, Appendix B, vol.226

, Speciation of the Extractant: a Mole Fraction Representation, vol.227, p.231

.. .. Methodes,

.. .. Résultats,

.. .. Observations, Charge Properties of TiO 2 Nanotubes in NaNO 3 Aqueous Solution, eg epplied wterils & snterfes, General Conclusion The List of Publications M, vol.10, pp.13130-13142, 2018.

M. Padina, M. K. Bohinc, T. Zemb, and J. Dufrêche, Multicomponent Model for the Prediction of Nuclear Waste/Rare-Earth Extraction Processes. vngmuir, vol.34, pp.10434-10447, 2018.

M. Padina, K. Bohinc, T. Zemb, and J. Dufrêche, A colloidal model of prediction of the extraction of rare earths assisted by the acidic extractant, vol.35, pp.3215-3230, 2019.

M. Padina, K. Bohinc, T. Zemb, and J. Dufrêche, Modeling rare earth cations extraction by the mixture of extractants: can we trace the origin of the synergy?

M. Padina, J. Rey, S. Dourdain, S. Pellet-rostaing, K. Bohinc et al., Synergy and Anti-Synergy in Liquid-Liquid Extraction: The Rule Rather Than the Exception

M. Padina, A. Selmani, G. Drazi¢, B. Radatovi¢, D. Kova£evi¢ et al., Mesoscopic Modelling of Cs + Decontamination Process Utilizing TiO 2 Nanotubular Adsorbent

, ?1 . The TiO 2 NTs were dried at 80

, A 200 kV Cs-probe-corrected cold-eld-emission transmission electron microscope (Jeol ARM 200 CF), coupled with a Gatan Quantum ER electron energy-loss spectroscopy (EELS) system and an energy-dispersive X-ray spectroscopy (EDXS) system Jeol Centurio with a 100 mm 2 SDD detector was used. Samples with TiO 2 NTs powder were dispersed in ethanol, Characterization the TiO 2 NTs: HR-TEM The morphology and size of TiO 2 NTs were studied by high-resolution transmission electron microscopy

, Non-contact AC (tapping) mode was used for acquisition with setpoint of 52%. AppNano silicon tips with a nominal spring constant of 45 -90 N/m, a tip radius less than 5 nm and a nominal resonant frequency of 160 225 kHz were used, Characterization the TiO 2 NTs: AFM Atomic force microscope (AFM) images of nanotubes were taken with JPK Nanowizard Ultra Speed AFM under ambient conditions

, Electrophoretic Mobility of the TiO 2 NTs Electrophoretic mobility of the TiO 2 NTs was determined using the Zetasizer Nano ZS (Malvern, UK) equipped with a green laser (? = 532 nm). The intensity of scattered light was, p.173

?. , For electrokinetic measurements the TiO 2 NTs suspension with mass the bath sonicator (35 kHz, 320 W, Bandelin Sonorex Rk 100 H) before mobility

, the HNO 3 , the system was left for equilibration for ten minutes to obtain stable pH electrode signal response with the potentiometer accuracy of 0.01 mV. In order to prevent sedimentation, stirring was applied during the measurement. Then pH was recorded with combined microglass electrode (6.0228.010, Metrohm) which was calibrated with ve standard buers

, Nous permettons la formation de tous les agrégats sphériques possibles à l'équilibre, tels que dénis par la loi de l'action de masse. L'énergie libre est la somme de diérentes contributions énergétiques, qui sont décrites aux chapitres 4, 5 et 6. L'énergie libre d'un agrégat individuel est par dénition son potentiel chimique standard. Lorsque le potentiel chimique standard est connu, il nous permet de compléter la loi d'action de masse, mais pas seulement : si nous connaissons la fonctionnalité des termes énergétiques, nous pouvons calculer tous les agrégats possibles. C'est l'idée maîtresse de cette partie de la thèse et elle peut s'écrire dans un vocabulaire plus général de chimie colloïdale : tous les agrégats sont possibles et peuvent coexister en équilibre, Notre approche consiste à établir l'expression de l'énergie libre d'un agrégat particulier dans le solvant organique

, La principale conclusion proposée par notre travail est la dissimilarité de la charge totale de deux surfaces qui ne suit pas le rapport de leurs rayons

, En l'absence de toute technique expérimentale pouvant fournir des preuves éclairantes, le seul choix serait d'utiliser d'autres cadres théoriques et de voir si l'accumulation de charges se produit. entre les agrégats n'est pris en compte. Nous avons démontré les forces et les faiblesses du modèle sur l'exemple de l'extractant DMDOHEMA solvant non-ionique, qui est important pour l'industrie nucléaire du retraitement du combustible. La principale conclusion de ce chapitre est l'identication des diérents types d'agrégats présents à l'équilibre, comme Chapter 7. General Conclusion essayé de fournir un cadre qui peut être utilisé par les ingénieurs chimistes pour la simplication des plans d'expériences. Même si elle est loin d'être parfaite, L'accumulation inattendue de la charge sur la surface externe est attribuée à l'absence d'électroneutralité à l'intérieur des nanotubes

, ). ustinility in the ghemil sndustryX qrnd ghlE lenges end eserh xeeds ! orkshop fook, 2005.

K. Binnemans, P. T. Jones, B. Blanpain, T. Van-gerven, Y. Yang et al., Recycling of rare earths: A critical review. tournl of glener rodution, vol.51, p.122, 2013.

S. David, R. P. Sholl, and . Lively, Comment. xture, vol.532, issue.435, p.69, 2016.

F. Xie, A. Ting, D. Zhang, F. Dreisinger, and . Doyle, A critical review on solvent extraction of rare earths from aqueous solutions. winerls ingineering, vol.56, p.1028, 2014.

A. Manis-kumar-jha, R. Kumari, . Panda, K. Jyothi-rajesh-kumar, J. Y. Yoo et al., Review on hydrometallurgical recovery of rare earth metals. rydrometllurgy, vol.165, p.226, 2016.

A. Walters and P. Lusty, Rare earth elements. fritish qeologil urvey, p.54, 2011.

C. Ho-sung-yoon, K. Kim, S. D. Chung, J. Y. Kim, J. Lee et al., Solvent extraction, separation and recovery of dysprosium (Dy) and neodymium (Nd) from aqueous solutions: Waste recycling strategies for permanent magnet processing, rydrometllurgy, vol.165, p.2743, 2016.

H. Jimmy and K. George, eprtion roess ehnology. McGraw-Hill, 1997.

J. Rydberg, M. Cox, C. Musikas, and G. R. Choppin, olvent ixtrtion riniples nd rtieD evised nd ixpnded, 2004.

H. Bart, , 2001.

A. M. Wilson, P. J. Bailey, P. A. Tasker, J. R. Turkington, R. A. Grant et al., Solvent extraction: the coordination chemistry behind extractive metallurgy. ghemF oF evF, vol.43, p.123134, 2014.

V. Artem, G. J. Gelis, and . Lumetta, Actinide Lanthanide Separation Process -ALSEP. sndF ingF ghemF esF, vol.53, p.16241631, 2014.

