, Ashworth modifée); faisant ainsi de REAplan, un outil pertinent pour évaluer la spasticité 207

E. Fery-lemonnier, La prévention et la prise en charge des accidents vasculaires cérébraux en France : Rapport à Madame la ministre de la santé et des sports, p.209, 2009.

G. De-pouvourville, Coût de la prise en charge des accidents vasculaires cérébraux en France, Arch Cardiovasc Dis Suppl, vol.8, issue.2, pp.30330-30335, 2016.

J. M. Wardlaw, V. Murray, and E. Berge, Thrombolysis for acute ischaemic stroke ( Review ) Thrombolysis for acute ischaemic stroke. Cochrane Database ofSystematic Rev, 2014.

J. C. Daviet, P. J. Dudognon, J. Y. Salle, M. Lissandre, and R. Borie, Rééducation des accidentés vasculaires cérébraux . Bilan et prise en charge, 2010.

H. S. Jorgensen, H. Nakayama, H. O. Raaschou, J. Vive-larsen, M. Stoier et al., Outcome and time course of recovery in stroke. Part II: Time course of recovery. The Copenhagen Stroke Study, Arch Phys Med Rehabil, vol.76, issue.5, pp.406-412, 1995.

S. R. Zeiler and J. W. Krakauer, The interaction between training and plasticity in the poststroke brain, Curr Opin Neurol, vol.26, issue.6, pp.609-616, 2013.

J. Bernhardt, K. S. Hayward, and G. Kwakkel, Agreed definitions and a shared vision for new standards in stroke recovery research: The Stroke Recovery and Rehabilitation Roundtable taskforce, Int J Stroke, vol.12, issue.5, pp.444-450, 2017.

J. Stein, Motor recovery strategies after stroke, Top Stroke Rehabil, vol.11, issue.2, pp.12-22, 2004.

O. Max, S. N. Ambrosch, K. Bovend'eerdt, T. Koenig, S. Lange et al., Emerging Therapies in Neurorehabilitation: Virtual reality, Biosystems. Gothenburg, Sweden, vol.10, pp.251-272

S. Mazzoleni, M. Filippi, M. C. Carrozza, F. Posteraro, L. Puzzolante et al., Robot-aided therapy on the upper limb of subacute and chronic stroke patients: A biomechanical approach, 2011 IEEE International Conference on Rehabilitation Robotics. IEEE, vol.2011, pp.1-6

A. Dionísio, I. C. Duarte, M. Patrício, and M. Castelo-branco, The Use of Repetitive Transcranial Magnetic Stimulation for Stroke Rehabilitation: A Systematic Review, J Stroke Cerebrovasc Dis, vol.27, issue.1, pp.1-31, 2017.

J. Liepert, Pharmacotherapy in restorative neurology, Curr Opin Neurol, vol.21, issue.6, pp.639-643, 2008.

I. Loubinoux, S. Dechaumont-palacin, and E. Castel-lacanal, Prognostic value of fMRI in recovery of hand function in subcortical stroke patients, Cereb Cortex, vol.17, issue.12, pp.2980-2987, 2007.

D. Tombari, I. Loubinoux, and J. Pariente, A longitudinal fMRI study: In recovering and then in clinically stable sub-cortical stroke patients, Neurorehabil Neural Repair, vol.23, issue.3, pp.153-163, 2004.

T. Schmidt-wilcke, E. Ichesco, and J. P. Hampson, Resting state connectivity correlates with drug and placebo response in fibromyalgia patients, NeuroImage Clin, vol.6, pp.252-261, 2014.

M. Sivan, R. J. O'connor, S. Makower, M. Levesley, and B. Bhakta, Systematic review of outcome measures used in the evaluation of robot-assisted upper limb exercise in stroke, J Rehabil Med, vol.43, issue.3, pp.181-189, 2011.

L. Santisteban, M. Térémetz, J. Bleton, J. Baron, M. A. Maier et al., Upper Limb Outcome Measures Used in Stroke Rehabilitation Studies: A Systematic Literature Review, PLoS One, 2016.

R. Colombo, F. Pisano, and S. Micera, Assessing Mechanisms of Recovery During Robot-Aided Neurorehabilitation of the Upper Limb, Neurorehabil Neural Repair, vol.22, issue.1, pp.50-63, 2008.

Y. Jo, J. Lee, A. , S. Kim, and M. , Prediction of Motor Recovery Using Quantitative Parameters of Motor Evoked Potential in Patients With Stroke, Ann Rehabil Med Orig Artic Ann Rehabil Med, vol.40, issue.5, pp.806-815, 2016.

H. Liu and S. Au-yeung, Reliability of transcranial magnetic stimulation induced corticomotor excitability measurements for a hand muscle in healthy and chronic stroke subjects, J Neurol Sci, vol.341, issue.1-2, pp.105-109, 2014.

M. Germanotta, A. Cruciani, and C. Pecchioli, Reliability, validity and discriminant ability of the instrumental indices provided by a novel planar robotic device for upper limb rehabilitation, J Neuroeng Rehabil, vol.15, issue.1, p.39, 2018.

. Valero-cabré-a, . Pascual-leone-a, and O. Coubard, Transcranial magnetic stimulation (TMS) in basic and clinical neuroscience research, Rev Neurol (Paris), vol.167, issue.4, pp.291-316, 2011.

M. Cortes, R. M. Black-schaffer, and D. J. Edwards, Transcranial magnetic stimulation as an investigative tool for motor dysfunction and recovery in stroke: An overview for neurorehabilitation clinicians, Neuromodulation, vol.15, issue.4, pp.319-325, 2012.

E. Castel-lacanal, P. Marque, and J. Tardy, Induction of Cortical Plastic Changes in Wrist Muscles by Paired Associative Stimulation in the Recovery Phase of Stroke Patients, Neurorehabil Neural Repair, vol.23, issue.4, pp.366-372, 2009.

E. Castel-lacanal, A. Gerdelat-mas, P. Marque, I. Loubinoux, and M. Simonetta-moreau, Induction of cortical plastic changes in wrist muscles by paired associative stimulation in healthy subjects and post-stroke patients, Exp Brain Res, vol.180, issue.1, pp.113-122, 2007.

M. Tarri, N. Brimhat, and D. Gasq, Five-day course of paired associative stimulation fails to improve motor function in stroke patients, Ann Phys Rehabil Med, vol.61, issue.2, pp.78-84, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01909553

M. F. Lucas, S. Teixeira, and F. Paes, Motor Imagery and Stroke Neurorehabilitation : An Overview of Basic Concepts and Therapeutic Effects, J Neurosci, vol.2, issue.2, pp.96-101, 2011.

A. Y. Kho, K. Liu, and R. Chung, Meta-analysis on the effect of mental imagery on motor recovery of the hemiplegic upper extremity function, Aust Occup Ther J, vol.61, issue.2, pp.38-48, 2014.

P. Cicinelli, B. Marconi, M. Zaccagnini, P. Pasqualetti, M. M. Filippi et al., Imagery-induced cortical excitability changes in stroke: A transcranial magnetic stimulation study, Cereb Cortex, vol.16, issue.2, pp.247-253, 2006.

F. Kaneko, T. Hayami, T. Aoyama, and T. Kizuka, Motor imagery and electrical stimulation reproduce corticospinal excitability at levels similar to voluntary muscle contraction, J Neuroeng Rehabil, vol.11, issue.1, p.94, 2014.

J. Cirillo, A. P. Lavender, M. C. Ridding, and J. G. Semmler, Motor cortex plasticity induced by paired associative stimulation is enhanced in physically active individuals, J Physiol, vol.587, pp.5831-5842, 2009.

N. Rösser and A. Flöel, Pharmacological enhancement of motor recovery in subacute and chronic stroke, NeuroRehabilitation, vol.23, issue.1, pp.95-103, 2008.

F. Chollet, J. Tardy, and J. Pariente, The Role of Fluoxetine and Selective Serotonin Re-uptake Inhibitors in Motor Recovery Following Acute Ischemic Stroke, US Stroke, vol.8, issue.1, pp.37-41, 2012.

K. P. Lesch and J. Waider, Serotonin in the Modulation of Neural Plasticity and Networks: Implications for Neurodevelopmental Disorders, Neuron, vol.76, issue.1, pp.175-191, 2012.

C. Bezanson, Les accidents vasculaires cérébraux, Rev Francoph d'Orthoptie, vol.9, issue.2, pp.63-67, 2016.

, Accident Vasculaire Cérébral, 2002.

V. L. Feigin, R. V. Krishnamurthi, and P. Parmar, Update on the Global Burden of Ischemic and Hemorrhagic Stroke in 1990-2013: The GBD, Study. NeuroepidemiologyNeuroepidemiology, vol.45, issue.3, pp.161-176, 2013.

C. Lecoffre, C. De-peretti, and A. Gabet, Mortalité par accident vasculaire cérébral en France en 2013 et évolutions, Bull Epidémiologique Hebd, issue.5, pp.95-100, 2008.

C. ;. Lecoffre and E. Decool, Mortalité cardio-neuro-vasculaire et désavantage social en France en, Bhe, pp.352-358, 2011.

, 133 Accidents Vasculaires Cérébraux ( AVC ), Rev Crit Theor Litt, vol.2010, pp.1-11

B. Brugerolle, Les accidents vasculaires cérébraux. Déficiences Mot situations Handicap, pp.170-175, 2002.

A. K. Welmer, V. Arbin, M. Holmqvist, L. W. Sommerfeld, and D. K. , Spasticity and its association with functioning and health-related quality of life 18 months after stroke, Cerebrovasc Dis, vol.21, issue.4, pp.247-253, 2006.

A. Thibaut, C. Chatelle, E. Ziegler, M. A. Bruno, S. Laureys et al., Spasticity after stroke: Physiology, assessment and treatment, Brain Inj, vol.27, issue.10, pp.1093-1105, 2013.

A. Yelnik, V. Quintaine, M. Jousse, and F. Genet, Traitements de la spasticité, vol.13, pp.1-12, 2016.

C. Rosso and Y. Samson, The ischemic penumbra: The location rather than the volume of recovery determines outcome, Curr Opin Neurol, vol.27, issue.1, pp.35-41, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01253340

J. Baron, L. G. Cohen, and S. C. Cramer, Neuroimaging in stroke recovery: a position paper from the First International Workshop on Neuroimaging and Stroke Recovery, Cerebrovasc Dis, vol.18, issue.3, pp.260-267, 2004.

K. S. Yew and E. M. Cheng, Diagnosis of acute stroke, Am Fam Physician, vol.91, issue.8, pp.528-536, 2015.

J. C. Hemphill, S. M. Greenberg, and C. S. Anderson, Guidelines for the Management of Spontaneous Intracerebral Hemorrhage: A Guideline for Healthcare Professionals from the, American Heart Association/American Stroke Association, vol.46, 2015.

K. D. Hollender, Screening, diagnosis, and treatment of post-stroke depression, J Neurosci Nurs, vol.46, issue.3, pp.135-141, 2014.

F. Wang, T. Yuan, A. Pereira, A. Verkhratsky, J. H. Huang et al., Glial Cells and Synaptic Plasticity, Neural Plast, p.5042902, 2016.

M. M. Halassa and P. G. Haydon, Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior, Annu Rev Physiol, vol.72, pp.335-355, 2010.

. Nitsche-m-a, F. Müller-dahlhaus, W. Paulus, and U. Ziemann, The pharmacology of neuroplasticity induced by non-invasive brain stimulation: building models for the clinical use of CNS active drugs, J Physiol, vol.590, pp.4641-4662, 2012.

C. Hölscher, Long-term potentiation: a good model for learning and memory, Prog Neuropsychopharmacol Biol Psychiatry, vol.21, issue.1, pp.47-68, 1997.

T. Bliss and S. F. Cooke, Long-term potentiation and long-term depression: a clinical perspective, Clinics, vol.66, issue.1, pp.3-17, 2011.

T. Bliss and T. Lomo, Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path, J Physiol, vol.232, issue.2, pp.331-356, 1973.

D. E. Feldman, Synaptic Mechanisms for Plasticity in Neocortex, Annu Rev Neurosci, vol.32, issue.1, pp.33-55, 2009.

G. Hess and J. P. Donoghue, Long-term depression of horizontal connections in rat motor cortex, Eur J Neurosci, vol.8, issue.4, pp.658-665, 1996.

K. Fox and M. Stryker, Integrating Hebbian and homeostatic plasticity: introduction, Philos Trans R Soc Lond B Biol Sci, p.372, 1715.

A. Wolters, A Temporally Asymmetric Hebbian Rule Governing Plasticity in the Human Motor Cortex, J Neurophysiol, vol.89, issue.5, pp.2339-2345, 2003.

K. Ganguly, M. Poo, and . Ming, Activity-dependent neural plasticity from bench to bedside, Neuron, vol.80, issue.3, 2013.

G. Turrigiano, Homeostatic synaptic plasticity: Local and global mechanisms for stabilizing neuronal function, Cold Spring Harb Perspect Biol, vol.4, issue.1, pp.1-17, 2012.

M. Chistiakova, N. M. Bannon, J. Chen, M. Bazhenov, and M. Volgushev, Homeostatic role of heterosynaptic plasticity: models and experiments, Front Comput Neurosci, vol.9, p.89, 2015.

W. C. Abraham, M. F. Bear, and . Metaplasticity, The plasticity of synaptic plasticity, Trends Neurosci, vol.19, issue.4, 1996.

N. Rebola, M. Carta, F. Lanore, C. Blanchet, and C. Mulle, NMDA receptor-dependent metaplasticity at hippocampal mossy fiber synapses, Nat Neurosci, vol.14, issue.6, pp.691-693, 2011.

T. N. Wiesel, D. H. Hubel, . Effects, . Visual, . On et al., J Neurophysiol, vol.26, issue.6, pp.978-993, 1963.

J. H. Martin, The Corticospinal System: From Development to Motor Control, Neurosci, vol.11, issue.2, pp.161-173, 2005.

D. Bavelier, D. M. Levi, R. W. Li, Y. Dan, and T. K. Hensch, Removing brakes on adult brain plasticity: from molecular to behavioral interventions, J Neurosci, vol.30, issue.45, pp.14964-14971, 2010.

A. W. Mcgee, Y. Yang, Q. S. Fischer, N. W. Daw, and S. M. Strittmatter, Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor, Science, vol.309, issue.5744, pp.2222-2226, 2005.

A. Harauzov, M. Spolidoro, and G. Dicristo, Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity, J Neurosci, vol.30, issue.1, pp.361-371, 2010.

R. J. Nudo, Plasticity. NeuroRx, vol.3, pp.420-427, 2006.

E. L. Bennett, M. C. Diamond, D. Krech, and M. R. Rosenzweig, Chemical and anatomical plasticity of brain, 1964.

, J Neuropsychiatry Clin Neurosci, vol.8, issue.4, pp.459-470, 1996.

A. H. Mohammed, S. W. Zhu, and S. Darmopil, Environmental enrichment and the brain, Prog Brain Res, vol.138, pp.38074-38083, 2002.

W. M. Jenkins, M. M. Merzenich, M. T. Ochs, T. Allard, and E. Guic-robles, Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation, J Neurophysiol, vol.63, issue.1, pp.82-104, 1990.

E. J. Plautz, G. W. Milliken, and R. J. Nudo, Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning, Neurobiol Learn Mem, vol.74, issue.1, pp.27-55, 2000.

A. Pascual-leone, N. D. Cohen, L. G. Brasil-neto, J. P. Cammarota, A. Hallett et al., Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills, J Neurophysiol, vol.74, issue.3, pp.1037-1045, 1995.

S. Vahdat, M. Darainy, and D. J. Ostry, Structure of Plasticity in Human Sensory and Motor Networks Due to Perceptual Learning, J Neurosci, vol.34, issue.7, pp.2451-2463, 2014.

I. Loubinoux, N. Brihmat, E. Castel-lacanal, and P. Marque, Cerebral imaging of post-stroke plasticity and tissue repair, Rev Neurol, vol.173, issue.9, pp.577-583, 2017.

M. J. Hylin, A. L. Kerr, and R. Holden, Understanding the Mechanisms of Recovery and/or Compensation following Injury, Neural Plast, p.7125057, 2017.

C. M. Stinear and W. D. Byblow, Predicting and accelerating motor recovery after stroke, Curr Opin Neurol, vol.27, issue.6, p.1, 2014.

M. R. Borich, S. L. Wolf, A. Q. Tan, and J. A. Palmer, Targeted Neuromodulation of Abnormal Interhemispheric Connectivity to Promote Neural Plasticity and Recovery of Arm Function after Stroke: A Randomized Crossover Clinical Trial Study Protocol, Neural Plast, p.9875326, 2018.

S. C. Cramer and K. R. Crafton, Somatotopy and movement representation sites following cortical stroke, Exp Brain Res, vol.168, issue.1-2, pp.25-32, 2006.

A. J. Szameitat, S. Shen, A. Conforto, and A. Sterr, Cortical activation during executed, imagined, observed, and passive wrist movements in healthy volunteers and stroke patients, Neuroimage, vol.62, issue.1, pp.266-280, 2012.

T. Veverka, P. Hlu?tík, and Z. Tomá?ová, BoNT-A related changes of cortical activity in patients suffering from severe hand paralysis with arm spasticity following ischemic stroke, J Neurol Sci, vol.319, issue.1-2, pp.89-95, 2012.

T. Veverka, P. Hlu?tík, and P. Hok, Cortical activity modulation by botulinum toxin type A in patients with post-stroke arm spasticity : Real and imagined hand movement, J Neurol Sci, vol.346, issue.1-2, pp.276-283, 2014.

