaolin concrete at elevated temperatures. Cement and Concrete Composites, vol.25, p.8389, 2003.

P. Vazquez, Meso and microscale study of stone decay processes, Habilitation à Diriger des Recherches (HDR), 2019.

S. E. Zadeh, G. Maragkos, T. Beji, and B. Merci, Large Eddy Simulation of the Ceiling Jet Induced by the Impingement of a Turbulent Air Plume, Fire Technology, vol.52, issue.6, p.20932115, 2016.

A. C. Yuen, G. H. Yeoh, R. K. Yuen, and E. T. Chen, Numerical Simulation of a Ceiling Jet Fire in a Large Compartment, Procedia Engineering, vol.52, p.312, 2013.

T. Hara and S. Kato, Numerical Simulation of Fire Plumes-Induced Ceiling Jets Using the Standard k Model, Fire Technology, vol.42, issue.2, p.131160, 2006.

C. Caliendo, P. Ciambelli, M. L. De-guglielmo, M. G. Meo, and P. Russo, Simulation of re scenarios due to dierent vehicle types with and without trac in a bi-directional road tunnel. Tunnelling and Underground Space Technology, vol.37, p.2236, 2013.

W. S. Hsu, Y. H. Huang, T. S. Shen, C. Y. Cheng, and T. Y. Chen, Analysis of the Hsuehshan Tunnel Fire in Taiwan. Tunnelling and Underground Space Technology, vol.69, p.108115, 2017.

J. S. Roh, H. S. Ryou, D. H. Kim, W. S. Jung, and Y. J. Jang, Critical velocity and burning rate in pool re during longitudinal ventilation, Tunnelling and Underground Space Technology, vol.22, issue.3, p.262271, 2007.

S. Zhao, F. Liu, F. Wang, M. Weng, and Z. Zeng, A numerical study on smoke movement in a metro tunnel with a non-axisymmetric cross-section. Tunnelling and Underground Space Technology, vol.73, p.187202, 2018.

N. Meng, L. Hu, L. Wu, L. Yang, S. Zhu et al., Numerical study on the optimization of smoke ventilation mode at the conjunction area between tunnel track and platform in emergency of a train re at subway station. Tunnelling and Underground Space Technology, vol.40, p.151159, 2014.

X. G. Zhang, Y. C. Guo, C. K. Chan, and W. Y. Lin, Numerical simulations on re spread and smoke movement in an underground car park, Building and Environment, vol.42, issue.10, p.34663475, 2007.

X. Deckers, S. Haga, N. Tilley, and E. B. Merci, Smoke control in case of re in a large car park : CFD simulations of full-scale congurations, Fire Safety Journal, vol.57, p.2234, 2013.

P. Weisenpacher, J. Glasa, and L. Halada, Parallel Computation of smoke movement during a car park re, Computing and Informatics, vol.35, p.14161437, 2016.

J. Stenis and W. Hogland, Fire in waste-fuel stores : risk management and estimation of real cost, Journal of Material Cycles and Waste Management, vol.13, issue.3, p.247258, 2011.

B. Zhao and J. Kruppa, Structural behaviour of an open car park under real re scenarios, Fire and Materials, vol.28, p.269280, 2002.

T. Nguyen, F. Meftah, R. Chammas, and A. Mebarki, The behaviour of masonry walls subjected to re : Modelling and parametrical studies in the case of hollow burnt-clay bricks, Fire Safety Journal, vol.44, issue.4, p.629641, 2009.

A. Nadjai, M. O'garra, F. A. Ali, and D. Laverty, A numerical model for the behaviour of masonry under elevated temperature, Fire And Materials, vol.27, p.163182, 2003.

A. Y. Nassif, I. Yoshitake, and A. Allam, Full-scale re testing and numerical modelling of the transient thermo-mechanical behaviour of steel-stud gypsum board partition walls, Construction and Building Materials, 59, p.5161, 2014.

G. A. Khoury, C. E. Majorana, F. Pesavento, and B. A. Schreer, Modelling of heated concrete, vol.54, p.77101, 2002.

A. Santiago, L. S. Silva, P. V. Real, and M. Veljkovic, Numerical study of a steel sub-frame in re, Computers & Structures, vol.86, p.16191632, 2008.

C. Luo, W. Xie, and P. E. Desjardin, Fluid-Structure Simulations of Composite Material Response for Fire Environments, Fire Technology, vol.47, issue.4, p.887912, 2011.

