F. Al-khodairy, The Schizosaccharomyces pombe hus5 gene encodes a ubiquitin conjugating enzyme required for normal mitosis, Journal of cell science, vol.108, issue.2, pp.475-486, 1995.

K. O. Alegre and D. Reverter, Swapping small ubiquitin-like modifier (SUMO) isoform specificity of SUMO proteases SENP6 and SENP7, Journal of Biological Chemistry, vol.286, issue.41, pp.36142-36151, 2011.

N. N. Andersen and T. Jess, Has the risk of colorectal cancer in inflammatory bowel disease decreased?, World journal of gastroenterology, vol.19, issue.43, pp.7561-7569, 2013.

P. Andreu, Crypt-restricted proliferation and commitment to the Paneth cell lineage following Apc loss in the mouse intestine, pp.1443-1451, 2005.

E. A. Andrews, Nse2, a component of the Smc5-6 complex, is a SUMO ligase required for the response to DNA damage, Molecular and cellular biology, vol.25, issue.1, pp.185-96, 2005.

P. Angel, Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor, Cell. United States, vol.49, issue.6, pp.729-739, 1987.

T. Aoyagi, Cancer cachexia, mechanism and treatment, World journal of gastrointestinal oncology, vol.7, issue.4, pp.17-29, 2015.

T. A. Ayoubi and W. J. Van-de-ven, Regulation of gene expression by alternative promoters, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, vol.10, issue.4, pp.453-60, 1996.

S. H. Bae, Sumoylation increases HIF-1? stability and its transcriptional activity, Biochemical and Biophysical Research Communications, vol.324, issue.1, pp.394-400, 2004.

R. T. Baker and P. G. Board, The human ubiquitin-52 amino acid fusion protein gene shares several structural features with mammalian ribosomal protein genes, Nucleic Acids Research, vol.19, issue.5, pp.1035-1040, 1991.

N. Barker, Crypt stem cells as the cells-of-origin of intestinal 140 cancer, Nature, vol.457, issue.7229, pp.608-619, 2009.

C. Bassi, Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress, Science, issue.6144, pp.395-404, 2013.

T. Bawa-khalfe, SENP1 induces prostatic intraepithelial neoplasia through multiple mechanisms, Journal of Biological Chemistry, vol.285, issue.33, pp.25859-25866, 2010.

J. Becker, Detecting endogenous SUMO targets in mammalian cells and tissues, Nature structural & molecular biology, vol.20, issue.4, pp.525-531, 2013.

S. Behlke-steinert, SMC5 and MMS21 are required for chromosome cohesion and mitotic progression, Cell Cycle, vol.8, issue.14, pp.2211-2218, 2009.

M. Békés, The dynamics and mechanism of SUMO chain deconjugation by SUMO-specific proteases, Journal of Biological Chemistry, vol.286, issue.12, pp.10238-10247, 2011.

T. Bennike, Biomarkers in inflammatory bowel diseases: Current status and proteomics identification strategies, World Journal of Gastroenterology, vol.20, issue.12, pp.3231-3244, 2014.

M. Berdasco and M. Esteller, Genetic syndromes caused by mutations in epigenetic genes, Human genetics. Germany, vol.132, issue.4, pp.359-383, 2013.

S. Bergink and S. Jentsch, Principles of ubiquitin and SUMO modifications in DNA repair, Nature, vol.458, issue.7237, pp.461-468, 2009.

R. Bernardi and P. P. Pandolfi, Structure , dynamics and functions of promyelocytic leukaemia nuclear bodies, Nature reviews. Molecular cell biology, vol.8, pp.1007-1016, 2007.

C. Bertolotto, A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma', Nature, vol.480, issue.7375, pp.94-98, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00719536

O. Bischof, The E3 SUMO Ligase PIASy Is a Regulator of Cellular Senescence and Apoptosis, Molecular Cell, vol.22, issue.6, pp.783-794, 2006.

M. A. Blasco, The epigenetic regulation of mammalian telomeres, Nature reviews. Genetics, vol.8, issue.4, pp.299-309, 2007.

M. N. Boddy, PIC 1, a novel ubiquitin-like protein which interacts with the PML component of a multiprotein complex that is disrupted in acute promyelocytic leukaemia, Oncogene, vol.13, issue.5, pp.971-82, 1996.

A. G. Bodnar, Extension of life-span by introduction of telomerase into normal human cells, Science, issue.5349, pp.349-52, 1998.

G. Bossis, Down-regulation of c-Fos/c-Jun AP-1 dimer activity by sumoylation, Molecular and cellular biology. United States, vol.25, issue.16, pp.6964-6979, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02262225

G. Bossis and F. Melchior, Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes, Molecular Cell, vol.21, issue.3, pp.349-357, 2006.

M. C. Brahimi-horn, J. Chiche, and J. Pouysségur, Hypoxia and cancer, Journal of Molecular Medicine, pp.1301-1307, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00319797

D. Brown, A PMLRARalpha transgene initiates murine acute promyelocytic leukemia, Proceedings of the National Academy of Sciences of the United States of America, vol.94, pp.2551-2556, 1997.

Q. Cai, Hypoxia inactivates the VHL tumor suppressor through PIASy-mediated SUMO modification, PLoS ONE, vol.5, issue.3, 2010.

, Comprehensive molecular characterization of human colon and rectal cancer, Cancer Genom Atlas, vol.487, issue.7407, pp.330-337, 2012.

A. Carbia-nagashima, RSUME, a Small RWD-Containing Protein, Enhances SUMO Conjugation and Stabilizes HIF-1?? during Hypoxia', vol.131, pp.309-323, 2007.

J. Carson and K. Baltgalvis, Interleukin-6 as a key regulator of muscle mass during cachexia', Exercise and sport sciences reviews, vol.38, pp.168-176, 2010.

S. Carter, C-terminal modifications regulate MDM2 dissociation 142 and nuclear export of p53, Nature cell biology, vol.9, issue.4, pp.428-435, 2007.

M. Castoralova, SUMO-2/3 conjugates accumulating under heat shock or MG132 treatment result largely from new protein synthesis, Biochimica et biophysica acta. Netherlands, 1823(4), pp.911-919, 2012.

C. L. Chaffer and R. Weinberg, A perspective on cancer cell metastasis, Science, issue.6024, pp.1559-1564, 2011.

C. C. Chang, Daxx mediates the small ubiquitin-like modifierdependent transcriptional repression of Smad4, Journal of Biological Chemistry, vol.280, issue.11, pp.10164-10173, 2005.

C. C. Chang, Structural and Functional Roles of Daxx SIM Phosphorylation in SUMO Paralog-Selective Binding and Apoptosis Modulation, Molecular Cell, vol.42, issue.1, pp.62-74, 2011.

C. W. Chang, G. D. Chang, and H. Chen, A novel cyclic AMP/Epac1/CaMKI signaling cascade promotes GCM1 desumoylation and placental cell fusion, Mol Cell Biol, vol.31, issue.18, pp.3820-3831, 2011.

