C. Douat, I. Kacem, N. Sadeghi, G. Bauville, M. Fleury et al., Spacetime resolved density of helium metastable atoms in a nanosecond pulsed plasma jet: influence of high voltage and pulse frequency, Plasma Chemistry, vol.49, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01345366

A. Fridman and G. Friedman, Plasma Medicine, 2013.

G. Fridman, M. Peddinghaus, M. Balasubramanian, H. Ayan, A. Fridman et al., Blood Coagulation and Living Tissue Sterilization by Floating-Electrode Dielectric Barrier Discharge in Air, Plasma Chem. Plasma Process, vol.26, pp.425-442, 2006.

L. F. Gaunt, C. B. Beggs, and G. E. Georghiou, Bactericidal Action of the Reactive Species Produced by Gas-Discharge Nonthermal Plasma at Atmospheric Pressure: A Review, IEEE Trans. Plasma Sci, vol.34, pp.1257-1269, 2006.

J. Heinlin, G. Morfill, M. Landthaler, W. Stolz, G. Isbary et al., Plasma medicine: possible applications in dermatology, J. Dtsch. Dermatol. Ges. J. Ger. Soc. Dermatol. JDDG, vol.8, pp.968-976, 2010.

B. L. Ibey, D. G. Mixon, J. A. Payne, A. Bowman, K. Sickendick et al., Plasma membrane permeabilization by trains of ultrashort electric pulses, Bioelectrochemistry Amst. Neth, vol.79, pp.114-121, 2010.

G. Isbary, G. Morfill, H. U. Schmidt, M. Georgi, K. Ramrath et al., A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients, Br. J. Dermatol, vol.163, pp.78-82, 2010.

G. Y. Iyer, M. F. Islam, and J. H. Quastel, Biochemical Aspects of Phagocytosis, Nature, vol.192, 1961.

J. Jagger, Introduction to Research in Ultraviolet Photobiology, 1967.

J. Jarrige, M. Laroussi, and E. Karakas, Formation and dynamics of plasma bullets in a non-thermal plasma jet: influence of the high-voltage parameters on the plume characteristics, Plasma Sources Sci. Technol, vol.19, p.65005, 2010.

C. Jiang, M. T. Chen, and M. A. Gundersen, Polarity-induced asymmetric effects of nanosecond pulsed plasma jets, J. Phys. Appl. Phys, vol.42, p.232002, 2009.

N. Jiang, A. Ji, and Z. Cao, Atmospheric pressure plasma jet: Effect of electrode configuration, discharge behavior, and its formation mechanism, J. Appl. Phys, vol.106, p.13308, 2009.

S. U. Kalghatgi, G. Fridman, M. Cooper, G. Nagaraj, M. Peddinghaus et al., Mechanism of Blood Coagulation by Nonthermal Atmospheric Pressure Dielectric Barrier Discharge Plasma, IEEE Trans. Plasma Sci, vol.35, pp.1559-1566, 2007.

M. Keidar, A. Sandler, M. Keidar, B. Trink, P. Srinivasan et al., Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy, Br. J. Cancer, vol.105, p.1295, 2011.

M. Keidar, A. Shashurin, O. Volotskova, A. Stepp, M. Srinivasan et al., Cold atmospheric plasma in cancer therapy, Phys. Plasmas, vol.20, p.57101, 2013.

K. G. Kostov, T. M. Nishime, A. H. Castro, A. Toth, and L. R. Hein, , 2014.

, Surface modification of polymeric materials by cold atmospheric plasma jet, Appl. Surf. Sci, vol.314, pp.367-375

S. P. Kuo, O. Tarasenko, J. Chang, S. Popovic, C. Y. Chen et al., Contribution of a portable air plasma torch to rapid blood coagulation as a method of preventing bleeding, New J. Phys, vol.11, p.115016, 2009.

M. Laroussi, Sterilization of contaminated matter with an atmospheric pressure plasma, IEEE Trans. Plasma Sci, vol.24, pp.1188-1191, 1996.

M. Laroussi, Low-Temperature Plasma Jet for Biomedical Applications: A Review, IEEE Trans. Plasma Sci, vol.43, pp.703-712, 2015.

M. Laroussi, D. A. Mendis, and M. Rosenberg, Plasma interaction with microbes, New J. Phys, vol.5, p.41, 2003.

H. W. Lee, S. H. Nam, A. H. Mohamed, G. C. Kim, and J. K. Lee, Atmospheric Pressure Plasma Jet Composed of Three Electrodes: Application to Tooth Bleaching, Plasma Process. Polym, vol.7, pp.274-280, 2010.

