.. .. Data-sample,

. .. Charged-particle-multiplicity-determination, 76 6.3.1 SPD tracklet as a multiplicity estimator

, 87 6.3.4.2 Uncertainty on different MC event generators

. .. , Minimum Bias trigger efficiency for INEL>0, p.90

, Self-normalised charged-particle multiplicity computation, p.91

. .. ?-yield-measurement,

?. .. , Efficiency and corrections factors for relative, p.103

S. L. Glashow, J. Iliopoulos, and L. Maiani, Weak interactions with lepton-hadron symmetry, Physics Review D, vol.2, p.1285, 1970.

S. Weinberg, A model of leptons, Physical Review Letters, vol.19, p.1264, 1967.

F. Halzen and A. D. Martin, Quarks and leptons: An introductory course in modern particle physics, p.396, 1984.

M. Gell-mann, Symmetries of baryons and mesons, vol.125, p.1067, 1962.

O. W. Greenberg, Spin and unitary-spin independence in a paraquark model of baryons and mesons, Physical Review Letters, vol.13, p.598, 1964.

V. K. Chatrchyan and G. Hmayakyan, Event activity dependence of ?(nS) production in ? s N N = 5.02 TeV pPb and ? s = 2.76 TeV pp collisions, Journal of High Energy Physics, vol.04, p.103, 2014.

M. Tanabashi, K. Hagiwara, K. Hikasa, K. Nakamura, Y. Sumino et al., Physics Review D, vol.98, p.30001, 2018.

A. Salam and J. C. Ward, Weak and electromagnetic interactions, Il Nuovo Cimento, vol.11, p.568, 1955.

F. Englert and R. Brout, Broken symmetry and the mass of gauge vector mesons, Physical Review Letters, vol.13, p.321, 1964.

G. Aad, T. Abajyan, B. Abbott, J. Abdallah, S. A. Khalek et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Physics Letters B, vol.716, p.1, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00722246

S. Chatrchyan, V. Khachatryan, A. Sirunyan, A. Tumasyan, W. Adam et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Physics Letters B, vol.716, p.30, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00722244

R. P. Feynman, The behavior of hadron collisions at extreme energies, Conference Proceedings. C690905, p.237, 1969.

D. J. Gross and F. Wilczek, Asymptotically free gauge theories. i, Physics Review D, vol.8, p.3633, 1973.

H. D. Politzer, Asymptotic freedom: An approach to strong interactions, Physics Reports, vol.14, p.129, 1974.

J. C. Collins and M. J. Perry, Superdense matter: Neutrons or asymptotically free quarks, Physical Review Letters, vol.34, p.1353, 1975.

E. V. Shuryak, Quantum chromodynamics and the theory of superdense matter, Physics Reports, vol.61, p.71, 1980.

P. Rosnet, Quark-Gluon Plasma: from accelerator experiments to early Universe, 11th Rencontres du Vietnam: Cosmology: 50 years after CMB discovery Quy Nhon, 2015.

S. B. Rüster, V. Werth, M. Buballa, I. A. Shovkovy, and D. H. Rischke, Phase diagram of neutral quark matter: Self-consistent treatment of quark masses, Physics Review D, vol.72, p.34004, 2005.

Z. Fodor and S. Katz, Critical point of QCD at finite T and µ, lattice results for physical quark masses, Journal of High Energy Physics, p.50, 2004.

A. Bazavov, H. Ding, P. Hegde, O. Kaczmarek, F. Karsch et al., Chiral crossover in QCD at zero and non-zero chemical potentials, Physics Letters B, 2019.

M. A. Lamont, Neutral Strange Particle Production in Ultra-Relativistic Heavy Ion collisions ? s N N = 130 GeV, 2002.

T. Matsui and H. Satz, J/? Suppression by Quark-Gluon Plasma Formation, vol.178, p.416, 1986.

J. D. Bjorken, Energy Loss of Energetic Partons in Quark-Gluon Plasma: Possible Extinction of High p T Jets in Hadron-Hadron Collisions, 1982.

L. Ramello, Quarkonium production and suppression in Pb+Pb and p+A collisions at SPS energies, Nuclear Physics A, vol.774, p.59, 2006.

A. Buckley, J. Butterworth, S. Gieseke, D. Grellscheid, S. Höche et al., General-purpose event generators for LHC physics, Physics Reports, vol.504, p.145, 2011.