F. Pesavento, M. Pachera, B. A. Schreer, D. Gawin, and A. Witek, Coupled Numerical Simulation of Fire in Tunnel, AIP Conference Proceedings, p.90003, 1922.

D. Lacanette, J. Mindeguia, C. Ferrier, E. Debard, and B. Kervazo, Three-dimensional simulation of a re in a simplied gallery of the Chauvet-Pont d'Arc cave, Proceedings of the XVII UISPP World Congress, vol.7, pp.1-7

. Pyrosim,

G. Maragkos and B. Merci, Large Eddy Simulations of CH 4 Fire Plumes. Flow, Turbulence and Combustion, vol.99, p.239278, 2017.

G. Maragkos, T. Beji, and B. Merci, Towards predictive simulations of gaseous pool res, Proceedings of the Combustion Institute, vol.37, p.39273934, 2019.

G. Maragkos, T. Beji, and B. Merci, Advances in modelling in CFD simulations of turbulent gaseous pool res, Combustion and Flame, vol.181, p.2238, 2017.

S. Vilfayeau, N. Ren, Y. Wang, and A. Trouvé, Numerical simulation of under-ventilated liquidfueled compartment res with ame extinction and thermally-driven fuel evaporation, Proceedings of the Combustion Institute, vol.35, p.25632571, 2015.

D. Le, J. Labahn, T. Beji, C. B. Devaud, E. J. Weckman et al., Assessment of the capabilities of FireFOAM to model large-scale res in a well-conned and mechanically ventilated multi-cimpartment structure, Journal of Fire Sciences, vol.36, issue.1, p.329, 2018.

A. Trouvé and Y. Wan, Large eddy simulation of compartment res, Intl. J. Comput. Fluid Dyn, vol.24, p.449466, 2010.

J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics, 2002.

F. Moukalled, L. Mangani, and M. Darwish, The Finite Volume Method in Computational Fluid Dynamics. An Advanced Introduction with OpenFOAM and Matlab, 2016.

H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, The Finite Volume Method, 2007.

H. Jasak, Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows, 1996.

P. L. Roe, Characteristic-based schemes for the Euler equations, Annual Review of Fluid Mechanics, vol.18, p.337365, 1986.

Z. Tukovic and H. Jasak, A moving mesh nite volume interface tracking method for surface tension dominated interfacial uid ow, Computers & Fluids, vol.55, p.7084, 2012.

C. M. Rhie and W. L. Chow, A numerical study of the turbulent ow past an isolated airfoil with trailing edge separation, vol.21, p.15251532, 1983.

V. Vuorinen, J. P. Keskinen, C. Duwig, and B. J. Boersma, On the implementation of low-dissipative Runge-Kutta projection methods for time dependent ow using OpenFOAM, Computers & Fluids, vol.93, p.153163, 2014.

R. I. Issa, Solution of the implicitly discretized uid ow equations by operator-splitting, Journal of Computational Physics, vol.62, p.4065, 1985.

C. , Solution of Large Unsymmetric Systems of Linear Equations. Series in Microelectronics -Hartung-Gorre Verlag, vol.17, 1992.

R. Barrett, Templates for the Solution of Linear Systems : Building Blocks for Iterative Methods, Society for Industrial and Applied Mathematics, 1994.

H. A. Van-der and . Vorst, Bi-CGSTAB : A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems, SIAM Journal on Scientic and Statistical Computing, vol.13, issue.2, p.631644, 1992.

F. Salmon, D. Lacanette, J. Mindeguia, C. Sirieix, C. Ferrier et al., Firefoam simulation of a localised re in a gallery, Journal of Physics : Conference Series, vol.107, 2018.

A. B. De and . Vriendt, Introduction au rayonnement thermique, vol.2, 1984.

D. A. Purser and J. L. Mcallister, SFPE Handbook of Fire Protection Engineering, chapter Assessment of Hazards to Occupants from Smoke, Toxic Gases, and Heat, 2016.

L. C. Speitel, Fractional eective dose model for post-crash aircraft survivability, Toxicology, vol.115, p.167177, 1996.

D. A. Purser, Physiological eects of combustion products and re hazard assessment. Europacable Seminar "Safety during Fire, 2009.