V. Léveillé and S. Coulombe, , 2005.

A. Begum, M. Laroussi, and M. R. Pervez, Atmospheric pressure He-air plasma jet: Breakdown process and propagation phenomenon, AIP Adv, vol.3, p.62117, 2013.

J. Boeuf, L. L. Yang, and L. C. Pitchford, Dynamics of a guided streamer ('plasma bullet') in a helium jet in air at atmospheric pressure, J. Phys. Appl. Phys, vol.46, p.15201, 2013.

D. Breden and L. L. Raja, Computational study of the interaction of cold atmospheric helium plasma jets with surfaces, Plasma Sources Sci. Technol, vol.23, p.65020, 2014.

G. C. Chan, .. Shelley, J. T. Jackson, A. U. Wiley, J. S. Engelhard et al., Spectroscopic plasma diagnostics on a low-temperature plasma probe for ambient mass spectrometry, J. Anal. At. Spectrom, vol.26, p.1434, 2011.

L. Chauvet, Caractérisation expérimentale et optimisation d'une source plasma à pression atmosphérique couplée à un spectromètre de masse à temps de vol. phd, 2016.

G. Cicala, E. D. Tommaso, A. C. Rainò, Y. A. Lebedev, and V. A. Shakhatov, Study of positive column of glow discharge in nitrogen by optical emission spectroscopy and numerical simulation, Plasma Sources Sci. Technol, vol.18, p.25032, 2009.

P. C. Cosby, Electron-impact dissociation of oxygen, J. Chem. Phys, vol.98, pp.9560-9569, 1993.

T. Darny, J. M. Pouvesle, V. Puech, C. Douat, S. Dozias et al., Analysis of conductive target influence in plasma jet experiments through helium metastableand electric field measurement, Plasma Sources Sci. Technol, 2017.

G. A. Dawson and W. P. Winn, A model for streamer propagation, Z. Für Phys, vol.183, pp.159-171, 1965.

G. H. Dieke and D. F. Heath, The first and second positive bands of N2, 1959.

B. Eliasson and U. Kogelschatz, Electron impact dissociation in oxygen, J. Phys. B At. Mol. Phys, vol.19, p.1241, 1986.

K. Gazeli, P. Svarnas, P. Vafeas, P. K. Papadopoulos, A. Gkelios et al., Investigation on streamers propagating into a helium jet in air at atmospheric pressure: Electrical and optical emission analysis, J. Appl. Phys, vol.114, p.103304, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01503132

F. R. Gilmore, Potential energy curves for N2, NO, O2 and corresponding ions, 1965.

, J. Quant. Spectrosc. Radiat. Transf, vol.5, pp.369-372

O. Guaitella and A. Sobota, The impingement of a kHz helium atmospheric pressure plasma jet on a dielectric surface, J. Phys. Appl. Phys, vol.48, p.255202, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01549367

M. I. Hasan and J. W. Bradley, Computational model of the interaction of a helium atmospheric-pressure jet with a dielectric surface, J. Phys. Appl. Phys, vol.48, p.435201, 2015.

J. Heimerl, R. Johnsen, and M. A. Biondi, Ion-Molecule Reactions, He++O2 and He++N2, at Thermal Energies and Above, J. Chem. Phys, vol.51, pp.5041-5048, 1969.

J. Jarrige, M. Laroussi, and E. Karakas, Formation and dynamics of plasma bullets in a non-thermal plasma jet: influence of the high-voltage parameters on the plume characteristics, Plasma Sources Sci. Technol, vol.19, p.65005, 2010.

L. Ji, Y. Xia, Z. Bi, J. Niu, and D. Liu, The density and velocity of plasma bullets propagating along one dielectric tube, AIP Adv, vol.5, p.87181, 2015.

C. Jiang, M. T. Chen, and M. A. Gundersen, Polarity-induced asymmetric effects of nanosecond pulsed plasma jets, J. Phys. Appl. Phys, vol.42, p.232002, 2009.

I. Jõgi, R. Talviste, J. Raud, K. Piip, P. et al., The influence of the tube diameter on the properties of an atmospheric pressure He micro-plasma jet, J. Phys. Appl. Phys, vol.47, p.415202, 2014.

E. Karakas, M. A. Akman, and M. Laroussi, The evolution of atmosphericpressure low-temperature plasma jets: jet current measurements, 2012.

