C. Ahn, H. Peng, and H. E. Tseng, Robust estimation of road frictional coefficient, IEEE Transactions on Control Systems Technology, vol.21, issue.1, pp.1-13, 2013.

L. Alvarez and J. Yi, Adaptive emergency braking control in automated highway systems, Proceedings of the 38th IEEE Conference on Decision and Control, vol.4, pp.3740-3745, 1999.

L. Alvarez, J. Yi, R. Horowitz, and L. Olmos, Dynamic friction model-based tire-road friction estimation and emergency braking control, Journal of Dynamic Systems, Measurement, and Control, vol.127, issue.1, pp.22-32, 2005.

A. Braking, ABS sensors, 2019.

T. M. Apostol and . Calculus, One-variable calculus, with an introduction to linear algebra, 1967.

J. Bähr, P. Erker, and . Bosch, History of a Global Enterprise, 2015.

L. Bascetta, G. Magnani, and P. Rocco, Velocity estimation: Assessing the performance of non-model-based techniques, IEEE Transactions on Control Systems Technology, vol.17, issue.2, pp.424-433, 2009.

G. Besançon, A viewpoint on observability and observer design for nonlinear systems, New Directions in Nonlinear Observer Design, vol.244, pp.3-22, 1999.

P. A. Bliman and M. Sorine, Easy-to-use realistic dry friction models for automatic control, Proceedings of the 3rd European Control Conference, pp.3788-3794, 1995.

M. Blundell and D. Harty, Multibody Systems Approach to Vehicle Dynamics, 2015.

R. H. Brown and S. C. Schneider, Velocity observations from discrete position encoders, Proc. SPIE 0858 Signal Acquisition and Processing, pp.1111-1118, 1987.

M. Burckhardt and . Fahrwerktechnik, Radschlupf-Regelsysteme, 1993.

C. De-wit, C. Tsiotras, P. Velenis, E. Basset, M. Gissinger et al., Dynamic friction models for road/tire longitudinal interaction, Vehicle System Dynamics, vol.39, issue.3, pp.189-226, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00734006

C. R. Carlson and J. C. Gerdes, Consistent nonlinear estimation of longitudinal tire stiffness and effective radius, IEEE Transactions on Control Systems Technology, vol.13, issue.6, pp.1010-1020, 2005.

S. B. Choi, Antilock brake system with a continuous wheel slip control to maximize the braking performance and the ride quality, IEEE Transactions on Control Systems Technology, vol.16, issue.5, pp.996-1003, 2008.

R. M. Corless, G. H. Gonnet, D. E. Hare, D. J. Jeffrey, and D. E. Knuth, On the Lambert W function, Advances in Computational Mathematics, vol.5, issue.1, pp.329-359, 1996.

R. M. Corless and D. J. Jeffrey, The Lambert W function, The Princeton Companion to Applied Mathematics, pp.151-155, 2015.

M. Corno, M. Gerard, M. Verhaegen, and E. Holweg, Hybrid ABS control using force measurement, IEEE Transactions on Control Systems Technology, vol.20, issue.5, pp.1223-1235, 2012.

M. Corno, G. Panzani, and S. M. Savaresi, Traction-controloriented state estimation for motorcycles, IEEE Transactions on Control Systems Technology, vol.21, issue.6, pp.2400-2407, 2013.

M. Corno, F. Roselli, L. Onesto, F. Molinaro, E. Graves et al., Experimental validation of an antilock braking system for snowmobiles with lateral stability considerations, IEEE Transactions on Control Systems Technology, pp.1-8, 2018.

M. Corno and S. M. Savaresi, Experimental identification of engineto-slip dynamics for traction control applications in a sport motorbike, European Journal of Control, vol.16, issue.1, pp.88-108, 2010.

P. R. Dahl, Solid friction damping of mechanical vibrations, AIAA Journal, vol.14, issue.12, pp.1675-1682, 1976.

A. G. Daimler, Mercedes-Benz and the invention of the anti-lock braking system: ABS, ready for production in 1978, 2008.

. De and C. W. Silva, Sensors and actuators: Engineering system instrumentation, 2015.