. Bibliographie,

W. V. Blockley, Temperature Tolerance : Man. Part I. Heat and cold tolerance with and without protective clothing, Biology Data Book 2 nd edition, volume II. Federation of American Societies for Experimental, 1973.

D. A. Purser, Modelling Toxic and Physical Hazard in Fire, Fire Safety Science, vol.2, p.391400, 1989.

E. Brugiere, Le spectromètre thermophorétique circulaire, un nouvel instrument pour mesurer la thermophorèse : application aux agrégats de suies de morphologie fractale, 2012.

B. Sagot, G. Antonini, and F. Buron, Annular ow conguration with high deposition eciency for the experimental determination of thermophoretic diusion coecients, Journal of Aerosol Science, vol.40, p.10391049, 2009.

L. Y. Cooper, Heat transfer from a buoyant plume to an unconned ceiling, Journal of Heat Transfer, vol.104, issue.3, p.446451, 1982.

R. L. Alpert, Fire Induced Turbulent Ceiling-Jet. FMRC Technical Report 19722-2, Factory Mutual Research Corporation, vol.35, 1971.

C. Geuzaine and J. F. Remacle, Gmsh : A 3-D nite element mesh generator with built-in pre-and post-processing facilities, International Journal for Numerical Methods in Engineering, vol.79, issue.11, p.13091331, 2009.

T. Lanki, J. Tikkanen, K. Janka, P. Taimisto, and M. Lehtimäki, An electrical sensor for long-term monitoring of ultrane particles in workplaces, Journal of Physics : Conference Series, vol.304, issue.1, 2011.

A. Bellivier, A. Coppalle, A. S. Loo, J. Yon, L. Decoster et al., Comparison and Assessment of Particle Mass Concentrations Measurements in Fire Smokes with a Microbalance, Opacimeter and PPS Devices, 10th AOSFST, pp.5-7, 2015.

V. M. Le, A. Marchand, S. Verma, J. White, A. Marshall et al., Simulations of a Turbulent Line Fire with a Steady Flamelet Combustion Model and Non-Gray Gas Radiation Models, Journal of Physics : Conference Series, vol.1107, 2018.

P. Chatterjee, K. V. Meredith, and Y. Wang, Temperature and velocity distributions from numerical simulations of ceiling jets under unconned, inclined ceilings, Fire Safety Journal, vol.91, p.461470, 2017.

N. Ren, Y. Wang, S. Vilfayeau, and A. Trouvé, Large eddy simulation of turbulent vertical wall res supplied with gaseous fuel through porous burners, Combustion and Flame, vol.169, 2016.

B. J. Mccarey and G. Heskestad, A robust bidirectional low-velocity probe for ame and re application, Combustion and Flame, vol.26, p.125127, 1976.

C. Huggett, Estimation of the rate of heat release by means of oxygen consumption, vol.4, p.6165, 1980.

W. L. Grosshandler, A Narrow-Band Model for Radiation Calculations in a Combustion Environment, 1993.

S. S. Sazhin, An Approximation for the Absorption Coecient of Soot in a Radiating Gas. Manuscript, Fluent Europe, 1994.

C. L. Jayatilleke, Le premier correspond au Panneau de l'Entrée qui se situe proche de l'entrée paléolithique dans la Salle Brunel. S'étendant sur plus de 20 m 2 , il se compose d'une part d'une multitude de ponctuations rouges sur la gauche du panneau (Fig. A.1). Chaque point est eectué par la paume d'une main couverte d'ocre. De nes gravures se mélangent également à ces gros points. Sur la droite se trouve une gerbe rouge surmontée d'un signe en croix (Fig. A.1.b). Ce signe en gerbe est aussi, The inuence of Prandtl number and surface roughness on the resistance of the laminar sub-layer to momentum and heat transfer. Progress in heat and mass transfer, vol.1, 1969.