. Technol, , vol.21, p.34016

A. Kramida, Y. Ralchenko, J. Reader, and . Team, NIST Atomic Spectra Database, 2015.

A. N. Lagar?kov and I. M. Rutkevich, Ionization Waves in Electrical Breakdown of Gases, 1994.

L. Li, A. Nikiforov, Q. Xiong, X. Lu, L. Taghizadeh et al., Measurement of OH radicals at state X 2 ? in an atmospheric-pressure micro-flow dc plasma with liquid electrodes in He, Ar and N 2 by means of laser-induced fluorescence spectroscopy, J. Phys. Appl. Phys, vol.45, p.125201, 2012.

C. Liu, K. Cheng, Z. Lin, C. Wu, J. Wu et al., Effect of Ground and Floating Electrode on a Helium-Based Plasma Jet and Its Applications in Sterilization and Ceramic Surface Treatment, IEEE Trans. Plasma Sci, pp.1-5, 2016.

C. Liu, C. Wu, Z. Lin, J. Wu, and J. Wu, Production Enhancement of Reactive Oxygen and Nitrogen Species at Interface of Helium Plasma Jet and Agar, IEEE Trans. Plasma Sci, pp.1-5, 2016.

Z. Liu, D. Liu, D. Xu, H. Cai, W. Xia et al., Two modes of interfacial pattern formation by atmospheric pressure helium plasma jet-ITO interactions under positive and negative polarity, J. Phys. Appl. Phys, vol.50, 2017.

A. Lofthus and P. H. Krupenie, The spectrum of molecular nitrogen, J. Phys. Chem. Ref. Data, vol.6, pp.113-307, 1977.

X. Lu and M. Laroussi, Dynamics of an atmospheric pressure plasma plume generated by submicrosecond voltage pulses, J. Appl. Phys, vol.100, p.63302, 2006.

X. Lu, G. V. Naidis, M. Laroussi, and K. Ostrikov, Guided ionization waves: Theory and experiments, Phys. Rep, vol.540, pp.123-166, 2014.

J. Luque and D. R. Crosley, Transition probabilities in the A 2?+?X 2?i electronic system of OH, J. Chem. Phys, vol.109, pp.439-448, 1998.

N. Mericam-bourdet, M. Laroussi, A. Begum, and E. Karakas, Experimental investigations of plasma bullets, J. Phys. Appl. Phys, vol.42, p.55207, 2009.

S. Müller, T. Krähling, D. Veza, V. Horvatic, C. Vadla et al., Operation modes of the helium dielectric barrier discharge for soft ionization, 2013.

, Spectrochim. Acta Part B At. Spectrosc, vol.85, pp.104-111

G. V. Naidis, Simulation of streamers propagating along helium jets in ambient air: Polarity-induced effects, Appl. Phys. Lett, vol.98, p.141501, 2011.

S. A. Norberg, E. Johnsen, and M. J. Kushner, Helium atmospheric pressure plasma jets touching dielectric and metal surfaces, J. Appl. Phys, vol.118, p.13301, 2015.

S. B. Olenici-craciunescu, S. Müller, A. Michels, V. Horvatic, C. Vadla et al., Spatially resolved spectroscopic measurements of a dielectric barrier discharge plasma jet applicable for soft ionization, Spectrochim. Acta Part B At. Spectrosc, vol.66, pp.268-273, 2011.

S. Park, S. Youn-moon, and W. Choe, Multiple (eight) plasma bullets in helium atmospheric pressure plasma jet and the role of nitrogen, Appl. Phys. Lett, vol.103, p.224105, 2013.

R. W. Pearse and A. G. Gaydon, The identification of molecular spectra, 1963.

F. Pechereau, J. Jánský, and A. Bourdon, Simulation of the reignition of a discharge behind a dielectric layer in air at atmospheric pressure, Plasma Sources Sci. Technol, vol.21, p.55011, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00726060

N. A. Popov, Fast gas heating in a nitrogen-oxygen discharge plasma: I. Kinetic mechanism, J. Phys. Appl. Phys, vol.44, p.285201, 2011.

D. Riès, G. Dilecce, E. Robert, P. F. Ambrico, S. Dozias et al., LIF and fast imaging plasma jet characterization relevant for NTP biomedical applications, J. Phys. Appl. Phys, vol.47, p.275401, 2014.

B. B. Sahu, S. B. Jin, and J. G. Han, Development and characterization of a multi-electrode cold atmospheric pressure DBD plasma jet aiming plasma application, J. Anal. At. Spectrom, vol.32, pp.782-795, 2017.