A. Cheema, Functional mimicry of the acetylated C-terminal tail of p53 by a SUMO-1 acetylated domain, SAD', Journal of Cellular Physiology, vol.225, issue.2, pp.371-384, 2010.

H. Chen and L. Qi, SUMO modification regulates the transcriptional activity of XBP1, The Biochemical journal, vol.429, issue.1, pp.95-102, 2010.

S. Chen, Inflammatory factor-specific sumoylation regulates NF-?B signalling in glomerular cells from diabetic rats, Inflammation Research, vol.63, issue.1, pp.23-31, 2014.

J. Cheng, SENP1 enhances androgen receptor-dependent transcription through deSUMOylation of histone deacetylase 1, Molecular and cellular biology, vol.24, issue.13, pp.6021-6028, 2004.

J. Cheng, Role of desumoylation in the development of prostate cancer, Neoplasia, vol.8, issue.8, pp.667-676, 2006.

J. Cheng, SUMO-Specific Protease 1 Is Essential for Stabilization of HIF1? during Hypoxia, Cell, vol.131, issue.3, pp.584-595, 2007.

X. Cheng and H. Kao, Post-translational modifications of PML: consequences and implications.', Frontiers in oncology, p.210, 2012.

Y. Chu and X. Yang, SUMO E3 ligase activity of TRIM proteins, Oncogene, vol.30, issue.9, pp.1108-1116, 2011.

I. Chung, H. Leonhardt, and K. Rippe, De novo assembly of a PML nuclear subcompartment occurs through multiple pathways and induces telomere elongation, Journal of Cell Science, vol.124, issue.21, pp.3603-3618, 2011.

D. Churikov, SUMO-Dependent Relocalization of Eroded Telomeres to Nuclear Pore Complexes Controls Telomere Recombination, Cell Reports, vol.15, issue.6, pp.1242-1253, 2016.

P. Chymkowitch, ?. Ngu, P. , A. Enserink, and J. M. , SUMO-regulated transcription: Challenging the dogma, BioEssays, vol.37, issue.10, pp.1095-1105, 2015.

S. Colnot, Colorectal cancers in a new mouse model of familial adenomatous polyposis: influence of genetic and environmental modifiers, Laboratory Investigation, vol.84, pp.1619-1630, 2004.

K. L. Conn, Novel role for protein inhibitor of activated STAT 4 (PIAS4) in the restriction of herpes simplex virus 1 by the cellular intrinsic antiviral immune response, Journal of Virology, vol.90, issue.9, pp.4807-4826, 2016.

T. U. Consortium, Reorganizing the protein space at the Universal Protein Resource (UniProt), Nucleic acids research, vol.40, issue.2, pp.71-76, 2012.

S. Dadke, Regulation of protein tyrosine phosphatase 1B by sumoylation, Nature cell biology, vol.9, issue.1, pp.80-85, 2007.

M. M. Dawlaty, Resolution of Sister Centromeres Requires, RanBP2-Mediated SUMOylation of Topoisomerase II??', Cell, vol.133, pp.103-115, 2008.

A. Decque, Sumoylation coordinates the repression of inflammatory and anti-viral gene-expression programs during innate sensing, p.144, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01380657

, Nature Immunology, vol.17, issue.2, pp.140-149

D. A. Delker, S. J. Mcknight, and D. W. Rosenberg, The role of alcohol dehydrogenase in the metabolism of the colon carcinogen methylazoxymethanol, vol.45, pp.66-71, 1998.

M. D. Demarque, Sumoylation by Ubc9 regulates the stem cell compartment and structure and function of the intestinal epithelium in mice, Gastroenterology, vol.140, issue.1, pp.286-296, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-00572277

J. M. Desterro, M. S. Rodriguez, and R. T. Hay, SUMO-1 Modification of I?B? Inhibits NF-?B Activation, Molecular Cell, vol.2, issue.2, pp.80133-80134, 1998.

R. T. Dorsam and J. S. Gutkind, G-protein-coupled receptors and cancer, Nature reviews. Cancer, vol.7, issue.2, pp.79-94, 2007.

R. Eferl and E. F. Wagner, AP-1: A double-edged sword in tumorigenesis, Nature Reviews Cancer, vol.3, pp.859-868, 2003.

N. Eisenhardt, A new vertebrate SUMO enzyme family reveals insights into SUMO-chain assembly, Nature structural & molecular biology, vol.22, issue.12, pp.959-967, 2015.

J. M. Enserink, Sumo and the cellular stress response, Cell division, vol.10, issue.1, p.4, 2015.

E. Jeoung and L. , Regulation of glycogen synthase kinase 3beta functions by modification of the small ubiquitin-like modifier, The open biochemistry journal, vol.2, pp.67-76, 2008.

E. Evdokimov, Loss of SUMO1 in mice affects RanGAP1 localization and formation of PML nuclear bodies, but is not lethal as it can be compensated by SUMO2 or SUMO3, Journal of cell science. England, vol.121, pp.4106-4113, 2008.

C. Favreau, Cell cycle-dependent phosphorylation of nucleoporins and nuclear pore membrane protein Gp210, Biochemistry, vol.35, issue.24, pp.8035-8044, 1996.

K. C. Fearon, D. J. Glass, and D. C. Guttridge, Cancer cachexia: Mediators, signaling, and metabolic pathways, Cell Metabolism, pp.153-166, 2012.

H. C. Ferreira, The PIAS homologue Siz2 regulates perinuclear telomere position and telomerase activity in budding yeast, Nature cell biology, vol.13, issue.7, pp.867-74, 2011.

J. S. Finch, Overexpression of three ubiquitin genes in mouse epidermal tumors is associated with enhanced cellular proliferation and stress, Cell Growth Differ, vol.3, issue.5, pp.269-278, 1992.

D. Finley, B. Bartel, and A. Varshavsky, The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis, Nature, vol.338, issue.6214, pp.394-401, 1989.

D. Finley, E. Özkaynak, and A. Varshavsky, The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses, Cell, vol.48, issue.6, pp.90711-90713, 1987.

A. Flotho and F. Melchior, Sumoylation: a regulatory protein modification in health and disease, Annual review of biochemistry, vol.82, pp.357-85, 2013.

A. Flotho and A. Werner, The RanBP2/RanGAP1*SUMO1/Ubc9 complex: A multisubunit E3 ligase at the intersection of sumoylation and the RanGTPase cycle, Nucleus, vol.3, issue.5, pp.429-432, 2012.

A. J. Fornace, Ubiquftin mRNA is a major stress-induced transcript in mammalian cells, Nucleic Acids Research, vol.17, issue.3, pp.1215-1230, 1989.

Y. Galanty, Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks, Nature. England, vol.462, issue.7275, pp.935-939, 2009.