, Ministère de la Culture). b -Agrandissement sur le signe en gerbe surmonté d'une croix (D. Genty/MCC)

, Une peinture jaune est aussi utilisée dans la même salle sur le panneau des Chevaux jaunes (Fig

, Les paléolithiques dessinèrent trois têtes de chevaux dont deux en jaune et une en rouge. Le colorant jaune correspond à de la goethite tandis que le rouge est associé à l'hématite. La coloration jaune est peu utilisée dans la grotte et ces animaux sont les seules représentations guratives de cette couleur. Elles sont accompagnées d'une série de points et de bâtonnets verticaux rouges

, Une analyse du tracé du corps permet en réalité d'associer cette représentation à un ours des cavernes. L'originalité de ce panneau réside dans la présence d'une panthère puisque cet animal est absent de toutes les gurations paléolithiques In the future, this modified version of FireFOAM will be used to simulate several fire scenarios in the Chauvet-Pont d'Arc cave. It should allow the discussion about the possible characteristics of these Paleolithic hearths. Afterwards, this modeling will be used in other archeological cavities with similar matters. Then, Dans la galerie des Panneaux rouges, se trouvent une dizaine d'animaux dessinés à l'aide d'héma-tite, vol.32

, The researches in the Chauvet-Pont d'Arc cave have received specific financial help from the Ministry of Culture and Communication. We thank the LCPP (Laboratoire Centrale de la Préfecture de Police) for their help in the experiment instrumentation (velocity sensors, thermocouples, gases and particles concentrations). Furthermore, the following institutions have given support, We also express our gratitude to M. Corbé, L. Bassel, M. Bosq, E. Florensan, J. Sabidussi and C. Verdet for their precious help for wood packaging and their involvement in November 2016 experiments. This work was also performed using HPC resources from GENCI-CINES, pp.2017-2049

A. Trouvé and Y. Wan, Large eddy simulation of compartment fires, Intl. J. Comput. Fluid Dyn, vol.24, pp.449-466, 2010.

S. Yuan and J. Zhang, Large eddy simulation of compartment fire with solid combustibles, Fire Safety Journal, vol.44, pp.349-362, 2009.

W. Zhang, A. Hamer, M. Klassen, D. Carpenter, and R. Roby, Turbulence statistics in a fire room model by large eddy simulation, Fire Safety Journal, vol.37, pp.721-752, 2002.

X. Zhang, Y. Guo, C. Chan, and W. Lin, Numerical simulations on fire spread and smoke movement in an underground car park, Building and Environment, vol.42, pp.3466-3475, 2007.

X. Deckers, S. Haga, N. Tilley, and B. Merci, Smoke control in case of fire in a large car park : CFD simulations of full-scale configurations, Fire Safety Journal, vol.57, pp.22-34, 2013.

C. Hwang and J. D. Wargo, Experimental study of thermally generated reverse stratified layers in a fire tunnel, Combustion and Flame, vol.66, pp.171-180, 1986.

J. S. Newman and A. Tewarson, 347-Localized Fire in a Gallery: Model Development and Validation, International Journal of Thermal Sciences, vol.51, pp.144-159, 1983.

C. Caliendo, P. Ciambelli, M. D. Guglielmo, M. Meo, and P. Russo, Simulation of fire scenarios due to different vehicle types with and without traffic in a bi-directional road tunnel, Tunnelling and Underground Space Technology, vol.37, issue.11, pp.22-36, 2013.

W. Hsu, Y. Huang, T. Shen, C. Cheng, and T. Chen, Analysis of the Hsuehshan Tunnel Fire in Taiwan, Tunnelling and Underground Space Technology, vol.69, pp.108-115, 2017.

J. Stenis and W. Hogland, Fire in waste-fuel stores: risk management and estimation of real cost, Journal of Material Cycles and Waste Management, vol.13, pp.247-258, 2011.

H. Wan, Z. Gao, J. Ji, Y. Zhang, and K. Li, Experimental and theoretical study on flame front temperatures within ceiling jets from turbulent diffusion flames of n-heptane fuel, vol.164, pp.79-86, 2018.

S. E. Zadeh, G. Maragkos, T. Beji, and B. Merci, Large Eddy Simulations of the Ceiling Jet Induced by the Impingement of a Turbulent Air Plume, Fire Technology, vol.52, pp.2093-2115, 2016.

C. Ahn, B. Bang, M. Kim, T. Kim, S. C. James et al., Numerical investigation of smoke dynamics in unconfined and confined environments, International Journal of Heat and Mass Transfer, vol.127, issue.1, pp.571-582, 2018.

A. Bordard, P. Guibert, C. Ferrier, E. Debard, B. Kervazo et al., Les rubéfactions des parois de la grotte Chauvet : une histoire de chauffe ?, chez Les arts de la Préhistoire : microanalyses, mises en contextes et conservation, 2014.

