J. Adamski, A. Price, C. Dive, and G. Makin, Hypoxia-Induced Cytotoxic Drug Resistance in Osteosarcoma Is Independent of HIF-1Alpha, PLOS ONE, vol.8, p.65304, 2013.

J. Aury-landas, C. Bazille, L. Allas, S. Bouhout, C. Chesneau et al., Anti-inflammatory and chondroprotective effects of the Sadenosylhomocysteine hydrolase inhibitor 3-Deazaneplanocin A, in human articular chondrocytes, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01569499

J. V. Bovée, A. Cleton-jansen, A. H. Taminiau, and P. C. Hogendoorn, , 2005.

X. Deschênes-simard, F. Kottakis, S. Meloche, and G. Ferbeyre, ERKs in Cancer: Friends or Foes?, Cancer Res, vol.74, pp.412-419, 2014.

H. L. Evans, A. G. Ayala, and M. M. Romsdahl, Prognostic factors in chondrosarcoma of bone: a clinicopathologic analysis with emphasis on histologic grading, Cancer, vol.40, pp.818-831, 1977.

L. Galluzzi, L. Senovilla, I. Vitale, J. Michels, I. Martins et al., Molecular mechanisms of cisplatin resistance, Oncogene, vol.31, pp.1869-1883, 2012.

L. Galluzzi, I. Vitale, J. Michels, C. Brenner, G. Szabadkai et al., Systems biology of cisplatin resistance: past, present and future, Cell Death Dis, vol.5, p.1257, 2014.

R. Gil-benso, C. Lopez-gines, J. A. López-guerrero, C. Carda, R. C. Callaghan et al., Establishment and characterization of a continuous human chondrosarcoma cell line, ch-2879: comparative histologic and genetic studies with its tumor of origin, Lab. Investig. J. Tech. Methods Pathol, vol.83, pp.877-887, 2003.

N. Girard, C. Bazille, E. Lhuissier, H. Benateau, A. Llombart-bosch et al., 3-Deazaneplanocin A (DZNep), an inhibitor of the histone methyltransferase EZH2, induces apoptosis and reduces cell migration in chondrosarcoma cells, PloS One, vol.9, p.98176, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01147783

D. W. Huang, B. T. Sherman, and R. A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat. Protoc, vol.4, pp.44-57, 2009.

A. A. Jagasia, J. A. Block, M. O. Diaz, T. Nobori, S. Gitelis et al., Partial deletions of the CDKN2 and MTS2 putative tumor suppressor genes in a myxoid chondrosarcoma, Cancer Lett, vol.105, pp.77-90, 1996.

T. Kubo, T. Sugita, S. Shimose, T. Matsuo, K. Arihiro et al., Expression of hypoxia-inducible factor-1alpha and its relationship to tumour angiogenesis and cell proliferation in cartilage tumours, J. Bone Joint Surg. Br, vol.90, pp.364-370, 2008.

C. Lin, R. Mcgough, B. Aswad, J. A. Block, and R. Terek, Hypoxia induces HIF-1alpha and VEGF expression in chondrosarcoma cells and chondrocytes, J. Orthop. Res. Off. Publ. Orthop. Res. Soc, vol.22, pp.1175-1181, 2004.

Z. Lu and S. Xu, ERK1/2 MAP kinases in cell survival and apoptosis, IUBMB Life, vol.58, pp.621-631, 2006.

E. Minet, G. Michel, D. Mottet, M. Raes, and C. Michiels, Transduction pathways involved in Hypoxia-Inducible Factor-1 phosphorylation and activation. Free Radic, Biol. Med, vol.31, pp.847-855, 2001.

A. Mirmohammadsadegh, R. Mota, A. Gustrau, M. Hassan, S. Nambiar et al., ERK1/2 Is Highly Phosphorylated in Melanoma Metastases and Protects Melanoma Cells from Cisplatin-Mediated Apoptosis, J. Invest. Dermatol, vol.127, pp.2207-2215, 2007.

A. C. Onishi, A. M. Hincker, and F. Y. Lee, Surmounting chemotherapy and radioresistance in chondrosarcoma: molecular mechanisms and therapeutic targets, Sarcoma, p.381564, 2011.

S. Patiar and A. L. Harris, Role of hypoxia-inducible factor-1alpha as a cancer therapy target, Endocr. Relat. Cancer, vol.13, issue.1, pp.61-75, 2006.

D. L. Persons, E. M. Yazlovitskaya, W. Cui, and J. C. Pelling, Cisplatin-induced Activation of Mitogen-activated Protein Kinases in Ovarian Carcinoma Cells: Inhibition of Extracellular Signal-regulated Kinase Activity Increases Sensitivity to Cisplatin, Clin. Cancer Res, vol.5, pp.1007-1014, 1999.

A. E. Rosenberg, G. P. Nielsen, S. B. Keel, L. G. Renard, M. M. Fitzek et al., Chondrosarcoma of the base of the skull: a clinicopathologic study of 200 cases with emphasis on its distinction from chordoma, Am. J. Surg. Pathol, vol.23, pp.1370-1378, 1999.

S. P. Scully, K. R. Berend, A. Toth, W. N. Qi, Z. Qi et al., Marshall Urist Award. Interstitial collagenase gene expression correlates with in vitro invasion in human chondrosarcoma, Clin. Orthop. 291-303. References, vol.1, 2000.

J. V. Bovée, A. Cleton-jansen, A. H. Taminiau, and P. C. Hogendoorn, Emerging pathways in the development of chondrosarcoma of bone and implications for targeted treatment, Lancet Oncol, vol.6, pp.599-607, 2005.

A. M. Samuel, J. Costa, and D. M. Lindskog, Genetic alterations in chondrosarcomaskeys to targeted therapies?, Cell Oncol Dordr, vol.37, pp.95-105, 2014.

J. G. Van-oosterwijk, B. Herpers, D. Meijer, I. H. Briaire-de-bruijn, A. M. Cleton-jansen et al., Restoration of chemosensitivity for doxorubicin and cisplatin in chondrosarcoma in vitro: BCL-2 family members cause chemoresistance, Ann Oncol Off J Eur Soc Med Oncol ESMO, vol.23, pp.1617-1643, 2012.

J. Bovée, P. Hogendoorn, J. S. Wunder, and B. A. Alman, Cartilage tumours and bone development: molecular pathology and possible therapeutic targets, Nat Rev Cancer, vol.10, pp.481-489, 2010.

D. Monderer, A. Luseau, A. Bellec, E. David, S. Ponsolle et al., New chondrosarcoma cell lines and mouse models to study the link between chondrogenesis and chemoresistance, Lab Investig J Tech Methods Pathol, vol.93, pp.1100-1114, 2013.

J. E. Ekert, K. Johnson, B. Strake, J. Pardinas, S. Jarantow et al., Three-dimensional lung tumor microenvironment modulates therapeutic compound responsiveness in vitro -implication for drug development, PLoS One, vol.9, p.92248, 2014.

B. Weigelt, C. M. Ghajar, and M. J. Bissell, The need for complex 3D culture models to unravel novel pathways and identify accurate biomarkers in breast cancer, Adv Drug Deliv Rev, vol.0, pp.42-51, 2014.

N. Kramer, A. Walzl, C. Unger, M. Rosner, G. Krupitza et al., In vitro cell migration and invasion assays, Mutat Res, vol.752, pp.10-24, 2013.

A. Y. Giuffrida, J. E. Burgueno, L. G. Koniaris, J. C. Gutierrez, R. Duncan et al., Chondrosarcoma in the United States (1973 to 2003): an analysis of 2890 cases from the SEER database, J Bone Joint Surg Am, vol.91, pp.1063-72, 2009.

L. R. Leddy and R. E. Holmes, Chondrosarcoma of bone, Cancer Treat Res, vol.162, pp.117-147, 2014.

N. Girard, C. Bazille, E. Lhuissier, H. Benateau, A. Llombart-bosch et al., 3-Deazaneplanocin A (DZNep), an Inhibitor of the Histone Methyltransferase EZH2, Induces Apoptosis and Reduces Cell Migration in Chondrosarcoma Cells, PloS One, vol.9, p.98176, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01147783

D. Monderer, A. Luseau, A. Bellec, E. David, S. Ponsolle et al., New chondrosarcoma cell lines and mouse models to study the link between chondrogenesis and chemoresistance, Lab Investig J Tech Methods Pathol, vol.93, pp.1100-1114, 2013.

J. Puppe, R. Drost, X. Liu, S. A. Joosse, B. Evers et al., BRCA1-deficient mammary tumor cells are dependent on EZH2 expression and sensitive to Polycomb Repressive Complex 2-inhibitor 3-deazaneplanocin A, Breast Cancer Res BCR, vol.11, p.63, 2009.

Z. Xie, C. Bi, L. L. Cheong, S. C. Liu, G. Huang et al., Determinants of Sensitivity to DZNep Induced Apoptosis in Multiple Myeloma Cells, PLoS ONE, vol.6, 2011.

L. L. Cheng, Y. Itahana, Z. D. Lei, N. Chia, Y. Wu et al., TP53 genomic status regulates sensitivity of gastric cancer cells to the histone methylation inhibitor 3-deazaneplanocin A (DZNep), Clin Cancer Res Off J Am Assoc Cancer Res, vol.18, pp.4201-4213, 2012.

M. Martínez-fernández, C. Rubio, C. Segovia, F. F. López-calderón, M. Dueñas et al., EZH2 in Bladder Cancer, a Promising Therapeutic Target, Int J Mol Sci, vol.16, pp.27107-27139, 2015.

A. A. Jagasia, J. A. Block, M. O. Diaz, T. Nobori, S. Gitelis et al., Partial deletions of the CDKN2 and MTS2 putative tumor suppressor genes in a myxoid chondrosarcoma, Cancer Lett, vol.105, pp.77-90, 1996.

S. P. Scully, K. R. Berend, A. Toth, W. N. Qi, Z. Qi et al., Marshall Urist Award. Interstitial collagenase gene expression correlates with in vitro invasion in human chondrosarcoma, Clin Orthop, pp.291-303, 2000.

R. Gil-benso, C. Lopez-gines, J. A. López-guerrero, C. Carda, R. C. Callaghan et al., Establishment and characterization of a continuous human chondrosarcoma cell line, ch-2879: comparative histologic and genetic studies with its tumor of origin, Lab Investig J Tech Methods Pathol, vol.83, pp.877-87, 2003.

D. W. Huang, B. T. Sherman, and R. A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat Protoc, vol.4, pp.44-57, 2009.

D. Szklarczyk, A. Franceschini, S. Wyder, K. Forslund, D. Heller et al., STRING v10: protein-protein interaction networks, integrated over the tree of life, Nucleic Acids Res, vol.43, pp.447-52, 2015.

F. Sun, J. Li, Q. Yu, and E. Chan, Loading 3-deazaneplanocin A into pegylated unilamellar liposomes by forming transient phenylboronic acid-drug complex and its pharmacokinetic features in Sprague-Dawley rats, Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Für Pharm Verfahrenstechnik EV, vol.80, pp.323-354, 2012.

C. J. Peer, M. Rao, S. D. Spencer, S. Shahbazi, P. S. Steeg et al., A rapid ultra HPLC-MS/MS method for the quantitation and pharmacokinetic analysis of 3-deazaneplanocin A in mice, J Chromatogr B Analyt Technol Biomed Life Sci, 2013.

C. Baugé, C. Bazille, N. Girard, E. Lhuissier, and K. Boumediene, Histone methylases as novel drug targets: developing inhibitors of EZH2, Future Med Chem, vol.6, pp.1943-65, 2014.

T. B. Miranda, C. C. Cortez, C. B. Yoo, G. Liang, M. Abe et al., DZNep Is a Global Histone Methylation Inhibitor that Reactivates Developmental Genes Not Silenced by DNA Methylation, Mol Cancer Ther, vol.8, pp.1579-88, 2009.

M. Suvà, N. Riggi, M. Janiszewska, I. Radovanovic, P. Provero et al., EZH2 Is Essential for Glioblastoma Cancer Stem Cell Maintenance, Cancer Res, vol.69, pp.9211-9219, 2009.

M. Huang and G. C. Prendergast, RhoB in cancer suppression, Histol Histopathol, vol.21, pp.213-221, 2006.

R. Karlsson, E. D. Pedersen, Z. Wang, and C. Brakebusch, Rho GTPase function in tumorigenesis, Biochim Biophys Acta, vol.1796, pp.91-99, 2009.

A. Liu, N. Rane, J. Liu, and G. C. Prendergast, RhoB Is Dispensable for Mouse Development, but It Modifies Susceptibility to Tumor Formation as Well as Cell Adhesion and Growth Factor Signaling in Transformed Cells, Mol Cell Biol, vol.21, pp.6906-6918, 2001.

J. Adnane, C. Muro-cacho, L. Mathews, S. M. Sebti, and T. Muñoz-antonia, Suppression of Rho B Expression in Invasive Carcinoma from Head and Neck Cancer Patients, Am Assoc Cancer Res, vol.8, pp.2225-2257, 2002.

J. Mazieres, A. T. Daste, G. Muro-cacho, C. Berchery, D. Tillement et al., Loss of RhoB Expression in Human Lung Cancer Progression, Am Assoc Cancer Res, vol.10, pp.2742-50, 2004.

N. Sato, T. Fukui, T. Taniguchi, T. Yokoyama, M. Kondo et al., RhoB is frequently downregulated in non-small-cell lung cancer and resides in the 2p24 homozygous deletion region of a lung cancer cell line, Int J Cancer, vol.120, pp.543-51, 2007.

B. Couderc, A. Pradines, A. Rafii, M. Golzio, A. Deviers et al., In vivo restoration of RhoB expression leads to ovarian tumor regression, Cancer Gene Ther, vol.15, pp.456-64, 2008.

Z. Chen, J. Sun, A. Pradines, G. Favre, J. Adnane et al., Both Farnesylated and Geranylgeranylated RhoB Inhibit Malignant Transformation and Suppress Human Tumor Growth in Nude Mice, J Biol Chem, vol.275, pp.17974-17982, 2000.

S. Mahr and B. Müller-hilke, Transcriptional activity of the RHOB gene is influenced by regulatory polymorphisms in its promoter region, Genomic Med, vol.1, pp.125-133, 2007.

I. Lajoie-mazenc, D. Tovar, M. Penary, B. Lortal, S. Allart et al., MAP1A Light Chain-2 Interacts with GTP-RhoB to Control Epidermal Growth Factor (EGF)-dependent EGF Receptor Signaling, J Biol Chem, vol.283, pp.4155-64, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00455211

M. Hatta, K. Naganuma, K. Kato, and J. Yamazaki, 3-Deazaneplanocin A suppresses aggressive phenotype-related gene expression in an oral squamous cell carcinoma cell line, Biochem Biophys Res Commun, vol.468, pp.269-73, 2015.

P. Seshacharyulu, M. P. Ponnusamy, D. Haridas, M. Jain, A. K. Ganti et al., Targeting the EGFR signaling pathway in cancer therapy, Expert Opin Ther Targets, vol.16, pp.15-31, 2012.

B. Aguila, L. Coul-ault, M. Boulouard, F. L?veill?, A. Davis et al., In vitro and in vivo pharmacological profile of UFP-512, a novel selective ?-opioid receptor agonist; correlations between desensitization and tolerance, Br. J. Pharmacol, vol.152, pp.1312-1324, 2007.

J. Aury-landas, C. Bazille, L. Allas, S. Bouhout, C. Chesneau et al., Anti-inflammatory and chondroprotective effects of the Sadenosylhomocysteine hydrolase inhibitor 3-Deazaneplanocin A, in human articular chondrocytes, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01569499

C. Baugé, C. Bazille, N. Girard, E. Lhuissier, and K. Boumediene, Histone methylases as novel drug targets: developing inhibitors of EZH2, Future Med. Chem, vol.6, pp.1943-1965, 2014.