F. Galisson, A novel proteomics approach to identify SUMOylated proteins and their modification sites in human cells, Molecular & cellular proteomics, vol.10, 2011.

C. Gao, Histone deacetylase 7 promotes PML sumoylation and is essential for PML nuclear body formation, Molecular and cellular biology, vol.28, issue.18, pp.5658-67, 2008.

J. R. Gareau and C. D. Lima, The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition, Nature reviews. Molecular cell biology, vol.11, issue.12, pp.861-71, 2010.

R. Geiss-friedlander and F. Melchior, Concepts in sumoylation: a decade on, Nature Reviews Molecular Cell Biology, vol.8, issue.12, pp.947-956, 2007.

M. Geoffroy and R. T. Hay, An additional role for SUMO in ubiquitin-mediated proteolysis, Nature reviews. Molecular cell biology, vol.10, issue.8, pp.564-568, 2009.

S. Ghisletti, Identification and Characterization of Enhancers Controlling the Inflammatory Gene Expression Program in Macrophages, Immunity, vol.32, issue.3, pp.317-328, 2010.

G. Goldstein, Isolation of a polypeptide that has lymphocytedifferentiating properties and is probably represented universally in living cells, Proceedings of the National Academy of Sciences of the United States of America, vol.72, pp.11-16, 1975.

F. Golebiowski, System-wide changes to SUMO modifications in response to heat shock, Sci Signal, vol.2, issue.72, p.24, 2009.

L. Gong, Differential regulation of sentrinized proteins by a novel sentrin-specific protease, The Journal of biological chemistry, vol.275, issue.5, pp.3355-3359, 2000.

R. González-prieto, c-Myc is targeted to the proteasome for degradation in a SUMOylation-dependent manner, regulated by PIAS1, SENP7 and RNF4, Cell Cycle, vol.14, issue.12, pp.1859-1872, 2015.

J. González-santamaría, Regulation of the tumor suppressor PTEN by SUMO, Cell death & disease, vol.3, p.393, 2012.

S. Grégoire and X. Yang, Association with class IIa histone deacetylases upregulates the sumoylation of MEF2 transcription factors, Molecular and Cellular Biology, vol.25, issue.6, pp.2273-2287, 2005.

J. L. Grisolano, Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences, Blood, vol.89, issue.2, pp.376-87, 1997.

S. Grivennikov, IL-6 and Stat3 Are Required for Survival of Intestinal Epithelial Cells and Development of Colitis-Associated Cancer, Cancer Cell, vol.15, issue.2, pp.103-113, 2009.

S. I. Grivennikov, F. R. Greten, and M. Karin, Immunity, Inflammation, and Cancer', Cell, pp.883-899, 2010.

J. Groden, Identification and characterization of the familial adenomatous polyposis coli gene, Cell, vol.66, issue.3, pp.90021-90021, 1991.

D. Guo, A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes, Nature genetics, vol.36, issue.8, pp.837-878, 2004.

G. P. Gupta and J. Massagué, Cancer Metastasis: Building a Framework, Cell, pp.679-695, 2006.

D. Hanahan and R. A. Weinberg, The hallmarks of cancer, Cell, vol.100, pp.57-70, 2000.

L. E. Hang, SUMOylation regulates telomere length homeostasis by targeting Cdc13, Nature structural & molecular biology, vol.18, issue.8, pp.920-926, 2011.

U. Hardeland, Modification of the human thymine-DNA glycosylase by ubiquitin-like proteins facilitates enzymatic turnover, EMBO Journal, vol.21, issue.6, pp.1456-1464, 2002.

G. W. Hart, O-linked N-acetylglucosamine: the "yin-yang" of, 1995.

, Ser/Thr phosphorylation? Nuclear and cytoplasmic glycosylation, Advances in experimental medicine and biology. United States, vol.376, pp.115-123

G. Hateboer, mUBC9, a novel adenovirus E1A-interacting protein that complements a yeast cell cycle defect, Journal of Biological Chemistry, vol.271, issue.42, pp.25906-25911, 1996.

R. T. Hay, SUMO: A history of modification, Molecular Cell, pp.1-12, 2005.

X. He, Characterization of the loss of SUMO pathway function on cancer cells and tumor proliferation, PLoS ONE, vol.10, issue.4, 2015.

I. A. Hendriks and A. C. Vertegaal, A comprehensive compilation of SUMO proteomics, Nature reviews. Molecular cell biology, vol.17, issue.9, pp.581-95, 2016.

A. Hershko, Proposed role of ATP in protein breakdown: conjugation of protein with multiple chains of the polypeptide of, 1980.

, Proceedings of the National Academy of Sciences of the United States of America, vol.77, pp.1783-1789

A. Hershko and A. Ciechanover, The ubiquitin system, Annual review of biochemistry, vol.67, pp.425-479, 1998.

A. Hershko, A. Ciechanover, and I. A. Rose, Resolution of the ATPdependent proteolytic system from reticulocytes: a component that interacts with ATP, Proceedings of the National Academy of Sciences of the United States of America, vol.76, pp.3107-3110, 1979.

A. Hershko, A. Ciechanover, and I. A. Rose, Identification of the active amino acid residue of the polypeptide of ATP-dependent protein breakdown, Journal of Biological Chemistry, vol.256, issue.4, pp.1525-1528, 1981.

C. Hetz, The unfolded protein response: controlling cell fate decisions under ER stress and beyond, Nature reviews. Molecular cell biology, vol.13, issue.2, pp.89-102, 2012.

L. Hicke, Protein Regulation By Monoubiquitin', Nature Reviews Molecular Cell Biology, vol.2, pp.195-201, 2001.

C. M. Hickey, N. R. Wilson, and M. Hochstrasser, Function and regulation of SUMO proteases, Nature reviews. Molecular cell biology, vol.13, issue.12, pp.755-66, 2012.

V. Hietakangas, PDSM, a motif for phosphorylation-dependent SUMO modification, Proceedings of the National Academy of Sciences of the United States of America, vol.103, pp.45-50, 2006.

M. Hochstrasser, Origin and function of ubiquitin-like proteins, Nature, vol.458, issue.7237, pp.422-429, 2009.

A. Hoellein, Myc-induced SUMOylation is a therapeutic vulnerability for B-cell lymphoma, Blood, vol.124, issue.13, pp.2081-2090, 2014.

B. Hoesel and J. Schmid, The complexity of NF-?B signaling in inflammation and cancer, Molecular cancer, vol.12, issue.1, p.86, 2013.

Y. L. Hsieh, Ubc9 acetylation modulates distinct SUMO target modification and hypoxia response, EMBO J, vol.32, issue.6, pp.791-804, 2013.

E. J. Huang and L. F. Reichardt, Trk Receptors: Roles in Neuronal 149, 2003.

, Annual Review of Biochemistry, vol.72, pp.609-642

J. Huang, SUMO1 modification of PTEN regulates tumorigenesis by controlling its association with the plasma membrane, Nature Communications, vol.3, p.911, 2012.