E. Krahn, C. Marie, and K. Nash, Probing organic phase ligand exchange kinetics of 4f/5f solvent extraction systems with NMR spectroscopy. goordF ghemF evF, vol.316, p.2135, 2016.

B. Weaver and F. A. Kappelmann, Preferential extraction of lanthanides over trivalent actinides by monoacidic organophosphates from carboxylic acids and from mixtures of carboxylic and aminopolyacetic acids. tournl of snorgni nd xuler ghemistry, vol.30, pp.263-272, 1968.

G. J. Lumetta, A. V. Gelis, and G. F. Vandegrift, Review: Solvent systems combining neutral and acidic extractants for separating trivalent lanthanides from the transuranic elements. olvent ixtrtion nd son ixhnge, vol.28, p.287312, 2010.

P. Tkac, G. F. Vandegrift, G. J. Lumetta, and A. V. Gelis, Study of the interaction between hdehp and cmpo and its eect on the extraction of selected lanthanides. sndustril 8 ingineering ghemistry eserh, vol.51, p.1043310444, 2012.

C. Madic, M. Lecomte, P. Baron, and B. Boullis, Separation of long-lived radionuclides from high active nuclear waste. gomptes endus hysique, vol.3, p.797811, 2002.

G. J. Lumetta, A. V. Gelis, and G. F. Vandegrift, Review: Solvent systems combining neutral and acidic extractants for separating trivalent lanthanides from the transuranic elements. olvent ixtrF son ixhF, vol.28, p.287312, 2010.

D. M. Whittaker, T. L. Griths, M. Helliwell, A. N. Swinburne, L. S. Natrajan et al., Lanthanide speciation in potential SANEX and GANEX actinide/lanthanide separations using tetra-N-donor extractants, vol.52, p.34293444, 2013.

G. Modolo, H. Vijgen, D. Serrano-purroy, and B. Christiansen, Rikard Malmbeck, Christian Sorel, and Pascal Baron. DIAMEX counter-current extraction process for recovery of trivalent actinides from simulated high active concentrate. eprtion iene nd ehnology, vol.42, p.439452, 2007.

D. F. Peppard, S. W. Moline, and G. W. Mason, Isolation of berkelium by solvent extraction of the tetravalent species. tournl of snorgni nd xuler ghemistry, vol.4, pp.344-348, 1957.

T. Zemb, C. Bauer, P. Bauduin, L. Belloni, C. Déjugnat et al., Fabienne Testard, and Stéphane Pellet-Rostaing. Recycling metals by controlled transfer of ionic species between complex uids: en route to ienaics. golE loid nd olymer iene, vol.293, p.122, 2015.

M. R. Antonio, R. Chiarizia, B. Gannaz, L. Berthon, N. Zorz et al., Aggregation in solvent extraction systems containing a malonamide, a dialkylphosphoric acid and their mixtures. eprtion iene nd ehnology, vol.43, p.25722605, 2008.

J. Rey, S. Dourdain, L. Berthon, J. Jestin, S. Pellet-rostaing et al., Synergy in Extraction System Chemistry: Combining Congurational Entropy, Film Bending, and Perturbation of Complexation. vngmuir, vol.31, p.70067015, 2015.

W. Andrew, B. Knight, R. Qiao, T. Chiarizia, . Forbes et al., Subtle Eects of Aliphatic Alcohol Structure on Water Extraction and Solute Aggregation in Biphasic Water, 2017.

Y. Chen, M. Duvail, P. Guilbaud, and J. Dufrêche, Stability of reverse micelles in rare-earth separation: a chemical model based on a molecular approach. hysF ghemF ghemF hysF, vol.25, p.70947100, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02000040

M. N. Vo, V. S. Bryantsev, J. Johnson, and J. A. Keith, Quantum chemistry benchmarking of binding and selectivity for lanthanide extractants. snternE tionl tournl of untum ghemistry, vol.118, p.25516

R. J. Ellis, T. Demars, G. Liu, J. Niklas, O. G. Poluektov et al., In the Bottlebrush Garden: The Structural Aspects of Coordination Polymer Phases formed in Lanthanide Extraction with Alkyl Phosphoric Acids. tF hysF ghemF f, vol.119, p.1191011927, 2015.

Y. Jing, J. Chen, L. Chen, W. Su, Y. Liu et al., Extraction behaviors of heavy rare earths with organophosphoric extractants: The contribution of extractant dimer dissociation, acid ionization, and complexation. a quantum chemistry study. he tournl of hysil ghemistry e, vol.121, p.28263616, 2017.

E. Acher, T. Dumas, C. Tamain, N. Boubals, P. L. Solari et al., Inner to outer-sphere coordination of plutonium(iv) with N,N-dialkyl amide: Inuence of nitric acid. hltF rnsF, vol.46, p.38123815, 2017.

P. Moeyaert, T. Dumas, D. Guillaumont, and K. Kvashnina, Christian Sorel, Manuel Miguirditchian, Philippe Moisy, and Jean François Dufrêche. Modeling and Speciation Study of Uranium(VI) and Technetium(VII) Coextraction with DEHiBA. snorgF ghemF, vol.55, p.65116519, 2016.

G. Anna, A. S. Baldwin, . Ivanov, J. Neil, R. J. Williams et al., Outer-Sphere Water Clusters Tune the Lanthanide Selectivity of Diglycolamides, vol.4, p.739747, 2018.

R. Motokawa, T. Kobayashi, H. Endo, J. Mu, C. D. Williams et al., A Telescoping View of Solute Architectures in a, Complex Fluid System. eg gentF iF, vol.5, issue.1, pp.85-96, 2019.

R. J. Ellis, Y. Meridiano, R. Chiarizia, L. Berthon, J. Muller et al., Periodic behavior of lanthanide coordination within reverse micelles, ghemistry E e iuropen tournl, vol.19, issue.8, p.26632675, 2013.

D. M. Brigham, A. S. Ivanov, B. A. Moyer, L. H. Delmau, S. Vyacheslav et al., Trefoil-shaped outer-sphere ion clusters mediate lanthanide(iii) ion transport with diglycolamide ligands. tournl of the emerin ghemE il oiety, vol.139, p.29083173, 2017.

J. Brian, A. T. Gullekson, A. Breshears, J. B. Brown, . Essner et al., Extraction of Water and Speciation of Trivalent Lanthanides and Americium in Organophosphorus Extractants. snorgni ghemistry, vol.55, p.1267512685, 2016.

J. M. Muller, C. Berthon, L. Couston, D. Guillaumont, and J. Ross,

N. Ellis, J. P. Zorz, L. Simonin, and . Berthon, Understanding the synergistic eect on lanthanides(III) solvent extraction by systems combining a malonamide and a dialkyl phosphoric acid. rydrometllurgy, vol.169, p.542551, 2017.

R. Spezia, V. Migliorati, and P. Angelo, On the development of polarizable and Lennard-Jones force elds to study hydration structure and dynamics of actinide(III) ions based on eective ionic radii. tF ghemF hysF, vol.147, 2017.