M. Bazin, L. E. Kihel, M. Boulouard, V. Bouët, and S. Rault, The effects of DHEA, 3?-hydroxy-5?-androstane-6,17-dione, and 7-amino-DHEA analogues on short term and long term memory in the mouse, Steroids, vol.74, pp.931-937, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00863107

W. Béguelin, R. Popovic, M. Teater, Y. Jiang, K. L. Bunting et al., EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation, Cancer Cell, vol.23, pp.677-692, 2013.

M. Bray, J. Driscoll, and J. W. Huggins, Treatment of lethal Ebola virus infection in mice with a single dose of an S-adenosyl-l-homocysteine hydrolase inhibitor, Antiviral Res, vol.45, pp.135-147, 2000.

L. Cai, Z. Wang, and D. Liu, Interference with endogenous EZH2 reverses the chemotherapy drug resistance in cervical cancer cells partly by up-regulating Dicer expression, Tumor Biol, vol.37, pp.6359-6369, 2016.

T. Chiba, E. Suzuki, M. Negishi, A. Saraya, S. Miyagi et al., 3-Deazaneplanocin A is a promising therapeutic agent for the eradication of tumor-initiating hepatocellular carcinoma cells, Int. J. Cancer, vol.130, pp.2557-2567, 2012.

R. Ciarapica, E. Carcarino, L. Adesso, M. De-salvo, G. Bracaglia et al., Pharmacological inhibition of EZH2 as a promising differentiation therapy in embryonal RMS, BMC Cancer, vol.14, p.139, 2014.

R. A. Coulombe, R. P. Sharma, and J. W. Huggins, Pharmacokinetics of the antiviral agent 3-deazaneplanocin A, Eur. J. Drug Metab. Pharmacokinet, vol.20, pp.197-202, 1995.

F. Crea, E. M. Hurt, L. A. Mathews, S. M. Cabarcas, L. Sun et al., Pharmacologic disruption of Polycomb Repressive Complex 2 inhibits tumorigenicity and tumor progression in prostate cancer, Mol. Cancer, vol.10, p.40, 2011.

F. Crea, E. Paolicchi, V. E. Marquez, and R. Danesi, Polycomb genes and cancer: Time for clinical application?, Crit. Rev. Oncol. Hematol, vol.83, pp.184-193, 2012.

W. Fiskus, Y. Wang, A. Sreekumar, K. M. Buckley, H. Shi et al., Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells, Blood, vol.114, pp.2733-2743, 2009.

O. M. Gannon, L. Merida-de-long, L. Endo-munoz, M. Hazar-rethinam, and N. A. Saunders, Dysregulation of the repressive H3K27 trimethylation mark in head and neck squamous cell carcinoma contributes to dysregulated squamous differentiation, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.19, pp.428-441, 2013.

R. I. Glazer, M. C. Knode, C. K. Tseng, D. R. Haines, and V. E. Marquez, 3-Deazaneplanocin A: a new inhibitor of S-adenosylhomocysteine synthesis and its effects in human colon carcinoma cells, Biochem. Pharmacol, vol.35, pp.4523-4527, 1986.

S. He, J. Wang, K. Kato, F. Xie, S. Varambally et al., Inhibition of histone methylation arrests ongoing graft-versus-host disease in mice by selectively inducing apoptosis of alloreactive effector T cells, Blood, vol.119, pp.1274-1282, 2012.

S. Hinz, A. Magheli, S. Weikert, W. Schulze, H. Krause et al., Deregulation of EZH2 expression in human spermatogenic disorders and testicular germ cell tumors, World J. Urol, vol.28, pp.631-635, 2010.

P. H. Abbosh, J. S. Montgomery, J. A. Starkey, M. Novotny, E. G. Zuhowski et al., Dominant-Negative Histone H3 Lysine 27 Mutant Derepresses Silenced Tumor Suppressor Genes and Reverses the DrugResistant Phenotype in Cancer Cells, Cancer Res, vol.66, pp.5582-5591, 2006.

A. Avan, F. Crea, E. Paolicchi, N. Funel, E. Galvani et al., Molecular mechanisms involved in the synergistic interaction of the EZH2 inhibitor 3-deazaneplanocin A with gemcitabine in pancreatic cancer cells, Mol. Cancer Ther, vol.11, pp.1735-1746, 2012.

L. L. Cheng, Y. Itahana, Z. D. Lei, N. Chia, Y. Wu et al., TP53 Genomic Status Regulates Sensitivity of Gastric Cancer Cells to the Histone Methylation Inhibitor 3-Deazaneplanocin A (DZNep), Clin. Cancer Res, vol.18, pp.4201-4212, 2012.

R. Ciarapica, E. Carcarino, L. Adesso, M. De-salvo, G. Bracaglia et al., Pharmacological inhibition of EZH2 as a promising differentiation therapy in embryonal RMS, BMC Cancer, vol.14, p.139, 2014.

F. Crea, E. M. Hurt, L. A. Mathews, S. M. Cabarcas, L. Sun et al., Pharmacologic disruption of Polycomb Repressive Complex 2 inhibits tumorigenicity and tumor progression in prostate cancer, Mol. Cancer, vol.10, p.40, 2011.

E. Duval, N. Bigot, M. Hervieu, I. Kou, S. Leclercq et al.,

, Asporin Expression Is Highly Regulated in Human Chondrocytes, Mol. Med, vol.17, pp.816-823

N. Girard, C. Bazille, E. Lhuissier, H. Benateau, A. Llombart-bosch et al., 3-Deazaneplanocin A (DZNep), an inhibitor of the histone methyltransferase EZH2, induces apoptosis and reduces cell migration in chondrosarcoma cells, PloS One, vol.9, p.98176, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01147783

A. Y. Giuffrida, J. E. Burgueno, L. G. Koniaris, J. C. Gutierrez, R. Duncan et al., , 2009.

, ): an analysis of 2890 cases from the SEER database, Chondrosarcoma in the United States, vol.91, pp.1063-1072, 1973.

R. I. Glazer, M. C. Knode, C. K. Tseng, D. R. Haines, and V. E. Marquez, 3-Deazaneplanocin A: a new inhibitor of S-adenosylhomocysteine synthesis and its effects in human colon carcinoma cells, Biochem. Pharmacol, vol.35, pp.4523-4527, 1986.

S. W. Hung, H. Mody, S. Marrache, Y. D. Bhutia, F. Davis et al., Pharmacological Reversal of Histone Methylation Presensitizes Pancreatic Cancer Cells to Nucleoside Drugs: In Vitro Optimization and Novel Nanoparticle Delivery Studies, PLoS ONE, vol.8, 2013.

A. A. Jagasia, J. A. Block, M. O. Diaz, T. Nobori, S. Gitelis et al., Partial deletions of the CDKN2 and MTS2 putative tumor suppressor genes in a myxoid chondrosarcoma, Cancer Lett, vol.105, pp.77-90, 1996.

L. R. Leddy and R. E. Holmes, Chondrosarcoma of bone, Cancer Treat. Res, vol.162, pp.117-130, 2014.

E. Lhuissier, C. Bazille, J. Aury-landas, N. Girard, J. Pontin et al., Identification of an easy to use 3D culture model to investigate invasion and anticancer drug response in chondrosarcomas, BMC Cancer, vol.17, p.490, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01569494

Z. Li, Y. Wang, J. Qiu, Q. Li, C. Yuan et al.,

, The polycomb group protein EZH2 is a novel therapeutic target in tongue cancer, Oncotarget, vol.4, pp.2532-2549

L. Liu, Z. Xu, L. Zhong, H. Wang, S. Jiang et al., Enhancer of zeste homolog 2 (EZH2) promotes tumour cell migration and invasion via epigenetic repression of E-cadherin in renal cell carcinoma, BJU Int, vol.117, pp.351-362, 2016.

S. Nakagawa, Y. Sakamoto, H. Okabe, H. Hayashi, D. Hashimoto et al., Epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A inhibits the growth of cholangiocarcinoma cells, Oncol. Rep, vol.31, pp.983-988, 2014.

A. V. Ougolkov, V. N. Bilim, and D. D. Billadeau, Regulation of Pancreatic Tumor Cell Proliferation and Chemoresistance by the Histone Methyltransferase EZH2, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.14, pp.6790-6796, 2008.

S. P. Scully, K. R. Berend, A. Toth, W. N. Qi, Z. Qi et al., Marshall Urist Award. Interstitial collagenase gene expression correlates with in vitro invasion in human chondrosarcoma, Clin. Orthop, pp.291-303, 2000.

K. Agger, P. A. Cloos, L. Rudkjaer, K. Williams, G. Andersen et al.,

, The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A-ARF locus in response to oncogene-and stress-induced senescence, Genes Dev, vol.23, pp.1171-1176

M. Barradas, E. Anderton, J. C. Acosta, S. Li, A. Banito et al., Histone demethylase JMJD3 contributes to epigenetic control of INK4a/ARF by oncogenic RAS, Genes Dev, vol.23, pp.1177-1182, 2009.

M. P. Dalvi, L. Wang, R. Zhong, R. K. Kollipara, H. Park et al., Taxane-Platin-Resistant Lung Cancers Codevelop Hypersensitivity, JumonjiC Demethylase Inhibitors. Cell Rep, vol.19, pp.1669-1684, 2017.

E. Duval, N. Bigot, M. Hervieu, I. Kou, S. Leclercq et al.,

, Asporin Expression Is Highly Regulated in Human Chondrocytes, Mol. Med, vol.17, pp.816-823

R. Gil-benso, C. Lopez-gines, J. A. López-guerrero, C. Carda, R. C. Callaghan et al., Establishment and characterization of a continuous human chondrosarcoma cell line, ch-2879: comparative histologic and genetic studies with its tumor of origin, Lab. Investig. J. Tech. Methods Pathol, vol.83, pp.877-887, 2003.

G. Van-haaften, G. L. Dalgliesh, H. Davies, L. Chen, G. Bignell et al., Somatic mutations of the histone H3K2 demethylase, UTX, in human cancer, Nat. Genet, vol.41, pp.521-523, 2009.

R. Hashizume, N. Andor, Y. Ihara, R. Lerner, H. Gan et al., Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma, Nat. Med, vol.20, pp.1394-1396, 2014.

B. Heinemann, J. M. Nielsen, H. R. Hudlebusch, M. J. Lees, D. V. Larsen et al., Inhibition of demethylases by GSK-J1/J4, Nature, vol.514, pp.1-2, 2014.

M. R. Hübner and D. L. Spector, Role of H3K27 Demethylases Jmjd3 and UTX in Transcriptional Regulation, Cold Spring Harb. Symp. Quant. Biol, vol.75, pp.43-49, 2010.

A. A. Jagasia, J. A. Block, M. O. Diaz, T. Nobori, S. Gitelis et al., Partial deletions of the CDKN2 and MTS2 putative tumor suppressor genes in a myxoid chondrosarcoma, Cancer Lett, vol.105, pp.77-90, 1996.

A. M. Jankowska, H. Makishima, R. V. Tiu, H. Szpurka, Y. Huang et al., Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A, Blood, vol.118, pp.3932-3941

K. Jepsen, D. Solum, T. Zhou, R. J. Mcevilly, H. Kim et al., SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron, Nature, vol.450, pp.415-419, 2007.

S. M. Kooistra and K. Helin, Molecular mechanisms and potential functions of histone demethylases, Nat. Rev. Mol. Cell Biol, vol.13, pp.297-311, 2012.

L. Kruidenier, C. Chung, Z. Cheng, J. Liddle, K. Che et al., A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response, Nature, vol.488, pp.404-408, 2012.

T. Kubo, T. Sugita, S. Shimose, T. Matsuo, K. Arihiro et al., Expression of hypoxia-inducible factor-1alpha and its relationship to tumour angiogenesis and cell proliferation in cartilage tumours, J. Bone Joint Surg. Br, vol.90, pp.364-370, 2008.

A. A. Mansour, O. Gafni, L. Weinberger, A. Zviran, M. Ayyash et al., The H3K27 demethylase Utx regulates somatic and germ cell epigenetic reprogramming, Nature, vol.488, pp.409-413, 2012.

B. Mar, L. Bullinger, E. Basu, K. Schlis, L. Silverman et al., , 2012.

, Sequencing Histone Modifying Enzymes Identifies UTX mutations in Acute Lymphoblastic Leukemia, Leukemia, vol.26, pp.1881-1883

R. Mathur, L. Sehgal, O. Havranek, S. Köhrer, T. Khashab et al., Inhibition of demethylase KDM6B sensitizes diffuse large B-cell lymphoma to chemotherapeutic drugs, Haematologica, vol.102, pp.373-380, 2017.

P. Ntziachristos, A. Tsirigos, G. Welstead, T. Trimarchi, S. Bakogianni et al., Contrasting roles for histone 3 lysine 27 demethylases in acute lymphoblastic leukemia, Nature, vol.514, pp.513-517, 2014.

A. E. Rosenberg, G. P. Nielsen, S. B. Keel, L. G. Renard, M. M. Fitzek et al., Chondrosarcoma of the base of the skull: a clinicopathologic study of 200 cases with emphasis on its distinction from chordoma, Am. J. Surg. Pathol, vol.23, pp.1370-1378, 1999.

F. D. Santa, M. G. Totaro, E. Prosperini, S. Notarbartolo, G. Testa et al., The Histone H3 Lysine-27 Demethylase Jmjd3 Links Inflammation to Inhibition of PolycombMediated Gene Silencing, Cell, vol.130, pp.1083-1094, 2007.

S. P. Scully, K. R. Berend, A. Toth, W. N. Qi, Z. Qi et al., Marshall Urist Award. Interstitial collagenase gene expression correlates with in vitro invasion in human chondrosarcoma, Clin. Orthop, pp.291-303, 2000.

G. L. Sen, D. E. Webster, D. I. Barragan, H. Y. Chang, and P. A. Khavari, Control of differentiation in a self-renewing mammalian tissue by the histone demethylase JMJD3, Genes Dev, vol.22, pp.1865-1870, 2008.

S. Thieme, T. Gyárfás, C. Richter, G. Özhan, J. Fu et al., The histone demethylase UTX regulates stem cell migration and hematopoiesis, Blood, vol.121, pp.2462-2473, 2013.

C. M. Torres, A. Laugesen, and K. Helin, Utx Is Required for Proper Induction of Ectoderm and Mesoderm during Differentiation of Embryonic Stem Cells, PLOS ONE, vol.8, p.60020, 2013.

C. Wang, J. Lee, Y. Cho, Y. Xiao, Q. Jin et al., UTX regulates mesoderm differentiation of embryonic stem cells independent of H3K27 demethylase activity, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.15324-15329, 2012.

J. K. Wang, M. Tsai, G. Poulin, A. S. Adler, S. Chen et al., , 2010.

, The histone demethylase UTX enables RB-dependent cell fate control, Genes Dev, vol.24, pp.327-332

W. Zhao, Q. Li, S. Ayers, Y. Gu, Z. Shi et al., Jmjd3 Negatively Regulates Reprogramming Through Histone Demethylase Activity-Dependent and -Independent Pathways, Cell, vol.152, pp.1037-1050, 2013.

, REFERENCES BIBLIOGRAPHIQUES

P. H. Abbosh, J. S. Montgomery, J. A. Starkey, M. Novotny, E. G. Zuhowski et al., Dominant-negative histone H3 lysine 27 mutant derepresses silenced tumor suppressor genes and reverses the drugresistant phenotype in cancer cells, Cancer Res, vol.66, pp.5582-5591, 2006.

A. Angelini, G. Guerra, A. F. Mavrogenis, E. Pala, P. Picci et al., Clinical outcome of central conventional chondrosarcoma, J. Surg. Oncol, vol.106, pp.929-937, 2012.

K. M. Arcipowski, C. A. Martinez, and P. Ntziachristos, Histone demethylases in physiology and cancer: a tale of two enzymes, JMJD3 and UTX, Curr. Opin. Genet. Dev, vol.36, pp.59-67, 2016.