L. Huang, The Arabidopsis SUMO E3 ligase AtMMS21, a homologue of NSE2/MMS21, regulates cell proliferation in the root, vol.60, pp.666-678, 2009.

T. T. Huang, Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress, Cell. United States, vol.115, issue.5, pp.565-576, 2003.

T. Hunter, The Age of Crosstalk: Phosphorylation, Ubiquitination, and Beyond, Molecular Cell, vol.28, issue.5, pp.730-738, 2007.

S. Hutten, A role for the CB -associated SUMO isopeptidase in RNAPII -mediated snRNA transcription, Journal of Cell Science, 2014.

, International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome, International Human Genome Sequencing Consortium, vol.431, pp.931-945, 2004.

O. N. Jensen, Modification-specific proteomics: Characterization of post-translational modifications by mass spectrometry, Current Opinion in Chemical Biology, pp.33-41, 2004.

Z. Jiang, SENP1 deficiency promotes ER stress-induced apoptosis by increasing XBP1 SUMOylation, Cell Cycle, vol.11, issue.6, pp.1118-1122, 2012.

E. S. Johnson and G. Blobel, Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins, Journal of Cell Biology, vol.147, issue.5, pp.981-993, 1999.

E. S. Johnson and A. A. Gupta, An E3-like factor that promotes SUMO conjugation to the yeast septins, Cell, vol.106, issue.6, pp.735-744, 2001.

G. Joslyn, Identification of deletion mutations and three new genes 150, 1991.

, at the familial polyposis locus, vol.66, pp.90022-90024

G. Kadaré, PIAS1-mediated Sumoylation of Focal Adhesion Kinase Activates Its Autophosphorylation, Journal of Biological Chemistry, vol.278, issue.48, pp.47434-47440, 2003.

M. H. Kagey, T. A. Melhuish, and D. Wotton, The polycomb protein Pc2 is a SUMO E3, Cell, vol.113, issue.1, pp.159-163, 2003.

J. S. Kang, The type I TGF-? receptor is covalently modified and regulated by sumoylation, Nature cell biology, vol.10, issue.6, pp.654-664, 2008.

M. Karin, Nuclear factor-kappaB in cancer development and progression, Nature, issue.7092, pp.431-436, 2006.

J. D. Kessler, A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis, pp.348-53, 2012.

D. Kim, Critical role of RanBP2-mediated SUMOylation of Small Heterodimer Partner in maintaining bile acid homeostasis, Nature communications, vol.7, p.12179, 2016.

E. M. Kim, The mouse small ubiquitin-like modifier-2 (SUMO-2) inhibits interleukin-12 (IL-12) production in mature dendritic cells by blocking the translocation of the p65 subunit of NF?B into the nucleus, Molecular Immunology, vol.48, pp.2189-2197, 2011.

J. H. Kim, SUMOylation of pontin chromatin-remodeling complex reveals a signal integration code in prostate cancer cells, Proceedings of the National Academy of Sciences of the United States of America, vol.104, pp.20793-20798, 2007.

K. Kim and S. H. Baek, SUMOylation code in cancer development and metastasis, Molecules and cells, vol.22, issue.3, pp.247-253, 2006.

K. Kinzler, Identification of FAP locus genes from chromosome 5q21, Science, vol.253, issue.5020, pp.661-665, 1991.

K. W. Kinzler and B. Vogelstein, Lessons from hereditary colorectal cancer', Cell, pp.81333-81334, 1996.

O. Kirsh, The SUMO E3 ligase RanBP2 promotes modification of 151 the HDAC4 deacetylase, EMBO Journal, vol.21, issue.11, pp.2682-2691, 2002.

U. R. Klein, RanBP2 and SENP3 function in a mitotic SUMO2/3 conjugation-deconjugation cycle on Borealin, Molecular biology of the cell. United States, vol.20, issue.1, pp.410-418, 2009.

M. Kliszczak, SUMO ligase activity of vertebrate Mms21/Nse2 is required for efficient DNA repair but not for Smc5/6 complex stability, DNA Repair, vol.11, issue.10, pp.799-810, 2012.

P. Knipscheer, Ubc9 Sumoylation Regulates SUMO Target Discrimination, Molecular Cell, vol.31, issue.3, pp.371-382, 2008.

D. Koepp, Phosphorylation-dependent ubiquitination of Cyclin E by the SCF-Fbw7 ubiquitin ligase, Science, vol.294, pp.173-180, 2001.

S. Koidl, The SUMO2/3 specific E3 ligase ZNF451-1 regulates PML stability, vol.79, pp.478-487, 2016.

N. Kolli, Distribution and paralogue specificity of mammalian deSUMOylating enzymes, The Biochemical journal, vol.430, issue.2, pp.335-379, 2010.

T. Kouzarides, Chromatin Modifications and Their Function, Cell, pp.693-705, 2007.

O. Kovalenko, Mammalian ubiquitin-conjugating enzyme Ubc9 interacts with Rad51 recombination protein and localizes in synaptonemal complexes, Proceedings of the National Academy of Sciences of the United States of America, vol.93, pp.2958-63, 1996.

J. Kurepa, The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress, The Journal of biological chemistry. United States, vol.278, issue.9, pp.6862-6872, 2003.

V. Lallemand-breitenbach, Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway, Nature cell biology. England, vol.10, issue.5, pp.547-555, 2008.

V. Lallemand-breitenbach and H. De-thé, Cold Spring Harbor perspectives in biology, 2010.

T. Lear, Ubiquitin E3 ligase FIEL1 regulates fibrotic lung injury through SUMO-E3 ligase PIAS4, The Journal of Experimental Medicine, 2016.

M. H. Lee, NF-?B Induction of the SUMO Protease SENP2: A Negative Feedback Loop to Attenuate Cell Survival Response to Genotoxic Stress, Molecular Cell, vol.43, issue.2, pp.180-191, 2011.

S. Leivonen and V. Kähäri, Transforming growth factor-beta signaling in cancer invasion and metastasis, International journal of cancer. Journal international du cancer, vol.121, issue.10, pp.2119-2124, 2007.

M. C. Lewicki, The S. cerevisiae SUMO stress response is a conjugation-deconjugation cycle that targets the transcription machinery, Journal of Proteomics, vol.118, pp.39-48, 2015.

J. Li, Cbx4 governs HIF-1? to potentiate angiogenesis of hepatocellular carcinoma by its SUMO E3 ligase activity, Cancer Cell, vol.25, issue.1, pp.118-131, 2014.

Y. Liang, SUMO5, a Novel Poly-SUMO Isoform, Regulates PML Nuclear Bodies, pp.1-15, 2016.

Y. Lim, Sumoylation regulates ER stress response by modulating calreticulin gene expression in XBP-1-dependent mode in Caenorhabditis elegans, International Journal of Biochemistry and Cell Biology, vol.53, pp.399-408, 2014.