A. Thiel and S. Vahdat, Structural and resting-state brain connectivity of motor networks after stroke, Stroke, vol.46, issue.1, pp.296-301, 2015.

P. Koch, R. Schulz, and F. C. Hummel, Structural connectivity analyses in motor recovery research after stroke, Ann Clin Transl Neurol, vol.3, issue.3, pp.233-244, 2016.

C. Grefkes and G. R. Fink, Connectivity-based approaches in stroke and recovery of function, Lancet Neurol, vol.13, issue.2, pp.206-216, 2014.

Y. Zhang, L. Wang, and J. Yang, Abnormal functional networks in resting-state of the sub-cortical chronic stroke patients with hemiplegia, Brain Res, vol.1663, pp.51-58, 2017.

R. Traversa, P. Cicinelli, A. Bassi, P. M. Rossini, and G. Bernardi, Mapping of motor cortical reorganization after stroke. A brain stimulation study with focal magnetic pulses, Stroke, vol.28, issue.1, pp.110-117, 1997.

H. Liu, L. Song, and T. Z. , Changes in brain activation in stroke patients after mental practice and physical exercise: a functional MRI study, Neural Regen Res, vol.9, issue.15, p.1474, 2014.

F. Orihuela-espina, F. Del-castillo, I. Palafox, and L. , Neural reorganization accompanying upper limb motor rehabilitation from stroke with virtual reality-based gesture therapy, Top Stroke Rehabil, vol.20, issue.3, pp.197-209, 2013.

D. Mintzopoulos, A. Khanicheh, and A. A. Konstas, Functional MRI of Rehabilitation in Chronic Stroke Patients Using Novel MR-Compatible Hand Robots, Open Neuroimag J, vol.2, pp.94-101, 2008.

S. Koganemaru, N. Sawamoto, and T. Aso, Task-specific brain reorganization in motor recovery induced by a hybrid-rehabilitation combining training with brain stimulation after stroke, Neurosci Res, 2015.

J. Biernaskie, Efficacy of Rehabilitative Experience Declines with Time after Focal Ischemic Brain Injury, J Neurosci, vol.24, issue.5, pp.1245-1254, 2004.

C. Kugler, T. Altenhoner, P. Lochner, and A. Ferbert, Does age influence early recovery from ischemic stroke?, J Neurol, vol.250, issue.6, pp.676-681, 2003.

E. Raffin, N. Richard, P. Giraux, and K. T. Reilly, Primary motor cortex changes after amputation correlate with phantom limb pain and the ability to move the phantom limb, Neuroimage, vol.130, pp.134-144, 2016.

R. Opavsky, P. Hlustik, and P. Kanovsky, Cortical plasticity and its implications for focal hand dystonia, Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, vol.150, issue.2, pp.223-226, 2006.

J. S. Ryu, J. W. Lee, S. Lee, . Il, and M. H. Chun, Factors predictive of spasticity and their effects on motor recovery and functional outcomes in stroke patients, Top Stroke Rehabil, vol.17, issue.5, pp.380-388, 2010.

S. L. Wolf, C. J. Winstein, J. P. Miller, and D. Morris, Effect of Constraint-Induced Movement, vol.296, pp.2095-2104, 2006.

S. J. Page, P. Levine, S. Sisto, Q. Bond, and M. V. Johnston, Stroke patients' and therapists' opinions of constraintinduced movement therapy, Clin Rehabil, vol.16, issue.1, pp.55-60, 2002.

Z. Tomasova, P. Hlu?tík, and M. Král, Cortical activation changes in patients suffering from post-stroke arm spasticity and treated with botulinum toxin A, J Neuroimaging, vol.23, issue.3, pp.337-344, 2013.

L. Furlan, A. B. Conforto, L. G. Cohen, and A. Sterr, Upper limb immobilisation: A neural plasticity model with relevance to poststroke motor rehabilitation, Neural Plast, p.2016, 2016.

A. Faralli, M. Bigoni, A. Mauro, F. Rossi, and D. Carulli, Noninvasive strategies to promote functional recovery after stroke, Neural Plast, 2013.

V. Rizzo, H. S. Siebner, F. Morgante, C. Mastroeni, P. Girlanda et al., Paired associative stimulation of left and right human motor cortex shapes interhemispheric motor inhibition based on a hebbian mechanism, Cereb Cortex, vol.19, issue.4, pp.907-915, 2009.

J. W. Krakauer and R. S. Marshall, The proportional recovery rule for stroke revisited, Ann Neurol, vol.78, issue.6, pp.845-847, 2015.

. Brunnstrom-s, Motor testing procedures in hemiplegia: based on sequential recovery stages, Phys Ther, vol.46, issue.4, pp.357-375, 1966.

L. S. Spasticity, motor recovery, and neural plasticity after stroke, Front Neurol, vol.8, 2017.

S. Li and G. E. Francisco, New insights into the pathophysiology of post-stroke spasticity, Front Hum Neurosci, vol.9, pp.1-9, 2015.

S. T. Carmichael, The 3 Rs of Stroke Biology: Radial, Relayed, and Regenerative, Neurotherapeutics, vol.13, issue.2, pp.348-359, 2016.

S. J. Page, D. R. Gater, -. Bach, and P. , Reconsidering the motor recovery plateau in stroke rehabilitation, Arch Phys Med Rehabil, vol.85, issue.8, pp.1377-1381, 2004.

M. Könönen, I. M. Tarkka, and E. Niskanen, Functional MRI and motor behavioral changes obtained with constraint-induced movement therapy in chronic stroke, Eur J Neurol, vol.19, issue.4, pp.578-586, 2012.

N. Rösser, P. Heuschmann, H. Wersching, C. Breitenstein, S. Knecht et al., Levodopa improves procedural motor learning in chronic stroke patients, Arch Phys Med Rehabil, vol.89, issue.9, pp.1633-1641, 2008.

S. Prabhakaran, E. Zarahn, and C. Riley, Inter-individual variability in the capacity for motor recovery after ischemic stroke, Neurorehabil Neural Repair, vol.22, issue.1, pp.64-71, 2008.

C. Winters, E. Van-wegen, A. Daffertshofer, and G. Kwakkel, Generalizability of the Proportional Recovery Model for the Upper Extremity After an Ischemic Stroke, Neurorehabil Neural Repair, vol.29, issue.7, pp.614-622, 2015.

J. C. Cortes, J. Goldsmith, and M. D. Harran, A Short and Distinct Time Window for Recovery of Arm Motor Control Early After Stroke Revealed With a Global Measure of Trajectory Kinematics, Neurorehabil Neural Repair, vol.31, issue.6, pp.552-560, 2017.

J. Xu, N. Ejaz, and B. Hertler, Separable systems for recovery of finger strength and control after stroke, J Neurophysiol, vol.118, issue.2, pp.1151-1163, 2017.

M. F. Levin, J. A. Kleim, and S. L. Wolf, What Do Motor "Recovery" and "Compensation" Mean in Patients Following Stroke?, Neurorehabil Neural Repair, vol.23, issue.4, pp.313-319, 2009.

T. A. Jones, Motor compensation and its effects on neural reorganization after stroke, Nat Rev Neurosci, vol.18, issue.5, pp.267-280, 2017.

T. Kitago, J. Liang, and V. S. Huang, Improvement after constraint-induced movement therapy: Recovery of normal motor control or task-specific compensation?, Neurorehabil Neural Repair, vol.27, issue.2, pp.99-109, 2013.

A. Foroud and I. Q. Whishaw, Changes in the kinematic structure and non-kinematic features of movements during skilled reaching after stroke: A Laban Movement Analysis in two case studies, J Neurosci Methods, vol.158, issue.1, pp.137-149, 2006.

G. Kwakkel, N. A. Lannin, and K. Borschmann, Standardised measurement of sensorimotor recovery in stroke trials: consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable (SRRR), Int J Stroke, issue.5, pp.451-461, 2017.

T. H. Murphy and D. Corbett, Plasticity during stroke recovery: from synapse to behaviour, Nat Rev Neurosci, vol.10, issue.12, pp.861-872, 2009.

S. A. Maulden, J. Gassaway, S. D. Horn, R. J. Smout, and G. Dejong, Timing of initiation of rehabilitation after stroke, Arch Phys Med Rehabil, vol.86, issue.12, pp.34-40, 2005.

J. A. Palmer, S. L. Wolf, and M. R. Borich, Paired associative stimulation modulates corticomotor excitability in chronic stroke: A preliminary investigation, Restor Neurol Neurosci, vol.36, issue.2, pp.183-194, 2018.

C. Colomer, A. Baldoví, and S. Torromé, Efficacy of Armeo® Spring during the chronic phase of stroke. Study in mild to moderate cases of hemiparesis, Neurologia, vol.28, issue.5, pp.261-267, 2013.

F. Hummel and L. G. Cohen, Improvement of Motor Function with Noninvasive Cortical Stimulation in a Patient with Chronic Stroke, Neurorehabil Neural Repair, pp.14-19, 2005.

A. S. Merians, H. Poizner, R. Boian, G. Burdea, and S. Adamovich, Sensorimotor Training in a Virtual Reality Environment: Does It Improve Functional Recovery Poststroke?, Neurorehabil Neural Repair, vol.20, issue.2, pp.252-267, 2006.

W. Feng, J. Wang, and P. Y. Chhatbar, Corticospinal tract lesion load: An imaging biomarker for stroke motor outcomes, Ann Neurol, vol.78, issue.6, pp.860-870, 2015.

A. G. Guggisberg, P. Nicolo, L. G. Cohen, A. Schnider, and E. R. Buch, Longitudinal Structural and Functional Differences Between Proportional and Poor Motor Recovery After Stroke, Neurorehabil Neural Repair, vol.31, issue.12, pp.1029-1041, 2017.

W. D. Byblow, C. M. Stinear, P. A. Barber, M. A. Petoe, and S. J. Ackerley, Proportional recovery after stroke depends on corticomotor integrity, Ann Neurol, vol.78, issue.6, pp.848-859, 2015.

A. Thibaut, M. Simis, and L. R. Battistella, Using Brain Oscillations and Corticospinal Excitability to Understand and Predict Post-Stroke Motor Function, Front Neurol, vol.8, p.187, 2017.

Y. Takenobu, T. Hayashi, H. Moriwaki, K. Nagatsuka, H. Naritomi et al., Motor recovery and microstructural change in rubro-spinal tract in subcortical stroke, NeuroImage Clin, vol.4, pp.201-208, 2014.

N. S. Ward, Using oscillations to understand recovery after stroke, Brain, vol.138, issue.10, pp.2811-2813, 2015.

L. A. Boyd, K. S. Hayward, and N. S. Ward, Biomarkers of stroke recovery: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable, Int J Stroke, vol.12, issue.125, pp.480-493, 2017.

J. Helenius and N. Henninger, Leukoaraiosis Burden Significantly Modulates the Association Between Infarct Volume and National Institutes of Health Stroke Scale in Ischemic Stroke, Stroke, vol.46, issue.7, pp.1857-1863, 2015.

H. Feys, D. Weerdt, W. Nuyens, G. Van-de-winckel, A. Selz et al., Predicting motor recovery of the upper limb after stroke rehabilitation: value of a clinical examination, Physiother Res Int, vol.5, issue.1, pp.1-18, 2000.

C. Granger, B. B. Hamilton, G. E. Gresham, and A. A. Kramer, The stroke rehabilitation outcome study: Part II. Relative merits of the total Barthel index score and a four-item subscore in predicting patient outcomes, Arch Phys Med Rehabil, vol.70, issue.2, pp.100-103, 1989.

J. D. Riley, V. Le, and L. Der-yeghiaian, Anatomy of Stroke Injury Predicts Gains From Therapy, Stroke, vol.42, issue.2, pp.421-426, 2011.

C. Calautti and J. Baron, Functional Neuroimaging Studies of Motor Recovery After Stroke in Adults, Stroke, vol.34, issue.6, pp.1553-1566, 2003.

A. R. Carter, S. V. Astafiev, and C. E. Lang, Resting state inter-hemispheric fMRI connectivity predicts performance after stroke, Ann Neurol, vol.67, issue.3, 2009.

Y. Lee, Y. Hsieh, C. Wu, K. Lin, and C. Chen, Proximal Fugl-Meyer Assessment Scores Predict Clinically Important Upper Limb Improvement After 3 Stroke Rehabilitative Interventions, Arch Phys Med Rehabil, vol.96, issue.12, pp.2137-2144, 2015.

M. E. Michielsen, R. W. Selles, and J. N. Van-der-geest, Motor Recovery and Cortical Reorganization After Mirror Therapy in Chronic Stroke Patients, Neurorehabil Neural Repair, vol.25, issue.3, pp.223-233, 2011.

C. D. Takahashi, L. Der-yeghiaian, V. Le, R. R. Motiwala, and S. C. Cramer, Robot-based hand motor therapy after stroke, Brain, vol.131, issue.2, pp.425-437, 2008.

S. Nouri and S. C. Cramer, Anatomy and physiology predict response to motor cortex stimulation after stroke, Neurology, vol.77, issue.11, pp.1076-1083, 2011.

C. M. Stinear, P. A. Barber, M. Petoe, S. Anwar, W. D. Byblow et al., PREP2: A biomarker-based algorithm for predicting upper limb function after stroke, Ann Clin Transl Neurol, vol.135, issue.8, pp.2527-2535, 2012.

C. M. Stinear, W. D. Byblow, and S. H. Ward, An update on predicting motor recovery after stroke, Ann Phys Rehabil Med, vol.57, issue.8, pp.489-498, 2014.

A. Delarque, J. M. Viton, and L. Bensoussan, Évaluation clinique et fonctionnelle d ' un handicap moteur , cognitif ou sensoriel ( 49 ), pp.1-28, 2006.

, Organization G: WH. ICF International Classification of Functioning, Disability and Health, 2001.

T. Brott, H. P. Adams, and C. P. Olinger, Measurements of acute cerebral infarction: a clinical examination scale, Stroke, vol.20, issue.7, 1989.

A. R. Fugl-meyer, L. Jääskö, I. Leyman, S. Olsson, and . Ss, The post-stroke hemiplegic patient: A method for evaluation of physical performance, Scand J Rehabil Med, vol.7, issue.1, pp.13-31, 1975.

D. J. Gladstone, C. J. Danells, and S. E. Black, The Fugl-Meyer Assessment of Motor Recovery after Stroke: A Critical Review of Its Measurement Properties, Neurorehabil Neural Repair, vol.16, issue.3, pp.232-240, 2002.

R. C. Lyle, A performance test for assessment of upper limb function in physical rehabilitation treatment and research, Int J Rehabil Res, vol.4, issue.4, pp.483-492, 1981.

H. Hsieh-c-l, C. Lin-p-h-;-van-swieten, J. C. Koudstaal, P. J. Visser, M. C. Schouten et al., Inter-rater reliability and validity of the Action Research arm test in stroke patients, Age Ageing, vol.27, issue.2, pp.604-607, 1988.

G. Williams, V. Robertson, K. Greenwood, G. P. Morris, and M. E. , The Concurrent Validity and Responsiveness of the High-Level Mobility Assessment Tool for Measuring the Mobility Limitations of People With Traumatic Brain Injury, Arch Phys Med Rehabil, vol.87, issue.3, pp.437-442, 2006.

P. Fougeyrollas, L. Noreau, H. Bergeron, R. Cloutier, S. A. Dion et al., Social consequences of long term impairments and disabilities: conceptual approach and assessment of handicap, Int J Rehabil Res, vol.21, issue.2, pp.127-141, 1998.

J. Lemmens, I. S-m-van-engelen, E. Post, and M. , Reproducibility and validity of the Dutch Life Habits Questionnaire (LIFE-H 3.0) in older adults, Clin Rehabil, vol.21, issue.9, pp.853-862, 2007.

A. Rochette, J. Desrosiers, G. Bravo, D. St-cyr-tribble, and A. Bourget, Participation After a Mild Stroke: Quantitative and Qualitative Perspectives, vol.14, pp.59-68, 2007.

S. L. Wood-dauphinee, M. A. Opzoomer, J. I. Williams, B. Marchand, and W. O. Spitzer, Assessment of global function: The Reintegration to Normal Living Index, Arch Phys Med Rehabil, vol.69, issue.8, pp.583-590, 1988.

J. M. Gregson, M. Leathley, A. P. Moore, A. K. Sharma, T. L. Smith et al., Reliability of the tone assessment scale and the modified Ashworth scale as clinical tools for assessing poststroke spasticity, Arch Phys Med Rehabil, vol.80, issue.9, pp.90053-90062, 1999.

G. A-d-pandyan, C. Johnson, R. Price, M. Curless, . Barnes et al., A review of the properties and limitations of the Ashworth and modified Ashworth Scales as measures of spasticity, Clin Rehabil, vol.13, issue.5, pp.373-383, 1999.

A. B. Haugh, A. D. Pandyan, and G. R. Johnson, A systematic review of the Tardieu Scale for the measurement of spasticity, Disabil Rehabil, vol.28, issue.15, pp.899-907, 2006.

V. Mathiowetz, G. Volland, N. Kashman, and K. Weber, Adult norms for the Box and Block Test of manual dexterity, Am J Occup Ther, vol.39, issue.6, pp.386-391, 1985.

M. Kellor, J. Frost, N. Silberberg, I. Iversen, and R. Cummings, Hand strength and dexterity, Am J Occup Ther, vol.25, issue.2, pp.77-83, 1971.

Y. Hsieh, K. Lin, and C. Wu, Predicting Clinically Significant Changes in Motor and Functional Outcomes After Robot-Assisted Stroke Rehabilitation, Arch Phys Med Rehabil, vol.95, issue.2, pp.316-321, 2014.