J. Asp, L. Sangiorgi, S. E. Inerot, A. Lindahl, L. Molendini et al., Changes of the p16 gene but not the p53 gene in human chondrosarcoma tissues, Int. J. Cancer, vol.85, pp.782-786, 2000.

A. Avan, F. Crea, E. Paolicchi, N. Funel, E. Galvani et al., Molecular mechanisms involved in the synergistic interaction of the EZH2 inhibitor 3-deazaneplanocin A with gemcitabine in pancreatic cancer cells, Mol. Cancer Ther, vol.11, pp.1735-1746, 2012.

A. J. Bannister and T. Kouzarides, Regulation of chromatin by histone modifications, Cell Res, vol.21, pp.381-395, 2011.

C. Baugé, C. Bazille, N. Girard, E. Lhuissier, and K. Boumediene, Histone methylases as novel drug targets: developing inhibitors of EZH2, Future Med. Chem, vol.6, pp.1943-1965, 2014.

S. L. Berger, The complex language of chromatin regulation during transcription, Nature, vol.447, pp.407-412, 2007.

S. A. Bernard, M. D. Murphey, D. J. Flemming, and M. J. Kransdorf, Improved differentiation of benign osteochondromas from secondary chondrosarcomas with standardized measurement of cartilage cap at CT and MR imaging, Radiology, vol.255, pp.857-865, 2010.

R. Bernstein-molho, Y. Kollender, J. Issakov, J. Bickels, S. Dadia et al., , 2012.

R. S. Bindra, P. J. Schaffer, A. Meng, J. Woo, K. Måseide et al., Alterations in DNA repair gene expression under hypoxia: elucidating the mechanisms of hypoxia-induced genetic instability, Ann. N. Y. Acad. Sci, vol.1059, pp.184-195, 2005.

J. C. Black, C. Van-rechem, and J. R. Whetstine, Histone lysine methylation dynamics: establishment, regulation, and biological impact, Mol. Cell, vol.48, p.272, 2012.

S. Boeuf, J. V. Bovée, B. Lehner, P. C. Hogendoorn, and W. Richter, Correlation of hypoxic signalling to histological grade and outcome in cartilage tumours, Histopathology, vol.56, pp.641-651, 2010.

J. V. Bovée, P. C. Hogendoorn, J. S. Wunder, A. , and B. A. , Cartilage tumours and bone development: molecular pathology and possible therapeutic targets, Nat. Rev. Cancer, vol.10, pp.481-488, 2010.

M. Bray, J. Driscoll, and J. W. Huggins, Treatment of lethal Ebola virus infection in mice with a single dose of an S-adenosyl-l-homocysteine hydrolase inhibitor, Antiviral Res, vol.45, pp.135-147, 2000.

J. S. Burchfield, Q. Li, H. Y. Wang, and R. Wang, JMJD3 as an epigenetic regulator in development and disease, Int. J. Biochem. Cell Biol, vol.67, pp.148-157, 2015.

D. R. Camidge, Apomab: an agonist monoclonal antibody directed against Death Receptor 5/TRAIL-Receptor 2 for use in the treatment of solid tumors, Expert Opin. Biol. Ther, vol.8, pp.1167-1176, 2008.

N. Chan, M. Koritzinsky, H. Zhao, R. Bindra, P. M. Glazer et al., Chronic hypoxia decreases synthesis of homologous recombination proteins to offset chemoresistance and radioresistance, Cancer Res, vol.68, pp.605-614, 2008.

A. Chase and N. C. Cross, Aberrations of EZH2 in Cancer, Clin. Cancer Res, vol.17, pp.2613-2618, 2011.

Y. Chen and W. Zhu, Biological function and regulation of histone and non-histone lysine methylation in response to DNA damage, Acta Biochim. Biophys. Sin, vol.48, pp.603-616, 2016.

C. Chen, H. Zhou, F. Wei, L. Jiang, X. Liu et al., Increased levels of hypoxia-inducible factor-1? are associated with Bcl-xL expression, tumor apoptosis, and clinical outcome in chondrosarcoma, J. Orthop. Res. Off. Publ. Orthop. Res. Soc, vol.29, pp.143-151, 2011.

C. Chen, Q. Ma, X. Ma, Z. Liu, and X. Liu, Association of elevated HIF-2? levels with low Beclin 1 expression and poor prognosis in patients with chondrosarcoma, Ann. Surg. Oncol, vol.18, pp.2364-2372, 2011.

J. Chen, Z. Ding, Y. Peng, F. Pan, J. Li et al., HIF-1? inhibition reverses multidrug resistance in colon cancer cells via downregulation of MDR1/Pglycoprotein, PloS One, vol.9, p.98882, 2014.

L. L. Cheng, Y. Itahana, Z. D. Lei, N. Chia, Y. Wu et al., TP53 Genomic Status Regulates Sensitivity of Gastric Cancer Cells to the Histone Methylation Inhibitor 3-Deazaneplanocin A (DZNep), Clin. Cancer Res, vol.18, pp.4201-4212, 2012.

J. Chiche, M. C. Brahimi-horn, and J. Pouysségur, Tumour hypoxia induces a metabolic shift causing acidosis: a common feature in cancer, J. Cell. Mol. Med, vol.14, p.273, 2010.

K. Cho, J. Park, K. Kwon, Y. Lee, H. So et al., Autophagy induction by low-dose cisplatin: the role of p53 in autophagy, Oncol. Rep, vol.31, pp.248-254, 2014.

J. Y. Choi, Y. S. Jang, S. Y. Min, and J. Y. Song, Overexpression of MMP-9 and HIF-1? in Breast Cancer Cells under Hypoxic Conditions, J. Breast Cancer, vol.14, pp.88-95, 2011.

J. C. Clark, T. Akiyama, C. R. Dass, and P. F. Choong, New clinically relevant, orthotopic mouse models of human chondrosarcoma with spontaneous metastasis, Cancer Cell Int, vol.10, p.20, 2010.

E. Conway, E. Healy, and A. P. Bracken, PRC2 mediated H3K27 methylations in cellular identity and cancer, Curr. Opin. Cell Biol, vol.37, pp.42-48, 2015.

F. Crea, E. Paolicchi, V. E. Marquez, and R. Danesi, Polycomb genes and cancer: Time for clinical application?, Crit. Rev. Oncol. Hematol, vol.83, pp.184-193, 2012.

B. Cui, Q. Yang, H. Guan, B. Shi, P. Hou et al., PRIMA-1, a Mutant p53, 2014.

. Reactivator, Restores the Sensitivity of TP53 Mutant-Type Thyroid Cancer Cells to the Histone Methylation Inhibitor 3-Deazaneplanocin A, J. Clin. Endocrinol. Metab, vol.99, pp.962-970

E. Cukierman, R. Pankov, D. R. Stevens, and K. M. Yamada, Taking cell-matrix adhesions to the third dimension, Science, vol.294, pp.1708-1712, 2001.

X. Dai, W. Ma, X. He, and R. K. Jha, Review of therapeutic strategies for osteosarcoma, chondrosarcoma, and Ewing's sarcoma, Med. Sci. Monit. Int. Med. J. Exp. Clin. Res, vol.17, pp.177-190, 2011.

Z. Ding, Y. Shi, J. Zhou, S. Qiu, Y. Xu et al., Association of autophagy defect with a malignant phenotype and poor prognosis of hepatocellular carcinoma, Cancer Res, vol.68, pp.9167-9175, 2008.

H. Doktorova, J. Hrabeta, M. A. Khalil, and T. Eckschlager, Hypoxia-induced chemoresistance in cancer cells: The role of not only HIF-1, Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czechoslov, vol.159, pp.166-177, 2015.

E. Duval, C. Baugé, R. Andriamanalijaona, H. Bénateau, S. Leclercq et al., Molecular mechanism of hypoxia-induced chondrogenesis and its application in in vivo cartilage tissue engineering, Biomaterials, vol.33, pp.6042-6051, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01149536

G. Egger, G. Liang, A. Aparicio, and P. A. Jones, Epigenetics in human disease and prospects for epigenetic therapy, Nature, vol.429, pp.457-463, 2004.

H. L. Evans, A. G. Ayala, and M. M. Romsdahl, Prognostic factors in chondrosarcoma of bone: a clinicopathologic analysis with emphasis on histologic grading, Cancer, vol.40, pp.818-831, 1977.

T. Ezponda and J. D. Licht, Molecular pathways: deregulation of histone h3 lysine 27 methylation in cancer-different paths, same destination, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.20, pp.5001-5008, 2014.

W. Fiskus, Y. Wang, A. Sreekumar, K. M. Buckley, H. Shi et al., Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells, Blood, vol.114, pp.2733-2743, 2009.

J. Folkman, Angiogenesis: an organizing principle for drug discovery?, Nat. Rev. Drug Discov, vol.6, pp.273-286, 2007.

L. Galluzzi, I. Vitale, J. Michels, C. Brenner, G. Szabadkai et al., Systems biology of cisplatin resistance: past, present and future, Cell Death Dis, vol.5, p.1257, 2014.

O. M. Gannon, L. Merida-de-long, L. Endo-munoz, M. Hazar-rethinam, and N. A. Saunders, Dysregulation of the repressive H3K27 trimethylation mark in head and neck squamous cell carcinoma contributes to dysregulated squamous differentiation, Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res, vol.19, pp.428-441, 2013.

H. Gelderblom, P. C. Hogendoorn, S. D. Dijkstra, C. S. Van-rijswijk, A. D. Krol et al., The clinical approach towards chondrosarcoma, The Oncologist, vol.13, pp.320-329, 2008.

G. Giaccone, W. , and Y. , Strategies for Overcoming Resistance to EGFR Family Tyrosine Kinase Inhibitors, Cancer Treat. Rev, vol.37, pp.456-464, 2011.

R. Gil-benso, C. Lopez-gines, J. A. López-guerrero, C. Carda, R. C. Callaghan et al., Establishment and characterization of a continuous human chondrosarcoma cell line, ch-2879: comparative histologic and genetic studies with its tumor of origin, Lab. Investig. J. Tech. Methods Pathol, vol.83, pp.877-887, 2003.

N. Girard, C. Bazille, E. Lhuissier, H. Benateau, A. Llombart-bosch et al., 3-Deazaneplanocin A (DZNep), an inhibitor of the histone methyltransferase EZH2, induces apoptosis and reduces cell migration in chondrosarcoma cells, PloS One, vol.9, p.98176, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01147783

E. L. Greer and Y. Shi, Histone methylation: a dynamic mark in health, disease and inheritance, Nat. Rev. Genet, vol.13, pp.343-357, 2012.

X. Guo, Z. Tian, X. Wang, S. Pan, W. Huang et al., Regulation of histone demethylase KDM6B by hypoxia-inducible factor-2?, Acta Biochim. Biophys. Sin, vol.47, pp.106-113, 2015.

A. L. Harris, Hypoxia -a key regulatory factor in tumour growth, Nat. Rev. Cancer, vol.2, pp.38-47, 2002.

L. Harrison and K. Blackwell, Hypoxia and anemia: factors in decreased sensitivity to radiation therapy and chemotherapy?, The Oncologist, vol.9, issue.5, pp.31-40, 2004.

R. Hashizume, N. Andor, Y. Ihara, R. Lerner, H. Gan et al., Pharmacologic inhibition of histone demethylation as a therapy for pediatric brainstem glioma, Nat. Med, vol.20, p.275, 2014.

B. Heinemann, J. M. Nielsen, H. R. Hudlebusch, M. J. Lees, D. V. Larsen et al., Inhibition of demethylases by GSK-J1/J4, Nature, vol.514, pp.1-2, 2014.

S. Hinz, A. Magheli, S. Weikert, W. Schulze, H. Krause et al., Deregulation of EZH2 expression in human spermatogenic disorders and testicular germ cell tumors, World J. Urol, vol.28, pp.631-635, 2010.

L. Holmquist-mengelbier, E. Fredlund, T. Löfstedt, R. Noguera, S. Navarro et al., Recruitment of HIF1alpha and HIF-2alpha to common target genes is differentially regulated in neuroblastoma: HIF-2alpha promotes an aggressive phenotype, Cancer Cell, vol.10, pp.413-423, 2006.

S. Hu, L. Yu, Z. Li, Y. Shen, J. Wang et al., Overexpression of EZH2 contributes to acquired cisplatin resistance in ovarian cancer cells in vitro and in vivo, Cancer Biol. Ther, vol.10, pp.788-795, 2010.

S. W. Hung, H. Mody, S. Marrache, Y. D. Bhutia, F. Davis et al., Pharmacological reversal of histone methylation presensitizes pancreatic cancer cells to nucleoside drugs: in vitro optimization and novel nanoparticle delivery studies, PloS One, vol.8, 2013.

A. Italiano, A. Le-cesne, C. Bellera, S. Piperno-neumann, F. Duffaud et al., GDC-0449 in patients with advanced chondrosarcomas: a French Sarcoma Group/US and French National Cancer Institute SingleArm Phase II Collaborative Study, Ann. Oncol. Off. J. Eur. Soc. Med. Oncol, vol.24, pp.2922-2926, 2013.

N. Jamil, S. Howie, and D. M. Salter, Therapeutic molecular targets in human chondrosarcoma, Int. J. Exp. Pathol, vol.91, pp.387-393, 2010.

A. M. Jankowska, H. Makishima, R. V. Tiu, H. Szpurka, Y. Huang et al., Mutational spectrum analysis of chronic myelomonocytic leukemia includes genes associated with epigenetic regulation: UTX, EZH2, and DNMT3A, Blood, vol.118, p.277, 2011.

E. Li, Chromatin modification and epigenetic reprogramming in mammalian development, Nat. Rev. Genet, vol.3, pp.662-673, 2002.

Y. Li, W. Zhang, S. Li, and C. Tu, Prognosis value of Hypoxia-inducible factor-1? expression in patients with bone and soft tissue sarcoma: a meta-analysis, SpringerPlus, vol.5, p.1370, 2016.

Z. Li, Y. Wang, J. Qiu, Q. Li, C. Yuan et al., The polycomb group protein EZH2 is a novel therapeutic target in tongue cancer, Oncotarget, vol.4, pp.2532-2549, 2013.

S. Lim, E. Metzger, R. Schüle, J. Kirfel, and R. Buettner, Epigenetic regulation of cancer growth by histone demethylases, Int. J. Cancer, vol.127, pp.1991-1998, 2010.

C. Lin, R. Mcgough, B. Aswad, J. A. Block, and R. Terek, Hypoxia induces HIF1alpha and VEGF expression in chondrosarcoma cells and chondrocytes, J. Orthop. Res. Off. Publ. Orthop. Res. Soc, vol.22, pp.1175-1181, 2004.

L. Liu, Z. Xu, L. Zhong, H. Wang, S. Jiang et al., Enhancer of zeste homolog 2 (EZH2) promotes tumour cell migration and invasion via epigenetic repression of E-cadherin in renal cell carcinoma, BJU Int, vol.117, pp.351-362, 2016.

M. E. Lomax, L. K. Folkes, and P. Neill, Biological Consequences of Radiationinduced DNA Damage: Relevance to Radiotherapy, Clin. Oncol, vol.25, pp.578-585, 2013.

J. Losman and W. G. Kaelin, What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer, Genes Dev, vol.27, pp.836-852, 2013.

C. Lu, H. D. Han, L. S. Mangala, R. Ali-fehmi, C. S. Newton et al., Regulation of tumor angiogenesis by EZH2, Cancer Cell, vol.18, pp.185-197, 2010.

C. Lu, P. S. Ward, G. S. Kapoor, D. Rohle, S. Turcan et al., IDH mutation impairs histone demethylation and results in a block to cell differentiation, Nature, vol.483, pp.474-478, 2012.

C. R. Majer, L. Jin, M. P. Scott, S. K. Knutson, K. W. Kuntz et al., A687V EZH2 is a gain-of-function mutation found in lymphoma patients, FEBS Lett, vol.586, pp.3448-3451, 2012.