D. Y. Lin, Role of SUMO-Interacting Motif in Daxx SUMO Modification, Subnuclear Localization, and Repression of Sumoylated Transcription Factors, Molecular Cell, vol.24, issue.3, pp.341-354, 2006.

X. Lin, SUMO-1/Ubc9 promotes nuclear accumulation and metabolic stability of tumor suppressor Smad4, The Journal of biological chemistry. United States, vol.278, issue.33, pp.31043-31048, 2003.

B. Liu, PIAS1 selectively inhibits interferon-inducible genes and is important in innate immunity, Nature immunology, vol.5, issue.9, pp.891-899, 2004.

B. Liu, Proinflammatory Stimuli Induce IKK?-Mediated Phosphorylation of PIAS1 to Restrict Inflammation and Immunity, Cell, p.153, 2007.

, , pp.903-914

B. Liu and K. Shuai, Regulation of the sumoylation system in gene expression', Current Opinion in Cell Biology, pp.288-293, 2008.

F. Liu, NF-kappaB directly regulates Fas transcription to modulate Fas-mediated apoptosis and tumor suppression, J Biol Chem, vol.287, issue.30, pp.25530-25540, 2012.

H. W. Liu, Chromatin modification by SUMO-1 stimulates the promoters of translation machinery genes, Nucleic Acids Research, vol.40, issue.20, pp.10172-10186, 2012.

X. Liu, Negative Regulation of TLR Inflammatory Signaling by the SUMO-deconjugating Enzyme SENP6, PLoS Pathogens, issue.6, p.9, 2013.

A. P. Lothrop, M. P. Torres, and S. M. Fuchs, Deciphering posttranslational modification codes, FEBS Letters, pp.1247-1257, 2013.

C. Y. Lu, Sumoylation of the BLM ortholog, Sgs1, promotes telomere-telomere recombination in budding yeast, Nucleic Acids Research, vol.38, issue.2, pp.488-498, 2009.

M. J. Lyst and I. Stancheva, A role for SUMO modification in transcriptional repression and activation, Biochemical Society transactions, vol.35, pp.1389-92, 2007.

R. Mahajan, A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2, Cell, vol.88, issue.1, pp.97-107, 1997.

A. Mantovani, Cancer-related inflammation, Nature, issue.7203, pp.436-480, 2008.

N. Martin, PARP-1 transcriptional activity is regulated by sumoylation upon heat shock, The EMBO journal, vol.28, issue.22, pp.3534-3582, 2009.

I. Matic, Site-Specific Identification of SUMO-2 Targets in Cells Reveals an Inverted SUMOylation Motif and a Hydrophobic Cluster SUMOylation Motif, Molecular Cell, vol.39, issue.4, pp.641-652, 2010.

M. Matsushita, Down-regulation of TGF-beta receptors in human colorectal cancer: implications for cancer development, British journal of cancer, vol.80, issue.1-2, pp.194-205, 1999.

M. J. Matunis, E. Coutavas, and G. Blobel, A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex, Journal of Cell Biology, vol.135, issue.6, pp.1457-1470, 1996.

B. M. Mccartney and I. S. Näthke, Apc as master regulator of epithelia', Current Opinion in Cell Biology, pp.186-193, 2008.

W. H. Mcdonald, Novel Essential DNA Repair Proteins Nse1 and Nse2 Are Subunits of the Fission Yeast Smc5-Smc6 Complex, Journal of Biological Chemistry, vol.278, issue.46, pp.45460-45467, 2003.

D. Mclaughlin, Characterizing requirements for small ubiquitinlike modifier (SUMO) modification and binding on base excision repair activity of thymine-DNA glycosylase in vivo, Journal of Biological Chemistry, vol.291, issue.17, pp.9014-9024, 2016.

D. A. Mcnamara, Tamoxifen inhibits endothelial cell proliferation and attenuates VEGF-mediated angiogenesis and migration in vivo, European Journal of Surgical Oncology, vol.27, issue.8, pp.714-718, 2001.

P. B. Meluh and D. Koshland, Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C, Molecular biology of the cell, vol.6, issue.7, pp.793-807, 1995.

E. Meulmeester, Mechanism and consequences for paralogspecific sumoylation of ubiquitin-specific protease 25, Molecular cell. United States, vol.30, issue.5, pp.610-619, 2008.

F. Mohideen, A molecular basis for phosphorylation-dependent SUMO conjugation by the E2 UBC9, Nature structural & molecular biology, vol.16, issue.9, pp.945-52, 2009.

K. A. Moore, Regulation of Sumo mRNA during Endoplasmic Reticulum Stress, PLoS ONE, vol.8, issue.9, 2013.

J. R. Morris, The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress, Nature, vol.462, issue.7275, pp.886-90, 2009.

S. J. Moschos, Expression analysis of Ubc9, the single small ubiquitin-like modifier (SUMO) E2 conjugating enzyme, in normal and malignant tissues, Human Pathology, vol.41, issue.9, pp.1286-1298, 2010.

D. Mukhopadhyay and M. Dasso, Modification in reverse: the SUMO proteases, Trends in Biochemical Sciences, pp.286-295, 2007.

S. Müller, c-Jun and p53 activity is modulated by SUMO-1 modification, Journal of Biological Chemistry, vol.275, issue.18, pp.13321-13329, 2000.

S. Müller, M. J. Matunis, and A. Dejean, Conjugation with the ubiquitin-related modifier SUMO-1 regulates the partitioning of PML within the nucleus, EMBO Journal, vol.17, issue.1, pp.61-70, 1998.

S. S. Myatt, SUMOylation inhibits FOXM1 activity and delays mitotic transition, Oncogene, issue.34, pp.4316-4329, 2014.

K. Nacerddine, The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice, Developmental Cell, vol.9, issue.6, pp.769-779, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-02075525

A. A. Narsale and J. A. Carson, Role of interleukin-6 in cachexia: therapeutic implications, Current opinion in supportive and palliative care, vol.8, pp.321-328, 2014.

D. Nathan, Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications, Genes and Development, vol.20, issue.8, pp.966-976, 2006.

C. Neufert, C. Becker, and M. F. Neurath, An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression, Nature protocols, vol.2, issue.8, pp.1998-2004, 2007.

H. Neyret-kahn, Sumoylation at chromatin governs coordinated repression of a transcriptional program essential for cell growth and proliferation, Genome Research, vol.23, issue.10, pp.1563-1579, 2013.

L. K. Nguyen, W. Kolch, and B. N. Kholodenko, When ubiquitination meets phosphorylation: a systems biology perspective of EGFR/MAPK 156 signalling, Cell communication and signaling : CCS. England, vol.11, p.52, 2013.

I. Nishisho, Mutations of chromosome 5q21 genes in FAP and colorectal cancer patients, Science, issue.5020, pp.665-674, 1991.

