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Abstract

This thesis contributes to the formal specification and verification of
Sequential Dynamic Memory Allocators (SDMA, for short), which are key
components of operating systems or standard libraries. SDMA manage the
heap part of the data segment of processes. Their implementations employ
both complex data structures and low-level operations manipulating the
memory. This thesis focuses on SDMA using list data structures to manage
the heap chunks available for allocation, i.e., also called free-list SDMA.

The first part of the thesis demonstrates how to obtain formal specifi-
cations of free-list SDMA using a refinement-based approach. The thesis
defines a hierarchy of models ranked by the refinement relation that cap-
ture a large variety of techniques and policies employed by real-work
SDMA. This hierarchy forms an algorithm theory for the free-list SDMA
and could be extended with other policies. The formal specifications are
written in Event-B and the refinements have been proved using the Rodin
platform. The thesis investigates applications of the formal specifications
obtained, such as model-based testing, code generation and verification.

The second part of the thesis defines a technique for inferring precise
invariants of existing implementations of SDMA based abstract interpre-
tation. For this, the thesis defines an abstract domain representing sets
of states of the SDMA. The abstract domain is based on a fragment of
Separation Logic, called SLMA. This fragment captures properties related
with the shape and the content of data structures used by the SDMA to
manage the heap. The abstract domain is defined as a specific product
of an abstract domain for heap shapes with an abstract domain for finite
arrays of locations. To obtain compact elements of this abstract domain,
the thesis proposes an hierarchical organisation of the abstract values: a
first level abstracts the list of all chunks while a second level selects only
the chunks available for allocation. The thesis defines transformers of
the abstract values that soundly capture the semantics of statements used
in SDMA implementations. A prototype implementation of this abstract
domain has been used to analyse simple implementations of SDMA.
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Résumé

Cette thèse est une contribution à la spécification et à la vérification
formelles des allocateurs de mémoire dynamiques séquentiels (SDMA,
en abrégé), qui sont des composants clés des systèmes d’exploitation ou
de certaines bibliothèques logiciel. Les SDMA gèrent la partie tas de la
mémoire des processus. Leurs implémentations utilisent à la fois des
structures de données complexes et des opérations de bas niveau. Cette
thèse se concentre sur les SDMA qui utilisent des structures de données de
type liste pour gérer les blocs du tas disponibles pour l’allocation (SDMA
à liste).

La première partie de la thèse montre comment obtenir des spécifi-
cations formelles de SDMA à liste en utilisant une approche basée sur
le raffinement. La thèse définit une hiérarchie de modèles classés par la
relation de raffinement qui capture une grande variété de techniques et
de politiques employées par le implémentations réelles de SDMA. Cette
hiérarchie forme une théorie algorithmique pour les SDMA à liste et pour-
rait être étendue avec d’autres politiques. Les spécifications formelles
sont écrites en Event-B et les raffinements ont été prouvés en utilisant la
plateforme Rodin. La thèse étudie diverses applications des spécifications
formelles obtenues: le test basé sur des modèles, la génération de code et
la vérification.

La deuxième partie de la thèse définit une technique de vérification
basée sur l’interprétation abstraite. Cette technique peut inférer des invari-
ants précis des implémentations existantes de SDMA. Pour cela, la thèse
définit un domaine abstrait dont les valeurs representent des ensembles
d’états du SDMA. Le domaine abstrait est basé sur un fragment de la
logique de séparation, appelé SLMA. Ce fragment capture les propriétés
liées à la forme et au contenu des structures de données utilisées par le
SDMA pour gérer le tas. Le domaine abstrait est défini comme un produit
spécifique d’un domaine abstrait pour graphes du tas avec un domaine
abstrait pour des sequences finies d’adresses mémoire. Pour obtenir des
valueurs abstraites compactes, la thèse propose une organisation hiérar-
chique des valeurs abstraites : un premier niveau abstrait la liste de tous
les blocs mémoire, alors qu’un second niveau ne sélectionne que les blocs
disponibles pour l’allocation. La thèse définit les transformateurs des
valeurs abstraites qui capturent la sémantique des instructions utilisées
dans les implémentations des SDMA. Un prototype d’implémentation
de ce domaine abstrait a été utilisé pour analyser des implémentations
simples de SDMA.
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中中中文文文摘摘摘要要要

动态内存模块（SDMA）是很多操作系统或者高级语言标准库的关键
组件。 SDMA管理进程数据段的堆部分，他们的实现采用复杂的数据结
构和操作内存的底层指令和系统操作。本文侧重的内存模块，使用链表数

据结构来管理可用于分配的堆块。本文的主要贡献是用两种方法对动态内

存分配算法进行建模和验证。

首先，本文使用基于逐步精化的方法，描述 SDMA的正式规范。本
文定义了一个按精化关系排列的模型层次结构，它捕捉了实际 SDMA算
法所采用的各种技术和策略。这个层次结构形成了自由链表 SDMA的算
法理论，并可以用其他策略进行扩展。SDMA的模型用 Event-B形式化
语言描述，使用 Rodin建模平台证明了性质。本论文还研究了这些模型
在测试和代码生成中的应用。

本文的第二部分，定义了一种基于抽象解释的静态分析方法，用于分

析 SDMA算法。为此，论文定义了表示 SDMA抽象状态集合的抽象域。
抽象域基于本文提出的分离逻辑片段，称为 SLMA。该逻辑片段能够描
述用来管理堆的数据结构，以及变量的与数值相关的属性。抽象域的元素

是 SLMA逻辑的公式，元素之间的偏序比较用公式的蕴含来表示。抽象
域结合了数值抽象域和结构抽象域。本文还提出了抽象值的分层组织：第

一层能够描述所有的内存组织块，而第二层只选择可分配的内存块。本文

定义了抽象域中的抽象方法，每个对应的实际语句，在抽象域中都有对应

的抽象方法。
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CHAPTER 1
Introduction

In recent years, software plays an important role in our daily life. Because
software is becoming more and more complex, building software without bugs
becomes a difficult task. Especially for safety-critical systems, such as flight
control systems or driverless cars, potential errors in the programs can lead
to catastrophic consequences. Therefore, it is important to detect errors in the
programs or prove that there are no bugs.

Obtaining correct software is not so simple. In industry, the most widely
used method for ensuring the quality of software is testing. It checks informally
the conformance of the software executions under the given inputs. However,
testing cannot exhaust all possibilities, so it cannot eliminate all potential errors
in the programs. Unlike software testing, formal methods use mathematical
models and logics to analyze the programs. The formal verification of software
is an active research field in computer science. Various technologies have been
proposed, mainly including the following categories:

• Deductive program verification constructs a set of mathematical proof
obligations based on the given specification (e.g., loop invariants, function
contracts, termination proofs) which the programs must obey. The cor-
rectness of the programs is guaranteed by proving the obligations. They
are discharged using either automated SMT solvers [BCD+11, DMB08] or
interactive theorem provers [NPW02, BC13].

• Model checking [McM93] explores exhaustively and automatically the
models abstracting a program to decide if its executions satisfy the de-
sired properties. This method faces several challenges, such as to handle
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states explosion [CGJ+01] and to design automatic transformation from
programs to their models.

• Static analysis works on an abstraction of a program and is performed
without actually executing programs. This method is sound, that is it
never returns a false negative. However, it is restricted to properties over
decidable domains. Abstract interpretation [CC76, CC77b] is a frame-
work providing means to construct sound over-approximations of the
programs.

1.1 Motivation

This thesis focuses on the formal modelling and verification of the dynamic
memory allocators. Heap management is an indispensable module in many
operating system kernels, and its correctness has a major impact on the entire
system. Memory management is also a module where errors occur frequently
in the system.

This thesis focuses on sequential dynamic memory allocator, i.e., memory
allocators with no support for concurrent requests for memory. More precisely,
a SDMA is a piece of software managing a reserved region of the program
memory. It appears in general purpose libraries (e.g., C standard library) or as
part of applications where the dynamic allocation shall be controlled to avoid
failure due to memory exhaustion (e.g., embedded critical software). A client
program interacts with the SDMA by requesting some amount of memory that
it may free at any time. To offer this service, the SDMA manages the reserved
memory region by partitioning it into variable or fixed sized memory blocks,
also called chunks. When a chunk is allocated to a client program, the SDMA
can not relocate it to compact the memory region (like in garbage collectors)
and it is unaware about the kind (type or value) of data stored.

The existing implementations of SDMA use various data structures to man-
age the set of chunks created in the memory region. In this thesis, we focus
on SDMA that record all chunks using a list, also called heap list. In this data
structure, the chunks are stored in the increasing order of their start address
and the successor relation between chunks is computed from some informa-
tion stored in the start of the chunk, e.g., the size of the chunk. Notice that
this data structures allows to manage both fixed or variable size chunks. To
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speed the allocation of a free chunk, SDMA index the set of chunks not in use
(free chunks) in an additional data structure. We focus here on free list alloca-
tors [Knu73, WJNB95a] that record free chunks in a list. This class of list based
SDMA is widespread and it includes textbook examples [Knu73, KR88] and
real-world allocators [Lea12].

The aim of this thesis is to contribute at the design of SDMA with efficient
and correct code. For this, the thesis considers two approaches. The first
approach is building software correct-by-construction. This thesis defines a
general framework for formal specification of existing efficient techniques
employed by SDMA. The second approach is checking correctness by static
analysis. This thesis designs an original static analysis that is able to infer and
check complex invariant properties of SDMA.

The first aim is a challenging task for several reasons. Firstly, there is no
optimal general solution to obtain SDMA that provide both low overhead for
the management of the memory region and high speed in satisfying memory
requests, as demonstrated in the survey [WJNB95a]. Consequently, the design
of a SDMA shall take into account its specific use and adjusts the combination
of techniques to obtain an optimal solution for this use. This leads to a wide
variety of SDMA implementations to be specified and proved correct. Secondly,
the formal methods used to prove correctness shall deal with such optimized
implementations which are usually combining low level code (e.g., pointer
arithmetics, bit fields) with efficient high level data structures (e.g., hash tables
with doubly linked lists). The difficulty to formally analyse particular DMA
implementations has been demonstrated by several projects [CDOY06, MAY06,
TKN07a, KEH+09, Chl11]. These projects make use of highly expressive logics
to specify the memory organisation and content, e.g., second order logics or
Separation Logic [ORY01], which need sophisticated tools to be dealt with.
Finally, there is no evidence that the techniques developed in these projects may
be applied to verify the correctness of SDMA implementations using different
customizations.

The automated analysis of SDMA faces several challenges. Although the
code of SDMA is not long (between one hundred to a thousand LOC), it is
highly optimised to provide good performance. Low-level code (e.g., pointer
arithmetics, bit fields, calls to system routines like sbrk) is used to manage
efficiently (i.e., with low additional cost in memory and time) the operations
on the chunks in the reserved memory region. At the same time, the free list is
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manipulated using high level operations over typed memory blocks (values
of C structures) by mutating pointer fields without pointer arithmetic. The
analyser has to deal efficiently with this polar usage of the heap made by the
SDMA. The invariants maintained by the SDMA are complex. The memory
region is organised into a heap list based on the size information stored in the
chunk header such that chunk overlapping and memory leaks are avoided. The
start addresses of chunks shall be aligned to some given constant. The free list
may have complex shapes (cyclic, acyclic, doubly-linked) and may be sorted by
the start address of chunks to ease free chunks coalescing. A precise analysis
shall keep track of both numerical and shape properties to infer specifications
implying such invariants for the allocation and deallocation methods of the
SDMA.

1.2 Contributions

Refinement-based formalization: The work of the first part [FS17, FSG+17]
of this thesis is a first step towards providing optimal and formally proved
correct SDMA implementations. We adopt a correct-by-construction approach,
which is different from most of research this area. In this approach, an abstract
model is gradually refined to obtain a model that is detailed enough for code
generation or code annotation. We apply this approach to the full class of
list based SDMA. We obtain a set of formal models organised in a hierarchy
ranked by refinement relations that establishes a formally specified taxonomy
of the techniques employed by the implementations of list based SDMA. This
formally specified taxonomy forms an algorithm theory [SL90] for the free list
SDMA i.e., a structure common to all implementations in this class, which
abstracts away specific implementation concerns. To limit the complexity of
this work, we consider SDMA without support for concurrency, i.e., used in a
sequential setting.

Our work has a more theoretical consequence. It reveals the class of logics
necessary to specify precisely each of the design tactics considered and thus
it is a useful guide for the formal verification of SDMA. For example, we
identified the technique that requires second order logic to capture its precise
state invariant: the use of a list of free chunks which is not sorted by the start
address of chunks. Excepting this technique, the models proposed use only
first order, universally quantified state invariants, which is a good class for
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automatic provers.

Logic-based abstract interpretation for SDMA: We propose a static analy-
sis [FS16] that is able to infer the complex invariants of SDMA on both heap
list and free list. We define an abstract domain which uses logic formulas to
abstract SDMA configurations. The logic proposed extends the fragment of
symbolic heaps of SL with a hierarchical composition operator, c, to specify
that the free list covers partially the heap list. This operator provides a hierar-
chical abstraction of the memory region under the SDMA control: the low-level
memory manipulations are specified at the level of the heap list and propa-
gated in a way controlled by the abstraction at the level of the free list. The
shape specification is combined with a fragment of first order logic on arrays to
capture properties of chunks in lists, similar to [BDES11]. This combination is
done in an accurate way as regards the logic by including sequences of chunk
addresses in the inductive definitions of list segments. To summarize, the main
contributions of this thesis are:

• We formalize a hierarchy of models for a set of SDMA. The hierarchy is
ranked by formally proved refinement relations and it includes complete
and sound specifications of existing SDMA implementations. Although
extensible to other design tactics, our hierarchy covers actually all the
techniques used for the management heap lists.

• We propose an algorithm theory for SDMA and identify a signature
representing an abstraction from implementation details of SDMA and
link the formal models proposed with the concrete implementations.

• We illustrate the application of this work to model-based code generation,
testing and verification techniques.

• We propose a Separation Logic fragment SLMA for expressing properties
of SDMA concerning the shape of the memory structures as well as their
sizes and the data values they contain. The logic contains an array logic
fragment and we show that this logic is undecidable in general because
of the undecidable array logic fragment.

• We propose an abstract domain whose elements are based on the subset
of the logical formulae of SLMA. we give the a sound approximation of
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the logic entailment for static analysis of SDMA. The abstract domain
gives a high precision of the abstraction which is able to capture complex
properties of SDMA implementations. The abstract domain is built in
a modular way which permit to reuse existing abstract domains for the
analysis of linked lists with integer data.

• We implemented the abstract domain in a plug-in of the Frama-C [KKP+15]
platform and applied it to some simple SDMA.

1.3 Organisation

This thesis is organised as follows.
Part I describes the formalization of SDMA. It contains three chapters. Chap-

ter 2 overviews the existing SDMA, explains their features and summarizes
the challenges for formalization. Chapter 3 introduces preliminaries of the
specification we used and presents the most abstract specification for SDMA.
Also the formalization strategy is given which contains the refinement steps
and principles used in the formalization. The last chapter of the first part Chap-
ter 4 details the process of the refinement-based formalization, gives the related
work and concludes this part.

Part II focuses on the static analysis of SDMA. The analysis is based on
the framework of abstract interpretation. In Chapter 5, the separation logic
fragment, SLMA, is defined and the properties of the logic fragment are studied.
Chapter 6 introduces the preliminaries of abstract interpretation and defines the
abstract domain used in the analysis. The abstract domain is built by combining
other domains to capture complex properties. The elements of the abstract
domain are represented by the formulae of SLMA. Chapter 7 presents the basic
abstract operations of the domain and the abstract transformers for assignments
and condition tests. The analysis algorithm and the results of experiments are
also given in this chapter. Chapter 7 finally discusses the related work and
gives the conclusion of the work of this part.

The final chapter, Chapter 8, concludes this thesis and gives future directions
of research.



Part I

FORMALIZATION OF
SEQUENTIAL DYNAMIC
MEMORY ALLOCATORS



CHAPTER 2
Sequential Dynamic Memory

Allocators

The first part of this thesis focuses on formal modelling of sequential allocators
with no support for concurrent requests for memory. Such allocators are used
either in sequential systems or integrated inside a concurrent system that
ensures exclusive access to the memory allocator functions. A wide variety of
SDMA have been proposed until now, [WJNB95b] surveys most of them. This
variety is a consequence of the heterogeneity of systems employing SDMA, each
such system having its own requirements on memory allocation. For example,
Real-Time Operating Systems (RTOS) demand allocators with fast reply to
memory requests. The SDMA designed for RTOS may consume more memory
to reduce its response time. Embedded systems usually employ a limited
amount of memory and require to satisfy as much requests as possible within
the assigned memory. Therefore, the SDMA spend some time in avoiding
memory fragmentation such that the available memory is used at its maximal
capacity. Formalizing the SDMA requires to deal with such a diversity of
policies.

This chapter is structured as follows. We first overview basic components
of SDMA in § 2.1, including their interface and different techniques used in
existing implementations. Second, we describe a taxonomy of SDMA in § 2.2.
We classify SDMA according to the policies they adopted to manage memory
blocks and fragmentation. Then, we detail a wide set of case studies in § 2.3. It
covers a set of existing techniques. Finally, § 2.4 discusses the challenges for the
formalization of SDMA.
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2.1 Basic Elements of SDMA

2.1.1 Memory Structure

Without loss of generality, we consider that a SDMA manages one memory
region which corresponds to a contiguous sequence of bytes starting from a
fixed address, denoted by hst (for heap start) and ending before some address,
denoted by hli (for heap limit). (The case where the SDMA manages several such
atomic regions is a simple generalization. We also abstract away very low level
mechanisms like memory virtualization.)

Inside the managed memory region, the SDMA maintains a set of pairwise
disjoint chunks, which correspond to a sub-region used to satisfy client requests
for memory. Figure 2.1 illustrates a memory region which contains five chunks.
A chunk includes two kinds of information: a control part used to store in-
formation about the chunk (e.g., its size, its status – free or busy) and a data
part used to store the client’s data. Figure 2.1 illustrates the case where the
control part is stored at the start of the chunk, as a chunk header and the data
part, called chunk body occupies the remainder of the chunk. The data part shall
be a contiguous sub-region inside the chunk. The size of the control part is
fixed for a given SDMA implementation. Thus, the start and the end addresses
of the chunk body are determined from the start address of the chunk, the size
of the chunk header and the chunk size.

hst hli

chunk size

chunk start

body

he
ad

er

chk0 chk2 chk3 chk4

Figure 2.1: A memory region with five chunks

2.1.2 Interface for Clients

A memory allocator usually provides a method to clients to perform requests
for a memory sub-region of some size. To optimize the usage of the memory
resource, the allocator may provide a method to mark as not more in use
by a client (or free) a memory sub-region that has been previously acquired.
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Allocators providing both allocate and free methods are called explicit allocators.
Some programming languages (e.g., Java, Lisp) provide only constructs for
dynamic memory allocation but not for memory deallocation. Instead, they
include a garbage collector [JL96] that recovers the memory not more in use.
We call allocators with no deallocation method as implicit allocators. This thesis
focuses on explicit SDMA, like the one used for C programming language.

The interface provided by the SDMA is shown in Figure 2.2. The method
init initializes the set of chunks and marks them all to be free. A call alloc(n)
searches a free chunk whose body has size (in bytes) at least n. If such a free
chunk is found, it is marked as busy and the call to alloc returns the start
address of the chunk body; otherwise, the call returns a fixed value denoted
in the following by nil. A call free(p) succeeds if p is the start address of the
body of a previous allocated (i.e., busy) chunk; the chunk is marked as free and
the call returns true. Otherwise, the call does nothing and returns false. The size
of a busy chunk of body starting at p can be changed to n using realloc(p,n).
If n is smaller than the size of the body starting at p, a new free chunk is created
at the end of the chunk of p and the returned value is p. Otherwise, realloc
either enlarges the chunk of p if there is enough free memory after it and returns
p, or it allocates a new chunk, frees the chunk of p after copying its body in
the new chunk, and returns the start address of the body in the new chunk.
Some allocators may provide other functions. For example, the standard C
library provides calloc, which allocates and initializes the allocated memory
to zero (while alloc leaves the memory uninitialized). In this thesis, we focus
on the interface shown in Figure 2.2 because these are the basic functionalities
expected for SDMA.

void init(); //initialization
bool free(void* p); //deallocation
void* alloc(size_t sz); //allocation
void* realloc(void* p, size_t sz); //change size of p

Figure 2.2: Interface of SDMA

2.1.3 Interface Implementation

To introduce the main building blocks of the implementation of SDMA, we
present two possible algorithms for allocation and deallocation in the Algo-
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rithm 1 and Algorithm 2, respectively. Each step of these algorithms is encoded
by a function call. The result of the function is assigned (using the left arrow)
to a variable or several variables composing a tuple. In these algorithms, we
denote by M the set of memory chunks managed by the allocator.

2.1.3.1 Allocation

The first step of allocation algorithm, presented in Algorithm 1, is the search for
a free chunk of size bigger than req. It is encoded in by the function search.
The result of the search is assigned to a set, denoted by C. The next step is to
select a free chunk from C if C has more than one suitable free chunk. Various
selection strategies are described in Section 2.2.3.2. Moreover, some allocators
combine the search and selection steps in a unique step. We present these
variations in Section 2.2.3.

The setBusy function updates the state of the input chunk to busy. If the
size of the selected chunk is larger than the request, the split function splits
it into two parts: the first part, assigned to res, is for this allocation and the
second part (assigned to newChunk) is a new free chunk. Not all SDMA split
the selected chunk to fit the memory request because splitting may lead to
memory fragmentation. The various choices for splitting in existing SDMA are
explained in Section 2.2.2.

The set of memory chunks M is updated by adding the new chunk using
the function addChunk. The algorithm ends by returning the start address of
the selected chunk’s body, as it is computed by the function getBody.

2.1.3.2 Deallocation

An algorithm for deallocation is presented in Algorithm 2. A valid input for
this algorithm is the start address of the body of a busy chunk. This check is
done using function valid, which also computes the start address of the chunk
based on the the size of chunk header. The simplest deallocation only updates
the status of the chunk to be free and stops. Deallocation may lead to a memory
state with continuous free chunks, which increases the external fragmentation
(elaborated in Section 2.2.2). To avoid such states, some allocators coalesce
adjacent free chunks, like in Algorithm 2. Other SDMA do not coalesce free
chunks during deallocation, but they do it if there is not enough free memory
during the deallocation. These strategies are discussed in Section 2.2.2.
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Algorithm 1: Allocation Procedure
input : request with size req
output : 1. a start address p of a free chunk res’s body and the body has

the size bigger than or equal to the request req, or
2. nil if no memory left

begin
C ← search(M, req) ;
if C is not empty then

c← select(C);
M← setBusy(M, c);
if the size of c’s body is larger than req then

(res, newChunk) = split(c, req) ;
M← addChunk(M, newChunk);
return p← getBody(res);

else
return p← getBody(c);

end
else

return p← nil;
end

end

Algorithm 2: Deallocation Procedure
input : an address p
output : True if deallocation is effectively done, False otherwise

begin
c← valid(p);
if c is not nil then

M← setFree(M, c);
if c has free neighbor then

M← merge(M, c);
end
return True;

else
return False;

end
end
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2.2 Taxonomy of SDMA

We categorize SDMA based on the different policies used in their implemen-
tations of the interface fixed in Figure 2.2. In general, these policies concern
the implementations of basic functions called in the algorithms presented in
the previous section. One class of policies concerns the data structure used
to manage the set of chunks in the memory region and involved in functions
like addChunk and valid. The second class concerns the decision of splitting
or merging free chunks (functions split and merge) in order to cope with
fragmentation. The third class of policies concerns the function search used
to find a fitting set of chunks. The efficiency of this step depends on the data
structures used to manage the set of free chunks.

All the policies discussed here have been proposed in reference work on
dynamic memory allocators, e.g., [Knu73, PN77].

2.2.1 Heap List

The memory region managed by the SDMA is a sequence of chunks, as il-
lustrated on Figure 2.1. We call this sequence a heap list. We discuss in the
following the different ways used to manage this list.

Fixed-size chunk: The simplest design is to fix the size of chunks and there-
fore keep the sequence of chunks as an array [TKN07b]. This policy is suitable
for systems where clients require memory with similar sizes. It allows moving
forward and backward in the sequence of chunks but its degree of fragmenta-
tion can not be improved.

Explicit heap list: The sequence may be encoded by storing the start address
of the successor of each chunk in its control part. For example, the header part
of the chunk may have a specific field to store this information. Usually, the
heap list is an acyclic list starting at the address hst and ending with address hli,
the two global variables marking the boundaries of the memory region.

Implicit heap list: Instead of storing explicitly the address of the next chunk,
some SDMA use address arithmetics to get the successor of a chunk. Indeed,
for a chunk of start address c and size sz (in bytes), the the start address of
its successor in the sequence is c+ sz. Address arithmetics is also used in the
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technique of boundary tag [Knu73] to implement the sequence of chunks as a
doubly-linked list. The control part of each chunk contains a header (first bytes
of the chunk) and a footer (last bytes of the chunk), each of fixed size. The footer
repeats the information on the current chunk, mainly its size and status (free or
busy). This information is used by its successor (through address arithmetics),
e.g., to obtain the start of the chunk.

Buddy system: Buddy systems [Knu73, PN77] employ memory regions of
size 2n for some n. Each chunk has size 2i for different i such that 0 < i ≤ n

and start address multiple of its size. A buddy is a sequence of two chunks
of equal size, say 2k, and start addresses c0 and c1 such that c0 + 2k = c1 and
c0 mod 2k+1 = 0, i.e., the first chunk of the buddy may be the start of a bigger
chunk, more precisely of size 2k+1. To satisfy a request of size smaller than its
half, a chunk (or the initial memory region) is split in two chunks of equal size
forming a buddy. Thus, the entire memory region respects this hierarchical
division. Every chunk has a level given by the logarithm of its size. The biggest
level is given by n and the smallest level is fixed by the allocator.

There are several variants of this method, called binary buddy. For example,
Fibonacci buddy systems [WJNB95b] use the Fibonacci numbers for buddy
sizes. We focus only on binary buddies.