J. Deur, J. Asgari, and D. Hrovat, A 3D brush-type dynamic tire friction model, Vehicle System Dynamics, vol.42, issue.3, pp.133-173, 2004.

R. L. Devaney, A First Course In Chaotic Dynamical Systems: Theory And Experiment, 1992.

S. Drakunov, Ü. Özgüner, P. Dix, and B. Ashrafi, ABS control using optimum search via sliding modes, IEEE Transactions on Control Systems Technology, vol.3, issue.1, pp.79-85, 1995.

C. El-tannoury, S. Moussaoui, F. Plestan, N. Romani, and G. Pita-gil, Synthesis and application of nonlinear observers for the estimation of tire effective radius and rolling resistance of an automotive vehicle, IEEE Transactions on Control Systems Technology, vol.21, issue.6, pp.2408-2416, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00811501

E. Espíndola-lópez, A. Gómez-espinosa, R. V. Carrillo-serrano, and J. C. Jáuregui-correa, Fourier series learning control for torque ripple minimization in permanent magnet synchronous motors, Applied Sciences, vol.6, issue.9, 2016.

G. Genta, Motor vehicle dynamics: modeling and simulation, Advances in Mathematics for Applied Sciences. World Scientific, vol.43, 2006.

M. Gerard, W. Pasillas-lépine, E. De-vries, and M. Verhaegen, Improvements to a five-phase ABS algorithm for experimental validation, Vehicle System Dynamics, vol.50, issue.10, pp.1585-1611, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00526061

M. Guay, Observer linearization by output-dependent time-scale transformations, IEEE Transactions on Automatic Control, vol.47, issue.10, pp.1730-1735, 2002.

F. Gustafsson, Slip-based tire-road friction estimation, Automatica, vol.33, issue.6, pp.1087-1099, 1997.

F. Gustafsson, Automotive safety systems, IEEE Signal Processing Magazine, vol.26, issue.4, pp.32-47, 2009.

F. Gustafsson, Rotational speed sensors: limitations, pre-processing and automotive applications, IEEE Instrumentation & Measurement Magazine, vol.13, issue.2, pp.16-23, 2010.

K. Han, S. B. Choi, J. Lee, D. Hyun, and J. Lee, Accurate brake torque estimation with adaptive uncertainty compensation using a brake force distribution characteristic, IEEE Transactions on Vehicular Technology, vol.66, issue.12, pp.10830-10840, 2017.

J. P. Hespanha, Uniform stability of switched linear systems: extensions of LaSalle's invariance principle, IEEE Transactions on Automatic Control, vol.49, issue.4, pp.470-482, 2004.

N. J. Higham, The Princeton Companion to Applied Mathematics, 2015.

M. W. Hirsch, S. Smale, and R. L. Devaney, Differential Equations, Dynamical Systems, and an Introduction to Chaos, 2004.

T. B. Hoàng, W. Pasillas-lépine, and A. De-bernardinis, Reducing the impact of wheel-frequency oscillations in continuous and hybrid abs strategies, Proceedings of the 11th International Symposium on Advanced Vehicle Control (AVEC'12, 2012.

T. B. Hoàng, W. Pasillas-lépine, A. De-bernardinis, and M. Netto, Extended braking stiffness estimation based on a switched observer, with an application to wheel-acceleration control, IEEE Transactions on Control Systems Technology, vol.22, issue.6, pp.2384-2392, 2014.

T. B. Hoàng, W. Pasillas-lépine, and W. Respondek, A switching observer for systems with linearizable error dynamics via singular timescaling, Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems, pp.1101-1108, 2014.

D. Hong, I. Hwang, P. Yoon, and K. Huh, Development of a vehicle stability control system using brake-by-wire actuators, Journal of Dynamic Systems, Measurement, and Control, vol.130, issue.1, p.11008, 2007.

L. Hsu, R. Ortega, and G. Damm, A globally convergent frequency estimator, IEEE Transactions on Automatic Control, vol.44, issue.4, pp.698-713, 1999.

P. Ioannou and J. Sun, Robust Adaptive Control, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01394197

F. Jiang and Z. Gao, An application of nonlinear PID control to a class of truck ABS problems, Proceedings of the 40th IEEE Conference on Decision and Control, vol.1, pp.516-521, 2001.