T. Okura, Protection against Fas/APO-1-and tumor necrosis factor-mediated cell death by a novel protein, sentrin, Journal of immunology, vol.157, issue.10, pp.4277-4281, 1950.

D. Owerbach, A proline-90 residue unique to SUMO-4 prevents maturation and sumoylation, Biochemical and Biophysical Research Communications, vol.337, issue.2, pp.517-520, 2005.

R. Paduch and M. Kandefer-szerszen, Vitamin D, tamoxifen and betaestradiol modulate breast cancer cell growth and interleukin-6 and metalloproteinase-2 production in three-dimensional co-cultures of tumor cell spheroids with endothelium, Cell biology and toxicology. Netherlands, vol.21, pp.247-256, 2005.

K. Pardali and A. Moustakas, Actions of TGF-beta as tumor suppressor and pro-metastatic factor in human cancer, Biochimica et Biophysica Acta -Reviews on Cancer, vol.1775, pp.21-62, 2007.

H. Park, Identification of phosphorylation sites of TOPORS and a role for serine 98 in the regulation of ubiquitin but not SUMO E3 ligase activity, Biochemistry. United States, vol.47, issue.52, pp.13887-13896, 2008.

G. Pascual, A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma, Nature, vol.437, issue.7059, pp.759-763, 2005.

N. Pasupala, The SUMO E3 Ligase Siz2 exerts a locus-dependent effect on gene silencing in Saccharomyces cerevisiae, Eukaryotic Cell, vol.11, issue.4, pp.452-462, 2012.

S. Pebernard, Localization of Smc5/6 to centromeres and telomeres requires heterochromatin and SUMO, respectively, The EMBO journal. England, vol.27, issue.22, pp.3011-3023, 2008.

B. Pfander, SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase, Nature, vol.436, issue.7049, pp.428-433, 2005.

N. Picard, Identification of Estrogen Receptor as a SUMO-1, 2012.

, Target Reveals a Novel Phosphorylated Sumoylation Motif and Regulation by Glycogen Synthase Kinase 3, Molecular and Cellular Biology, vol.32, pp.2709-2721

M. P. Pinto, Heat shock induces a massive but differential inactivation of SUMO-specific proteases, Biochimica et Biophysica Acta -Molecular Cell Research, issue.10, pp.1958-1966, 2012.

P. R. Potts and H. Yu, Human MMS21/NSE2 is a SUMO ligase required for DNA repair, Molecular and cellular biology. United States, vol.25, issue.16, pp.7021-7032, 2005.

P. R. Potts and H. Yu, The SMC5/6 complex maintains telomere length in ALT cancer cells through SUMOylation of telomere-binding proteins, Nature structural & molecular biology. United States, vol.14, issue.7, pp.581-590, 2007.

I. Psakhye and S. Jentsch, Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair, Cell, vol.151, issue.4, pp.807-820, 2012.

M. Puhr, PIAS1 is a crucial factor for prostate cancer cell survival and a valid target in docetaxel resistant cells, Oncotarget, vol.5, issue.23, pp.12043-12056, 2014.

P. Pungaliya, TOPORS functions as a SUMO-1 E3 ligase for chromatin-modifying proteins, Journal of Proteome Research, vol.6, issue.10, pp.3918-3923, 2007.

T. L. Putoczki, Interleukin-11 is the dominant Il-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically, Cancer Cell, vol.24, issue.2, pp.257-271, 2013.

R. Rajsbaum, A. García-sastre, and G. A. Versteeg, TRIMmunity: The roles of the TRIM E3-ubiquitin ligase family in innate antiviral immunity, Journal of Molecular Biology, pp.1265-1284, 2014.

C. Van-rechem, Differential regulation of HIC1 target genes by CtBP and NuRD, via an acetylation/SUMOylation switch, in quiescent versus proliferating cells, Molecular and cellular biology. United States, vol.30, issue.16, pp.4045-4059, 2010.

D. Ribet and P. Cossart, Post-translational modifications in host cells during bacterial infection, FEBS Letters, pp.2748-2758, 2010.

M. S. Rodriguez, C. Dargemont, and R. T. Hay, SUMO-1 Conjugation in Vivo Requires Both a Consensus Modification Motif and Nuclear Targeting, Journal of Biological Chemistry, vol.276, issue.16, pp.12654-12659, 2001.

A. Roscic, Phosphorylation-Dependent Control of Pc2 SUMO E3, 2006.

, Ligase Activity by Its Substrate Protein HIPK2', vol.24, pp.77-89

E. Rosonina, S. M. Duncan, and J. L. Manley, SUMO functions in constitutive transcription and during activation of inducible genes in yeast, Genes and Development, vol.24, issue.12, pp.1242-1252, 2010.

W. Roth, PIASy-deficient mice display modest defects in IFN and Wnt signaling, Journal of immunology, vol.173, issue.10, pp.6189-99, 1950.

M. M. Rytinki, PIAS proteins: Pleiotropic interactors associated with SUMO', Cellular and Molecular Life Sciences, pp.3029-3041, 2009.

K. Ryu, The mouse polyubiquitin gene UbC is essential for fetal liver development, cell-cycle progression and stress tolerance, The EMBO journal, vol.26, issue.11, pp.2693-2706, 2007.

K. Ryu, Hypothalamic neurodegeneration and adult-onset obesity in mice lacking the Ubb polyubiquitin gene, Proceedings of the National Academy of Sciences of the United States of America, vol.105, pp.4016-4021, 2008.

H. Saitoh and J. Hinchey, Functional heterogeneity of small ubiquitinrelated protein modifiers SUMO-1 versus SUMO-2/3, The Journal of biological chemistry. United States, vol.275, issue.9, pp.6252-6258, 2000.

D. A. Sampson, M. Wang, and M. J. Matunis, The Small Ubiquitin-like Modifier-1 (SUMO-1) Consensus Sequence Mediates Ubc9 Binding and is Essential for SUMO-1 Modification, Journal of Biological Chemistry, vol.276, issue.24, pp.21664-21669, 2001.

D. Santos, G. A. Kats, L. Pandolfi, and P. P. , Synergy against PML-RARa: targeting transcription, proteolysis, differentiation, and self-renewal in acute promyelocytic leukemia, The Journal of experimental medicine, vol.210, issue.13, pp.2793-802, 2013.

H. Santti, Disruption of the murine PIASx gene results in reduced testis weight, Journal of Molecular Endocrinology, vol.34, issue.3, pp.645-654, 2005.

J. Schimmel, Uncovering SUMOylation dynamics during cellcycle progression reveals foxM1 as a key mitotic SUMO target protein, Molecular Cell, vol.53, issue.6, pp.1053-1066, 2014.

S. Schulz, Ubiquitin-specific protease-like 1 (USPL1) is a SUMO isopeptidase with essential, non-catalytic functions, EMBO reports, vol.13, issue.10, pp.930-938, 2012.