2.2.2 Fragmentation

Fragmentation of memory region is a phenomenon in which the memory bytes
not used in the allocated memory can not be used for allocation, they are
wasted. This phenomenon can not be perfectly circumvented in most allocator
algorithms. There are two kinds of fragmentation: internal and external. Internal
fragmentation is local to a chunk. It occurs if the payload (the amount requested
by the client) is smaller than the size of the data part of the chunk. The bytes of
the data part not used by the client is wasted. The allocator generates internal
fragmentation if either it does not apply chunk splitting, or there is no free
chunk which exactly fits the requested size, or it does not choose the perfectly
fitting chunk during selection (to speed-up allocation, for example). External
fragmentation occurs when the allocator creates small free chunks by splitting,
all of them not being contiguous. A request for allocation may be rejected even



Chapter 2. Sequential Dynamic Memory Allocators 15

if the sum of sizes of these free chunks is bigger than the requested size. There is
enough memory, but no single free chunk is large enough to fulfill the request.

We present below some policies proposed to manage fragmentation.

Splitting thresholds: To avoid internal fragmentation, the function split in
Algorithm 1 is applied only if the difference between the size of the chunk and
the requested size is bigger than some threshold. For this, the allocator defines
the minimal (minsz) and maximal values (maxsz) for the requests. When a
chunk of size s is selected to satisfy a request of size req, the allocator splits the
chunk the chunk if s− req is bigger than minsz plus the size of the control part
of the chunk. Setting a splitting threshold reduces external fragmentation while
internal fragmentation increases. Buddy systems support limited splitting. If
the request is bigger than the half of the selected chunk, the chunk is not split.
Otherwise, the selected chunk is split into two chunks and so on until the chunk
fits the request.

There are two ways to place the chunk obtained by splitting in the original
one: place it at the small address i.e., at start, or at the big address, i.e., at end.

Eager coalescing: One important technique for defragmentation is to merge
adjacent free chunks together into one bigger free chunk. In eager coalescing
policy, this is done during deallocation (see Algorithm 2). When an allocated
chunk c is released and it is marked as free, allocators with eager coalescing
policy check the state of its neighbors (predecessor and successor). The chunk
c is merged with its free neighbors immediately. Thus, the heap list never
contains two adjacent free chunks.

Partial coalescing: In buddy systems, a free chunk can only be merged with
its buddy. Because this may lead to status of the memory where two free chunks
are neighbors (because not belonging to the same buddy), this coalescing policy
is called partial coalescing in this thesis.

Lazy coalescing: Allocators with lazy coalescing policy allow the heap list to
contain two adjacent free chunks and do not coalesce adjacent free chunks
during deallocation. They decide to coalesce adjacent free chunks depending
on some conditions. For example, some allocators apply coalescing at allocation,
if there is no single free chunk larger enough for the request. In this case, the
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allocator coalesces all adjacent free chunks in the memory region. Then, it
searches again for a free chunk. Other allocators coalesce adjacent free chunks
when external fragmentation (i.e., number of free chunks) reaches a threshold
after deallocation.

No coalescing: Some allocators never coalesce adjacent free chunks. This
policy is suitable when clients always ask for similar size memory regions. It
is usually combined with the encoding of the set of chunks by an array (see
Section 2.2.1).

2.2.3 Free List

2.2.3.1 Data Structure

The procedure search in Algorithm 1 shall build the set of candidate free
chunks that satisfy the request. To build this list, the procedure may traverse
the heap list, policy that we denote by implicit free list. When the heap list is
long and full of busy chunks, this traversal impacts negatively the efficiency of
the search. To speed-up the search, some SDMA use additional data structures
to index free chunks. This thesis focuses on the following cases:

Explicit free list: The free chunks can be collected inside a free list using
additional information in the chunk control part, usually a field storing the
address of the next free chunk in the list. This field is undefined for busy
chunks. The free list may have several shapes: singly or doubly linked, acyclic
or circular, etc. The free chunks may be kept in order of their start address in
order to accelerate coalescing.

Segregated free list: To increase the speed in searching a free chunk fitting a
request, allocators use an array of free lists, each free list holding free chunks
within a size class. The set of size classes is fixed such that classes partition
the interval of legal size requests. Given a request for a particular size, the
allocator computes the size class the request belongs to, then it searches for a
large enough free chunk in the corresponding free list. If the free list of this size
class is empty, the allocator chooses next larger size class until a fitting chunk is
found. If the selected free chunk is split to satisfy the request, the remainder free
chunk is inserted into the free list storing chunks of this size class. Although
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the search phase of a fitting chunks is accelerated, the segregation of the free list
may decrease the efficiency of defragmentation. Indeed, if an allocator needs to
merge a released chunk with its free neighbor, the free neighbor is first removed
from its free list, which requires a list traversal. After coalescing the two chunks,
the new bigger free chunk is inserted into the free list (usually in constant time).

2.2.3.2 Fit Policy

The fit policy is used by the select procedure in the allocation Algorithm 1.
It may be combined with the search procedure and therefore contribute to
the efficiency of finding a fitting chunk. The fitting policy may influence the
organization of the free list.

Best fit: To avoid internal fragmentation, some allocators use a best fit policy
that finds the smallest free chunk satisfying the request. A best fit search is
expensive if the search space is big. Buddy systems use a variant of the best fit.
They divide a free memory region into many different partitions to try to fit the
request as closed as possible.

First fit: This policy returns the first free chunk of the list which is large
enough to satisfy the request. If this first chunk is too large, it may be split
depending on the splitting policy. Therefore, the free chunks near the beginning
of the free list are more likely to be allocated and split. Moreover, the small
free chunks resulting from splitting will accumulate at the start of the free
list [Knu73]. If the free list is kept in the last-in-first-out order, recently freed
chunks tend to be reused quickly with the first fit policy.

Next fit: To avoid accumulation of small free chunks at the start of the free list,
the technique of the roving pointer has been proposed by Knuth [Knu73]. The
roving pointer records the position where the last search found a free chunk
such that the next search or insert in the list will start from this position. This
policy is usually combined with an organization of the free list as a cyclic list.

2.3 Case Studies

We collect thirteen case studies implementing SDMA using lists as data struc-
ture to collect chunks. We summarize them on Table 2.1. This collection of case
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studies appears to us as representative because the list based SDMA included
illustrate all the policies discussed in the previous sections. First, we provide
a short description of each case study in the increasing order of complexity.
Second, we give hints on works proposing other implementations for list based
SDMA.

2.3.1 Collected SDMA

We identified three main classes of case studies.

Pure heap list SDMA: The first part of Table 2.1 contains SDMA that manage
memory chunks only by using the heap list and do not keep a list of free chunks.

TOPSY allocator [RJLP03] is the memory manager of the TOPSY operating
system. It uses an explicit heap list to keep track of memory blocks. The
allocator deals with internal fragmentation by defining a splitting threshold:
a free chunk fitting the request is split if it has a size at least bigger than the
request by the size of the control part of a chunk. The external fragmentation
is dealt using a lazy coalescing policy. Some of its properties (e.g., heap list
well formed, chunk separation) have been already specified and proved using
Coq [MAY06].

The allocator published by Doug Lea [Lea12, LG96] is used in several con-
texts, for example C and C++ libraries. It contains a lot of mechanisms in order
to offer an allocator that performs well at various kinds of uses. For example,
for requests of memory with sizes less than 256 bytes, the allocation is done in
an array of chunks of fixed size. We select this part of the allocator, that we call
DL-small in Table 2.1, to illustrate the fixed size policy for the heap list. The
other mechanisms implemented in this allocator are selected for the next class
of case studies.

IBM allocator is provided at [Bar04]. It uses an implicit heap list. Therefore,
the chunk header -contains only two fields: chunk’s state and size. The memory
region may be extended when the available free chunks can not satisfy the
request. For this, the code employs a system call, the routine sbrk, which
extends the data segment of the current process.

We implemented in C the buddy allocator described in [Knu73]. The header
of each chunk stores the level of the chunk (which also gives its size), its
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buddy type (i.e., left or right buddy), and its state (i.e., free or busy). For an
allocation request, the level of the requested size is computed (using the binary
representation of the size), and a free chunk of this level is searched in the
(implicit) heap list of the buddy system. The first free chunk of this level is
chosen. If it does not exist, the selected chunk is the first free chunk with the
smallest higher level; it is then split to obtain a free chunk with the level given
by the request.

Table 2.1: Three lasses of case studies (“→” and “↔” denote singly resp. doubly
linked list; “explicit” and “implicit” denote explicit resp. implicit heap list; “at
start” and “at end” denote the two possible positions of the free chunk left after
splitting)

heap list free list fit
Case study linked split defrag./extensible array shape sorted policy
TOPSY [RJLP03] implicit,→ at end lazy/no – – – first
DL-small [Lea12] implicit,→ – –/no yes – – first
IBM [Bar04] implicit,→ – –/yes – – – first
Buddy [Knu73] explicit,↔ at start partial/no – – – first
L4 [TKN07a] implicit,→ – –/no yes acyclic,→ yes first
DKFF [Knu73] explicit,→ at start early/no – acyclic,→ yes first
DKBF [Knu73] explicit,→ at start early/no – acyclic,→ yes best
LA [Ald08] explicit,→ at start early/no – acyclic,→ yes first
DKNF [Knu73] explicit,→ at start early/no – acyclic,→ yes next
KR [KR88] explicit,→ at start early/yes – cyclic,→ yes next
DKBT [Knu73] explicit,↔ at start early/no – acyclic,↔ no best
DL-list [Lea12] explicit,↔ at start early/yes – acyclic,↔ no best
TLSF [MRCR04] explicit,↔ at start early/no – acyclic,↔ no best

SDMA with singly linked free lists: The case studies in the second part of
Table 2.1 use singly linked and address sorted free lists.

L4 is the memory allocator of the L4 microkernel [TKN07a]. It manages
fixed size chunks and collects the free chunks in an acyclic singly linked list.
When all the chunks are busy, the memory managed by L4 allocator is not
extended. Tuch et al. have specified this allocator and verified some of its
properties (e.g., heap list, chunk separation) using Isabelle/HOL [TKN07b].

The allocators DKFF and DKBF are our implementations of algorithms A
and B in the Section 2.5 of [Knu73], which use the first-fit resp. best-fit policies.
The allocator DKNF is also our implementation of the next-fit policy using the
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“roving pointer” technique proposed in [Knu73] (Exercise 6 in Section 2.5). The
three allocators use an explicit heap list and manage free chunks in a singly
acyclic free list.

LA allocator [Ald08] is the implementation of Knuth’s algorithm A (i.e.,
first fit policy) [Knu73] by Leslie Aldridge. It keeps an explicit heap list and
prevents fragmentation by using an early coalescing policy.

The allocator KR is the code published in [KR88]. It keeps a circular singly
linked list and uses next fit policy. The free list is sorted by the chunk start ad-
dresses up to the circular list. To exploit the locality of allocation/deallocation,
the start of the free list points to the last deallocated block. When the available
free chunks are not big enough to satisfy a memory request, the allocator calls
the system routine sbrk to extend the size of the managed memory.

SDMA with doubly linked free list: The third part of Table 2.1 contains case
studies that enhance the implementation of coalescing by using a doubly linked
free lists.

The allocator DKBT is our C implementation of the “boundary tag” tech-
nique introduced in [Knu73]. The implementation in C of the footer control
part uses the classic ruse which includes the footer of a chunk in the header of
its successor. The footer we implemented stores the status and the start address
of the previous chunk in the heap list. This information is generally used only
if the previous chunk is free by the coalescing function merge in Algorithm 2.

The allocator DL-list is the part of the Doug Lea’s allocator [Lea12] which
manages medium size requests. It uses a doubly-linked list to store these
chunks and the boundary tag technique where the footer stores the size of the
owner chunk. We remove from this code the parts concerning concurrency,
portability, and some optimizations.

The allocator TLSF is described in [MRCR04] and its code freely available.
The free lists in TLSF are indexed in a matrix. A free chunk belongs to the
doubly linked list stored at the position (i, j) in this matrix if its size belongs
to the interval [2i + 2i−1 × j, 2i + 2i−1 × (j + 1)[. The search for the best fitting
set of chunks is done in constant time due to the use of a bitfield storing the
non empty classes in the matrix. Therefore, when a class is empty, the next non
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empty larger class is found in constant time. The allocator uses early coalescing
policy.

2.3.2 Related Work

The study of dynamic memory allocation algorithms has been an important
topic in the operating systems research. Wilson et al. [WJNB95b] survey a
variety of SDMA designs between 1965 and 1995 and point out issues relevant
to their design and evaluation. Puaut [Pua02] gives the detailed average and
worst-case measurements of the timing performance of SDMA, including differ-
ent classes of existing allocators (first-fit, best-fit, segregated-fit, buddy system).
Barootkoob et al. [BKSM11] present the parameters affecting the functionality
of memory allocators for a Berkeley Software Distribution (BSD) operating
system. In [DSDR12] is given a survey report on memory allocation strategies
for RTOS. Payer discusses the fragmentation problem of the allocators used
in RTOS [Pay07] which offer O(1) operations’ response times. Some works
improve the existing algorithms. Sun et al. [SWC07] improve the TLSF allocator
which is widely used in RTOS. [BDM05] presents some enhancements to the
conventional buddy system that improve the running time of allocation and
deallocation.

2.4 Challenges for Formalization

Variety of SDMA: As we showed in the previous sections, there is a large
spectrum of policies and techniques adopted in the design of SDMA. Each
SDMA takes into account its specific use and chooses the combination of tech-
niques to obtain an optimal solution for this use. This leads to a wide variety of
SDMA. The formal specification of these combination of policies and techniques
is very complex.

Expressivity of formal methods: Some existing work presents modeling and
verification results for particular allocator algorithms. For example, Tuch et
al. [TKN07b] use the proof assistant Isabelle/HOL [NPW02] formal method
to model and verify the L4 allocator. Also, Su et al. [SAPF15] adopt Event-
B [AH07] to build a formal model for the TLSF allocator. The difficulty to
capture the formal properties and to verify particular SDMA implementations
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has been also demonstrated by several projects [CDOY06, MAY06, KEH+09,
Chl11]. These projects make use of highly expressive logics to specify the
memory organization and content, e.g., second order logics or Separation
Logic [ORY01]. These logics need sophisticated tools to be dealt with. Each of
these approaches is tailored for a unique allocator. There is no evidence that the
techniques developed in these projects may be applied to verify the correctness
of SDMA implementations using different customizations. In conclusion, the
formal methods chosen shall be expressive enough to capture the large variety
of customization which usually combines highly optimized low level code (e.g.,
pointer arithmetics, bit fields) with efficient high level data structures (e.g., hash
tables with doubly linked lists).

Modular specification: The naive way to deal with a set of SDMA implemen-
tations is to construct an individual formal model for each allocator algorithm.
However, this approach is not satisfactory and time-consuming. It is not mod-
ular because when building models for allocators separately, the common
components cannot be shared between models. To design a generic framework
for formalizing a set of SDMA, two techniques are necessary: abstraction and
refinement. The challenge when employing these well understood techniques
is the choice of the abstraction and of the refinement steps in order to reuse
models as much as possible and cover all the SDMA in our case studies. In the
next chapter, we give an overview of our approach for formalizing the set of
SDMA we collected.



CHAPTER 3
Formalization Strategy

This chapter presents the formal method used to obtain formal specifications
for the SDMA and the principles that guided us in choosing and using a formal
method to obtain such specifications. We choose to employ the formal method
called Event-B [AH07] which has been used for the specification and verification
of several critical systems [BY08, ZYSL15, SA17, MPS17]. This formal method
has two main ingredients: state machines and refinement relations.

The state machines model the behavior of the specified system by providing
(i) the invariant properties of the state of the system (here the SDMA) and (ii) the
events that produce atomic transformations of the state (here the components
of the main SDMA functions – initialization, allocation and deallocation). The
properties and events are written using the second order theory over sets. The
preservation of the state invariants by the events is proved by the proof system
Rodin [ABH+10]. We introduce in this chapter the state machine that is the
most abstract specification of an SDMA.

The refinement relations allow to derive elaborate models in an incremental
way. Intuitively, a state machine R refines a state machine B if R has more
details than B, but R includes all behaviors of B. The refinement relation is
given by the specification; it is formally checked by Rodin. In this chapter, we
define a hierarchy of policies in SDMA and we use it to guide the definitions of
refinement relations between specifications of SDMA.

We start by preliminary definitions about the formal method employed in
§ 3.1. The most abstract specification of SDMA is presented in § 3.2 and our
refinement strategy in § 3.3.
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3.1 Preliminaries

A formal model specifying a system is a mathematical representation of the
system. We use the formal method Event-B [AH07] to obtain formal models of
SDMA. We introduce hereafter the main ingredients of this method: the state
machines and the refinement relations.

3.1.1 State Machine

A state machine in Event-B is a set of variables satisfying some invariant properties
and a set of events that produces atomic transformations of variables.

The variables are typed using either basic types (boolean, natural, integer,
real), product of types or typed sets (set of integers, relations between integers,
etc.). A state of the state machine is a valuation of its variables. The machine
may have finitely or infinitely many states. For example, the formal models
of SDMA include variables that represent the memory region managed by the
allocator. One of these variables is the set of integers representing the start
addresses of chunks stored in the memory region.

Only states that satisfy the invariants properties over the state machine
variables are included in the behavior of the state machine. The invariant
properties are constraints about the range of values for some variables or more
complex relations between variables.

An event (or transition) updates the state using a set of assignments on
variables (called action) that modifies the variables simultaneously. Events
are atomic transformations: there is no interleaving between the assignments
of two events. To be executed, an event shall satisfy its precondition. If the
preconditions of all actions are not satisfied, the machine stops; this situation is
called the deadlock of the machine. If several events may be executed in some
state, any of them can be chosen. The execution of an event shall lead to a state
that satisfies the invariant properties. Otherwise, the event is not correct.

The proof system Rodin [ABH+10] checks that the invariants properties are
satisfiable (i.e., there exist states satisfying these constraints) and that any event
specified is correct.

A detailed definition of the Event-B methods is given in [AH07]. We only
shortly present some parts of it used in our formalization process as well as
some shorthand notations we introduce for the clarity of presentation.
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Underlying logic: The invariant properties, the preconditions and the actions
are specified using formulas and terms in a multi-sorted second order logic
including the set theory.

Table 3.1: Set-theoretical notations

Set operators
{e} singleton set {e1, e2, ..., en} set enumeration
∅ empty set S ∪ T set union

S ∩ T set intersection S \ T set difference
S × T cartesian product P(S) powset
e1 7→ e2 ordered pair m..n = {i | m ≤ i ≤ n} interval

Set predicates
e ∈ S set membership S ⊆ T subset
e /∈ S set non-membership S ⊂ T strict subset

Relations
S ↔ T relations: P(S × T )

dom(r) domain: dom(r) , {x | (∃y · x 7→ y ∈ r)}
ran(r) range: ran(r) , {y | (∃x · x 7→ y ∈ r)}
r−1 inverse: r−1 , {(y 7→ x) | x 7→ y ∈ r }
r[S] relational image: r[S] , {y | ∃x · x ∈ S ∧ x 7→ y ∈ r}
id(S) identity: id(S) , {(x 7→ y) | x ∈ S ∧ y ∈ S ∧ x = y }
S C− r domain subtraction: S C− r , {(x 7→ y) | x 7→ y ∈ r ∧ x /∈ S}
r B− T range subtraction: r C− T , {(x 7→ y) | x 7→ y ∈ r ∧ y /∈ T}
r1 C− r2 overriding: r1 C− r2 , r2 ∪ (dom(r2)C− r1)

Functions
q ◦ p composition: ∀q, p · q ∈ S ↔ T ∧ p ∈ T ↔ U ⇒

q ◦ p = {(x 7→ y) | ∃z · x 7→ z ∈ q ∧ z 7→ y ∈ p}
S 7→ T partial function: S 7→ T , {r | (r ⊆ id(T )) ◦ (r ∈ S ↔ T ∧ r−1)}
S→ T total function: S→ T , {r | r ∈ S 7→ T ∧ dom(r) = S}
S 7� T partial injection: S 7� T , {r | r ∈ S 7� T ∧ r−1 ∈ T 7→ S}
S� T total injection: S� T , S 7� T ∩ S→ T

S 7� T partial surjection: S 7� T , {r | r ∈ S 7→ T ∧ ran(r) = T}
S� T total surjection: S� T , S 7� T ∩ S→ T

S�� T bijection: S�� T , S� T ∩ S� T

The operators of the logic are classical: disjunction (∨) conjunction (∧), nega-
tion (¬), universal quantification (∀), existential quantification (∃), implication (⇒),
equivalence (⇔), true constant (>), and false constant (⊥). We denote by P (X) a
formula P with free variables in the set X .
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The set theory includes operators, predicates, relations and functions pre-
sented in Table 3.1. In addition to these notations, we also introduce some
shorthands for complex notions (e.g., relation overriding) in the following.

State machine: A state machine is a tuple SM = (V, I(V ), E, e0) where:

• V is a set of variables defining the state of the machine,

• I(V ) is a set of invariants, which are formulas in the underlying logic
whose free variables are contained in V ,

• E is a set of events representing state changes,

• e0 6∈ E is the initialization event, which fixes the initial set of states of the
machine.

The variables in V that are not changed during the state machine behaviors
are called constants. We identify them in specifications of state machines.

Event: An event e is specified using the following syntax:

e , begin any X when P(X,V ) then A(X,V ) end (E1)

| begin when P(V ) then A(V ) end (E2)

| begin A(V ) end, (E3)

| SKIP (E4)

where X is the set of local variables of the event, P(V ) (resp. P(X,V )) are logic
formulas specifying the precondition of the event by constraining V (resp. X
and V ) and A(V ) (resp. A(X,V )) is the action part which changes or only
uses variables in V (resp. X and V ). The most general form is given in (E1),
which defines a list of local variables. The third form (E3) is for events whose
precondition always holds, so it is omitted. A state machine has a unique event
in form (E3), the initialization event e0. The form (E4) is for the implicit event
which does not modify variables.

Action: The action part of an event A(X,V ) is a set of assignments of the
following form:

assign ::= x := t(X,V ) | r(x) := t(X,V ) | skip
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An assignment sets the variable x to the term t which has free variables in sets
V and X . It also may assign the value bound to x in the relation variable r
to a term t. Notice that this kind of assignment is a shorthand for the relation
overriding symbol (e.g., C−) presented in Table 3.1, i.e., r := r C− r1.

The dynamic semantics of state machines is given in terms of labelled
transition systems in [AH07]. We only recall hereafter the proof obligations to
check the correctness of the state machine.

Before-after formulae: For each action, we define a formula that captures its
effect on the state machine variables V . This formula uses a set of variables
V ′ that duplicates the variables in V and represents the state of the machine
after the execution of the action. For the action using only skip assignments,
the before-after formula is V ′ = V , i.e., the conjunction of equalities between
respective variables. For an action −→x :=

−→
t (X,V ), the before-after formula is

−→x =
−→
t (X,V ) ∧ −→y ′ = −→y , where −→y = V \ −→x .

Invariant preservation: The set of invariants in a state machine I(V ) shall
hold in every reachable state of the machine. Therefore, they shall be satisfied
after the execution of the initial event e0, i.e., the following formula shall be
valid:

I(V ) ∧Qe0(V, V ′)⇒ I(V ′) (INIT)

where Qe0(V, V ′) is the before-after formula for the initial event e0.
For an event e ∈ E with precondition P (X,V ), the invariant is preserved

by the execution of e if the following formula is valid:

I(V ) ∧ P (X,V ) ∧Qe(V, V
′)⇒ I(V ′) (INV)

where Qe(V, V
′) is the before-after formula of e. The proofs of validity of INIT

and INV belong to the set of proof obligations for the state machine correctness.

Absence of deadlock: A state machine M = (V, I(V ), E, e0) has a deadlock
in some state if all its events are disabled. Assume that the set of events
E = (e1, e2, ..., en) are in the following form:

ei , begin any Xi when Pi(Xi, V ) then Ai(Xi, V ) end

The proof obligation for deadlock-freedom (which is optional) is:

I(V )⇒ (∃X1 · P1(X1, V )) ∨ · · · ∨ (∃Xn · Pn(Xn, V )) (LOC)
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Example 1 (Set data structure). We illustrate the state machine definition by
providing the formal model for the set data structure. The set data structure is
a container collecting a set of objects of the same type. Two operations over the
collection are specified in this example: adding an element into and removing
an element from the set. The machine, denoted by LM0, is specified as follows:

variables invariants
els inv1: els ⊆ N

initialisation e0 ,

act1: els := ∅

Add ,

begin
any x

when x ∈ N ∧ x /∈ els
then

act1: els := els ∪ {x}
end

Remove ,

begin
any x

when x ∈ els
then
act1: els := els \ {x}

end

We denote by variable els the set of elements. The invariant inv1 constrains
els to be a subset of natural numbers. The initial event e0 assigns els to the
empty set. The events Add and Remove specify respectively the operation
of adding a new element into and removing an element from els. The proof
obligations for invariant preservation of this machine are simple and can be
easily proved using state of the art solvers connected at the Rodin platform. 4

Transition rules: For the sake of readability, we employ inference rules to
specify events of state machines. For example, an event e with the local vari-
ables X , the pre-condition P(X,V ) and the action defined by the set of assign-
ments −→x :=

−→
t (X,V ) is specified using the following rule:

e
P(X,V )

s
e(X)−−−→ s[−→x ← −→t (X,V )]

(E-rule)

where s denotes the state of the machine and s[−→x ← −→t (X,V )] represents a
state update. Indeed, a state is a valuation of variables (i.e., a mapping from
state machine variables to values) and the notation −→x ← −→t (X,V ) denotes
the update of the values for variables in ~x by the values computed in the
respective term in

−→
t (X,V ). In some places, we use the simpler presentation,
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e.g., s
e(X)−−−→ s′, to describe the execution of the event e(X) of parameters in X .