A. L. Schmeltekopf, E. E. Ferguson, and F. C. Fehsenfeld, Afterglow Studies of the Reactions He+, He(23S), and O+ with Vibrationally Excited N2, J. Chem. Phys, vol.48, pp.2966-2973, 1968.

T. Shao, W. Yang, C. Zhang, Z. Fang, Y. Zhou et al., Temporal evolution of atmosphere pressure plasma jets driven by microsecond pulses with positive and negative polarities, EPL Europhys. Lett, vol.107, p.65004, 2014.

R. S. Sigmond, The residual streamer channel: Return strokes and secondary streamers, J. Appl. Phys, vol.56, pp.1355-1370, 1984.

A. Vasile-nastuta, V. Pohoata, and I. Topala, Atmospheric pressure plasma jet-Living tissue interface: Electrical, optical, and spectral characterization, J. Appl. Phys, vol.113, p.183302, 2013.

J. L. Walsh and M. G. Kong, Contrasting characteristics of linear-field and crossfield atmospheric plasma jets, Appl. Phys. Lett, vol.93, p.111501, 2008.

L. Wang, Y. Zheng, and S. Jia, Numerical study of the interaction of a helium atmospheric pressure plasma jet with a dielectric material, Phys. Plasmas, vol.23, 2016.

R. Wang, K. Zhang, Y. Shen, C. Zhang, W. Zhu et al., Effect of pulse polarity on the temporal and spatial emission of an atmospheric pressure helium plasma jet, Plasma Sources Sci. Technol, vol.25, p.15020, 2016.

S. Wu, H. Xu, X. Lu, and Y. Pan, Effect of Pulse Rising Time of Pulse dc Voltage on Atmospheric Pressure Non-Equilibrium Plasma, Plasma Process. Polym, vol.10, pp.136-140, 2013.

Q. Xiong, X. P. Lu, K. Ostrikov, Y. Xian, C. Zou et al., Pulsed dc-and sine-wave-excited cold atmospheric plasma plumes: A comparative analysis, Phys. Plasmas, vol.17, p.43506, 2010.

Q. Xiong, A. Y. Nikiforov, M. Á. González, C. Leys, and X. P. Lu, Characterization of an atmospheric helium plasma jet by relative and absolute optical emission spectroscopy, Plasma Sources Sci. Technol, vol.22, p.15011, 2013.

H. Yamada, H. Sakakita, S. Kato, J. Kim, S. Kiyama et al., Spectroscopy of reactive species produced by low-energy atmospheric-pressure plasma on conductive target material surface, J. Phys. Appl. Phys, vol.49, p.394001, 2016.

W. Yan and D. J. Economou, Simulation of a non-equilibrium helium plasma bullet emerging into oxygen at high pressure (250-760 Torr) and interacting with a substrate, J. Appl. Phys, vol.120, p.123304, 2016.

S. Yoon, G. Kim, S. Kim, B. Bae, N. Kim et al., Bullet-to-streamer transition on the liquid surface of a plasma jet in atmospheric pressure, Phys. Plasmas, vol.24, p.13513, 2017.

R. Zaplotnik, M. Bi??an, Z. Kregar, U. Cvelbar, M. Mozeti? et al., , 2015.

, Spectrochim. Acta Part B At. Spectrosc. 103, vol.104, pp.124-130

R. Zaplotnik, M. Bi??an, D. Popovi?, M. Mozeti?, and S. Milo?evi?, Metastable helium atom density in a single electrode atmospheric plasma jet during sample treatment, Plasma Sources Sci. Technol, vol.25, p.35023, 2016.

C. ). Zhang, T. ). Shao, R. ). Wang, Z. ). Zhou, Y. ). Zhou et al., A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond-and microsecond-pulse generators in helium, Phys. Plasmas, vol.21, p.103505, 2014.

Y. Zheng, L. Wang, W. Ning, and S. Jia, Schlieren imaging investigation of the hydrodynamics of atmospheric helium plasma jets, J. Appl. Phys, vol.119, p.123301, 2016.

J. Boeuf, L. L. Yang, and L. C. Pitchford, Dynamics of a guided streamer ('plasma bullet') in a helium jet in air at atmospheric pressure, J. Phys. Appl. Phys, vol.46, p.15201, 2013.

T. J. Bruno and P. D. Svoronos, CRC Handbook of Fundamental Spectroscopic Correlation Charts, CRC Handb. Fundam. Spectrosc. Correl. Charts, 2005.

