M. Berezovski and S. N. Krylov, Nonequilibrium capillary electrophoresis of equilibrium mixtures-a single experiment reveals equilibrium and kinetic parameters of protein-DNA interactions, J Am Chem Soc, vol.124, pp.13674-13679, 2002.

S. N. Krylov and M. Berezovski, Non-equilibrium capillary electropho-resis of equilibrium mixtures-appreciation of kinetics in capillary electrophoresis, Analyst, vol.128, pp.571-576, 2003.

J. Ashley, J. K. Li, and S. F. , Selection of bovine catalase aptamers using non-SELEX, Electrophoresis, vol.33, pp.2783-2792, 2012.

R. Yufa, S. M. Krylova, C. Bruce, E. A. Bagg, C. J. Schofield et al., Emulsion PCR significantly improves nonequilibrium capillary electrophoresis of equilibrium mixtures-based aptamer selection: allowing for efficient and rapid selection of aptamer to unmodified ABH2 protein, Anal Chem, vol.87, pp.1411-1420, 2015.

X. Yu and Y. Yu, A mathematical analysis of the selective enrichment of NECEEMbased non-SELEX, Appl Biochem Biotechnol, vol.173, pp.2019-2046, 2014.

L. Gold, The SELEX process: a surprising source of therapeutic and diagnostic compounds, Harvey Lect, vol.91, pp.47-57, 1995.

Z. Luo, H. Zhou, H. Jiang, H. Ou, X. Li et al., Development of a fraction collection approach in capillary electrophoresis SELEX for aptamer selection, Analyst, vol.140, pp.2664-70, 2015.

V. S. Chambers, G. Marsico, J. M. Boutell, D. Antonio, M. Smith et al., High-throughput sequencing of DNA G-quadruplex structures in the human genome, Nat Biotechnol, vol.33, pp.877-81, 2015.

Y. Kasahara, Y. Irisawa, H. Fujita, A. Yahara, H. Ozaki et al., Capillary electrophoresis-systematic evolution of ligands by expo-nential enrichment selection of base-and sugar-modified DNA aptamers: target binding dominated by 2?-O,4?-C-methylene-bridged/locked nucleic acid primer, Anal Chem, vol.85, pp.4961-4968, 2013.

B. Deng, Y. Lin, C. Wang, F. Li, Z. Wang et al., Aptamer binding assays for proteins: the thrombin example-a review, Anal Chim Acta, vol.837, pp.1-15, 2014.

D. M. Tasset, M. F. Kubik, and W. Steiner, Oligonucleotide inhibitors of human thrombin that bind distinct epitopes, J Mol Biol, vol.272, pp.688-98, 1997.

J. Wang, Y. Gu, L. Liu, C. Wang, J. Wang et al., Novel application of fluorescence coupled capillary electrophoresis to resolve the interaction between the G-quadruplex aptamer and thrombin, J Sep Sci, 2017.

,

K. R. Riley, S. Saito, J. Gagliano, and C. L. Colyer, Facilitating aptamer selection and collection by capillary transient isotachophoresis with laser-induced fluorescence detection, J Chromatogr A, vol.1368, pp.183-192, 2014.

K. R. Riley, J. Gagliano, X. J. Libby, K. Saito, S. Yu et al., Combining capillary electrophoresis and next-generation sequenc-ing for aptamer selection, Anal Bioanal Chem, vol.407, pp.1527-1559, 2015.

B. J. Huge, R. J. Flaherty, O. O. Dada, and N. J. Dovichi, Capillary electropho-resis coupled with automated fraction collection, Talanta, vol.130, pp.288-93, 2014.

A. Ric, V. Ong-meang, V. Poinsot, N. Martins-froment, F. Chauvet et al., ssDNA degradation along capillary electropho-resis process using a Tris buffer, Electrophoresis, vol.38, pp.1624-1655, 2017.

T. C. Glenn, Field guide to next-generation DNA sequencers, Molec Ecol Res, vol.11, pp.759-69, 2011.

M. Kanoatov, S. Mehrabanfar, and S. N. Krylov, Systematic approach to optimization of experimental conditions in nonequilibrium capil-lary electrophoresis of equilibrium mixtures, Anal Chem, vol.88, pp.9300-9308, 2016.

Y. Li, L. Guo, F. Zhang, Z. Zhang, J. Tang et al., High-sensitive determination of human alpha-thrombin by its 29-mer aptamer in affinity probe capillary electrophoresis, Electrophoresis, vol.29, pp.2570-2577, 2008.

L. C. Bock, L. C. Griffin, J. A. Latham, E. H. Vermaas, and J. J. Toole, Selection of singlestranded DNA molecules that bind and inhibit human thrombin, Nature, vol.355, pp.564-570, 1992.

H. Li, Q. P. Deng, D. W. Zhang, Y. L. Zhou, and X. X. Zhang, Chemiluminescently labeled aptamers as the affinity probe for in-teraction analysis by capillary electrophoresis, Electrophoresis, vol.31, pp.2452-60, 2010.