K. Hilari and L. Boreham, Visual analogue scales in stroke: what can they tell us about health-related quality of life?, BMJ Open, vol.3, issue.9, p.3309, 2013.

C. Price, R. H. Curless, and H. Rodgers, Can Stroke Patients Use Visual Analogue Scales ?, 2016.

L. R. Osternig, Isokinetic dynamometry: implications for muscle testing and rehabilitation, Exerc Sport Sci Rev, vol.14, pp.45-80, 1986.

K. Iwamoto, M. Yoshio, Y. Takata, and N. Kozuka, Reliability and validity of standing balance assessment index using a hand-held dynamometer in stroke patients, J Phys Ther Sci, vol.28, issue.11, pp.3158-3161, 2016.

J. Robertson, D. Pradon, D. Bensmail, C. Fermanian, B. Bussel et al., Relevance of botulinum toxin injection and nerve block of rectus femoris to kinematic and functional parameters of stiff knee gait in hemiplegic adults, Gait Posture, vol.29, issue.1, pp.108-112, 2009.

Y. Michaud and J. Nordin, Étude cinématique de la flexion-extension du genou à l'aide d'électrogoniomètre: Résultats sur 9 sujets sains, Rev Chir Orthop Reparatrice Appar Mot, vol.91, issue.1, pp.84274-84280, 2005.

K. M. Culhane, M. O'connor, D. Lyons, and G. M. Lyons, Accelerometers in rehabilitation medicine for older adults, Age Ageing, vol.34, issue.6, pp.556-560, 2005.

M. Henriksen, H. Lund, R. Moe-nilssen, H. Bliddal, and B. Danneskiod-samsøe, Test-retest reliability of trunk accelerometric gait analysis, Gait Posture, vol.19, issue.3, pp.288-297, 2004.

A. Paraschiv-ionescu, E. E. Buchser, B. Rutschmann, B. Najafi, and K. Aminian, Ambulatory system for the quantitative and qualitative analysis of gait and posture in chronic pain patients treated with spinal cord stimulation, Gait Posture, vol.20, issue.2, pp.113-125, 2004.

D. Rand and J. J. Eng, Predicting daily use of the affected upper extremity 1 year after stroke, J Stroke Cerebrovasc, vol.22, issue.5, pp.1020-1029, 2014.

M. Gilliaux, T. Lejeune, and C. Detrembleur, Using the robotic device REAplan as a valid, reliable, and sensitive tool to quantify upper limb impairments in stroke patients, J Rehabil Med, vol.46, issue.2, pp.117-125, 2014.

O. Celik, M. K. O'malley, C. Boake, H. S. Levin, N. Yozbatiran et al., Normalized movement quality measures for therapeutic robots strongly correlate with clinical motor impairment measures, IEEE Trans Neural Syst Rehabil Eng, vol.18, issue.4, pp.433-444, 2010.

C. Duret, O. Courtial, A. G. Grosmaire, and E. Hutin, Use of a robotic device for the rehabilitation of severe upper limb paresis in subacute stroke: Exploration of patient/robot interactions and the motor recovery process, Biomed Res Int, 2015.

R. Colombo, F. Pisano, and S. Micera, Robotic Techniques for Upper Limb Evaluation and Rehabilitation of Stroke Patients, IEEE Trans Neural Syst Rehabil Eng, vol.13, issue.3, pp.311-324, 2005.

A. Frisoli, E. Sotgiu, and C. Procopio, Training and assessment of upper limb motor function with a robotic exoskeleton after stroke, 4Th Ieee Ras Embs Int Conf Biomed Robot Biomechatronics, pp.1782-1787, 2012.

S. Dehem, M. Gilliaux, and T. Lejeune, Assessment of upper limb spasticity in stroke patients using the robotic device REAplan, J Rehabil Med, vol.49, issue.7, pp.565-571, 2017.

M. Gilliaux, T. Lejeune, C. Detrembleur, J. Sapin, B. Dehez et al., A robotic device as a sensitive quantitative tool to assess upper limb impairments in stroke patients: A preliminary prospective cohort study, J Rehabil Med, vol.44, issue.3, pp.210-217, 2012.

D. Lazzaro, V. Ziemann, U. Lemon, and R. N. , State of the art: Physiology of transcranial motor cortex stimulation, Brain Stimul, vol.1, issue.4, pp.345-362, 2008.

I. Chan, K. Fong, and D. Chan, Effects of Arm Weight Support Training to Promote Recovery of Upper Limb Function for Subacute Patients after Stroke with Different Levels of Arm Impairments, Biomed Res Int, p.2016, 2002.

K. H. Cho and W. Song, Robot-Assisted Reach Training for Improving Upper Extremity Function of Chronic Stroke, Tohoku J Exp Med, pp.149-155, 2015.

A. F. Jackson and D. J. Bolger, The neurophysiological bases of EEG and EEG measurement: A review for the rest of us, Psychophysiology, vol.51, issue.11, pp.1061-1071, 2014.

S. Baillet, Magnetoencephalography for brain electrophysiology and imaging, Nat Neurosci, vol.20, issue.3, pp.327-339, 2017.

A. Paggiaro, N. Birbaumer, and M. Cavinato, Applications of Electroencephalography to Characterize Brain Activity, Magnetoencephalography in Stroke Recovery and Rehabilitation. Front Neurol, vol.7, issue.1, pp.43-51, 2015.

S. Giaquinto, A. Cobianchi, F. Macera, and G. Nolfe, Wolf ME, Ebert AD, Chatzikonstantinou A. The use of routine EEG in acute ischemic stroke patients without seizures: generalized but not focal EEG pathology is associated with clinical deterioration, Int J Neurosci, vol.25, issue.11, pp.421-426, 1994.

V. Kaiser, I. Daly, F. Pichiorri, D. Mattia, G. R. Mu et al., Relationship Between Electrical Brain Responses to Motor Imagery and Motor Impairment in Stroke, Stroke, 2012.

F. De-vico-fallani, L. Astolfi, and F. Cincotti, Evaluation of the brain network organization from EEG signals: a preliminary evidence in stroke patient, Anat Rec (Hoboken), vol.292, issue.12, pp.2023-2031, 2009.

K. Laaksonen, L. Helle, and L. Parkkonen, Alterations in Spontaneous Brain Oscillations during Stroke Recovery. Chacron MJ, PLoS One, vol.8, issue.4, p.61146, 2013.

T. W. Wilson, A. Fleischer, D. Archer, S. Hayasaka, and L. Sawaki, Oscillatory MEG motor activity reflects therapy-related plasticity in stroke patients, Neurorehabil Neural Repair, vol.25, issue.2, pp.188-193, 2011.

H. Wey, V. R. Desai, T. Q. Duong, F. Chollet, D. Piero et al., The functional anatomy of motor recovery after stroke in humans: a study with positron emission tomography, Neurological Research,. Neurol reseach, vol.35, issue.10, pp.63-71, 1991.

C. Weiller, F. Chollet, K. J. Friston, R. Wise, and R. Frackowiak, Functional reorganization of the brain in recovery from striatocapsular infarction in man, Ann Neurol, vol.31, issue.5, pp.463-472, 1992.

Y. K. Kim, E. J. Yang, K. Cho, J. Y. Lim, and N. Paik, Functional Recovery After Ischemic Stroke Is Associated With Reduced GABAergic Inhibition in the Cerebral Cortex, Neurorehabil Neural Repair, vol.28, issue.6, pp.576-583, 2014.

G. Lee, J. S. Kim, S. J. Oh, D. Kang, J. S. Kim et al., 18 F-fluoromisonidazole (FMISO) Positron Emission Tomography (PET) Predicts Early Infarct Growth in Patients with Acute Ischemic Stroke, J Neuroimaging, vol.25, issue.4, pp.652-655, 2015.

J. De-reuck, D. Leys, D. Keyser, and J. , Is positron emission tomography useful in stroke?, Acta Neurol Belg, vol.97, issue.3, pp.168-171, 1997.

S. Kumar, G. Rajshekher, and S. Prabhakar, Positron emission tomography in neurological diseases, Neurol India, vol.53, issue.2, pp.149-155, 2005.

D. M. Feeney, J. C. Baron, and . Diaschisis, Stroke, vol.17, issue.5, pp.817-830, 2018.

M. Planton, N. Raposo, L. Danet, J. Albucher, P. Péran et al., Impact of spontaneous intracerebral hemorrhage on cognitive functioning: An update, Rev Neurol, vol.173, issue.7-8, pp.481-489, 2017.

A. Thiel, D. F. Cechetto, W. Heiss, V. Hachinski, and S. N. Whitehead, Amyloid burden, neuroinflammation, and links to cognitive decline after ischemic stroke, Stroke, vol.45, issue.9, pp.2825-2829, 2014.

R. Sahathevan, T. Linden, and V. L. Villemagne, Positron Emission Tomographic Imaging in Stroke: CrossSectional and Follow-Up Assessment of Amyloid in Ischemic Stroke, Stroke, vol.47, issue.1, pp.113-119, 2016.

S. Zhang, X. Li, J. Lv, X. Jiang, L. Guo et al., Characterizing and differentiating task-based and resting state fMRI signals via two-stage sparse representations, Brain Imaging Behav, vol.10, issue.1, pp.21-32, 2016.

H. Lv, Z. Wang, and E. Tong, Resting-State Functional MRI: Everything That Nonexperts Have Always Wanted to Know, AJNR Am J Neuroradiol, 2018.

I. Loubinoux, Can fMRI measures of brain motor activation add significantly to other variables in the prediction of treatment response?, Stroke, vol.38, issue.7, pp.2032-2033, 2007.

Y. H. Kim, S. H. You, Y. H. Kwon, M. Hallett, J. H. Kim et al., Longitudinal fMRI study for locomotor recovery in patients with stroke, Neurology, vol.67, issue.2, pp.330-333, 2006.

A. K. Rehme, S. B. Eickhoff, C. Rottschy, G. R. Fink, and C. Grefkes, Activation likelihood estimation meta-analysis of motor-related neural activity after stroke, Neuroimage, vol.59, issue.3, pp.2771-2782, 2012.

S. Dechaumont-palacin, P. Marque, D. Boissezon, and X. , Neural correlates of proprioceptive integration in the contralesional hemisphere of very impaired patients shortly after a subcortical stroke: an FMRI study, Neurorehabil Neural Repair, vol.22, issue.2, pp.154-165, 2008.

P. Manganotti, M. Acler, and E. Formaggio, Changes in cerebral activity after decreased upper-limb hypertonus: An EMG-fMRI study, Magn Reson Imaging, vol.28, issue.5, pp.646-652, 2010.

U. Bergfeldt, T. Jonsson, L. Bergfeldt, and P. Julin, Cortical activation changes and improved motor function in stroke patients after focal spasticity therapy-an interventional study applying repeated fMRI, BMC Neurol, vol.15, issue.1, 2015.

Z. ?enkárová, P. Hlu?tík, P. Otruba, R. Herzig, and P. Ka?ovský, Modulation of cortical activity in patients suffering from upper arm spasticity following stroke and treated with Botulinum toxin A: An fMRI study, J Neuroimaging, vol.20, issue.1, pp.9-15, 2010.

I. K. Hong, J. B. Choi, and J. H. Lee, Cortical changes after mental imagery training combined with electromyography-triggered electrical stimulation in patients with chronic stroke, Stroke, vol.43, issue.9, pp.2506-2509, 2012.

C. Chang, J. P. Cunningham, and G. H. Glover, Influence of heart rate on the BOLD signal: the cardiac response function, Neuroimage, vol.44, issue.3, pp.857-869, 2009.

K. Murphy, A. D. Harris, and R. G. Wise, Robustly measuring vascular reactivity differences with breath-hold: Normalising stimulus-evoked and resting state BOLD fMRI data, Neuroimage, vol.54, issue.1, pp.369-379, 2011.

S. Ovadia-caro, K. Villringer, and J. Fiebach, Longitudinal effects of lesions on functional networks after stroke, J Cereb Blood Flow Metab, vol.33, issue.8, pp.1279-1285, 2013.

C. H. Park, W. H. Chang, and S. H. Ohn, Longitudinal Changes of Resting-State Functional Connectivity During Motor Recovery After Stroke, Stroke, vol.42, issue.5, pp.1357-1362, 2011.

L. Wang, C. Yu, and H. Chen, Dynamic functional reorganization of the motor execution network after stroke, Brain, vol.133, issue.4, pp.1224-1238, 2010.

J. L. Chen and G. Schlaug, Increased resting state connectivity between ipsilesional motor cortex and contralesional premotor cortex after transcranial direct current stimulation with physical therapy, Sci Rep, vol.6, issue.1, p.23271, 2016.

Y. Fan, C. Wu, H. Liu, K. Lin, Y. Wai et al., Neuroplastic changes in resting-state functional connectivity after stroke rehabilitation, Front Hum Neurosci, vol.9, p.546, 2015.

P. Mukherjee, S. W. Chung, J. I. Berman, C. P. Hess, R. G. Henry et al., Diffusion Tensor MR Imaging and Fiber Tractography: Technical Considerations, Am J Neuroradiol, vol.29, issue.5, pp.843-852, 2008.

J. Puig, G. Blasco, and J. Daunis-i-estadella, Increased corticospinal tract fractional anisotropy can discriminate stroke onset within the first 4.5 hours, Stroke, vol.44, issue.4, pp.1162-1165, 2013.

S. Pedraza, J. Puig, G. Blasco, F. Prados, and A. Thiel, Diffusion tensor imaging, permanent pyramidal tract damage, and outcome in subcortical stroke, Neurology, vol.76, issue.18, pp.1606-1607, 2011.

R. Lindenberg, V. Renga, L. L. Zhu, F. Betzler, D. Alsop et al., Structural integrity of corticospinal motor fibers predicts motor impairment in chronic stroke, Neurology, vol.74, issue.4, pp.280-287, 2010.

X. Zheng and G. Schlaug, Structural white matter changes in descending motor tracts correlate with improvements in motor impairment after undergoing a treatment course of tDCS and physical therapy, Front Hum Neurosci, vol.9, pp.1-10, 2015.

C. Rosso, R. Valabregue, and Y. Attal, Contribution of Corticospinal Tract and Functional Connectivity in Hand Motor Impairment after Stroke, PLoS One, vol.8, issue.9, pp.1-11, 2013.

J. L. Chen and G. Schlaug, Resting state interhemispheric motor connectivity and white matter integrity correlate with motor impairment in chronic stroke, Front Neurol, issue.4, pp.1-7, 2013.

R. Schulz, E. Park, and J. Lee, Synergistic but independent: The role of corticospinal and alternate motor fibers for residual motor output after stroke, NeuroImage Clin, vol.15, pp.118-124, 2017.

S. Jang, C. H. Chang, J. Lee, C. S. Kim, J. P. Seo et al., Functional role of the corticoreticular pathway in chronic stroke patients, Stroke, vol.44, issue.4, pp.1099-1104, 2013.

T. Rüber, G. Schlaug, and R. Lindenberg, Compensatory role of the cortico-rubro-spinal tract in motor recovery after stroke, Annu Rev Neurosci, vol.79, issue.6, pp.195-218, 2008.

S. N. Baker, B. Zaaimi, K. M. Fisher, S. A. Edgley, and D. S. Soteropoulos, Pathways Mediating Functional Recovery, vol.218

J. Reis, H. M. Schambra, and L. G. Cohen, Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation, Proc Natl Acad Sci U S A, vol.106, issue.5, pp.1590-1595, 2009.

E. M. Wassermann, Risk and safety of repetitive transcranial magnetic stimulation : report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, Electroencephalogr Clin Neurophysiol, vol.108, pp.1-16, 1996.

A. T. Barker, R. Jalinous, and I. L. Freeston, NON-INVASIVE MAGNETIC STIMULATION OF HUMAN MOTOR CORTEX, Lancet, vol.325, issue.8437, pp.1106-1107, 1985.

M. Kobayashi and A. Pascual-leone, Transcranial magnetic stimulation in neurology, Lancet Neurol, vol.2, issue.3, pp.145-156, 2003.

M. Hallett, Transcranial magnetic stimulation and the human brain, Nature, vol.406, pp.147-150, 2000.

L. Boyd, K. E. Brown, N. M. Ledwell, and J. L. Neva, Use of transcranial magnetic stimulation in the treatment of selected movement disorders, Degener Neurol Neuromuscul Dis, vol.4, p.133, 2014.

S. Bashir, I. Mizrahi, K. Weaver, F. Fregni, and A. Pascual-leone, Assessment and Modulation of Neural Plasticity in Rehabilitation With Transcranial Magnetic Stimulation, PM&R, vol.2, issue.12, pp.253-268, 2010.

H. Roman and S. John, Transcranial magnetic stimulation : new insights into representational cortical plasticity, Exp Brain Res, pp.1-16, 2003.

M. N. Mcdonnell, M. C. Ridding, and T. S. Miles, Do alternate methods of analysing motor evoked potentials give comparable results?, J Neurosci Methods, 2004.

C. Möller, N. Arai, J. Lücke, and U. Ziemann, Clinical Neurophysiology Hysteresis effects on the input -output curve of motor evoked potentials, Clin Neurophysiol, vol.120, issue.5, pp.1003-1008, 2009.

C. L. Massie and M. P. Malcolm, Considerations for stimulus-response curves in stroke: an investigation comparing collection and analysis methods, Int J Neurosci, vol.123, issue.3, pp.1-26, 2012.

J. M. Cassidy, H. Chu, M. Chen, T. J. Kimberley, and J. R. Carey, Interhemispheric Inhibition Measurement Reliability in Stroke: A Pilot Study, Neuromodulation Technol Neural Interface, vol.19, issue.8, pp.838-847, 2016.