For x ∈ X , we denote by s.x the value of x in the state s. The inference rule
coding the initialization event e0 of the state machine is described as follows:

Initialization
s = [−→x ← −→t ]

where −→x is the list of all variables of the state machine.
To illustrate this notation for events, we provide below the rules for the

events Add and Remove specified in Example 1:

Add
x ∈ N ∧ x /∈ els

s
Add(x)−−−−→ s[els← els ∪ {x}]

Remove
x ∈ els

s
Remove(x)−−−−−−−→ s[els← els \ {x}]

3.1.2 Refinement

The technique of refinement for system design has been introduced in [WIR83,
Mor87, DREB98, BW12]. This technique is at the basis of the formal method
Event-B and therefore it is intensively used to develop formal specifications
with this method [AH07, Abr10].

A refinement is a verifiable transformation from an abstract model or speci-
fication into a concrete one. The transformation introduces some details in the
concrete model that fix particular features or facets of the abstract model. For
example, it may give the implementation details of the abstract model, therefore
allowing to obtain an executable model. From now on, we limit our study to
the refinement of state machines as it has been defined in Event-B [AH07].

Given two machines, M c(W, Ic(W ), Ec,ec
0) andMa(V, Ia(V ), Ea,ea

0), ifM c

refines Ma, M c can only behave in a way that corresponds to the behavior of
Ma. The invariants in concrete machine can refer to the variables of the concrete
and the abstract machine. If a invariant in the concrete machine refers to both,
it is called gluing invariant. The gluing invariants are used to relate the states
between the concrete and abstract machines. We assume that the invariant of
both the concrete and abstract machines were valid before the event occurred.

To prove that M c refines Ma, several conditions have to be satisfied. First,
the set of variables in the concrete machine shall include the set of abstract
variables, i.e., V ⊆ W . The second condition applies to events: there exists
a mapping ρ : Ec 7→ Ea that is surjective and injective on ρ[Ea], that is, it
maps every concrete event on an unique abstract event; the concrete events
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not mapped by ρ are implicitly mapped on SKIP. Moreover, this mapping
shall satisfy additional constraints that ensure that the concrete event is a
transformation of the abstract one.

Definition 3.1 (Event Refinement). Let f ∈ Ec and e ∈ Ea be two events of the
following form:

e , begin any X when E(X,V ) thenR(X,V ) end (abstract)

f , begin any Y when F(Y,W ) then S(Y,W ) end (concrete)

The event f refines e with respect to the gluing invariant J(V,W ) iff the follow-
ing constraints are valid:

Ia(V ) ∧ J(V,W ) ∧ F(Y,W )⇒ E(X,V ) (GRD)

Ia(V ) ∧ J(V,W ) ∧ F(Y,W ) ∧Qf (W,W ′)⇒ ∃V ′ ·Qe(V, V
′) (SIM)

Ia(V ) ∧ J(V,W ) ∧ F(Y,W ) ∧Qf (W,W ′)⇒ J(V ′,W ′) (GLU)

where Qf (W,W ′) and Qe(V, V
′) denote the before-after predicate of f and e,

respectively. �

The first constraint, GRD, requires that the precondition of f is stronger than
the one of e. This is called guard strengthening making sure that if the concrete
event is enabled and the invariants hold, the abstract guards holds as well.
The constraint SIM asks for the existence of a simulation relation between the
abstract actionR(X,V ) and the concrete action S(Y,W ) when the guard of f is
satisfied. The last constraint, GLU requires proving that the gluing invariants
are reestablished.

For concrete events f not mapped by ρ, they shall satisfy only the GLU
constraint above. Notice that the constraints GRD and SIM are trivially valid in
this case because, by convention, the guard and the before-after predicate of
SKIP are trivially TRUE.

Definition 3.2 (State Machine Refinement). A machine M c(W, Ic(W ), Ec,ec
0)

refines a machine Ma(V, Ia(V ), Ea,ea
0) iff the following conditions are met:

1. V ⊆W ,

2. there exists a partial mapping ρ : Ec 7→ Ea that is surjective and injective
on ρ[Ea] such that for every f ∈ Ec, if f ∈ ρ[Ea] then f refines ρ(f) with
respect to the gluing invariant J(V,W ), otherwise f refines SKIP.
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�

Example 2 (Refinement for LM0). We construct the refinement LM1 for ma-
chine LM0 which was presented in Example 1. We use a singly linked list to
implement the set. The operations over the list are adding at the tail a new
element into and removing an element from the list. The specification of state
(variables, state invariants) of LM1 is given below. The components inherited
from the abstract machine LM0 are shown in blue color. A new variable nxt,
defined as a bijection in inv2, specifies the linkage of the elements of the set
els. Two constants f and l are used to represent the head and the tail of the list.
They are not in N, they are distinct from elements of els. The invariant inv3
specifies that the list has no cycles (see Table 3.1 for the meaning of symbols
used).

constants variables invariants machine state
f, l ∈ Z \ N els inv1: nxt ∈ els ∪ {f}�� els ∪ {l}

axiom c nxt inv2: ∀u·u ⊆ nxt−1[u]⇒ u = ∅ s , 〈els, nxt〉
f 6= l

The machine state s recalls the components of the machine’s state used in the
transition rules. The events of LM1 are presented below. They refine the events
with the same name in LM0. The parts in blue belong to the refined event in
LM0.

Transition Rules
Initialization

s = [els← ∅, nxt← {f 7→ l}]

Add
x ∈ N ∧ x /∈ els ∧ x 6= f ∧ x 6= l

s
Add(x)−−−−→ s[els← els ∪ {x}, nxt(x)← l, nxt(nxt−1(l))← x]

Remove
x ∈ els

s
Remove(x)−−−−−−−→ s[els← els \ {x}, nxt(nxt−1(x))← nxt(x)]

4
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3.1.2.1 Stepwise Refinement

To ease the proof of refinement relations, the refinement process can be divided
into several refinement steps, as shown in Figure 3.1 (b). Each refinement step
reveals a few details. The model obtained in the middle of the process, Mi, is
more precise than the top-most model Ma and less precise than the model Mc.

This way of using refinement is called stepwise refinement. It builds a se-
quence of refinement transformations of the abstract model to a more concrete
model. The models obtained during this process form a sequence such that
each model is a refinement of the one preceding it in the sequence. The stepwise
refinement facilitates not only the proof of refinement but also the formalization
process. It allows to gradually build formal models of large systems. We use
stepwise refinement for building formal models for SDMA.

Ma
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Mi
Refinement

Ma

Mc
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ep
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e 
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t

...

... Ma

Mc1 Mc2

(a) (b) (c)

Figure 3.1: (a) refinement in one step, (b) stepwise refinement and (c) two
refinement directions

We call refinement trace the sequence of stepwise refinements, ordered from
the abstract to concrete ones. Figure 3.1 (b) provides an example of refinement
trace: it starts from Ma and ends at Mi. We denote it by [Ma; τ ; Mi] where τ is
the sequence of models between Ma and Mi.

Property 3.1.1 (Transitivity of Refinement). If machine Ma refines machine Mb,
and Mb refines Mc, then Ma refines Mc.

An abstract model may have several refinements as shown in Figure 3.1 (c):
both model Mc1 and model Mc2 refine the abstract model Ma.
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3.1.2.2 Modular Refinement

By applying different refinement traces to an abstract model, we obtain a set
of concrete models. Figure 3.2 (a) illustrates this process with three refinement
traces (t1, t2, t3) that lead to three different concrete models (Mc1 ,Mc2 ,Mc3). If
the refinement traces share some transformations, the proof effort may be
reduced by moving, if possible, the common refinement transformations at the
start of the refinement traces. Indeed, as shown in Figure 3.2 (b), we have to
conduct proofs once for the shared prefix of transformations and then diverge
the proof for the distinct transformations. In Figure 3.2 (b), the common prefix
of refinement traces is ts. It leads to a model p. Starting from p, the refinement
transformations are disjoint and lead to different concrete models. We call
modular stepwise refinement this way of building concrete models by factorizing
common transformations.

Ma

Mc1 Mc2 Mc3

Ma

Mc1 Mc2 Mc3

(a) (b)

t2t1 t3
ts t3

t1’ t2’
p

Figure 3.2: (a) refinement traces, (b) shared refinement trace ts

To conduct modular stepwise refinement, one has to identify the similar
transformations between models and then to group them at the start of the
refinement. We will use this kind of refinement process for obtaining formal
models for SDMA. Therefore, we have identified the similarities between SDMA
which concern their policies. We will explain our findings for the refinement of
SDMA abstract specification in Section 3.3.

3.2 Abstract Specification for SDMA

We provide in this section a formal model for SDMA that is the most abstract
specification of the informal description in Section 2.1.3.
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3.2.1 Formalization Hypotheses

We describe here the main hypotheses that underly this very abstract formal
model of SDMA. Some of them are required to simplify the model, other will
be changed by the refinement process.

The first hypothesis is that the set of chunks managed by the SDMA is fixed.
This hypothesis is not satisfied by all SDMA. A notable exception are SDMA
where is used an array of fixed size chunks. We will remove this hypothesis
in the next chapter by introducing chunk splitting. However, even in this
extension, we consider that the set of start addresses of chunks managed by
SDMA is included in a constant subset of naturals represented by the interval
[hst, hli[ (interval closed at hst and open at hli, i.e. hst..hli− 1), where hst and hli

(introduced in Section 2.1.1) are specified as natural constants.
The second hypothesis is that the content of the body of chunks is ignored.

Therefore, the formal specification of the realloc operation of SDMA can not
be precisely captured.

The third hypothesis is abstraction of the implementation of the set of
chunks. By adopting this hypothesis, we cannot specify the disposition of
chunks inside the data segment, which controls important properties of SDMA
implementations, in particular, the absence of memory leaks. This hypothesis
will be removed by the refinement process.

3.2.2 State

Table 3.2 details the constants and variables which define the state of the formal
model. This state specifies the memory region managed by the SDMA and its
variables. The formal state is a tuple s , 〈H,F, csz, cst〉where:

• H denotes the set of start addresses of chunks managed,

• csz is a mapping modeling the size of the chunk stored in its header,

• cst is a mapping modeling the status of the chunk (1 for free, 0 for busy)
stored in its header, and

• for readability of specifications, we denote by F the set cst−1(1), i.e., the
set of free chunks.
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Meanwhile, there are several necessary constants. The limits of the domain for
the addresses of chunks is given by the natural constants hst and hli. The size of
the header is modeled by the constant chd; it also gives the offset of the starting
address of the chunk body. The start address of every chunk is aligned; the
alignment is represented by the natural constant cal. Given a chunk and some
natural number representing the requested size in bytes, the fitting function fit
returns a number presenting the size of the chunk that SDMA has to allocate to
satisfy the request.

Table 3.2: Most abstract specification A: signature

signature description type
hst, hli ∈ N limits of the memory region constant
nil null memory address constant
chd, cal ∈ N size of header resp. alignment constant
fit : H × N→ N fitting a chunk with a request fixed function

H ,F ⊂ N set of all chunks resp. free chunks variable
csz : H → N size of a chunk variable
cst : H → {0, 1} status of a chunk (1–free, 0–busy) variable

s , 〈H,F, csz, cst〉 memory state

Table 3.3: Most abstract specification A: invariants

I1 : H ⊆ [hst, hli[ chunks domain
I2 : ∀c ∈ H · c MOD cal = 0 chunks are aligned
I3 : chd > 0 size of chunk header
I4 : ∀c ∈ H · csz(c) ≥ chd valid chunk’s size
I5 : F ⊆ H ∧ ∀c ∈ H · cst(c) = 1 ⇐⇒ c ∈ F consistency
I6 : ∀b, c ∈ H · c 6= b⇒

[c, c+ csz(c)[ ∩ [b, b+ csz(b)[ = ∅ do not overlap
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3.2.3 Invariants

Table 3.3 contains the set of invariants I1–I6 for the abstract state machine.
Property I1 specifies that the elements of H shall be in the limits of the memory
region managed. The alignment of the start addresses of chunks on multiples
of the constant cal is specified by property I2. Property I6 requires that chunks
in H occupy pairwise disjoint memory blocks. The relation between F and cst
is specified by I5.

3.2.4 Transition Rules

Table 3.4 details the inference rules specifying the behaviors of operations
provided by the interface of SDMA.

The initmethod is specified by the Init rule with no precondition, therefore
it represents the initial event of the state machine.

For deallocation, the two rules FreeS and FreeF specify the deallocation
success and failure respectively. In FreeS , the precondition ensures that the
chunk to be deallocated is a valid chunk, i.e., the given parameter is the body
address of some chunk. The action is to set the state of the chunk to free. When
the given parameter is not valid, the state is unchanged. This situation is
specified by rule FreeF .

Similarly, there are two cases of allocation, allocation success and failure,
represented by AllocS and AllocF . In rule AllocS , its precondition requires that
the size of the suitable chunk has to be greater than the fit of the requested size.
The action of this event updates the state of the selected chunk. The returned
value is the start address of the chunk denoted by p. Allocation fails when all
chunks can not satisfy the request. The method returns a special constant nil.

The specification of realloc includes three cases: the reallocation may
use a neighbor of the allocated chunk to satisfy the request (ReallocS1 ), the
reallocation has to free the current chunk and find another one to satisfy the
request (ReallocS2 ), and finally the case where the reallocation fails. In this last
case, the chunk is not freed, but the result of the operation is nil. As already
said, our modeling hypotheses do not allow to specify the move of the content
in the second case.
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Table 3.4: Most abstract specification A: rules

Inference rules for methods: init, free, alloc, realloc

Init

s
init()−−−−→ s[F ← H ]

initialization

FreeS
∃c ∈ s.H \ s.F · p = c+ chd

s
free(p):true−−−−−−−−→ s[cst(c)← 1]

deallocation success

FreeF
∀c ∈ s.H \ s.F · p 6= c+ chd

s
free(p):false−−−−−−−−→ s

deallocation failure

AllocS
(c ∈ s.F ) ∧ (fit(c, s) ≤ s.csz(c)) ∧ (p = c+ chd)

s
alloc(s):p−−−−−−−→ s[cst(c)← 0]

allocation success

AllocF
∀c ∈ s.F · fit(c, s) > s.csz(c)

s
alloc(s):nil−−−−−−−→ s

allocation failure

ReallocS1

∃c ∈ s.H \ s.F · p = c+ chd ∧
c+ s.csz(c) ∈ s.F ∧ fit(c, n) > s.csz(c)

s
realloc(p,n):p−−−−−−−−−→ s

 csz(c)← n,
F ← ((F \ {c+ csz(c)})
∪{c+ n})


expand chunk

ReallocS2

∃c ∈ s.H \ s.F · p = c+ chd∧
fit(c, n) > s.csz(c) ∧

s
alloc(n):q−−−−−−−→ s1

free(p):true−−−−−−−−→ s2

s
realloc(p,n):q−−−−−−−−−→ s2

realloc a new chunk

ReallocF

(p = c+ chd) ∧ (c ∈ s.H \ s.F )∧
(fit(c, n) ≤ s.csz(c))

s
realloc(p,n):p−−−−−−−−−→ s

realloc failure

3.3 Refinement Strategy for SDMA

We start from the most abstract specification of SDMA and we refine it incre-
mentally by gradually introducing the specific design policies discussed in
the previous chapter (e.g., lazy and eager coalescing of chunks, policies for
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choosing the fitting chunk, boundary tag technique). The order in which the
design policies are considered is a contribution of this thesis and it allows to
obtain a modular refinement process and therefore facilitates the proof of the
refinement transformations.

3.3.1 Refinement Steps

Given a formal model of SDMA, M, and a set T of applicable policies for
refinement, we choose a technique t ∈ T such that t is required to be fixed for
the refinement of M by policies in T \ {t}. We obtained this ordering on design
policies by the analysis of the case studies collected in Table 2.1.

Refinement for heap list: First, we observe that SDMA employ a heap list
data structure to implement the set of chunks. It fixes the policies employed by
SDMA, like chunk coalescing, splitting or fitting. To apply this refinement, the
events of the abstract specification are refined by adding details on how they are
implemented if H is a heap list. For example, the refined initialization describes
how the heap list is initialized. The refined allocation and deallocation explain
how splitting and coalescing operations affect the heap list. Chunk splitting
and coalescing require two elementary operations on heap lists: inserting a
new chunk into the list of chunks and removing a chunk when merging it
with some neighbor. These elementary operations on heap lists are specified
independently by an event and called by the events modeling the SDMA
operations. The way in which these elementary operations on heap list are
employed leads to different splitting and coalescing policies and consequently
different directions for the refinement.

Refinement for free list: The next set of policies that influence the refinement
is the implementation of the set F by a free list. Even if the free list employed is
singly linked, the refinements diverge on the type of the free list considered:
acyclic or cyclic, ordered or unordered by addresses, etc. Like for the heap list,
the operations of SDMA employ basic operations on free list: inserting and
removing a free chunk, search for a free chunk. The refinement of the free list
implementation is done in parallel with the refinement of the basic operations
on the list. This difference on basic operations on the free list is used to produce
the variety of policies and techniques presented in the previous chapter.
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Refinement for fit policy: The fit policy does a search in the data structure
used to manage the free chunks and therefore depends on its implementa-
tion. Consequently, it is introduced after the refinement of the free list. The
refinement directions consist in providing different specifications for the search
operation on the free list that are useful to obtain the three fit policies: best fit,
first fit and next fit.

Refinement for doubly link free list: The refinement for doubly linked free
list is introduced after the refinement for singly linked free list. It consists in
adding a new relation specifying the backward link such that it is the inverse
of forward link. Doubly linkage of free list is useful to accelerate free list
operations and coalescing. This is the reason why we apply this refinement in
the end.

3.3.2 Refinement Principles

From the above observation and our experience with refinement proofs, we
extract the following principles of our formalization:

R1: Refinements of the heap list precede the ones of the free list.

R2: Refinements concern basic operations on heap (resp. free) list.

R3: Refinements of basic operations on heap (resp. free) list shall be indepen-
dent and compose for the same implementation choice.

R4: Refinements of the fit policy shall be done after the refinement for the free
list.

We applied the above refinement principles to obtain a hierarchy of models,
part of it presented in Figure 3.3. This hierarchy mainly includes five layers,
called abstract, heap list, free list (SLL), fit, and free list (DLL) ordered according to
the refinement steps.

The first layer is the abstract specification. The second layer contains five
models. The dashed lines between the abstract specification and models in the
heap list level denote that the refinement relation can not be established between
these models. We explain this result in detail in Chapter 4. Intuitively, the main
reason is the fact that the set of chunks H is variable in the models using the
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Figure 3.3: A partial view of the hierarchy of models and the case studies it
covers

heap list (except the one based on arrays), which is not the case in the abstract
specification. The models in the second layer modeling a particular organization
of the heap list. For example, the models MH and MA do not coalesce free
chunks but they use variable size and fixed size chunks, respectively. The
model MHL uses a heap list with lazy coalescing policy, while MHP and MHE
use partial coalescing and eager coalescing, respectively.

The models in the third layer refine the models in the second layer by
introducing the design tactics for the singly linked free list. These design
tactics are explicit in the box of each model. The refinement traces diverge
considering the different types of free list. The black arrows between boxes are
the refinement relations proved using Rodin. For example, the model MUA is
a refinement of the model MHE.

The fourth layer contains models refining fit policies. For different fit
policies, there are several refinement directions starting from the model in free
list layer, e.g., the model MSA has three different refinements. Therefore, the
model MSAF specifies a SDMA with an early coalescing heap list (it transitively
refines MHE), a free list sorted by address and acyclic, and a first fit policy.
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The final layer contains models specifying a doubly linked free list. From
our experience, the proof effort is the same for both orders of applying the
refinement steps on fit policy or doubly link. Therefore, the fit policy can also
be introduced after the refinement of doubly link free list. Moreover, we can
join these two refinement steps.

Figure 3.3 includes only the part of the hierarchy of models that covers our
case studies, listed as labels of models. However, the refinement relations we
define in the next chapter allow to obtain more models. Indeed, the hierarchy
in Figure 3.3 can be extended to specify more cases. The refinements for free
list can start from any model in the heap list layer. In this thesis, we mainly
describe the branch refining MHE because it is the most complex model.

Some readers concerned by implementation details may get worried about
some design choices that are not covered by the above presentation, e.g., align-
ment of start addresses for chunks, encoding of the free status of chunks in
the header, the unit on which the size of the chunk is measured, the fitting
size. These implementation choices may be kept abstract like in the abstract
specification presented in Section 3.2 as we will show in the next chapter.



CHAPTER 4
Refinement-based

Formalization

In the previous chapters, we introduce a set of SDMA and their diverse policies.
To generally formalize all of them, we define the refinement strategy and
propose some refinement principles for formalization. Meanwhile, we also
give the most abstract specification of SDMA. In this chapter, we describe the
refinement-based formalization process for SDMA. We explain how to obtain
refinements from the abstract specification. As shown in Figure 3.3 in Chapter 3,
there are four layers of refinement derived from the abstract specification. We
detail the construction of each model in each layer.

This chapter is structured as follows. § 4.1 describes the refinement for heap
list considering different coalescing policies. § 4.2 presents the refinement steps
for free list starting from the most complex model in the heap list layer. The
models in the free list layer cover diverse list organizations. § 4.3 describes
the possible application of the models obtained by the formalization. § 4.4
describes the related work and gives a conclusion of this part on specification
of SDMA.

4.1 Heap List Modelling

This section presents the models obtained by refining the representation of
the set of chunks in a heap list. These models are in the second layer as
shown in Figure 3.3. We obtain these models by composing refinements of
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basic operations on heap lists, such as inserting, deleting, etc. An important
difference between refinements are the ways to deal with memory fragment.

4.1.1 State and Invariants

The abstract state of a heap list SDMA is defined in Table 4.1. It includes, in
addition to elements of the abstract state defined in Table 3.2.2, the successor
and predecessor relations between chunks, cnx resp. cpr . The mapping cpr is
specified only for doubly linked heap lists. In addition to invariants in Table 3.3,
we introduce the invariants I7 and I ′7 in Table 4.1 to characterise the two new
relations. They assert that cnx is a bijection, and if cpr is defined, it is the inverse
of cnx. A consequence of invariants I7–I8 is the following expected property:

Property 4.1.1. The heap list is acyclic, starts in hst, and ends in hli.

The invariant I9 asserts that a chunk occupies exactly the space between its
start and the start of the next chunk, which leads to the following property:

Property 4.1.2. A heap list satisfying I1–I9 has no external memory leaks.

Each model in the heap list layer satisfies the invariants I1–I9 and a subset
of the last four invariants in Table 4.1. For example, the model MA includes
only the invariant Iar that fixes the size of chunks to some constant kb to specify
the class of SDMA that manages an array of chunks. The invariant Iec is added
only for the model MHE to characterise the state of SDMA with early coalescing
policy. It asserts that any two chunks, successive in the heap list, cannot be both
free. The shorthand NAND(p1, p2) stands for the predicate (¬(p1 ∧ p2)).

The invariant Ipc is introduced for the model MHP to specifies heap list with
partial coalescing. The invariant states that two adjacent free chunks can not be
both free if they belong to the same buddy, which is expressed by the predicate
buddy(c1, c2), defined by cnx(c1) = c2∧csz(c1) = csz(c2)∧c1 MOD (2×csz(c1)) =

0. Notice that both Iec and Ipc may be temporary broken during the execution
of methods free and realloc. In addition to Ipc, the model MHP includes
the invariant Iby that constrains the size of each chunk to be a power of two
and its address to be aligned to this size.



Chapter 4. Refinement-based Formalization 44

Table 4.1: Refinement of A for heap list models

State refinement
signature description type
hst, hli ∈ N limits of the memory region constant
nil null memory address constant
chd, cal ∈ N size of header resp. alignment constant
fit : H × N→ N fitting a chunk with a request function
H ,F ⊂ N set of all chunks resp. free chunks variable
csz : H → N size of a chunk variable
cst : H → {0, 1} status of a chunk (1–free, 0–busy) variable

cnx : H → (H \ {hst}) ∪ {hli} next chunk variable
cpr : (H \ {hst}) ∪ {hli}→H previous chunk variable
kb fixed size of chunk constant

s , 〈H ,F , csz, cst, cnx, cpr〉 state of SDMA with heap list

Invariants inherited from the abstract specification
I1 : H ⊆ [hst, hli[ chunks domain
I2 : ∀c ∈ H · c MOD cal = 0 chunks are aligned
I3 : chd > 0 size of chunk header
I4 : ∀c ∈ H · csz(c) ≥ chd valid chunk’s size
I5 : F ⊆ H ∧ ∀c ∈ F · cst(c) = 1 ⇐⇒ c ∈ F consistency
I6 : ∀b, c ∈ H · c 6= b⇒

[c, c+ csz(c)[ ∩ [b, b+ csz(b)[ = ∅ chunks not overlapped
Additional invariants

I7 : cnx is a bijection linked heap list
I ′7 : cpr = cnx−1 doubly linked list
I8 : hst ∈ H start in hst

I9 : ∀c ∈ H · cnx(c) = c+ csz(c) no memory leaks
Iar : ∀c ∈ H · csz(c) = kb array heap list
Iec : ∀c1, c2 ∈ H ·

(
cnx(c1) = c2

)
⇒ NAND(cst(c1), cst(c2)) early coalescing

Ipc : ∀c1, c2 ∈ H · buddy(c1, c2)
⇒ NAND(cst(c1), cst(c2)) partial coalescing

Iby : ∀c ∈ H · ∃k ∈ N · csz(c) = 2k ∧ (c MOD 2k = 0) buddy size constraint
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4.1.2 Basic Heap List Operations

The inference rules in Table 3.4 abstract away the implementation details of
SDMA methods and do not capture the splitting of a fitting chunk or the
merging of adjacent free chunks during allocation and deallocation. To refine
these rules into ones that specify precisely the behaviour of methods of heap
list SDMA, we use the following basic operations on the heap lists:

hremove removes a free chunk (from F )
hinsert inserts a free chunk (into F )
hsearch searches a fitting free chunk
hsplit splits a free chunk
hmergeL merges a free chunk with its free left neighbour
hmergeR merges a free chunk with its free right neighbour
hmerge∀ merges all sequences of free chunks
hmergeP merges free chunks in same buddy

We explain the specifications of these basic operations for singly linked
heap lists in this section. Notice that only remove, insert, and search operations
are relevant for array based SDMA. To simplify the presentation of rules, we adopt
the convention that the elements of state s (the source state of the defined rule) may
appear without the dotted notation in the rule. For some operations, e.g., hsplit or
hsearch, several refinements are provided. The main methods of the SDMA
are specified in Table 4.6 - 4.8 using these basic operations.