S. Schwitalla, Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties, Cell, vol.152, issue.1-2, pp.25-38, 2013.

J. Seeler and A. Dejean, Nuclear and unclear functions of SUMO, Nature reviews. Molecular cell biology, vol.4, issue.9, pp.690-699, 2003.

J. S. Seeler, SUMO, the three Rs and cancer, Current topics in microbiology and immunology, vol.313, pp.49-71, 2007.

W. Seufert, B. Futcher, and S. Jentsch, Role of a ubiquitin-conjugating enzyme in degradation of S-and M-phase cyclins, Nature, pp.78-81, 1995.

A. Shalizi, A calcium-regulated MEF2 surnoylation switch controls postsynaptic differentiation, Science, issue.5763, pp.1012-1017, 2006.

R. Shao, Increase of SUMO-1 expression in response to hypoxia: direct interaction with HIF-1alpha in adult mouse brain and heart in vivo, FEBS Lett, vol.569, issue.1-3, pp.293-300, 2004.

J. W. Shay and S. Bacchetti, A survey of telomerase activity in human cancer, European Journal of Cancer, vol.33, issue.5, pp.62-64, 1997.

L. N. Shen, Characterization of SENP7, a SUMO-2/3-specific isopeptidase, The Biochemical journal. England, vol.421, issue.2, pp.223-230, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00479165

T. H. Shen, The Mechanisms of PML-Nuclear Body Formation, p.160, 2006.

, Molecular Cell, vol.24, issue.3, pp.331-339

Z. Shen, UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins, Genomics. United States, vol.36, issue.2, pp.271-279, 1996.

Y. Shiio and R. N. Eisenman, Histone sumoylation is associated with transcriptional repression, Proceedings of the National Academy of Sciences of the United States of America, vol.100, pp.13225-13255, 2003.

E. J. Shin, DeSUMOylating isopeptidase: a second class of SUMO protease, EMBO reports, vol.13, issue.4, pp.339-385, 2012.

K. Shuai and B. Liu, Regulation of JAK-STAT signalling in the immune system, Nature reviews. Immunology, vol.3, issue.11, pp.900-911, 2003.

K. Shuai and B. Liu, Regulation of gene-activation pathways by PIAS proteins in the immune system, Nature reviews. Immunology, vol.5, issue.8, pp.593-605, 2005.

N. Sinha, SUMO4 163 G>A variation is associated with kidney disease in Indian subjects with type 2 diabetes, Molecular Biology Reports, issue.5, p.43, 2016.

C. Smet-nocca, SUMO-1 regulates the conformational dynamics of thymine-DNA Glycosylase regulatory domain and competes with its DNA binding activity, BMC biochemistry, vol.12, p.4, 2011.

M. S. Song, L. Salmena, and P. P. Pandolfi, The functions and regulation of the PTEN tumour suppressor, Nat Rev Mol Cell Biol, vol.13, issue.5, pp.283-296, 2012.

N. Stankovic-valentin, An acetylation/deacetylation-SUMOylation switch through a phylogenetically conserved psiKXEP motif in the tumor suppressor HIC1 regulates transcriptional repression activity, Molecular and cellular biology. United States, vol.27, issue.7, pp.2661-2675, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00247517

P. Stehmeier and S. Muller, Phospho-Regulated SUMO Interaction Modules Connect the SUMO System to CK2 Signaling, Molecular Cell, vol.33, issue.3, pp.400-409, 2009.

R. Steinacher and P. Schär, Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation, p.161, 2005.

, Current Biology, vol.15, issue.7, pp.616-623

A. K. Stephan, M. Kliszczak, and C. G. Morrison, The Nse2/Mms21 SUMO ligase of the Smc5/6 complex in the maintenance of genome stability, FEBS Letters, pp.2907-2913, 2011.

T. Sternsdorf, K. Jensen, and H. Will, Evidence for covalent modification of the nuclear dot-associated proteins PML and Sp100 by PIC1/SUMO-1', Journal of Cell Biology, vol.139, issue.7, pp.1621-1634, 1997.

M. Stilmann, A Nuclear Poly(ADP-Ribose)-Dependent Signalosome Confers DNA Damage-Induced I?B Kinase Activation, Molecular Cell, vol.36, issue.3, pp.365-378, 2009.

M. R. Stratton, P. J. Campbell, F. Andrew, and P. , The cancer genome, Nature, vol.458, issue.7239, pp.719-724, 2009.

Y. F. Su, Phosphorylation of Ubc9 by Cdk1 enhances SUMOylation activity, PLoS ONE, vol.7, issue.4, 2012.

L. Sun, PIASy mediates hypoxia-induced SIRT1 transcriptional repression and epithelial-to-mesenchymal transition in ovarian cancer cells, Journal of cell science, vol.126, pp.3939-3986, 2013.

D. B. Swartzlander, Identification of SUMO modification sites in the base excision repair protein, Ntg1', DNA Repair, vol.48, pp.51-62, 2016.

C. Szostecki, Isolation and characterization of cDNA encoding a human nuclear antigen predominantly recognized by autoantibodies from patients with primary biliary cirrhosis, Journal of immunology, vol.145, issue.12, pp.4338-4385, 1950.

S. Tahk, Control of specificity and magnitude of NF-kappa B and STAT1-mediated gene activation through PIASy and PIAS1 cooperation, Proceedings of the National Academy of Sciences of the United States of America, vol.104, pp.11643-11651, 2007.

Y. Takahashi, Yeast Ull1/Siz1 is a novel SUMO1/Smt3 ligase for septin components and functions as an adaptor between conjugating enzyme and substrates, The Journal of biological chemistry. United States, vol.276, issue.52, pp.48973-48977, 2001.

T. Tammsalu, Proteome-wide identification of SUMO2 162 modification sites, Science signaling, vol.7, p.2, 2014.

J. T. Tan, Phosphorylation-dependent interaction of SATB1 and PIAS1 directs SUMO-regulated caspase cleavage of SATB1, Molecular and cellular biology, vol.30, issue.11, pp.2823-2836, 2010.

Z. Tang, Protein interactions in the sumoylation cascade -Lessons from X-ray structures, FEBS Journal, pp.3003-3015, 2008.

M. H. Tatham, Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9, The Journal of biological chemistry. United States, vol.276, issue.38, pp.35368-35374, 2001.

M. H. Tatham, Role of an N-terminal site of Ubc9 in SUMO-1, -2, and -3 binding and conjugation, Biochemistry. United States, vol.42, issue.33, pp.9959-9969, 2003.

M. H. Tatham, RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation, Nature cell biology, vol.10, issue.5, pp.538-546, 2008.

D. Tempe, SUMOylation of the inducible (c-Fos:c-Jun)/AP-1 transcription complex occurs on target promoters to limit transcriptional activation, Oncogene. England, vol.33, issue.7, pp.921-927, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02168052

H. De-thé, The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus, Nature, vol.347, issue.6293, pp.558-561, 1990.

H. De-thé, The PML-RAR? fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR, Cell, vol.66, issue.4, pp.675-684, 1991.