E. Debard, C. Ferrier, and B. Kervazo, Etude géologique de la grotte Chauvet-Pont d'Arc. Bilan des travaux de la triennale 2010-2012, Etudes pluridisciplinaires à la grotte Chauvet-Pont d'Arc (Ardèche), vol.1, pp.59-98, 2010.

L. Liedgren, G. Hörnberg, T. Magnusson, and L. Östlund, Heat impact and soil colors beneath hearths in northern Sweden, Journal of Archaeological Science, vol.79, pp.62-72, 2017.

A. Quiles, H. Valladas, H. Bocherens, E. Delque-kolic, E. Kaltnecker et al., A high-precision chronological model for the decorate Upper Paleolithic cave of Chauvet-Pont d'Arc, Proceedings of the National Academy of Sciences, vol.113, pp.4670-4675, 2016.

P. Guibert, A. Brodard, A. Quilès, J. Geneste, D. Baffier et al., When were the walls of the Chauvet Pont-d'Arc Cave heated ? A chronological approach by thermoluminescence, Quaternary Geochronology, vol.29, pp.36-47, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01743060

C. Ferrier, E. Debard, B. Kervazo, A. Brodard, P. Guibert et al., Les parois chauffées de la grotte Chauvet-Pont d'Arc (Ardèche): caractérisation et chronologie, Paléo, vol.25, pp.59-78, 2014.

D. Lacanette, J. Mindeguia, A. Brodard, C. Ferrier, P. Guibert et al., Simulation of an experimental fire in an underground limestone quarry for the study of Paleolithic fires, International Journal of Thermal Sciences, vol.120, pp.1-18, 2017.
URL : https://hal.archives-ouvertes.fr/halshs-01978305

K. Mcgrattan, S. Hostikka, R. Mcdermott, J. Floyd, C. Weinschenk et al., Fire Dynamics Simulator User's Guide, 2013.

. Firefoam and . Available,

. Openfoam and . Available,

G. Maragkos and B. Merci, Large Eddy Simulations of CH4 Fire Plumes, Flow, Turbulence and Combustion, vol.99, pp.239-278, 2017.

G. Maragkos, T. Beji, and B. Merci, Towards predictive simulations of gaseous pool fires, Proceedings of the Combustion Institute, 2018.

Y. Wang, P. Chatterjee, and J. L. Ris, Large eddy simulation of fire plumes, Proceedings of the Combustion Institute, vol.33, pp.2473-2480, 2011.

S. Vilfayeau, N. Ren, Y. Wang, and A. Trouvé, Numerical simulation of under-ventilated liquidfueled compartment fires with flame extinction and thermally-driven fuel evaporation, Proceedings of the Combustion Institute, vol.35, pp.2563-2571, 2015.

D. Le, J. Labahn, T. Beji, C. B. Devaud, E. Weckman et al., Assessment of the capabilities of FireFOAM to model large-scale fires in a well-confined and mechanically ventilated multi-cimpartment structure, Journal of Fire Sciences, vol.36, issue.11, pp.3-29, 2018.

G. Maragkos, T. Beji, and B. Merci, Advances in modelling in CFD simulations of turbulent gaseous pool fires, Combustion and Flame, vol.181, pp.22-38, 2017.

F. Salmon, C. Ferrier, D. Lacanette, J. Leblanc, J. Mindeguia et al., Simulation numérique des feux et des thermo-altérations de la grotte Chauvet-Pont d'Arc (Ardèche), chez GMPCA, 2017.

V. Dréan, G. Auguin, J. Leblanc, D. Lacanette, J. Mindeguia et al., Numerical modelling of thermal conditions during fires in cave-like geometry, Proceedings of the 15th International Conference Fire and Materials, pp.64-65, 2017.

T. Lanki, J. Tikkanen, K. Janka, P. Taimisto, and M. Lehtimäki, An electrical sensor for long-term monitoring of ultrafine particles in workplaces, Journal of Physics: Conference Series, vol.304, issue.11, 2011.

A. Bellivier, A. Coppalle, A. Loo, J. Yon, L. Decoster et al., Comparison and Assessment of Particle Mass Concentrations Measurements in Fire Smokes with a Microbalance, Opacimeter and PPS Devices, 10th AOSFST, 2015.