T. A. Johansen, I. Petersen, J. Kalkkuhl, and J. Ludemann, Gain-scheduled wheel slip control in automotive brake systems, IEEE Transactions on Control Systems Technology, vol.11, issue.6, pp.799-811, 2003.

A. Johnson, Hitting the Brakes: Engineering Design and the Production of Knowledge, 2009.

A. Johnson, The culture of ABS, Mechanical Engineering, vol.132, issue.9, p.96, 2010.

R. C. Kavanagh, Improved digital tachometer with reduced sensitivity to sensor nonideality, IEEE Transactions on Industrial Electronics, vol.47, issue.4, pp.890-897, 2000.

R. C. Kavanagh, Shaft encoder characterization via theoretical model of differentiator with both differential and integral nonlinearities, IEEE Transactions on Instrumentation and Measurement, vol.49, issue.4, pp.795-801, 2000.

R. C. Kavanagh, Performance analysis and compensation of M/T-type digital tachometers, IEEE Transactions on Instrumentation and Measurement, vol.50, issue.4, pp.965-970, 2001.

R. C. Kavanagh, Shaft encoder characterisation through analysis of the mean-squared errors in nonideal quantised systems, IEE Proceedings -Science, Measurement and Technology, vol.149, issue.2, pp.99-104, 2002.

H. K. Khalil, Nonlinear Systems, second ed, 1996.

U. Kiencke, Realtime estimation of adhesion characteristic between tyres and road, IFAC Proceedings Volumes, vol.26, pp.15-18, 1993.

U. Kiencke and S. Daiss, Estimation of tyre friction for enhanced ABS systems, Proceedings of the International Symposium on Advanced Vehicle Control (AVEC'94), pp.515-520, 1994.

U. Kiencke and L. Nielsen, Automotive control systems: For engine, driveline, and vehicle, second ed, 2005.

. Knorr-bremse-ag, Looking back on 110 years of expertise: Milestones of the Rail Vehicle Systems and Commercial Vehicle Systems divisions, 2019.

. Koenigsegg and . Koenigsegg, Agera RS achieves multiple production car world speed records, 2017.

T. Köppen, T. Küpper, and O. Makarenkov, Existence and stability of limit cycles in control of anti-lock braking systems with two boundaries via perturbation theory, International Journal of Control, vol.90, issue.5, pp.974-989, 2017.

D. Kreit, Optical encoders -are they as accurate as you think? Zettlex UK Ltd, 2014.

C. Kuo and E. C. Yeh, A four-phase control scheme of an antiskid brake system for all road conditions, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol.206, issue.4, pp.275-283, 1992.

J. R. Layne, K. M. Passino, and S. Yurkovich, Fuzzy learning control for antiskid braking systems, IEEE Transactions on Control Systems Technology, vol.1, issue.2, pp.122-129, 1993.

C. Lee, K. Hedrick, and K. Yi, Real-time slip-based estimation of maximum tire-road friction coefficient, IEEE/ASME Transactions on Mechatronics, vol.9, issue.2, pp.454-458, 2004.

H. Leiber and A. Czinczel, Antiskid system for passenger cars with a digital electronic control unit, 1979.

L. Li, F. Wang, and Q. Zhou, Integrated longitudinal and lateral tire/road friction modeling and monitoring for vehicle motion control, IEEE Transactions on Intelligent Transportation Systems, vol.7, issue.1, pp.1-19, 2006.

X. Li, Q. Zhang, and H. Su, An adaptive observer for joint estimation of states and parameters in both state and output equations, International Journal of Adaptive Control and Signal Processing, vol.25, issue.9, pp.831-842, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00777420

D. Liberzon, Systems and Control. Systems & Control: Foundations & Applications. Birkhäuser Basel, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01962130

C. Lin and C. Hsu, Self-learning fuzzy sliding-mode control for antilock braking systems, IEEE Transactions on Control Systems Technology, vol.11, issue.2, pp.273-278, 2003.

A. Loría and E. Panteley, Uniform exponential stability of linear time-varying systems: revisited, Systems & Control Letters, vol.47, issue.1, pp.13-24, 2002.