. Bibliographie,

D. S. Wilson and J. W. Szostak, In vitro selection of functional nucleic acids. Annual review of biochemistry, vol.68, pp.611-658, 1999.

C. Tuerk and L. Gold, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, pp.505-510, 1990.

E. Szostak and . Et, Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures, Nature. 27 Février, pp.850-852, 1992.

S. Balamurugan, A. Obubuafo, S. A. Soper, and D. A. Spivak, Surface immobilization methods for aptamer diagnostic applications, Analytical and bioanalytical chemistry, vol.390, pp.1009-1030, 2008.

A. B. Iliuk, L. Hu, and W. A. Tao, Aptamer in bioanalytical applications, Analytical chemistry. 15 Juin, pp.44440-52, 2011.

Y. Liu, N. Tuleouva, E. Ramanculov, and A. Revzin, Aptamer-based electrochemical biosensor for interferon gamma detection, Analytical chemistry, vol.82, pp.8131-8137, 2010.

E. W. Ng, D. T. Shima, P. Calias, E. T. Cunningham, D. R. Guyer et al., Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease, Nature reviews. Drug discovery, vol.5, pp.123-155, 2006.

M. Kanoatov, V. A. Galievsky, S. M. Krylova, L. T. Cherney, H. K. Jankowski et al., Using nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM) for simultaneous determination of concentration and equilibrium constant, Analytical chemistry, vol.87, pp.3099-106, 2015.

, Circular dichroism and conformational polymorphism of DNA, vol.37, pp.1713-1725, 2009.

J. D. Watson and F. H. Crick, Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid, Nature, vol.171, pp.737-738, 1953.

X. J. Lu, Z. Shakked, and W. K. Olson, A-form conformational motifs in ligand-bound DNA structures, Journal of Molecular Biology, vol.300, pp.819-859, 2000.

R. V. Gessner, C. A. Frederick, G. J. Quigley, A. Rich, and A. H. Wang, The molecular structure of the lefthanded Z-DNA double helix at 1.0-Å atomic resolution. Geometry, conformation, and ionic interactions of d(CGCGCG), Journal of Biological chemistry, vol.264, pp.7921-7935, 1989.

A. H. Wang, G. J. Quigley, F. J. Kolpak, J. L. Crawford, J. H. Van-boom et al., Molecular structure of a left-handed double helical DNA fragment at atomic resolution, Nature, vol.282, pp.680-686, 1979.

L. Gellert-m, . Mn, and . Davies-dr, Helix formation by guanylic acid, Proceedings of the National Academy of Sciences, vol.15, pp.2013-2021, 196215-12.

O. Kikin, L. Antonio, and P. S. Bagga, QGRS Mapper: a web-based server for predicting G-quadruplexes in nucleotide sequences, Nucleic Acids Res, vol.34, pp.676-82, 2006.

L. C. Bock, L. C. Griffin, J. A. Latham, E. H. Vermaas, and J. J. Toole, Selection of single-stranded DNA molecules that bind and inhibit human thrombin, Nature, vol.6, issue.6360, pp.564-570, 1992.

R. F. Macaya, P. Schultze, F. W. Smith, J. A. Roe, and J. Feigon, Thrombin-binding DNA aptamer forms a unimolecular quadruplex structure in solution, Proceedings of the National Academy of Sciences of the United Stated of America. 90, vol.8, pp.3745-3754, 1993.

W. O. Tucker, K. T. Shum, and J. A. Tanner, G-quadruplex DNA aptamers and their ligands: structure, function and application, Current pharmaceutical design, vol.18, pp.2014-2040, 2012.

M. Vorlí?ková, I. Kejnovská, J. Sagi, D. Ren?iuk, K. Bedná?ová et al., Jarosla. Circular dichroism and guanine quadruplexes. Methods. 1, vol.57, pp.64-75, 2012.

S. Masiero, R. Trotta, S. Pieraccini, S. D. Tito, R. Perone et al., A non-empirical chromophoric interpretation of CD spectra of DNA, Organic & biomolecular chemistry, vol.12, pp.2683-2692, 2010.

M. Girardot, P. Gareil, and A. Varenne, Interaction study of a lysozyme-binding aptamer with mono-and divalent cations by ACE, Electrophoresis, vol.31, pp.546-55, 2010.

A. D. Gelinas, D. R. Davies, T. E. Edwards, J. C. Rohloff, J. D. Carter et al., Crystal structure of interleukin-6 in complex with a modified nucleic acid ligand. The journal of biological chemistry, J Biol Chem, vol.289, issue.12, p.12, 2014.

A. Ambrus, D. Chen, J. Dai, T. Bialis, R. A. Jones et al., Human telomeric sequence forms a hybrid-type intramolecular G-quadruplex structure with mixed parallel/antiparallel strands in potassium solution, Nucleic acids research, vol.34, issue.9, pp.2723-2735, 2006.