T. Sjöstrand, S. Mrenna, and P. Skands, PYTHIA 6.4 physics and manual, Journal of High Energy Physics, p.26, 2006.

H. Drescher, M. Hladik, S. Ostapchenko, T. Pierog, and K. Werner, Parton-based Gribov-Regge theory, Physics Reports, vol.350, p.93, 2001.
URL : https://hal.archives-ouvertes.fr/in2p3-00021464

S. Höche, Introduction to parton-shower event generators, Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: Journeys Through the Precision Frontier: Amplitudes for Colliders, p.4085, 1411.

H. Lai, J. Huston, S. Kuhlmann, J. Morfin, F. Olness et al., Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions, The European Physical Journal C -Particles and Fields, vol.12, p.375, 2000.

R. P. Feynman, Very high-energy collisions of hadrons, Physical Review Letters, vol.23, p.1415, 1969.

Z. Koba, H. Nielsen, and P. Olesen, Scaling of multiplicity distributions in high energy hadron collisions, Nuclear Physics B, vol.40, p.317, 1972.

G. J. Alner, Multiplicity distributions in different pseudorapidity intervals at a CMS energy of 540 GeV, Physics Letters, vol.160, p.193, 1985.

;. A. Ames-bologna-cern-dortmund-heidelberg, R. Breakstone, H. B. Campanini, G. M. Crawley, M. M. Dallavalle et al., Charged multiplicity distribution in pp interactions at CERN ISR energies, vol.30, p.528, 1984.

A. Giovannini and R. Ugoccioni, Clan structure analysis and QCD parton showers in multiparticle dynamics. an intriguing dialog between theory and experiment, International Journal of Modern Physics A, vol.20, p.3897, 2005.

J. F. Grosse-oetringhaus and K. Reygers, Charged-particle multiplicity in proton-proton collisions, Journal of Physics G: Nuclear and Particle Physics, vol.37, p.83001, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00475741

G. J. Alner, Scaling violations in multiplicity distributions at 200 GeV and 900 GeV, Physics Letters, vol.167, p.476, 1986.

T. , The role of double parton collisions in soft hadron interactions, Physics Letters, vol.435, p.453, 1998.

G. Alner, K. Alpgard, P. Anderer, R. Ansorge, B. Asman et al., UA5: A general study of proton-antiproton physics at ? s = 546 GeV, Physics Reports, vol.154, p.247, 1987.

, Charged-particle multiplicity measurement with Reconstructed Tracks in pp Collisions at ? s = 0.9 and 7 TeV with ALICE at the LHC, p.27, 2013.

V. Khachatryan, A. M. Sirunyan, A. Tumasyan, W. Adam, and T. Bergauer, Observation of long-range, near-side angular correlations in proton-proton collisions at the LHC, Journal of High Energy Physics, vol.2010, p.91, 2010.

B. Alver, B. B. Back, M. D. Baker, M. Ballintijn, D. S. Barton et al., System size dependence of cluster properties from two-particle angular correlations in Cu + Cu and Au + Au collisions at ? s NN = 200 gev, Physics Review C, vol.81, p.24904, 2010.

R. Hagedorn and J. Rafelski, From hadron gas to quark matter, vol.1, 1980.

A. Capella, Strangeness enhancement in heavy ion collisions, Physics Letters B, vol.364, p.175, 1995.

K. Safarík, Strangeness production at CERN SPS, Journal of Physics G: Nuclear and Particle Physics, vol.27, p.579, 2001.

S. V. Afanasiev, T. Anticic, D. Barna, J. Bartke, and R. A. Barton, Lambda production in central Pb+Pb collisions at CERN-SPS energies, A. M. for the, vol.28, p.1761, 2002.

B. I. Abelev, M. M. Aggarwal, Z. Ahammed, B. D. Anderson, D. Arkhipkin et al., Enhanced strange baryon production in Au+Au collisions compared to p + p at ? s NN = 200 GeV, Physics Review C, vol.77, p.44908, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00151444

J. Adam, Enhanced production of multi-strange hadrons in high-multiplicity proton-proton collisions, Nature Physics, vol.13, p.535, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01703781

J. J. Aubert, U. Becker, P. J. Biggs, J. Burger, M. Chen et al., Experimental observation of a heavy particle J, Physical Review Letters, vol.33, p.1404, 1974.

J. E. Augustin, A. M. Boyarski, M. Breidenbach, F. Bulos, J. T. Dakin et al., Discovery of a narrow resonance in e + e ? annihilation, vol.33, p.1406, 1974.