B. Mar, L. Bullinger, E. Basu, K. Schlis, L. Silverman et al.,

, Sequencing Histone Modifying Enzymes Identifies UTX mutations in Acute Lymphoblastic Leukemia, Leukemia, vol.26, pp.1881-1883

R. Mathur, L. Sehgal, O. Havranek, S. Köhrer, T. Khashab et al., Inhibition of demethylase KDM6B sensitizes diffuse large B-cell lymphoma to chemotherapeutic drugs, Haematologica, vol.102, pp.373-380, 2017.

G. Mazzoleni, D. Di-lorenzo, and N. Steimberg, Modelling tissues in 3D: the next future of pharmaco-toxicology and food research?, Genes Nutr, vol.4, pp.13-22, 2009.

M. T. Mccabe, A. P. Graves, G. Ganji, E. Diaz, W. S. Halsey et al., Mutation of A677 in histone -278, 2012.

, methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27), Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.2989-2994

M. T. Mccabe, H. M. Ott, G. Ganji, S. Korenchuk, C. Thompson et al., EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations, Nature, vol.492, pp.108-112, 2012.

I. Mimura, T. Tanaka, and M. Nangaku, Novel Therapeutic Strategy With HypoxiaInducible Factors via Reversible Epigenetic Regulation Mechanisms in Progressive Tubulointerstitial Fibrosis, Semin. Nephrol, vol.33, pp.375-382, 2013.

T. B. Miranda, C. C. Cortez, C. B. Yoo, G. Liang, M. Abe et al., DZNep Is a Global Histone Methylation Inhibitor that Reactivates Developmental Genes Not Silenced by DNA Methylation, Mol. Cancer Ther, vol.8, pp.1579-1588, 2009.

R. L. Momparler, Y. Idaghdour, V. E. Marquez, and L. F. Momparler, Synergistic antileukemic action of a combination of inhibitors of DNA methylation and histone methylation, Leuk. Res, vol.36, pp.1049-1054, 2012.

D. Monderer, A. Luseau, A. Bellec, E. David, S. Ponsolle et al., New chondrosarcoma cell lines and mouse models to study the link between chondrogenesis and chemoresistance, Lab. Invest, vol.93, pp.1100-1114, 2013.

S. Morgan and J. R. Grandis, ErbB Receptors in the Biology and Pathology of the Aerodigestive Tract, Exp. Cell Res, vol.315, pp.572-582, 2009.

F. Moussavi-harami, A. Mollano, J. A. Martin, A. Ayoob, F. E. Domann et al., Intrinsic radiation resistance in human chondrosarcoma cells, Biochem. Biophys. Res. Commun, vol.346, pp.379-385, 2006.

W. Mu, J. Starmer, Y. Shibata, D. Yee, and T. Magnuson, EZH1 in germ cells safeguards the function of PRC2 during spermatogenesis, Dev. Biol, vol.424, pp.198-207, 2017.

B. Muz, P. De-la-puente, F. Azab, and A. K. Azab, The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy, Hypoxia Auckl. NZ, vol.3, pp.83-92, 2015.

S. Nakagawa, Y. Sakamoto, H. Okabe, H. Hayashi, D. Hashimoto et al., Epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A inhibits the growth of cholangiocarcinoma cells, Oncol. Rep, vol.31, pp.983-988, 2014.

P. Ntziachristos, A. Tsirigos, G. Welstead, T. Trimarchi, S. Bakogianni et al., Contrasting roles for histone 3 lysine 27 demethylases in acute lymphoblastic leukemia, Nature, vol.514, pp.513-517, 2014.

A. C. Onishi, A. M. Hincker, F. Y. Lee, J. G. Van-oosterwijk, J. K. Anninga et al., Surmounting chemotherapy and radioresistance in chondrosarcoma: molecular mechanisms and therapeutic targets, Hematol. Oncol. Clin. North Am, vol.27, pp.1021-1048, 2011.

J. G. Van-oosterwijk, J. R. Plass, D. Meijer, I. Que, M. Karperien et al.,

, An orthotopic mouse model for chondrosarcoma of bone provides an in vivo tool for drug testing, Virchows Arch. Int. J. Pathol, vol.466, pp.101-109

E. Paolicchi, F. Gemignani, M. Krstic-demonacos, S. Dedhar, L. Mutti et al., Targeting hypoxic response for cancer therapy, Oncotarget, vol.7, pp.13464-13478, 2016.

M. T. Pedersen and K. Helin, Histone demethylases in development and disease, Trends Cell Biol, vol.20, pp.662-671, 2010.

G. Polychronidou, V. Karavasilis, S. M. Pollack, P. H. Huang, A. Lee et al., Novel therapeutic approaches in chondrosarcoma, Future Oncol, vol.13, pp.637-648, 2017.

E. Poon, A. L. Harris, A. , and M. , Targeting the hypoxia-inducible factor (HIF) pathway in cancer, Expert Rev. Mol. Med, vol.11, p.26, 2009.

C. W. Pugh and P. J. Ratcliffe, Regulation of angiogenesis by hypoxia: role of the HIF system, Nat. Med, vol.9, pp.677-684, 2003.

K. Qu, T. Lin, J. Wei, F. Meng, Z. Wang et al., Cisplatin induces cell cycle arrest and senescence via upregulating P53 and P21 expression in HepG2 cells, Nan Fang Yi Ke Da Xue Xue Bao, vol.33, pp.1253-1259, 2013.

M. W. Reed, A. P. Mullins, G. L. Anderson, F. N. Miller, and T. J. Wieman, The effect of photodynamic therapy on tumor oxygenation, Surgery, vol.106, pp.94-99, 1989.

C. M. Reijnders, C. J. Waaijer, A. Hamilton, E. P. Buddingh, S. P. Dijkstra et al., No Haploinsufficiency but Loss of Heterozygosity for EXT in Multiple Osteochondromas, Am. J. Pathol, vol.177, pp.1946-1957, 2010.

W. P. Roos and B. Kaina, DNA damage-induced cell death: From specific DNA lesions to the DNA damage response and apoptosis, Cancer Lett, vol.332, pp.237-248, 2013.

R. N. Rosier, R. J. O'keefe, L. A. Teot, E. J. Fox, T. A. Nester et al., P-glycoprotein expression in cartilaginous tumors, J. Surg. Oncol, vol.65, pp.95-105, 1997.

A. Salminen, K. Kaarniranta, and A. Kauppinen, Hypoxia-Inducible Histone Lysine Demethylases: Impact on the Aging Process and Age-Related Diseases. Aging Dis, vol.7, pp.180-200, 2016.

A. M. Samuel, J. Costa, and D. M. Lindskog, Genetic alterations in chondrosarcomaskeys to targeted therapies?, Cell. Oncol. Dordr, vol.37, pp.95-105, 2014.

Y. M. Schrage, I. H. Briaire-de-bruijn, N. F. De-miranda, J. Van-oosterwijk, A. H. Taminiau et al., Kinome profiling of chondrosarcoma reveals SRC-pathway activity and dasatinib as option for treatment, Cancer Res, vol.69, p.280, 2009.

K. Selvendiran, A. Bratasz, M. L. Kuppusamy, M. F. Tazi, B. K. Rivera et al.,

, Hypoxia induces chemoresistance in ovarian cancer cells by activation of signal transducer and activator of transcription 3, Int. J. Cancer J. Int. Cancer, vol.125, pp.2198-2204

G. L. Semenza, Hypoxia, clonal selection, and the role of HIF-1 in tumor progression, Crit. Rev. Biochem. Mol. Biol, vol.35, pp.71-103, 2000.

G. L. Semenza, Tumor metabolism: cancer cells give and take lactate, J. Clin. Invest, vol.118, pp.3835-3837, 2008.

A. M. Shannon, D. J. Bouchier-hayes, C. M. Condron, and D. Toomey, Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies, Cancer Treat. Rev, vol.29, pp.297-307, 2003.

D. Shen, L. M. Pouliot, M. D. Hall, and M. M. Gottesman, Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes, Pharmacol. Rev, vol.64, pp.706-721, 2012.

B. Shi, J. Liang, X. Yang, Y. Wang, Y. Zhao et al., Integration of Estrogen and Wnt Signaling Circuits by the Polycomb Group Protein EZH2 in Breast Cancer Cells, Mol. Cell. Biol, vol.27, pp.5105-5119, 2007.

A. Shmakova, M. Batie, J. Druker, and S. Rocha, Chromatin and oxygen sensing in the context of JmjC histone demethylases, Biochem. J, vol.462, pp.385-395, 2014.

Z. H. Siddik, Cisplatin: mode of cytotoxic action and molecular basis of resistance, Oncogene, vol.22, pp.7265-7279, 2003.

J. Song, J. Zhu, Q. Zhao, and B. Tian, Gefitinib causes growth arrest and inhibition of metastasis in human chondrosarcoma cells, J. BUON Off. J. Balk. Union Oncol, vol.20, pp.894-901, 2015.

Y. Song, K. Zhang, D. Liu, Y. Guo, D. Wang et al., Inhibition of EGFR-induced glucose metabolism sensitizes chondrosarcoma cells to cisplatin, Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med, vol.35, pp.7017-7024, 2014.

S. Stapleton, D. Jaffray, and M. Milosevic, Radiation effects on the tumor microenvironment: Implications for nanomedicine delivery, Adv. Drug Deliv. Rev, vol.109, pp.119-130, 2017.

V. Subbiah, R. E. Brown, J. Buryanek, J. Trent, A. Ashkenazi et al., Targeting the Apoptotic Pathway in Chondrosarcoma Using Recombinant Human Apo2L/TRAIL (dulanermin), a Dual Pro-apoptotic Receptor (DR4/DR5) Agonist, Mol. Cancer Ther, vol.11, pp.2541-2546, 2012.

X. Sun, L. Wei, Q. Chen, and R. M. Terek, CXCR4/SDF1 mediate hypoxia induced chondrosarcoma cell invasion through ERK signaling and increased MMP1 expression, Mol. Cancer, vol.9, p.17, 2010.

X. Sun, C. Charbonneau, L. Wei, W. Yang, Q. Chen et al., CXCR4-targeted Therapy Inhibits VEGF Expression and Chondrosarcoma Angiogenesis and Metastasis, Mol. Cancer Ther, vol.12, p.281, 2013.

X. Sun, L. Wei, Q. Chen, and R. M. Terek, MicroRNA Regulates Vascular Endothelial Growth Factor Expression in Chondrosarcoma Cells, Clin. Orthop, vol.473, pp.907-913, 2015.

X. Sun, C. Charbonneau, L. Wei, Q. Chen, and R. M. Terek, miR-181a Targets RGS16 to Promote Chondrosarcoma Growth, Angiogenesis, and Metastasis. Mol. Cancer Res. MCR, vol.13, pp.1347-1357, 2015.

Y. Sun, Z. Guan, L. Liang, Y. Cheng, J. Zhou et al., HIF-1?/MDR1 pathway confers chemoresistance to cisplatin in bladder cancer, Oncol. Rep, vol.35, pp.1549-1556, 2016.

J. Tan, X. Yang, L. Zhuang, X. Jiang, W. Chen et al., Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells, Genes Dev, vol.21, pp.1050-1063, 2007.

J. Tan, Y. Yan, X. Wang, Y. Jiang, and H. E. Xu, EZH2: biology, disease, and structure-based drug discovery, Acta Pharmacol. Sin, vol.35, pp.161-174, 2014.

J. Tang, F. Guo, Y. Du, X. Liu, Q. Qin et al., Continuous exposure of non-small cell lung cancer cells with wild-type EGFR to an inhibitor of EGFR tyrosine kinase induces chemoresistance by activating STAT3, Int. J. Oncol, vol.46, pp.2083-2095, 2015.

P. S. Tarpey, S. Behjati, S. L. Cooke, P. Van-loo, D. C. Wedge et al., Frequent mutation of the major cartilage collagen gene COL2A1 in chondrosarcoma, Nat. Genet, vol.45, pp.923-926, 2013.

R. M. Terek, G. K. Schwartz, K. Devaney, L. Glantz, S. Mak et al.,

, Chemotherapy and P-glycoprotein expression in chondrosarcoma, J. Orthop. Res. Off. Publ. Orthop. Res. Soc, vol.16, pp.585-590

K. A. Thornton, A. R. Chen, M. M. Trucco, P. Shah, B. A. Wilky et al., A Dose Finding Study of Temsirolimus and Liposomal Doxorubicin for Patients with Recurrent and Refractory Bone and Soft Tissue Sarcoma, Int. J. Cancer J. Int. Cancer, vol.133, 2013.

M. Tubiana, D. Averberck, M. Bourguignon, J. Bourhis, J. J. Cassiman et al., Radiobiologie, radiothérapie et radioprotection, Bases fondamentales. Hermann/Medecine, 2008.

T. Uchida, F. Rossignol, M. A. Matthay, R. Mounier, S. Couette et al., Prolonged hypoxia differentially regulates hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression in lung epithelial cells: implication of natural antisense HIF-1alpha, J. Biol. Chem, vol.279, pp.14871-14878, 2004.

R. Unland, C. Borchardt, D. Clemens, M. Kool, U. Dirksen et al., Analysis of the antiproliferative effects of 3-deazaneoplanocin A in combination with standard anticancer agents in rhabdoid tumor cell lines, Anticancer. Drugs, vol.26, pp.301-311, 2015.

S. Vella, D. Gnani, A. Crudele, S. Ceccarelli, C. De-stefanis et al., EZH2 down-regulation exacerbates lipid -282 -accumulation and inflammation in in vitro and in vivo NAFLD, Int. J. Mol. Sci, vol.14, pp.24154-24168, 2013.

C. Wigerup, S. Påhlman, and D. Bexell, Therapeutic targeting of hypoxia and hypoxiainducible factors in cancer, Pharmacol. Ther, vol.164, pp.152-169, 2016.

J. Xie, D. Li, X. Chen, F. Wang, D. et al., Expression and significance of hypoxia-inducible factor-1? and MDR1/P-glycoprotein in laryngeal carcinoma tissue and hypoxic Hep-2 cells, Oncol. Lett, vol.6, pp.232-238, 2013.

Z. Xie, C. Bi, L. L. Cheong, S. C. Liu, G. Huang et al., Determinants of Sensitivity to DZNep Induced Apoptosis in Multiple Myeloma Cells, PLoS ONE, vol.6, 2011.

W. Xu, H. Yang, Y. Liu, Y. Yang, P. Wang et al., Oncometabolite 2-Hydroxyglutarate Is a Competitive Inhibitor of ?-Ketoglutarate-Dependent Dioxygenases, Cancer Cell, vol.19, pp.17-30, 2011.

Y. Xu, Z. Lin, N. Zhao, L. Zhou, F. Liu et al., Receptor interactive protein kinase 3 promotes Cisplatin-triggered necrosis in apoptosis-resistant esophageal squamous cell carcinoma cells, PloS One, vol.9, 2014.

J. Yang, I. Ledaki, H. Turley, K. C. Gatter, J. M. Montero et al., Role of hypoxia-inducible factors in epigenetic regulation via histone demethylases, Ann. N. Y. Acad. Sci, vol.1177, pp.185-197, 2009.

A. Yonezawa, S. Masuda, S. Yokoo, T. Katsura, and K. Inui, Cisplatin and Oxaliplatin, but Not Carboplatin and Nedaplatin, Are Substrates for Human Organic Cation Transporters (SLC22A1-3 and Multidrug and Toxin Extrusion Family), J. Pharmacol. Exp. Ther, vol.319, pp.879-886, 2006.

K. H. Yoo and L. Hennighausen, EZH2 methyltransferase and H3K27 methylation in breast cancer, Int. J. Biol. Sci, vol.8, pp.59-65, 2012.

Z. Zhu, C. Wang, Y. Zhang, and L. Nie, MicroRNA-100 resensitizes resistant chondrosarcoma cells to cisplatin through direct targeting of mTOR. Asian Pac, J. Cancer Prev. APJCP, vol.15, p.283, 2014.

L. Aloia, B. D. Stefano, and L. D. Croce, Polycomb complexes in stem cells and embryonic, Development, vol.140, pp.2525-2534, 2013.