K. G. Mann, Biochemistry and physiology of blood coagulation, Thromb Haemost, vol.82, 1999.

L. C. Griffin, G. F. Tidmarsh, L. C. Bock, J. J. Toole, and L. L. &leung, In vivo anticoagulant properties of a novel nucleotide-based thrombin inhibitor and demonstration of regional anticoagulation in extracorporeal circuits, Blood, vol.81, pp.3271-3276, 1993.

B. Deng, Y. Lin, C. Wang, F. Li, Z. Wang et al., Aptamer binding assays for proteins: the thrombin example--a review, Analytica chimica acta, vol.837, pp.1-15, 2014.

K. Padmanabhan, K. P. Padmanabhan, J. D. Ferrara, J. E. Sadler, and A. Tulinsky, The structure of alphathrombin inhibited by a 15-mer single-stranded DNA aptamer. The journal of biological chemistry, vol.24, pp.17651-17654, 1993.

Q. Wu, M. Tsiang, and J. E. Sadler, Localization of the single-stranded DNA binding site in the thrombin anion-binding exosite. The journal of biological chemistry, vol.267, pp.24408-24420, 1992.

L. R. Paborsky, S. N. Mccurdy, L. C. Griffin, J. J. Toole, and L. L. Leung, The single-stranded DNA aptamer-binding site of human thrombin. The journal of biological chemistry, vol.268, pp.20808-20811, 1993.

R. Krauss, I. Merlino, A. Giancola, C. Randazzo, A. Mazzarella et al., Thrombin-aptamer recognition: a revealed ambiguity, Nucleic acids research, vol.17, pp.7858-7867, 2011.

E. Baldrich and C. K. O'sullivan, Ability of thrombin to act as molecular chaperone, inducing formation of quadruplex structure of thrombin-binding aptamer, Analytical Biochemistry, vol.1, pp.194-197, 2005.

S. M. Nimjee, C. P. Rusconi, and B. A. Sullenger, Aptamers: an emerging class of therapeutics. Annual review of medicine, vol.56, pp.555-83, 2005.

D. M. Tasset, M. F. Kubik, and W. Steiner, Oligonucleotide inhibitors of human thrombin that bind distinct epitopes, Journal of molecular biology, vol.272, pp.688-98, 1997.

, Oligonucleotide inhibitors of human thrombin that bind distinct epitopes, J Mol Biol, vol.272, pp.688-698, 1997.

A. Trapaidze, J. Hérault, J. Herbert, and A. Bancaud, Anne-Marie Gué. Investigation of the selectivity of thrombin-binding aptamers for thrombin titration in murine plasma, Biosensors and Bioelectronics, vol.78, pp.58-66, 2016.

J. Liu and G. D. Stormo, Combining SELEX with quantitative assays to rapidly obtain accurate models of protein-DNA interactions, vol.141, 2005.

S. Tombelli, M. Minunni, E. Luzi, and M. Mascini, Aptamer-based biosensors for the detection of HIV-1 Tat protein, Bioelectrochemistry, vol.67, pp.135-141, 2005.

R. Stoltenburg, C. Reinemann, and B. Strehlitz, FluMag-SELEX as an advantageous method for DNA aptamer selection, Analytical and bioanalytical chemistry, vol.383, pp.83-91, 2005.

M. Bianchini, M. Radrizzani, M. G. Brocardo, G. B. Reyes, G. Solveyra et al., Specific oligobodies against ERK-2 that recognize both the native and the denatured state of the protein, Journal of immunological methods, vol.252, pp.191-197, 2001.

A. Rhie, L. Kirby, N. Sayer, R. Wellesley, P. Disterer et al., Characterization of 2'-fluoro-RNA aptamers that bind preferentially to disease-associated conformations of prion protein and inhibit conversion. The journal of biological chemistry, vol.278, pp.39697-705, 2003.

T. Fitzwater and B. Polisky, A SELEX primer, Methods in enzymology, vol.267, 1996.

G. Mayer, M. S. Ahmed, A. Dolf, E. Endl, P. A. Knolle et al., Fluorescence-activated cell sorting for aptamer SELEX with cell mixtures, Nature Protocols, vol.5, pp.199-2004, 2010.

M. Darmostuk, S. Rimpelova, H. Gbelcova, and T. Ruml, Current approaches in SELEX: An update to aptamer selection technology, Biotechnology advances, vol.33, pp.1141-1161, 2015.

A. T. Bayrac, K. Sefah, P. Parekh, C. Bayrac, B. Gulbakan et al., In vitro Selection of DNA Aptamers to Glioblastoma Multiforme, ACS Chemical Neuroscience, vol.2, pp.175-181, 2011.