G. C. Chan, .. Shelley, J. T. Jackson, A. U. Wiley, J. S. Engelhard et al., Spectroscopic plasma diagnostics on a low-temperature plasma probe for ambient mass spectrometry, J. Anal. At. Spectrom, vol.26, p.1434, 2011.

G. Cicala, E. D. Tommaso, A. C. Rainò, Y. A. Lebedev, and V. A. Shakhatov, Study of positive column of glow discharge in nitrogen by optical emission spectroscopy and numerical simulation, Plasma Sources Sci. Technol, vol.18, p.25032, 2009.

P. C. Cosby, Electron-impact dissociation of oxygen, J. Chem. Phys, vol.98, pp.9560-9569, 1993.

T. Darny, J. M. Pouvesle, V. Puech, C. Douat, S. Dozias et al., Analysis of conductive target influence in plasma jet experiments through helium metastableand electric field measurement, Plasma Sources Sci. Technol, 2017.

G. H. Dieke and D. F. Heath, The first and second positive bands of N2, 1959.

B. Eliasson and U. Kogelschatz, Electron impact dissociation in oxygen, J. Phys. B At. Mol. Phys, vol.19, p.1241, 1986.

Y. Fujiwara, H. Sakakita, H. Yamada, Y. Yamagishi, H. Itagaki et al., Observations of multiple stationary striation phenomena in an atmospheric pressure neon plasma jet, Jpn. J. Appl. Phys, vol.55, p.10301, 2016.

M. I. Hasan and J. W. Bradley, Computational model of the interaction of a helium atmospheric-pressure jet with a dielectric surface, J. Phys. Appl. Phys, vol.48, p.435201, 2015.

Y. Kim, R. , and M. E. , Binary-encounter-dipole model for electron-impact ionization, Phys. Rev. A, vol.50, pp.3954-3967, 1994.

A. Kramida, Y. Ralchenko, J. Reader, and . Team, NIST Atomic Spectra Database, 2015.

L. Li, A. Nikiforov, Q. Xiong, X. Lu, L. Taghizadeh et al., Measurement of OH radicals at state X 2 ? in an atmospheric-pressure micro-flow dc plasma with liquid electrodes in He, Ar and N 2 by means of laser-induced fluorescence spectroscopy, J. Phys. Appl. Phys, vol.45, p.125201, 2012.

Q. Li, J. Li, W. Zhu, X. Zhu, and Y. Pu, Effects of gas flow rate on the length of atmospheric pressure nonequilibrium plasma jets, Appl. Phys. Lett, vol.95, p.141502, 2009.

A. Lofthus and P. H. Krupenie, The spectrum of molecular nitrogen, J. Phys. Chem. Ref. Data, vol.6, pp.113-307, 1977.

J. Luque and D. R. Crosley, Transition probabilities in the A 2?+?X 2?i electronic system of OH, J. Chem. Phys, vol.109, pp.439-448, 1998.

K. Martus, N. Masoud, and K. Becker, Collisional and radiative processes in high-pressure Ne/N 2 discharges, Plasma Sources Sci. Technol, vol.15, pp.84-90, 2006.

Z. Navrátil, R. Brandenburg, D. Trunec, A. Brablec, P. St'ahel et al., Comparative study of diffuse barrier discharges in neon and helium, Plasma Sources Sci. Technol, vol.15, pp.8-17, 2006.

S. A. Norberg, E. Johnsen, and M. J. Kushner, Helium atmospheric pressure plasma jets touching dielectric and metal surfaces, J. Appl. Phys, vol.118, p.13301, 2015.

R. W. Pearse and A. G. Gaydon, The identification of molecular spectra, 1963.

N. A. Popov, Fast gas heating in a nitrogen-oxygen discharge plasma: I. Kinetic mechanism, J. Phys. Appl. Phys, vol.44, p.285201, 2011.

D. Riès, Etude d'une décharge hors équilibre à pression atmosphérique pour des applications biomédicales : physique de la décharge, cinétique de la production des espèces réactives lors de l'interaction avec des cellules et des tissus vivants, 2014.

E. Robert, T. Darny, S. Dozias, S. Iseni, and J. M. Pouvesle, New insights on the propagation of pulsed atmospheric plasma streams: From single jet to multi jet arrays, Phys. Plasmas, vol.22, p.122007, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01258484

E. B. Saloman, Wavelengths, Energy Level Classifications, and Energy Levels for the Spectrum of Neutral Neon, J. Phys. Chem. Ref. Data, vol.33, p.1113, 2004.