M. Chase and N. Tables, Journal of Physical and Chemical Reference Data, vol.1, issue.9, 1998.

B. Poling, J. Prausnitz, and J. O'connell, The properties of gases and liquids, 1987.

W. Sutherland, The viscosity of gases and molecular force, Philosophical Magazine, issue.5, pp.507-531, 1893.

A. Yoshizawa, Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling, Physics of Fluids, vol.29, pp.2152-2164, 1986.

V. Tihay, Y. Perez-ramirez, F. Morandini, P. Santoni, and T. Barboni, Heat transfers and energy released in the combustion of fine vegetation fuel beds, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00907585

W. Grosshandler, A Narrow-Band Model for Radiation Calculations in a Combustion Environment, 1993.

S. Sazhin, An Approximation for the Absorption Coefficient of Soot in a Radiating Gas, 1994.

B. Magnussen and B. Hjertager, On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion, Proc. Combust. Int, pp.719-729, 1977.

C. Verdet, Y. Anguy, C. Sirieix, R. Clément, and C. Gaborieau, On the effect of electrode finitnessin small scale electrical resistivity imaging, 2018.

C. Bonacina, G. Comini, A. Fasano, and M. Primicerio, Numerical solution of phase-change problems, Int J Heat Mass Transf, vol.16, pp.1825-1832, 1973.

R. Alpert, SPFE Handbook of Fire Protection Engineering, Chapter Ceiling Jet Flows, National Fire Protection Association, 2008.

J. Holman, , 1990.

Y. Jaluria and L. Cooper, Negatively buoyant wall flows generated in enclosure fires, Progress in Energy and Combustion Science, vol.15, pp.159-182, 1989.

L. Cooper, Ceiling Jet-Driven Wall Flows in Compartment Fires, Combustion Science and Technology, vol.62, pp.285-296, 1988.

L. Cooper, Ceiling Jet Properties and Wall Heat Transfer in Compartment Fires Near Regions of Ceiling-Jet Wall Impingement, vol.1, pp.286-3307, 1986.

S. Beresnev and V. Chernyak, Thermophoresis of s spherical particle in a rarefied gas: Numerical analysis based on the model kinetic equations, Physics of Fluids, vol.7, pp.1743-1756, 1995.

B. Sagot, G. Antonini, and F. Buron, Annular flow configuration with high deposition efficiency for the experimental determination of thermophoretic diffusion coefficients, Journal of Aerosol Science, vol.40, pp.1030-1049, 2009.

E. Brugière, INSA (Rouen), 2012.

D. Purser and J. Mcallister, SPFE Handbook of Fire Protection Engineering, chapter Assessment of Hazards to Occupants from Smoke, Toxic Gases, and Heat, 2016.

L. Speitel, Fractional effective dose model for post-crash aircraft survivability, Toxicology, vol.115, pp.167-177, 1996.

D. Purser, Physiological effects of combustion products and fire hazard assessment, Europacable Seminar "Safety during Fire, 2009.

. Openfoam-thermocouple,

R. Peacock, W. Jones, R. Bukowski, and G. Forney, CFAST-Consolidated Model of Fire Growth and Smoke Transport (Version 6) Technical Reference Guide, 2005.

. Snappyhexmesh and . Available,

K. Overholt, J. Floyd, and O. Ezekoye, Simulation aéro-thermo-mécanique des eets du feu sur les parois d'un milieu conné. Application à l'étude des thermo-altérations de la grotte Chauvet-Pont d'Arc Résumé La grotte Chauvet-Pont d'Arc (Ardèche, France) renferme des ÷uvres pariétales parmi les plus anciennes découvertes. Elles sont de plus accompagnées par des traces de chaues sur les parois. Ces marques résultent de feux d'une intensité unique absents des autres grottes ornées. Les archéologues s'interrogent ainsi sur la ou les fonctions de tels feux situés pour certains dans une zone très étroite, la Galerie des Mégacéros. La première étape dans la compréhension de ces feux est leur caractérisation. Pour des raisons de conservation, la simulation numérique est l'outil le plus simple permettant la réalisation de scénarios de feux dans la géométrie de la grotte, Computational Modeling and Validation of Aerosol Deposition in Ventilation Ducts, vol.52, pp.149-166, 2016.

, Chauvet-Pont d'Arc, Combustion, Feu, Dépôt de suie, Simulation numérique, CFD, OpenFOAM, Thermo-mécanique, Grottes ornées