M. N. Ara, M. Hyodo, N. Ohga, K. Hida, and H. Harashima, Development of a novel DNA aptamer ligand targeting to primary cultured tumor endothelial cells by a cell-based SELEX method, PLoS One, vol.7, p.50174, 2012.

T. Kunii, S. Ogura, M. Mie, and E. Kobatake, Selection of DNA aptamers recognizing small cell lung cancer using living cell-SELEX. The analyst, vol.136, pp.1310-1312, 2011.

E. Jiménez, K. Sefah, D. López-colón, V. Simaeys, D. Chen et al., Generation of lung adenocarcinoma DNA aptamers for cancer studies, PLoS One, vol.7, 2012.

Y. Wang, Y. Luo, T. Bing, Z. Chen, M. Lu et al., DNA Aptamer Evolved by Cell-SELEX for Recognition of Prostate Cancer, Plos One, vol.9, 2014.

W. M. Li, T. Bing, J. Y. Wei, Z. Z. Chen, D. H. Shangguan et al., Cell-SELEX-based selection of aptamers that recognize distinct targets on metastatic colorectal cancer cells, Biomaterials, vol.35, pp.6998-7007, 2014.

A. Ozer, J. M. Pagano, and J. T. Lis, New Technologies Provide Quantum Changes in the Scale, Speed, and Success of SELEX Methods and Aptamer Characterization. Molecular therapy. Nucleic acids, vol.3, p.183, 2014.

D. A. Daniels, H. Chen, B. J. Hicke, K. M. Swiderek, and L. Gold, A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment, Proceedings of the National Academy of Sciences, vol.3, 2014.

R. D. Jenison, S. C. Gill, A. Pardi, and B. Polisky, High-resolution molecular discrimination by RNA, Science, vol.263, pp.1425-1434, 1994.

C. Wang, M. Zhang, G. Yang, D. Zhang, H. Ding et al., Single-stranded DNA aptamers that bind differentiated but not parental cells: subtractive systematic evolution of ligands by exponential enrichment, Journal of biotechnology, vol.102, pp.15-22, 2003.

K. B. Jensen, B. L. Atkinson, M. C. Willis, T. H. Koch, and L. Gold, Using in vitro selection to direct the covalent attachment of human immunodeficiency virus type 1 Rev protein to high-affinity RNA ligands, Proceedings of the National Academy of Sciences of the Unites States of America, vol.92, pp.12220-12224, 1995.

R. White, C. Rusconi, E. Scardino, A. Wolberg, J. Lawson et al., Generation of species cross-reactive aptamers using "toggle" SELEX. Molecular therapy: the journal of the American Society of Gene Therapy, vol.4, pp.567-73, 2001.

P. C. Sabeti, P. J. Unrau, and D. P. Bartel, Accessing rare activities from random RNA sequences: the importance of the length of molecules in the starting pool, Chemistry and biology, vol.4, pp.767-774, 1997.

S. E. Osborne and A. D. Ellington, Nucleic Acid Selection and the Challenge of Combinatorial Chemistry, Chemical reviews, pp.349-370, 1997.

A. A. Beaudry and G. F. Joyce, Directed evolution of an RNA enzyme, Science, vol.257, pp.635-641, 1992.

R. C. Cadwell and G. F. Joyce, Randomization of genes by PCR mutagenesis. PCR methods and applications, pp.28-33, 1992.

I. Surugiu-wärnmark, A. Wärnmark, G. Toresson, J. A. Gustafsson, and L. Bülow, Selection of DNA aptamers against rat liver X receptors. Biochemical and biophysical research communications, vol.332, pp.512-517, 2005.

G. Mayer, The chemical biology of aptamers, Angewandte Chemie International Edition in English, vol.48, pp.2672-2689, 2009.

D. Jellinek, L. S. Green, C. Bell, C. K. Lynott, N. Gill et al., Potent 2'-amino-2'-deoxypyrimidine RNA inhibitors of basic fibroblast growth factor, Biochemistry, vol.34, pp.11363-72, 1995.

N. C. Pagratis, C. Bell, Y. F. Chang, S. Jennings, T. Fitzwater et al., Potent 2'-amino-, and 2'-fluoro-2'-deoxyribonucleotide RNA inhibitors of keratinocyte growth factor, Nature Biotechnology, vol.15, pp.68-73, 1997.

J. C. Rohloff, A. D. Gelinas, T. C. Jarvis, U. A. Ochsner, D. J. Schneider et al., Nucleic Acid Ligands With Protein-like Side Chains: Modified Aptamers and Their Use as Diagnostic and Therapeutic Agents, Molecular therapy. Nucleic Acids, vol.3, p.201, 2014.

B. J. Hicke, C. Marion, Y. F. Chang, T. Gould, C. K. Lynott et al., Tenascin-C aptamers are generated using tumor cells and purified protein. The journal of biological chemistry, vol.276, pp.48644-54, 2001.

S. E. Lupold, B. J. Hicke, Y. Lin, and D. S. Coffey, Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen, vol.62, pp.4029-4033, 2002.