M. Tan??l? and E. Ta?al, Effect of Atmospheric-Pressure Plasma Jet of Neon on 7-Acetoxy-6-(2,3-Dibromopropyl)-4,8-Dimethylcoumarin Molecule, J. Phys. Soc. Jpn, vol.86, p.64502, 2017.

L. Wang, Y. Zheng, and S. Jia, Numerical study of the interaction of a helium atmospheric pressure plasma jet with a dielectric material, Phys. Plasmas, vol.23, p.103504, 2016.

R. C. Wetzel, F. A. Baiocchi, T. R. Hayes, and R. S. Freund, Absolute cross sections for electron-impact ionization of the rare-gas atoms by the fast-neutral-beam method, Phys. Rev. A, vol.35, pp.559-577, 1987.

H. Yamada, H. Sakakita, S. Kato, J. Kim, S. Kiyama et al., Spectroscopy of reactive species produced by low-energy atmospheric-pressure plasma on conductive target material surface, J. Phys. Appl. Phys, vol.49, p.394001, 2016.

W. Yan and D. J. Economou, Simulation of a non-equilibrium helium plasma bullet emerging into oxygen at high pressure (250-760 Torr) and interacting with a substrate, J. Appl. Phys, vol.120, p.123304, 2016.

M. Yousfi, O. Eichwald, N. Merbahi, and N. Jomaa, Analysis of ionization wave dynamics in low-temperature plasma jets from fluid modeling supported by experimental investigations, Plasma Sources Sci. Technol, vol.21, p.45003, 2012.

R. Zaplotnik, M. Bi??an, N. Krstulovi?, D. Popovi?, and S. Milo?evi?, Cavity ring-down spectroscopy for atmospheric pressure plasma jet analysis, Plasma Sources Sci. Technol, vol.24, p.54004, 2015.

, II. Matériels et méthodes 1. Souches bactériennes et techniques de culture 1.1. Souches bactériennes

. Dans, deux souches bactériennes ont été utilisées : la souche d'Escherichia coli ATCC 25922 et la souche de Bacillus atrophaeus NRRL B4418 (Steris corporation

. Sella, est une bactérie à Gram négative connue pour sa capacité à produire des toxi-infections alimentaires. Naturellement présente dans l'organisme, particulièrement dans le gros intestin, cette bactérie peut causer de nombreux troubles au sein de l'organisme (diarrhée, infection urinaire). La souche ATCC 25922 est un substitut non pathogène de la souche O157 :H7. Isolée à partir d'un échantillon clinique 'oxyde d'éthylène, la chaleur sèche ou humide, 2015.

, Milieux et conditions de culture

E. La-souche, coli utilisée dans cette étude est cultivée en milieu trypticase soja (TSB)

, une préculture est obtenue en repiquant la souche E. coli d'un stock (E. coli + glycérol, le tout conservé à -80 °C) dans 5 ml de milieu frais, incubé pendant 20 heures à 37 °C sous agitation orbitale de 200 rpm

, Dans un second temps, 50 µl de la préculture sont ensemencés dans 10 ml de TSB et incubés pendant 16 heures à 37 °C sous agitation orbitale de 200 rpm

M. Ali, A. R. Nelson, A. L. Lopez, and D. A. Sack, Updated Global Burden of Cholera in Endemic Countries, PLoS Negl. Trop. Dis, vol.9, 2015.

N. A. Baeshen, M. N. Baeshen, A. Sheikh, R. S. Bora, M. M. Ahmed et al., Cell factories for insulin production, 2014.

. Microb, Cell Factories, vol.13, p.141

J. G. Black, Microbiology Principles and Explorations, 2012.

H. Chick, An Investigation of the Laws of Disinfection, J. Hyg. (Lond.), vol.8, pp.92-158, 1908.

M. G. Corradini, M. D. Normand, and M. Peleg, Modeling non-isothermal heat inactivation of microorganisms having biphasic isothermal survival curves, Int. J. Food Microbiol, vol.116, pp.391-399, 2007.

J. Dedet, La microbiologie, de ses origines aux maladies émergentes, Dunod), 2007.

S. Deng, R. Ruan, C. K. Mok, G. Huang, X. Lin et al., Inactivation of Escherichia coli on almonds using nonthermal plasma, J. Food Sci, vol.72, pp.62-66, 2007.