4.1.2.1 Removing, inserting, searching

Table 4.2 specifies the operations hremove, hinsert, and hsearch. The rules
hremove and hinsert describe that the status (free or busy) of the chunk c

given as parameter is updated accordingly for removing and insertion in the
free set. Operation hsearch(n) describes the search behaviour. In this level
of refinement, the fit policies used in search are abstracted away. The rules
hsearchS and hsearchF specify the search success and failure respectively.

4.1.2.2 Splitting

Table 4.3 specifies the refinements for the operation hsplit. This operation has as
parameters a free chunk c and a natural n representing the size of the new chunk
to be created inside c; this new chunk is set as busy and returned as a result
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Table 4.2: Refinements of heap list operations for remove, insert, and search

hremove(c) hremove
c ∈ s.F

s
hremove(c)−−−−−−−→ s[F ← F \ {c}, cst(c)← 0]

hinsert(c) hinsert
c ∈ s.H \ s.F

s
hinsert(c)−−−−−→ s[F ← F ∪ {c}, cst(c)← 1]

hsearch(n) : c hsearchS
∃b ∈ s.F · s.csz(b) ≥ fit(b, n)

s
hsearch(n):b−−−−−−−→ s

hsearchF
∀b ∈ s.F · s.csz(b) < fit(b, n)

s
hsearch(n):nil−−−−−−−−→ s

of hsplit. The three refinements of hsplit, represented by behaviours hsplitM ,
hsplitB and hsplitE , choose different ways to split the chunk: in two equal size
parts, with n bytes at the beginning, or at the end respectively. The splitting
rules call removing and inserting operations. After splitting, the memory
selected for allocation is marked as busy. The remainder is inserted into the set
of free chunks. The behaviour hsplitP refines hsplit for buddy SDMA: it applies
repeatedly hsplitM (rule hsplitSP ) until the requested size n fits in the chunk and
it is bigger than half of the candidate chunk (rule hsplitFP ).

4.1.2.3 Merging

Table 4.5 provides refinements of the operation hmerge that is called in free

or realloc to join neighbouring free chunks in one. The invariants for early
or partial coalescing (Iec resp. Ipc) are broken temporarily in the state before
calling hmerge.

Two basic operations are specified in Table 4.4. The behaviour hmergeR

joins the chunk parameter b with its right neighbour c if c is free; otherwise,
the operation does nothing. For sake of symmetry with the second behaviour,
hmergeR returns its parameter. Similarly, the refinement hmergeL merges a
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Table 4.3: Refinements of heap list operation for chunk splitting

hsplit(c, n) : b hsplitM

(c ∈ s.F ) ∧ (0 < n < s.csz(c)/2) ∧ (c′ = c+ s.csz(c)/2)

∧(s
hremove(c)−−−−−−−→ s1

hinsert(c′)−−−−−−→ s2)

s
hsplitM (c,n):c−−−−−−−−→ s2

 H ← H ∪ {c′},
csz[c, c′ ← csz(c)/2],
cnx[c← c′, c′ ← cnx(c)]



hsplitB

(c ∈ s.F ) ∧ (0 < n < s.csz(c)) ∧ (c′ = c+ n)∧
(s

hremove(c)−−−−−−−→ s1
hinsert(c′)−−−−−−→ s2)

s
hsplit(c,n):c−−−−−−−→ s2

 H ← H ∪ {c′},
csz[c← n, c′ ← csz(c)− n],
cnx[c← c′, c′ ← cnx(c)]


hsplitE

(c ∈ s.F ) ∧ (0 < n < s.csz(c)) ∧ (c′ = c+ s.csz(c)− n)

s
hsplit(c,s):c′−−−−−−−→ s

 H ← H ∪ {c′}, cst(c′)← 0,
csz[c← csz(c)− n, c′ ← n],
cnx[c← c′, c′ ← cnx(c)]



hsplitP (c, n) : b hsplitSP
(b ∈ s.F ) ∧ (s

hsplitM (c,n):b−−−−−−−−→ s1
hsplitP (b,n):b′−−−−−−−−→ s2)

s
hsplitP (c,n):b′−−−−−−−−→ s2

hsplitFP
(c ∈ s.F ) ∧ s.csz(c)/2 < n < s.csz(c)

s
hsplitP (c,n):c−−−−−−−−→ s

free chunk with its left free neighbour.
In Table 4.5, the behaviour hmergeN merges a free chunk with its free

neighbors. It is called by deallocation method hfree. The behaviour hmerge∀
merges any two successive free chunks in the entire memory region. The
rule hmergeF

∀ states that Iec is satisfied and therefore the merging operation
terminates. The refinement of hmerge for SDMA with partial coalescing is
specified by hmergePN that joins only chunks in the same buddy. Operation
hmergePN is called repeatedly by hmergeP until the invariant Ipc is satisfied.
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Table 4.4: Basic chunk merging operations

hmergeR(b) : x hmergeS
R

b ∈ s.F ∧ c ∈ s.F ∧ c = s.cnx(b) ∧ s hremove(c)−−−−−−−→ s1

s
hmergeR(b):b
−−−−−−−−→ s1

[
H ← H \ {c}, cnx[b← cnx(c)],
csz[b← csz(b) + csz(c)]

]
hmergeF

R

b ∈ s.F ∧ s.cnx(b) 6∈ s.F

s
hmergeR(b):b
−−−−−−−−→ s

hmergeL(b) : x hmergeS
L

b ∈ s.F ∧ c ∈ s.F ∧ s.cnx(c) = b ∧ s hremove(b)−−−−−−−→ s1

s
hmergeL(b):c
−−−−−−−−→ s1

[
H ← H \ {b}, cnx[c← cnx(b)],
csz[c← csz(b) + csz(c)]

]
hmergeF

L

b ∈ s.F ∧ s.cnx−1(b) 6∈ s.F

s
hmergeL(b):b
−−−−−−−−→ s

4.1.3 Models for Heap List SDMA

The specifications of SDMA methods make use of basic operations presented
above are shown in Table 4.6 - 4.8.

4.1.3.1 Method init

In Table 4.6, we provide two refinements for the method init: the rule hinithl

initialises the abstract state for SDMA with variable size chunks, while the rule
hinitar does initialisation for fixed size chunks, i.e., array based SDMA. The size
of each chunk in the array is denoted by kb.

4.1.3.2 Method alloc

As shown in Table 4.7, the alloc method is refined to obtain three distinct
behaviours: allocation in fixed chunk sized SDMA (rule hallocar), allocation
without or without coalescing for variable chunk sizes (rule halloceager/no),
allocation with lazy coalescing (rule halloclazy). The last two behaviours call
the internal operation halloci, which does the main part of the work: it searches
the free chunk fitting the request using hsearch and returns this chunk after
changing its status. The rule hallocSfit specifies the case where the fitting chunk
does not need splitting; the rule hallocSsplit specifies the splitting operations.
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Table 4.5: Refinements of heap list operation for chunk merging

hmergeN (b) : x hmergeS
N

b ∈ s.F ∧ s
hmergeR(b):b
−−−−−−−−→ s1

hmergeL(b):c
−−−−−−−−→ s2

s
hmergeN (b):c
−−−−−−−−→ s2

hmergeF
N

b ∈ s.F ∧ s.cnx(b) /∈ s.F ∧ s.cnx−1(b) /∈ s.F

s
hmergeN (b):b
−−−−−−−−→ s

hmerge∀ hmergeS
∀

b ∈ s.F∧
s

hmergeR(b):b
−−−−−−−−→ s1

hmergeL(b):c
−−−−−−−−→ s2

hmerge∀−−−−−→ s3

s
hmerge∀−−−−−→ s3

hmergeF
∀

Iec

s
hmerge∀−−−−−→ s

hmergePN(b) : x hmergeS
PN

b ∈ s.F ∧ c ∈ s.F ∧ buddy(b, c) ∧ s hremove(c)−−−−−−−→ s1

s
hmergePN(b):b
−−−−−−−−→ s1

 H ← H \ {c},
csz[b← csz(b) + csz(c)],
cnx[b← cnx(c)]


hmergeS′

PN

b ∈ s.F ∧ c ∈ s.F ∧ buddy(c, b) ∧ s hremove(b)−−−−−−−→ s1

s
hmergePN(b):c
−−−−−−−−→ s1

 H ← H \ {b},
csz[c← csz(b) + csz(c)],
cnx[c← cnx(b)]



hmergeP (b) hmergeS
P

b ∈ s.F ∧ s
hmergePN(b):c
−−−−−−−−→ s1

hmergeP (c)
−−−−−−−→ s2

s
hmergeP (b)
−−−−−−−→ s2

hmergeF
P

Ipc

s
hmergeP (b)
−−−−−−−→ s

Table 4.6: Refinements of method init for heap list

hinithl

s
hinit()−−−→

〈 H ← {hst}, F ← {hst},
cnx(hst)← hli, cst(hst)← 1,
csz(hst)← hli− hst

〉
hinit() hinitar

s
hinit()−−−→

〈 H ← {hst + i× kb | 0 ≤ hli/i},
F ← {hst + i× kb | 0 ≤ hli/i},
cnx(c)← c+ kb, csz(c)← kb

〉
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Table 4.7: Refinements of method alloc for heap list

hallocSfit

(c 6= nil) ∧ (p = c+ chd) ∧ (fit(c, n) = s.csz(c))

∧(s
hsearch(n):c−−−−−−−→ s

hremove(c)−−−−−−−→ s1)

s
halloci(n):p−−−−−−−→ s1

halloci(n) : p hallocSsplit

(c 6= nil) ∧ (p = b+ chd) ∧ (fit(c, n) < s.csz(c))

∧(s
hsearch(n):c−−−−−−−→ s

hsplit(c,fit(c,n)):b−−−−−−−−−−→ s1)

s
halloci(n):p−−−−−−−→ s1

hallocFi
s

hsearch(n):nil−−−−−−−−→ s

s
halloci(n):nil−−−−−−−→ s

hallocSar

s
hsearch(n):p−−−−−−−→ s

hremove(p)−−−−−−−→ s1 ∧ p 6= nil

s
halloc(n):p−−−−−−→ s1

halloc(n) : p hallocSeager/no

s
halloci(n):p−−−−−−−→ s1

s
halloc(n):p−−−−−−→ s1

hallocSlazy

s
halloci(n):nil−−−−−−−→ s

hmerge∀−−−−−→ s1
halloci(n):p−−−−−−−→ s2

s
halloc(n):p−−−−−−→ s2

hallocF*
s

hsearch(n):nil−−−−−−−−→ s

s
halloc(n):nil−−−−−−−→ s

Notice that hallocSfit allows to define behaviours for allocation without splitting:
if fit(c, n) returns csz(c) for csz(c) ≥ n.

4.1.3.3 Method free

The specification of the method free is refined similarly to obtain its be-
haviours for eager, lazy and no coalescing policies, represented by hfreeeager,
hfreelazy and hfreeno. In rule hfreeeager, after freeing the chunk, the invariant
Iec is established by calling the merging with the free neighbours (if any). In
rule hfreelazy, the chunk to be released is directly put back into the set of free
chunks, no coalescing occurrence. The rule hfreeno for deallocation without
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coalescing is similar to the rule describing lazy coalescing.

Table 4.8: Refinements of the free method on heap list

hfreeS
eager

(p = b+ chd) ∧ (b ∈ s.H \ s.F )∧
(s

hinsert(b):b−−−−−−→ s1
hmergeN (b):c
−−−−−−−−→ s2)

s
hfree(p):true−−−−−−−−→ s2

hfree(p) : t hfreeS
lazy/no

(p = b+ chd) ∧ (b ∈ s.H \ s.F ) ∧ (s
hinsert(b)−−−−−→ s1)

s
hfree(p):true−−−−−−−−→ s1

hfreeF
∗
∀b ∈ s.H \ s.F · p 6= b+ chd

s
hfree(p):false−−−−−−−−→ s

4.1.3.4 Method realloc

Table 4.9 presents the specification of the method realloc based on the refine-
ment for heap list. hreallocS1 describes that if the request is same as the size of
the current chunk, realloc returns the current chunk. If the additional size
requested is available after the old chunk, then the old chunk will be merged
with its right neighbor in rule hreallocS2 . The refinement hreallocS3 specifies
that if there is not enough free space after the old chunk, the old chunk will be
released, and the alloc is called again with the requested size. Notice that,
this case is abstract and the new chunk does not copy the data stored in the
old chunk. hreallocS4 describes the case of contracting the old chunk, it calls
the hsplit operator. If the given parameter is a null address, realloc will call
halloc. This is formalized by hreallocS5 . The final rule hreallocF specifies that if
there is not enough memory, realloc will return a null address.

4.1.3.5 Statistics

Table 4.10 sums up the main characteristics of each model resulting from the
refinement of heap list operations: the specific invariants, the heap list op-
erations used, and the size of the model. We coded these specifications in
Event-B [Abr10]. The correctness of the refinement, stated by the following
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Table 4.9: Refinements of realloc method on heap list

hreallocS1
b ∈ s.H \ s.F ∧ n > 0 ∧ p = b+ chd ∧ fit(b, n) = csz(b)

s
hrealloc(p,n):p−−−−−−−−−→ s

hreallocS2

b ∈ s.H \ s.F ∧ n > 0 ∧ p = b+ chd∧
s.cnx(b) = c ∧ c ∈ s.F ∧ fit(b, n) > s.csz(b)∧

fit(c, n− s.csz(b)) ≤ s.csz(c)∧
s

hinsert(b)−−−−−→ s
hmergeR(b):b
−−−−−−−−→ s1

hsplitB(b,n):b′−−−−−−−−→ s2
hremove(b)−−−−−−−→ s3

s
hrealloc(p,n):p−−−−−−−−−→ s3

hrealloc(p, n) : q hreallocS3

b ∈ s.H \ s.F ∧ n > 0 ∧ p = b+ chd∧
s.cnx(b) = c ∧ c ∈ s.F∧

fit(c, n− s.csz(b)) > s.csz(c) ∧ fit(b, n) > s.csz(b)∧
s

hfree(p):true−−−−−−−−→ s1
halloc(n):q−−−−−−→ s2

s
hrealloc(p,n):q−−−−−−−−→ s2

hreallocS4

n > 0 ∧ p = b+ chd ∧ b ∈ s.H \ s.F∧
fit(b, n) < s.csz(b) ∧ s hinsert(b)−−−−−→ s1

hsplitB(b,fit(b,n)):b−−−−−−−−−−−→ s2

s
hrealloc(p,n):p−−−−−−−−−→ s2

hreallocS5
n > 0 ∧ p = nil ∧ s halloc(n):q−−−−−−→ s1

s
hrealloc(p,n):q−−−−−−−−→ s1

hreallocF
∀c ∈ s.F · (fit(c, n) ≥ s.csz(c))

s
hrealloc(p,n):nil−−−−−−−−−→ s

theorem, is translated into a set of proof obligations which are proved with the
Rodin tool [ABH+10] and the connected solvers. Table 4.11 provides statistics
about the proofs conducted to obtain this theorem.

Theorem 4.1 (Correctness of the models). For any model of the heap list SDMA (i.e.,
MH, MHA, MHL, MHE, MA), the operations specifying a SDMA method preserve
the invariants of the model. �
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Table 4.10: Overview of heap list models

Models
Specific Rules
invariants init, alloc, free split merge

MH none hinithl,hallocno,hfreeno hsplitB −
MHL none hinithl,halloclazy,hfreelazy hsplitB hmerge∀
MHE Iec hinithl,halloceager,hfreeeager hsplitE hmergeN

MHP Ipc, Iby hinithl,halloceager,hfreepartial hsplitP hmergeP

MA Iar hinitar,hallocar,hfreeno − −

Table 4.11: Statistics on proofs

Models LOC
Proof Automatically Interactive

obligations discharged proofs
MH 114 39 27(69%) 12(31%)
MHL 176 8 8(100%) 0(0%)
MHE 183 82 58(70%) 24(30%)
MHP 383 143 140(98%) 3(2%)
MA 168 20 20(100 %) 0 (0%)
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4.2 Free List Modelling

This section defines the refinements applied to capture the different design
choices related with the use of a list for the set of free chunks. Following the
principle R1 in Chapter 3.3.2, these refinements are applied to models obtained
by the refinement of the heap list. Because they are the most interesting, we
comment two refinement branches, one is from the MHE model with early
coalescing and another one is from the MA model.

To conform to principle R4, we define a set of basic operations on free
lists. These operations are the counterpart of the ones defined for the heap
list in Section 4.1.2: fremove, finsert, fsplit, fmerge, and fsearch. We define four
directions of refinement, each dealing with a specific feature of the free list:

1. shape of the free list, with values acyclic (A) and cyclic (C),

2. ordering of chunks by addresses in the free list, with values unordered
(U) and sorted (S),

3. cells linking, with values singly (default) and doubly (D), and

4. searching for fit policy, with values first (F), best (B) and next (N) fit.

Each direction corresponds to specific state elements, state invariants, or re-
finements of basic operations on lists and SDMA methods as summarised up
in Table 4.21 (page 62). The notations used in this table are introduced in the
following sections.

4.2.1 States and Invariants

Table 4.12 defines the states and the invariants used by the refinement directions
on free list. Notice that a free list state extends a state of the heap list model with
at least one mapping, the bijection fnx, that models the linking in the free list.
For doubly linked lists, the linking backward is modelled by the mapping fpr.
Although we introduce doubly linked list in this section, in fact, the backward
link can be introduce later, in the next separated refinement step. The invariants
satisfied by the linking mappings are Ifnx and Ifpr. To capture easily all the
shapes of the free lists in our modelling framework, we use two constants, fbe
and fen which delimit the start resp. target (end) of the free list. The variable
rp is used by the state modelling the next fit policy to mark the last used free
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chunk. Thus, we could employ the invariant I`s for both cyclic and acyclic lists
to ensure the following property:

Property 4.2.1. If a state satisfies Ifnx, I∅ (and IC), and I`s then the mapping fnxA
(resp. fnxC ) defines an acyclic (resp. cyclic) list starting in fnxA(fbe) and including all
free chunks.

Table 4.12: States and invariants used by free list refinements; x ∈ {A,C}
denotes refinements for the shape of the free list

Refined states
fbe, fen 6∈ H constants
F+ = F ∪ {fbe, fen} extended free set
fnxA : (F ∪ {fbe})→ (F ∪ {fen}) next free chunk
fprA : (F ∪ {fen})→ (F ∪ {fbe}) previous free chunk
fnxC , fprC : F+→ F+ cyclic next resp. previous

s , 〈H , F, csz, cst, cnx, fnxx〉 state for SLL (x ∈ {A,C})
sD , 〈H , F, csz, cst, cnx, fnxx, fprx〉 state for DLL (x ∈ {A,C})
sN , 〈H , F, csz, cst, cnx, fnxx, rp〉 state for SLL, next fit policy (x ∈ {A,C})

Additional invariants
Ifnx : fnxx total bijection

Ifpr : fprx = fnx−1
x

I∅ : fnxx(fbe) = fen ⇐⇒ F = ∅ empty list

I`s : ∀F ′ ⊆ F · F ′ ⊆ fnx−1
x (F ′)⇒ F ′ = ∅ no clique

IC : fnxC(fen) = fbe fen ends the cycle

IS : ∀c ∈ F · fnxx(fbe) ≤ c ≤ fnx−1
x (fen)

∧ (fnxx(c) = fen ∨ c < fnxx(c)) sorted list
Irp : F 6= ∅⇒ rp ∈ F rp is free

Notice that reachability is a second order property. I`s is a manner to express
this property, inspired by [Abr10]; it states that fnx does not define a clique
inside F . This is the only place where we need a second order property. For
tools with support limited to first-order logic, I`s may be replaced with a first
order invariant if the free list is address sorted, a property specified by the
invariant IS . Indeed, the following property is a corollary of fnx being bijective
and strictly increasing:
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Property 4.2.2. If a state satisfies Ifnx, I∅ (and IC), and IS then the mapping fnx
defines an acyclic (resp. cyclic) list starting in fnx(fbe) and including all free chunks.

For models using unsorted free lists, we use the invariant I`s due to the fact
that Rodin provides means to deal with second order logic properties on sets.

Table 4.13: Refined removing operation on free list

fremoveA
c ∈ s.F

s
fremove(c)−−−−−−→ s

[
F ← F \ {c}, cst(c)← 0,

fnx(fnx−1(c))← fnx(c)

]

fremove(c) fremoveS
c ∈ s.F

s
fremove(c)−−−−−−→ s

[
F ← F \ {c}, cst(c)← 0,

fnx(fnx−1(c))← fnx(c)

]

fremoveD
c ∈ s.F

s
fremove(c)−−−−−−→ s

 F ← F \ {c}, cst(c)← 0,

fnx(fnx−1(c))← fnx(c),
fpr(fnx(c))← fpr(c)



Table 4.14: Refined inserting operation on free list

finsertBU
c ∈ s.H \ s.F

s
finsert(c)−−−−−→ s

[
F ← F ∪ {c}, cst(c)← 1,
fnx(fbe)← c, fnx(c)← fnx(fbe)

]

finsert(c) finsertEU
c ∈ s.H \ s.F

s
finsert(c)−−−−−→ s

[
F ← F ∪ {c}, cst(c)← 1,

fnx−1(fen)← c, fnx(c)← fen

]

finsertMS
c ∈ s.H \ s.F ∧ p = max{b′ | b′ ∈ s.F ∧ b′ < c}

s
finsert(c)−−−−−→ s

[
F ← F ∪ {c}, cst(c)← 1,
fnx(p)← c, fnx(c)← fnx(p)

]

finsertBS
c ∈ s.H \ s.F ∧ ∀b ∈ s.F · c < b

s
finsert(c)−−−−−→ s

[
F ← F ∪ {c}, cst(c)← 1,
fnx(fbe)← c, fnx(c)← fnx(fbe)

]
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4.2.2 Basic Free List Operations

4.2.2.1 Removing, inserting, searching

We give a sample of rules defining the refinements of basic operations on the
free list for a free chunk removing, insertion, and searching.

As shown in Table 4.13, the rule fremoveA refines the hremove basic op-
eration for acyclic singly linked free lists; it simply updates the relation fnx.
The rule fremoveS is defined for sorted singly linked list and it has the same
definition as fremoveA. The rule fremoveD specifies the removing operation in
doubly linked lists.

In Table 4.14, the rules finsert∗U specify refinements of an insertion operation
for singly linked free lists which are unsorted. For sorted lists, the correspond-
ing refinements are presented by rules finsert∗S . In the unsorted free list, the
new chunk is inserted at the head or the end of the list. These two cases are
specified by finsertBU and finsertEU . The rule finsertMS specifies the case of the
insertion of a chunk in the sorted free list. The inserting position is denoted
by p in its precondition. The another case is specified by finsertBS when the
inserted chunk has an address smaller than all the free chunks in the list, it is
inserted at the beginning of the list.

The rules for fsearch, shown in Table 4.15, refine the rules for hsearch
with the specific fit policy. We define refinements of this operation, fsearchFF,
fsearchBF and fsearchNF for first-fit, best-fit and next-fit policy. The next fit
policy uses the variable rp as start of the search of the fitting chunk.

4.2.2.2 Splitting

The refinement of hsplit splitting operation, denoted by fsplit, is described in Ta-
ble 4.16. The refined splitting operations in free-list are obtained by replacing
the sub-operations with the refined operations. Rule fsplitB calls the refined
removing and inserting operations, fremove and finsert. The rule fsplitE ’s defi-
nition is similar to the rule hsplitE .

4.2.2.3 Merging

The refined merging operations for free lists are presented in Table 4.17. The
basic merging operations, merging a chunk with its left and right free neighbors
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Table 4.15: Refined searching operation on free list

fsearchS
FF

c ∈ s.F ∧ fit(c, n) ≤ s.csz(c)∧
(∀b ∈ s.F · b < c⇒ s.csz(b) < fit(b, n))

s
fsearch(n):c−−−−−−−→ s

fsearch(n) : c fsearchS
BF

c ∈ s.F ∧ fit(c, n) ≤ s.csz(c)∧
(∀b ∈ F · (c 6= b ∧ fit(b, n) ≤ csz(b))
⇒ (csz(b)− fit(b, n) ≥ csz(c)− fit(c, n)))

s
fsearch(n):c−−−−−−−→ s

fsearchS
NF

c ∈ s.F ∧ fit(c, n) ≤ s.csz(c)∧
∀k, ` ≥ 0, b ∈ s.F · (c = s.fnxk(rp)∧

b = s.fnx`(rp) ∧ fit(b, n) ≤ csz(b))⇒ (k < `)

s
fsearch(n):c−−−−−−−→ s

fsearchF
∗
∀b ∈ s.F · s.csz(b) < fit(b, n)

s
fsearch(n):nil−−−−−−−−→ s

Table 4.16: Refinements of split operation on free list

fsplit(c, n) : c′ fsplitB

c ∈ s.F ∧ 0 < n ≤ s.csz(c) ∧ c′ = c+ n

∧(s
fremove(c)−−−−−−→ s1

finsert(c′)−−−−−−→ s2)

s
fsplit(c,n):c′−−−−−−−→ s2

 H ← H ∪ {c′},
csz[c← n, c′ ← csz(c)− n],
cnx[c← c′, c′ ← cnx(c)]



fsplitE
c ∈ s.F ∧ 0 < n ≤ s.csz(c) ∧ c′ = c+ s.csz(c)− n

s
fsplit(c,s):c′−−−−−−−→ s

 H ← H ∪ {c′}, cst(c′)← 0
csz[c← csz(c)− n, c′ ← n],
cnx[c← c′, c′ ← cnx(c)]
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denoted by fmergeL and fmergeR, refine the corresponding operations of the
heap list level. fmergeN is the refinement of hmergeN .