A. Vahabzadeh-hagh, Paired-Pulse Transcranial Magnetic Stimulation (TMS) Protocols, vol.2014, pp.117-127

T. J. Carroll, S. Riek, and R. G. Carson, Reliability of the input-output properties of the cortico-spinal pathway obtained from transcranial magnetic and electrical stimulation, J Neurosci Methods, 2001.

J. Ruohonen and J. Karhu, Navigated transcranial magnetic stimulation, Neurophysiol Clin Neurophysiol, vol.40, issue.1, pp.7-17, 2010.

P. Julkunen, L. Säisänen, and N. Danner, Comparison of navigated and non-navigated transcranial magnetic stimulation for motor cortex mapping, motor threshold and motor evoked potentials, Neuroimage, vol.44, issue.3, pp.790-795, 2009.

S. Bashir, D. Edwards, and A. Pascual-leone, Neuronavigation increases the physiologic and behavioral effects of low-frequency rTMS of primary motor cortex in healthy subjects, Brain Topogr, vol.24, issue.1, pp.54-64, 2011.

J. Escudero, S. J. Bautista, D. Escudero, M. López-trigo, and J. , Prognostic value of motor evoked potential obtained by transcranial magnetic brain stimulation in motor function recovery in patients with acute ischemic stroke, Stroke, vol.29, issue.9, pp.1854-1859, 1998.

A. Catano, M. Houa, J. M. Caroyer, H. Ducarne, and N. , Magnetic transcranial stimulation in acute stroke : early excitation threshold and functional prognosis, Electroencephalogr Clin Neurophysiol, vol.101, pp.233-239, 1996.

A. J. Butler and S. L. Wolf, Putting the brain on the map: use of transcranial magnetic stimulation to assess and induce cortical plasticity of upper-extremity movement, Phys Ther, vol.87, issue.6, pp.719-736, 2007.

A. Heald, D. Bates, N. E. Cartlidge, J. M. French, and S. Miller, Longitudinal study of central motor conduction time following stroke. 2. Central motor conduction measured within 72 h after stroke as a predictor of functional outcome at 12 months, Brain, vol.116, pp.1371-1385, 1993.

J. Classen, A. Schnitzler, and F. Binkofski, The motor syndrome associated with exaggerated inhibition within the primary motor cortex of patients with hemiparetic, Brain, vol.120, pp.605-619, 1997.

U. Takechi, K. Matsunaga, and R. Nakanishi, Longitudinal changes of motor cortical excitability and transcallosal inhibition after subcortical stroke, Clin Neurophysiol, vol.125, issue.10, pp.2055-2069, 2014.

M. Lotze, The Role of Multiple Contralesional Motor Areas for Complex Hand Movements after Internal Capsular Lesion, J Neurosci, vol.26, issue.22, pp.6096-6102, 2006.

J. Liepert, S. Graef, I. Uhde, O. Leidner, and C. Weiller, Training-induced changes of motor cortex representations in stroke patients, Acta Neurol Scand, vol.101, issue.5, pp.321-326, 2000.

M. P. Veldman, N. A. Maffiuletti, M. Hallett, I. Zijdewind, and T. Hortobágyi, Direct and crossed effects of somatosensory stimulation on neuronal excitability and motor performance in humans, Neurosci Biobehav Rev, vol.47, pp.22-35, 2014.

S. Facchini, W. Muellbacher, F. Battaglia, B. Boroojerdi, and M. Hallett, Focal enhancement of motor cortex excitability during motor imagery: a transcranial magnetic stimulation study, Acta Neurol Scand, vol.105, issue.3, pp.146-151, 2002.

M. C. Ridding and J. L. Taylor, Mechanisms of motor-evoked potential facilitation following prolonged dual peripheral and central stimulation in humans, J Physiol, vol.537, issue.2, pp.623-631, 2001.

M. Wischnewski and D. Schutter, Efficacy and time course of paired associative stimulation in cortical plasticity: Implications for neuropsychiatry, Clin Neurophysiol, vol.127, issue.1, pp.732-739, 2016.

J. Classen, A. Wolters, and K. Stefan, Paired associative stimulation, Suppl Clin Neurophysiol, vol.57, pp.563-569, 2004.

K. Stefan, E. Kunesch, L. G. Cohen, R. Benecke, and J. Classen, Induction of plasticity in the human motor cortex by paired associative stimulation, Brain, vol.123, issue.3, pp.572-584, 2000.

K. Stefan, E. Kunesch, R. Benecke, L. G. Cohen, and J. Classen, Mechanisms of Enhancement of Human Motor Cortex Excitability Induced by, Interventional Paired Associative Stimulation, vol.543, 2002.

S. Bagnato, R. Agostino, N. Modugno, A. Quartarone, and A. Berardelli, Plasticity of the motor cortex in Parkinson's disease patients on and off therapy, Mov Disord, vol.21, issue.5, pp.639-645, 2006.

A. Quartarone, S. Bagnato, and V. Rizzo, Abnormal associative plasticity of the human motor cortex in writer's cramp, Brain, vol.126, pp.2586-2596, 2003.

D. Fathi, Y. Ueki, and T. Mima, Effects of aging on the human motor cortical plasticity studied by paired associative stimulation, Clin Neurophysiol, vol.121, issue.1, pp.90-93, 2010.

T. Popa, B. Velayudhan, and C. Hubsch, Cerebellar processing of sensory inputs primes motor cortex plasticity, Cereb Cortex, vol.23, issue.2, pp.305-314, 2013.

L. Avanzino, N. Gueugneau, A. Bisio, P. Ruggeri, C. Papaxanthis et al., Motor cortical plasticity induced by motor learning through mental practice, Front Behav Neurosci, vol.9, pp.1-10, 2015.

A. Quartarone, V. Rizzo, and S. Bagnato, Rapid-rate paired associative stimulation of the median nerve and motor cortex can produce long-lasting changes in motor cortical excitability in humans, J Physiol, vol.575, issue.2, pp.657-670, 2006.

P. Tsang, A. Z. Bailey, and A. J. Nelson, Rapid-rate paired associative stimulation over the primary somatosensory cortex, PLoS One, vol.10, issue.3, pp.1-16, 2015.

R. S. Calabro, M. Russo, and A. Naro, Who May Benefit From Armeo Power Treatment? A Neurophysiological Approach to Predict Neurorehabilitation Outcomes, PM R, vol.8, issue.10, pp.971-978, 2016.

F. Fratello, D. Veniero, and G. Curcio, Modulation of corticospinal excitability by paired associative stimulation: Reproducibility of effects and intraindividual reliability, Clin Neurophysiol, vol.117, issue.12, pp.2667-2674, 2006.

J. Müller-dahlhaus, Y. Orekhov, Y. Liu, and U. Ziemann, Interindividual variability and age-dependency of motor cortical plasticity induced by paired associative stimulation, Exp Brain Res, vol.187, issue.3, pp.467-475, 2008.

S. Meyer, N. De-bruyn, and C. Lafosse, Somatosensory Impairments in the Upper Limb Poststroke, Neurorehabil Neural Repair, vol.30, issue.8, pp.731-742, 2016.

T. Sugavanam, G. Mead, C. Bulley, M. Donaghy, and F. Van-wijck, The effects and experiences of goal setting in stroke rehabilitation -a systematic review, Disabil Rehabil, vol.35, issue.3, pp.177-190, 2013.

T. B. Cumming, A. G. Thrift, and J. M. Collier, Very early mobilization after stroke fast-tracks return to walking: Further results from the phase II AVERT randomized controlled trial, Stroke, vol.42, issue.1, pp.153-158, 2011.

E. R. Coleman, R. Moudgal, and K. Lang, Early Rehabilitation After Stroke : a Narrative Review, vol.19, 2018.

B. French, L. H. Thomas, and J. Coupe, Repetitive task training for improving functional ability after stroke. Cochrane Database Syst Rev, 2016.

L. H. Thomas, B. French, and J. Coupe, Repetitive Task Training for Improving Functional Ability after Stroke: A Major Update of a Cochrane Review, Stroke, vol.48, issue.4, pp.102-103, 2017.

G. Kwakkel, R. Van-peppen, and R. C. Wagenaar, Effects of Augmented Exercise Therapy Time After Stroke: A Meta-Analysis, Stroke, vol.35, issue.11, pp.2529-2539, 2004.

K. R. Lohse, C. E. Lang, and L. A. Boyd, Is more better? Using metadata to explore dose-response relationships in stroke rehabilitation, Stroke, vol.45, issue.7, pp.2053-2058, 2014.

C. Carmelo, Bottom-Up or Top-Down Approach? Understanding the Way to Reach the Milestone of Recovery in Stroke, Int J Neurorehabilitation, issue.02, p.2, 2015.

, Accident vasculaire cérébral : méthodes de rééducation de la fonction motrice chez l'adulte -Argumentaire scientifique, Has, 2012.

P. Lindberg, C. Schmitz, H. Forssberg, M. Engardt, and J. Borg, Effects of passive-active movement training on upper limb motor function and cortical activation in chronic patients with stroke: a pilot study, J Rehabil Med, vol.36, issue.3, pp.117-123, 2004.

F. Smedes, A. Van-der-salm, G. Koel, and F. Oosterveld, Manual mobilization of the wrist: A pilot study in rehabilitation of patients with a chronic hemiplegic hand post-stroke, J Hand Ther, vol.27, issue.3, pp.209-216, 2014.

S. Wist, J. Clivaz, and M. Sattelmayer, Muscle strengthening for hemiparesis after stroke: A meta-analysis, Ann Phys Rehabil Med, vol.59, issue.2, pp.114-124, 2016.

S. M. Golaszewski, J. Bergmann, and M. Christova, Modulation of motor cortex excitability by different levels of whole-hand afferent electrical stimulation, Clin Neurophysiol, vol.123, issue.1, pp.193-199, 2012.

H. K. Shin, S. H. Cho, and H. Jeon, Cortical effect and functional recovery by the electromyographytriggered neuromuscular stimulation in chronic stroke patients, Neurosci Lett, vol.442, issue.3, pp.174-179, 2008.

D. Rushton, Functional Electrical Stimulation and rehabilitation-an hypothesis, Med Eng Phys, vol.25, issue.1, pp.75-78, 2003.

Y. Hara, S. Obayashi, K. Tsujiuchi, and Y. Muraoka, The effects of electromyography-controlled functional electrical stimulation on upper extremity function and cortical perfusion in stroke patients, Clin Neurophysiol, vol.124, issue.10, pp.2008-2015, 2013.

A. M. Roy, Functional Electrical Stimulation Information for Patients and Families, Stroke Engine, vol.2010, pp.1-5

G. Alon, A. F. Levitt, and P. A. Mccarthy, Functional Electrical Stimulation Enhancement of Upper Extremity Functional Recovery During Stroke Rehabilitation: A Pilot Study, Neurorehabil Neural Repair, vol.21, issue.3, pp.207-215, 2007.

A. B. Conforto, A. Kaelin-lang, and L. G. Cohen, Increase in hand muscle strength of stroke patients after somatosensory stimulation, Ann Neurol, vol.51, issue.1, pp.122-125, 2002.

D. B. Popovi?, T. Sinkaer, and M. B. Popovi?, Electrical stimulation as a means for achieving recovery of function in stroke patients, NeuroRehabilitation, vol.25, issue.1, pp.45-58, 2009.

C. Torriani-pasin, G. Bonuzzi, G. C. Palma, and S. , Motor learning in post stroke subjects: the effects of practice conditions on the temporal synchronization, Mot Rev Educ Física, vol.24, issue.2, 2018.

R. M. Hardwick, V. A. Rajan, A. J. Bastian, J. W. Krakauer, and P. A. Celnik, Motor Learning in Stroke, Neurorehabil Neural Repair, vol.31, issue.2, pp.178-189, 2017.

Y. Murata, N. Higo, and T. Oishi, Effects of Motor Training on the Recovery of Manual Dexterity After Primary Motor Cortex Lesion in Macaque Monkeys, J Neurophysiol, vol.99, issue.2, pp.773-786, 2008.

A. Pascual-leone, J. Grafman, and M. Hallett, Modulation of cortical motor output maps during development of implicit and explicit knowledge, Science, vol.263, issue.5151, pp.1287-1289, 1994.

R. M. Hardwick, V. A. Rajan, A. J. Bastian, J. W. Krakauer, and P. A. Celnik, Motor Learning in Stroke: Trained Patients Are Not Equal to Untrained Patients With Less Impairment, Neurorehabil Neural Repair, p.1545968316675432, 2016.

J. R. Carey, T. J. Kimberley, and S. M. Lewis, Analysis of fMRI and finger tracking training in subjects with chronic stroke, Brain, vol.125, pp.773-788, 2002.

S. Lefebvre, L. Dricot, and P. Laloux, Neural substrates underlying stimulation-enhanced motor skill learning after stroke, Annu Rev Neurosci, vol.138, issue.1, pp.377-401, 2005.

J. A. Hosp and A. R. Luft, Cortical plasticity during motor learning and recovery after ischemic stroke, Neural Plast, 2011.

M. E. Stoykov, G. N. Lewis, and D. M. Corcos, Comparison of Bilateral and Unilateral Training for Upper Extremity Hemiparesis in Stroke, Neurorehabil Neural Repair, vol.23, issue.9, pp.945-953, 2009.

M. Waller, S. Whitall, and J. , Bilateral arm training: why and who benefits?, NeuroRehabilitation, vol.23, issue.1, pp.29-41, 2008.

K. H. Tsai, C. Y. Yeh, H. Y. Chang, and J. J. Chen, Effects of a single session of prolonged muscle stretch on spastic muscle of stroke patients, Proc Natl Sci Counc Repub China B, vol.25, issue.2, pp.76-81, 2001.

Y. J. Jung, J. H. Hong, and H. G. Kwon, The effect of a stretching device on hand spasticity in chronic hemiparetic stroke patients, NeuroRehabilitation, vol.29, issue.1, pp.53-59, 2011.

L. A. Harvey, O. M. Katalinic, R. D. Herbert, A. M. Moseley, N. A. Lannin et al., Stretch for the treatment and prevention of contractures. Cochrane Database Syst Rev, 2017.

C. J. Winstein, J. Stein, and R. Arena, Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association, Stroke, vol.47, issue.6, pp.98-169, 2016.

G. Warner, T. Packer, M. Villeneuve, A. Audulv, and J. Versnel, A systematic review of the effectiveness of stroke self-management programs for improving function and participation outcomes: self-management programs for stroke survivors, Disabil Rehabil, vol.37, issue.23, pp.2141-2163, 2015.

C. E. Fryer, J. A. Luker, M. N. Mcdonnell, and S. L. Hillier, Self management programmes for quality of life in people with stroke, Cochrane Database Syst Rev, issue.8, p.10442, 2016.

H. L. Parke, E. Epiphaniou, and G. Pearce, Self-Management Support Interventions for Stroke Survivors: A Systematic Meta-Review, PLoS One, vol.10, issue.7, p.131448, 2015.

A. Pollock, G. Baer, and P. Campbell, Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst Rev, Stroke, vol.47, issue.10, pp.2603-2610, 2014.

A. Pollock, C. Gray, E. Culham, B. R. Durward, and P. Langhorne, Interventions for improving sit-to-stand ability following stroke, Cochrane Database Syst Rev, issue.5, p.7232, 2014.

M. Cordun and G. A. Marinescu, Functional Rehabilitation Strategies for the Improvement of Balance in Patients with Hemiplegia after an Ischemic Stroke, Procedia -Soc Behav Sci, vol.117, pp.575-580, 2014.

. Wolf-s, . Lecraw-d, and J. B. Barton-l, Forced use of hemiplegic upper extremities to reverse the effect of learned nonuse among chronic stroke and head-injured patients, Exp Neurol, vol.104, issue.2, pp.80005-80011, 1989.

W. H. Miltner, H. Bauder, M. Sommer, C. Dettmers, and E. Taub, Effects of constraint-induced movement therapy on patients with chronic motor deficits after stroke: a replication, Stroke, vol.30, issue.3, pp.586-592, 1999.

S. H. Peurala, M. P. Kantanen, T. Sjögren, J. Paltamaa, M. Karhula et al., Effectiveness of constraintinduced movement therapy on activity and participation after stroke: a systematic review and metaanalysis of randomized controlled trials, Curr Opin Neurol, vol.26, issue.3, pp.582-588, 2009.

J. Liepert, W. H. Miltner, and H. Bauder, Motor cortex plasticity during constraint-induced movement therapy in stroke patients, Neurosci Lett, vol.250, issue.1, pp.5-8, 1998.

R. Nijland, G. Kwakkel, J. Bakers, and E. Van-wegen, Constraint-Induced Movement Therapy for the Upper Paretic Limb in Acute or Sub-Acute Stroke: A Systematic Review, Int J Stroke, vol.353, issue.5, pp.425-433, 2011.

L. B. Goldstein, C. M. Papadopoulos, S. Tsai, V. Guillen, J. Ortega et al., Basic and Clinical Studies of Pharmacologic Effects on Recovery from Brain Injury, J Neural Transplant Plast, vol.4, issue.3, pp.242-245, 1993.

U. Ziemann, A. Tam, C. Bütefisch, and L. G. Cohen, Dual modulating effects of amphetamine on neuronal excitability and stimulation-induced plasticity in human motor cortex, Clin Neurophysiol, vol.113, issue.8, pp.1308-1315, 2002.

E. A. Crisostomo, P. W. Duncan, M. Propst, D. Dawson, and J. N. Davis, Evidence that amphetamine with physical therapy promotes recovery of motor function in stroke patients, Ann Neurol, vol.23, issue.1, pp.94-97, 1988.