S. W. Herb, D. C. Hom, L. M. Lederman, J. C. Sens, H. D. Snyder et al., Observation of a Dimuon Resonance at 9.5 GeV in 400 GeV Proton-Nucleus Collisions, Physical Review Letters, vol.39, p.252, 1977.

W. R. Innes, Observation of Structure in the ? Region, Physical Review Letters, vol.39, p.1240, 1977.

K. Ueno, B. C. Brown, C. N. Brown, W. R. Innes, R. D. Kephart et al., Evidence for the ?(2s) and a search for new narrow resonances, Physical Review Letters, vol.42, p.486, 1979.

T. Affolder, H. Akimoto, A. Akopian, M. G. Albrow, P. Amaral et al., Production of ? (1S ) mesons from ? b decays in pp collisions at ? s = 1.8TeV, Physical Review Letters, vol.84, p.2094, 2000.

C. Quigg and J. L. Rosner, Quantum mechanics with applications to quarkonium, Physics Reports, vol.56, p.167, 1979.

A. Andronic, F. Arleo, R. Arnaldi, A. Beraudo, E. Bruna et al., Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions, The European Physical Journal C, vol.76, p.107, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01169535

H. Fritzsch, Producing heavy quark flavors in hadronic collisions-' a test of Quantum Chromodynamics, Physics Letters B, vol.67, p.217, 1977.

E. C. Poggio, H. R. Quinn, and S. Weinberg, Smearing method in the quark model, Physics Review D, vol.13, p.1958, 1976.

J. Amundson, O. Boli, E. Gregores, and F. Halzen, Colorless states in perturbative QCD: Charmonium and rapidity gaps, vol.372, p.127, 1996.

J. P. Lansberg, Total J/Psi and ? production cross section at the LHC: theory vs, International Conference of High Energy Physics ICHEP2010, p.206, 2010.

G. T. Bodwin, E. Braaten, and G. P. Lepage, Erratum: Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium, Physics Review D, vol.55, p.5853, 1997.

M. Butenschoen and B. A. Kniehl, J/? Polarization at the Tevatron and the LHC: Nonrelativistic-QCD Factorization at the Crossroads, Physical Review Letters, vol.108, p.172002, 2012.

B. Gong, L. Wan, J. Wang, and H. Zhang, Polarization for Prompt J/? and ?(2s) Production at the Tevatron and LHC, Physical Review Letters, vol.110, p.42002, 2013.

K. Chao, Y. Ma, H. Shao, K. Wang, and Y. Zhang, J/? Polarization at Hadron Colliders in Nonrelativistic QCD, Physical Review Letters, vol.108, p.242004, 2012.

S. Porteboeuf and R. G. De-cassagnac, J/? yield vs, Nuclear Physics B -Proceedings Supplements, vol.214, p.181, 2011.
URL : https://hal.archives-ouvertes.fr/in2p3-00610926

B. Trzeciak, Measurements of Quarkonium Polarization and Production versus Charged-Particle Multiplicity in p+p Collisions at ? s = 500GeV in the STAR Experiment, The XXVth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions, vol.956, p.721, 2016.

B. Abelev, J/? Production as a Function of Charged Particle Multiplicity in pp Collisions at ? s = 7 TeV, Physics Letters, vol.712, p.165, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00669824

S. G. Weber, Measurement of J/? production as a function of event multiplicity in pp collisions at ? s = 13,TeV with ALICE, Nuclear Physics, vol.967, p.333, 2017.

J. Adam, Measurement of charm and beauty production at central rapidity versus charged-particle multiplicity in proton-proton collisions at ? s = 7 TeV, Journal of High Energy Physics, vol.09, p.148, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01148625

D. Thakur, Quarkonium production as a function of charged-particle multiplicity in pp and pPb collisions measured by ALICE at the LHC, Proceedings of Science HardProbes2018, p.164, 2019.

D. Adamov, J/? production as a function of charged-particle pseudorapidity density in p-Pb collisions at ? s NN = 5.02 TeV, Physics Letters, vol.776, p.91, 2018.

J. Crkovská, B. Espagnon, and Z. Conesa-del-valle, Study of the J/? production in pp collisions at ? s =5.02 TeV and of the J/? production multiplicity dependence in p-Pb collisions at ? s NN = 8.16 TeV with ALICE at the LHC, 2018.