E. Galbis, J. Hernández-cobos, C. D. Auwer, C. Le-naour, D. Guillaumont et al., Solving the hydration structure of the heaviest actinide aqua ion known: the californium(III) case. engewF ghemie E sntF idF, vol.49, p.38113815, 2010.
URL : https://hal.archives-ouvertes.fr/in2p3-00493001

C. Marie, M. Miguirditchian, D. Guillaumont, A. Tosseng, C. Berthon et al., Complexation of lanthanides(III), americium(III), and uranium(VI) with bitopic N,O ligands: An experimental and theoretical study. snorgF ghemF, vol.50, p.65576566, 2011.

X. Wang, Z. Li, J. Shi, and Y. Yu, One-dimensional titanium dioxide nanomaterials: Nanowires, nanorods, and nanobelts. ghemF evF, vol.114, p.93469384, 2014.

P. Guilbaud and T. Zemb, Solute-induced microstructural transition from weak aggregates towards a curved lm of surface-active extractants. ghemhysghem, vol.13, p.687691, 2012.

R. J. Ellis, Y. Meridiano, J. Muller, L. Berthon, P. Guilbaud et al., Complexationinduced supramolecular assembly drives metal-ion extraction, vol.20, p.1279612807, 2014.

B. Qiao, J. V. Muntean, M. Olvera-de-la, C. , and R. J. Ellis, Ion transport mechanisms in liquid-liquid interface. vngmuir, vol.33, p.61356142, 2017.

B. Qiao, G. Ferru, M. Olvera-de, L. Cruz, and R. J. Ellis, Molecular origins of mesoscale ordering in a metalloamphiphile phase, eg gentrl iene, vol.1, issue.9, p.493503, 2015.

B. Qiao, T. Demars, M. Olvera-de, L. Cruz, and R. J. Ellis, How hydrogen bonds aect the growth of reverse micelles around coordinating metal ions. tournl of hysil ghemistry vetters, vol.5, p.14401444, 2014.

M. Duvail, P. Steven-van-damme, Y. Guilbaud, T. Chen, J. Zemb et al., The role of curvature eects in liquidliquid extraction: assessing organic phase mesoscopic properties from MD simulations, vol.13, p.55185526, 2017.

O. Pecheur, S. Dourdain, D. Guillaumont, J. Rey, P. Guilbaud et al., Synergism in a HDEHP/TOPO Liquid-Liquid Extraction System: An Intrinsic Ligands Property? tournl of hysil ghemistry f, vol.120, p.28142823, 2016.

G. Ferru, D. Gomes-rodrigues, L. Berthon, O. Diat, P. Bauduin et al., Elucidation of the structure of organic solutions in solvent extraction by combining molecular dynamics and X-ray scattering. engewndte ghemie E snterntionl idition, vol.53, p.53465350, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02005309

C. Tanford, he rydrophoi i'etX pormtion of wielles nd fiologil wemrnes, Garland Science, 1980.

D. , J. Mitchell, and B. W. Ninham, Micelles, vesicles and microemulsions. tournl of the ghemil oietyD prdy rnstions, vol.77, p.601, 1981.

R. Nagarajan, Molecular packing parameter and surfactant self-assembly: The neglected role of the surfactant tail. vngmuir, vol.18, p.3138, 2002.

C. Déjugnat, S. Dourdain, V. Dubois, and L. Berthon, Reverse aggregate nucleation induced by acids in liquid-liquid extraction processes. hysil ghemistry ghemil hysis, vol.16, p.7339, 2014.

J. Rey, S. Dourdain, J. F. Dufrêche, L. Berthon, J. M. Muller et al., Thermodynamic Description of Synergy in Solvent Extraction: I. Enthalpy of Mixing at the Origin of Synergistic Aggregation. vngmuir, vol.32, p.1309513105, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02000053

T. Zemb and O. Diat, How Do Anions A ect Self-Assembly and Solubility of Cetylpyridinium Surfactants in Water, 2013.

M. Pleines, isosityEontrol nd predition of miroemulsionsF hése de l9niversité de wontpellier, 2018.

F. Testard, L. Berthon, and T. Zemb, Liquid-liquid extraction: An adsorption isotherm at divided interface? gomptes endus ghimie, vol.10, p.10341041, 2007.

S. Dourdain, C. Déjugnat, L. Berthon, V. Dubois, S. Pellet-rostaing et al., Liquid-Liquid Extraction of Acids by a Malonamide: II-Anion Specic Eects in the Aggregate-Enhanced Extraction Isotherms. olvent ixtrtion nd son ixhnge, vol.32, p.620636, 2014.

T. Zemb, M. Duvail, and J. Dufrêche, Reverse Aggregates as Adaptive Self-Assembled Systems for Selective Liquid-Liquid Cation Extraction. ssrel tournl of ghemistry, vol.53, p.108112, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02000312

G. Cote, Hydrometallurgy of strategic metals. olvent ixtrF son ixhF, vol.18, p.703727, 2000.

A. A. Leopold, M. T. Coll, A. Fortuny, N. S. Rathore, and A. M. Sastre, Mathematical modeling of cadmium(II) solvent extraction from neutral and acidic chloride media using Cyanex 923 extractant as a metal carrier, vol.182, p.903911, 2010.

P. Moeyaert, M. Miguirditchian, M. Masson, B. Dinh, X. Hérès et al., Experimental and modelling study of ruthenium extraction with tri-n-butylphosphate in the purex process, ghemF ingF iF, vol.158, p.580586, 2016.

W. Shaohua-yin, X. Wu, Y. Bian, F. Luo, and . Zhang, Solvent extraction of La(III) from chloride medium in the presence of two water soluble complexing agents with di-(2-ethylhexyl) phosphoric acid. sndF ingF ghemF esF, vol.52, p.85588564, 2013.

D. Beltrami, A. Chagnes, M. Haddad, H. Laureano, H. Mokhtari et al., Solvent extraction studies of uranium(VI) from phosphoric acid: Role of synergistic reagents in mixture with bis(2-ethylhexyl) phosphoric acid. rydrometllurgy, pp.144-145, 2014.

A. Dartiguelongue, A. Chagnes, E. Provost, W. Fürst, and G. Cote, Modelling of uranium(VI) extraction by D2EHPA/TOPO from phosphoric acid within a wide range of concentrations. rydrometllurgy, vol.165, p.5763, 2016.

Y. Meridiano, L. Berthon, X. Crozes, C. Sorel, P. Dannus et al., Aggregation in organic solutions of malonamides: Consequences for water extraction. olvent ixtrtion nd son ixhnge, vol.27, p.607637, 2009.

B. Epaminondas, T. Leodidis, and A. Hatton, Amino acids in AOT reversed micelles. 1. Determination of interfacial partition coecients using the phase-transfer method. tF hysF ghemF, vol.94, p.64006411, 1990.

B. Epaminondas, T. Leodidis, and A. Hatton, Amino acids in AOT reversed micelles. 2. The hydrophobic eect and hydrogen bonding as driving forces for interfacial solubilization. tF hysF ghemF, vol.94, p.64116420, 1990.