Table 4.17: Refinements of merge operation on free list

fmergeS
R

b ∈ s.F ∧ c = s.cnx(b) ∧ c ∈ s.F ∧ s fremove(c)−−−−−−→ s1

s
fmerge(b):b−−−−−−−→ s1

[
H ← H \ {c}, cnx[b← cnx(c)],
csz[b← csz(b) + csz(c)]

]

fmerge(b) : x fmergeF
R

b ∈ s.F ∧ c = s.cnx(b) ∧ c ∈ s.H \ s.F

s
fmerge(b):b−−−−−−−→ s

fmergeS
L

b ∈ s.F ∧ s.cnx(c) = b ∧ c ∈ s.F ∧ s fremove(b)−−−−−−→ s1

s
fmerge(b):c−−−−−−−→ s1

[
H ← H \ {b}, cnx[c← cnx(b)],
csz[c← csz(b) + csz(c)]

]

fmergeF
L

b ∈ s.F ∧ s.cnx(c) = b ∧ c ∈ s.H \ s.F

s
fmerge(b):b−−−−−−−→ s

fmergeN (b) fmergeS
N

b ∈ s.F ∧ s
fmergeR(b):b
−−−−−−−−→ s1

fmergeL(b):c
−−−−−−−→ s2

s
fmergeN (b)
−−−−−−−→ s2

fmergeF
N

b ∈ s.F ∧ s.cnx(b) /∈ s.F ∧ s.cnx−1(b) /∈ s.F

s
fmergeN (b)
−−−−−−−→ s

4.2.3 Models for Free List SDMA

We developed several models which describe the free list and refine the models
in heap list level. The two refinement branches are shown in Figure 3.3, starting
from model MHE and model MA.

4.2.3.1 Method init

The refinements for the init method are specified in Table 4.18. They describe
the initialization for different cases of free list. Each rule initializes the state
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Table 4.18: Refinements of init on free list

finitA

s
finit()−−−→

〈 H ← {hst}, F ← {hst}, cst(hst)← 1,
cnx(hst)← hli, csz(hst)← hli− hst,
fnxA(fbe)← hst, fnxA(hst)← fen

〉
finit finitD

s
finit()−−−→

〈 H ← {hst}, F ← {hst}, cst(hst)← 1,
cnx(hst)← hli, csz(hst)← hli− hst,
fpr(fen)← hst, fpr(hst)← fbe,
fnxA(fbe)← hst, fnxA(hst)← fen

〉

finitC

s
finit()−−−→

〈 H ← {hst}, F ← {hst}, cst(hst)← 1,
cnx(hst)← hli, csz(hst)← hli− hst,
fnxC(hst)← fen, fnxC(fbe)← hst,
fnxC(fen)← fbe

〉

finitN

s
finit()−−−→

〈 H ← {hst}, F ← {hst}, cst(hst)← 1,
cnx(hst)← hli, csz(hst)← hli− hst,
fnx(fbe)← hst, fnx(hst)← fen,rp← hst

〉

defined in Table 4.12. Rules finitA and finitC present the initialization for the
singly linked acyclic and cyclic free list. Rule finitD initializes the acyclic doubly
linked free list.

4.2.3.2 Method alloc

The refinements for the internal allocation operation and the alloc method
are defined in Table 4.19. They refine rules described in Table 4.7 by replacing
basic operations in heap list with the refined ones.

4.2.3.3 Method free

The rule ffreeS
eager uses the operation finsert (instead of hinsert) to update the

links used by the free list and then tries to merge the inserted chunk with its
neighbours using the operation fmergeN which refines hmergeN .

4.2.3.4 Statistics

Table 4.21 sums up the main ingredients used by the refinement directions to
obtain the models presented in Figure 3.3. Like for the heap list models, the
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Table 4.19: Refinements of alloc method on free list

falloci(n) : b fallocSfit

s
fsearch(n):c−−−−−−−→ s ∧ c ∈ s.F ∧ fit(c, n) = s.csz(c)

∧(p = c+ chd) ∧ s fremove(c)−−−−−−→ s1

s
falloci(n):p−−−−−−→ s1

fallocSsplit

s
fsearch(n):c−−−−−−−→ s ∧ c ∈ s.F ∧ fit(c, n) < s.csz(c)

∧(p = b+ chd) ∧ s1
fsplit(c,fit(c,n)):b−−−−−−−−−−→ s2

s
falloci(n):p−−−−−−→ s2

fallocF
s

fsearch(n):nil−−−−−−−−→ s1

s
falloci(n):nil−−−−−−−→ s1

falloc(n) : b fallocSeager
s

falloci:p−−−−→ s1

s
falloc(n):p−−−−−−→ s1

fallocFeager
s

falloci(n):nil−−−−−−−→ s

s
falloc(n):nil−−−−−−−→ s

Table 4.20: Refinement of methods for free list

ffree(p) : b ffreeS
eager

p = b+ chd ∧ b ∈ s.H \ s.F ∧ s finsert(b)−−−−−→ s1
fmergeN (b)
−−−−−−−→ s2

s
ffree(p):true−−−−−−−→ s2

ffreeF
eager

∀b ∈ s.H \ s.F · p 6= b+ chd

s
ffree(p):false−−−−−−−→ s

rules are specified as events in the machine. We prove with the Rodin tool the
following correctness and refinement theorem. Table 4.22 provides statistics
about the proofs conducted to obtain the below theorem.

Theorem 4.2 (Correctness of the operations). Every operation of a model for SDMA
with free list preserves the invariants of the model. Moreover, the refinement relations
in Figure 3.3 are valid. �
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Table 4.21: Overview of free list models

Models State&New Rules
invariants init remove insert search

MUA s, fnxA finitA fremoveA finsertU −
MSA s, fnxA, IS finitA fremoveS finsertS −
MSC s, fnxC , IC , IS finitC fremoveS finsertS −
MSAB s, fnxA, IS finitA fremoveS finsertS fsearchBF
MSAF s, fnxA, IS finitA fremoveS finsertS fsearchFF
MSAN sN , fnxA, IS , Irp finitN fremoveS finsertS fsearchNF
MSCN sN , fnxC , IC , IS , Irp finitC fremoveS finsertS fsearchNF
MUABD sD, fnxA, fprA, Ifpr finitD fremoveD finsertU fsearchBF
MASA s, fnxA, IS finitA fremoveA finsertU −
MASAF s, fnxA, IS finitA fremoveA finsertU fsearchFF

Table 4.22: Statistics on proofs

Models
LOC

Proof Automatically Interactive
obligations discharged proofs

MUA 219 36 30(83%) 6(17%)
MSA 197 41 27(66%) 14(34%)
MSC 205 37 30(82%) 7(18%)
MSAB 202 2 2(100%) 0(0%)
MSAF 202 2 2(100%) 0(0%)
MSAN 200 2 2(100%) 0(0%)
MSCN 221 40 36(88%) 4(12%)
MUABD 241 9 9(100%) 0(0%)
MASA 182 21 18(85.6%) 3(14.4%)
MASF 186 2 2(100%) 0(0%)
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4.3 Applications of Formal Models

Refinement towards SDMA implementations In our models, the constants
and state elements abstract the following implementation details: the bound-
aries of the memory region used by the SDMA (variables hst and hli), the type
of the header (constants cdt, cal, mappings csz, cst, cnx, cpr , fnx, fpr), the algo-
rithm deciding which is the number of bytes needed to satisfy a client request
(mapping fit), and the boundaries of the free list (variables fbe and fen). Let S

denote the above set of symbols.
The refinement to code is defined by associating to each element in S an

expression using the types and variables of the SDMA implementation such
that the semantics of the element is fulfilled. We provide three examples of
such refinements in Table 4.23. Notice that some elements of S may be left
unspecified (entries with ‘−’) if they are not used in the model (we omit the
elements of S which are not specified in all the examples from the table). We
obtain these relations by inspecting the code of each allocator. However, we
believe that some automatic analysis may be designed to extract automatically
such information.

Code generation The elements of S and the rules presented in the previous
sections may be exploited to generate code for SDMA modelled by our spec-
ifications. In particular, the rules provide an operational semantics of SDMA
methods and a decomposition of these methods into calls to list (heap or free)
operations. The invariants specified for each state may be translated into code
and therefore provide means for run time verification of the correctness of a
particular state of the SDMA.

Model-based testing We experimented model-based test case generation us-
ing the tool published in [MLL09] which implements several methods for
Event-B models. We focused on the generation of test cases that are finite se-
quences of calls to alloc and free and end in a fail behaviour of free (ffreeF ).
A first observation concerns the scalability of this tool, which is not related with
its particular implementation, but with the methodology it employs, which is
based on queries to SMT-solvers. We were able to generate test cases for models
which are on top of our hierarchy in Figure 3.3. The models in the lower part,
which have more complex invariants, cannot be dealt by the theories available
in the SMT-solvers connected with this tool. We expect that this situation is
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Table 4.23: Examples of refinement to code

S TOPSY [RJLP03] |= MHL LA [Ald08] text |= MSAFF

hst start _hsta
hli end sbrk(0)
cdt sizeof(HmEntryDesc) sizeof(HDR)
cal 4 sizeof(HDR)
csz(x) (long)x->next-(long)x x->size*sizeof(HDR)
cst(x) x->status −
cnx(x) x->next (HDR*)x+x->size
fnx − x->ptr
fbe − frhd
fit(c, n) (csz(c) >((n+3)&0x0F+8))? (n+3)/4 + 1

((n+3)&0x0F)): csz(c)

reproduced in other model-based test case generators using different input
languages. Our hierarchy is a solution for this scalability problem because it
provides reasonable size abstractions for the complex models of free list SDMA.
A second observation is related with the concretisation of the signature S to
the code under test. Not all the elements of S shall be instantiated to apply the
tool: only the mappings csz and fit shall be fixed because they are important for
inferring the parameters for the calls to alloc; the other elements of S can be
dealt in a symbolic way by the tool.

Static analysis Several static analysis techniques have been developed to
analyse particular SDMA implementations, e.g. [CDOY06, LR15, FS16]. They
employ complex abstractions of SDMA state to capture precisely some proper-
ties of SDMA, e.g., the shape of the lists, the overlapping between heap and free
list. These abstractions are usually based on second order logics over graphs
to capture reachability between locations and shapes of data structures. The
analyses aim to infer the invariants and the pre/post-conditions of SDMA
methods. In this context, our models provide a sound reference for the inferred
specifications and highlight the logic fragments needed to capture precisely
the SDMA properties. These logic fragments may inspire the design of new
abstractions for such analysis. We present such an analysis in part II.
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4.4 Related Work and Conclusion

To our knowledge, this work[FS17, FSG+17] is the first defining a complete
hierarchy of models for the full class of list based SDMA. The same approach of
top-down modelling is employed in [SAPF15] to obtain the formal specification
of one SDMA, the TLSF allocator [MRCR04]. Our set of specifications is
complete for the techniques utilized in the list based SDMA.

Several projects report on the mechanical proofs using theorem provers of
(partial) correctness of code for specific purpose SDMA, e.g., [MAY06, TKN07a,
KEH+09, HP09, Chl11]. Most of these works use Separation Logic (SL) [ORY01]
which provides a scalable and expressive reasoning framework. [MAY06] tar-
gets the verification of the TOPSY SDMA using the Coq theorem prover. For this,
they developed a Coq library for SL which is employed to specify only some of
the invariants we provide for the heap list. The Bedrock framework [Chl11] is
another Coq library that has been used to verify SDMA code with only acyclic
free lists and no coalescing. [TKN07a] proposes a formal memory model that
captures both the low level (heap list) and the abstract level (free list) of the
memory organisation in SDMA. The low level model is based on the set theory
available in Isabelle/HOL; the abstract level uses a fragment of SL encoded
in Isabelle/HOL. The approach was used to formally verify the code of the
SDMA used by the L4 microkernel [KEH+09]. [HP09] employs Boogie and Z3
to verify a realistic garbage collector whose code has been annotated with a
particular region logic. Our work is complementary to these projects. We pro-
vide reusable and complete specifications for all list based SDMA by applying
several refinement steps, while they focus on the verification of specifications
for a particular SDMA code.

Verification of SDMA code by static analysis has been considered in [CDOY06,
LR15, FS16]. All these methods infer only some properties for particular alloca-
tors. Indeed, they employ fragments of SL or some logics over arrays which are
not expressive enough to cover fully the invariants of the SDMA analysed (e.g.,
the fit policy). Our work provides reference specifications to compare with the
inferred ones, in a logic fragment more general than SL. It could motivate the
extension or the direct application of general purpose methods based on SL,
e.g., [CDNQ12, QHL+14].
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Static Analysis of Sequential
Dynamic Memory Allocators



CHAPTER 5
Separation Logic Fragment for

SDMA

Verification of implementations of SDMA needs expressive formalism to reason
about their complex program configurations. In this thesis, we propose an
extension of the symbolic heap graphs fragment [DOY06] of Separation Logic (SL)
for reasoning SDMA, called SLMA. Our logic fragment can track the complex
structural and numerical properties on the structure of memory and on its size
and content. SLMA is parameterized by the type of chunk header and contains
a set of predicates describing the heap list and the free list. Also, SLMA provides
the composition operator for linking the two abstractions of the heap, the heap
list and the free list. This operator increases the readability and modularity of
specifications as well as the modularity of the static analysis method designed
in Chapter 6, which is based on a lattice built over formulas in SLMA. For
this logic fragment, we study the decidability of satisfiability and entailment
checking problems.

This chapter is structured as follows. Section 5.1 presents preliminaries on
Separation Logic (SL) and how it is used to reason about heap-manipulating
programs. Section 5.2 formally defines the logic SLMA and Section 5.3 study
the properties of SLMA.
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5.1 Preliminaries

5.1.1 Hoare Logic

Hoare logic was proposed by Tony Hoare [Hoa69] and is inspired by the earlier
work of Floyd [Flo93]. It is a formal system used to show the correctness of
computer programs. The key feature of it is the Hoare triple. A Hoare triple is
composed of two assertions φ and ψ, which are formulas in predicate logic, and
a command C of the program:

{φ}C{ψ}

This triple means that given a program state where φ holds, after executing
C and if C terminates, ψ holds in the new state. Usually, φ is named precon-
dition and ψ is postcondition. Hoare logic gives axioms and inference rules for
constructs of a simple imperative programming language. For example, the
assignment and sequencing axiom schemata are defined as:

{φ[e/x]}x := e{φ}
{φ}C1{ψ} {ψ}C2{ϕ}
{φ}C1;C2{ϕ}

The assignment axiom means that the value of a variable x after the execu-
tion of an assignment command x := e is equal to the value of the expression
e in the state before executing it. Here, the notation φ[e/x] denotes the result
of replacing all occurrences of x in φ by e. For example, the following simple
Hoare triple

{x = 1 ∧ y = 1} x := 2 {x = 2 ∧ y = 1}

holds for programming languages without pointers. The assignment x := 2

does not affect the value of y. When the programming language uses pointers,
which involves the addressable memory, the above assignment axiom is not
valid. Fox example, in the following triple

{∗x = 1 ∧ ∗y = 1} ∗ x := 2 {∗x = 2 ∧ ∗y = 1},

two pointer variables x and y may be aliased, i.e., they may refer to the same
region of the memory.

5.1.2 Symbolic Heap Fragment of Separation Logic

To reason on programs that access and mutate data in memory, Reynolds,
O’Hearn et al. developed Separation Logic [ORY01,Rey02] which is an extension
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of Hoare logic. The problem of aliasing mentioned above is solved thanks to a
special operator, called separating conjunction, denoted by ∗. φ ∗ ψ asserts that φ
and ψ hold in separate portions of the memory. The above triple is specified as
follows:

{x 7→ 1 ∗ y 7→ 1} ∗ x := 2 {x 7→ 2 ∗ y 7→ 1}

The assignment only updates the content of the memory pointed by x while
the memory region pointed by y is not affected.

Instead of recalling all elements of the Separation Logic in this section,
we introduce one fragment of Separation Logic, called symbolic heaps [BCO05b,
DOY06]. Our logic explained in the next chapter is the extension of the symbolic
heaps fragment. Notice that there are many fragments of Separation Logic with
different restrictions.

Syntax: Let PVar be a set of program variables, ranged over using x, y, z and
LVar a set of logical variables, ranged over using x′, y′, z′. The set of logical
variables is disjoint from program variables. The symbolic heaps fragment
formulas are specified in the following grammar (P is a spatial predicate symbol
whose parameter is a vector of variables, denoted by ~E, a special variable nil

represents the null address):

E,F ::= Pvar | LVar | nil

Π ::= true | E = F | E 6= F | Π ∧Π pure formulas
Σ ::= emp | E 7→ F | Σ ∗ Σ | P ( ~E) spatial formulas
φ ::= ∨∃~x′.Π ∧ Σ

Definition 5.1 (Symbolic heap). A symbolic heap Π ∧ Σ consists of a finite set
Π of equalities and disequalities, and a finite set Σ of heap predicates. In the
symbolic heap Π∧Σ, Π is called the pure part of it and Σ is the spatial part. �

Semantics: The domain of heap addresses is denoted by A while the domain
of values stored in the heap is generically denoted by V. Separation Logic is
interpreted over programs states m = (s, h) composed of a stack s and a heap
h. A stack is a function mapping program variables and to values. A heap is a
partial function mapping each memory address to the content at this address.
We denote by dom(f) the domain of function f .

Given two heaps, h1 and h2, they are said to be disjoint, denoted by h1⊥h2,
if the domains of h1 and h2 are disjoint, i.e., dom(h1)∩dom(h2) = ∅. The union



Chapter 5. Separation Logic Fragment for SDMA 70

s ∈ Stacks , PVar ∪ LVar→ V JEK ∈ Stacks→ V
h ∈ Heaps , A ⇀ V A ⊆ V
m ∈ States , Stacks× Heaps nil ∈ A

Figure 5.1: Memory model of Separation Logic

of two heaps is denoted by h1 ] h2, and dom(h1 ] h2) = dom(h1) ∪ dom(h2).
We denote by s, h |= φ the satisfaction of an assertion φ by the stack s and heap
h. The basic spatial assertions are:

• emp asserts an empty heap, i.e., (s, h) |= emp if dom(h) = ∅;

• E 7→ F asserts that E points to F and the heap has exactly one memory
cell, i.e., (s, h) |= E 7→ F if h(s(E)) = s(F ) ∧ dom(h) = {s(E)};

• Σ1∗Σ2 is the separating conjunction asserting that the heap is divided into
two disjoint parts such that one satisfies Σ1 and the other satisfies Σ2, i.e.,
(s, h) |= Σ1 ∗ Σ2 if ∃h1, h2 such that h1⊥h2 ∧ (s, h1) |= Σ1 ∧ (s, h2) |= Σ2

and h = h1 ] h2;

Separation Logic enables local reasoning. This fact is formalized by the frame
rule which states that if the Hoare triple {φ}C{ψ} holds, then {φ ∗ ϕ}C{ψ ∗ ϕ}
also holds if the variables referenced by C are disjoint from the variables in ϕ.

{φ}C{ψ}
{φ ∗ ϕ}C{ψ ∗ ϕ}

Inductively defined predicates: To specify an unbounded heap, usually Sep-
aration Logic is equipped with inductive predicates. For example, the segment
of simply linked list structure is defined using the following rule:

lsg(E,F ) , (emp ∧ E = F )

∨ ∃G · E 7→ G ∗ lsg(G,F ) ∧ E 6= F

The predicate lsg(E,F ) specifies either the empty list segment E = F or
the list that can be split into two disjoint parts such that one part is that location
E stores the address G and G is the starting point of a list segment ending in F
in the other part.
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5.2 Separation Logic for Memory Allocators

We formalise in this section a fragment of Separation Logic, SLMA, which is
used with some syntactical restrictions to define the values of our abstract
domain in Chapter 6. SLMA extends the symbolic heap fragment proposed
in [DOY06, CDOY06] with data constraints over words storing integers and
spatial predicates specifying different types of heap and free lists used in SDMA.

5.2.1 Syntax of SLMA

Variables: In our programs, i.e., the implementation of SDMA, a heap consists
of a set of memory cells. Each memory cell has a heap address. Let AVar
be a set of location variables representing heap addresses ranged over using
X,Y, Z. Let SVar be a set of sequence variables, interpreted as sequences of
heap addresses. A sequence variable could represent an empty term denoted
by ε or a memory cell [X] with address X or a sequence of heap addresses
[X1, X2, ..., Xn] whose length is n. Let w[i] denotes by the address at index i
in the sequence represented by w. Given two sequences of heap addresses,
w1 and w2, they can be composed as one bigger sequence. The concatenated
sequence is denoted by w1.w2. Let IVar be a set of integer variables. The full set
of logic variables in SLMA is denoted by LVar = AVar ∪ SVar ∪ IVar. The vector
of variables is denoted by ~x.

Function symbols of fields: The field is the offset at some address. To simplify
the presentation, we fix HDR, the type of chunk headers, and its fields F =

{size,fnx,isfree}. Let F = {Fsize,Ffnx,Fisfree} be a set of function
symbols, each function takes one argument Ff : LVar ⇀ V (f is limited in our
logic to the set F but may vary). The term Fsize(X) represents the value that
the field size stores in the chunk header at location X . Thus, the field access
X.size is represented by Fsize(X).

Formulas: The syntax of formulas is given in Table 5.1. Formulas are in dis-
junctive normal form. Each disjunct is built from a pure formula Π and a spatial
formula Σ. Pure formulas Π characterise the values of logic variables using
comparisons between location variables, e.g., X − Y = 0, constraints ∆ over
integer terms, and sequence constraints. We let constraints in ∆ unspecified,
though we assume that they belong to decidable theories, e.g., linear arithmetic.
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Table 5.1: Logic syntax

X,Y, nil, hli ∈ AVar location variables
W ∈ SVar sequence variables
i, j ∈ IVar integer variables
# ∈ {=, 6=,≤,≥} comparison operators
x ∈ LVar = AVar ∪ SVar ∪ IVar logic variable

~x, ~y ∈ LVar∗ vectors of variables
F = {size,fnx,isfree} fields in chunk header

Ff (X) field access term (f ∈ F)
t,∆ integer term resp. formula

ϕ ::= Π ∧ Σ | ϕ ∨ ϕ | ∃x · ϕ formulas

L ::= X | Ffnx(X)

Π ::= A | ∀X ∈W ·A⇒ A |W = w | Π ∧Π pure formulas
A ::= L− L # t | ∆ | A ∧A location/integer constraints
w ::= ε | [X] |W | w.w sequence terms

Σ ::= ΣH c ΣF spatial formulas
ΣH ::= emp | X 7→ x | blk(X;Y ) | chd(X;Y ) heap formulas

| chk(X;Y ) | hls(X;Y )[W ] | hlsc(X, fp;Y, fl)[W ]

| ΣH ∗ ΣH

ΣF ::= emp | fck(X;Y ) | fls(X;Y )[W ]
| flso(X,x;Y, y)[W ] | ΣF ∗ ΣF free list formulas
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The integer terms t are built over integer variables and field accesses using
classic arithmetic operations and constants. We denote by Π∀ (resp. ΠW , Π∃)
the set of sub-formulas of Π built from universal constraints (resp. sequence
constraints, quantifier free arithmetic constraints).

Inductive predicates: A spatial formula has two components: ΣH specifies
the heap list and the locations outside the region managed by the SDMA; ΣF

specifies only the free list. The operator c ensures that all locations specified
by ΣF are start addresses of chunks in the heap list.

chd( X; Z )

X Z Y

blk( Z; Y )

si
ze

fn
x

is
fr

ee
X Y

blk( X; Y )

The block atom blk(X;Y ) [CDOY06] holds iff the heap contains a sequence
of bytes starting at locationX ending before the location Y . We call the memory
region specified by blk predicate the raw memory region. The other predicates
are derived from blk and defined in Table 5.2. The chunk header atom chd(X;Y )

specifies the chunk header based on the atom blk(X;Y ). We do not expose the
values stored in the chunk header because we found it easier to specify the
coalescing of block and chunk atoms into a single block.

The chunk atom chk(X;Y ) and the free chunk atom fck(X;Y ) are defined
using blk(X;Y ) by constraining the size of the block and the values stored in the
header. The heap list predicate hls(X;Y )[W ] specifies a heap list segment in the
memory region with chunk start addresses stored (in order) in W . hls(X;X)[ε]

describes the empty heap list segment and is equivalent to emp.

chk( X; Y )

X Y

si
ze

fn
x

is
fr

ee

chk( Y; Z )

si
ze

fn
x

is
fr

ee

Z

chk( Z; hli )

si
ze

fn
x

is
fr

ee

hli

hls(X; hli)[W] ∧ … 

As the above picture shows, the three contiguous chunks in the heap can be
specified as a heap list hls(X; hli)[W ] or two non-overlapping parts chk(X;Y ) ∗
hls(Y ; hli)[W ′] (here hli denotes the address after the end of the heap which has
the same meaning as the definition in Section 2.1.1, page 9). Obviously, the
heap list can not be cyclic, thus hls(X;Y )[X] ∗ hls(Y ;X)[Y ] is a invalid formula.
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Table 5.2: Derived predicates

chd(X;Y ) , blk(X;Y ) ∧ sizeof(HDR) = Y −X ∧X ≡sizeof(HDR) 0

chk(X;Y ) , ∃Z · chd(X;Z) ∗ blk(Z;Y )

∧ Fsize(X)× sizeof(HDR) = Y −X
fck(X;Y ) , ∃Z · chk(X;Z) ∧ Fisfree(X) = 1 ∧ Ffnx(X) = Y

hls(X;Y )[W ] , emp ∧X = Y ∧W = ε

∨ ∃Z,W ′ · chk(X;Z) ∗ hls(Z;Y )[W ′]

∧W = [X].W ′

hlsc(X, fp;Y, fl)[W ] , emp ∧X = Y ∧W = ε ∧ 0 ≤ fp + fl ≤ 1

∨ ∃Z,W ′, f · chk(X;Z) ∗ hlsc(Z, f ;Y, fl)[W
′]

∧W = [X].W ′

∧ f = Fisfree(X) ∧ 0 ≤ Fisfree(X) + fp ≤ 1

fls(X;Y )[W ] , emp ∧X = Y ∧W = ε

∨ ∃Z,W ′ · fck(X;Z) ∗ fls(Z;Y )[W ′]

∧W = [X].W ′ ∧X 6= Y

flso(X,x;Y, y)[W ] , emp ∧X = Y ∧W = ε ∧ x− y ≤ 0

∨ ∃Z,W ′ · fck(X;Z) ∗ flso(Z,X;Y, y)[W ′]

∧ W = [X].W ′ ∧ x−X ≤ 0

The compact heap list hlsc(X, fp;Y, fl)[W ] specifies a heap list segment
where the free-chunks are not consecutive, where fp and fl are the free status
of the before the first resp. last chunk in the list. We use a numerical constraint
0 ≤ f1 + f2 ≤ 1 to specify that two contiguous chunks can not be both free, i.e.,
both have a free status of 1.

fck(X; Y)

X Y

fck(Y; Z)

Z

fck(Z; nil)

nil

fls(X;nil)[W] ∧ …

The predicate fls(X;Y )[W ] specifies an acyclic free list segment rooted at
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X and whose last element refers to Y ; the sequence W stores in order the start
addresses of the free chunks in the list. In the above picture, three free chunks
(in white) are linked and specified by fls(X; nil)[W ].