D. Walker-batson, P. Smith, S. Curtis, H. Unwin, and R. Greenlee, Amphetamine paired with physical therapy accelerates motor recovery after stroke. Further evidence, Stroke, vol.26, issue.12, pp.2254-2259, 1995.

D. J. Gladstone, C. J. Danells, and A. Armesto, Physiotherapy Coupled With Dextroamphetamine for Rehabilitation After Hemiparetic Stroke: A Randomized, Double-Blind, Placebo-Controlled Trial, Stroke, vol.37, issue.1, pp.179-185, 2006.

L. Martinsson, H. Hårdemark, and S. Eksborg, Amphetamines for improving recovery after stroke. Cochrane Database Syst Rev, 2007.

M. King, L. Rauch, S. J. Brooks, D. J. Stein, and K. Lutz, Methylphenidate Enhances Grip Force and Alters Brain Connectivity, Med Sci Sports Exerc, vol.49, issue.7, pp.1443-1451, 2017.

O. M. Farr, S. Zhang, and S. Hu, The effects of methylphenidate on resting-state striatal, thalamic and global functional connectivity in healthy adults, Int J Neuropsychopharmacol, vol.2014, pp.1-15

J. Tardy, J. Pariente, and A. Leger, Methylphenidate modulates cerebral post-stroke reorganization, Neuroimage, vol.33, pp.913-922, 2006.

R. M. Lazar, M. F. Berman, J. R. Festa, A. E. Geller, T. G. Matejovsky et al., GABAergic but not anticholinergic agents re-induce clinical deficits after stroke, J Neurol Sci, vol.292, issue.1-2, pp.72-76, 2010.

R. D. Zorowitz, Road to recovery: drugs used in stroke rehabilitation, Expert Rev Neurother, vol.4, issue.2, pp.219-231, 2004.

S. E. Nadeau, A. L. Behrman, and S. E. Davis, Donepezil as an adjuvant to constraint-induced therapy for upper-limb dysfunction after stroke: an exploratory randomized clinical trial, J Rehabil Res Dev, vol.41, issue.4, pp.525-534, 2004.

A. Flöel, C. Breitenstein, and F. Hummel, Dopaminergic influences on formation of a motor memory, Ann Neurol, vol.58, issue.1, pp.121-130, 2005.

K. Scheidtmann, W. Fries, F. Müller, and E. Koenig, Effect of levodopa in combination with physiotherapy on functional motor recovery after stroke: a prospective, randomised, double-blind study, Lancet, vol.358, issue.9284, pp.5966-5975, 2001.

C. Restemeyer, C. Weiller, and J. Liepert, No effect of a levodopa single dose on motor performance and motor excitability in chronic stroke. A double-blind placebo-controlled cross-over pilot study, Restor Neurol Neurosci, vol.25, issue.2, pp.143-150, 2007.

D. A. Tran, M. Pajaro-blazquez, and J. Daneault, Combining Dopaminergic Facilitation with RobotAssisted Upper Limb Therapy in Stroke Survivors, Am J Phys Med Rehabil, vol.95, issue.6, pp.459-474, 2016.

Y. Huang, M. J. Edwards, E. Rounis, K. P. Bhatia, and J. C. Rothwell, Theta Burst Stimulation of the Human Motor Cortex, Neuron, vol.45, issue.2, pp.201-206, 2005.

A. Suppa, A. Biasiotta, and D. Belvisi, Heat-Evoked Experimental Pain Induces Long-Term PotentiationLike Plasticity in Human Primary Motor Cortex, Cereb Cortex, vol.23, issue.8, pp.1942-1951, 2013.

L. Hoyte, P. Barber, A. Buchan, and M. Hill, The Rise and Fall of NMDA Antagonists for Ischemic Stroke, Curr Mol Med, vol.4, issue.2, pp.131-136, 2004.

J. Dhawan, H. Benveniste, Z. Luo, M. Nawrocky, S. D. Smith et al., A new look at glutamate and ischemia: NMDA agonist improves long-term functional outcome in a rat model of stroke, Future Neurol, vol.6, issue.6, pp.823-834, 2011.

A. B. Brühl, T. Kaffenberger, and U. Herwig, Serotonergic and noradrenergic modulation of emotion processing by single dose antidepressants, Neuropsychopharmacology, vol.35, issue.2, pp.521-533, 2010.

G. A. Van-wingen, I. Tendolkar, and M. Urner, Short-term antidepressant administration reduces default mode and task-positive network connectivity in healthy individuals during rest, Neuroimage, vol.88, pp.47-53, 2014.

C. B. Pinto, S. Velez, F. G. Lopes, and F. , SSRI and Motor Recovery in Stroke: Reestablishment of Inhibitory Neural Network Tonus, Front Neurosci, vol.11, p.637, 2017.

I. Loubinoux, J. Pariente, and K. Boulanouar, A single dose of the serotonin neurotransmission agonist paroxetine enhances motor output: Double-blind, placebo-controlled, fMRI study in healthy subjects, Neuroimage, vol.15, issue.1, pp.314-322, 2002.

J. Pariente, I. Loubinoux, and C. Carel, Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke, Ann Neurol, vol.50, issue.6, pp.718-729, 2001.

F. Chollet, J. Tardy, and J. Albucher, Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial, Lancet Neurol, vol.10, issue.2, pp.70314-70322, 2011.

A. Schaefer, I. Burmann, and R. Regenthal, Serotonergic modulation of intrinsic functional connectivity, Curr Biol, vol.24, pp.2314-2318, 2014.

B. L. Klaassens, H. C. Van-gorsel, and N. Khalili-mahani, Single-dose serotonergic stimulation shows widespread effects on functional brain connectivity, Neuroimage, vol.122, pp.440-450, 2015.

U. Ziemann, J. Reis, and P. Schwenkreis, TMS and drugs revisited 2014, Clin Neurophysiol, 2014.

M. A. Nitsche, M. Kuo, R. Karrasch, B. Wächter, D. Liebetanz et al., Serotonin Affects Transcranial Direct Current-Induced Neuroplasticity in Humans, Biol Psychiatry, vol.66, issue.5, pp.503-508, 2009.

G. Batsikadze, W. Paulus, M. Kuo, and M. A. Nitsche, Effect of Serotonin on Paired Associative StimulationInduced Plasticity in the Human Motor Cortex, Neuropsychopharmacology, vol.38, issue.11, pp.2260-2267, 2013.

C. J. Stagg, V. Bachtiar, and H. Johansen-berg, The Role of GABA in Human Motor Learning, Curr Biol, vol.21, issue.6, pp.480-484, 2011.

A. N. Clarkson, B. S. Huang, S. E. Macisaac, I. Mody, and S. T. Carmichael, Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke, Nature, vol.468, issue.7321, pp.305-309, 2010.

T. Heidegger, K. Krakow, and U. Ziemann, Effects of antiepileptic drugs on associative LTP-like plasticity in human motor cortex, Eur J Neurosci, vol.32, issue.7, pp.1215-1222, 2010.

M. N. Mcdonnell, Y. Orekhov, and U. Ziemann, Suppression of LTP-like plasticity in human motor cortex by the GABAB receptor agonist baclofen, Exp Brain Res, vol.180, issue.1, pp.181-186, 2007.

J. Liu, L. Wang, X. Ma, and J. X. , Gamma aminobutyric acid (GABA) receptor agonists for acute stroke

, , 2016.

J. U. Blicher, J. Near, and E. Naess-schmidt, GABA levels are decreased after stroke and GABA changes during rehabilitation correlate with motor improvement, Neurorehabil Neural Repair, vol.29, issue.3, pp.278-286, 2015.

C. Marciniak, P. Mcallister, and H. Walker, Efficacy and Safety of AbobotulinumtoxinA (Dysport) for the Treatment of Hemiparesis in Adults With Upper Limb Spasticity Previously Treated With Botulinum Toxin: Subanalysis From a Phase 3 Randomized Controlled Trial, PM&R, vol.9, issue.12, pp.1181-1190, 2018.

G. D. Caty, C. Detrembleur, C. Bleyenheuft, T. Deltombe, and T. M. Lejeune, Effect of Upper Limb Botulinum Toxin Injections on Impairment, Activity, Participation, and Quality of Life Among Stroke Patients, Stroke, vol.40, issue.7, pp.2589-2591, 2009.

V. S. Ramachandran and E. L. Altschuler, The use of visual feedback, in particular mirror visual feedback, in restoring brain function, Brain, vol.132, issue.7, pp.1693-1710, 2009.

M. E. Michielsen, M. Smits, and G. M. Ribbers, The neuronal correlates of mirror therapy: An fMRI study on mirror induced visual illusions in patients with stroke, J Neurol Neurosurg Psychiatry, vol.82, issue.4, pp.393-398, 2011.

K. Matthys, M. Smits, and J. N. Van-der-geest, Mirror-Induced Visual Illusion of Hand Movements: A Functional Magnetic Resonance Imaging Study, Arch Phys Med Rehabil, vol.90, issue.4, pp.675-681, 2009.

J. Park, C. M. Kim, K. Kim, and H. , The effect of mirror therapy on upper-extremity function and activities of daily living in stroke patients, J Phys Ther Sci, vol.27, issue.6, pp.1681-1683, 2015.

H. Thieme, N. Morkisch, and J. Mehrholz, Mirror therapy for improving motor function after stroke

, Cochrane Database Syst Rev, 2018.

K. N. Arya, Underlying neural mechanisms of mirror therapy: Implications for motor rehabilitation in stroke, Neurol India, vol.64, issue.1, pp.38-44, 2016.

G. Buccino, Action observation treatment: a novel tool in neurorehabilitation, Philos Trans R Soc B Biol Sci, vol.369, pp.20130185-20130185, 1644.

V. Gazzola, G. Rizzolatti, B. Wicker, and C. Keysers, The anthropomorphic brain: The mirror neuron system responds to human and robotic actions, Neuroimage, vol.35, issue.4, pp.1674-1684, 2007.

G. Rizzolatti, L. Cattaneo, M. Fabbri-destro, and S. Rozzi, Cortical mechanisms underlying the organization of goal-directed actions and mirror neuron-based action understanding, Physiol Rev, vol.94, issue.2, pp.655-706, 2014.

F. Maeda, G. Kleiner-fisman, and A. Pascual-leone, Motor Facilitation While Observing Hand Actions: Specificity of the Effect and Role of Observer's Orientation, J Neurophysiol, vol.87, issue.3, pp.1329-1335, 2002.

P. Celnik, B. Webster, D. M. Glasser, and L. G. Cohen, Effects of Action Observation on, Physical Training After Stroke. Stroke, vol.39, issue.6, pp.1814-1820, 2008.

A. P. Strafella and T. Paus, Modulation of cortical excitability during action observation: a transcranial magnetic stimulation study, Neuroreport, vol.11, issue.10, pp.2289-2292, 2000.

D. Ertelt, S. Small, and A. Solodkin, Action observation has a positive impact on rehabilitation of motor deficits after stroke, Neuroimage, vol.36, issue.2, pp.164-73, 2007.

M. Bassolino, M. Campanella, M. Bove, T. Pozzo, and L. Fadiga, Training the Motor Cortex by Observing the Actions of Others During Immobilization, vol.24, pp.3268-3276, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01159596

S. Bermudez-i-badia, G. Morgade, A. Samaha, H. Verschure, and P. , Using a Hybrid Brain Computer Interface and Virtual Reality System to Monitor and Promote Cortical Reorganization through Motor Activity and Motor Imagery Training, IEEE Trans Neural Syst Rehabil Eng, vol.21, issue.2, pp.174-181, 2013.

C. Modroño, G. Navarrete, A. F. Rodríguez-hernández, and G. Jl, Activation of the human mirror neuron system during the observation of the manipulation of virtual tools in the absence of a visible effector limb, Neurosci Lett, vol.555, pp.220-224, 2013.

D. Dio, C. , D. Cesare, G. Higuchi, S. Roberts et al., The neural correlates of velocity processing during the observation of a biological effector in the parietal and premotor cortex, Neuroimage, vol.64, pp.425-436, 2013.

G. Buccino, F. Binkofski, and G. R. Fink, Action observation activates premotor and parietal areas in a somatotopic manner an fMRI study, vol.13, pp.400-404, 2001.

M. Grangeon, A. Guillot, and C. Collet, Effets de l'imagerie motrice dans la rééducation de lésions centrales et des atteintes musculo-articulaires, Sci Mot, vol.67, pp.9-38, 2009.

B. Sciences and M. Jeannerod, The representing brain: Neural correlates of motor intention and imagery, Behav Brain Sci, vol.17, issue.02, p.187, 1994.

F. Malouin, C. L. Richards, P. L. Jackson, M. F. Lafleur, A. Durand et al., The Kinesthetic and Visual Imagery Questionnaire (KVIQ) for assessing motor imagery in persons with physical disabilities: a reliability and construct validity study, J Neurol Phys Ther, vol.31, issue.1, pp.20-29, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00164370

D. Vries, S. Tepper, M. Feenstra, and W. , Motor imagery ability in stroke patients: the relationship between implicit and explicit motor imagery measures, 2013.

S. De-vries, M. Tepper, B. Otten, and T. Mulder, Recovery of motor imagery ability in stroke patients, Rehabil Res Pract, p.283840, 2011.

F. Malouin, C. L. Richards, and A. Durand, Slowing of motor imagery after a right hemispheric stroke, Stroke Res Treat, 2012.

G. Aymeric, Influence du contexte de pratique de l'imagerie motrice : étude en tennis de table, Noûs, pp.27-29, 2003.

G. Batson, Motor Imagery for Stroke Rehabilitation, Clin Res, pp.84-89, 2004.

L. Jones and G. Stuth, The uses of mental imagery in athletics: An overview, Appl Prev Psychol, vol.6, issue.2, pp.80016-80018, 1997.

M. C. Hornbrook, V. J. Stevens, and D. J. Wingfield, Seniors' Program for Injury Control and Education, J Am Geriatr Soc, vol.41, issue.3, pp.309-314, 1993.

S. Vries, . De, T. Mulder, S. De-vries, and T. Mulder, Motor Imagery and Stroke Rehabilitation: A Critical Discussion, vol.39, pp.5-13, 2007.

S. S. Kim and B. Lee, Motor imagery training improves upper extremity performance in stroke patients, J Phys Ther Sci, vol.27, issue.7, pp.2289-2291, 2015.

M. Jeannerod, Neural Simulation of Action: A Unifying Mechanism for Motor Cognition, Neuroimage, vol.14, issue.1, 2001.

N. Sharma, L. H. Simmons, and P. S. Jones, Motor imagery after subcortical stroke: A functional magnetic resonance imaging study, Stroke, vol.40, issue.4, pp.1315-1324, 2009.

M. Lotze, P. Montoya, and M. Erb, Activation of Cortical and Cerebellar Motor Areas during Executed and Imagined Hand Movements: An fMRI Study, J Cogn Neurosci, vol.11, issue.5, pp.491-501, 1999.

S. Hétu, M. Grégoire, and A. Saimpont, The neural network of motor imagery: An ALE meta-analysis, Neurosci Biobehav Rev, 2013.

L. Dodakian, J. Stewart, and S. Cramer, Motor imagery during movement activates the brain more than movement alone after stroke: A pilot study, J Rehabil Med, vol.46, issue.9, pp.843-848, 2014.

R. Ge, H. Zhang, L. Yao, and Z. Long, Motor imagery learning induced changes in functional connectivity of the default mode network, IEEE Trans Neural Syst Rehabil Eng, vol.23, issue.1, pp.138-148, 2015.

L. Wang, J. Zhang, Y. Zhang, R. Yan, H. Liu et al., Conditional Granger Causality Analysis of Effective Connectivity during Motor Imagery and Motor Execution in Stroke Patients, Biomed Res Int, 2016.

N. Sharma, J. C. Baron, and J. B. Rowe, Motor imagery after stroke: Relating outcome to motor network connectivity, Ann Neurol, 2009.

Y. K. Kim, E. Park, A. Lee, C. Im, and Y. Kim, Changes in network connectivity during motor imagery and execution, PLoS One, vol.13, issue.1, p.190715, 2018.

S. Bajaj, A. J. Butler, D. Drake, and M. Dhamala, Brain effective connectivity during motor-imagery and execution following stroke and rehabilitation, NeuroImage Clin, vol.8, pp.572-582, 2015.

C. Ruffino, C. Papaxanthis, and F. Lebon, Neural plasticity during motor learning with motor imagery practice: Review and perspectives, Neuroscience, vol.341, pp.61-78, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01499528

K. P. Liu, C. C. Chan, T. M. Lee, and C. W. Hui-chan, Mental imagery for promoting relearning for people after stroke: a randomized controlled trial, Arch Phys Med Rehabil, vol.85, issue.9, pp.1403-1408, 2004.

B. Pelgrims, N. Michaux, E. Olivier, and M. Andres, Contribution of the primary motor cortex to motor imagery: A subthreshold TMS study, Hum Brain Mapp, vol.32, issue.9, pp.1471-1482, 2011.

V. Gatica-rojas and G. Méndez-rebolledo, Virtual reality interface devices in the reorganization of neural networks in the brain of patients with neurological diseases, Neural Regen Res, vol.9, issue.8, pp.888-896, 2014.

K. S. Hale and K. M. Stanney, Handbook of Virtual Environments : Design, Implementation and Applications, 2002.

E. Klinger, H. Cherni, and P. Joseph, Impact of contextual additional stimuli on the performance in a virtual activity of daily living (vADL) among patients with brain injury and controls, Int J Disabil Hum Dev, vol.13, issue.3, 2014.