C. F. Pereira, F. M. Piccolo, T. Tsubouchi, S. Sauer, and N. K. Ryan, ESCs require PRC2 to direct the successful reprogramming of differentiated cells toward pluripotency, Cell Stem Cell, vol.6, pp.547-556, 2010.

X. Ding, X. Wang, S. Sontag, J. Qin, and P. Wanek, The Polycomb Protein Ezh2 Impacts on iPS Cell Generation, Stem Cells Dev, p.131210220315000, 2013.

G. Fragola, P. Germain, P. Laise, A. Cuomo, and A. Blasimme, Cell reprogramming requires silencing of a core subset of polycomb targets, PLoS Genet, vol.9, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00803906

Y. Chen, M. Hung, and L. Li, EZH2: a pivotal regulator in controlling cell differentiation, Am J Transl Res, vol.4, pp.364-375, 2012.

A. H. Juan, A. Derfoul, X. Feng, J. G. Ryall, and S. Dell'orso, Polycomb EZH2 controls self-renewal and safeguards the transcriptional identity of skeletal muscle stem cells, Genes Dev, vol.25, pp.789-794, 2011.

L. Wang, J. Q. Lee, J. Su, I. Ge, and K. , Histone H3K27 methyltransferase Ezh2 represses Wnt genes to facilitate adipogenesis, Proc Natl Acad Sci U S A, vol.107, pp.7317-7322, 2010.

S. Varambally, S. M. Dhanasekaran, M. Zhou, T. R. Barrette, and C. Kumar-sinha, The polycomb group protein EZH2 is involved in progression of prostate cancer, Nature, vol.419, pp.624-629, 2002.

Q. Cao, J. Yu, S. M. Dhanasekaran, J. H. Kim, and R. Mani, Repression of E-cadherin by the Polycomb Group Protein EZH2 in Cancer, Oncogene, vol.27, pp.7274-7284, 2008.

S. Fujii, K. Ito, Y. Ito, and A. Ochiai, Enhancer of Zeste Homologue 2 (EZH2) Down-regulates RUNX3 by Increasing Histone H3 Methylation, J Biol Chem, vol.283, pp.17324-17332, 2008.

J. Yu, Q. Cao, J. Yu, L. Wu, and A. Dallol, The neuronal repellent SLIT2 is a target for repression by EZH2 in prostate cancer, Oncogene, vol.29, pp.5370-5380, 2010.

J. Min, A. Zaslavsky, G. Fedele, S. K. Mclaughlin, and E. E. Reczek, An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and NF-?B, Nat Med, vol.16, pp.286-294, 2010.

J. Tan, X. Yang, L. Zhuang, X. Jiang, and W. Chen, Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells, Genes Dev, vol.21, pp.1050-1063, 2007.

H. Taniguchi, F. V. Jacinto, A. Villanueva, A. F. Fernandez, and H. Yamamoto, Silencing of Kruppel-like factor 2 by the histone methyltransferase EZH2 in human cancer, Oncogene, vol.31, pp.1988-1994, 2012.

Y. Chen, D. Xie, Y. Li, W. , M. Cheung et al., RNAi targeting EZH2 inhibits tumor growth and liver metastasis of pancreatic cancer in vivo, Cancer Lett, vol.297, pp.109-116, 2010.

R. N. Eskander, J. T. Huynh, B. Wardeh, R. Randall, and L. M. , Inhibition of enhancer of zeste homolog 2 (EZH2) expression is associated with decreased tumor cell proliferation, migration, and invasion in endometrial cancer cell lines, Int J Gynecol Cancer Off J Int Gynecol Cancer Soc, vol.23, pp.997-1005, 2013.

H. Li, Q. Cai, A. K. Godwin, and R. Zhang, Enhancer of zeste homolog 2 promotes the proliferation and invasion of epithelial ovarian cancer cells, Mol Cancer Res MCR, vol.8, pp.1610-1618, 2010.

A. V. Ougolkov, V. N. Bilim, and D. D. Billadeau, Regulation of Pancreatic Tumor Cell Proliferation and Chemoresistance by the Histone Methyltransferase EZH2, Clin Cancer Res Off J Am Assoc Cancer Res, vol.14, pp.6790-6796, 2008.

T. K. Kelly, D. Carvalho, D. D. Jones, and P. A. , Epigenetic Modifications as Therapeutic Targets, Nat Biotechnol, vol.28, 2010.

M. T. Mccabe, H. M. Ott, G. Ganji, S. Korenchuk, and C. Thompson, EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations, Nature, vol.492, pp.108-112, 2012.

W. Qi, H. Chan, L. Teng, L. Li, and S. Chuai, Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation, Proc Natl Acad Sci U S A, vol.109, pp.21360-21365, 2012.

T. Wagner and M. Jung, New lysine methyltransferase drug targets in cancer, Nat Biotechnol, vol.30, pp.622-623, 2012.

X. Zhao, T. Lwin, X. Zhang, A. Huang, and J. Wang, Disruption of the MYC-miRNA-EZH2 loop to suppress aggressive B-cell lymphoma survival and clonogenicity, Leukemia, vol.27, pp.2341-2350, 2013.

F. Crea, E. Paolicchi, V. E. Marquez, and R. Danesi, Polycomb genes and cancer: time for clinical application?, Crit Rev Oncol Hematol, vol.83, pp.184-193, 2012.

A. Chase and N. Cross, Aberrations of EZH2 in Cancer, Clin Cancer Res, vol.17, pp.2613-2618, 2011.

L. L. Cheng, Y. Itahana, Z. D. Lei, N. Chia, and Y. Wu, TP53 genomic status regulates sensitivity of gastric cancer cells to the histone methylation inhibitor 3-deazaneplanocin A (DZNep), Clin Cancer Res Off J Am Assoc Cancer Res, vol.18, pp.4201-4212, 2012.

S. R. Choudhury, S. Balasubramanian, Y. C. Chew, B. Han, and V. E. Marquez, Epigallocatechin-3-gallate and DZNep reduce polycomb protein level via a proteasome-dependent mechanism in skin cancer cells, Carcinogenesis, vol.32, pp.1525-1532, 2011.

F. Crea, E. M. Hurt, L. A. Mathews, S. M. Cabarcas, and L. Sun, Pharmacologic disruption of Polycomb Repressive Complex 2 inhibits tumorigenicity and tumor progression in prostate cancer, Mol Cancer, vol.10, p.40, 2011.

F. Crea, L. Fornaro, G. Bocci, L. Sun, and W. L. Farrar, EZH2 inhibition: targeting the crossroad of tumor invasion and angiogenesis, Cancer Metastasis Rev, vol.31, pp.753-761, 2012.

A. Hayden, P. Johnson, G. Packham, and S. J. Crabb, S-adenosylhomocysteine hydrolase inhibition by 3-deazaneplanocin A analogues induces anticancer effects in breast cancer cell lines and synergy with both histone deacetylase and HER2 inhibition, Breast Cancer Res Treat, vol.127, pp.109-119, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00594477

J. Puppe, R. Drost, X. Liu, S. A. Joosse, and B. Evers, BRCA1-deficient mammary tumor cells are dependent on EZH2 expression and sensitive to Polycomb Repressive Complex 2-inhibitor 3-deazaneplanocin A, Breast Cancer Res BCR, vol.11, 2009.

M. Suvà, N. Riggi, M. Janiszewska, I. Radovanovic, and P. Provero, EZH2 Is Essential for Glioblastoma Cancer Stem Cell Maintenance, Cancer Res, vol.69, pp.9211-9218, 2009.

J. Zhou, C. Bi, L. Cheong, S. Mahara, and S. Liu, The histone methyltransferase inhibitor, DZNep, up-regulates TXNIP, increases ROS production, and targets leukemia cells in AML, Blood, vol.118, pp.2830-2839, 2011.

R. Gil-benso, C. Lopez-gines, J. A. Lopez-guerrero, C. Carda, and R. C. Callaghan, Establishment and Characterization of a Continuous Human Chondrosarcoma Cell Line, ch-2879: Comparative Histologic and Genetic Studies with Its Tumor of Origin, Lab Invest, vol.83, pp.877-887

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method, Methods San Diego Calif, vol.25, pp.402-408, 2001.

K. R. Duchman, C. F. Lynch, J. A. Buckwalter, and B. J. Miller, Estimated Causespecific Survival Continues to Improve Over Time in Patients With Chondrosarcoma, Clin Orthop, 2014.

A. Italiano, O. Mir, A. Cioffi, E. Palmerini, and S. Piperno-neumann, Advanced chondrosarcomas: role of chemotherapy and survival, Ann Oncol Off J Eur Soc Med Oncol ESMO, vol.24, pp.2916-2922, 2013.

A. Angelini, G. Guerra, A. F. Mavrogenis, E. Pala, and P. Picci, Clinical outcome of central conventional chondrosarcoma, J Surg Oncol, vol.106, pp.929-937, 2012.

T. B. Miranda, C. C. Cortez, C. B. Yoo, G. Liang, and M. Abe, DZNep Is a Global Histone Methylation Inhibitor that Reactivates Developmental Genes Not Silenced by DNA Methylation, Mol Cancer Ther, vol.8, pp.1579-1588, 2009.

K. Holm, D. Grabau, K. Lövgren, S. Aradottir, and S. Gruvberger-saal, Global H3K27 trimethylation and EZH2 abundance in breast tumor subtypes, 2012.

, Mol Oncol, vol.6, pp.494-506

I. M. Bachmann, O. J. Halvorsen, K. Collett, I. M. Stefansson, and O. Straume, EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast, J Clin Oncol Off J Am Soc Clin Oncol, vol.24, pp.268-273, 2006.

. Mallen-st, J. Clair, R. Soydaner-azeloglu, K. E. Lee, L. Taylor et al., EZH2 couples pancreatic regeneration to neoplastic progression, Genes Dev, vol.26, pp.439-444, 2012.

T. Chiba, E. Suzuki, M. Negishi, A. Saraya, and S. Miyagi, 3-Deazaneplanocin A is a promising therapeutic agent for the eradication of tumor-initiating hepatocellular carcinoma cells, Int J Cancer, vol.130, pp.2557-2567, 2012.

T. Fujiwara, H. Saitoh, A. Inoue, M. Kobayashi, and Y. Okitsu, 3-Deazaneplanocin A (DZNep), an Inhibitor of S-Adenosylmethionine-dependent Methyltransferase, Promotes Erythroid Differentiation, J Biol Chem, vol.289, pp.8121-8134, 2014.

R. A. Varier and H. Timmers, Histone lysine methylation and demethylation pathways in cancer, Biochim Biophys Acta BBA -Rev Cancer, vol.1815, pp.75-89, 2011.

S. W. Hung, H. Mody, S. Marrache, Y. D. Bhutia, and F. Davis, Pharmacological Reversal of Histone Methylation Presensitizes Pancreatic Cancer Cells to Nucleoside Drugs: In Vitro Optimization and Novel Nanoparticle Delivery Studies, PLoS ONE, vol.8, 2013.

, DZNep Effects in Chondrosarcomas

B. D. Strahl and C. D. Allis, The language of covalent histone modifications, Nature, vol.403, issue.6765, pp.41-45, 2000.

. ??-oneoftheirstpapersabouttheconceptofthe,

H. Marks, T. Kalkan, and R. Menafra, The transcriptional and epigenomic foundations of ground state pluripotency, Cell, vol.149, issue.3, pp.590-604, 2012.

A. J. Bannister and T. Kouzarides, Regulation of chromatin by histone modifications, Cell Res, vol.21, issue.3, pp.381-395, 2011.

J. C. Black, C. Van-rechem, and J. R. Whetstine, Histone lysine methylation dynamics: establishment, regulation, and biological impact, Mol. Cell, vol.48, issue.4, pp.491-507, 2012.

?. Anexcellentreviewaboutthediscovery, characterization andregulationofthelysinemethyltransferase(KMTs)and lysinedemethylase(KDMs)

M. Tan, H. Luo, and S. Lee, Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification, Cell, vol.146, issue.6, pp.1016-1028, 2011.

G. G. Wozniak and B. D. Strahl, Hitting the "mark": interpreting lysine methylation in the context of active transcription, Biochim. Biophys. Acta, 2014.

S. L. Berger, The complex language of chromatin regulation during transcription, Nature, vol.447, issue.7143, pp.407-412, 2007.

S. D. Taverna, H. Li, A. J. Ruthenburg, C. D. Allis, and D. J. Patel, How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers, Nat. Struct. Mol. Biol, vol.14, issue.11, pp.1025-1040, 2007.

B. E. Bernstein, M. Kamal, and K. Lindblad-toh, Genomic maps and comparative analysis of histone modifications in human and mouse, Cell, vol.120, issue.2, pp.169-181, 2005.

D. Schubeler, D. M. Macalpine, and D. Scalzo, The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote, Genes Dev, vol.18, issue.11, pp.1263-1271, 2004.

D. K. Pokholok, C. T. Harbison, and S. Levine, Genome-wide map of nucleosome acetylation and methylation in yeast, Cell, vol.122, issue.4, pp.517-527, 2005.

H. Santos-rosa, R. Schneider, and A. J. Bannister, Active genes are tri-methylated at K4 of histone H3, Nature, vol.419, issue.6905, pp.407-411, 2002.

B. D. Strahl, R. Ohba, R. G. Cook, and C. D. Allis, Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena, Proc. Natl Acad. Sci. USA, vol.96, issue.26, pp.14967-14972, 1999.

B. Rao, Y. Shibata, B. D. Strahl, and J. D. Lieb, Dimethylation of histone H3 at lysine 36 demarcates regulatory and nonregulatory chromatin genome-wide, Mol. Cell. Biol, vol.25, issue.21, pp.9447-9459, 2005.

E. J. Wagner and P. B. Carpenter, Understanding the language of Lys36 methylation at histone H3, Nat. Rev. Mol. Cell. Biol, vol.13, issue.2, pp.115-126, 2012.

J. Lee and A. Shilatifard, A site to remember: H3K36 methylation a mark for histone deacetylation, Mutat. Res, vol.618, issue.1-2, pp.130-134, 2007.

B. Lehnertz, Y. Ueda, and A. Derijck, Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin, Curr. Biol, vol.13, issue.14, pp.1192-1200, 2003.

C. Rougeulle, J. Chaumeil, and K. Sarma, Differential histone H3 Lys-9 and Lys-27 methylation profiles on the X chromosome, Mol. Cell. Biol, vol.24, issue.12, pp.5475-5484, 2004.

M. Escamilla-del-arenal, S. T. Da-rocha, and C. G. Spruijt, Cdyl, a new partner of the inactive X chromosome and potential reader of H3K27me3 and H3K9me2, Mol. Cell. Biol, vol.33, issue.24, pp.5005-5020, 2013.

D. Molina-serrano, V. Schiza, and A. Kirmizis, Cross-talk among epigenetic modifications: lessons from histone arginine methylation, Biochem. Soc. Trans, vol.41, issue.3, pp.751-759, 2013.

V. Migliori, S. Phalke, M. Bezzi, and E. Guccione, Arginine/lysinemethyl/methyl switches: biochemical role of histone arginine methylation in transcriptional regulation, Epigenomics, vol.2, issue.1, pp.119-137, 2010.

A. D. Lorenzo and M. T. Bedford, Histone arginine methylation, FEBS Lett, vol.585, issue.13, pp.2024-2031, 2011.

T. C. Petrossian and S. G. Clarke, Uncovering the human methyltransferasome, Mol. Cell Proteomics, vol.10, issue.1, 2011.

E. L. Greer and Y. Shi, Histone methylation: a dynamic mark in health, disease and inheritance, Nat. Rev. Genet, vol.13, issue.5, pp.343-357, 2012.

, Histone methylases as novel drug targets: developing inhibitors of EZH2 Review

S. M. Kooistra and K. Helin, Molecular mechanisms and potential functions of histone demethylases, Nat. Rev. Mol. Cell. Biol, vol.13, issue.5, pp.297-311, 2012.