A free list sorted by the start addresses of free-chunks is specified by
flso(X,x;Y, y)[W ], where x and y are less resp. greater than all addresses in
the free list. We denote by P = {blk, chd, chk, fck, hlsc, hls, fls, flso} the set of
predicate symbols in the logic, each with associated arity.

5.2.2 Semantics of SLMA

Formulas of SLMA are interpreted over pairs (I, h) where I is an interpretation of
logic variables and h is a heap. Formally, an interpretation I is a partial function
such that nil, location and integer variables are mapped to singleton sequences,
and sequence variables are mapped to sequences of values. A heap h is a partial
function mapping a location to a non empty sequence of values stored at this
location. V+ denotes a non-empty sequence of values and its length is denoted
by |V+|. A location l is allocated in (I, h) if and only if l is in the domain of h. Let
h(`)[i] denote the (i+ 1)th element of h(`) (the sequence of h(`) is zero-based
indexing).

I ∈ I , ((AVar ∪ IVar) ⇀ V) ∪ (SVar ⇀ V∗) interpretation
h ∈ H , A ⇀ V+ heap

The semantic rules are defined in Table 5.3. A formula ϕ is satisfied in
(I, h) is denoted by (I, h) |= ϕ. The set of models satisfying ϕ is denoted by
JϕK , {(I, h) | (I, h) |= ϕ}. Given two formulas ϕ and ψ, we say ϕ entails ψ,
denoted by ϕ ⇒ ψ or ϕ ` ψ, iff JϕK ⊆ JψK. In SLMA, the separation of two
heaps, h1 and h2, is denoted by h1 ~ h2. It requires both domains and ranges of
h1 and h2 being disjoint. The union of two heaps, denoted by h1 ] h2, is similar
to the definition in 5.1.2.

5.3 Properties

We study here some properties of SLMA that are important to measure its
usability for the analysis of SDMA.
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Table 5.3: Logic semantics

JxKI , I(x) J[X]KI , [I(X)]

JεKI , ∅ J[X,Y ]KI , [I(X), I(Y )]

JW KI , I(W ) Jw1.w2KI , Jw1KI .Jw2KI

I, h |= L1 − L2 # t iff JL1KI − JL2KI # t holds in I
I, h |= A1 ∧A2 iff I, h |= A1 and I, h |= A2

I, h |= ∀X ∈W ·A1 ⇒ A2 iff I(W ) = [a1, . . . , an] s.t.
∀i ∈ (1..n) I[X 7→ ai], h |= A1 ⇒ A2

I, h |= W = w iff JW KI = JwKI
I, h |= Π1 ∧Π2 iff I, h |= Π1 and I, h |= Π2

I, h |= ΣH c ΣF iff I, h |= ΣH and ∃h′ ⊆ h s.t. I, h′ |= ΣF

∀` ∈ dom(h′) · h′(`)[isfree] = 1

I, h |= emp iff dom(h) = ∅
I, h |= blk(X;Y ) iff dom(h) = I(X) ∧ I(Y )− I(X) = |h(I(X))|
I, h |= X 7→ x iff dom(h) = I(X) ∧ h(I(X))[0] = I(x)

I, h |= P (~x)[W ] iff P (~y)[W ′] , φ (P ∈ P) and I, h |= φ[~x/~y][W/W ′]

I, h |= Σ1 ∗ Σ2 iff ∃h1, h2 s.t. h = h1 ] h2 and
I, hi |= Σi for i = 1, 2

where
h1 ⊆ h2 iff dom(h1) ⊆ dom(h2) and

∀` ∈ dom(h1) · h1(`) = h2(`)
h1 ~ h2 iff ∀ l1 ∈ dom(h1), l2 ∈ dom(h2) · l1 6= l2∧(

(l1..l1 + |h1(l1)| − 1)∩
(l2..l2 + |h2(l2)| − 1) = ∅

)
h = h1 ] h2 iff h1 ~ h2, dom(h) = dom(h1) ] dom(h2), and

(h1 ] h2)(`) ,

{
h1(`) if ` ∈ dom(h1)
h2(`) if ` ∈ dom(h2)

I, h |= Π ∧ Σ iff I, h |= Π and I, h |= Σ

I, h |= ϕ1 ∨ ϕ2 iff I, h |= ϕ1 or I, h |= ϕ2

I, h |= ∃x · ϕ iff ∃v ∈ V s.t. I[x 7→ v], h |= ϕ
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5.3.1 Expressiveness

Formulas in SLMA are able to capture the complex invariants of SDMA pre-
sented in the first part of this document. For example, the invariant specifying
the memory’s structure of an SDMA in the class MSA (i.e., with eager coalesc-
ing and sorted acyclic free list) is given by the following SLMA formula:

hlsc(hst, 0; hli, 0)[WH ] c flso(fbe, hst; nil, hli)[WF ]

where fbe is the start of the free list.
The post-condition of the allocation method of a such SDMA with first-fit

policy (i.e., class MSAF) is specified using SLMA by a formula that includes the
following disjunct:

hlsc(hst, 0; hli, 0)[W ] ∧WH = w

c

flso(fbe, hst;r, `)[W1] ∗ fck(r, `′) ∗ flso(`′,r; nil, `′′)[W2] ∧ Fsize(r) ≥ s
∧∀X ∈W1 · Fsize(X) < s ∧WF = W1.[r].W2

where s is the size requested for allocation and r is the address of the first fitting
chunk.

5.3.2 Transformation Rules

The predicate definitions in Table 5.2 imply a set of lemmas that will be used
in Chapter 6 to transform the abstract values encoded by formulas. The first
set of lemmas is obtained by directing predicate definitions in both directions.
For example, each definition P (. . .) , ∨iϕi introduces a set of folding lemmas
ϕi ⇒ P (. . .) and an unfolding lemma P (. . .)⇒ ∨iϕi.

The second class of lemmas concerns list segment predicates in Table 5.2.
The inductive definitions of these predicates satisfy the syntactic constraints de-
fined in [ESW15] for compositional predicates. Thus, every P ∈ {hls, hlsc, fls, flso}
satisfies the following segment composition lemma:

Lemma 1. P (X,~x;Y, ~y)[W1]∗P (Y, ~y;Z, ~z)[W2]∧W = W1.W2 ⇒ P (X,~x;Z, ~z)[W ]

The reverse implication is applied to split non empty list segments. Fi-
nally, the block sub-formulas are removed, split, or folded using the following
lemmas:
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Lemma 2. blk(X;Y ) ∧ X ≥ Y ⇒ emp

Lemma 3. blk(X;Y ) ∧ X < Y ⇒ ∃Z ·blk(X;Z) ∗ blk(Z;Y )∧X ≤ Z ≤ Y

Lemma 4. blk(X;Y ) ∗ blk(Y ′;Z) ∧ X ≤ Y = Y ′ ≤ Z ⇒ blk(X;Z).

Lemma 2 is used to transform incorrect block into empty case. Lemma 4 is
the reverse of Lemma 3.

5.3.3 Satisfiability

The satisfiability of formulas in SLMA is important for the static analysis method
because it allows to determine if the set of concrete states represented by an
abstract value encoded by a formula is empty or not, i.e., if it is equal to the
least element of the lattice. Although the satisfiability of the logic underlying
the abstract values is not decidable, the static analyses methods employ sound
methods to check it, i.e., method that when they respond negatively, the for-
mula is unsatisfiable, otherwise, we do not known its exact status. Moreover,
this approximation method may be applied even for logics with a decidable
satisfiability problem because it may be faster than the decision procedure.

I conjecture that the satisfiability problem for SLMA is undecidable and I
explain this in the remainder of this section by relating SLMA with existing
logic fragments. The next chapter contains a sound procedure for checking
satisfiability of an abstract value encoded by a formula in SLMA.

5.3.3.1 Satisfiability of Pure Part

The pure part of our logic fragment includes constraints over integer terms
and sequence constraints. Integer constraints belong to decidable theories,
thus the decidability for satisfiability of the pure part depends on the sequence
constraints. The sequence constrains ΠW in SLMA are formulas of some array
logic fragment, we denote this fragment by TW . We wish to check whether the
satisfiability of TW is decidable or not. It is denoted by TW -satisfiability.

Array logic formalizes mapping from an index type to an element type. Let
a be an array. The basic operations on arrays includes: a[i] is the value of the
element at index i of array a (read), and a[i← v] represents the element at index
i is replaced by v (write). In our case, a sequence variable represents an array
which is indexed by the addresses and the values of it are in V.



Chapter 5. Separation Logic Fragment for SDMA 79

Satisfiability of the full array logic is not decidable. Several works show
that satisfiability for some restricted quantifier-free fragments of the array logic
are decidable [Kin69, SBDL01]. The decision procedures for fragments which
permit quantification with some restrictions are presented in [Bra07]. One
decidable fragment, denoted by TZ

A , is with integer indices and considers the
formula of the form ∀~i · F [~i]→ G[~i] where~i is a list of variables , F [~i] and G[~i]

are index and value constraints respectively. The indexes are in integer type
and constraints over them can be equations and inequalities.

The decision procedure of integer-indexed array TZ
A given in [Bra07] is to

reduce universal quantification to finite conjunctions. To decide the satisfiability
of TZ

A is equal to deciding the satisfiability of TA ∪ TZ ∪ T where TA represents
quantifier-free fragment, T is the element theory and TZ is the integer index
theory (formulas in TZ with no inequalities).

TW is a variant of TZ
A while TW allows disequalities in index constraints.

In TW , the number of variables is bounded by the quantifier, while in TZ
A , it is

not bounded. The equation of sequences (w1 = w2), is the same as the array
equality (∀i · a1[i] = a2[i]). However, TW has the concatenation operator which
makes decidability difficult to deal with. Consider the concatenation of two
arrays a1.a2, this involves the length of the array, i.e., the fixed bound is on
the index. Thus, the decision procedure of TZ

A -satisfiability can not be directly
applied to data words TW .

5.3.3.2 Satisfiability of Spatial Part

The problem of deciding satisfiability of the spatial part I, h |= Σ is a challenging
work for the inductive predicates which are defined with sequence constrains.
Berdine et al. [BCO05a] presented the decision procedure for satisfaction of a
fragment Separation Logic. The fragment includes only one kind of inductive
predicate: linked list. The idea is that a list is equi-satisfiable with the lists of
lengths zero and two.

Brotherston et al. [BFPG14] considered the satisfiability of a fragment of
Separation Logic with user-define inductive predicates. After that work, Broth-
erston et al. [BGKR16] have shown that the model checking of that logic is
EXPTIME-complete in the general case.

Le et al. [LTSC17] gave a decision procedure for satisfiability of a fragment
of Separation Logic including inductive predicates with shape and arithmetic
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properties. It requires that the formula derived from inductive predicates could
be stretched. That means the arithmetic part of the predicate is a conjunction
of periodic constraints and closure of the union of these conjunctions can be
represented by some semilinear sets, i.e., sets definable in Presburger arithmetic.
Our spatial part has inductive predicates with formulas in fragment of array
logic TW . Thus, one solution is to check the sequence constraints in SLMA obey
the restrictions in [LTSC17] or not.

5.3.4 Entailment Checking

The problem of validity of an entailment between formulas in SLMA is impor-
tant for the static analysis method because it allows to order abstract values
represented by SLMA formulas. Therefore, an abstract value a subsumes (is
bigger than in the lattice of abstract values) a′ if the entailment a′ ⇒ a is valid.
Like for satisfiability, the validity of entailment may be dealt by sound methods
when the problem is not decidable or the decision procedure has high complex-
ity. If the sound method responds “yes” then the entailment is valid, otherwise
nothing can be said (the entailment may be valid or invalid).

For the logic SLMA, I conjecture that the problem of checking validity of
entailment is undecidable and I compare this result with the existing results for
logics derived from Separation Logic. The next chapter contains a sound proce-
dure for checking entailment between abstract values encoded by a formula in
SLMA.

5.3.4.1 Entailment of Pure Part

Like for satisfiability, the array property fragment TZ
A of array logic is the

starting point of our study. Bradley et al. [Bra07] have shown that the entailment
checking is decidable in TZ

A because the validity of entailment can be translated
into a satisfiability checking, as usual. However, the pure part of our logic
combines the array property fragment over the content of sequences with
sequences constraints which are outside the fragment. The conjecture is that
the entailment checking of pure parts is not decidable for SLMA.

5.3.4.2 Entailment of Spatial Part

The entailment problem for the symbolic heap fragment of Separation Logic
with only list segment inductive definition has been shown decidable in [BCO05a,
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CYO01, CHO+11, NPR11]. In particular, Cook et al. [CHO+11] prove that the
satisfiability/entailment problem can be solved in polynomial time. Piskac et
al. [PWZ13] show that the Boolean closure of this fragment can be translated
to a decidable fragment of first-order logic, and in this way they prove that
the satisfiability/entailment problem can be decided in NP/co-NP. Further-
more, they consider the problem of combining SL formulas with constraints on
data using the Nelson-Oppen theory combination framework [NO79]. Adding
constraints on data to SL formulas is considered also in Qiu et al. [QGŞM13].
The fragment of overlaid nested lists defined in [ESS13] has also a decidable
entailment problem. Our operator c is less powerful than the one proposed in
the fragment but our fragment includes data constraints, which is outside the
scope of the fragment in [ESS13].

Iosif et al. [IRS13] also introduce a decidable fragment of SL with inductive
definitions that can describe more complex data structures than the fragment
presented in this work, including, e.g., trees with parent pointers or trees
with linked leaves. The mentioned work reduces the entailment problem to
Monadic Second Order Logic on graphs with a bounded tree width, resulting
in a multiple-exponential complexity. They do not deal with data constraints.

In conclusion, our logic fragment combines in the spatial part inductive
predicates with data constraints that are out of the scope of the existing proce-
dures. I conjecture that the problem is undecidable for our fragment and focus
on sound procedure for checking entailment based on graph homeomorphism
like in [ESS13].



CHAPTER 6
Logic-based Abstract Domain

In this chapter, we present the abstract domain designed for the static anal-
ysis of SDMA. Our static analyzer is built based on the abstract interpreta-
tion [CC77b,CC79] framework which is used for constructing sound approxima-
tions for semantics of the programs. The concrete semantics precisely describes
the executions of the programs. But the concrete semantics is not computable in
general. The concrete semantics can be approximated by some abstract semantics
on which we can reason on the properties we are interested in. The sound
approximations represent the correspondence between concrete and abstract
semantics and guarantee that properties proved within the abstract semantics
hold in the corresponding concrete executions of the programs.

The properties inferred by our analyzer are specified using subformulas of
the logic SLMA introduced in Chapter 5. The abstract domain is a cofibered
product of an extended symbolic heap domain and existing domains, i.e.,
numerical domains [CH78, Min01b] and data words domain [BDE+10]. The
partial order between abstract values is defined by using an entailment between
formulas.

This chapter is structured as follows. In § 6.1, we recall the principles of
abstract interpretation. We also present existing abstract domains which are
used in our domain and we explain the techniques used to combine multiple
domains. § 6.3 defines our abstract domain we designed for analyzing SDMA.
The domain is defined in a stepwise way. The operators on the abstract domain
are presented in § 6.3.7.
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6.1 Abstract Interpretation Preliminaries

We present a simple imperative program languages with fixed data types
in Section 6.1.1 and give its syntax and concrete semantics. Then we recall
in Section 6.1.2 the general definitions of abstract interpretation theory and
explain how it computes approximations of concrete semantics of this language.
Section 6.1.3 introduces some existing abstract domains and the techniques for
combining different domains.

6.1.1 A Simple Imperative Language

We consider the simple imperative program and its syntax presented in Fig-
ure 6.1. It has no procedures and it could be seen as a subset of the C program-
ming language. This language is used only for describing the application of
abstract interpretation and it will be extended in the next section.

prog ::= stmt program

stmt ::= loc := exp assignment
| skip skip
| if exp then stmt else stmt condition
| while exp do stmt done loop
| stmt; stmt sequence

loc ::= x variables (x ∈ PVar)

exp ::= i value i ∈ Z
| loc read location
| exp⊕ exp arithmetic

⊕ ::= + | − | × | / arithmetic operators

Figure 6.1: Syntax of a simple imperative language

6.1.1.1 Syntax

Recall that PVar denotes the set of program variables in a program. The vari-
ables have only one type: machine integers int. We denote by Z the set of all
integers. A program prog in this language is a sequence of statements. A state-
ment stmt could be an assignment, a skip instruction, a condition branching
or a loop. The left-value loc of an assignment evaluates to a memory location
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given by a program variable. An expression exp could be a constant, a left-
value or an arithmetic expression. This language does not support Boolean
type. In the condition branching, the expression is only compared with zero,
thus, non-zero integers represent true (exp 6= 0) and zero represents false
(exp = 0) respectively.

evaluation of locations
EvalLJlocK : S→ Pvar

EvalLJxK(σ) , x

evaluation of expressions
EvalEJexpK : S→ Z

EvalEJvK(σ) , v

EvalEJxK(σ) , σ(x)

EvalEJe1 ⊕ e2K(σ) , EvalEJe1K(σ)⊕ EvalEJe2K(σ)

condition tests
GuardJ.K : P(S)→ P(S)

GuardJexpK(S) , {σ ∈ S | EvalEJexpKσ 6= 0}
GuardJ!expK(S) , {σ ∈ S | EvalEJexpKσ = 0}

concrete transformers
PostJ.K : P(S)→ P(S)

PostJstmtK(S) ,match stmt with:
| skip → S
| loc := exp → {σ[EvalLJlocK(σ)← EvalEJexpK(σ)] | σ ∈ S}
| s1; s2 → PostJs2K(PostJs1K(S))
| if e then s1 else s2 → PostJs1K(GuardJeK(S)) ∪ PostJs2K(GuardJ!eK(S))

| while e do s done → GuardJ!eK(lfp⊆(λSi.S ∪ PostJsK(GuardJeK(Si))))

Figure 6.2: Concrete semantics of a simple imperative language

6.1.1.2 Concrete Semantics

The concrete semantics of the simple imperative language is defined in Fig-
ure 6.2. The program states are evaluations of variables and updated by state-
ments. A concrete state of a program is defined as a store mapping program
variables to their values (σ ∈ S , PVar → Z). The evaluation of a location,
denoted by EvalLJlocK : S → Pvar, maps a location expression to a memory
location which is represented by a program variable. The evaluation of an
expression is EvalEJexpK : S → Z which maps an expression to a value. The
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condition test GuardJexpK : P(S)→ P(S) filters out the concrete states that do
not satisfy the condition expressed by exp. The concrete transformers of the
programs stated by statements is denoted by PostJstmtK : P(S)→ P(S).

Fixpoint Computation: The transition of a loop statement is represented by a
function F : P(S) → P(S) which is monotonic and continuous. The concrete
states collected by transformer PostJwhile e do s doneK(S) is theleast fix-
points of F where F(Si) = S ∪ PostJsK(GuardJeK(Si)). Moreover, the fixpont
gives the loop invariant. To get the semantics of the loop, the fixpoint must be
filtered by the loop exit condition !e.

We denote by lfp⊆F the set of least fix-points of F with respect to ⊆. Tarski
theorem [Tar55] shows the existence of the fix-points of F while Kleene theorem
[KdBdGZ52] gives a way to compute the fix-points. Given the transfinite
induction: {

F0(X) , X

Fn+1(X) , F(Fn(X)),

where Fi(X) denotes by F′s iteration on X , we have Fb(X) ,
⋃

a<b Fa(X)

where b is a limit ordinal.

Theorem 6.1 (Kleene fixpoint theorem). Given a partial ordered set (P(S),⊆) and
a monotonic and continuous function F : P(S)→ P(S), for any X ∈ P(S), then

lfp⊆F =
⋃
{Fn(∅)|n ∈ N}

�

In general, the concrete semantics defined above is infinite and not com-
putable. In the following section, we describe an example design an abstraction
of the concrete semantic in the abstract interpretation framework.

6.1.2 Abstract Interpretation

The abstract interpretation framework [CC77b,CC79] provides a way to build a
correspondence between two semantics of programs. The set of concrete states
of the program forms a partially ordered set (P(S)),⊆), i.e., the concrete domain
(To simply the description, we assume that the concrete domain is the power-set of
concrete states and the partial order between states is the subset relation in this section.



Chapter 6. Logic-based Abstract Domain 86

It is not always the case). Each program point’s information is carried by the
element in P(S). If s ⊆ c, then c carries more information than s. By using the
abstract interpretation framework, verifiers can focus on their own abstract
properties instead of encoding program properties uniformly by using means
which have restrictions. The properties that verifiers want to express on the
program states are specified as elements of some abstract domain (D],v). The
abstract domain is designed with a set of abstract operators manipulating the
properties, i.e., abstract transformers.

6.1.2.1 Abstract Domain

Let C = (P(S),⊆,∪,∩,∅,S) be the lattice of concrete program states represent-
ing the concrete domain. The least and greatest concrete elements are the empty
set ∅ and the set of all program states S. And let A = (D],v,t,u,⊥,>) be the
abstract domain that approximates the concrete domain. The least and greatest
elements in the abstract domain are called bottom and top, represented by ⊥
and > respectively. We build the correspondence between the concrete domain
and the abstract domain by defining the necessary functions: abstraction and
concretization.

Abstraction function: An abstraction is a mathematical relationship between
two semantics (domains). The soundness of the abstraction states that any
program property proved to hold in the abstract domain also holds in the
concrete one. Generally, however, not all properties provable in the concrete
semantics can be proved in the abstract semantics, which is incompleteness and
causes false alarms. Give the concrete domain C and the abstract domain A, an
abstraction function converts concrete elements into abstract ones: α : P(S)→
D] and α(S) is a sound approximation of the concrete set S. Note that the
abstraction function is monotonic, that is:

∀S1, S2 ∈ P(S) · S1 ⊆ S2 ⇒ α(S1) v α(S2)

Concretization function: Similarly, we can also consider a reverse function of
the abstraction function, which is called concretization function. A concretiza-
tion function γ : D] → P(S) converts abstract elements into concrete ones.
The concretization function is also monotonic, i.e., it maps more approximate
abstract elements to more approximate concrete elements. Its monotonicity is
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formalized as follows:

∀d]1, d
]
2 ∈ D

] · d]1 v d
]
2 ⇒ γ(d]1) ⊆ γ(d]2)

Two special elements ⊥ and > in the abstract domain, are mapped to an empty
set (γ(⊥) = ∅) and the set of all program states (γ(>) = S) respectively.

Galois connection: The abstraction and the concretization functions are “in-
verse” of one another and form a Galois connection [CC79] between concrete
and abstract domains. The Galois connection is a pair of monotonic functions
(α : P(S)→ D], γ : D] → P(S)) between C and A such that:

∀S ∈ P(S), d] ∈ D] · α(S) v d] ⇔ S ⊆ γ(d])

We denote by (P(S), 〈α, γ〉, D]) the Galois connection linking domain C and
domain A. The existence of a Galois connection ensures that any concrete
property S ∈ P(S) has a best abstraction in D] and this best abstraction is given
by α

Example 3 (The interval abstract domain). The interval abstraction consists in
inferring, for each variable, an upper and a lower bound on its possible values.
It was introduced early by Cousot and Cousot [CC76] and it is used to specify
properties like the absence of arithmetic overflow or out-of-bound array access.
The abstract element in the interval domain (D]

I ,vI ,tI ,uI ,⊥I ,>I) is defined
as follows (where I is the set of integers):

D]
i , (Pvar→ I ) ∪ {⊥I}

where I , {[a, b] | a ∈ Z ∪ {−∞}, b ∈ Z ∪ {+∞}, a ≤ b}

Its abstraction and concretization functions are defined as:

γI(d]) ,

∅ if d] = ⊥I

{σ ∈ S | ∀X.σ(X) ∈ d](X)} if d] 6= ⊥I (X ∈ Pvar)

αI(S) ,

⊥I if S = ∅

λX.[min{σ(X)|σ ∈ S},max{σ(X)|σ ∈ S}] is S 6= ∅

4
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6.1.2.2 Abstract Operators

The abstract operators include the lattice operators (i.e., abstract join t, abstract
inclusion checking v) and the abstract transformers which over-approximate
the computation of program statements.