M. Svobodova, D. H. Bunka, P. Nadal, P. G. Stockley, O. Sullivan et al., Selection of 2'F-modified RNA aptamers against prostate-specific antigen and their evaluation for diagnostic and therapeutic applications, Analytical and bioanalytical chemistry, vol.405, pp.9149-57, 2013.

J. M. Layzer, A. P. Mccaffrey, A. K. Tanner, Z. Huang, M. A. Kay et al., In vivo activity of nucleaseresistant siRNAs, RNA, vol.10, pp.766-771, 2004.

C. M. Smith and J. A. Steitz, Sno storm in the nucleolus: new roles for myriad small RNPs, Cell, vol.89, pp.669-672, 1997.

, Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain, vol.273, pp.20556-20567, 1998.

Y. Kato, N. Minakawa, Y. Komatsu, H. Kamiya, N. Ogawa et al., New NTP analogs: the synthesis of 4'-thioUTP and 4'-thioCTP and their utility for SELEX, vol.33, pp.2942-2951, 2005.

V. B. Pinheiro and P. Holliger, Towards XNA nanotechnology: new materials from synthetic genetic polymers, Trends in biotechnology, vol.32, pp.321-328, 2014.

J. A. Latham, R. Johnson, and J. J. Toole, The application of a modified nucleotide in aptamer selection: novel thrombin aptamers containing 5-(1-pentynyl)-2'-deoxyuridine, vol.22, pp.2817-2839, 1994.

K. B. Jensen, B. L. Atkinson, M. C. Willis, T. H. Koch, and L. Gold, Using in vitro selection to direct the covalent attachment of human immunodeficiency virus type 1 Rev protein to high-affinity RNA ligands, Proceedings of the National Academy of Sciences of the United States of America, vol.92, pp.12220-12224, 1995.

J. D. Vaught, C. Bock, J. Carter, T. Fitzwater, M. Otis et al., Expanding the chemistry of DNA for in vitro selection, Journal of the American chemical society, vol.132, pp.4141-51, 2010.

J. Cox and M. Mann, Quantitative, high-resolution proteomics for data-driven systems biology, vol.80, pp.273-299, 2011.

D. R. Davies, A. D. Gelinas, C. Zhang, J. C. Rohloff, J. D. Carter et al., Unique motifs and hydrophobic interactions shape the binding of modified DNA ligands to protein targets, Proceedings of the National Academy of Sciences, vol.109, pp.19971-19977, 2012.

L. Gold, D. Ayers, J. Bertino, C. Bock, A. Bock et al., Aptamer-based multiplexed proteomic technology for biomarker discovery, PLoS One, vol.5, p.15004, 2010.

S. Mirror-image-rna-that-binds-d-adenosine.-klussmann, A. Nolte, R. Bald, V. A. Erdmann, and J. P. Fürste, , vol.14, pp.1112-1117, 1996.

J. Ruta, C. Ravelet, I. Baussanne, J. L. Décout, and E. Peyrin, Aptamer-based enantioselective competitive binding assay for the trace enantiomer detection, Analytical chemistry, vol.79, pp.4716-4725, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00382944

A. Vater and S. Klussmann, Turning mirror-image oligonucleotides into drugs: the evolution of Spiegelmer(®) therapeutics. Drug discovery today, vol.20, pp.147-155, 2015.

V. B. Pinheiro, A. I. Taylor, C. Cozens, M. Abramov, M. Renders et al., Synthetic genetic polymers capable of heredity and evolution, Science, vol.336, pp.341-345

M. Kimoto, R. Yamashige, K. Matsunaga, S. Yokoyama, and I. Hirao, Generation of high-affinity DNA aptamers using an expanded genetic alphabet, Nature Biotechnology, vol.31, pp.453-460, 2013.

K. Sefah, Z. Yang, K. M. Bradley, S. Hoshika, E. Jiménez et al., In vitro selection with artificial expanded genetic information systems, Proceedings of the National Academy of Sciences of the Unites States of America, vol.111, pp.1449-54, 2014.

. Ollenstein-m1, C. J. Hipolito, C. H. Lam, and D. M. Perrin, Toward the combinatorial selection of chemically modified DNAzyme RNase A mimics active against all-RNA substrates, ACS combinatorial science, vol.15, pp.174-82, 2013.

W. He, M. A. Elizondo-riojas, X. Li, G. L. Lokesh, A. Somasunderam et al., X-aptamers: a bead-based selection method for random incorporation of druglike moieties onto next-generation aptamers for enhanced binding, Biochemistry, vol.51, pp.8321-8324, 2012.

K. Hagiwara, H. Fujita, Y. Kasahara, Y. Irisawa, S. Obika et al., In vitro selection of DNA-based aptamers that exhibit RNA-like conformations using a chimeric oligonucleotide library that contains two different xeno-nucleic acids, Molecular bioSystems, vol.11, pp.71-76, 2015.