P. Hublitz, M. Albert, and A. Peters, Mechanisms of transcriptional repression by histone lysine methylation, Int. J. Dev. Biol, vol.53, issue.2-3, pp.335-354, 2009.

A. P. Bracken, D. Pasini, M. Capra, E. Prosperini, E. Colli et al., EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer, EMBO J, vol.22, issue.20, pp.5323-5335, 2003.

S. Varambally, S. M. Dhanasekaran, and M. Zhou, The polycomb group protein EZH2 is involved in progression of prostate cancer, Nature, vol.419, issue.6907, pp.624-629, 2002.

. ??-firstpapertoidentifytheroleofezh2incancer,

K. Collett, G. E. Eide, and J. Arnes, Expression of enhancer of zeste homolog 2 is significantly associated with increased tumor cell proliferation and is a marker of aggressive breast cancer, Clin. Cancer Res, vol.12, issue.4, pp.1168-1174, 2006.

I. M. Bachmann, O. J. Halvorsen, and K. Collett, EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast, J. Clin. Oncol, vol.24, issue.2, pp.268-273, 2006.

C. G. Kleer, Q. Cao, and S. Varambally, EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells, Proc. Natl Acad. Sci. USA, vol.100, issue.20, pp.11606-11611, 2003.

S. Weikert, F. Christoph, and J. Köllermann, Expression levels of the EZH2 polycomb transcriptional repressor correlate with aggressiveness and invasive potential of bladder carcinomas, Int. J. Mol. Med, vol.16, issue.2, pp.349-353, 2005.

M. Albert and K. Helin, Histone methyltransferases in cancer, Semin. Cell Dev. Biol, vol.21, issue.2, pp.209-220, 2010.

K. Agger, J. Christensen, P. Cloos, and K. Helin, The emerging functions of histone demethylases, Curr. Opin. Genet. Dev, vol.18, issue.2, pp.159-168, 2008.

A. Kirmizis, S. M. Bartley, and A. Kuzmichev, Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27, Genes Dev, vol.18, issue.13, pp.1592-1605, 2004.

K. Xu, Z. J. Wu, and A. C. Groner, EZH2 oncogenic activity in castration resistant prostate cancer cells is polycombindependent, Science, vol.338, issue.6113, pp.1465-1469, 2012.

E. Kim, M. Kim, and D. Woo, Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells, Cancer Cell, vol.23, issue.6, pp.839-852, 2013.

M. Kogure, M. Takawa, and V. Saloura, The oncogenic polycomb histone methyltransferase EZH2 methylates lysine 120 on histone H2B and competes ubiquitination, Neoplasia, vol.15, issue.11, pp.1251-1261, 2013.

C. Chu, P. Lo, and Y. Yeh, O-GlcNAcylation regulates EZH2 protein stability and function, Proc. Natl Acad. Sci. USA, vol.111, issue.4, pp.1355-1360, 2014.

R. Cao and Y. Zhang, SUZ12 is required for both the histone methyltransferase activity and the silencing function of the EED-EZH2 complex, Mol. Cell, vol.15, issue.1, pp.57-67, 2004.

D. Pasini, A. P. Bracken, M. R. Jensen, L. Denchi, E. Helin et al., Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity, EMBO J, vol.23, issue.20, pp.4061-4071, 2004.

R. G. Sewalt, J. Van-der-vlag, and M. J. Gunster, Characterization of interactions between the mammalian polycomb-group proteins Enx1/EZH2 and EED suggests the existence of different mammalian polycomb-group protein complexes, Mol. Cell. Biol, vol.18, issue.6, pp.3586-3595, 1998.

O. Denisenko, M. Shnyreva, H. Suzuki, and K. Bomsztyk, Point mutations in the WD40 domain of EED block its interaction with EZH2, Mol. Cell. Biol, vol.18, issue.10, pp.5634-5642, 1998.

R. Margueron and D. Reinberg, The polycomb complex PRC2 and its mark in life, Nature, vol.469, issue.7330, pp.343-349, 2011.

A. H. Shih, O. Abdel-wahab, J. P. Patel, and R. L. Levine, The role of mutations in epigenetic regulators in myeloid malignancies, Nat. Rev. Cancer, vol.12, issue.9, pp.599-612, 2012.

A. Sparmann and M. Van-lohuizen, Polycomb silencers control cell fate, development and cancer, Nat. Rev. Cancer, vol.6, issue.11, pp.846-856, 2006.

D. O'carroll, S. Erhardt, M. Pagani, S. C. Barton, M. A. Surani et al., The polycomb-group gene EZH2 is required for early mouse development, Mol. Cell. Biol, vol.21, issue.13, pp.4330-4336, 2001.

X. Shen, Y. Liu, and Y. Hsu, EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency, Mol. Cell, vol.32, issue.4, pp.491-502, 2008.

C. F. Pereira, F. M. Piccolo, and T. Tsubouchi, ESCs require PRC2 to direct the successful reprogramming of differentiated cells toward pluripotency, Cell Stem Cell, vol.6, issue.6, pp.547-556, 2010.

M. Zhang, F. Wang, Z. Kou, Y. Zhang, and S. Gao, Defective chromatin structure in somatic cell cloned mouse embryos, J. Biol. Chem, vol.284, issue.37, pp.24981-24987, 2009.

A. Villasante, D. Piazzolla, H. Li, G. Gomez-lopez, M. Djabali et al., Epigenetic regulation of Nanog expression by EZH2 in pluripotent stem cells, Cell Cycle, vol.10, issue.9, pp.1488-1498, 2011.

X. Ding, X. Wang, and S. Sontag, The polycomb protein EZH2 impacts on iPS cell generation, Stem Cells Dev, vol.23, issue.9, pp.931-940, 2013.

F. Neri, A. Zippo, A. Krepelova, A. Cherubini, M. Rocchigiani et al., Myc regulates the transcription of the PRC2 gene to control the expression of developmental genes in embryonic stem cells, Mol. Cell. Biol, vol.32, issue.4, pp.840-851, 2012.

G. Fragola, P. Germain, and P. Laise, Cell reprogramming requires silencing of a core subset of polycomb targets, PLoS Genet, vol.9, issue.2, p.1003292, 2013.
URL : https://hal.archives-ouvertes.fr/inserm-00803906

J. Müller, C. M. Hart, and N. J. Francis, Histone methyltransferase activity of a Drosophila Polycomb group repressor complex, Cell, vol.111, issue.2, pp.197-208, 2002.

B. Czermin, R. Melfi, D. Mccabe, V. Seitz, A. Imhof et al., Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites, Cell, vol.111, issue.2, pp.185-196, 2002.

, Future Med. Chem, 2014.

R. Bauge, . Bazille, . Girard, R. Lhuissier-&-boumediene-57-cao, L. Wang et al., Role of histone H3 lysine 27 methylation in Polycomb-group silencing, Science, vol.298, issue.5595, pp.1039-1043, 2002.

?. Genesilencing,

A. Kuzmichev, T. Jenuwein, P. Tempst, and D. Reinberg, Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3, Mol. Cell, vol.14, issue.2, pp.183-193, 2004.

Y. Chen, M. Hung, and L. Li, EZH2: a pivotal regulator in controlling cell differentiation, Am. J. Transl Res, vol.4, issue.4, pp.364-375, 2012.

G. Caretti, D. Padova, M. Micales, B. Lyons, G. E. Sartorelli et al., The Polycomb EZH2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation, Genes Dev, vol.18, issue.21, pp.2627-2638, 2004.

A. H. Juan, R. M. Kumar, J. G. Marx, R. A. Young, and V. Sartorelli, Mir-214-dependent regulation of the polycomb protein EZH2 in skeletal muscle and embryonic stem cells, Mol. Cell, vol.36, issue.1, pp.61-74, 2009.

C. F. Wong and R. L. Tellam, MicroRNA-26a targets the histone methyltransferase Enhancer of Zeste homolog 2 during myogenesis, J. Biol. Chem, vol.283, issue.15, pp.9836-9843, 2008.

D. Palacios, C. Mozzetta, and S. Consalvi, TNF/p38?/ polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration, Cell Stem Cell, vol.7, issue.4, pp.455-469, 2010.

I. Marchesi, F. P. Fiorentino, F. Rizzolio, A. Giordano, and L. Bagella, The ablation of EZH2 uncovers its crucial role in rhabdomyosarcoma formation, Cell Cycle, vol.11, issue.20, pp.3828-3836, 2012.

S. Woodhouse, D. Pugazhendhi, P. Brien, and J. M. Pell, EZH2 maintains a key phase of muscle satellite cell expansion but does not regulate terminal differentiation, J. Cell Sci, vol.126, issue.2, pp.565-579, 2013.

A. H. Juan, A. Derfoul, and X. Feng, Polycomb EZH2 controls self-renewal and safeguards the transcriptional identity of skeletal muscle stem cells, Genes Dev, vol.25, issue.8, pp.789-794, 2011.

S. Acharyya, S. M. Sharma, and A. S. Cheng, TNF inhibits notch-1 in skeletal muscle cells by EZH2 and DNA methylation mediated repression: implications in duchenne muscular dystrophy, PLoS ONE, vol.5, issue.8, p.12479, 2010.

Y. Wei, Y. Chen, and L. Li, CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells, Nat. Cell Biol, vol.13, issue.1, pp.87-94, 2011.

H. Wu, T. W. Whitfield, and J. A. Gordon, Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to control of osteoblastogenesis, Genome Biol, vol.15, issue.3, p.52, 2014.

L. Wang, J. Q. Lee, J. Su, I. Ge, and K. , Histone H3K27 methyltransferase EZH2 represses Wnt genes to facilitate adipogenesis, Proc. Natl Acad. Sci. USA, vol.107, issue.16, pp.7317-7322, 2010.

O. Hobert, I. Sures, T. Ciossek, M. Fuchs, and A. Ullrich, Isolation and developmental expression analysis of Enx-1, a novel mouse Polycomb group gene, Mech. Dev, vol.55, issue.2, pp.171-184, 1996.

F. M. Raaphorst, F. J. Van-kemenade, and T. Blokzijl, Coexpression of BMI-1 and EZH2 polycomb group genes in Reed-Sternberg cells of Hodgkin's disease, Am. J. Pathol, vol.157, issue.3, pp.709-715, 2000.

T. Fukuyama, T. Otsuka, and H. Shigematsu, Proliferative involvement of ENX-1, a putative human polycomb group gene, in haematopoietic cells, Br. J. Haematol, vol.108, issue.4, pp.842-847, 2000.

O. Hobert, B. Jallal, and A. Ullrich, Interaction of Vav with ENX-1, a putative transcriptional regulator of homeobox gene expression

, Mol. Cell. Biol, vol.16, issue.6, pp.3066-3073, 1996.

I. Su, A. Basavaraj, and A. N. Krutchinsky, EZH2 controls B cell development through histone H3 methylation and Igh rearrangement, Nat. Immunol, vol.4, issue.2, pp.124-131, 2003.

W. Beguelin, R. Popovic, and M. Teater, EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation, Cancer Cell, vol.23, issue.5, pp.677-692, 2013.

D. J. Tumes, A. Onodera, and A. Suzuki, The polycomb protein EZH2 regulates differentiation and plasticity of CD4

F. M. Raaphorst, C. Meijer, and E. Fieret, Poorly differentiated breast carcinoma is associated with increased expression of the human polycomb group EZH2 gene, Neoplasia, vol.5, issue.6, pp.481-488, 2003.

J. Tan, X. Yang, and L. Zhuang, Pharmacologic disruption of polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells, Genes Dev, vol.21, issue.9, pp.1050-1063, 2007.

?. Firstarticletodemonstratethatdznep,

M. Suvà, N. Riggi, and M. Janiszewska, EZH2 Is essential for glioblastoma cancer stem cell maintenance, Cancer Res, vol.69, issue.24, pp.9211-9218, 2009.

L. L. Kodach, R. J. Jacobs, and J. Heijmans, The role of EZH2 and DNA methylation in the silencing of the tumour suppressor RUNX3 in colorectal cancer, Carcinogenesis, vol.31, issue.9, pp.1567-1575, 2010.

M. Takawa, K. Masuda, and M. Kunizaki, Validation of the histone methyltransferase EZH2 as a therapeutic target for various types of human cancer and as a prognostic marker, Cancer Sci, vol.102, issue.7, pp.1298-1305, 2011.

S. Varambally, Q. Cao, and R. Mani, Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer, Science, vol.322, issue.5908, pp.1695-1699, 2008.

N. Wagener, S. Macher-goeppinger, and M. Pritsch, Enhancer of zeste homolog 2 (EZH2) expression is an independent prognostic factor in renal cell carcinoma, BMC Cancer, vol.10, p.524, 2010.

P. A. Croonquist and B. Van-ness, The polycomb group protein enhancer of zeste homolog 2 (EZH 2) is an oncogene that influences myeloma cell growth and the mutant ras phenotype, Oncogene, vol.24, issue.41, pp.6269-6280, 2005.

J. Yu, J. Yu, and D. R. Rhodes, A polycomb repression signature in metastatic prostate cancer predicts cancer outcome, Cancer Res, vol.67, issue.22, pp.10657-10663, 2007.

, Histone methylases as novel drug targets: developing inhibitors of EZH2 Review

A. Chase and N. Cross, Aberrations of EZH2 in cancer, Clin. Cancer Res, vol.17, issue.9, pp.2613-2618, 2011.

J. A. Simon and C. A. Lange, Roles of the EZH2 histone methyltransferase in cancer epigenetics, Mutat. Res, vol.647, issue.1-2, pp.21-29, 2008.

I. Velichutina, R. Shaknovich, and H. Geng, EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis, Blood, vol.116, issue.24, pp.5247-5255, 2010.

W. R. Sellers and M. Loda, The EZH2 polycomb transcriptional repressor -a marker or mover of metastatic prostate cancer?, Cancer Cell, vol.2, issue.5, pp.349-350, 2002.

N. Girard, C. Bazille, and E. Lhuissier, 3-deazaneplanocin A (DZNep), an inhibitor of the histone methyltransferase EZH2, induces apoptosis and reduces cell migration in chondrosarcoma cells, PLoS ONE, vol.9, issue.5, p.98176, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01147783

L. P. Kunju, C. Cookingham, K. A. Toy, W. Chen, M. S. Sabel et al., EZH2 and ALDH-1 mark breast epithelium at risk for breast cancer development, Mod. Pathol, vol.24, issue.6, pp.786-793, 2011.

M. T. Mccabe, A. P. Graves, and G. Ganji, Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27), Proc. Natl Acad. Sci. USA, vol.109, issue.8, pp.2989-2994, 2012.

R. D. Morin, M. Mendez-lago, and A. J. Mungall, Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma, Nature, vol.476, issue.7360, pp.298-303, 2011.

L. Pasqualucci, V. Trifonov, and G. Fabbri, Analysis of the coding genome of diffuse large B-cell lymphoma, Nat. Genet, vol.43, issue.9, pp.830-837, 2011.

C. J. Sneeringer, M. P. Scott, and K. W. Kuntz, Coordinated activities of wild-type plus mutant EZH2 drive tumorassociated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas, Proc. Natl Acad. Sci. USA, vol.107, issue.49, pp.20980-20985, 2010.

T. J. Wigle, S. K. Knutson, and J. L. , The Y641C mutation of EZH2 alters substrate specificity for histone H3 lysine 27 methylation states, FEBS Lett, vol.585, pp.3011-3014, 2011.

D. B. Yap, J. Chu, and T. Berg, Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation, Blood, vol.117, issue.8, pp.2451-2459, 2011.

M. T. Mccabe, H. M. Ott, and G. Ganji, EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations, Nature, vol.492, issue.7427, pp.108-112, 2012.

C. Bödör, V. Grossmann, and N. Popov, EZH2 mutations are frequent and represent an early event in follicular lymphoma, Blood, vol.122, issue.18, pp.3165-3168, 2013.