Lattice operations: In the abstract domain D], the abstract join t : D] ×
D] → D] computes a least upper bound of two abstract elements and over-
approximates the concrete union ∪ of the concrete domain. The soundness of
the abstract join is defined as follows:

∀d]1, d
]
2 ∈ D

] · γ(d]1) ∪ γ(d]2) ⊆ γ(d]1 t d
]
2)

Example 4 (Abstract join in the interval domain). The abstract join tI in the
interval domain is defined as follows:

d]1 tI d]2 ,


d]1 if d]2 = ⊥I

d]2 if d]1 = ⊥I

λX.[min(d]1(X), d]2(X)),max(d]1(X), d]2(X))] otherwise

It selects the minimal left bound and the maximal right bound between two
intervals and generates a new interval, e.g., [1, 2] tI [3, 4] is equal to [1, 4]. 4

The abstract inclusion checking operator v checks the order between ab-
stract elements and it over-approximates the concrete inclusion checking opera-
tor ⊆. The soundness of v is defined as follows:

∀d]1, d
]
2 ∈ D

] · d]1 v d
]
2 ⇒ γ(d]1) ⊆ γ(d]2)

Example 5 (Inclusion checking in the interval domain). The inclusion checking
vI in the interval domain is defined as follows:

d]1 vI d
]
2 ⇔

d
]
1 = ⊥I or

∀X.d]1(X) ⊆ d]2(X)) if d]1, d
]
2 6= ⊥I

4
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Abstract transformers: The abstract transformers over-approximate the con-
crete program semantics, i.e., condition tests and statements. Each program
statement in the concrete domain has a corresponding abstract transformer in
the abstract domain. Given the concrete domain C and the abstract domain A,
which are linked by a Galois connection (P(S), 〈α, γ〉, D]). Let F : P(S)→ P(S)

be a concrete transformer function on P(S). The corresponding abstract trans-
former of F is F ] : D] → D] satisfying the following condition for soundness:

∀d] ∈ D] · (F ◦ γ)(d]) ⊆ (γ ◦ F ])(d])

It means that the result of a computation step performed in the abstract domain
represents an over-approximation of the corresponding computation step per-
formed in the concrete domain. The above condition can be replaced by the
following condition using the abstraction function:

∀S ∈ P(S) · (α ◦ F )(S) v (F ] ◦ α)(S)

For the concrete condition test GuardJexpK shown in Figure 6.2, its corre-
sponding abstract condition test is Guard]JexpK : D] → D]. It over-approximates
GuardJexpK. The soundness of the abstract condition test is defined as follows:

∀d] ∈ D] ·GuardJexpK(γ(d])) ⊆ γ(Guard]JexpK(d]))

Another abstract transformer Assign]Jloc := expK : D] → D] is defined for
assignment PostJloc := expK in the concrete domain. The soundness of it is
defined as follows:

∀d] ∈ D] · PostJloc := expK(γ(d])) ⊆ γ(Assign]Jloc := expK(d]))

Abstract fix-points: In the concrete domain, the concrete transformer of the
loop is denoted by function F. We cannot ensure that the loop is always ter-
minating because the sequence (Fn(∅))n≥0 may not eventually stabilize. We
assume the corresponding abstract transformer of F is F] : D] → D]. Tarski the-
orem [Tar55] ensures that the least fix-point of the abstract transformer F] is an
over-approximation (an abstraction) of the least fix-point of the corresponding
concrete transformer F. In the abstract domain, the termination for the compu-
tation of abstract fix-points should be guaranteed. Also, if the computation is
too slow to terminate, the analysis should accelerate it.
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To accelerate the convergence by an extrapolation operator in a loop, we
usually design a widening operator∇ : D]×D] → D] [CC76,CC77a,CC79,CH78].
When computing the abstract fix-points, the abstract join is usually replaced by
a widening.

Definition 6.1 (Widening operator). Given the abstract domain (D],v), its
widening operator is a function∇ : D] ×D] → D] such that

• ∀d]1, d
]
2,∈ D] · d]1 v (d]1 ∇ d]2) and d]2 v (d]1 ∇ d]2),

• for any increasing chains (d]0 v] d]1 v] ... v] d]n v] ...) from D], the new
increasing chain defined as:

e]1 , d]0, e
]
n+1 , e]n ∇ d]n+1.

stabilizes in a finite number of iterations which means there exists m ≥ 0

such that e]m+1 = e]m.

�

Example 6 (Widening in the interval domain). The widening operator in the
interval domain ensures termination by replacing unstable lower bounds with
−∞ and upper bounds with +∞, so that intervals cannot grow indefinitely. It
is defined as follows:

d]1 ∇I d
]
2 ,


d]1 if d]2 = ⊥I

d]2 if d]1 = ⊥I

λX.d]1(X)∇I d
]
2(X) otherwise

where [a, b] ∇I [c, d] ,

[a if a ≤ c

−∞ otherwise
,

b if b ≥ d

+∞ otherwise

]

4

6.1.3 Existing Abstract Domains

Numeric abstract domains: To compute different numerical properties of nu-
merical program variables like integers and reals, many numerical abstract
domains have been proposed. [CC77b] introduces signs abstract domain and
intervals domain that can infer variables sign and bounds respectively. [Min01a]
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presents a DBM numerical domain that allows to represent invariants of the
form (x − y ≤ c) and (±x ≤ c), where x and y are variables and c is an in-
teger or real constant. Another one, the octagons abstract domain introduced
in [Min01b] can describe invariants of the form ±v1 ± v2 6 c (v1 and v2 are
numerical variables and c is a numeric constant). Intervals and octagons are
two restrictions of polyhedra abstract domain [CH78] that manipulates systems
of linear inequalities between program variables Σn

i=1(ai · xi ≤ n). It can ex-
press complex invariants at the cost of a very high complexity. Each numerical
domain focuses on one kind of properties and has its own expressiveness and
computational complexity. The open library Apron [JM09] provides implemen-
tations of existing numerical abstract domains, and it gives a uniform, rich and
domain-independent API.

Combination of abstract domains: To infer more precise properties of the
program, the abstract interpretation framework supplies several ways to de-
sign a complex abstract domain by combining some simpler abstract domains.
[CCF13] gives a survey of existing product operators on abstract domains.
The conjunction of properties expressed in different abstract domains are per-
formed by the reduced product of domains [CC79]. [Ven96] introduce cofibered
domains, and [CLCVH00] gives open product framework. In this paper, we
use cofibered-product to combine domains.

Theorem 6.2 (Reduced product). Given two Galois connections (P(S), 〈α1, γ1〉, D]
1),

and (P(S), 〈α2, γ2〉, D]
2), the reduction operator is defined as σ : (D]

1 × D]
2) →

(D]
1 ×D

]
2). The reduced product of D]

1 and D]
2 is a complete lattice: (σ(D]

1 ×D
]
2),v1

× v2,t1 × t2,u1 × u2,⊥1 × ⊥2,>1 × >2). And (P(S), 〈σ ◦ α, γ〉, σ(D]
1 ×D

]
2))

is a Galois connection of P(S) and σ(D]
1 ×D

]
2). �

Definition 6.2 (Cofibered domain). Given the concrete domain (P(S),⊆) and
its abstractions (D],vD) and (E],vE). The function R : D] → E] maps ele-
ments of D] to elements of E]. Each element in d]i ∈ D] is the property over
a set of variables, denoted by X . And R(d]i) is the property over a set of vari-
ables Y which includes X , i.e., X ⊆ Y . The element of the cofibered domain
(F ],vF ) is a pair (d]i 7→ e]i) where d]i ∈ D] and e]i ∈ E]. For any (d]i 7→ e]i),
(d]j 7→ e]j) ∈ F ], (d]i 7→ e]i) vF (d]j 7→ e]j) if there is a morphism f : d]i → d]j such
that f(e]i) vE e]j . �
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6.2 Programming Language

The programs coding the SDMA is a typed imperative programs manipulat-
ing memory regions. It is the extended version of the simple programming
language described in Section 6.1. The programs include structure types and
integers, pointers and pointer arithmetics, pointer casting, bit-wise operations,
standard system routines for data segment manipulation (sbrk). String manip-
ulation, arrays, pointers to functions, float arithmetics, concurrency constructs,
are not present. Moreover, recursive functions are not used. We formalise this
observation by fixing in Figure 6.3 an imperative programming language which
captures the features used in the C code analysed.

6.2.1 Programming language syntax

prog ::= stmt program

stmt ::= cmd command
| skip skip
| if b then stmt else stmt condition
| while b do stmt done loop
| stmt; stmt sequence

cmd ::= loc :=t exp assignment
| loc :=t sbrk(exp) system assignment

loc ::= x variable
| loc.f field access
| ∗exp

exp ::= loc
| &loc reference
| v value
| exp⊕ exp arithmetic

b ::= true | false | ¬b | b1 ∨ b2 | b1 ∧ b2 boolean
| exp1 n exp2

⊕ ::= + | − | × | / | & | ∼ | | | � | � binary operators

n ::= < | ≤ | == comparisons

Figure 6.3: Program syntax

A program prog in this language is a statement. A statement stmt could be
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a command cmd, a do-nothing statement skip, sequencing ...; ..., a condition
branching if...then...else... or loop while...do...done. A command is either
an assignment or a system assignment, i.e., data segment extension.

An assignment is specified by a location expression loc that names a memory
address to update and an expression exp that is evaluated to yield the new
content. We use :=t to replace the normal assignment operator. The type t gives
the typing information of the content written at location loc and it is mainly
used to encode C casting. Data segment extension is done using the system
method sbrk; moreover, it returns the address (of type void*) after the last
byte included in the extended data segment. Notice that this address is page
aligned, i.e., multiple of 8. Note that pages are generally much larger than 8
bytes (generally 4KB or 1MB). 8 bytes means only that it is aligned on memory
bus width.

Types are either structure types, pointer types or basic types (left unspec-
ified). The set of types is denoted by T. Structure types are defined by a list
of fields. The first field in the list determines the alignment constraints for the
addresses at which the values of this type may be stored. Fields are treated
as numerical offsets, so C field access loc.f is the address a + f where a is
the address denoted by location expression loc. A typing function τ maps
fields and variables to their declaration type; it is extended naturally to location
expressions.

Operators include binary arithmetic, bitwise (and, or, shift), and comparison
operations. The bitwise operations are used to encode masking or extraction of
least/most significant bits. The absence of recursive procedure calls allows us
to consider intra-procedural analysis only and use inlining for procedure calls.
However, our analysis may be extended to an inter-procedural analysis using,
e.g., [BDES11].

6.2.2 Concrete Memory States

We consider a model of program configurations, formally defined in Figure 6.4,
that abstracts some low level details of program states as follows.

The absence of recursive functions in the SDMA code allows us to model
the program stack by a mapping ε, called concrete environment, that associates
the program variable to the unique address where its value is stored. The set of
all concrete environment mappings is denoted by E.
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The memory is modelled by a mapping h, called heap, which partially maps
address of the memory to a value or sequence of values V+, e.g., the start
address of a structure typed memory region is mapped to a sequences of values.
The set of all heap mappings is denoted by H. A concrete memory state m is
a pair (ε, h). The set of memory states M , E× H is the product of the set of
concrete environments and the set of concrete heaps.

values v ∈ V addresses α ∈ A, A ⊆ V

fields f ∈ F program variables x ∈ Pvar
types t ∈ T typing τ : Pvar ∪ F→ T

memories m ∈ M , E× H

environments ε ∈ E , Pvar→ A heaps h ∈ H , A ⇀ V+

Figure 6.4: Memory model

In the following, we suppose that the domain V of values stored in the
memory is N, the natural numbers, equipped with the usual comparison, arith-
metic, and bitwise operations. For the sub-domain of addresses, A, the addition
is done only between an address and a non address value. Also, the stored
values are typed using types in T that represent either subsets of naturals (e.g.,
size_t), addresses (e.g., HDR*), or tuples of such types (e.g., HDR). The type
HDR is predefined and its elements are labeled by fields, that belong to a finite
set F, and are typed using the typing function τ . Without loss of generality, we
consider that HDR contains at least the three fields size, fnx, and isfree.

6.2.3 Concrete Program Semantics

We define the denotational semantics for this language shown in Figure 6.5.
We denote by h[α← v] the heap obtained by the update of h at address α

with value v. The evaluations of locations and expressions are denoted by LJ·K
and EJ·K respectively. The function LJ·K (resp. EJ·K) maps a location expression
loc ∈ Loc (resp. expression exp ∈ Exp) in a context of a given concrete memory
state to an address (resp. value). The evaluation of the address operator EJ&locK
is obtained by evaluation of location loc, i.e. LJlocK. The evaluation of field loc.f
is to evaluate location loc then do address computation. And the evaluation of
deference LJ*expK is obtained by evaluation of expression exp, i.e. EJexpK.
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Evaluation of locations LJ.K : M→ A

LJxK(ε, h) , ε(x)

LJ*expK(ε, h) , EJexpK(ε, h)

LJloc.fK(ε, h) , LJlocK(ε, h) + f

Evaluation of expressions EJ.K : M→ V

EJvK(ε, h) , v

EJ&locK(ε, h) , LJlocK(ε, h)

EJlocK(ε, h) , h(LJlocK(ε, h))

EJe1 ⊕ e2K(ε, h) , EJe1K(ε, h)⊕ EJe2K(ε, h)

Condition tests GuardJ.K : P(M)→ P(M)

GuardJbK(S) , {(ε, h) ∈ S | BJbK(ε, h) = true}

Transformers PostJ.K : P(M)→ P(M)

postJstmtKS ,match stmt with:
| skip → S
| loc :=t exp → {(ε, h[LJlocK(ε, h)←t EJexpK(ε, h)]) | (ε, h) ∈ S}
| loc :=t sbrk(exp) → {(ε, h[LJlocK(ε, h)←t sbrk(EJexpK(ε, h)]) | (ε, h) ∈ S}
| s1; s2 → PostJs2K(PostJs1K(S))
| if b then s1 else s2 → (PostJs1K(GuardJbK(S)) ∪ (PostJs2K(GuardJ¬bK(S))

| while b do s done → GuardJ¬bK(lfp⊆(λSi.S ∪ (PostJsK(GuardJbK(Si)))))

Figure 6.5: Denotational semantics of the language

A condition test GuardJbK : P(M) → P(M) collects the set of concrete
memory states in which b is true. The evaluation of the boolean expression
BJbK was left out since it is standard.

The concrete transformer for the statement stmt is defined as PostJstmtK :

P(M) → P(M). It maps a set of initial concrete states before the execution
of stmt to the set of reachable states after the execution. For example, the
do-nothing statement skip does not update the memory states S ∈ P(M)

before the execution, thus PostJskipK(S) , S. The special one is the trans-
former of a loop statement. PostJwhile b do s doneK(S) represents all con-
crete memory states that can be obtained from the finite iterations of PostJsK ◦
GuardJbK on S and satisfies GuardJ¬bK. In fact, the set of reachable states of
the transformer for the loop can be obtained by fixpoint computation. We
denoted by lfp⊆F the set of least-fixed points of the continuous function
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F : P(M) → P(M). Thus, PostJwhile b do s doneK(S) = lfp⊆F where
F(Si) , S ∪ PostJpK(GuardJbK(Si)).

1 typedef struct hdr_s {
2 struct hdr_s *fnx;
3 size_t size;
4 //@ghost bool isfree;
5 } HDR;
6
7 static void *_hsta = NULL;
8 static void *_hend = NULL;
9 static HDR *frhd = NULL;

10 static size_t memleft;
11
12 void minit(size_t sz) {
13 size_t align_sz;
14 align_sz = (sz+sizeof(HDR)-1)
15 & ~(sizeof(HDR)-1);
16
17 _hsta = sbrk(align_sz);
18 _hend = sbrk(0);
19 frhd = _hsta;
20 frhd->size =
21 align_sz / sizeof(HDR);
22 frhd->fnx = NULL;
23 //@ghost frhd->isfree = true;
24
25 memleft = frhd->size;
26 }

(a) Globals

27 void* malloc(size_t nbytes) {
28 HDR *nxt, *prv;
29 size_t nunits =
30 (nbytes+sizeof(HDR)-1)/sizeof(HDR) + 1;
31 for (prv = NULL, nxt = frhd; nxt;
32 prv = nxt, nxt = nxt->fnx) {
33 if (nxt->size >= nunits) {
34 if (nxt->size > nunits) {
35 nxt->size -= nunits;
36 nxt += nxt->size;
37 nxt->size = nunits;
38 } else {
39 if (prv == NULL)
40 frhd = nxt->fnx;
41 else
42 prv->fnx = nxt->fnx;
43 }
44 memleft -= nunits;
45 //@ghost nxt->isfree = false;
46 return ((void*)(nxt + 1));
47 }
48 }
49 warning("Allocation Failed!");
50 return (NULL);
51 }

(b) Allocation

Figure 6.6: A piece of code of LA allocator

Example 7 (Evaluating an assignment). We give an example of the assignment
evaluation. We select the piece of code from LA allocator [Ald08] shown in
Figure 6.6. The LA allocator tracks free chunks using a free list. The chunk
header has two fields, fnx and size. The boundaries of the memory region
managed by the LA allocator are given by the global variables, i.e., _hsta and
_hend. To simplify the presentation, we added the ghost field isfree, to mark
explicitly free chunks. Figure 6.6(b) is the implementation of the allocation
method. It traverses the free list for searching a suitable candidate for allocating.

We consider the assignment at line 42 in Figure 6.6(b): prv->fnx =

nxt->fnx. We assume the concrete state of program before line 42 is de-
noted by (ε42, h42). At this state, the structure of the memory managed by LA
allocator is shown as the left part of Figure 6.7. The white chunk are the free
chunks and the gray are the allocated ones. The heap list is specified by the
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nil_hsta,
frhd

hli

prv nxt

_hend

z nilx

nil_hsta,
frhd

hli

prv nxt

_hend

nil nilx

XY ZA B C D XY ZA B C D

Figure 6.7: Concrete state change at line 45

dashed arrows and the green arrows form a free list. The program variables
point to the chunks specified . The start addresses of the chunks are specified
below the chunks. The program variable prv points to a chunk whose start
address is X , i.e., ε42(prv) = X . The chunk has a field fnx and its address
is Y . Before the assignment, the value stored in the fnx field is Z which is
the start address of the chunk to which the program variable nxt points, i.e.,
h42(Y ) = Z. The evaluation of the assignment at line 42 proceeds as follows.
We first evaluate the right-hand side:

EJnxt->fnxK(ε42, h42) = h42(LJnxt->fnxK(εx, h42))

= h42(LJnxtK(ε42, h42) + fnx)

= h42(ε42(nxt) + fnx) = nil

Then, we do location evaluation of the left-hand side of the assignment:

LJprv->fnxK(ε42, h42) = LJprvK(ε42, h42) + fnx

= ε42(prv) + fnx

= X + fnx = Y

After the execution of the assignment, the value stored at address Y , i.e.., the
content of the fnx filed, is updated with nil. Thus, the green arrow (representing
the points-to relation) out from the chunk that prv points to will point to
nil : h[Y ← nil]. 4

Concrete Domain: We define the concrete domainM = P(M) to be the power
set of concrete memory states. Domain M forms a complete lattice (M,⊆
,∪,∩,>,⊥) with subset containment ⊆. The concrete joins and meets are set
union ∪ and intersection ∩, respectively.
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6.3 Abstract Domain Based on SLMA

In this section, we present our abstract domain used for analysing SDMA.
The elements of the abstract domain are based on formulas of our logic SLMA
introduced in Chapter 5. The ordering of abstract elements is defined as a sound
entailment checking procedure (in Chapter 5.3.4) between the corresponding
formulas.

Recall that logical formulas in SLMA consist of two main parts, pure part
and spatial part. The inductive predicates, specifying heap regions, are defined
with not only numeric constraints, but also data words constraints (shown
in Figure 5.2, page 74 ). Thus, we design an abstract domain (M]) in a mod-
ular way, i.e., we use the individual domain for each type of formulas, then
we combine these domains together. The abstract domain M] is an extended
symbolic heap domain which is the combination of a shape heap domain (G]) en-
coding the spatial part, a numerical domain (N]) encoding the pure arithmetic
formulas [CH78, Min01b] and a data words domain (W]) encoding the sequence
constraints [BDE+10]. These domains are connected by using cofibered product
operator [Ven96, CR13].

6.3.1 Numerical Abstract Domain

To track the pure arithmetic constraints, we employ some existing numerical
domain. For example, if we consider the constraints, L1 − L2 # t (where L1

and L2 are location variables, # is one of the comparison operators and t is the
integer term), then we use the polyhedra domain[CH78].

LetCN be a concrete lattice of the interpretation functions: IN : AVar∪IVar→
V and CN is defined as follows:

CN = (P(IN),⊆,∪,∩,∅, IN).

We define an abstract domain of CN which is the numerical domain used in our
analyzer, that is

N ] = 〈N],vN ,uN ,tN ,>N ,⊥N 〉

where the elements of N] are constraints over location variables AVar and integer
variables IVar, vN is the order relation between formulas, uN and tN are meet
and join operators respectively. The concretization of the domain is defined as
γN : N] → P(IN). It associates to a set of numerical constraints in N] the set of
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valuations AVar∪ IVar→ V that satisfy the constraints. The widening operation
of the domain is denoted by∇N .

The numerical domain could be a parameter of the analysis and the cost of
the operations in the underlying numerical domain plays an important role in
analysis. We assume that the numerical domain provides lattice operations (e.g.,
vN ,uN ) and abstract transformers such as abstract condition tests, abstract
transformers for assignments, projection.

6.3.2 Data Words Domain

The next abstract domain is built on top of sequence constrains. A sequence
variable W ∈ SVar in SLMA can be also called as a data word. A sequence
variable is mapped to a sequence of values by the interpretation function
IW : SVar → V∗. Notice that the sequence constraints also contain numerical
constraints, thus the concrete lattice of all interpretation functions is defined as
follows:

CW = (P(IW ∪ IN ),⊆,∪,∩,∅, IW ∪ IN).

We define a following abstract domain, called data words domain, for CW:

D] = (W],vW ,uW ,tW ,>W ,⊥W)

whose elements are conjunctions of some fragment of sequence formulas in
SLMA which is expressive enough to capture the properties we need to infer
during analysis of SDMA.

Table 6.1: Syntax of sequence formulas

Π=
W ::= W = w | Π=

W ∧Π=
W quantifier-free formula

Π∀W ::= ∀X ∈W ·AG ⇒ AU | Π∀W ∧Π∀W quantified formula

w ::= ε | [X] |W | w.w sequence terms

ΠW ::= Π=
W ∧ Π∀W ∧A abstract value in W]

6.3.2.1 Abstract Elements

The syntax of the sequence constraints is defined in Table 5.1 (page 80). For
readability, we recall it in Table 6.1.
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The first component of a sequence constraint ΠW ∈ W] is a conjunction of a
quantifier-free part, denoted by Π=

W, which is a conjunction of quantifier-free
formulasW = w. The quantifier-free part of a sequence constraint contains only
the constraints WH = w and WF = w′ where WH and WF are special variables
representing the full sequence of start addresses of chunks in the heap and free
list levels respectively. The second component is a quantified part, denoted
by Π∀W, which is a conjunction of universally quantified formulas of the form
∀X ∈W ·AG ⇒ AU where the guard AG is a constraint over the value of X and
AU is an arithmetical constraint over data values and terms. The formulas inAU

are formulas of the numerical domainN ]. In the universal constraints, only one
variable is quantified and the formulas in AG are fixed.The third component
is the numerical formulas over field access terms (e.g., Fsize(X)) and location
constraints which belong to the numerical domain.

Some properties of the addresses in the sequence variables are captured by
the inductive predicates specifying the heap list or the free list. For example,
the predicate hls(X;Y )[W ] constrains the consecutive values in W to satisfy the
relation Ffnx(X) = Y . Also, property like eager coalescing policy is encoded
in the hlsc predicate and does not require universally quantified formulas.

The Π∀W part contains properties involving universally quantified formulas
and is useful for describing fit policies. For example, the first-fit policy specified
by the following formula which is the post-condition of the loop traversing a
free-list (specified by the predicate fls) to find the first suitable chunk:

fls(A;B)[W1] ∗ fck(C;D) ∗ fls(E;F )[W2]

∧ Fsize(C) ≥ s
∧ ∀X ∈W1 · Fsize(X) < s

∧WF = W1.[C].W2

where s is the size requested for allocation and C is the address of the first
fitting chunk. Recall that the next-fit policy is a special fit-policy. Suppose the
position at which the traversal begins over the list is denoted by N , the next-fit
policy is specified by replacing the start location A with N in the above formula.
Similarly, after traversing a free list specified by fls to find the best suitable
chunk, the post-condition obtained with the best-fit policy is specified by the
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following formula:

fls(A;B)[W1] ∗ fck(C;D) ∗ fls(E;F )[W2]

∧ Fsize(C) ≥ s
∧ ∀X ∈W1,W2 · Fsize(X) ≥ s⇒ Fsize(X) ≥ Fsize(C)

∧WF = W1.[C].W2

Considering all the properties over the structure of the memory and the
content, we need the universal formulas of the form: ∀X ∈W ·AG ⇒ AU where
AG belongs to the fixed set of constrains (i.e., G = {Fisfree(X)#c}where c is
a constant and # stands for the comparison operator), AU is a conjunction of
linear constraints over function application onX or free variables, free variables
and constants.

The concretization function of elements of W] is defined as γW : W] →
P(IW∪IN). The concretization of sequence constraints in W] is defined according
to the semantics of these formulas. Because Π∀W may include free numerical
variable (chunk addresses or integers), the concretisation of such formula is
composed of interpretation of sequence variables and of numerical variables.

Precisely, we denote by ΠW(W,G) a sequence constraint with universally
quantified constraints over a set of sequence variablesW and G is a set of guard
forms.

The constraint ΠW(W,G) is defined in the following form:

ΠW(W,G) = A(V ) ∧ PW ∧ (
∧

Wi∈W
(
∧

AGi
∈G
∀X ∈Wi ·AGi(Wi)⇒ AUi(Wi, V )))

where PW = (WH = w ∧WF = w′) and A(V ) is a numerical constraint on the
set of free variables V and function symbols.

6.3.2.2 Lattice Operators

Ideally, the order relation vW of the data words domain should be given by
the logical implication. However, the entailment checking of the array logic
fragment is undecidable which is already discussed in Section 5.3.4 (page 80).
Assume that the array logic fragment is decidable, the complexity of checking
the entailment could be also very high. Thus, designing a sound approximation
of the logical implication is inevitable when we want to provide an efficient
analysis. Due to the restricted syntax of data word constraints encoding the
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abstract values, we could define an efficient and sound ordering relation. This
relation is a simplified version of the one defined in [Dra11].

Two elements in the domain W] are comparable if they have the same
quantifier-free part. Given two sequence constraints shown as follows:

ΠW(W,G) = A(V ) ∧ PW ∧ (
∧

Wi∈W
(
∧

AGi
∈G
∀X ∈Wi ·AGi(Wi)⇒ AUi(Wi, V ))),

Π′W(W,G) = A′(V ) ∧ P ′W ∧ (
∧

Wi∈W
(
∧

AGi
∈G
∀X ∈Wi ·AGi(Wi)⇒ A′Ui

(Wi, V ))),

the order between them is defined as follows:

ΠW(W,G) vW Π′W(W,G) iff PW = P ′W and
∧

i(AUi ∧A(V ) vN A′Ui
∧A′(V )).