A. Loría and E. Panteley, Cascaded nonlinear time-varying systems: Analysis and design, Advanced Topics in Control Systems Theory: Lecture Notes from FAP, vol.311, pp.23-64, 2004.

C. Lundquist, R. Karlsson, E. Özkan, and F. Gustafsson, Tire radii estimation using a marginalized particle filter, IEEE Transactions on Intelligent Transportation Systems, vol.15, issue.2, pp.663-672, 2014.

R. Marino and P. Tomei, Nonlinear Control Design: Geometric, Adaptive, and Robust, 1995.

G. Mastinu and M. Ploechl, Road and off-road vehicle system dynamics handbook, 2014.

R. Merry, M. Van-de-molengraft, and M. Steinbuch, Special Issue on "Servo Control for Data Storage and Precision Systems, Mechatronics, vol.20, issue.1, pp.20-26, 2008.

R. Merry, M. Van-de-molengraft, and M. Steinbuch, Optimal higher-order encoder time-stamping, Mechatronics, vol.23, issue.5, pp.481-490, 2013.

J. I. Miller and D. Cebon, A high performance pneumatic braking system for heavy vehicles, Vehicle System Dynamics, vol.48, issue.S1, pp.373-392, 2010.

G. Mooney, Safe landing, ANSYS Advantage, VII, issue.1, pp.10-13, 2013.

B. Morris and J. W. Grizzle, Hybrid invariant manifolds in systems with impulse effects with application to periodic locomotion in bipedal robots, IEEE Transactions on Automatic Control, vol.54, issue.8, pp.1751-1764, 2009.

S. Müller, M. Uchanski, and K. Hedrick, Estimation of the maximum tire-road friction coefficient, Journal of Dynamic Systems, Measurement, and Control, vol.125, issue.4, pp.607-617, 2003.

K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems, 2005.

V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations, 1960.

E. Ono, K. Asano, M. Sugai, S. Ito, M. Yamamoto et al., Estimation of automotive tire force characteristics using wheel velocity, Control Engineering Practice, vol.11, issue.12, pp.1361-1370, 2003.

H. Ouwerkerk and R. R. Guntur, Skid prediction, Vehicle System Dynamics, vol.1, issue.2, pp.67-88, 1972.

H. B. Pacejka, Tire and Vehicle Dynamics, 2012.

E. Panteley and A. Loría, Growth rate conditions for uniform asymptotic stability of cascaded time-varying systems, Automatica, vol.37, issue.3, pp.453-460, 2001.

E. Panteley, A. Loría, and A. Teel, Relaxed persistency of excitation for uniform asymptotic stability, IEEE Transactions on Automatic Control, vol.46, issue.12, pp.1874-1886, 2001.

G. Panzani, M. Corno, and S. M. Savaresi, On the periodic noise affecting wheel speed measurement, 16th IFAC Symposium on System Identification, vol.45, pp.1695-1700, 2012.

W. Pasillas-lépine, Hybrid modeling and limit cycle analysis for a class of five-phase anti-lock brake algorithms, Vehicle System Dynamics, vol.44, issue.2, pp.173-188, 2006.

W. Pasillas-lépine, A. Loría, and M. Gerard, Design and experimental validation of a nonlinear wheel slip control algorithm, Automatica, vol.48, issue.8, pp.1852-1859, 2012.

L. Perko, Differential Equations and Dynamical Systems, vol.7, 2001.

R. Rajamani, N. Piyabongkarn, J. Lew, K. Yi, and G. Phanom-choeng, Tire-road friction-coefficient estimation, IEEE Control Systems, vol.30, issue.4, pp.54-69, 2010.

G. Rallo, S. Formentin, M. Corno, and S. M. Savaresi, Real-time pedaling rate estimation via wheel speed filtering. IFACPapersOnLine, vol.50, pp.6010-6015, 2017.

K. Reif and . Ed, Brakes, brake control and driver assistance systems: Function, regulation and components. Bosch Professional Automotive Information, 2014.