E. Tunik, S. Saleh, and S. V. Adamovich, Visuomotor discordance during visually-guided hand movement in Virtual Reality modulates sensorimotor cortical activity in healthy and hemiparetic subjects, IEEE Trans Neural Syst Rehabil Eng, vol.21, issue.2, pp.198-207, 2013.

S. Bermúdez-i-badia, G. G. Fluet, R. Llorens, and J. E. Deutsch, Virtual reality for sensorimotor rehabilitation post stroke: Design principles and evidence, Neurorehabilitation Technology, 2016.

S. H. You, S. H. Jang, and Y. Kim, Virtual Reality-Induced Cortical Reorganization and Associated Locomotor Recovery in Chronic Stroke: An Experimenter-Blind Randomized Study, Stroke, vol.36, issue.6, pp.1166-1171, 2005.

X. Xiao, Q. Lin, and W. L. Lo, Cerebral Reorganization in Subacute Stroke Survivors after Virtual RealityBased Training: A Preliminary Study, Behav Neurol, 2017.

H. J. Sung, S. H. You, and M. Hallett, Cortical reorganization and associated functional motor recovery after virtual reality in patients with chronic stroke: An experimenter-blind preliminary study, Arch Phys Med Rehabil, vol.86, issue.11, pp.2218-2223, 2005.

S. Yeh, S. Lee, R. Chan, Y. Wu, L. Zheng et al., The Efficacy of a Haptic-Enhanced Virtual Reality System for Precision Grasp Acquisition in Stroke Rehabilitation, J Healthc Eng, p.9840273, 2017.

G. Morone, S. Paolucci, and A. Cherubini, Robot-assisted gait training for stroke patients: Current state of the art and perspectives of robotics, Neuropsychiatr Dis Treat, vol.13, pp.1303-1311, 2017.

S. Hesse, G. Schulte-tigges, K. M. Bardeleben, A. Werner, and C. , Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects, Arch Phys Med Rehabil, vol.84, issue.6, pp.915-920, 2003.

P. S. Lum, C. G. Burgar, M. Van-der-loos, P. C. Shor, M. Majmundar et al., The MIME robotic system for upper-limb neuro-rehabilitation: Results from a clinical trial in subacute stroke, Proc 2005 IEEE 9th Int Conf Rehabil Robot, pp.511-514, 2005.

M. J. Wessel, M. Zimerman, and F. C. Hummel, Non-invasive brain stimulation: an interventional tool for enhancing behavioral training after stroke, Front Hum Neurosci, vol.9, p.265, 2015.

E. Castel-lacanal, M. Tarri, and I. Loubinoux, Transcranial magnetic stimulation in brain injury, Ann Fr Anesth Reanim, vol.33, issue.2, pp.83-87, 2014.

T. O. Bergmann, A. Karabanov, G. Hartwigsen, A. Thielscher, and H. R. Siebner, Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives, Neuroimage, vol.140, pp.4-19, 2016.

A. Pascual-leone, J. Valls-solé, E. M. Wassermann, and M. Hallett, Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex, Brain, vol.117, pp.847-858, 1994.

R. Chen, J. Classen, and C. Gerloff, Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation, Neurology, vol.48, issue.5, pp.1398-1403, 1997.

M. Kandel, J. M. Beis, L. Chapelain, L. Guesdon, H. Paysant et al., Non-invasive cerebral stimulation for the upper limb rehabilitation after stroke: A review, Ann Phys Rehabil Med, vol.55, issue.9, pp.657-680, 2012.

D. A. Nowak, C. Grefkes, and M. Dafotakis, Effects of Low-Frequency Repetitive Transcranial Magnetic Stimulation of the Contralesional Primary Motor Cortex on Movement Kinematics and Neural Activity in Subcortical Stroke, Arch Neurol, vol.65, issue.6, pp.741-747, 2008.

N. Takeuchi, T. Chuma, Y. Matsuo, I. Watanabe, and K. Ikoma, Repetitive Transcranial Magnetic Stimulation of Contralesional Primary Motor Cortex Improves Hand Function After Stroke, Stroke, vol.36, issue.12, pp.2681-2686, 2005.

M. Ameli, C. Grefkes, and F. Kemper, Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke, Eur J Neurol, vol.66, issue.3, pp.298-309, 2009.

J. Tretriluxana, S. Kantak, S. Tretriluxana, A. D. Wu, and B. E. Fisher, Improvement in Paretic Arm Reach-to-Grasp following Low Frequency Repetitive Transcranial Magnetic Stimulation Depends on Object Size: A Pilot Study, Stroke Res Treat, vol.2015, pp.1-13, 2015.

E. M. Khedr, A. E. Etraby, M. Hemeda, A. M. Nasef, and A. Razek, Long-term effect of repetitive transcranial magnetic stimulation on motor function recovery after acute ischemic stroke, Acta Neurol Scand, vol.121, issue.1, pp.30-37, 2010.

Y. Kim, W. Chang, O. Bang, S. Kim, Y. Park et al., Long-term effects of rTMS on motor recovery in patients after subacute stroke, J Rehabil Med, vol.42, issue.8, pp.758-764, 2010.

B. Galvão, S. C. , B. Costa, R. Santos, P. Borba-dos-santos et al., Efficacy of Coupling Repetitive Transcranial Magnetic Stimulation and Physical Therapy to Reduce Upper-Limb Spasticity in Patients With Stroke: A Randomized Controlled Trial, Arch Phys Med Rehabil, vol.95, issue.2, pp.222-229, 2014.

W. Kakuda, M. Abo, and R. Momosaki, Combined therapeutic application of botulinum toxin type A, lowfrequency rTMS, and intensive occupational therapy for post-stroke spastic upper limb hemiparesis, Eur J Phys Rehabil Med, vol.48, issue.1, pp.47-55, 2012.

Z. Hao, D. Wang, Y. Zeng, and M. Liu, Repetitive transcranial magnetic stimulation for improving function after stroke, Cochrane Database Syst Rev, issue.5, p.8862, 2013.

N. C. Kennedy and R. G. Carson, The effect of simultaneous contractions of ipsilateral muscles on changes in corticospinal excitability induced by paired associative stimulation (PAS), Neurosci Lett, vol.445, issue.1, pp.7-11, 2008.

N. Murase, B. Cengiz, and J. C. Rothwell, Inter-individual Variation in the After-effect of Paired Associative Stimulation can be Predicted From Short-interval Intracortical Inhibition With the Threshold Tracking Method, Brain Stimul, vol.8, issue.1, pp.105-113, 2014.

J. Lahr, S. Paßmann, J. List, W. Vach, A. Flöel et al., Effects of Different Analysis Strategies on Paired Associative Stimulation. A Pooled Data Analysis from Three Research Labs, PLoS One, vol.11, issue.5, p.154880, 2016.

P. Talelli, R. J. Greenwood, J. C. Rothwell, S. J. Ackerley, C. M. Stinear et al., Exploring Theta Burst Stimulation as an intervention to improve motor recovery in chronic stroke, Clin Neurophysiol, vol.118, issue.2, pp.1568-1572, 2007.

P. Talelli, A. Wallace, and M. Dileone, Theta burst stimulation in the rehabilitation of the upper limb: a semirandomized, placebo-controlled trial in chronic stroke patients, Neurorehabil Neural Repair, vol.26, issue.8, pp.976-987, 2012.

L. J. Volz, A. K. Rehme, and J. Michely, Shaping Early Reorganization of Neural Networks Promotes Motor Function after Stroke, Cereb Cortex, vol.26, issue.6, pp.2882-2894, 2016.

M. A. Nitsche, L. G. Cohen, and E. M. Wassermann, Transcranial direct current stimulation: State of the art, Brain Stimul, vol.1, issue.3, pp.206-223, 2008.

S. Dehem, M. Gilliaux, and T. Lejeune, Effectiveness of a single session of dual-transcranial direct current stimulation in combination with upper limb robotic-assisted rehabilitation in chronic stroke patients, Int J Rehabil Res, vol.41, issue.2, p.1, 2018.

F. Hummel, P. Celnik, and P. Giraux, Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke, Brain, vol.128, issue.3, pp.490-499, 2005.

V. Sattler, B. Acket, and N. Raposo, Anodal tDCS Combined With Radial Nerve Stimulation Promotes Hand Motor Recovery in the Acute Phase After Ischemic Stroke, Neurorehabil Neural Repair, vol.29, issue.8, pp.743-754, 2015.

P. S. Boggio, A. Nunes, S. P. Rigonatti, M. A. Nitsche, A. Pascual-leone et al., Repeated sessions of noninvasive brain DC stimulation is associated with motor function improvement in stroke patients, Restor Neurol Neurosci, vol.25, issue.2, pp.123-129, 2007.

P. Y. Chhatbar, V. Ramakrishnan, S. Kautz, M. S. George, R. J. Adams et al., Transcranial Direct Current Stimulation Post-Stroke Upper Extremity Motor Recovery Studies Exhibit a Dose-Response Relationship, Brain Stimul, vol.9, issue.1, pp.16-26, 2016.

B. Elsner, G. Kwakkel, J. Kugler, and J. Mehrholz, Transcranial direct current stimulation (tDCS) for improving capacity in activities and arm function after stroke: a network meta-analysis of randomised controlled trials, J Neuroeng Rehabil, vol.14, issue.1, p.95, 2017.

S. V. Adamovich, K. August, A. Merians, and E. Tunik, A virtual reality-based system integrated with fmri to study neural mechanisms of action observation-execution: A proof of concept study, Restor Neurol Neurosci, vol.27, issue.3, pp.209-223, 2009.

C. Mueller, M. Luehrs, and S. Baecke, Building virtual reality fMRI paradigms : A framework for presenting immersive virtual environments, J Neurosci Methods, vol.209, issue.2, pp.290-298, 2012.

G. Riva, G. Castelnuovo, and F. Mantovani, Transformation of flow in rehabilitation: the role of advanced communication technologies, Behav Res Methods, vol.38, issue.2, pp.237-244, 2006.

C. Enzinger, H. Dawes, H. Johansen-berg, D. Wade, M. Bogdanovic et al., Brain activity changes associated with treadmill training: After stroke, Stroke, vol.40, issue.7, pp.2460-2467, 2009.

K. Zhang, H. Wang, and G. Dong, Neural activation during imitation with or without performance feedback: An fMRI study, Neurosci Lett, vol.629, pp.202-207, 2016.

G. Rizzolatti, L. Fadiga, V. Gallese, and L. Fogassi, Premotor cortex and the recognition of motor actions, Cogn Brain Res, vol.3, issue.2, pp.131-141, 1996.

S. Caspers, K. Zilles, A. R. Laird, and S. B. Eickhoff, NeuroImage ALE meta-analysis of action observation and imitation in the human brain, Annu Rev Neurosci, vol.50, issue.3, pp.169-192, 2004.

V. Gallese, L. Fadiga, L. Fogassi, and G. Rizzolatti, Action recognition in the premotor cortex, Brain, vol.119, pp.593-609, 1996.

R. L. Buckner, J. R. Andrews-hanna, and D. L. Schacter, The Brain's Default Network: Anatomy, Function, and Relevance to Disease, Ann N Y Acad Sci, vol.1124, issue.1, pp.1-38, 2008.

S. Dehaene and J. Changeux, Leech R, Sharp DJ. The role of the posterior cingulate cortex in cognition and disease, Neuron, vol.70, issue.2, pp.12-32, 2011.

H. Takeuchi, Y. Taki, and R. Nouchi, Association between resting-state functional connectivity and empathizing/systemizing, Neuroimage, vol.99, pp.312-322, 2014.

P. Fransson and G. Marrelec, The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis, Neuroimage, vol.42, issue.3, pp.1178-1184, 2008.

I. Molnar-szakacs and L. Q. Uddin, Self-Processing and the Default Mode Network: Interactions with the Mirror Neuron System, Front Hum Neurosci, vol.7, p.571, 2013.

E. Dayan, I. Sella, and A. Mukovskiy, The Default Mode Network Differentiates Biological from NonBiological Motion, Cereb Cortex, vol.26, issue.1, pp.234-245, 2016.

F. Cauda, G. Geminiani, D. 'agata, and F. , Functional connectivity of the posteromedial cortex, PLoS One, vol.5, issue.9, pp.1-11, 2010.

S. Zhang and . Li-cr-shan-r, Functional connectivity mapping of the human precuneus by resting state fMRI, Neuroimage, vol.59, issue.4, pp.3548-3562, 2013.

D. R. Addis, A. T. Wong, and D. L. Schacter, Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration, pp.1363-1377, 2007.

A. E. Cavanna and M. R. Trimble, The precuneus: A review of its functional anatomy and behavioural correlates, Brain, vol.129, issue.3, pp.564-583, 2006.

H. F. Bagce, S. Saleh, S. V. Adamovich, and E. Tunik, Visuomotor gain distortion alters online motor performance and enhances primary motor cortex excitability in patients with stroke, Neuromodulation, vol.15, issue.4, pp.361-366, 2012.

K. August, J. A. Lewis, G. Chandar, B. Biswal, and S. Adamovich, Fmri Analysis of Neural Mechanisms Underlying Rehabilitation in Virtual Reality: Activating Secondary Motor Areas, pp.3692-3695, 2006.

D. Perani, F. Fazio, and N. A. Borghese, Fabbri-Destro M, Rizzolatti G. Mirror neurons and mirror systems in monkeys and humans, Physiology (Bethesda), vol.14, issue.3, pp.171-179, 2001.

J. Dien, A tale of two recognition systems: Implications of the fusiform face area and the visual word form area for lateralized object recognition models, Neuropsychologia, vol.47, issue.1, pp.1-16, 2009.

R. M. Willems, M. V. Peelen, and P. Hagoort, Cerebral lateralization of face-selective and body-selective visual areas depends on handedness, Cereb Cortex, vol.20, issue.7, pp.1719-1725, 2010.

L. Q. Uddin, J. T. Kaplan, I. Molnar-szakacs, E. Zaidel, and M. Iacoboni, Self-face recognition activates a frontoparietal "mirror" network in the right hemisphere: An event-related fMRI study, Neuroimage, vol.25, issue.3, pp.926-935, 2005.

M. Davare, Dissociating the Role of Ventral and Dorsal Premotor Cortex in Precision Grasping, J Neurosci, vol.26, issue.8, pp.2260-2268, 2006.

R. I. Schubotz and D. Y. Von-cramon, Functional organization of the lateral premotor cortex_ Schubotz.pdf, Cogn Brain Res, vol.11, pp.97-112, 2001.

V. Tomassini, S. Jbabdi, and J. C. Klein, Diffusion-Weighted Imaging Tractography-Based Parcellation of the Human Lateral Premotor Cortex Identifies Dorsal and Ventral Subregions with Anatomical and Functional Specializations, J Neurosci, vol.27, issue.38, pp.10259-10269, 2007.

P. Bello, J. Modroño, C. Marcano, F. González-mora, and J. L. , Mapping the mirror neuron system in neurosurgery, World Neurosurg, vol.84, issue.6, 2015.

R. L. Buckner and D. C. Carroll, Self-projection and the brain, Trends Cogn Sci, vol.11, issue.2, pp.49-57, 2007.

R. N. Spreng, R. A. Mar, and A. Kim, The Common Neural Basis of Autobiographical Memory, Prospection, Navigation, Theory of Mind, and the Default Mode: A Quantitative Meta-analysis, J Cogn Neurosci, vol.21, issue.3, pp.489-510, 2008.

A. M. Owen, K. M. Mcmillan, A. R. Laird, E. Bullmore, S. Ferraina et al., Combination of hand and gaze signals during reaching: activity in parietal area 7 m of the monkey, Hum Brain Mapp, vol.25, issue.1, pp.1034-1038, 1997.

S. Treserras, K. Boulanouar, and F. Conchou, Transition from rest to movement: Brain correlates revealed by functional connectivity, Neuroimage, vol.48, issue.1, pp.207-216, 2009.

G. Scott, P. J. Hellyer, A. Hampshire, and R. Leech, Exploring spatiotemporal network transitions in task functional MRI, Hum Brain Mapp, vol.36, issue.4, pp.1348-1364, 2015.

T. Chiang, K. Liang, J. Chen, C. Hsieh, and Y. Huang, Brain Deactivation in the Outperformance in Bimodal Tasks: An fMRI Study, Op de Beeck HP, vol.8, p.77408, 2013.

H. T. Hendricks, J. Van-limbeek, A. C. Geurts, and M. J. Zwarts, Motor recovery after stroke: A systematic review of the literature, Arch Phys Med Rehabil, vol.83, issue.11, pp.1629-1637, 2015.

S. Michaelsen, S. Jacobs, A. Roby-brami, and M. Levin, Compensation for distal impairments of grasping in adults with hemiparesis, Exp Brain Res, vol.157, issue.2, pp.162-173, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00174006

J. Lefaucheur, Stroke recovery can be enhanced by using repetitive transcranial magnetic stimulation (rTMS), Neurophysiol Clin, vol.36, issue.3, pp.105-115, 2006.

F. Malouin, P. L. Jackson, and C. L. Richards, Towards the integration of mental practice in rehabilitation programs. A critical review, Front Hum Neurosci, vol.7, p.576, 2013.

J. Munzert, B. Lorey, and K. Zentgraf, Cognitive motor processes : The role of motor imagery in the study of motor representations, Brain Res Rev, vol.60, issue.2, pp.306-326, 2009.

F. Malouin, C. L. Richards, A. Durand, and J. Doyon, Reliability of Mental Chronometry for Assessing Motor Imagery Ability After Stroke, Arch Phys Med Rehabil, vol.89, issue.2, pp.594-601, 2008.