K. A. Davis, B. Abrams, Y. Lin, and S. D. Jayasena, Use of a high affinity DNA ligand in flow cytometry, Nucleic Acids Research, vol.15, pp.702-708, 1996.

S. D. Mendonsa and M. T. Bowser, In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis, Analytical chemistry, vol.76, pp.5387-92, 2004.

R. Tsai and R. R. Reed, Identification of DNA recognition sequences and protein interaction domains of the multiple-Zn-finger protein Roaz, Molecular and cellular biology, vol.18, pp.6447-6456, 1998.

R. K. Mosing, M. S. Bowser, and M. , Capillary Electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase, Analytical chemistry, vol.77, pp.6107-6112, 2005.

J. J. Tang, J. W. Xie, N. S. Shao, and Y. Yan, In vitro selection of DNA aptamer against abrin toxin and aptamerbased abrin direct detection, Biosensors & Bioelectronics, vol.27, pp.1303-1311, 2006.

M. Berezovski, A. Drabovich, S. M. Krylova, M. Musheev, V. Okhonin et al., Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers, Journal of the American Chemical Society, vol.127, pp.3165-71, 2005.

V. Okhonin, M. Berezovski, and S. N. Krylov, Sweeping capillary electrophoresis: a non-stopped-flow method for measuring bimolecular rate constant of complex formation between protein and DNA, Journal of the American Chemical Society, vol.126, pp.7166-7173, 2004.

A. Drabovich, M. Berezovski, and S. N. Krylov, Selection of smart aptamers by equilibrium capillary electrophoresis of equilibrium mixtures (ECEEM), Journal of the American Chemical Society, vol.32, pp.11224-11229, 2005.

S. D. Mendonsa and M. T. Bowser, In vitro selection of aptamers with affinity for neuropeptide Y using capillary electrophoresis, Journal of the American Chemical Society, vol.127, pp.9382-9385, 2005.

A. P. Drabovich, M. Berezovski, V. Okhonin, and S. N. Krylov, Selection of smart aptamers by methods of kinetic capillary electrophoresis, Analytical Chemistry, vol.78, pp.3171-3179, 2006.

P. Mallikaratchy, R. V. Stahelin, Z. Cao, W. Cho, and W. Tan, Selection of DNA ligands for protein kinase Cdelta, Chemical communications, vol.30, pp.3229-3260, 2006.

J. Hesselberth, M. P. Robertson, S. Jhaveri, and A. D. Ellington, In vitro selection of nucleic acids for diagnostic applications, Journal of biotechnology, vol.74, pp.15-25, 2000.

J. Yang and M. T. Bowser, Capillary electrophoresis-SELEX selection of catalytic DNA aptamers for a small-molecule porphyrin target, Analytical chemistry, vol.85, pp.1525-1555, 2013.

R. M. Eaton, J. A. Shallcross, L. E. Mael, K. S. Mears, L. Minkoff et al., Selection of DNA aptamers for ovarian cancer biomarker HE4 using CE-SELEX and high-throughput sequencing.Selection of DNA aptamers for ovarian cancer biomarker HE4 using CE-SELEX and high-throughput sequencing, Analytical and bioanalytical chemistry, vol.23, pp.6965-73, 2015.

L. N. Cella, P. Sanchez, W. Zhong, N. V. Myung, C. W. Mulchandani et al., Analytical chemistry, vol.82, pp.2042-2047, 2010.

L. Dong, Q. Tan, W. Ye, D. Liu, H. Chen et al., Screening and Identifying a Novel ssDNA Aptamer against Alpha-fetoprotein Using CE-SELEX, 2015.

M. Jing and M. T. Bowser, Tracking the Emergence of High Affinity Aptamers for rhVEGF165 during CE-SELEX Using High Throughput Sequencing, Analytical Chemistry, vol.85, pp.10761-70, 2013.

Y. Zhang, Z. Yu, F. Jiang, P. Fu, J. Shen et al., Two DNA aptamers against avian influenza H9N2 virus prevent viral infection in cells. PloS one, 2015.

J. Ashley and S. F. Li, Three-dimensional selection of leptin aptamers using capillary electrophoresis and implications for clone validation, Analytical biochemistry, vol.434, pp.146-52, 2013.

T. T. Dinh, K. K. , K. P. Jeroen, P. Dragana, S. Jeroen et al., Selection of aptamers against Ara h 1 protein for FO-SPR biosensing of peanut allergens in food matrices, Biosensors and Bioelectronics, vol.43, pp.245-251, 2013.

M. V. Berezovski, M. U. Musheev, A. P. Drabovich, J. V. Jitkova, and S. N. Krylov, Non-SELEX: selection of aptamers without intermediate amplification of candidate oligonucleotides, Nature Protocole, vol.1, pp.1359-69, 2006.