B. Epaminondas, A. S. Leodidis, T. A. Bommarius, and . Hatton, Amino acids in reversed micelles. 3. Dependence of the interfacial partition coecient on excess phase salinity and interfacial curvature. tF hysF ghemF, vol.95, p.59435956, 1991.

B. Epaminondas, T. Leodidis, and A. Hatton, Amino Acids in Reversed Micelles. 4. Amino Acids as cosfurfactants. tF hysF ghemF, vol.95, p.59575965, 1991.

J. Dufrêche and T. Zemb, Eect of long-range interactions on ion equilibria in liquid-liquid extraction. ghemil hysis vetters, vol.622, p.4549, 2015.

M. Bley, B. Siboulet, A. Karmakar, T. Zemb, and J. Dufrêche, A predictive model of reverse micelles solubilizing water for solvent extraction, vol.479, p.106114, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02000058

A. Karmakar, M. Duvail, M. Bley, T. Zemb, and J. Dufrêche, Combined supramolecular and mesoscale modelling of liquidliquid extraction of rare earth salts. golloids nd urfes eX hysiohemil nd ingineering espets, vol.555, pp.713-727, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01998379

Y. Berube and P. Bruyn, Adsorption at the rutile-solution interface. tF golloid snterfe iF, vol.28, p.92105, 1968.

T. Hiemstra, G. Van-riemsdijk, and . Bolt, Multisite proton adsorption modeling at the solid/solution interface of (hydr) oxides: A new approach: I. Model description and evaluation of intrinsic reaction constants. tF golloid snterfe iF, vol.133, p.91104, 1989.

G. Van-riemsdijk, L. Bolt, J. Koopal, and . Blaakmeer, Electrolyte adsorption on heterogenous surfaces: adsorption models. tF golloid snterfe iF, vol.109, p.219228, 1986.

K. Bourikas, T. Hiemstra, and W. H. Van-riemsdijk, Ion pair formation and primary charging behavior of titanium oxide (anatase and rutile). vngmuir, vol.17, p.749756, 2001.

F. Greta-r-patzke, R. Krumeich, and . Nesper, Oxidic nanotubes and nanorodsAnisotropic modules for a future nanotechnology. engewF ghemie E sntF idF, vol.41, pp.2446-2461, 2002.

A. Charlot, F. Cuer, and A. Grandjean, The eect of pore diameter in the arrangement of chelating species grafted onto silica surfaces with application to uranium extraction, vol.41, p.503511, 2017.

A. Selmani, M. Padina, M. Plodinec, I. D. Marion, M. G. Willinger et al., An Experimental and Theoretical Approach to Understanding the Surface Properties of One-Dimensional TiO2 Nanomaterials. tF hysF ghemF g, vol.120, p.4150, 2016.

H. Kaper, J. Nicolle, J. Cambedouzou, and A. Grandjean, Multi-method analysis of functionalized single-walled carbon nanotubes for cesium liquid-solid extraction. wterF ghemF hysF, vol.147, p.147154, 2014.

J. Li, X. Wang, G. Zhao, C. Chen, Z. Chai et al., Metalorganic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. ghemF oF evF, vol.47, pp.2322-2356, 2018.

D. T. Sun, L. Peng, W. S. Reeder, M. Seyed, D. Moosavi et al., Rapid, Selective Heavy Metal Removal from Water by a Metal-Organic Framework/Polydopamine Composite. eg gentF iF, vol.4, p.349356, 2018.

C. S. Diercks, M. J. Kalmutzki, N. J. Diercks, and O. M. Yaghi, Conceptual Advances from Werner Complexes to Metal-Organic Frameworks. eg gentF iF, vol.4, p.14571464, 2018.

S. Demir, N. K. Brune, J. F. Van-humbeck, J. A. Mason, and V. Tatiana,

S. Plakhova, G. Wang, S. G. Tian, T. Minasian, T. Tyliszczak et al.,

R. Jerey and . Long, Extraction of lanthanide and actinide ions from aqueous mixtures using a carboxylic acid-functionalized porous aromatic framework. eg gentF iF, vol.2, pp.253-265, 2016.

B. Li, Y. Zhang, D. Ma, Z. Shi, and S. Ma, Removal of mercury (II) from aqueous solution. xtF gommunF, vol.5, p.17, 2014.

A. Merceille, E. Weinzaepfel, Y. Barré, and A. Grandjean, The sorption behaviour of synthetic sodium nonatitanate and zeolite A for removing radioactive strontium from aqueous wastes. epF urifF ehnolF, vol.96, p.8188, 2012.

C. Michel, Y. Barré, C. De-dieuleveult, A. Grandjean, and L. Windt, Cs ion exchange by a potassium nickel hexacyanoferrate loaded on a granular support, ghemF ingF iF, vol.137, p.904913, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01191903

A. Villard, B. Siboulet, G. Toquer, A. Merceille, A. Grandjean et al., Strontium selectivity in sodium nonatitanate Na4Ti9O20·xH2O. tF rzrdF wterF, vol.283, p.432438, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02000305

A. Villard, G. Toquer, and B. Siboulet, Philippe Trens, Agnès Grandjean, and Jean François Dufrêche. Sorption pH dependance of strontium/calcium by sodium nonatitanate. ghemosphere, vol.202, p.3339, 2018.

C. Guévar, A. Hertz, E. Brackx, Y. Barré, and A. Grandjean, Mechanisms of strontium removal by a Ba-titanate material for the wastewater treatment, tF invironF ghemF ingF, vol.5, issue.5, p.49484957, 2017.

C. Michel, Y. Barré, L. D. Windt, C. D. Dieuleveult, E. Brackx et al., Ion exchange and structural properties of a new cyanoferrate mesoporous silica material for Cs removal from natural saline waters, tF invironF ghemF ingF, vol.5, issue.1, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01450640

A. Sachse, A. Merceille, Y. Barré, and A. Grandjean, François Fajula, and Anne Galarneau. Macroporous LTA-monoliths for in-ow removal of radioactive strontium from aqueous euents: Application to the case of Fukushima. wiroporous wesoE porous wterF, vol.164, p.251258, 2012.

M. Jardat, J. Dufrêche, V. Marry, B. Rotenberg, and P. Turq, Salt exclusion in charged porous media: a coarse-graining strategy in the case of montmorillonite clays. hysF ghemF ghemF hysF, vol.11, p.20232033, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01917646

N. Schwierz, D. Horinek, and R. R. Netz, Anionic and cationic hofmeister eects on hydrophobic and hydrophilic surfaces. vngmuir, vol.29, p.26022614, 2013.

J. Dufrêche, T. O. White, and J. Hansen, Charged-stabilized colloidal suspensions: Counterion condensation and phase diagrams. wolF hysF, vol.101, p.17411759, 2003.

S. Hocine, R. Hartkamp, B. Siboulet, M. Duvail, B. Coasne et al., How Ion Condensation Occurs at a Charged Surface: A Molecular Dynamics Investigation of the Stern Layer for Water-Silica Interfaces. tF hysF ghemF g, vol.120, p.963973, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02000098

C. D. Filippo-de-angelis, S. Valentin, A. Fantacci, A. Vittadini, and . Selloni, Theoretical studies on anatase and less common TiO2phases: Bulk, surfaces, and nanomaterials. ghemF evF, vol.114, p.97089753, 2014.