J. Adam, Measurement of D-meson production versus multiplicity in p-Pb collisions at ? s NN = 5.02 TeV, Journal of High Energy Physics, vol.08, p.78, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01278252

L. Kosarzewski, Measurements of Upsilon production in pp collisions at ? s = 500

, GeV with the STAR experiment, 2018.

, Dependence of the ?(nS) production ratios on charged particle multiplicity in pp collisions at ? s = 7 TeV, 2016.

B. Trzeciak, J/? and ?(2S) measurement in p+p collisions ? s = 200 and 500 GeV with the STAR experiment, Journal of Physics: Conference Series, vol.668, p.12093, 2016.

J. Adam, Centrality dependence of inclusive J/? production in p-Pb collisions at ? s NN = 5.02 TeV, Journal of High Energy Physics, vol.11, p.127, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-01169682

T. Sjöstrand, S. Mrenna, and P. Skands, A brief introduction to PYTHIA 8.1, Computer Physics Communications, vol.178, p.852, 2008.

S. G. Weber, A. Dubla, A. Andronic, and A. Morsch, Elucidating the multiplicity dependence of J/? production in proton-proton collisions with PYTHIA8, The European Physical Journal C, vol.79, p.36, 2019.

K. Werner, B. Guiot, I. Karpenko, and T. Pierog, Analyzing radial flow features in p-Pb and p-p collisions at several TeV by studying identified-particle production with the event generator EPOS3, Physics Review C, vol.89, p.64903, 2014.

E. G. Ferreiro and C. Pajares, High multiplicity pp events and J/? production at energies available at the CERN Large Hadron Collider, Physics Review C, vol.86, p.34903, 2012.

B. Z. Kopeliovich, H. J. Pirner, I. K. Potashnikova, K. Reygers, and I. Schmidt, J/? in high-multiplicity pp collisions: Lessons from pa collisions, vol.88, p.116002, 2013.

L. Evans, P. Bryant, and . Machine, Journal of Instrumentation, vol.3, p.8001, 2008.

E. Mobs, The CERN accelerator complex, General Photo, p.1, 2016.

G. Aad, E. Abat, J. Abdallah, A. A. Abdelalim, A. Abdesselam et al., The ATLAS Experiment at the CERN Large Hadron Collider, Journal of Instrumentation, vol.3, p.8003, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00315956

S. Chatrchyan, G. Hmayakyan, V. Khachatryan, A. M. Sirunyan, W. Adam et al., The CMS experiment at the CERN LHC, Journal of Instrumentation, vol.3, p.8004, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00311605

A. F. Barbosa, I. Bediaga, G. Cernicchiaro, G. Guerrer, H. P. Jr et al., The LHCb detector at the LHC, Journal of Instrumentation, vol.3, p.8005, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00312316

K. Aamodt, A. A. Quintana, R. Achenbach, S. Acounis, D. Adamov et al., The ALICE experiment at the CERN LHC, Journal of Instrumentation, vol.3, p.8002, 2008.
URL : https://hal.archives-ouvertes.fr/in2p3-00311441

B. Abelev, Technical design report for the upgrade of the ALICE Inner Tracking System, Journal of Physics G: Nuclear and Particle Physics, vol.41, p.87002, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-01018515

G. Dellacasa, ALICE: Technical design report of the Time Projection Chamber TPC, 2000.

G. Dellacasa, ALICE: Technical design report of the Time of Flight system (TOF), 2000.
URL : https://hal.archives-ouvertes.fr/in2p3-00019978

P. Cortese, ALICE: Addendum to the technical design report of the Time of Flight system (TOF), 2002.

S. Acharya, The ALICE Transition Radiation Detector: construction, operation and performance, Nucl. Instrum. Meth, vol.881, p.88, 2018.

F. Piuz, W. Klempt, L. Leistam, D. Groot, and A. High, , 1998.

P. Cortese, G. Dellacasa, R. Gemme, L. Sitta, R. M. et al., , 2008.

J. Allen, C. Bernard, O. Bourrion, M. Chala, M. Franio et al., An Addendum to the EMCal Technical Design Report Di-Jet and Hadron-Jet correlation measurements in ALICE, 2010.