J. Ashley, J. K. Li, and S. F. , Selection of bovine catalase aptamers using non-SELEX, Electrophoresis, vol.33, pp.2783-2792, 2012.

J. Tok, J. Lai, T. Leung, and S. F. Li, Selection of aptamers for signal transduction proteins by capillary electrophoresis, Electrophoresis, vol.31, pp.2055-62, 2010.

J. Ashley, J. K. Li, and S. F. , Selection of cholesterol esterase aptamers using a dual-partitioning approach, Electrophoresis, vol.36, pp.2616-2637, 2015.

M. Berezovski, M. Musheev, A. Drabovich, and S. N. Krylov, Non-SELEX selection of aptamers, Journal of the American Chemical Society, vol.128, issue.8, pp.1410-1411, 2006.

E. Fiore, E. Dausse, H. Dubouchaud, E. Peyrin, and C. Ravelet, Ultrafast capillary electrophoresis isolation of DNA aptamer for the PCR amplification-based small analyte sensing, Frontiers in chemistry, vol.3, p.49, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01933162

, Micro free-flow electrophoresis: theory and applications, Analytical and Bioanalytical Chemistry, vol.394, pp.187-198, 2009.

M. Mckeague, D. Girolamo, A. Valenzano, S. Pascale, M. Ruscito et al., Comprehensive analytical comparison of strategies used for small molecule aptamer evaluation, Analytical chemistry, vol.87, pp.8608-8620, 2015.

M. Jing and M. T. Bowser, Methods for measuring aptamer-protein equilibria: A review, Analytica chimica acta, vol.686, pp.9-18, 2011.

S. Valenzano, D. Girolamo, A. Derosa, M. C. Mckeague, M. Schena et al., Screening and Identification of DNA Aptamers to Tyramine Using in Vitro Selection and High-Throughput Sequencing, ACS combinatorial science, vol.18, pp.302-315, 2016.

J. A. Cruz-aguado and G. Penner, Determination of ochratoxin a with a DNA aptamer, Journal of Agricultural and Food Chemistry, vol.56, pp.10456-10461, 2008.

J. A. Cruz-aguado and G. Penner, Determination of Ochratoxin A with a DNA Aptamer, Journal of agricultural and food chemistry, vol.56, pp.10456-10461, 2008.

I. Wong and T. M. Lohman, A double-filter method for nitrocellulose-filter binding: application to protein-nucleic acid interactions, Proc Natl Acad Sci U S A, vol.90, pp.5428-5460, 1993.

M. Fried and D. M. Crothers, Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis, Nucleic Acids Research, vol.9, pp.6505-6530, 1981.

M. M. Garner and A. Revzin, A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system, Nucleic Acids research, vol.9, pp.3047-60, 1981.

C. Ravelet, C. Grosset, and E. Peyrin, Liquid chromatography, electrochromatography and capillary electrophoresis applications of DNA and RNA aptamers, Journal of Chromatography A, vol.1117, pp.1-10, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00383250

E. Peyrin, Nucleic acid aptamer molecular recognition principles and application in liquid chromatography and capillary electrophoresis, Journal of separation science, vol.32, pp.1531-1537, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00383198

C. Forier, E. Boschetti, M. Ouhammouch, A. Cibiel, F. Ducongé et al., DNA aptamer affinity ligands for highly selective purification of human plasma-related proteins from multiple sources, Journal of chromatography. A, vol.1489, pp.39-50, 2017.

S. Perrier, P. Bouilloud, D. Oliveira-coelho, G. Henry, M. Peyrin et al., Small molecule aptamer assays based on fluorescence anisotropy signal-enhancer oligonucleotides, Biosensors & bioelectronics, vol.82, pp.155-61, 2016.

D. J. Scoville, T. K. Uhm, J. A. Shallcross, and R. J. Whelan, Selection of DNA Aptamers for Ovarian Cancer Biomarker CA125 Using One-Pot SELEX and High-Throughput Sequencing, vol.2017, p.9, 2017.

D. T. Tran, K. P. Janssen, J. Pollet, E. Lammertyn, J. Anné et al., Selection and characterization of DNA aptamers for egg white lysozyme, Molecules, vol.15, pp.1127-1167, 2010.

R. Krauss, I. Merlino, A. Randazzo, A. Novellino, E. Mazzarella et al., High-resolution structures of two complexes between thrombin and thrombin-binding aptamer shed light on the role of cations in the aptamer inhibitory activity, Nucleic acids research, vol.40, pp.8119-8147, 2012.

P. H. Lin, R. H. Chen, C. H. Lee, Y. Chang, C. S. Chen et al., Studies of the binding mechanism between aptamers and thrombin by circular dichroism, surface plasmon resonance and isothermal titration calorimetryLin PH1, Colloids and surfaces. B, Biointerfaces, vol.88, pp.552-560, 2011.