R. Hartkamp, A. L. Biance, L. Fu, J. François-dufrêche, O. Bonhomme et al., Measuring surface charge: Why experimental characterization and molecular modeling should be coupled. gurrF ypinF golloid snterfe iF, vol.37, p.101114, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01909438

R. Pierre-andre-cazade, B. Hartkamp, and . Coasne, Structure and dynamics of an electrolyte conned in charged nanopores. tF hysF ghemF g, vol.118, p.50615072, 2014.

B. Siboulet, S. Hocine, R. Hartkamp, and J. Dufrêche, Scrutinizing electro-osmosis and surface conductivity with molecular dynamics. tF hysF ghemF g, vol.121, p.67566769, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02000032

D. Christian, A. Lorenz, and . Travesset, Charge inversion of divalent ionic solutions in silica channels. hysF evF i E ttF xonlinerD oft wtter hysF, vol.75, p.26, 2007.

K. Bohinc, J. Res, J. Dufrêche, and L. Lue, Recycling of Uranyl from Contaminated Water, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02001883

K. Bohinc, J. Re²£i£, and S. , Electrostatic adsorption and orientational order of inhomogeneously charged particles on at surfaces. tF wolF viqF, vol.228, p.201207, 2017.

C. Bo-jönsson, B. Labbez, and . Cabane, Interaction of nanometric clay platelets. vngE muir, vol.24, p.1140611413, 2008.

A. Bo-jönsson, C. Nonat, B. Labbez, H. Cabane, and . Wennerström, Controlling the cohesion of cement paste. vngmuir, vol.21, p.92119221, 2005.

W. Jonathan, . Lee, H. Robert, J. A. Nilson, . Templeton et al., Comparison of Molecular Dynamics with Classical Density Functional and Poisson?Boltzmann Theories of the Electric Double Layer in Nanochannels. tF ghemF heory gomputF, vol.8, 2012.

R. Evans, The nature of the liquid-vapour interface and other topics in the statistical mechanics of non-uniform, vol.28, p.143200, 1979.

A. Gonzalez, J. White, F. Roman, S. Velasco, and R. Evans, Density Functional Theory for Small Systems: Hard Spheres in a Closed Spherical Cavity. hysF evF vettF, vol.79, pp.2466-2469, 1997.

Y. Xin, Y. Zheng, and Y. Yu, Density functional theory study on ion adsorption and electroosmotic ow in a membrane with charged cylindrical pores. wolF hysF, vol.8976, p.19, 2015.

E. Trizac and J. Hansen, Wigner-Seitz model of charged lamellar colloidal dispersions. hysF evF i, vol.56, p.3137, 1997.

G. Trefalt, S. H. Behrens, and M. Borkovec, Charge Regulation in the Electrical Double Layer: Ion Adsorption and Surface Interactions. vngmuir, vol.32, p.400, 2016.

S. Behrens and M. Borkovec, Exact Poisson-Boltzmann solution for the interaction of dissimilar charge-regulating surfaces. hysF evF iF ttF hysF lsmsF pluidsF eltF snterdisipF opis, vol.60, p.70408, 1999.

C. Fleck, H. Roland-r-netz, and . Hennig-von-grünberg, Poisson-Boltzmann theory for membranes with mobile charged lipids and the pH-dependent interaction of a DNA molecule with a membrane. fiophysF tF, vol.82, p.7692, 2002.

N. Adzic and R. Podgornik, Charge regulation in ionic solutions: Thermal uctuations and Kirkwood-Schumaker interactions. hysF evF i E ttF xonlinerD oft wtter hysF, vol.91, 2015.

F. Jérôme, J. Duval, P. Merlin, and . Narayana, Electrostatic interactions between diuse soft multi-layered (bio)particles: beyond Debye-Hückel approximation and Deryagin formulation. hysF ghemF ghemF hysF, vol.13, p.10371053, 2011.

A. Igli£, E. Gongadze, and K. Bohinc, Excluded volume eect and orientational ordering near charged surface in solution of ions and Langevin dipoles. fioeleE trohemistry, vol.79, p.223227, 2010.

D. Ben-yaakov, D. Andelman, R. Podgornik, and D. Harries, Ion-specic hydration eects: Extending the Poisson-Boltzmann theory, 2011.

J. Hansen and H. Löwen, Eective interaction between electric doublelayers. ennuF evF hysF ghemF, vol.51, p.209242, 2000.

B. Huang, S. Maset, and K. Bohinc, Interaction between Charged Cylinders in Electrolyte Solution; Excluded Volume Eect. tF hysF ghemF f, vol.121, pp.9013-9023, 2017.

B. Herbert, Callen. hermodynmis nd n sntrodution to hermosttistisD Pnd idiE tion, 1985.

J. Barrat, . Hansen, and . Jean-pierre, hermodynmis nd n sntrodution to hermosttistisD Pnd idition, 2003.

K. Dill and S. Bromberg, woleulr hriving poresX ttistil hermodynmis in fiologyD ghemistryD hysisD nd xnosiene, 2011.

S. Krimm, The hydrophobic eect: Formation of micelles and biological membranes, $18.50. tournl of olymer ieneX olymer vetters idition, vol.233, p.687687, 1980.

J. N. Israelachvili, D. J. Mitchell, and B. W. Ninham, Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. tournl of the ghemil oietyD prdy rnstions P, vol.72, p.1525, 1976.

S. T. Hyde, I. S. Barnes, and B. W. Ninham, Curvature Energy of Surfactant Interfaces Conned to the Plaquettes of a Cubic Lattice, vngmuir, vol.6, issue.6, p.10551062, 1990.

K. Kordás, M. Mohl, Z. Kónya, and Á. Kukovecz, Layered titanate nanostructures: perspectives for industrial exploitation. rnslF wterF esF, vol.2, p.15003, 2015.

W. Liu, W. Sun, Y. Han, M. Ahmad, and J. Ni, Adsorption of Cu(II) and Cd(II) on titanate nanomaterials synthesized via hydrothermal method under dierent NaOH concentrations: Role of sodium content. golloids urfes e hysiohemF ingF espF, vol.452, p.138147, 2014.

S. Inderpreet-singh-grover, B. Singh, and . Pal, The preparation, surface structure, zeta potential, surface charge density and photocatalytic activity of TiO2 nanostructures of dierent shapes, epplF urfF iF, vol.280, p.366372, 2013.

P. Roy, S. Berger, and P. Schmuki, TiO2 nanotubes: Synthesis and applications. engewF ghemie E sntF idF, vol.50, p.29042939, 2011.

H. A. , M. Faria, and A. Queiroz, A novel drug delivery of 5-uorouracil device based on TiO2/ZnS nanotubes. wterF iF 8 ingF gD wterF fiolF epplF, vol.56, p.260268, 2015.

W. Yang, Y. Wang, B. Huang, N. Wang, Z. Wei et al., TiO2 Nanoparticles Act As a Carrier of Cd Bioaccumulation in the Ciliate Tetrahymena thermophila, vol.48, p.75687575, 2014.