W. Respondek, A. Pogromsky, and H. Nijmeijer, Time scaling for observer design with linearizable error dynamics, Automatica, vol.40, issue.2, pp.277-285, 2004.

A. Rezaeian, A. Khajepour, W. Melek, S. Chen, and N. Moshchuk, Simultaneous vehicle real-time longitudinal and lateral velocity estimation, IEEE Transactions on Vehicular Technology, vol.66, issue.3, pp.1950-1962, 2017.

R. Marco, V. Kalkkuhl, J. Raisch, and J. , EKF for simultaneous vehicle motion estimation and IMU bias calibration with observability-based adaptation, American Control Conference, pp.6309-6316, 2018.

R. Ronsse, S. M. De-rossi, N. Vitiello, T. Lenzi, M. C. Carrozza et al., Real-time estimate of velocity and acceleration of quasi-periodic signals using adaptive oscillators, IEEE Transactions on Robotics, vol.29, issue.3, pp.783-791, 2013.

M. Sampei and K. Furuta, On time scaling for nonlinear systems: Application to linearization, IEEE Transactions on Automatic Control, vol.31, issue.5, pp.459-462, 1986.

S. N. Sastry and . Systems, Interdisciplinary Applied Mathematics, vol.10, 1999.

S. M. Savaresi and M. Tanelli, Active braking control systems design for vehicles. Advances in Industrial Control, 2010.

S. M. Savaresi, M. Tanelli, and C. Cantoni, Mixed slipdeceleration control in automotive braking systems, Journal of Dynamic Systems, Measurement, and Control, vol.129, issue.1, pp.20-31, 2007.

S. M. Savaresi, M. Tanelli, P. Langthaler, and L. Del-re, New regressors for the direct identification of tire deformation in road vehicles via "in-tire" accelerometers, IEEE Transactions on Control Systems Technology, vol.16, issue.4, pp.769-780, 2008.

A. Savitzky and M. J. Golay, Smoothing and differentiation of data by simplified least squares procedures, Analytical Chemistry, vol.36, issue.8, pp.1627-1639, 1964.

R. W. Schafer, On the frequency-domain properties of Savitzky-Golay filters, Digital Signal Processing and Signal Processing Education Meeting (DSP/SPE, pp.54-59, 2011.

R. W. Schafer, What Is a Savitzky-Golay filter? [lecture notes, IEEE Signal Processing Magazine, vol.28, issue.4, pp.111-117, 2011.

B. Simon, Braking without locking the wheels. Bosch History Blog, 2018.

K. B. Singh, M. A. Arat, and S. Taheri, An intelligent tire based tire-road friction estimation technique and adaptive wheel slip controller for antilock brake system, Journal of Dynamic Systems, Measurement, and Control, vol.135, issue.3, p.31002, 2013.

S. Solyom, A. Rantzer, and J. Lüdemann, Synthesis of a modelbased tire slip controller. Vehicle System Dynamics, vol.41, pp.475-499, 2004.

S. H. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering, 1994.

M. Sugai, H. Yamaguchi, M. Miyashita, T. Umeno, and K. Asano, New control technique for maximizing braking force on antilock braking system, Vehicle System Dynamics, vol.32, issue.4-5, pp.299-312, 1999.

K. K. Tan, H. X. Zhou, and T. H. Lee, New interpolation method for quadrature encoder signals, IEEE Transactions on Instrumentation and Measurement, vol.51, issue.5, pp.1073-1079, 2002.

M. Tanelli, A. Astolfi, and S. M. Savaresi, Robust nonlinear proportional-integral control for active braking control systems, Proceedings of the 45th IEEE Conference on Decision and Control, pp.1745-1750, 2006.

M. Tanelli, A. Astolfi, and S. M. Savaresi, Robust nonlinear output feedback control for brake by wire control systems, Automatica, vol.44, issue.4, pp.1078-1087, 2008.

M. Tanelli, G. Osorio, . Di, M. Bernardo, S. M. Savaresi et al., Existence, stability and robustness analysis of limit cycles in hybrid anti-lock braking systems, International Journal of Control, vol.82, issue.4, pp.659-678, 2009.