Y. Liu, N. Liu, X. Ma, X. Li, J. Ma et al., Highly specific detection of thrombin using an aptamer-based suspension array and the interaction analysis via microscale thermophoresis, The Analyst, vol.140, pp.2762-70, 2015.

C. H. Stuart, K. R. Riley, O. Boyacioglu, D. M. Herpai, W. Debinski et al., Selection of a Novel Aptamer Against Vitronectin Using Capillary Electrophoresis and Next Generation Sequencing. Molecular therapy, vol.5, p.386, 2016.

L. T. Cherney, M. Kanoatov, and S. N. Krylov, Method for determination of peak areas in nonequilibrium capillary electrophoresis of equilibrium mixtures, Analytical chemistry, vol.83, pp.8617-8639, 2011.

Y. W. Zhang, Y. H. Fu, P. Jiang, .. F. Zhang, Y. Wu et al., Modified capillary electrophoresis based measurement of the binding between DNA aptamers and an unknown concentration target, Analytical and Bioanalytical Chemistry, vol.405, pp.5549-55, 2013.

M. U. Musheev, Y. Filiptsev, and S. N. Krylov, Noncooled capillary inlet: a source of systematic errors in capillary-electrophoresis-based affinity analyses, Analytical chemistry, vol.82, pp.8637-8678, 2010.

D. Yunusov, M. So, S. Shayan, V. Okhonin, M. U. Musheev et al., Kinetic capillary electrophoresis-based affinity screening of aptamer clones, Analytica chimica acta, vol.631, pp.102-109, 2009.

T. J. Langan, V. T. Nyakubaya, L. D. Casto, T. D. Dolan, S. A. Archer-hartmann et al., Assessment of aptamer-steroid binding using stacking-enhanced capillary electrophoresis, Electrophoresis, vol.33, pp.866-875, 2012.

K. R. Riley, S. Saito, J. Gagliano, and C. L. Colyer, Facilitating aptamer selection and collection by capillary transient isotachophoresis with laser-induced fluorescence detection, Journal of chromatography. A, vol.1368, pp.183-192, 2014.

, Facilitating aptamer selection and collection by capillary transient isotachophoresis with laserinduced fluorescence detection, Journal of chromatography A, vol.1368, pp.183-192, 2014.

R. Yufa, S. M. Krylova, C. Bruce, E. A. Bagg, C. J. Schofield et al., Emulsion PCR Significantly Improves Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures-Based Aptamer Selection: Allowing for Efficient and Rapid Selection of Aptamer to Unmodified ABH2 Protein, Analytical chemistry, vol.87, pp.1411-1420, 2015.

. Selection, C. Real-time-pcr-coupled, . Aptamer, P. Ruff, R. B. Pai et al., ISRN molecular biology, vol.2012, p.9

M. U. Musheev and S. N. Krylov, Selection of aptamers by systematic evolution of ligands by exponential enrichment: Addressing the polymerase chain reaction issue, Analytica chimica acta, vol.564, pp.91-97, 2006.

X. Chom, J. Nie, R. Stewart, . Csordasat, S. S. Oh et al., Quantitative selection of DNA aptamers through microfluidic selection and high-throughput sequencing, Proc Natl Acad Sci, vol.107, pp.15373-15378, 2010.

Y. Li, L. Guo, F. Zhang, Z. Zhang, J. Tang et al., High-sensitive determination of human AE-thrombin by its 29-mer aptamer in affinity probe capillary electrophoresis, Electrophoresis, vol.29, pp.2570-2577, 2008.

Q. P. Deng, C. Tie, Y. L. Zhou, and X. X. Zhang, Cocaine detection by structure-switch aptamer-based capillary zone electrophoresis, Electrophoresis, vol.33, pp.1465-70, 2012.

M. Kanoatov and S. N. Krylov, Analysis of DNA in Phosphate Buffered Saline Using Kinetic Capillary Electrophoresis, Analytical chemistry, vol.88, pp.7421-7429, 2016.

A. Petrov, V. Okhonin, M. Berezovski, and S. N. Krylov, Kinetic capillary electrophoresis (KCE): a conceptual platform for kinetic homogeneous affinity methods, Journal of the American Chemical Society, vol.127, pp.17104-17114, 2005.

T. Ray, A. Mills, and P. Dyson, Tris-dependent oxidative DNA strand scission during electrophoresis, Electrophoresis, vol.16, pp.888-94, 1995.

T. Jj, R. , and G. , Les aptamères: des ligands et des catalyseurs oligonucléotidiques obtenus par sélection in vitro, Médecine/sciences. 1998, vol.14, pp.155-66

K. R. Riley, S. Saito, J. Gagliano, and C. L. Colyer, Facilitating aptamer selection and collection by capillary transient isotachophoresis with laser-induced fluorescence detection, Journal of chromatography. A, vol.1368, pp.183-192, 2014.

C. Tse and J. Capeau, Quantification des acides nucléiques, Annales de biol clinique, vol.61, pp.279-93, 2003.