K. Lee, A. Mazare, and P. Schmuki, One-Dimensional Titanium Dioxide Nanomaterials : Nanotubes, 2014.

T. Kasuga, M. Hiramatsu, A. Hoson, and T. Sekino, Formation of Titanium Oxide Nanotube. vngmuir, vol.7463, p.31603163, 1998.

K. Bourikas, J. Vakros, C. Kordulis, and A. Lycourghiotis, Potentiometric Mass Titrations: Experimental and Theoretical Establishment of a New Technique for Determining the Point of Zero Charge (PZC) of Metal (Hydr) Oxides. tF hysF ghemF f, vol.107, p.94419451, 2003.

J. Robert and . Hunter, No Title, et otentil golloid iF, 1981.

L. Belloni, Ionic condensation and charge renormalization in colloidal suspensions. golloids urfes e hysiohemF ingF espF, vol.140, p.227243, 1998.

. Lene-haugaard-mikkelsen, Applications and limitations of the colloid titration method for measuring activated sludge surface charges. ter esF, vol.37, p.24582466, 2003.

K. Sang, J. Kam, and . Gregory, Charge determination of synthetic cationic polyelectrolytes by colloid titration. golloids urfes e hysiohemF ingF espF, vol.159, p.165179, 1999.

A. E. Horvath, T. Lindström, and J. Laine, On the indirect polyelectrolyte titration of cellulosic bers. Conditions for charge stoichiometry and comparison with ESCA. vngmuir, vol.22, p.824830, 2006.

K. Bohinc, J. Gimsa, V. Kralj-igli£, T. Slivnik, and A. Igli£, Excluded volume driven counterion condensation inside nanotubes in a concave electrical double layer model. fioeletrohemistry, vol.67, p.9199, 2005.

G. Allaire, J. Dufrêche, A. Mikeli¢, and A. Piatnitski, Asymptotic analysis of the Poisson -Boltzmann equation describing electrokinetics in porous media, xonlinerity, vol.26, issue.3, p.881910, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00863403

W. Barry, V. Ninham, and . Adrian-parsegian, Electrostatic potential between surfaces bearing ionizable groups in ionic equilibrium with physiologic saline solution. tF heorF fiolF, vol.31, p.405428, 1971.

, Linus Pauling. the Principles Determining the Structure of Complex Ionic Crystals. tF emF ghemF oF, vol.51, p.10101026, 1929.

T. Hiemstra and W. Riemsdijk, A Surface Structural Approach to Ion Adsorption: The Charge Distribution (CD) Model. tF golloid snterfe iF, vol.508, p.488508, 1996.

T. George-d-panagiotou, K. Petsi, C. S. Bourikas, and . Garoufalis, Mapping the surface (hydr)oxo-groups of titanium oxide and its interface with an aqueous solution: The state of the art and a new approach. edvF golloid snterfe iF, Athanassios Tsevis, Nikos Spanos, Christos Kordulis, and Alexis Lycourghiotis, vol.142, p.2042, 2008.

K. Bourikas, T. Hiemstra, and W. H. Van-riemsdijk, Ion pair formation and primary charging behavior of titanium oxide (anatase and rutile). vngmuir, vol.17, p.749756, 2001.

T. Gisler, P. Sticher, . Schurtenberger, R. Bruno-d'aguanno, and . Klein, Understanding colloidal charge renormalization from surface chemistry: Experiment and theory. tF ghemF hysF, vol.101, p.9924, 1994.

D. A. Sverjensky, Standard states for the activities of mineral surface sites and species. qeohimF gosmohimF et, vol.67, p.1728, 2003.

N. Kallay, T. Preocanin, D. Kovacevic, J. Lutzenkirchen, and E. Chibowski, Electrostatic Potentials at Solid/Liquid Interfaces. grotF ghemF et, vol.83, p.357370, 2010.

D. A. Smith and W. F. Ford, Numerical Comparisons of Nonlinear Convergence Accelerators. wthF gomputF, vol.38, p.481499, 2007.

M. Deserno, C. Holm, and S. , Fraction of condensed counterions around a charged rod: Comparison of Poisson-Boltzmann theory and computer simulations. wromoleules, vol.33, p.199206, 2000.

R. Pelton, B. Cabane, Y. Cui, and H. Ketelson, Shapes of polyelectrolyte titration curves. 1. Well-behaved strong polyelectrolytes. enlF ghemF, vol.79, p.81148117, 2007.

K. Böckenho and W. Fischer, Determination of electrokinetic charge with a particlecharge detector, and its relationship to the total charge. preseniusF tF enlF ghemF, vol.371, p.670674, 2001.

A. David, F. Dzombak, and . Morel, urfe gomplextion wodelingX rydrous perri yxide, 1990.

J. John, J. Molina, M. Dufrêche, O. Salanne, P. Bernard et al., Primitive models of ions in solution from molecular descriptions: A perturbation approach. tF ghemF hysF, vol.135, p.234509, 2011.

J. Molina, J. Dufrêche, M. Salanne, O. Bernard, M. Jardat et al., Models of electrolyte solutions from molecular descriptions: The example of NaCl solutions. hysF evF i, vol.80, p.65103, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02002625

R. Wang and Z. Wang, On the theoretical description of weakly charged surfaces. tF ghemF hysF, vol.142, p.104705, 2015.

N. Schwierz and R. R. Netz, Eective interaction between two ion-adsorbing plates: Hofmeister series and salting-in/salting-out phase diagrams from a global meaneld analysis. vngmuir, vol.28, p.38813886, 2012.

V. Dmitry, . Bavykin, C. Frank, and . Walsh, Kinetics of Alkali Metal Ion Exchange into Nanotubular and Nanobrous Titanates. tF hysF ghemF g, vol.25, p.1464414651, 2007.

T. Colla, M. Girotto, A. P. Santos, and Y. Levin, Charge neutrality breakdown in conned aqueous electrolytes: Theory and simulation. tF ghemF hysF, vol.145, p.94704, 2016.

J. Perez-holmberg, E. Ahlberg, J. Bergenholtz, M. Hassellöv, and Z. Abbas, Surface charge and interfacial potential of titanium dioxide nanoparticles: Experimental and theoretical investigations. tF golloid snterfe iF, vol.407, p.168176, 2013.

Z. Liang, W. Bu, K. J. Schweighofer, D. J. Walwark, J. S. Harvey et al.,

D. Hanlon, C. Amoanu, I. Erol, M. L. Benjamin, and . Schlossman, Nanoscale view of assisted ion transport across the liquidliquid interface. roeedings of the xE tionl edemy of ienes, 2018.

J. K. Hensel, A. P. Carpenter, R. K. Ciszewski, B. K. Schabes, C. T. Kittredge et al., Molecular characterization of water and surfactant aot at nanoemulsion surfaces. roeedings of the xtionl edemy of ienes, vol.114, p.1335113356, 2017.

W. Su, J. Chen, and Y. Jing, Aqueous Partition Mechanism of Organophosphorus Extractants in Rare Earths Extraction. sndF ingF ghemF esF, vol.55, p.84248431, 2016.