C. Bödör, C. O'riain, and D. Wrench, EZH2 Y641 mutations in follicular lymphoma, Leukemia, vol.25, issue.4, pp.726-729, 2011.

C. R. Majer, J. L. Scott, and M. P. , A687V EZH2 is a gain-offunction mutation found in lymphoma patients, FEBS Lett, vol.586, pp.3448-3451, 2012.

H. J. Lee, D. H. Shin, and K. B. Kim, Polycomb protein EZH2 expression in diffuse large B-cell lymphoma is associated with better prognosis in patients treated with rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone, Leuk. Lymphoma, vol.55, issue.9, pp.2056-2063, 2014.

Z. Li, L. Xu, and N. Tang, The polycomb group protein EZH2 inhibits lung cancer cell growth by repressing the transcription factor Nrf2, FEBS Lett, vol.588, issue.17, pp.3000-3300, 2014.

G. Nikoloski, S. Langemeijer, and R. P. Kuiper, Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes, Nat. Genet, vol.42, issue.8, pp.665-667, 2010.

X. Chen, N. Song, and K. Matsumoto, High expression of trimethylated histone H3 at lysine 27 predicts better prognosis in non-small cell lung cancer, Int. J. Oncol, vol.43, issue.5, pp.1467-1480, 2013.

Y. Wei, W. Xia, and Z. Zhang, Loss of trimethylation at lysine 27 of histone H3 Is a predictor of poor outcome in breast, ovarian, and pancreatic cancers, Mol. Carcinog, vol.47, issue.9, pp.701-706, 2008.

C. Chang and M. Hung, The role of EZH2 in tumour progression, Br. J. Cancer, vol.106, issue.2, pp.243-247, 2012.

J. Zhong, L. Min, and H. Huang, EZH2 regulates the expression of p16 in the nasopharyngeal cancer cells, Technol. Cancer Res. Treat, vol.12, issue.3, pp.269-274, 2013.

K. Kia, S. , S. Kartalaei, P. Farahbakhshian, E. Pourfarzad et al., EZH2-dependent chromatin looping controls INK4a and INK4b, but not ARF, during human progenitor cell differentiation and cellular senescence, Epigenetics Chromatin, vol.2, issue.1, p.16, 2009.

A. Ferraro, D. Mourtzoukou, and V. Kosmidou, EZH2 is regulated by ERK/AKT and targets integrin alpha2 gene to control epithelial-mesenchymal transition and anoikis in colon cancer cells, Int. J. Biochem. Cell Biol, vol.45, issue.2, pp.243-254, 2013.

M. Smits, J. Nilsson, and S. E. Mir, miR-101 is down-regulated in glioblastoma resulting in EZH2-induced proliferation, migration, and angiogenesis, Oncotarget, vol.1, issue.8, pp.710-720, 2011.

Y. J. Shin and J. Kim, The role of EZH2 in the regulation of the activity of matrix metalloproteinases in prostate cancer cells, PLoS ONE, vol.7, issue.1, p.30393, 2012.

A. V. Ougolkov, V. N. Bilim, and D. D. Billadeau, Regulation of pancreatic tumor cell proliferation and chemoresistance by the histone methyltransferase EZH2, Clin. Cancer Res, vol.14, issue.21, pp.6790-6796, 2008.

Y. Zhang, G. Liu, C. Lin, G. Liao, and B. Tang, Silencing the EZH2 gene by RNA interference reverses the drug resistance of human hepatic multidrug-resistant cancer cells to 5-Fu, Life Sci, vol.92, pp.896-902, 2013.

S. Hu, L. Yu, and Z. Li, Overexpression of EZH2 contributes to acquired cisplatin resistance in ovarian cancer cells in vitro and in vivo, Cancer Biol. Ther, vol.10, issue.8, pp.788-795, 2010.

S. T. Lee, Z. Li, and Z. Wu, Context-specific regulation of NFkB target gene expression by EZH2 in breast cancers, Mol. Cell, vol.43, issue.5, pp.798-810, 2011.

B. Shi, J. Liang, and X. Yang, Integration of estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells, Mol. Cell. Biol, vol.27, issue.14, pp.5105-5119, 2007.

, Future Med. Chem, issue.17, p.6, 2014.

B. G. Wilson and C. Roberts, SWI/SNF nucleosome remodellers and cancer, Nat. Rev. Cancer, vol.11, issue.7, pp.481-492, 2011.

Z. Shao, F. Raible, and R. Mollaaghababa, Stabilization of chromatin structure by PRC1, a Polycomb complex, Cell, vol.98, issue.1, pp.37-46, 1999.

N. J. Francis, A. J. Saurin, Z. Shao, and R. E. Kingston, Reconstitution of a functional core polycomb repressive complex, Mol. Cell, vol.8, issue.3, pp.545-556, 2001.

J. A. Kennison and J. W. Tamkun, Dosage-dependent modifiers of polycomb and antennapedia mutations in Drosophila, Proc. Natl Acad. Sci. USA, vol.85, issue.21, pp.8136-8140, 1988.

J. W. Tamkun, R. Deuring, and M. P. Scott, Brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2, Cell, vol.68, issue.3, pp.561-572, 1992.

J. A. Kennison, The Polycomb and trithorax group proteins of Drosophila: trans-regulators of homeotic gene function, Annu. Rev. Genet, vol.29, pp.289-303, 1995.

S. K. Kia, M. M. Gorski, S. Giannakopoulos, and C. P. Verrijzer, SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus, Mol. Cell. Biol, vol.28, issue.10, pp.3457-3464, 2008.

A. H. Shain and J. R. Pollack, The spectrum of SWI/SNF mutations, ubiquitous in human cancers, PLoS ONE, vol.8, issue.1, p.55119, 2013.

I. Versteege, N. Sévenet, and J. Lange, Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer, Nature, vol.394, issue.6689, pp.203-206, 1998.

C. W. Roberts, S. A. Galusha, M. E. Mcmenamin, C. D. Fletcher, and S. H. Orkin, Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice, Proc. Natl Acad. Sci. USA, vol.97, issue.25, pp.13796-13800, 2000.

B. G. Wilson, X. Wang, and X. Shen, Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation, Cancer Cell, vol.18, issue.4, pp.316-328, 2010.

S. K. Verma and S. D. Knight, Recent progress in the discovery of small-molecule inhibitors of the HMT EZH2 for the treatment of cancer, Future Med. Chem, vol.5, issue.14, pp.1661-1670, 2013.

T. B. Miranda, C. C. Cortez, and C. B. Yoo, DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation, Mol. Cancer Ther, vol.8, issue.6, pp.1579-1588, 2009.

W. Fiskus, Y. Wang, and A. Sreekumar, Combined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells, Blood, vol.114, issue.13, pp.2733-2743, 2009.

Z. Xie, C. Bi, and L. L. Cheong, Determinants of sensitivity to DZNep induced apoptosis in multiple myeloma cells, PLoS ONE, vol.6, issue.6, p.21583, 2011.

T. Chiba, E. Suzuki, and M. Negishi, 3-Deazaneplanocin A is a promising therapeutic agent for the eradication of tumor-initiating hepatocellular carcinoma cells, Int. J. Cancer, vol.130, issue.11, pp.2557-2567, 2012.

G. S. Van-aller, M. B. Pappalardi, and H. M. Ott, Long residence time inhibition of EZH2 in activated polycomb repressive complex 2, ACS Chem. Biol, vol.9, issue.3, pp.622-629, 2014.

M. D. Amatangelo, A. Garipov, H. Li, J. R. Conejo-garcia, D. W. Speicher et al., Three-dimensional culture sensitizes epithelial ovarian cancer cells to EZH2 methyltransferase inhibition, Cell Cycle, vol.12, issue.13, pp.2113-2119, 2013.

S. K. Verma, X. Tian, and L. V. Lafrance, Identification of potent, selective, cell-active inhibitors of the histone lysine methyltransferase EZH2, ACS Med. Chem. Lett, vol.3, issue.12, pp.1091-1096, 2012.

S. K. Knutson, T. J. Wigle, and N. M. Warholic, A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells, Nat. Chem. Biol, vol.8, issue.11, pp.890-896, 2012.

S. K. Knutson, S. Kawano, and Y. Minoshima, Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor activity in EZH2-mutant non-Hodgkin lymphoma, Mol. Cancer Ther, vol.13, issue.4, pp.842-854, 2014.

W. Qi, H. Chan, and L. Teng, Selective inhibition of EZH2 by a small molecule inhibitor blocks tumor cells proliferation, Proc. Natl Acad. Sci. USA, vol.109, issue.52, pp.21360-21365, 2012.

K. D. Konze, A. Ma, and F. Li, An orally bioavailable chemical probe of the lysine methyltransferases EZH2 and EZH1, ACS Chem. Biol, vol.8, issue.6, pp.1324-1334, 2013.

W. Kim, G. H. Bird, and T. Neff, Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer, Nat. Chem. Biol, vol.9, issue.10, pp.643-650, 2013.

R. I. Glazer, K. D. Hartman, and M. C. Knode, 3-Deazaneplanocin: a new and potent inhibitor of S-adenosylhomocysteine hydrolase and its effects on human promyelocytic leukemia cell line HL-60, Biochem. Biophys. Res. Commun, vol.135, issue.2, pp.688-694, 1986.

M. Bray, J. Driscoll, and J. W. Huggins, Treatment of lethal Ebola virus infection in mice with a single dose of an S-adenosyll-homocysteine hydrolase inhibitor, Antiviral Res, vol.45, issue.2, pp.135-147, 2000.

J. Kikuchi, T. Takashina, and I. Kinoshita, Epigenetic therapy with 3-deazaneplanocin A, an inhibitor of the histone methyltransferase EZH2, inhibits growth of non-small cell lung cancer cells, Lung Cancer, vol.78, issue.2, pp.138-143, 2012.

L. L. Cheng, Y. Itahana, and Z. D. Lei, TP53 genomic status regulates sensitivity of gastric cancer cells to the histone methylation inhibitor 3-deazaneplanocin A (DZNep), Clin. Cancer Res, vol.18, issue.15, pp.4201-4212, 2012.

W. Fiskus, R. Rao, and R. Balusu, Superior efficacy of a combined epigenetic therapy against human mantle cell lymphoma cells, Clin. Cancer Res, vol.18, issue.22, pp.6227-6238, 2012.

Y. D. Benoit, M. S. Witherspoon, and K. B. Laursen, Pharmacological inhibition of polycomb repressive complex-2 activity induces apoptosis in human colon cancer stem cells, Exp. Cell Res, vol.319, issue.10, pp.1463-1470, 2013.

Z. Li, Y. Wang, and J. Qiu, The polycomb group protein EZH2 is a novel therapeutic target in tongue cancer, Oncotarget, vol.4, issue.12, pp.2532-2549, 2013.

R. Bauge, . Bazille, . Girard, and &. Lhuissier, , 1965.

L. Liu, Z. Xu, and L. Zhong, EZH2 promotes tumor cell migration and invasion via epigenetic repression of E-cadherin in renal cell carcinoma, BJU Int, 2014.

S. He, J. Wang, and K. Kato, Inhibition of histone methylation arrests ongoing graft-versus-host disease in mice by selectively inducing apoptosis of alloreactive effector T cells, Blood, vol.119, issue.5, pp.1274-1282, 2012.

T. Fujiwara, H. Saitoh, and A. Inoue, 3-Deazaneplanocin A (DZNep), an inhibitor of s-adenosylmethionine-dependent methyltransferase, promotes erythroid differentiation, J. Biol. Chem, vol.289, issue.12, pp.8121-8134, 2014.

J. Tan, Y. Yan, X. Wang, Y. Jiang, and H. E. Xu, EZH2: biology, disease, and structure-based drug discovery, Acta Pharmacol. Sin, vol.35, issue.2, pp.161-174, 2014.

R. A. Copeland, M. E. Solomon, and V. M. Richon, Protein methyltransferases as a target class for drug discovery, Nat. Rev. Drug Discov, vol.8, issue.9, pp.724-732, 2009.

F. Crea, E. M. Hurt, and L. A. Mathews, Pharmacologic disruption of Polycomb repressive complex 2 inhibits tumorigenicity and tumor progression in prostate cancer, Mol. Cancer, vol.10, p.40, 2011.

Y. Chen, M. C. Lin, and H. Yao, Lentivirus-mediated RNA interference targeting enhancer of zeste homolog 2 inhibits hepatocellular carcinoma growth through down-regulation of stathmin, Hepatol. Baltim. Md, vol.46, issue.1, pp.200-208, 2007.

F. Crea, L. Fornaro, and G. Bocci, EZH2 inhibition: targeting the crossroad of tumor invasion and angiogenesis, Cancer Metastasis Rev, vol.31, issue.3-4, pp.753-761, 2012.

S. Vella, D. Gnani, and A. Crudele, EZH2 down-regulation exacerbates lipid accumulation and inflammation in in vitro and in vivo NAFLD, Int. J. Mol. Sci, vol.14, issue.12, pp.24154-24168, 2013.

I. H. Su, A. Basavaraj, and A. N. Krutchinsky, Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement, Nat. Immunol, vol.4, issue.2, pp.124-131, 2003.

, Histone methylases as novel drug targets: developing inhibitors of EZH2 Review -316

. Doctorat-«-aspect-moléculaire, , 2015.

, Mention Bien 2012 Licence Biologie Physiologie animale, Doctorat Financement : Allocation de recherche du Ministère de la Recherche (MENRT) Sujet : Chondrosarcomes : Mécanismes de résistance aux traitements et thérapies innovantes Directeurs de thèse : Catherine Baugé et Karim Boumediene Septembre à Juin 2014 : Master 2 Recherche Sujet : Rôle de HIF, 2014.

A. and J. , IBFA, Unicaen 2014 Encadrement d'étudiants de licence, lycée et collège 2017 Membre du comité du suivi de thèse de Julie Schwartz et Aimen Al Mahjoub Vulgarisation scientifique, vol.2, 2013.

, Préparation à l'entretien d'embauche, Collège des écoles doctorales 2017 International Communication in English, Collège des écoles doctorales 2016 Préparation à la recherche d'emploi, Collège des écoles doctorales 2015 International Communication in English, Collège des écoles doctorales 2015 Formation à la mission d'enseignement, Collège des écoles doctorales 2015 Se former à la médiation scientifique, Relais d'Sciences, Caen -318 -2015 Formation théorique et pratique sur le cytomètre Gallios, Collège des écoles doctorales 2015 Carrières et Management, Collège des écoles doctorales, 2013.

S. Hygiène, Bourse de voyage par l'IUBMB pour la participation aux 16th IUBMB Young Scientists Program et aux16th IUBMB Conference Signalling Pathways in Development, Disease and Aging, Vancouver Canada Subvention par l'EDNBise (Ecole doctorale) pour la participation aux 16th IUBMB Young Scientists Program et aux 16th IUBMB Conference Signalling Pathways in Development, Disease and Aging, Vancouver Canada Bourse de voyage par le Cancéropôle Nord-Ouest pour les 9 èmes journées scientifiques du Cancéropôle, Risques spécifiques et généraux dans les laboratoires de biologie et chimie, Unicaen 2013 Formation à l'utilisation de l'irradiateur X RAD 225 Cx, Ganil Bourses et Prix Bourses : 2017 : Bourse de voyage par la SFBBM pour la participation au Beatson International Cancer Conference, Glasgow, Ecosse Bourse de voyage par le Cancéropôle Nord-Ouest pour les 10 èmes journées scientifiques du Cancéropôle Nord-Ouest, 2014.