H. De-thé and Z. Chen, Acute promyelocytic leukaemia: novel insights into the mechanisms of cure, Nature reviews. Cancer, vol.10, issue.11, pp.775-83, 2010.

M. L. Tomasi, K. Ramani, and M. Ryoo, Ubiquitin-Conjugating Enzyme 9 Phosphorylation as a Novel Mechanism for Potentiation of the Inflammatory Response, American Journal of Pathology, vol.186, issue.9, pp.2326-2336, 2016.

A. Uemura, UBC9 regulates the stability of XBP1, a key 163 transcription factor controlling the ER stress response, Cell structure and function, vol.38, pp.67-79, 2013.

T. A. Ullman and S. H. Itzkowitz, Intestinal inflammation and cancer, Gastroenterology, issue.6, pp.1807-1816, 2011.

R. Ullmann, An Acetylation Switch Regulates SUMO-Dependent Protein Interaction Networks, Molecular Cell, vol.46, issue.6, pp.759-770, 2012.

A. C. Vertegaal, Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics, Molecular & cellular proteomics : MCP, vol.5, issue.12, pp.2298-2310, 2006.

E. Viennois, F. Chen, and D. Merlin, NF-?B pathway in colitisassociated cancers, Translational gastrointestinal cancer, vol.2, issue.1, pp.21-29, 2013.

A. Vihervaara, Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells, Proceedings of the National Academy of Sciences of the United States of America, vol.110, pp.3388-97, 2013.

D. Vucic, V. M. Dixit, and I. E. Wertz, Ubiquitylation in apoptosis: a post-translational modification at the edge of life and death, Nature Rev Mol Cell Biol, vol.12, issue.7, pp.439-452, 2011.

J. Wan, D. Subramonian, and X. Zhang, SUMOylation in Control of Accurate Chromosome Segregation during Mitosis, Current Protein and Peptide Science, vol.13, pp.467-481, 2012.

L. Wang, SUMO2 is essential while SUMO3 is dispensable for mouse embryonic development, EMBO reports, vol.15, issue.8, pp.878-85, 2014.

Q. Wang, SUMO-specific protease 1 promotes prostate cancer progression and metastasis, Oncogene, vol.32, issue.10, pp.2493-2498, 2012.

W. Wang, PIASx?? ligase enhances SUMO1 modification of PTEN Protein as a SUMO E3 Ligase, Journal of Biological Chemistry, vol.289, issue.6, pp.3217-3230, 2014.

Z. Y. Wang and Z. Chen, Acute promyelocytic leukemia: From highly fatal to highly curable, Blood, pp.2505-2515, 2008.

V. M. Weake and J. L. Workman, Histone Ubiquitination: Triggering Gene Activity, Molecular Cell, pp.653-663, 2008.

W. Wei, A stress-dependent SUMO4 sumoylation of its substrate proteins, Biochemical and Biophysical Research Communications, vol.375, issue.3, pp.454-459, 2008.

S. Weidtkamp-peters, Dynamics of component exchange at PML nuclear bodies, Journal of cell science, vol.121, pp.2731-2774, 2008.

I. Wierstra, FOXM1 (Forkhead box M1) in tumorigenesis. Overexpression in human cancer, implication in tumorigenesis, oncogenic functions, tumor-suppressive properties, and target of anticancer therapy', Advances in Cancer Research, vol.119, pp.191-419, 2013.

K. A. Wong, Protein inhibitor of activated STAT Y (PIASy) and a splice variant lacking exon 6 enhance sumoylation but are not essential for embryogenesis and adult life, Molecular and cellular biology, vol.24, issue.12, pp.5577-86, 2004.

C. Woo, Extracellular signal-regulated kinase 5 SUMOylation antagonizes shear stress-induced antiinflammatory response and endothelial nitric oxide synthase expression in endothelial cells, Circulation research, vol.102, pp.538-583, 2008.

B. Xhemalce, Role of the fission yeast SUMO E3 ligase Pli1p in centromere and telomere maintenance, The EMBO journal, vol.23, issue.19, pp.3844-3853, 2004.

B. Xhemalce, Role of SUMO in the dynamics of telomere maintenance in fission yeast, Proceedings of the National Academy of Sciences, vol.104, pp.893-898, 2007.

Y. Xu, Induction of SENP1 in endothelial cells contributes to hypoxia-driven VEGF expression and angiogenesis, Journal of Biological Chemistry, vol.285, issue.47, pp.36682-36688, 2010.

P. Yang, SUMO1 regulates endothelial function by modulating the overall signals in favor of angiogenesis and homeostatic responses, American Journal of Translational Research, vol.5, issue.4, pp.427-440, 2013.

S. Yang, An extended consensus motif enhances the specificity of substrate modification by SUMO, The EMBO journal, vol.25, issue.21, pp.5083-93, 2006.

S. H. Yang and A. D. Sharrocks, SUMO promotes HDAC-mediated transcriptional repression, Molecular Cell, vol.13, issue.4, pp.611-617, 2004.

X. J. Yang and S. Grégoire, A Recurrent Phospho-Sumoyl Switch in Transcriptional Repression and Beyond, Molecular Cell, pp.779-786, 2006.

Y. Yang, A cytosolic ATM/NEMO/RIP1 complex recruits TAK1 to mediate the NF-kappaB and p38 mitogen-activated protein kinase, 2011.

, MAPK-activated protein 2 responses to DNA damage, Molecular and cellular biology. United States, issue.14, pp.2774-2786

T. R. Yeager, Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body', Cancer Research, vol.59, pp.4175-4179, 1999.

S. Yokoyama, A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma, Nature, vol.480, issue.7375, pp.99-103, 2011.

M. Zeineldin and K. L. Neufeld, More than two decades of Apc modeling in rodents, Biochimica et Biophysica Acta -Reviews on Cancer, pp.80-89, 2013.

F. Zhang, Sumo-1 function is dispensable in normal mouse development, Molecular and cellular biology, vol.28, issue.17, pp.5381-5390, 2008.

X. Zhao, Regulation of MEF2 by histone deacetylase 4-and SIRT1 deacetylase-mediated lysine modifications, Molecular and cellular biology, vol.25, issue.19, pp.8456-8464, 2005.

X. Zhao and G. Blobel, A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization, Proceedings of the National Academy of Sciences of the United States of America, vol.102, pp.4777-82, 2005.

J. Zhu, Small ubiquitin-related modifier (SUMO) binding determines substrate recognition and paralog-selective SUMO modification, p.166, 2008.

, Journal of Biological Chemistry, vol.283, issue.43, pp.29405-29415

S. Zhu, Protection from Isopeptidase-Mediated Deconjugation Regulates Paralog-Selective Sumoylation of RanGAP1, Molecular Cell, vol.33, issue.5, pp.570-580, 2009.