K. Prochaska, Interfacial activity of metal ion extractant. edvnes in olloid nd interfe siene, vol.95, p.5172, 2002.

J. M. Muller, C. Berthon, L. Couston, N. Zorz, J. P. Simonin et al., Extraction of Lanthanides(III) by a Mixture of a Malonamide and a Dialkyl Phosphoric Acid. olvent ixtrtion nd son ixhnge, vol.34, p.141160, 2016.

J. Hansen and I. R. Mcdonald, heory of imple viquids, 2006.

S. Vafaei, B. Tomberli, and C. G. Gray, McMillan-Mayer theory of solutions revisited: Simplications and extensions. tournl of ghemil hysis, vol.141, 2014.

B. Moeser and D. Horinek, Biophysical Chemistry The role of the concentration scale in the de nition of transfer free energies. fiophysil ghemistry, vol.196, p.6876, 2015.

K. Mario-padina, T. Bohinc, J. Zemb, and . Dufrêche, Multicomponent Model for the Prediction of Nuclear Waste/Rare-Earth Extraction Processes. vngmuir, vol.34, p.1043410447, 2018.

M. Daniel, P. Packwood, T. Han, and . Hitosugi, Chemical and entropic control on the molecular self-assembly process. xtF gommunF, vol.8, p.18, 2017.

S. Hyde, T. Blum, . Landh, . Lidin, . Bw-ninham et al., , 1996.

S. Krimm, The hydrophobic eect: Formation of micelles and biological membranes, charles tanford, wiley-interscience, new york, 1980. tournl of olymer ieneX olymer vetters idition, vol.18, p.687687, 1980.

T. N. Zemb, The DOC model of microemulsions: Microstructure, scattering, conductivity and phase limits imposed by sterical constraints. golloids nd urfes eX hysiohemE il nd ingineering espets, 1997.

M. Bley, B. Siboulet, A. Karmakar, T. Zemb, and J. Dufrêche, A predictive model of reverse micelles solubilizing water for solvent extraction. tournl of golloid nd snterfe iene, vol.479, p.106114, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02000058

A. Karmakar, M. Duvail, M. Bley, T. Zemb, and J. Dufrêche, Combined supramolecular and mesoscale modelling of liquid-liquid extraction of rare earth salts
URL : https://hal.archives-ouvertes.fr/hal-01998379

, Yizhak Marcus. sons in olution nd their olvtion, 2015.

H. William, S. A. Press, W. T. Teukolsky, B. P. Vetterling, and . Flannery, xumeril eipes in portrnUUX he ert of ienti( gomputing, 1992.

Y. Marcus, Electrostriction in electrolyte solutions, ghemF evF, vol.111, issue.4, p.27612783, 2011.

J. Lipfert, L. Columbus, V. B. Chu, S. A. Lesley, and S. Doniach, Size and shape of detergent micelles determined by small-angle X-ray scattering. tournl of hysil ghemistry f, vol.111, p.1242712438, 2007.

L. Berthon, L. Martinet, F. Testard, C. Madic, and T. Zemb, Solvent penetration and sterical stabilization of reverse aggregates based on the DIAMEX process extracting molecules: Consequences for the third phase formation. olvent ixtrtion nd son ixhnge, vol.25, p.545576, 2007.

F. Ricoul, M. Dubois, L. Belloni, T. Zemb, and C. Andre, Phase Equilibria and Equation of State of a Mixed Cationic Surfactant-Glycolipid Lamellar System, vol.7463, p.26452655, 1998.

J. Meridiano, yrgnistion des moléules extrtntes de type dimide X lien ve les propriétés extrtntesc hése de l9niversité ris s. Rapport CEA-R-6228, 2009.

L. Bosland, itude thermodynmique et inétique de l9extrtion des nitrtes de lnE thnides pr un mlonmide @xDx diméthylExDx diotylhexylethoxy mlonmide ou hwE hyriweAF hése de l9iole gentrle ris, 2006.

J. Muller, péition dns les phses orgniques des systémes d9extrtion liquideEliquide ontennt un mlonmide et un ide lkylphosphorique D hése de l9niversité ierre et wrie gurie, 2012.

J. Rey, M. Bley, J. F. Dufrêche, S. Gourdin, S. Pellet-rostaing et al., Thermodynamic Description of Synergy in Solvent Extraction: II Thermodynamic Balance of Driving Forces Implied in Synergistic Extraction. vngmuir, vol.33, p.1316813179, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01999611

C. Déjugnat, L. Berthon, V. Dubois, and Y. Meridiano, Stéphane Pellet-Rostaing, and Thomas Zemb

, Extraction of Acids and Water by a Malonamide: I-Anion Specic Eects on the Polar Core Microstructure of the Aggregated Malonamide. olvent ixtrtion nd son ixhnge, vol.32, p.601619, 2014.

C. Cuillerdier, C. Musikas, P. Hoel, L. Nigond, and X. Vitart, Malonamides as New Extractants for Nuclear Waste Solutions. eprtion iene nd ehnology, vol.26, pp.1229-1244, 1991.

F. Testard, P. Bauduin, L. Martinet, B. Abécassis, L. Berthon et al., Self-assembling properties of malonamide extractants used in separation processes, E diohimi et, vol.96, issue.4-5, p.265272, 2008.

J. Ennis, Spontaneous Curvature of Surfactant Films. tournl of ghemil hysis, vol.97, p.663678, 1992.

A. Karmakar, M. Duvail, M. Bley, and T. Zemb, Supporting Information Combined supramolecular and mesoscale modelling of liquid-liquid extraction of rare earth salts, p.18

K. Mario-padina, . Bohinc, N. Thomas, J. Zemb, and . Dufrêche, A colloidal model of prediction of the extraction of rare earths assisted by the acidic extractant. vngmuir, vol.35, p.32153230, 2019.

N. Condamines and C. Musikas, he extrtion y nD nEdilk ylmidesF ssF extrtion of tinide tions, vol.10, 1992.

Q. Tian and M. A. Hughes, The mechanism of extraction of HNO3 and neodymium with diamides. rydrometllurgy, vol.36, p.315330, 1994.

P. J. Panak and A. Geist, Complexation and extraction of trivalent actinides and lanthanides by triazinylpyridine N-donor ligands, ghemil eviews, vol.113, issue.2, p.11991236, 2013.

P. Kaufholz, G. Modolo, A. Wilden, F. Sadowski, C. Wagner et al.,

G. Modolo, A. Wilden, F. Sadowski, D. Bosbach, C. Wagner et al., Solvent Extraction and Fluorescence Spectroscopic Investigation of the Selective Am(III) Complexation with TS-BTPhen. olE vent ixtrtion nd son ixhnge, vol.34, p.126140, 2016.

Y. Lu and W. Liao, Extraction and separation of trivalent rare earth metal ions from nitrate medium by p-phosphonic acid calix, vol.165, p.300305, 2016.

C. Erlinger, L. Belloni, T. Zemb, and C. Madic, Attractive interactions between reverse aggregates and phase separation in concentrated malonamide extractant solutions. vngmuir, vol.15, p.22902300, 1999.