T. Ding, Y. Suo, Q. Xiang, X. Zhao, S. Chen et al., Significance of Viable but NonculturableEscherichia coli: Induction, Detection, and Control, J. Microbiol. Biotechnol, vol.27, pp.417-428, 2017.

E. Dolezalova and P. Lukes, Membrane damage and active but nonculturable state in liquid cultures of Escherichia coli treated with an atmospheric pressure plasma jet, Bioelectrochemistry Amst. Neth, vol.103, pp.7-14, 2015.

A. H. Geeraerd, V. P. Valdramidis, and J. F. Van-impe, GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves, Int. J. Food Microbiol, vol.102, pp.95-105, 2005.

O. Guaitella and A. Sobota, The impingement of a kHz helium atmospheric pressure plasma jet on a dielectric surface, J. Phys. Appl. Phys, vol.48, p.255202, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01549367

M. I. Hasan and J. W. Bradley, Computational model of the interaction of a helium atmospheric-pressure jet with a dielectric surface, J. Phys. Appl. Phys, vol.48, p.435201, 2015.

C. B. Hess, D. W. Niesel, J. Holmgren, G. Jonson, and G. R. Klimpel, Interferon production by Shigella flexneri-infected fibroblasts depends upon intracellular bacterial metabolism, Infect. Immun, vol.58, pp.399-405, 1990.

L. Humpheson, M. R. Adams, W. A. Anderson, C. , and M. B. , Biphasic Thermal Inactivation Kinetics in Salmonella enteritidis PT4, Appl. Environ. Microbiol, vol.64, pp.459-464, 1998.

I. Satoshi, K. Katsuhisa, and H. Satoshi, Effects of pH on Bacterial Inactivation in Aqueous Solutions due to Low-Temperature Atmospheric Pressure Plasma Application, Plasma Process. Polym, vol.7, pp.33-42, 2010.

T. Kawasaki, K. Kawano, H. Mizoguchi, Y. Yano, K. Yamashita et al., Visualization of the Distribution of Oxidizing Substances in an Atmospheric Pressure Plasma Jet, IEEE Trans. Plasma Sci, vol.42, pp.2482-2483, 2014.

T. Kawasaki, A. Sato, S. Kusumegi, A. Kudo, T. Sakanoshita et al., Two-dimensional concentration distribution of reactive oxygen species transported through a tissue phantom by atmospheric-pressure plasma-jet irradiation, Appl. Phys. Express, vol.9, p.76202, 2016.

T. Kawasaki, G. Kuroeda, R. Sei, M. Yamaguchi, R. Yoshinaga et al., Transportation of reactive oxygen species in a tissue phantom after plasma irradiation, Jpn. J. Appl. Phys, vol.57, pp.1-01, 2017.

B. Krönig, P. , and T. , Die chemischen Grundlagen der Lehre von der Giftwirkung und Desinfection, Z. Für Hyg. Infekt, vol.25, pp.1-112, 1897.

M. Laroussi, Sterilization of contaminated matter with an atmospheric pressure plasma, IEEE Trans. Plasma Sci, vol.24, pp.1188-1191, 1996.

M. Laroussi, Low-Temperature Plasma Jet for Biomedical Applications: A Review, IEEE Trans. Plasma Sci, vol.43, pp.703-712, 2015.

M. Laroussi, I. Alexeff, and W. L. Kang, Biological decontamination by nonthermal plasmas, IEEE Trans. Plasma Sci, vol.28, pp.184-188, 2000.

Y. Ma, G. J. Zhang, X. M. Shi, G. M. Xu, Y. et al., Chemical Mechanisms of Bacterial Inactivation Using Dielectric Barrier Discharge Plasma in Atmospheric Air, IEEE Trans. Plasma Sci, vol.36, pp.1615-1620, 2008.

N. N. Misra, S. Patil, T. Moiseev, P. Bourke, J. P. Mosnier et al., In-package atmospheric pressure cold plasma treatment of strawberries, J. Food Eng, vol.125, pp.131-138, 2014.

M. Moisan, J. Barbeau, S. Moreau, J. Pelletier, M. Tabrizian et al., , 2001.

, Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms, Int. J. Pharm, vol.226, pp.1-21

W. L. Nicholson, N. Munakata, G. Horneck, H. J. Melosh, and P. Setlow, Resistance of Bacillus Endospores to, Extreme Terrestrial and Extraterrestrial Environments. Microbiol. Mol. Biol. Rev, vol.64, pp.548-572, 2000.