M. Wilke, K. Lidzba, and . Li-tool, A new toolbox to assess lateralization in functional MR-data, J Neurosci Methods, vol.163, issue.1, pp.128-136, 2007.

K. M. Oostra, A. Oomen, G. Vanderstraeten, and G. Vingerhoets, Influence of motor imagery training on gait rehabilitation in sub-acute stroke: A randomized controlled trial, J Rehabil Med, vol.47, issue.3, pp.204-209, 2015.

F. Rienzo, . Di, C. Collet, N. Hoyek, and A. Guillot, Impact of Neurologic Deficits on Motor Imagery: A Systematic Review of Clinical Evaluations, 2014.

F. Malouin, C. L. Richards, A. Durand, and J. Doyon, Clinical assessment of motor imagery after stroke, Neurorehabil Neural Repair, vol.22, issue.4, pp.330-340, 2008.

C. Collet, A. Guillot, F. Lebon, T. Macintyre, and A. Moran, Measuring motor imagery using psychometric, behavioral, and psychophysiological tools, Exerc Sport Sci Rev, vol.39, issue.2, pp.85-92, 2011.

L. Sun, D. Yin, and Y. Zhu, Cortical reorganization after motor imagery training in chronic stroke patients with severe motor impairment: A longitudinal fMRI study, Neuroradiology, vol.55, issue.7, pp.913-925, 2013.

C. Park, W. H. Chang, and M. Lee, Which motor cortical region best predicts imagined movement?, Neuroimage, vol.113, pp.101-110, 2015.

C. H. Kasess, C. Windischberger, R. Cunnington, R. Lanzenberger, L. Pezawas et al., The suppressive influence of SMA on M1 in motor imagery revealed by fMRI and dynamic causal modeling, Neuroimage, vol.40, issue.2, pp.828-837, 2008.

F. Lebon, M. Lotze, C. M. Stinear, and W. D. Byblow, Task-Dependent Interaction between Parietal and Contralateral Primary Motor Cortex during Explicit versus Implicit Motor Imagery, PLoS One, vol.7, issue.5, p.37850, 2012.

A. Guillot, C. Collet, V. A. Nguyen, F. Malouin, C. Richards et al., Brain activity during visual versus kinesthetic imagery: An fMRI study, Hum Brain Mapp, vol.30, issue.7, pp.2157-2172, 2009.

E. Gerardin, A. Sirigu, and S. Lehéricy, Partially overlapping neural networks for real and imagined hand movements, Cereb Cortex, vol.10, issue.11, pp.1093-1104, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00349826

P. Dechent, K. Merboldt, and J. Frahm, Is the human primary motor cortex involved in motor imagery?, Cogn Brain Res, vol.19, issue.2, pp.138-144, 2004.

A. Guillot, C. Collet, A. Nguyen, F. Malouin, C. Richards et al., Functional neuroanatomical networks associated with expertise in motor imagery, Regen Med, vol.41, pp.1471-1483, 2008.

H. Nady and C. , Age and gender-related differences in the temporal congruence development between motor imagery and motor performance, Learn Individ Differ, vol.19, issue.4, pp.555-560, 2009.

E. Kraft, M. C. Schaal, D. Lule, E. König, and K. Scheidtmann, The functional anatomy of motor imagery after subacute stroke, NeuroRehabilitation, vol.36, issue.3, pp.329-337, 2015.

C. Grefkes and G. R. Fink, Reorganization of cerebral networks after stroke: New insights from neuroimaging with connectivity approaches, Brain, vol.134, issue.5, pp.1264-1276, 2011.

C. Rosso, V. Perlbarg, and R. Valabregue, Anatomical and functional correlates of cortical motor threshold of the dominant hand, Brain Stimul, vol.10, issue.5, pp.952-958, 2017.

Y. Hara, Brain Plasticity and Rehabilitation in Stroke Patients, J Nippon Med Sch, vol.82, issue.1, pp.4-13, 2015.

S. Li, J. A. Stevens, and W. Z. Rymer, Interactions between imagined movement and the initiation of voluntary movement: A TMS study, Clin Neurophysiol, vol.120, issue.6, pp.1154-1160, 2009.

D. J. Wright, J. Williams, and P. S. Holmes, Combined action observation and imagery facilitates corticospinal excitability, Front Hum Neurosci, vol.8, p.951, 2014.

N. Mrachacz-kersting, M. Voigt, and A. Stevenson, The effect of type of afferent feedback timed with motor imagery on the induction of cortical plasticity, Brain Res, vol.1674, pp.91-100, 2017.

C. M. Stinear, W. D. Byblow, C. M. Stinear, W. D. Byblow, M. Steyvers et al., Motor imagery of phasic thumb abduction temporally and spatially modulates corticospinal excitability, Clin Neurophysiol, vol.114, issue.5, pp.157-164, 2003.

T. Kasai, S. Kawai, M. Kawanishi, and S. Yahagi, Evidence for facilitation of motor evoked potentials (MEPs) induced by motor imagery, Brain Res, vol.744, issue.1, pp.147-150, 1997.

W. Taube, M. Mouthon, C. Leukel, H. Hoogewoud, J. Annoni et al., ScienceDirect Brain activity during observation and motor imagery of different balance tasks : An fMRI study, CORTEX, vol.64, pp.102-114, 2014.

F. Li, T. Zhang, B. Li, W. Zhang, J. Zhao et al., Motor imagery training induces changes in brain neural networks in stroke patients, Neural Regen Res, vol.13, issue.10, pp.1771-1781, 2018.

F. Lebon, W. D. Byblow, C. Collet, A. Guillot, and C. M. Stinear, The modulation of motor cortex excitability during motor imagery depends on imagery quality, Eur J Neurosci, vol.35, issue.2, pp.323-331, 2012.

M. A. Nitsche, A. Roth, and M. Kuo, Timing-Dependent Modulation of Associative Plasticity by General Network Excitability in the Human Motor Cortex, J Neurosci, vol.27, issue.14, pp.3807-3812, 2007.

M. J. Player, J. L. Taylor, A. Alonzo, and C. K. Loo, Paired associative stimulation increases motor cortex excitability more effectively than theta-burst stimulation, Clin Neurophysiol, vol.123, issue.11, pp.2220-2226, 2012.

M. V. Frantseva, P. B. Fitzgerald, R. Chen, B. Moller, M. Daigle et al., Evidence for Impaired LongTerm Potentiation in Schizophrenia and Its Relationship to Motor Skill Leaning, Cereb Cortex, vol.18, issue.5, pp.990-996, 2008.

V. López-alonso, B. Cheeran, D. Río-rodríguez, F. , and M. , Inter-individual variability in response to non-invasive brain stimulation paradigms, Brain Stimul, vol.7, issue.3, pp.372-380, 2014.

M. Sale, M. C. Ridding, and M. A. Nordstrom, Factors influencing the magnitude and reproducibility of corticomotor excitability changes induced by paired associative stimulation, Exp brain Res, vol.181, issue.4, pp.615-626, 2007.

K. Stefan, M. Wycislo, and J. Classen, Modulation of Associative Human Motor Cortical Plasticity by Attention, J Neurophysiol, vol.92, issue.1, pp.66-72, 2004.

U. Ziemann, T. Ili?, T. Ilia?, C. Pauli, F. Meintzschel et al., Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex, J Neurosci, vol.24, issue.7, pp.1666-1672, 2004.

A. Pascual-leone, N. D. Cohen, L. G. Brasil-neto, J. P. Cammarota, A. Hallett et al., Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills, J Neurophysiol, vol.74, issue.3, pp.1037-1045, 1995.

R. Gentili, C. Papaxanthis, and T. Pozzo, Improvement and generalization of arm motor performance through motor imagery practice, Neuroscience, vol.137, issue.3, pp.761-772, 2006.

J. Crosbie, S. Mcdonough, D. Gilmore, and I. Wiggam, The adjunctive role of mental practice in the rehabilitation of the upper limb after hemiplegic stroke : a pilot study a. Health Care (Don Mills), pp.60-68, 2004.

A. Chaturvedi, Role of Practice And Mental Imagery on Hand Function Improvement in Stroke Survivors, J Neurol Neurosci, issue.02, p.8, 2017.

A. J. Szameitat, S. Shen, and A. Sterr, Motor imagery of complex everyday movements. An fMRI study, Neuroimage, vol.34, issue.2, pp.702-713, 2007.

M. Tarri, N. Brimhat, and D. Gasq, Five-day course of paired associative stimulation fails to improve motor function in stroke patients, Ann Phys Rehabil Med, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01909553

J. K. Harrison, K. S. Mcarthur, and T. J. Quinn, Assessment scales in stroke: clinimetric and clinical considerations, Clin Interv Aging, vol.8, pp.201-211, 2013.

A. Saimpont, C. Mercier, and F. Malouin, Anodal transcranial direct current stimulation enhances the effects of motor imagery training in a finger tapping task. Thut G, ed, Eur J Neurosci, vol.43, issue.1, pp.113-119, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01738501

Á. Foerster, S. Rocha, and C. Wiesiolek, Site-specific effects of mental practice combined with transcranial direct current stimulation on motor learning, Eur J Neurosci, vol.37, issue.5, pp.786-794, 2013.

C. E. Lang, M. D. Bland, R. R. Bailey, S. Y. Schaefer, and R. L. Birkenmeier, Assessment of upper extremity impairment, function, and activity after stroke: foundations for clinical decision making, J Hand Ther, vol.26, issue.2, pp.104-115, 2013.

G. Kwakkel, Standardised measurement of sensorimotor recovery in stroke trials: consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable (SRRR), Int J Stroke, issue.5, pp.451-461, 2017.

D. Gijbels, I. Lamers, L. Kerkhofs, G. Alders, E. Knippenberg et al., The Armeo Spring as training tool to improve upper limb functionality in multiple sclerosis: a pilot study, J Neuroeng Rehabil, vol.8, issue.1, p.5, 2011.

J. W. Krakauer, Motor learning: its relevance to stroke recovery and neurorehabilitation, Curr Opin Neurol, vol.19, issue.1, pp.84-90, 2006.

S. J. Housman, K. M. Scott, and D. J. Reinkensmeyer, A Randomized Controlled Trial of Gravity-Supported, Computer-Enhanced Arm Exercise for Individuals With Severe Hemiparesis, Neurorehabil Neural Repair, vol.23, issue.5, pp.505-514, 2009.

R. Teasell, N. Foley, K. Salter, S. Bhogal, J. Jutai et al., Evidence-Based Review of Stroke Rehabilitation: Executive Summary, Top Stroke Rehabil, vol.16, issue.6, pp.463-488, 2009.

A. Merlo, M. Longhi, and E. Giannotti, Upper limb evaluation with robotic exoskeleton. Normative values for indices of accuracy, speed and smoothness, NeuroRehabilitation, vol.33, issue.4, pp.523-530, 2013.

J. W. Keller and H. Van-hedel, Weight-supported training of the upper extremity in children with cerebral palsy: A motor learning study, J Neuroeng Rehabil, vol.14, issue.1, pp.1-13, 2017.

L. Gauthier, The Bells Test : A Quantitative and Qualitative Test For Visual Neglect, Int J Clin Neuropsychol, vol.11, pp.49-54, 1989.

R. J. Sanchez, J. Liu, J. Rao, and S. , Automating Arm Movement Training Following Severe Stroke: Functional Exercises With Quantitative Feedback in a Gravity-Reduced Environment, IEEE Trans Neural Syst Rehabil Eng, vol.14, issue.3, pp.378-389, 2006.

. Tran-v-do, P. Dario, and S. Mazzoleni, Kinematic measures for upper limb robot-assisted therapy following stroke and correlations with clinical outcome measures: A review, Med Eng Phys, vol.53, pp.13-31, 2018.

J. W. Tukey, Exploratory Data Analysis. In: Addison-Wesley, vol.23, pp.413-414

P. E. Shrout and J. L. Fleiss, Intraclass correlations: uses in assessing rater reliability, Psychol Bull, vol.86, issue.2, pp.420-428, 1979.

E. M. Andresen, Criteria for assessing the tools of disability outcomes research, Arch Phys Med Rehabil, vol.81, issue.12, pp.15-20, 2000.

H. De-vet, C. B. Terwee, D. L. Knol, and L. M. Bouter, When to use agreement versus reliability measures, J Clin Epidemiol, vol.59, issue.10, pp.1033-1039, 2006.

L. G. Portney and M. P. Watkins, Foundations of Clinical Research: Applications to Practice, 2018.

D. Giavarina, Understanding Bland Altman analysis, Biochem Medica, vol.25, issue.2, pp.141-151, 2015.

M. Longhi, A. Merlo, P. Prati, M. Giacobbi, and D. Mazzoli, Instrumental indices for upper limb function assessment in stroke patients: a validation study, J Neuroeng Rehabil, vol.13, issue.1, p.52, 2016.

E. Otaka, Y. Otaka, and S. Kasuga, Clinical usefulness and validity of robotic measures of reaching movement in hemiparetic stroke patients, J Neuroeng Rehabil, vol.12, issue.1, p.66, 2015.

M. A. Finley, S. E. Fasoli, and L. Dipietro, Short-duration robotic therapy in stroke patients with severe upper-limb motor impairment, J Rehabil Res Dev, vol.42, issue.5, p.683, 2005.

B. Rohrer, S. Fasoli, and H. I. Krebs, Movement smoothness changes during stroke recovery, J Neurosci Off J Soc Neurosci, vol.22, issue.18, pp.8297-8304, 2002.

J. M. Wagner, J. A. Rhodes, and C. Patten, Reproducibility and minimal detectable change of three-dimensional kinematic analysis of reaching tasks in people with hemiparesis after stroke, Phys Ther, vol.88, issue.5, pp.652-663, 2008.

C. Patten, D. Kothari, J. Whitney, J. Lexell, and P. S. Lum, Reliability and responsiveness of elbow trajectory tracking in chronic poststroke hemiparesis, J Rehabil Res Dev, vol.40, issue.6, pp.487-500, 2003.

P. H. Mccrea, J. J. Eng, and A. J. Hodgson, Saturated muscle activation contributes to compensatory reaching strategies after stroke, J Neurophysiol, vol.94, issue.5, pp.2999-3008, 2005.

J. P. Weir, Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM, J strength Cond Res, vol.19, issue.1, pp.231-240, 2005.

W. G. Hopkins, Measures of reliability in sports medicine and science, Sports Med, vol.30, issue.1, pp.1-15, 2000.

K. Lin, T. Fu, and C. Wu, Minimal Detectable Change and Clinically Important Difference of the Stroke Impact Scale in Stroke Patients, Neurorehabil Neural Repair, vol.24, issue.5, pp.486-492, 2010.

L. Zollo, L. Rossini, M. Bravi, G. Magrone, S. Sterzi et al., Quantitative evaluation of upper-limb motor control in robot-aided rehabilitation, Med Biol Eng Comput, vol.49, issue.10, pp.1131-1144, 2011.

S. Balasubramanian, A. Melendez-calderon, and E. Burdet, A Robust and Sensitive Metric for Quantifying Movement Smoothness, IEEE Trans Biomed Eng, vol.59, issue.8, pp.2126-2136, 2012.

E. Peri, E. Biffi, and C. Maghini, Quantitative evaluation of performance during robot-assisted treatment, Methods Inf Med, vol.55, issue.1, pp.84-88, 2016.

C. Rodriguez-de-pablo, S. Balasubramanian, A. Savic, T. D. Tomic, L. Konstantinovic et al., Validating ArmAssist Assessment as outcome measure in upper-limb post-stroke telerehabilitation, Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS, pp.4623-4626, 2015.

S. Lefebvre, L. Dricot, and P. Laloux, Neural substrates underlying motor skill learning in chronic hemiparetic stroke patients, Front Hum Neurosci, vol.9, p.320, 2015.

J. W. Krakauer, The applicability of motor learning to neurorehabilitation, 2015.

R. Guirado, M. Perez-rando, D. Sanchez-matarredona, E. Castrén, and J. Nacher, Chronic fluoxetine treatment alters the structure, connectivity and plasticity of cortical interneurons, Int J Neuropsychopharmacol, vol.17, issue.10, pp.1635-1646, 2014.

G. E. Mead, C. Hsieh, and R. Lee, Selective serotonin reuptake inhibitors (SSRIs) for stroke recovery, Cochrane Database Syst Rev, vol.11, p.9286, 2012.

Y. Sun, Y. Liang, and Y. Jiao, Comparative efficacy and acceptability of antidepressant treatment in poststroke depression: a multiple-treatments meta-analysis, BMJ Open, vol.7, issue.8, p.16499, 2017.

K. Murphy, R. M. Birn, and P. A. Bandettini, Resting-state fMRI confounds and cleanup, Neuroimage, vol.80, pp.349-359, 2013.

P. Chu, The Effect of Physiological Modulators on Resting-state fMRI Functional Connectivity, 2016.

K. Helmbold, M. Zvyagintsev, and B. Dahmen, Serotonergic modulation of resting state default mode network connectivity in healthy women, Amino Acids, vol.48, issue.4, pp.1109-1120, 2016.

G. Wagner, K. Koch, and C. Schachtzabel, Differential effects of serotonergic and noradrenergic antidepressants on brain activity during a cognitive control task and neurofunctional prediction of treatment outcome in patients with depression, J Psychiatry Neurosci, vol.35, issue.4, pp.247-257, 2010.

C. Fu, S. G. Costafreda, and A. Sankar, Multimodal functional and structural neuroimaging investigation of major depressive disorder following treatment with duloxetine, BMC Psychiatry, vol.15, issue.1, pp.1-11, 2015.