G. Dellacasa, ALICE Technical Design Report of the photon spectrometer (PHOS), 1999.

J. Adam and D. Adamová, ALICE: Addendum to the Technical Design Report of the Photon Multiplicity Detector (PMD), 2003.

P. Cortese, ALICE Technical Design Report on forward detectors: FMD, T0 and V0, 2004.
URL : https://hal.archives-ouvertes.fr/in2p3-00024755

J. Adam and D. Adamová, Performance of the ALICE VZERO system, Journal of Instrumentation, vol.8, p.10016, 2013.

G. Dellacasa, ALICE Technical Design Report of the Zero Degree Calorimeter (ZDC), 1999.

A. V. Tello, AD, the ALICE diffractive detector, Physics Proceedings, vol.1819, p.40020, 2017.

J. Adam and D. Adamová, The ALICE Forward Multiplicity Detector, International Journal of Modern Physics, vol.16, p.2432, 2007.

A. Fernández, ACORDE, a Cosmic Ray Detector for ALICE, Nucl. Instrum. Meth. A572, p.102, 2007.

, Alignment of the ALICE Inner Tracking System with cosmic-ray tracks, Journal of Instrumentation, vol.5, p.3003, 2010.

D. Elia, J. Grosse-oetringhaus, M. Nicassio, and T. Virgili, The pixel detector based tracklet reconstruction algorithm in ALICE, 2009.

J. Alme, Y. Andres, S. Bablok, N. Bialas, R. Bolgen et al., The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.622, p.316, 2010.

W. Blum, W. Riegler, and L. Rolandi, Particle detection with drift chambers, 2008.

S. Van-der-meer, Calibration of the effective beam height in the ISR, 1968.

G. Dellacasa, ALICE technical design report of the dimuon forward spectrometer, 1999.

L. S. Azhgirey, I. S. Baishev, K. M. Potter, and V. V. Talanov, Machine Induced Background in the Low Luminosity Insertions of the LHC

D. Nouais, The ALICE silicon drift detector system, Nucl. Instrum. Meth, vol.501, p.119, 2001.

B. Abelev, Upgrade of the ALICE Experiment: Letter Of Intent, Journal of Physics, vol.41, p.87001, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-01018532

C. W. Fabjan, L. Jirdn, V. Lindestruth, L. Riccati, D. Rorich et al., ALICE trigger data-acquisition high-level trigger and control system, 2004.

, Performance of the ALICE experiment at the CERN LHC, International Journal of Modern Physics A, vol.29, p.1430044, 2014.

H. Engel, T. Alt, T. Breitner, A. G. Ramirez, T. Kollegger et al., The ALICE high-level trigger read-out upgrade for LHC Run 2, Journal of Instrumentation, vol.11, p.1041, 2016.

B. Abelev, Upgrade of the ALICE Experiment: Letter of Intent, Journal of Physics G: Nuclear and Particle Physics, vol.41, p.87001, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-01018532

. Abelev, Technical design report for the upgrade of the alice inner tracking system, Journal of Physics, vol.41, p.87002, 2014.
URL : https://hal.archives-ouvertes.fr/in2p3-01018515

R. Arnaldi, A. Baldit, V. Barret, N. Bastid, G. Blanchard et al., Beam and ageing tests with a highlysaturated avalanche gas mixture for the ALICE pp data taking, Nuclear Physics B -Proceedings Supplements, vol.158, p.149, 2006.
URL : https://hal.archives-ouvertes.fr/in2p3-00137929

R. Arnaldi, A. Baldit, V. Barret, N. Bastid, G. Blanchard et al., Front-end electronics for the RPCs of the ALICE dimuon trigger, IEEE Transactions on Nuclear Science, vol.52, p.1176, 2005.
URL : https://hal.archives-ouvertes.fr/in2p3-00024704

P. Antonioli, A. Kluge, and W. Riegler, Upgrade of the ALICE Readout and Trigger System, 2013.

B. Joly, P. Dupieux, S. Manen, F. Jouve, and R. Vandaele, Upgrade of the ALICE muon trigger electronics, vol.9, p.2, 2014.

T. A. Collaboration, G. Aad, E. Abat, J. Abdallah, A. A. Abdelalim et al., The ATLAS experiment at the CERN Large Hadron Collider, Journal of Instrumentation, vol.3, p.8003, 2008.

T. C. Collaboration, S. Chatrchyan, G. Hmayakyan, V. Khachatryan, A. M. Sirunyan et al., The CMS experiment at the CERN LHC, Journal of Instrumentation, vol.3, p.8004, 2008.

, FEERIC: Front-End Electronics for the Resistive Plate Chambers of the ALICE Muon Identifier, 2016.