S. A. Norberg, E. Johnsen, and M. J. Kushner, Helium atmospheric pressure plasma jets touching dielectric and metal surfaces, J. Appl. Phys, vol.118, p.13301, 2015.

S. Patil, T. Moiseev, N. N. Misra, P. J. Cullen, J. P. Mosnier et al., Influence of high voltage atmospheric cold plasma process parameters and role of relative humidity on inactivation of Bacillus atrophaeus spores inside a sealed package, J. Hosp. Infect, vol.88, pp.162-169, 2014.

S. Perni, G. Shama, and M. G. Kong, Cold atmospheric plasma disinfection of cut fruit surfaces contaminated with migrating microorganisms, J. Food Prot, vol.71, pp.1619-1625, 2008.

S. Perni, D. W. Liu, G. Shama, and M. G. Kong, Cold atmospheric plasma decontamination of the pericarps of fruit, J. Food Prot, vol.71, pp.302-308, 2008.

J. Rodríguez-chueca, M. P. Ormad, R. Mosteo, and J. L. Ovelleiro, Kinetic modeling of Escherichia coli and Enterococcus sp. inactivation in wastewater treatment by photo-Fenton and H2O2/UV-vis processes, Chem. Eng. Sci, vol.138, pp.730-740, 2015.

J. Ruste, Microscopie électronique à balayage -Principe et équipement, 2013.

P. Schopfer, Histochemical Demonstration and Localization of H2O2 in Organs of Higher Plants by Tissue Printing on Nitrocellulose Paper, Plant Physiol, vol.104, pp.1269-1275, 1994.

S. R. Sella, L. P. Vandenberghe, and C. R. Soccol, Life cycle and spore resistance of spore-forming Bacillus atrophaeus, Microbiol. Res, vol.169, pp.931-939, 2014.

S. R. Sella, L. P. Vandenberghe, and C. R. Soccol, Bacillus atrophaeus: main characteristics and biotechnological applications -a review, Crit. Rev. Biotechnol, vol.35, pp.533-545, 2015.

P. Setlow, Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals, J. Appl. Microbiol, vol.101, pp.514-525, 2006.

J. Shen, C. Cheng, Y. Zhao, D. Xiao, Y. Lan et al., Observation of inactivation of Bacillus sbtilis spores under exposures of oxygen added argon atmospheric pressure plasma jet, Jpn. J. Appl. Phys, vol.53, p.110310, 2014.

O. Spadiut, S. Capone, F. Krainer, A. Glieder, and C. Herwig, Microbials for the production of monoclonal antibodies and antibody fragments, Trends Biotechnol, vol.32, pp.54-60, 2014.

S. Tseng, N. Abramzon, J. O. Jackson, and W. Lin, Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores, Appl. Microbiol. Biotechnol, vol.93, pp.2563-2570, 2012.

H. Yamada, H. Sakakita, S. Kato, J. Kim, S. Kiyama et al., Spectroscopy of reactive species produced by low-energy atmospheric-pressure plasma on conductive target material surface, J. Phys. Appl. Phys, vol.49, p.394001, 2016.

S. B. Young and P. Setlow, Mechanisms of Bacillus subtilis spore resistance to and killing by aqueous ozone, J. Appl. Microbiol, vol.96, pp.1133-1142, 2004.

. Publications--aboubakar, B. Koné, P. Caillier, and . Guillot, Target interacting with atmospheric pressure helium DBD, IEEE International Conference on Plasma Science (ICOPS), 2016.

F. -aboubakar-koné, B. Sainct, P. Caillier, and . Guillot, , 2016.

F. -aboubakar-koné, B. Sainct, P. Caillier, and . Guillot, , 2016.

, International Conference on Plasma Medicine (ICPM-6)

-. Koné, Etude de l'interaction entre un jet plasma et une cible conductrice et non conductrice, 2016.

. Guillot, Experimental study of the interaction of an helium plasma jet and a conductive target, IEEE International Conference on Plasma Science (ICOPS). -Aboubakar Koné, 2017.

. Guillot, Comparative study of the interactions of helium and neon plasmas jets with a conductive target, IEEE International Conference on Plasma Science (ICOPS). -Aboubakar, 2017.

. Guillot, Neon plasma jet interactions with conductive and non-conductive targets, IEEE International Conference on Plasma Science (ICOPS), 2017.

C. -aboubakar-koné, F. Muja, and . Sainct,

. Guillot, Investigation of the interaction between a helium plasma jet and conductive (metal) / non-conductive (dielectric) targets. Plasma Medicine, 2018.