I. Loubinoux, J. Pariente, O. Rascol, P. Celsis, and F. Chollet, Selective serotonin reuptake inhibitor paroxetine modulates motor behavior through practice. A double-blind, placebo-controlled, multi-dose study in healthy subjects, Neuropsychologia, vol.40, issue.11, pp.1815-1821, 2002.

S. Mathôt, D. Schreij, J. Theeuwes, and . Opensesame, An open-source, graphical experiment builder for the social sciences, Behav Res Methods, vol.44, issue.2, pp.314-324, 2012.

M. Acler, E. Robol, A. Fiaschi, and P. Manganotti, A double blind placebo RCT to investigate the effects of serotonergic modulation on brain excitability and motor recovery in stroke patients, J Neurol, vol.256, issue.7, pp.1152-1158, 2009.

L. Deng, X. Sun, and S. Qiu, Interventions for management of post-stroke depression: A Bayesian network meta-analysis of 23 randomized controlled trials, Sci Rep, vol.7, issue.1, p.16466, 2017.

S. Tan, X. Huang, L. Ding, and H. Hong, Efficacy and Safety of Citalopram in Treating Post-Stroke Depression: A Meta-Analysis, Eur Neurol, vol.74, issue.3-4, pp.188-201, 2015.

M. Dam, P. Tonin, D. Boni, and A. , Effects of fluoxetine and maprotiline on functional recovery in poststroke hemiplegic patients undergoing rehabilitation therapy, Stroke, vol.27, issue.7, pp.1211-1214, 1996.

A. Bour, S. Rasquin, I. Aben, A. Boreas, M. Limburg et al., A one-year follow-up study into the course of depression after stroke, J Nutr Health Aging, vol.14, issue.6, pp.488-493, 2010.

I. Loubinoux, K. Boulanouar, and J. P. Ranjeva, Cerebral functional magnetic resonance imaging activation modulated by a single dose of the monoamine neurotransmission enhancers fluoxetine and fenozolone during hand sensorimotor tasks, J Cereb Blood Flow Metab, vol.19, issue.12, pp.1365-1375, 1999.

G. Batsikadze, W. Paulus, M. Kuo, and M. A. Nitsche, Effect of serotonin on paired associative stimulationinduced plasticity in the human motor cortex, Neuropsychopharmacology, vol.38, issue.11, pp.2260-2267, 2013.

B. L. Klaassens, S. Rombouts, A. M. Winkler, H. C. Van-gorsel, J. Van-der-grond et al., Time related effects on functional brain connectivity after serotonergic and cholinergic neuromodulation, Hum Brain Mapp, vol.38, issue.1, pp.308-325, 2017.

C. Mccabe and Z. Mishor, Antidepressant medications reduce subcortical-cortical resting-state functional connectivity in healthy volunteers, Neuroimage, vol.57, issue.4, pp.1317-1323, 2011.

D. Arnone, T. Wise, C. Walker, P. J. Cowen, O. Howes et al., The effects of serotonin modulation on medial prefrontal connectivity strength and stability: A pharmacological fMRI study with citalopram, Prog Neuro-Psychopharmacology Biol Psychiatry, vol.84, issue.1, pp.27-42, 1989.

C. Kraus, S. Ganger, and J. Losak, Gray matter and intrinsic network changes in the posterior cingulate cortex after selective serotonin reuptake inhibitor intake, Neuroimage, vol.84, pp.236-244, 2014.

T. Outhred, B. E. Hawkshead, T. D. Wager, P. Das, G. S. Malhi et al., Acute neural effects of selective serotonin reuptake inhibitors versus noradrenaline reuptake inhibitors on emotion processing: Implications for differential treatment efficacy, Neurosci Biobehav Rev, vol.37, issue.8, pp.1786-1800, 2013.

I. Herrera-guzmán, E. Gudayol-ferré, D. Herrera-guzmán, J. Guàrdia-olmos, E. Hinojosa-calvo et al., Effects of selective serotonin reuptake and dual serotonergic-noradrenergic reuptake treatments on memory and mental processing speed in patients with major depressive disorder, J Psychiatr Res, vol.43, issue.9, pp.855-863, 2009.

M. Nord, S. J. Finnema, C. Halldin, and L. Farde, Effect of a single dose of escitalopram on serotonin concentration in the non-human and human primate brain, Int J Neuropsychopharmacol, vol.16, issue.07, pp.1577-1586, 2013.

S. Dieudonné and A. Dumoulin, Serotonin-driven long-range inhibitory connections in the cerebellar cortex, J Neurosci, vol.20, issue.5, pp.1837-1848, 2000.

D. Avesar and A. T. Gulledge, Selective serotonergic excitation of callosal projection neurons, Front Neural Circuits, vol.6, p.12, 2012.

B. Biswal, F. Z. Yetkin, V. M. Haughton, and J. S. Hyde, Functional connectivity in the motor cortex of resting human brain using echo-planar MRI, Magn Reson Med, vol.34, issue.4, pp.537-541, 1995.

R. Patriat, R. C. Reynolds, and R. M. Birn, An improved model of motion-related signal changes in fMRI, Neuroimage, vol.144, pp.74-82, 2017.

E. Seto, G. Sela, and W. E. Mcilroy, Quantifying Head Motion Associated with Motor Tasks Used in fMRI, Neuroimage, vol.14, issue.2, pp.284-297, 2001.

T. Johnstone, O. Walsh, K. S. Greischar, and L. L. , Motion correction and the use of motion covariates in multiple-subject fMRI analysis, Function. Respiration, vol.27, issue.10, pp.857-869, 2006.

L. Kasper, S. Bollmann, and A. O. Diaconescu, The PhysIO Toolbox for Modeling Physiological Noise in fMRI Data, J Neurosci Methods, vol.276, pp.56-72, 2017.

C. Chang and G. H. Glover, Effects of model-based physiological noise correction on default mode network anti-correlations and correlations, Neuroimage, vol.47, issue.4, pp.1448-1459, 2009.

Y. Tong, B. Frederick, and . Deb, Studying the Spatial Distribution of Physiological Effects on BOLD Signals Using Ultrafast fMRI, Front Hum Neurosci, vol.8, pp.1-8, 2014.

M. Brett, Spatial Normalization of Brain Images with Focal Lesions Using Cost Function Masking, Neuroimage, vol.14, issue.2, pp.486-500, 2001.

M. L. Seghier, A. Ramlackhansingh, J. Crinion, A. P. Leff, and C. J. Price, Lesion identification using unified segmentation-normalisation models and fuzzy clustering, Neuroimage, vol.41, issue.4, pp.1253-1266, 2008.

J. Ashburner and K. J. Friston, Unified segmentation, Neuroimage, vol.26, issue.3, pp.839-851, 2005.

J. Crinion, J. Ashburner, A. Leff, M. Brett, C. Price et al., Spatial normalization of lesioned brains: Performance evaluation and impact on fMRI analyses, Neuroimage, vol.37, issue.3, pp.866-875, 2007.

S. M. Andersen, S. Z. Rapcsak, and P. M. Beeson, Cost function masking during normalization of brains with focal lesions: Still a necessity?, Neuroimage, vol.53, issue.1, pp.78-84, 2010.

O. Ciccarelli, A. T. Toosy, and J. F. Marsden, Identifying brain regions for integrative sensorimotor processing with ankle movements, Exp Brain Res, vol.166, issue.1, pp.31-42, 2005.

C. Casellato, S. Ferrante, and M. Gandolla, Simultaneous measurements of kinematics and fMRI: compatibility assessment and case report on recovery evaluation of one stroke patient, J Neuroeng Rehabil, vol.7, p.49, 2010.

T. H. Dai, J. Z. Liu, V. Saghal, R. W. Brown, and G. H. Yue, Relationship between muscle output and functional MRImeasured brain activation, Exp Brain Res, vol.140, issue.3, pp.290-300, 2001.

G. F. Wittenberg, A. J. Bastian, A. W. Dromerick, W. T. Thach, and W. J. Powers, Mirror movements complicate interpretation of cerebral activation changes during recovery from subcortical infarction, NeurorehabilNeural Repair, vol.14, issue.3, pp.213-221, 2000.

N. Sadato, V. Ibañez, G. Campbell, M. Deiber, L. Bihan et al., Frequency-dependent changes of regional cerebral blood flow during finger movements: functional MRI compared to PET, J Cereb Blood Flow Metab, vol.17, pp.670-679, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00349949

B. J. Macintosh, R. Mraz, N. Baker, F. Tam, W. R. Staines et al., Optimizing the experimental design for ankle dorsiflexion fMRI, Neuroimage, vol.22, issue.4, pp.1619-1627, 2004.

D. Waldvogel, P. Van-gelderen, K. Ishii, and M. Hallett, The effect of movement amplitude on activation in functional magnetic resonance imaging studies, J Cereb Blood Flow Metab, vol.19, pp.1209-1212, 1999.

J. A. Hirsch and B. Bishop, Respiratory sinus arrhythmia in humans: How breathing pattern modulates heart rate, Am J Physiol, vol.241, issue.4, pp.620-629, 1981.

R. M. Birn, J. B. Diamond, M. A. Smith, and P. A. Bandettini, Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI, Neuroimage, vol.31, issue.4, pp.1536-1548, 2006.

K. Shmueli, P. Van-gelderen, and J. A. De-zwart, Low-frequency fluctuations in the cardiac rate as a source of variance in the resting-state fMRI BOLD signal, Neuroimage, vol.38, issue.2, pp.306-320, 2007.

C. G. Thomas, R. A. Harshman, and R. S. Menon, Noise Reduction in BOLD-Based fMRI Using Component Analysis, Neuroimage, vol.17, issue.3, pp.1521-1537, 2002.

G. H. Glover, T. Q. Li, and D. Ress, Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR, Magn Reson Med, vol.44, issue.1, pp.162-167, 2000.

M. Grueschow, R. Polania, T. A. Hare, and C. C. Ruff, Automatic versus Choice-Dependent Value Representations in the Human Brain, Neuron, vol.85, issue.4, pp.874-885, 2015.

T. U. Hauser, L. T. Hunt, and R. Iannaccone, Temporally Dissociable Contributions of Human Medial Prefrontal Subregions to Reward-Guided Learning, J Neurosci, vol.35, issue.32, pp.11209-11220, 2015.

A. Smith-collins, K. Luyt, A. Heep, and R. A. Kauppinen, High frequency functional brain networks in neonates revealed by rapid acquisition resting state fMRI, Hum Brain Mapp, vol.36, issue.7, pp.2483-2494, 2015.

T. U. Hauser, R. Iannaccone, and J. Ball, Role of the Medial Prefrontal Cortex in Impaired Decision Making in Juvenile Attention-Deficit/Hyperactivity Disorder, JAMA Psychiatry, vol.71, issue.10, p.1165, 2014.

F. Crivello, T. Schormann, N. Tzourio-mazoyer, P. E. Roland, K. Zilles et al., Comparison of spatial normalization procedures and their impact on functional maps, Hum Brain Mapp, vol.16, issue.4, pp.228-250, 2002.

J. A. Fiez, H. Damasio, and T. J. Grabowski, Lesion segmentation and manual warping to a reference brain: Intraand interobserver reliability, Hum Brain Mapp, vol.9, issue.4, pp.192-211, 2000.

P. Ripollés, J. Marco-pallarés, R. De-diego-balaguer, J. Miró, M. Falip-mj-c et al., Analysis of automated methods for spatial normalization of lesioned brains, Neuroimage, vol.60, issue.2, pp.1296-1306, 2012.

J. Ladstein, H. R. Evensmoen, A. K. Haberg, A. Kristoffersen, and P. E. Goa, Effect of task-correlated physiological fluctuations and motion in 2D and 3D echo-planar imaging in a higher cognitive level fMRI paradigm, Front Neurosci, vol.10, pp.1-13, 2016.

J. Brooks, O. K. Faull, K. Pattinson, and M. Jenkinson, Physiological Noise in Brainstem fMRI, Front Hum Neurosci, vol.7, pp.1-13, 2013.

C. Hutton, O. Josephs, and J. Stadler, The impact of physiological noise correction on fMRI at 7T, Neuroimage, vol.57, issue.1, pp.101-112, 2011.

A. O. Diaconescu, C. Mathys, L. Weber, L. Kasper, J. Mauer et al., Hierarchical prediction errors in midbrain and septum during social learning, Soc Cogn Affect Neurosci, vol.12, issue.4, pp.618-634, 2017.

S. S. Poil, S. Bollmann, and C. Ghisleni, Age dependent electroencephalographic changes in attentiondeficit/hyperactivity disorder (ADHD), Clin Neurophysiol, vol.125, issue.8, pp.1626-1638, 2014.

S. Menon, M. Yu, K. Kay, and O. Khatib, Haptic fMRI: accurately estimating neural responses in motor, premotor, and somatosensory cortex during complex motor tasks, IEEE Eng Med Biol Soc, pp.2040-2045, 2014.

C. Enzinger, H. Johansen-berg, and H. Dawes, Functional MRI correlates of lower limb function in stroke victims with gait impairment, Stroke, vol.39, issue.5, pp.1507-1513, 2008.

J. Wissel, A. Manack, and M. Brainin, Toward an epidemiology of poststroke spasticity, Neurology, vol.80, issue.3, pp.13-19, 2013.

H. P. Francis, D. T. Wade, L. Turner-stokes, R. S. Kingswell, and C. S. Dott, Coxon E a. Does reducing spasticity translate into functional benefit? An exploratory meta-analysis, J Neurol Neurosurg Psychiatry, vol.75, issue.11, pp.1547-1551, 2004.

J. Levy, F. Molteni, G. Cannaviello, T. Lansaman, N. Roche et al., Does botulinum toxin treatment improve upper limb active function? Ann Phys Rehabil Med, 2018.

S. Pundik, A. D. Falchook, J. Mccabe, K. Litinas, and J. J. Daly, Functional brain correlates of upper limb spasticity and its mitigation following rehabilitation in chronic stroke survivors, Stroke Res Treat, 2014.

A. Picelli, S. Tamburin, and F. Gajofatto, Association between severe upper limb spasticity and brain lesion location in stroke patients, Biomed Res Int, p.162754, 2014.

H. J. Groenewegen, The Basal Ganglia and Motor Control, Neural Plast, vol.10, issue.1-2, pp.107-120, 2003.

N. S. Ward, Does neuroimaging help to deliver better recovery of movement after stroke?, Curr Opin Neurol, vol.28, issue.4, p.1, 2015.

S. R. Kashuk, J. Williams, G. Thorpe, P. H. Wilson, and G. F. Egan, Diminished motor imagery capability in adults with motor impairment: An fMRI mental rotation study, Behav Brain Res, vol.334, pp.86-96, 2017.

N. Takeuchi and S. Izumi, Combinations of stroke neurorehabilitation to facilitate motor recovery: perspectives on Hebbian plasticity and homeostatic metaplasticity, Front Hum Neurosci, vol.9, p.349, 2015.

N. Brihmat, M. Tarri, and Y. Quidé, Action, observation or imitation of virtual hand movement affect differently regions of the mirror neuron system and the default mode network, Brain Imaging Behav, vol.0, issue.0, pp.1-16, 2017.

C. M. Bütefisch, Plasticity in the Human Cerebral Cortex: Lessons from the Normal Brain and from Stroke, Neuroscientist, vol.10, issue.2, pp.163-173, 2004.

, 3 : Tableau récapitulatif des régions cérébrales activées lors du mouvement imaginé d'extension de la main saine (A) et affectée (B)

N. Brihmat, M. Tarri, Y. Quidé, K. Anglio, B. Pavard et al., Action, observation or imitation of virtual hand movement affect differently regions of the mirror neuron system and the default mode network, Brain Imaging and Behavior, vol.0, issue.0, pp.1-16, 2017.

M. Tarri, N. Brihmat, D. Gasq, B. Lepage, I. Loubinoux et al., Five-day course of paired associative stimulation fails to improve motor function in stroke patients, Annals of Physical and Rehabilitation Medicine, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01909553

I. Loubinoux, N. Brihmat, E. Castel-lacanal, and P. Marque, Cerebral imaging of post-stroke plasticity and tissue repair, Revue Neurologique, vol.173, issue.9, pp.577-583, 2017.

N. Brihmat, M. Tarri, X. De-boissezon, D. Gasq, I. Loubinoux et al., Effect of the association of motor imagery exercises and paired associative stimulation in stroke patients (MIPAS), Communications orales et affichées dans des congrès avec publication de résumé 1, vol.61, 2018.

N. Brihmat, M. Tarri, X. De-boissezon, D. Gasq, P. Marque et al., Functional connectivity pattern during motor imagery and execution of paretic hand movements of stroke patients, Annals of Physical and Rehabilitation Medicine, vol.61, 2018.

, Communications présentées au 12th International Society of Physical and Rehabilitation Medicine World Congress, 2018.

P. Marque, M. Tarri, M. Belle, N. Brimhat, D. Gasq et al., Anatomy of a failure: Chronic interventional paired associative stimulation in stroke (CIPASS), Annals of Physical and Rehabilitation Medicine, vol.61, 2018.

, Communications affichée au 12th International Society of Physical and Rehabilitation Medicine World Congress, 2018.

N. Brihmat, M. Tarri, X. De-boissezon, P. Marque, I. Loubinoux et al., Study of motor and electrophysiological effects induced by the association of motor imagery exercises and Paired Associative Stimulation in 6 hemiplegic patients, Annals of Physical and Rehabilitation Medicine, vol.58, 2015.

, Communication affichée dans des congrès internationaux

N. Brihmat, E. Castel-lacanal, X. De-boissezon, C. Lebely, H. Gros-dagnac et al., Severity of motor deficit and spasticity affects brain functional, 2018.