J. Frank, F. Millero, A. L. Huang, F. Surdo, and . Vinokurova, Partial molal volumes and compressibilities of phosphoric acid and sodium phosphates in 0

?. C. Tf, , vol.114, p.1609916104, 2010.

Z. Kolarik, Critical evaluation of some equilibrium constants involving acidic organophosphorus extractants. ure epplF ghemF, vol.54, p.25932674, 1982.

K. Rama-swami, R. Kumaresan, P. K. Nayak, K. A. Venkatesan, and M. P. Antony, Eect of pKaon the extraction behavior of Am(III) in organo phosphorus acid and diglycolamide solvent system, vol.diohimF et, p.107118, 2018.

W. Tao and Y. Nagaosa, Evaluation of some prediction models for the determination of physicochemical constants of dialkylphosphoric acids. epF iF ehnolF, vol.38, p.16211631, 2003.

P. Dutta, S. Yoo, M. Olvera-de-la-cruz, Y. Liang, M. Chu et al., Electrostatic Origin of Element Selectivity during Rare Earth Adsorption. hysF evF vettF, vol.122, p.58001, 2019.

Z. Kolarik, Review: Dissociation, self-association, and partition of monoacidic organophosphorus extractants. olvent ixtrtion nd son ixhnge, vol.28, p.707763, 2010.

Y. Jing, J. Chen, L. Chen, W. Su, Y. Liu et al., Extraction Behaviors of Heavy Rare Earths with Organophosphoric Extractants: The Contribution of Extractant Dimer Dissociation, Acid Ionization, and Complexation. A Quantum Chemistry Study, vol.121, p.25312543, 2017.

R. K. Biswas, M. A. Habib, and M. N. Islam, Some Physicochemical Properties of (D2EHPA). 1. Distribution, Dimerization, and Acid Dissociation Constants of D2EHPA in a Kerosene/0.10 kmol m ?3 (Na + ,H + )Cl ? System and the Extraction of Mn(II). sndF ingF ghemF esF, vol.39, p.155160, 2000.

W. Kunz, F. Testard, and T. Zemb, Correspondence between curvature, packing parameter, and hydrophilic-lipophilic deviation scales around the phase-inversion temperature. vngmuir, vol.25, p.112115, 2009.

D. Das, V. A. Juvekar, V. H. Rupawate, K. Ramprasad, and R. Bhattacharya, Eect of the nature of organophosphorous acid moiety on co-extraction of U(VI) and Bibliography mineral acid from aqueous solutions using D2EHPA, PC88A and Cyanex 272. rydrometE llurgy, vol.152, p.129138, 2015.

R. D. Neuman, N. Zhou, J. Wu, M. A. Jones, and G. Anilkumar,

S. J. Gaonkar and M. L. Park, General model for aggregation of metalextractant complexes in acidic organophosphorus solvent extraction systems. eprtion iene nd ehnology, vol.25, p.16551674, 1990.

B. Gannaz, M. R. Antonio, R. Chiarizia, C. Hill, and G. Cote, Structural study of trivalent lanthanide and actinide complexes formed upon solvent extraction. hltF rnsF, p.45534562, 2006.

W. Bu, H. Yu, G. Luo, K. Mrinal, B. Bera et al.,

. Schlossman, Observation of a rare earth ion-extractant complex arrested at the oil-water interface during solvent extraction. tF hysF ghemF f, vol.118, p.1066210674, 2014.

D. Darvishi, D. F. Haghshenas, S. Etemadi, E. Keshavarz-alamdari, and S. K. Sadrnezhaad, Water adsorption in the organic phase for the D2EHPA-kerosene/water and aqueous Zn 2+ , Co 2+ , Ni 2+ sulphate systems, rydrometllurgy, vol.88, issue.1-4, p.9297, 2007.

T. Goto, Separation factor for the extraction systems, YCl 3 -ErCl 3 -HCl , YCl 3 -HoCl 3 -HCl and some lanthanide chlorides-hydrochloric acid with phosphoric acid in nheptane. tournl of snorgni nd xuler hemistry, vol.30, p.33053315, 1967.

T. Sato, Liquid-Liquid Extraction of Rare-Earth Elements from Aqueous Acid Solutions by, Acid Organophosphorus Compounds. rydrometllurgy, vol.22, p.121140, 1989.

Y. Sasaki, Y. Sugo, K. Morita, and K. L. Nash, The Eect of Alkyl Substituents on Actinide and Lanthanide Extraction by Diglycolamide Compounds. olvent ixtrtion nd son ixhnge, vol.33, p.625641, 2015.

T. Lopian, ghrteriztion of metlEextrting wterEpoor miroemulsionsD hése de l9niversité de wontpellier, 2017.

R. J. Ellis, Acid-switched Eu(III) coordination inside reverse aggregates: Insights into a synergistic liquid-liquid extraction system, vol.460, p.159164, 2017.

J. M. Muller, C. Berthon, L. Couston, N. Zorz, J. P. Simonin et al., Extraction of Lanthanides(III) by a Mixture of a Malonamide and a Dialkyl Phosphoric Acid. olvent ixtrtion nd son ixhnge, vol.34, p.141160, 2016.

R. Poirot, L. Go, O. Diat, D. Bourgeois, and D. Meyer, Metal Recognition Driven by Weak Interactions : A Case Study in Solvent Extraction. ghemhysghem, vol.17, p.17, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01998444

H. Diamant and D. Andelman, Free energy approach to micellization and aggregation: Equilibrium, metastability, and kinetics. gurrF ypinF golloid snterfe iF, vol.22, p.9498, 2016.

B. Abrécassis, F. Testard, T. Zemb, L. Berthon, and C. Madic, Eect of n-octanol on the structure at the supramolecular scale of concentrated dimethyldioctylhexylethoxymalonamide extractant solutions. vngmuir, vol.19, p.66386644, 2003.

S. Han, S. Chen, L. Li, J. Li, H. An et al., Multiscale and Multifunctional Emulsions by Host-Guest Interaction-Mediated Self-Assembly. eg gentF iF, vol.4, issue.5, p.600605, 2018.

L. Sapir and D. Harries, Is the depletion force entropic? Molecular crowding beyond steric interactions. gurrF ypinF golloid snterfe iF, vol.20, p.310, 2015.

L. Sapir and D. Harries, Macromolecular compaction by mixed solutions: Bridging versus depletion attraction. gurrF ypinF golloid snterfe iF, vol.22, p.8087, 2016.

A. E. Clark, Amphiphile-Based Complex Fluids: The Self-Assembly Ensemble as Protagonist. eg gentF iF, vol.5, p.1012, 2019.

D. Ne£as and P. Klapetek, Gwyddion: an Open-Source Software for SPM Data Analysis. gentrl iuropen tournl of hysis, vol.10, p.181188, 2012.

N. Mandzy, E. Grulke, and T. Druel, Breakage of TiO2 agglomerates in electrostatically stabilized aqueous dispersions. owder ehnolF, vol.160, p.121126, 2005.