W. J. Terrell, Stability and Stabilization: An Introduction, 2009.

C. P. Treutler, Magnetic sensors for automotive applications. Sensors and Actuators A: Physical, Third European Conference on Magnetic Sensors & Actuators, vol.91, pp.2-6, 2001.

T. Umeno, Estimation of tire-road friction by tire rotational vibration model, R&D Review of Toyota CRDL, vol.37, issue.3, pp.53-58, 2002.

T. Umeno, E. Ono, K. Asano, S. Ito, A. Tanaka et al., Estimation of tire-road friction using tire vibration model, 2002.

C. Unsal and P. Kachroo, Sliding mode measurement feedback control for antilock braking systems, IEEE Transactions on Control Systems Technology, vol.7, issue.2, pp.271-281, 1999.

J. Villagra, B. Novel, M. Fliess, and H. Mounier, A diagnosis-based approach for tire-road forces and maximum friction estimation, Control Engineering Practice, vol.19, issue.2, pp.174-184, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00533586

P. E. Wellstead and N. B. Pettit, Analysis and redesign of an antilock brake system controller, IEE Proceedings -Control Theory and Applications, vol.144, issue.5, pp.413-426, 1997.

K. Wessel and . Bremskraftregler, insbesondere fuer kraftfahrzeuge (brake pressure regulator, particularly for motor vehicles), 1928.

E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and B. Morris, Feedback Control of Dynamic Bipedal Robot Locomotion. Automation and Control Engineering, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01702841

. World-health and . Organization, Save LIVES: a road safety technical package, 2017.

. World-health and . Organization, Global status report on road safety 2018, 2018.

J. Yi, L. Alvarez, and R. Horowitz, Adaptive emergency braking control with underestimation of friction coefficient, IEEE Transactions on Control Systems Technology, vol.10, issue.3, pp.381-392, 2002.

J. Zhang, W. Sun, and H. Jing, Nonlinear robust control of antilock braking systems assisted by active suspensions for automobile, IEEE Transactions on Control Systems Technology, pp.1-8, 2018.

Q. Zhang, Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems, IEEE Transactions on Automatic Control, vol.47, issue.3, pp.525-529, 2002.

Q. Zhang, An adaptive observer for sensor fault estimation in linear time varying systems, IFAC Proceedings Volumes, vol.38, pp.137-142, 2005.

R. Thèse,

Q. Liés,

A. Systèmes-d'antiblocage-des-roues,

, Une cible ambitieuse de réduire ces chiffres de moitié d'ici 2020 a été établie dans le cadre du Programme de développement durable à l'horizon 2030. Les mesures clés à être mises en oeuvre pour atteindre la cible incluent : d'établir et de faire respecter des limitations de vitesse et d'autres lois de circulation, de fournir de l'infrastructure sûre pour tous les usagers de la route et d'établir et de faire respecter des réglementations en matière de normes de sécurité des véhicules automobiles. Le déploiement universel des technologies permettant d'éviter un accident ou d'atténuer la gravité des blessures est encouragé, avec un accent sur des systèmes avancés de sécurité active dont l'efficacité est démontrée, Les accidents de la circulation routière constituent un problème important pour la santé publique et le développement, avec des coûts socioéconomiques significatifs

, Le véhicule devient instable et incontrôlable, puisqu'il ne réagit plus aux commandes de direction exercées par le conducteur au niveau du volant. Par contre, dans un véhicule équipé de l'ABS, des capteurs mesurent la vitesse de rotation des roues et transmettent cette information à l'unité de contrôle de l'ABS. Si cette dernière détecte qu'une ou plusieurs roues sont sur le point de se bloquer, Introduit par Bosch en 1978 sur les véhicules de série, l'ABS est le socle des systèmes de sécurité active d'aujourd'hui

F. De-cette, ABS empêche les roues de se bloquer, assurant un freinage en sécurité et, par conséquent, le véhicule reste stable et contrôlable. Générale-ment, la distance d'arrêt diminue aussi. Cette thèse aborde trois problèmes liés à l'ABS dans le cadre de la dynamique de la roue : l'estimation de la rigidité de freinage étendue (XBS) des pneus lors du freinage d'urgence, la commande de l'ABS basée sur l'estimation de l'XBS