, Tdc-gpx from acam datasheet

D. Adamová, M. Aggarwal, G. A. Rinella, M. Agnello, N. Agrawal et al., J/? production as a function of charged-particle pseudorapidity density in p-pb collisions at ? s NN = 5.02 tev, Physics Letters B, vol.776, p.91, 2018.

T. Pierog, I. Karpenko, J. M. Katzy, E. Yatsenko, K. Werner et al., Test of collective hadronization with data measured at the CERN Large Hadron Collider, Physics Review C, vol.92, p.34906, 2015.

J. Adam, D. Adamová, M. Aggarwal, G. A. Rinella, M. Agnello et al., Pseudorapidity and transverse-momentum distributions of charged particles in proton-proton collisions at ? s = 13 TeV, Physics Letters B, vol.753, p.319, 2016.
URL : https://hal.archives-ouvertes.fr/in2p3-01207015

, Multiplicity-dependent self-normalized inclusive J/? yields in pp collisions at ? s= 13 TeV, measured at midrapidity. The measurement is compared with available calculations: percolation model by Ferreiro

, Schematic view of the CERN accelerator complex and its four largest experiments

, Layout of the ITS detector in Run II

, In the left panel, the transverse plane view of the detector illustrates how the ?? is calculated and the z-y plane view in right panel illustrates how the ?z projected is calculated

, The lines show the parametrizations of the expected mean energy loss for different particle species, the TPC versus particle momentum in pp collisions at ? s = 13 TeV, p.46

]. .. , 49 4.10 Sketch of the working principle of a Multi-Wire Proportional Chamber, p.50

, Right: Picture of a slat design chamber, Picture of a quadrant design chamber

. .. , The RPC structure in Muon Trigger system [109], p.51

. Context and . .. Ctp,

. .. Asic, Block diagram of one channel of the FEERIC, p.57

, Gain uniformity for FEERIC22 (top) and FEERIC42 (bottom

, Injection charge just above threshold 200 fC for FEERIC11 (top panel) and the projection of the injection charge for FEERIC11 channel 1 (bottom panel), p.61

, Injection charge just above four thresholds for FEERIC11, FEERIC21 and FEERIC42 tested on positive polarity

, Average charge injection at four different thresholds for FEERIC11 cards on positive polarity

, Average charge injection at four different thresholds for FEERIC21 cards on positive polarity

, Average charge injection at four different thresholds for FEERIC41 cards on positive polarity

, Average charge injection at four different thresholds for FEERIC21, FEERIC22 and FEERIC42 cards on negative polarity

, 65 5.14 The average response time per FEERIC channel for FEERIC11, FEERIC12, FEERIC21, FEERIC22, FEERIC41 and FEERIC42 before applying any offset for calibration

, Response time for different strip pitches

. .. Feeric12,

. .. , Correlation of online and offline information in the V0, p.73

. .. , 2 Correlation of online and offline information in the SPD, p.73

. .. , Effects due to multiple vertices cut. The left panel shows the events before using any cuts where there are some events with d > 0.8. After using this cut a small fraction of events is removed (right panel), p.73

, Correlation of V0 clusters with SPD tracklets

, Pile-up due to the correlation between SPD clusters and tracklets. On left the figure is before pile-up removal and on right figure is after pile-up removal, p.74

. .. , SPD tracklet distribution for CMUL7 trigger (left col.) and CINT7 trigger (right col.) before and after pile-up removal using APS, p.75

, SPD z-vertex distribution when selecting the events within |v z |< 10 cm, p.76

, SPD tracklets in ?-v z plane

, Active and inactive SPD modules during the run number 254419 of 2016 data taking

, 79 6.11 N raw trk , N cor,max/min trk as a function of z-vertex, Event averaged number of tracklets N trk as a function of z-coordinate of the SPD vertex

, The tracklet distribution before and after applying the data-driven correction. The blue is the raw distribution, the red one is the corrected distribution with respect to maximum and the black one represents the corrected distribution with respect to minimum

, TProfile ratio of CMUL7 per period to CINT7 integrated, p.80

. .. Integrated, 81 6.15 CINT7 and CMUL7 N trk as a function of (z-vertex) in the integrated sample, TProfile ratio of CINT7 per period to CINT7

, 16 CINT7 and CMUL7 N raw trk and N cor trk distribution in the integrated sample, vol.81