, Reverse Transcriptase, PCR en temps réel, extraction d'ADN plasmidique, analyse de données de transcriptomique In vivo : injection en intrapéritonéale, comportement animal, implantation tumorale en sous-cutanée dans des souris nude, suivi des tumeurs Informatique : FlowJo vX 0, Biochimie : extraction de protéines (totales, cytoplasmiques et nucléaires), western blot, test Elisa Biologie moléculaire : extraction ARN, vol.7

, Compétences transversales : Word, Excel, PowerPoint, recherches bibliographiques, rédaction de rapport

N. Girard, J. Aury-landas, O. Cauvard, E. Lhuissier, C. Bazille et al., New insight into chondrosarcoma response to irradiations

E. Lhuissier, C. Bazille, J. Aury-landas, N. Girard, J. Pontin et al., Identification of an easy-to use 3D culture model to investigate invasion and anticancer drug response in chondrosarcomas, BMC Cancer, vol.17, p.490, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01569494

C. Baugé, E. Lhuissier, N. Girard, C. Quesnelle, G. Ewert et al., Anti-inflammatory effects of an injectable copolymer of fatty acids (Ara 3000 beta®) in joint diseases, J Inflammation, vol.12, pp.17-319, 2015.

C. Baugé, C. Bazille, N. Girard, E. Lhuissier, and K. Boumediene, Histone methylases as novel drug targets, Future Med Chem, vol.6, issue.17, pp.1943-65, 2014.

C. Baugé, N. Girard, E. Lhuissier, C. Bazille, and K. Boumediene, Regulation and role of transforming growth factor (TGF) beta signalling pathway in aging joint and osteoarthritis. Aging Dis, vol.5, pp.394-405, 2014.

N. Girard, C. Bazille, E. Lhuissier, H. Bénateau, A. Llombart-bosch et al., 3-deazaneplanocin A (DZNep), aninhibitor of the histone methyltransferase EZH2, induces apoptosis and reduces cell migration in chondrosarcoma cells, PLoS One, p.22, 2014.

E. Lhuissier, N. Girard, A. Bazille, C. Repesse, Y. Bouet et al., The antitumoral effect of the S-adenosylhomocysteine hydrolase inhibitor, 3-Deazaneplanocin A, does not required EZH2 inhibition in chondrosarcomas

E. Lhuissier, L. Allas, J. Aury-landas, K. Boumediene, and C. Baugé, Impact of H3K27 demethylase inhibitor GSKJ4 on chondrosarcoma cells in combination with cisplatin

E. Lhuissier, V. Bouet, J. Aury-landas, C. Bazille, T. Fréret et al., Effect of chronic injections S adenosylhomocysteine hydrolase inhibitor, 3-deazaneplanocin A on male immunocompetent mouse: Behaviour and tissue analysis

E. Lhuissier, J. Aury-landas, M. Boittin, C. Baugé, and K. Boumediene, Hypoxia differentially modulates the response of chondrosarcomas to cisplatin

E. Lhuissier, J. Aury-landas, M. Boittin, K. Boumediene, and C. Baugé, The S-adenosylhomocysteine hydrolase inhibitor, 3-Deazaneplanocin A (DZNep) enhances the response to platinum-based therapy in chondrosarcomas

E. Lhuissier, N. Girard, J. Aury-landas, L. Coulbault, C. Baugé et al., Impact of hypoxia on the response of chondrosarcomas to cisplatin. 16th IUBMB Young Scientists Program, 2016.

N. Girard, C. Bazille, E. Lhuissier, K. Boumediene, and C. Baugé, Inhibitors of the histone methylase EZH2, a new anti-tumoral therapy?, 3rd World Congress on Cancer Science & Therapy, 2013.

E. Lhuissier, J. Aury-landas, C. Laurent, C. Baugé, and K. Boumediene, Is the resistance of chondrosarcomas to cisplatin linked to hypoxia? Journée annuelle de l, pp.16-17, 2017.

E. Lhuissier, N. Girard, V. Bouet, T. Freret, Y. Repesse et al., Effet anti-tumoral du DZNep dans les chondrosarcomes humains : Approche mécanistique et effet in vivo. BIOSARC, pp.6-7, 2016.

E. Lhuissier, J. Aury-landas, L. Coulbault, C. Baugé, and K. Boumediene, La résistance des chondrosarcomes aux traitements conventionnels est-elle liée à l'hypoxie? Journée Normande de Recherche Biomédicale, pp.16-2016

E. Lhuissier, L. Allas, C. Bazille, K. Boumediene, C. Baugé et al., Nouvel agent chimiothérapeutique contre les chondrosarcomes. Journée annuelle de l'EdNBISE, pp.10-11, 2016.

J. Aury-landas, N. Girard, M. Barreau, E. Lhuissier, K. Boumediene et al., Base moléculaires de la résistance aux rayons X dans les chondrosarcomes. 28ème congrès francais de rhumatologie, pp.13-15, 2015.

E. Lhuissier, N. Girard, J. Aury-landas, C. Bazille, C. Bauge et al., Influence de l'hypoxie sur le métabolisme et la résistance aux traitements des chondrosarcomes, pp.8-9, 2015.

N. Girard, C. Bazille, E. Lhuissier, J. Aury-landas, K. Boumediene et al., Utilisation du 3-deazaneplanocin A (DZNep) comme stratégie innovante pour le traitement des chondrosarcomes, p.320, 2015.

N. Girard, C. Bazille, E. Lhuissier, H. Bénateau, K. Boumediene et al., L'histone méthyl-transférase EZH2, une nouvelle cible thérapeutique pour le traitement des chondrosarcomes de haut grade ? 27ème congrès francais de rhumatologie, pp.7-9, 2014.

E. Lhuissier, N. Girard, C. Bazille, K. Boumediene, and C. Bauge, Rôle du facteur HIF-2 sur le métabolisme et la réponse aux traitements des chondrosarcomes. Symposium « Métabolisme de la cellule tumorale et de ses cibles thérapeutiques, pp.6-7, 2014.

N. Girard, C. Bazille, E. Lhuissier, C. Bouet, H. Benateau et al., Le 3-deazaneplanocin A (DZNep), un inhibteur de l'histone méthyl-transférase EZH2, réduit la croissance des chondrosarcomes in vitro et in vivo. Symposium « Métabolisme de la cellule tumorale et de ses cibles thérapeutiques, pp.6-7, 2014.

N. Girard, C. Bazille, E. Lhuissier, H. Benateau, K. Boumédiene et al., Epigenetic therapy: a treatment for chondrosarcoma? 14th FEBS Young Scientists' Forum (YSF). Paris 27-30 août, 2014.

C. Bazille, N. Girard, E. Lhuissier, A. Llombart-bosch, G. Rochcongar et al., Thérapie épigénétique avec le 3-Deazaneplanocin (DZNep), inhibiteur de l'histone méthyl-transférase EZH2, traitement futur des chondrosarcomes de haut grade ? 6ème journée de la Recherche, 2014.

N. Girard, O. Cauvard, C. Bazille, E. Lhuissier, A. Batalla et al., Etude comparative de la sensibilité des chondrosarcomes aux agents endommageant l'ADN. BioSarc 2013 : 2ème journée française dédiée à la BIOlogie des SARComes, pp.17-18

E. Lhuissier, J. Aury-landas, L. Coulbault, C. Baugé, and K. Boumediene, Is the resistance of chondrosarcomas to cisplatin linked to hypoxia? Beatson International Cancer Conference, 2017.

E. Lhuissier, N. Girard, J. Aury-landas, L. Coulbault, C. Baugé et al., Impact of hypoxia on the response of chondrosarcomas to cisplatin, 29th Annual meeting of the European MusculoSkeletal Oncology Society (EMSOS), La Baule, 25-27 mai 2016 and 16th IUBMB Conference Signalling Pathways in Development, Disease and Aging, pp.17-21, 2016.

J. Aury-landas, N. Girard, M. Barreau, E. Lhuissier, C. Bazille et al., Whole-exome sequencing strategy to unravel molecular mechanisms of resistance to conventional therapies in chondrosarcomas, 29th Annual meeting of the European MusculoSkeletal Oncology Society (EMSOS), pp.25-27, 2016.

J. Aury-landas, N. Girard, M. Barreau, E. Lhuissier, K. Boumediene et al., Molecular basis of resistance of chondrosarcomas to conventional therapies, European Society of Human Genetics, pp.21-24, 2016.

C. Bazille, N. Girard, J. Aury-landas, E. Lhuissier, K. Boumediene et al., 3-deazaneplanocin (DNZep), a new epigenetic treatment for chondrosarcomas ? EACR Conference series 2015 "Basic Epigenetic Mechanisms in Cancer, pp.8-11, 2015.

N. Girard, C. Bazille, E. Lhuissier, J. Aury-landas, K. Boumediene et al., 3-deazaneplanocin A (DZNep), a new molecule to treat chondrosarcomas ?, 23rd International Union for Biochemistry and Molecular Biology (IUBMB) Congress and 44th Annual Meeting of the Brazilian Society for Biochemistry and Molecular Biology (SBBq). Foz do Iguaçu Brésil, pp.24-28, 2015.

J. Aury-landas, N. Girard, M. Barreau, E. Lhuissier, C. Baugé et al., Comparative study of response of chondrosarcomas to x-rays, and correlation with their genetic characterizations, 23rd International Union for Biochemistry and Molecular Biology (IUBMB) Congress and 44th Annual Meeting of the Brazilian Society for Biochemistry and Molecular Biology (SBBq). Foz do Iguaçu Brésil, p.321, 2015.

N. Girard, E. Lhuissier, O. Cauvard, A. Batalla, C. Bazille et al., Hadrontherapy by carbon ions, an innovative approach to treat chondrosarcomas, Annual Meeting (JSMO2015), pp.16-18, 2015.

J. Aury-landas, M. Barreau, N. Girard, E. Lhuissier, K. Boumediene et al., Molecular characterization of commonly used chondrosarcoma cell lines. The European Human Genetics Conference 2015 (ESHG), pp.6-9, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01149676

N. Girard, E. Lhuissier, O. Cauvard, A. Batalla, C. Bazille et al., Comparative study of the sensitivity of chondrosarcoma to DNA damaging agents. FEBS-EMBO 2014 congress, 2014.

N. Girard, C. Bazille, E. Lhuissier, H. Benateau, K. Boumédiene et al., Epigenetic therapy: a promising treatment for chondrosarcoma? FEBS-EMBO 2014 congress, 2014.

E. Lhuissier, N. Girard, O. Cauvard, C. Bazille, H. Bénateau et al., Comparative study of chondrosarcomas response to DNA damage. Impact of HIF2 expression. 23rd Biennial Congress of the European Association for Cancer Research (EACR), pp.5-8, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01149717

N. Girard, C. Bazille, E. Lhuissier, H. Bénateau, A. Llombart-bosch et al., 3-deazaneplanocin A (DZNep), an inhibitor of histone methyltransferase EZH2, induces apoptosis and reduces cell migration in chondrosarcoma cells, p.23
URL : https://hal.archives-ouvertes.fr/hal-01149710

, Biennial Congress of the European Association for Cancer Research (EACR), pp.5-8, 2014.

E. Lhuissier, J. Aury-landas, N. Girard, C. Bazille, M. Boittin et al., L'effet anti-tumoral du 3-Deazaneplanocin A, un inhibiteur de la S-adénosylhomocystéine hydrolase, est indépendant de sa capacité à inhiber l'histone méthyltransférase EZH2 dans les chondrosarcomes, èmes journées scientifiques du Cancéropôle, vol.10

. Deauville, , pp.10-12, 2017.

E. Lhuissier, J. Aury-landas, N. Girard, C. Bazille, K. Boumédiene et al., Is the histone methylase EZH2 a good target to treat chondrosarcomas? EPIBREST, 2016.

E. Lhuissier, N. Girard, J. Aury-landas, C. Bazille, Y. Repesse et al., Effet anti-tumoral du DZNep dans les chondrosarcomes humains : Approche mécanistique et effet in vivo. Journée Normande de Recherche Biomédicale, pp.16-2016

J. Aury-landas, N. Girard, M. Barreau, E. Lhuissier, S. Rousseau et al., Validation de l'utilisation de lignées cellulaires pour l'étude de la résistance aux traitements dans les chondrosarcomes, Journée Normande de Recherche Biomédicale, pp.16-2016

E. Lhuissier, J. Aury-landas, L. Coulbault, C. Baugé, and K. Boumediene, Impact de l'hypoxie sur la réponse des chondrosarcomes aux traitements conventionnels. 9èmes journées scientifiques du Cancéropôle, 2016.

E. Lhuissier, L. Allas, C. Bazille, K. Boumediene, and C. Baugé, L'inhibition pharmacologique de la méthylation de H3K27 réduit la croissance des chondrosarcomes. 9èmes journées scientifiques du Cancéropôle, 2016.

J. Aury-landas, N. Girard, M. Barreau, E. Lhuissier, K. Boumediene et al., Identification de gènes potentiellement impliqués dans la résistance aux traitements conventionnels dans les chondrosarcomes par une approche de génomique fonctionnelle comparative. 9èmes journées scientifiques du Cancéropôle, 2016.

J. Aury-landas, N. Girard, M. Barreau, E. Lhuissier, K. Boumediene et al., Comparative study of response of chondrosarcomas to X-rays. Correlation with their genetic background, pp.8-9, 2015.

N. Girard, E. Lhuissier, J. Aury-landas, O. Cauvard, C. Bazille et al., Réponse des chondrosarcomes aux irradiations par rayons X et ions carbone, pp.10-12, 2015.

J. Aury-landas, M. Barreau, N. Girard, E. Lhuissier, K. Boumediene et al., Caractérisation moléculaire de lignées cellulaires dérivées de chondrosarcomes humains. 8èmes journées scientifiques du Cancéropôle

E. Lhuissier, N. Girard, J. Aury-landas, C. Bazille, K. Boumediene et al., Régulation d'EZH2 par les radiations ionisantes dans les cellules cartilagineuses normales et tumorales. 8èmes journées scientifiques du Cancéropôle, pp.10-12, 2015.

J. Aury-landas, M. Barreau, N. Girard, E. Lhuissier, K. Boumediene et al., Identification, par séquençage d'exomes, de mutations potentiellement impliquées dans la résistance aux rayons X dans cinq lignées cellulaires dérivées de chondrosarcomes humains, 2015.

E. Lhuissier, N. Girard, J. Aury-landas, C. Bazille, C. Bauge et al., Rôle de l'hypoxie sur la résistance des chondrosarcomes à la chimiothérapie et à la radiothérapie.7ème Journée de la Recherche du, 2015.

E. Lhuissier, N. Girard, O. Cauvard, C. Bazille, C. Baugé et al., Rôle de l'hypoxie sur le métabolisme et la réponse aux traitements des chondrosarcomes, pp.26-27, 2015.

N. Girard, E. Lhuissier, O. Cauvard, C. Bazille, J. Aury-landas et al., Réponse des chondrosarcomes aux irradiations aux rayons X et aux ions carbone. Radiation in oncology, Nantes, pp.12-2015

E. Lhuissier, N. Girard, O. Cauvard, C. Bazille, C. Baugé et al., Rôle de l'hypoxie sur la réponse aux traitements des chondrosarcomes par irradiation aux rayons X. Radiation in oncology, Nantes, pp.12-2015

E. Lhuissier, N. Girard, C. Bazille, C. Baugé, and K. Boumediene, Rôle de HIF2 dans les mécanismes de résistance des chondrosarcomes à la chimiothérapie. 7ème journées scientifiques du Cancéropôle, pp.14-16, 2014.

N. Girard, E. Lhuissier, O. Cauvard, A. Batalla, C. Bazille et al., Etude comparative de la sensibilité des chondrosarcomes aux agents endommageant l'ADN. 7èmes journées scientifiques du Cancéropôle, pp.14-16, 2014.

C. Bazille, N. Girard, E. Lhuissier, A. Llombart-bosch, G. Rochcongar et al., La thérapie épigénétique avec le 3-Deazaneplanocin A (DZNep), inhibiteur de l'histone méthyl-transférase EZH2, induit l'apoptose et réduit la migration cellulaire des chondrosarcomes. 7èmes journées scientifiques du Cancéropôle, pp.14-16, 2014.

N. Girard, O. Cauvard, E. Lhuissier, A. Batalla, C. Bazille et al., Etude comparative de la sensibilité des chondrosarcomes aux agents endommageant l'ADN. 6ème journées scientifiques du Cancéropôle, pp.15-17, 2013.