E. ). Pythia, The comparison of average raw tracklets as a function of z-vertex distributions between data and MC, p.82

, The average number of raw tracklets N raw trk , corrected tracklets N cor trk and charged particles N ch versus z-vertex distributions

. .. Probability, 84 6.21 N cor trk distribution from data. Here the vertical black lines represent the boundary of each multiplicity bin, vol.83

. .. , Comparison between global alpha and alpha in bins, vol.87

, N ch systematic uncertainty in the first multiplicity bins from ad-hoc polynomial fit

M. .. Bins, , p.90

. Di,

, Example fit of the di-muon invariant mass with 3 CB2 for the signal. The four plots presents the four step of the fit

, 97 6.30 Signal extraction in different multiplicity bins

, The raw number of ?(1S) in the integrated 2016 data sample, p.99

, The raw number of ?(2S) in the integrated 2016 data sample, p.99

, Raw number of ?(1S) yields in the N cor trk bin, pp.9-14

. .. , 100 run-by-run for total 2016 data sample (431 runs), Relative ?(2S) in multiplicity bin (42? N cor trk ?50), p.102

?. Relative, 1S) yield as a function of charge-particle multiplicity, the black dashed line is drawn to x=y correlation

?. Relative, 2S) yield as a function of charge-particle multiplicity, the black dashed line is drawn to x=y correlation

?. Relative, 1S) yield as a function of charge-particle multiplicity, the black dashed line is drawn to x=y correlation

, with multiplicity in the bottom panels as a function of the self-normalized chargedparticle multiplicity, Self-normalized ?(1S) and ?(2S) in the top panels and their ratio

, Relative ? 1S and ? 2S yield as a function of multiplicity fitted with linear (orange line) and polynomial functions (red line)

, Ratio of relative ? 2S and ? 1S as a function of charged-particle multiplicity, p.110

, Ratio of relative ? 2S and ? 1S as a function of transverse energy (left) and charged tracks (right), the black dashed lines are drawn at y=1, p.111

, Quarkonium production as function of multiplicity

, Ratio of relative ? 1S and J/? as a function of charged-particle multiplicity, p.113

, Tail parameter extracted from pp 13 MC simulation using extended

, Extraction of the ? 1 parameter of the left tail under various fit conditions, with the data-driven fit procedure

, Extraction of the n 1 parameter of the left tail under various fit conditions, with the data-driven fit procedure

, Extraction of the ? 2 parameter of the left tail under various fit conditions, with the data-driven fit procedure

, Extraction of the n 2 parameter of the left tail under various fit conditions, with the data-driven fit procedure

, 10 ? ? 1S in the integrated case

, C.11 Mass of ?(1S), M ? 1S in the integrated case

C. , Significance of ?(1S) in the integrated case

C. , Significance of ?(2S) in the integrated case

D. , The µ-values as a function of run numbers for LHC 16j period, p.135

E. , N raw trk , v z distributions from data and PYTHIA event generator (top panels) and data-MC ratios are shown (bottom panels)

. .. , 4 3.1 Summary of the most important characteristics of the three ? states. The percentages near the decay modes are the branching ratios, N raw trk , v z distributions from data and EPOS event generator (top panels) and data-MC ratios are shown (bottom panels), p.22

, Summary of multiplicity differential quarkonia and open heavy flavor studies 27

, Dimensions of individual layers of ITS [104]

, Trigger definition in ? vs

]. .. , 56 5.2 Number and type of FEERIC cards from production and pre-production, p.57

, The absolute time response values from the oscilloscope using the FEERIC cards from pre-series. Each value corresponds to the response time averaged values (per channel) over 10 cards

, Dispersion from series, test bench and single card measurement, p.70

, Number of events passing each selection criteria

, 2 MC production used for this analysis

, N ch with statistical and systematic uncertainties (weighted by data), p.89

. .. N-ch, 89 6.5 i IN EL>0 in multiplicity bins

. In-el&gt;0 and . Ch,

, ch /d?/ dN ch /d? ) i with final systematic uncertainties, p.91

, Tail parameters used in the analysis: fixed to the simulations at 13 TeV or estimated with a data-driven method

, ?(2S) yields in integrated case and in different multiplicity bins, Raw ?(1S), p.100

, ?(2S) in different multiplicity bins, Relative ?(1S)

, The normalisation factors in multiplicity bins

, MB events and raw ?(1S) yields

, Efficiency for INEL>0 selection

, Approximate statistics on RUN2 data sample