The join operator ΠW tW Π′W is defined as follows:

ΠW tW Π′W ,

>W if PW 6= P ′W

(A(V ) tN A′(V )) ∧ PW ∧ P ∀W otherwise

where P ∀W =
∧

Wi∈Wi

(
∧

AGi
∈G

(∀X ∈Wi ·AGi(Wi)⇒ AUi tN A′Ui
)).

The meet and widening operator of the data words domain, denoted by uW

and ∇W , are defined similarly by replacing tN with uN and∇N , respectively.

ΠW uW Π′W ,

⊥W if PW 6= P ′W

(A(V ) uN A′(V )) ∧ PW ∧ P ∀W otherwise

where P ∀W =
∧

Wi∈Wi

(
∧

AGi
∈G

(∀X ∈Wi ·AGi(Wi)⇒ AUi uN A′Ui
)).

6.3.3 Shape Abstract Domain

We define the shape abstract domain G] which abstracts the shapes of con-
crete heaps specified by spatial formulas. Each abstract shape Σ ∈ G] over-
approximates a set of concrete heaps. Let us recall the syntax of the spatial
formulas Σ of SLMA. The general syntax of Σ is shown in Table 6.2.

We denote by PH(−→x ) and PF (−→x ) the predicates in the heap formulas and
free list formulas respectively where −→x is the set of numerical and sequence
variables over which the heaps are defined. In the shape abstract domain G],
the spatial predicate is always defined with only one sequence variable, in some
places, we simply put it in the brackets, e.g., hls(X;Y )[W ].
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Table 6.2: Syntax of spatial formulas

Σ ::= ΣH c ΣF spatial formulas
ΣH ::= emp | PH(−→x ) | ΣH ∗ ΣH heap formulas

ΣF ::= emp | PF (−→x ) | ΣF ∗ ΣF free list formulas

Graphical notation: For the sake of readability and to ease the manipulation
of spatial formulas, we define the Gaifman graph representation for G]. Fig-
ure 6.8 lists the basic graphical notations for spatial atoms. A node in the graph
represents an address, e.g., each start address of the memory chunk or the start
address of a sequence of bytes which can be specified by blk predicate is repre-
sented by a node. The constant null address is specified by a unique node #.
And the address right after the memory region is specified by a distinguished
node hli.

X Y
X Yblkblk( X; Y )

chd( X; Y )
YX

X Ychd

chk( X; Y ) X Ychk
X Y

Y

fck( X; Y ) X Yfck
X Y

Y 1

hls( X; Y )[W] X Y
hls[W]

X Y

hlsc( X, fp; Y, fl )[W] X Y
hlsc[W]

X Y

X Y
fls[W]

XY

fls( X; Y )[W]

X Y
flso[W]

X Y

flso( X, x ; Y, y )[W]

(a) (b) (c)

Figure 6.8: (a) concrete memory regions; (b) spatial atoms (c) graphical notations

The node may have outgoing edges. The edges of the graph describe disjoint
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memory regions and have several different types. They represent the neighbour
relation of the heap list (e.g., next chunk, shown in red arrows), or the points-to
relation of the free list (e.g., the fnx field, shown in green arrows). Edges
connecting nodes are labeled with the spatial atoms with some parameters. The
bold edges represent the memory region described by the summary predicates,
e.g., hls, and the thin edges represent atomic predicates, e.g., chk. In some
places, we use (X,P, Y ) to denote the edge between node X and node Y where
P is a non-summary atom and use (X,P [W ], Y ) to represent the edge between
node X and node Y where P is a summary predicate.

In the graph representation for the concrete memory state, there are two
individual parts specifying the heap list and the free list respectively. They are
linked using the composition operator c.

Example 8 (Graph representation). We present an example using the graph to
represent the spatial formulas. In example 7, the concrete heap state before line
42 is shown as Figure 6.9(a) (Here, the shape abstract domain has no abstraction
for program variables, thus, program variables are omitted in the abstract state).

A B X C Z D hli A X Z #chk chk chk chk chk chk fck fck fck⋑
(b) Abstract value with no summarisation

(d) Abstract shape with summarisation

nil

hli

z ni
lx

XY ZA B C D
(a) Concrete memory state

A chk B hli
hlsc[W1] ⋑ A X #

fck flso[W2]
A hli
hlsc[WH]

A #
flso[WF]⋑

(c) Abstract shape with partial summarisation

Figure 6.9: Graph representation of an abstract heap

Figure 6.9(b) depicts the abstract shape with no summarisation where every
start address of the memory chunk is represented by a node. A list with the
arbitrary length k(k ≥ 2) can be summarized by an appropriate edge labeled
by an inductive predicate. Thus, we can summarize a part of the concrete
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chunk list, e.g., an abstract shape with partial summarisation is specified as
Figure 6.9(c).

4

Concretization: We recall from the explanation of the logic the interpretation
(or valuation) function I ∈ I , ((AVar ∪ IVar) ⇀ V) ∪ (SVar ⇀ V∗) that maps
logical variables (numerical variables, address variables and data words vari-
ables) to their values and the set of heaps H , A ⇀ V+. Each shape constraint
Σ corresponds to the set of concrete heaps defined under an interpretation I .
The concretization γG(Σ) of Σ is the set of the concrete states, that satisfy ∃−→x ·Σ
where −→x includes all logical variables in Σ . The concretization function γG has
type γG : G] → P(H× I). The concretization function for basic spatial predicates
in G] is defined according to the semantics of these spatial predicates.

γG(ΣH c ΣF ) , {(h, I) | (h, I) ∈ γG(ΣH) ∧ (∃h′ ⊆ h s.t (h′, I) ∈ γG(ΣF )
∧ ∀x ∈ dom(h′) · h′(x)[isfree] = 1}

γG(Σ1 ∗ Σ2) , {(h1 ] h2, I) | (h1, I) ∈ γG(Σ1) ∧ (h2, I) ∈ γG(Σ2)
∧ dom(h1) ∩ dom(h2) = ∅}

6.3.4 Shape-Value Domain

The shape abstract domain G], corresponding to the spatial part, is quite weak
since it only gives the abstraction of the separating memory cells. A separating
shape graph Σ ∈ G] is defined over a set of logical variables, denoted by
LVar(Σ), including a set of numerical variables Num ⊆ AVar∪ IVar (i.e., location
variables and integer variables) and a set of sequence variables Dw ⊆ SVar
(i.e., data words variables). The shape abstraction should be enriched with the
information over the values, e.g., the addresses and contents. We first enrich
the shape abstract domain with the numerical domain, then enrich it again with
the data words domain.

Enrich G] with a numerical domain: The numerical properties of the values
stored in the heap specified by an abstract graph Σ are characterised by logical
pure formulas over the set of numerical variables Num. These logical formulas
expressing numerical properties are represented by a numerical domain DN.
The elements of DN concretize into sets of interpretations, satisfying value
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constraints, thus γDN : DN → P(Num → V). We denote by N] the set of
numerical properties corresponding to any abstract shape of heaps. Thus, any
numerical constraints, denoted by ΠN, over AVar ∪ IVar are elements of N] and
the concretization of the domain is γN : N] → P(I) .

A way to combine the shape graph with a set of numerical constraints is
to use product abstraction of the shape abstract domain G] and the numerical
domain N], such as reduced product [CC79]. However, the numerical domain
used to cover numerical properties depends on the shape graph. We use
cofibered product operator to combine the shape abstract domain G] and the
numerical domain N]. We define the combined domain G] ⇒ N] (or shape-
numerical domain) and its concretization: γG]⇒N] : (G] ⇒ N]) → P(H × I) as
follows:

G] ⇒ N] , {(Σ,ΠN) | Σ ∈ G] ∧ΠN ∈ N]}

γG]⇒N](Σ,ΠN) , {(h, I) | (h, I) ∈ γG(Σ) ∧ I ∈ γN(ΠN)}

Enrich G] with a data words domain: Now we consider the constraints over
sequence variables ΠW. We define the shape-value domain H] = G] ⇒ (N] ×W])

(or symbolic heap domain) whose elements are tuples h] = (Σ,ΠN,ΠW) where
Σ is an abstract shape of the heaps, ΠN and ΠW are numerical and sequence
constraints over the set of logical variables with which the shape defined (In
the following content, we write the element of shape-value domain as (Σ,Π) if
we do not distinguish numerical and sequence constraints). The shape-value
domain and its concretization are defined as follows:

H] , {(Σ,ΠN,ΠW) | Σ ∈ G] ∧ΠN ∈ N] ∧ΠW ∈ W]}

γH(Σ,ΠN,ΠW) , {(h, I) | (h, I) ∈ γG(Σ) ∧ I ∈ γN(ΠN) ∧ I ∈ γW(ΠW)}

Definition 6.3 (Well-formed shape-value). An abstract value of the shape-value
domain (Σ,ΠN,ΠW) ∈ H] is well-formed if the sequence variable bound to each
summary predicate of Σ is not constrained to be equal to a sequence term in
ΠW. �

Example 9 (Abstract value of H]). The abstract value of H] extends the value of
G] with the numerical and sequence constraints. For example, to capture alloca-
tion policies implemented by the malloc in Figure 6.6(b), we add numerical
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and sequence constraints. The first-fit policy obtained at line 37 of malloc, is
specified by the value shown in Figure 6.10.

(F size(E) ≥ nunits) ∧
(∀X ∈W1 · Fsize(X) < nunits) ∧
(WF = W1.[E].W2)

A hli
hlsc[WH]

A
flso[W1]

⋑

F #
flso[W2]

E fck

Figure 6.10: An example of abstract value of H]

4

6.3.5 Extended Symbolic Heap Domain

The concrete memory states M , (E,H) is composed of the set of concrete
environments and concrete heaps. For concrete heaps H, our shape-value
domain gives an abstraction. Now we need to give the abstract counterpart to
E to complete the abstraction for memory states.

We define the abstract environment, denoted by ε] ∈ E] , PVar → LVar,
which maps program variables to logical variables. The location variables
are represented by nodes in the abstract graph, thus, an abstract environment
is specified by arrows from program variables to the nodes, as is shown in
Figure 6.11 which is the extended version of Figure 6.9.

The set of abstract memory states M] is represented by E] × H] and an
abstract memory value m] is a pair (ε],h]) which consist of a set of mappings
and a separating conjunction of spatial constraints, numerical constraints and
sequence constraints. We define the extended symbolic heap domain M] = E] × H]

with its concretisation function γM : E] × H] → P(E× H) as follows:

M] , {(ε],h]) | ε] ∈ E] ∧ h] ∈ H]}

γM(ε],h]) , {(I ◦ ε], h)|(h, I) ∈ γH(h])}

Summarisation: Recall that the shape abstract domain G] performs summari-
sation over separating memory cells without any restrictions. However, when
we consider the program variables, summarisation has a restriction. In the ab-
straction M], the nodes which are not mapped by ε] are called anonymous nodes.
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Only continuous anonymous nodes in the list can be summarised in a summary
predicate. Thus, the nodes in the abstract shape with summarisation are either
distinguished nodes or nodes pointed by program variables. The number of the
nodes in the abstract shape is finite due to the finite set of program variables.

Definition 6.4. (Graphical heap). The shape of an abstract heap in the domain
M] is represented by a tuple g] = (N,E) where:

– N ⊆ LVar is a set of nodes which includes the distinguished nodes nil (we
also denote by ] the node of nil) and hli representing the null address and
the heap limitation, respectively;

– E ⊆ (N × P × N) ∪ (PVar × {∗} × N) is a set of edges connecting nodes
and points-to edges associating nodes to pointer variables. An edge is
represented by a tuple, e.g., e = (n1, p, n2) is an edge connecting node n1

and node n2 and it is labelled by a spatial atom p ∈ P and e = (x, ∗, nx) is a
points-to edge representing that the program variable x points to the node
nx. Obviously, a points-to edge (p, ∗, X) in Σ corresponds to the element
in the abstract environment {p 7→ X} ∈ ε]. For simplicity, we denote by
p(X;Y ) and p[W ](X;Y ) the unsummarized edge and summary edge.

�

_hend

_hsta,frhd prv nxt
nil

hli

z nilx

XY ZA B C D

(a) Concrete memory state

(F size(Z) = nunits)
A hli

hlsc[WH]
_hsta

A X Z #
fck fck fck

prv nxtfrhd

⋑

hend

(b) Abstract value with summarisation

Figure 6.11: Abstract value of M]
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Example 10 (Abstract value of M]). The abstract value of M] extends the value
of H] with the abstract environment mappings. An example is shown in Fig-
ure 6.11 which is the extended value of the one in Example 8. The abstract
value has a graph Σ and numerical and sequence constraints. 4

Disjunctive abstraction: The abstraction M] is not enough to express the ab-
stract value of each program point, because a program point may collect several
ingoing values which can not be joined. Thus a program point may have
more than one element of M]. Also, when comes a loop which traverses a
list and the precondition is given in the summarized form, then an unfold-
ing operation is called. The detailed definition of unfolding is given in the
next chapter describing abstract domain operations. Given a summarized ab-
stract value m], UnfoldM generates a finite set of disjunctive abstract elements,
{m]

0,m
]
2, ...,m

]
n−1}. To support disjunctive abstractions, we define an abstract

domain A] with the concretization γA : A] → P(M]). The abstract value at each
program point is a set of elements of M].

A] , Pfin(M])

γA(a]) ,
⋃
{γM(m]) | m] ∈ a]}

6.3.6 Abstract Value

We summarize the restrictions of the abstract elements and the internal repre-
sentation of the abstract value of A].

Restriction: Values in A] are a restricted form of logic formulas. More pre-
cisely, A] includes a special value for > and finite elements of the form:

A] ::=
⋃

0≤i≤n

{(ε]i , (Σi,ΠNi ,ΠWi))} (6.1)

where ε]i ∈ E] is an abstract environment mapping program variables to
symbolic location variables, ΠNi includes arithmetic constraints allowed by N].
Furthermore, the usage of sequence variables in Σi and ΠWi is restricted as
follows:
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R1: A sequence variable is bound to exactly one list segment atom in Σi; thus Σi

defines an injection between list segment atoms and sequence variables.

R2: ΠWi contains only the sequence constraints WH = w and WF = w′, where
WH and WF are special variables representing the full sequence of start
addresses of chunks in the heap resp. free list levels.

In addition, the universal constraints in the pure formulas ΠNi and ΠWi are
restricted such that, in any formula ∀X ∈W ·AG ⇒ AU :

R3: AG and AU use only terms where X appears inside a field access F*(X).

R4: AG has one of the forms: Fsize(X) # i, Fsize(X) − c# i, Fisfree(X) = i.

These restrictions still permit to specify SDMA policies like first-fit and besides
enable an efficient inference of universal constraints.

Internal representation: To ease the manipulation of extended spatial for-
mulas 〈ε],h]〉, we use their Gaifman graph representation, like in Figure 6.11:
nodes represent symbolic locations variables and labeled edges represent the
spatial atoms in h] or mappings in ε]. The universal formulas are represented
by a map binding each pair (W,AG) built from a sequence variable and some
guard AG to a numerical abstract value.

6.3.7 Lattice Operators

6.3.7.1 Ordering

The partial ordervA in A] is defined using a sound procedure inspired by [BDES12,
ESW15]. For any two non trivial abstract values A], B] ∈ A], A] vA B] if for
each value (ε]i, (Σi,ΠNi ,ΠWi)) ∈ A] there exists a value (ε]j , (Σj ,ΠNj ,ΠWj )) ∈ B]

such that:

• there is a graph isomorphism between the Gaifman graphs of spatial
formula at each level of abstraction from Σi to Σj ; this isomorphism is
defined by a bijection Ψ : img(ε]i)→ img(ε]j) between symbolic location
variables and a bijection Ω between sequence variables. Thus, Σi[Ψ][Ω] =

Σj ,

• for each sequence constraint W = w in ΠWi , Ω(W ) = Ω(w) is a sequence
constraint in ΠWj ,
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• Ψ(ΠNi) vN ΠNj ,

• for eachW defined in Σi and for each universal constraint ∀X ∈W ·AG ⇒
AU in ΠWi , then ΠWj contains a universal constraint on W ′ = Ω(W ) of the
form ∀X ∈W ′ ·AG ⇒ A′U such that Ψ(ΠNi ∧AU ) vN A′U .

The following theorem is a consequence of restrictions on the syntax of
formulas used in the abstract values.

Theorem 6.3 (vA soundness). If A] vA B] then γA(A]) ⊆ γA(B]). �

Proof. Notice that the final abstract domain A] is the combination of several
domains. The soundness of the partial order of the abstract domain A] is
guaranteed by the soundness of each partial order in each component domain.

6.3.7.2 Join

Given two non-trivial abstract values, A] and B], their join is computed by
joining the pure parts of bindings with isomorphic shape graphs [BDES11]. For-
mally, for each pair of values (ε]i, (Σi,ΠNi ,ΠWi) ∈ A] and (ε]j , (Σj ,ΠNj ,ΠWj )) ∈
B] such that there is a graph isomorphism defined by Ψ and Ω between 〈ε]i ,Σi〉
and 〈ε]j ,Σj〉, we define their join to be the mapping {(ε]j , (Σj ,ΠN,ΠW))} where
ΠN and ΠW are defined by:

• ΠW has the same sequence constraints as B], i.e., ΠW , ΠWj ,

• ΠN , Ψ(ΠNi) tN ΠNj ,

• for each W sequence variable in dom(Ω) and for each type of constraint
AG, then ΠW contains the formula ∀X ∈ Ω(W ) · AG ⇒ Ψ(AU,i) tN AU,j

where AU,i (resp. AU,j) is the constraint bound to W (resp. Ω(W )) in ΠWi

(resp. ΠWj ) for guard AG or > if no such constraint exists.

The join of two values with non-isomorphic spatial parts is the union of
the two values. Then, (A] tA B]) computes the join of values in A] with each
values in B]. Intuitively, the operator collects the disjuncts of A] and B] but
replaces the disjuncts with isomorphic spatial parts by one disjunct which maps
the spatial part to the join of the pure parts. Two universal constraints are
joined when they concern the same sequence variables and guard AG since(
(∀w ∈W ·AG ⇒ A1) ∨ (∀w ∈W ·AG ⇒ A2)

)
⇒
(
∀w ∈W ·AG ⇒ (A1∨A2)

)
.
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Theorem 6.4 (tA soundness). For any A], B] ∈ A], γA(A])∪ γA(B]) ⊆ γA(A] tA

B]). �

6.3.7.3 Cardinality

The number of elements in an abstract memory value A] ∈ A] increases during
the symbolic execution by the introduction of new existential variables keeping
track of the created chunks. Although the analysis stores only values with
linear shape of lists (other shapes are signalled as an error state), the number of
linear shapes is exponential in the number of nodes, in general. Keeping small
the number of addresses used in the shape part of heap and free list level is
very important for the efficiency of the analysis. Moreover, to some of these
addresses are bound feature variables which blow-up with a constant factor
the variables of the pure part.

We make the compromise to keep in the shape parts only k addresses which
are used in the shape atoms but are not aliased by program variables, also
called anonymous addresses. k is a parameter of the analysis and it is usually
small, e.g., 2 or 3. It especially influences the quality of values in the W] domain,
i.e., the universally quantified formulas. An abstract memory state A] ∈ A] is k-
normalised if all its conjuncts contain shape graphs with less than k anonymous
addresses bound by predicate atoms.

We avoid this abstract memory value explosion by eliminating existential
variables using the transformation rules that replace sub-formulas by predicates,
an operation classically called predicate folding (its definition is detailed in the
next chapter). This operation uses lemmas (1)–(4), as discussed in Section 5.3.2
(page 77). The application of the lemma follows a heuristics that searches to
replace sets of atoms including an address referenced by a program variable
and some anonymous addresses by an unique predicate. If an abstract memory
value can not be normalised, it is replaced soundly by >. At the heap list
level, the failure to fold abstract values may correspond to a memory leak
and a warning is issued. Also, the normalisation may lead to an empty pure
constraint, in which case the disjunct representing the abstract value is removed.
An empty list of disjuncts is equivalent to ⊥.
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6.3.7.4 Widening

The widening operator ∇A : A] × A] → A] in A] should ensure that both
shapes and data invariants are stable after finitely many iterations. The domain
of abstract values is bounded by an exponential on the number of pointer
program variables local to SDMA methods which is small in general, e.g., ≤ 3
in our benchmark. However, the domain of pure formulas used in the image
of abstract values is not bounded because of integer constants. Therefore a
widening operation for the combined domain A] can be obtained by simply
using the widening operators (∇N and ∇W ) instead of the joins in the data
domains (tN and tW ).

Given two abstract values, A] and B] and for each (ε]i, (Σi,ΠNi ,ΠWi) ∈ A]

and (ε]j , (Σj ,ΠNj ,ΠWj )) ∈ B] such that there is a graph isomorphism defined
by Ψ and Ω between 〈ε]i ,Σi〉 and 〈ε]j ,Σj〉, the widening operator∇A is defined
as follows:

A] ∇A B] ,


A] if B] = ⊥

B] if A] = ⊥⋃
0≤i≤n

{(ε]j ,Σi, (Ψ(ΠNi)∇N ΠNj ), (Ω(ΠWi)∇W ΠWj )} otherwise



CHAPTER 7
Static Analysis Operations and

Algorithm

In this chapter, we define the main abstract operations in static analysis of
SDMA, i.e., the abstract transformers for program statements, such as assign-
ment and condition tests. As mentioned in Section 6.3.5, the important abstract
operation is unfolding of summary predicates in order to materialize the points-
to atoms which allows to mutate the heap. The novel aspect of our proposal is
the use of a hierarchical unfolding of predicate depending on the level (heap list
or free list) required by the program statements. The analyser determines the
level that should be materialized and concretizes the summary edge until the
targeted edge.

This chapter is structured as follows. In § 7.1, we describe the abstract post-
condition of the language we considered. § 7.2 presents the abstract operations
in the underlying domains and defines the hierarchical unfolding and folding
operations in our analysis. The abstract transformers for program assignments
and condition tests are presented in § 7.3. The analysis algorithm and the
experimental results are detailed in § 7.4 and § 7.5 presents related work and
concludes static analysis of SDMA.

7.1 Abstract Postcondition

We now describe how program statements are interpreted using our abstract
domain A] to yield a computable over-approximation of the set of reachable
concrete memory states.
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Figure 7.1 defines the abstract postconditions corresponding to the concrete
postconditions shown in Figure 6.5. The abstract transformer for the program
statement stmt is denoted by Post]JstmtK : A] → A]. Let S] be a set of abstract
memory states. The simplest statement is the do-nothing statement skip which
does not update the memory state, thus its abstract transformer is defined as
Post]JskipK(S]) , S] which is the identity.

Post]JstmtK(S]) ,match stmt with:

| skip → S]

| loc :=t exp → Norm(
⋃
{Assign]

M(loc, exp, t,m])| m] ∈ S]})

| loc :=t sbrk(exp) → Norm(
⋃
{Assign]

sbrk(loc, exp, t,m])| m] ∈ S]})

| s1; s2 → Post]Js2K(Post]Js1K(S]))

| if b then s1 else s2 , Post]Js1K(Guard]JbK(S]))

tAPost]Js2K(Guard]J¬bK(S]))

| while b do s done → Guard]J¬bK(Fp(λS]
i .let S]

p = (S]
itA

Post]JsK(Guard]JbK(S]
i ))) in

if S]
p
∼= S]

i then S]
p∇AS]

i else S]
p)(S]))

Figure 7.1: Abstract postconditions

Recall that in our programming language, loc ∈ Loc and exp ∈ Exp are
location and value expressions respectively. For the assignment loc :=t exp,
its abstract transformer is denoted by Assign]

M and is formally defined in
Section 7.3.

The abstract transformer Assign]
M(loc, exp, t,m]) calls two basic operations:

evaluations of a location loc and of an expression exp over the abstract state m],
denoted by EvalL]JlocKm] and EvalE]JexpKm], respectively. Then, it manipu-
lates the abstract memory state by calling Mutate]M operation. These operations
are provided by the interface of the domain M].The normalization function
Norm normalizes the abstract value by using the folding operation. If in the
abstract state m], the heap that has to be mutated is summarized, then the
evaluation transformers m] concretize the summarized edges, i.e., preform
unfolding operation first. All of these operations used in Assign]

M are detailed
in Section 7.2.

For the assignment loc :=t sbrk(exp), which makes a system call to sbrk
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function, its abstract transformer is represented by Assign]
sbrk and is formally

defined in Section 7.3.1.4.
As shown in Figure 7.1, the abstract transformer for the conditional branch-

ing statement collects two abstract states which are postconditions of each
branch using the abstract join operation. The abstract condition test is defined
by Guard]. It is based on the condition test in domain M] which is denoted by
Guard]

M.
For the loop statement, we denote by Fp(F )(S) a function that computes

the fix-point of F reached by successive iterations of F starting at a state S. The
termination of the iteration is guaranteed by the widening operation∇A.

7.2 Hierarchical Unfolding and Folding

In this section, we define the basic abstract operations (like unfolding, fold-
ing, decomposing, etc) in the shape domain G], data words domain W] and
shape-value domain H]. We assume that the numerical domain used provides
some abstract operations. Based on these abstract operations, we define the
hierarchical unfolding and folding operations, that performs these operations
at the appropriate abstraction level, i.e., heap list or free list.

7.2.1 Abstract Operations in Shape Domain G]

7.2.1.1 Unfolding and Folding Summary

Predicate unfolding: We define predicate unfolding operation, denoted by
UnfoldList]G, which takes an abstract shape Σ and a summary predicate in
Σ that should be unfolded, and returns a disjunction of shapes and data con-
straints. More precisely, given a summary predicate P (−→x )[W ] in the abstract
shape Σ such that the predicate is defined by (for sake of readability, we applied
the substitution of formal parameters in the predicate definition with the actual
ones):

P (−→x )[W ] ,
∨

0≤i≤n
∃−→yi · Σi ∧ΠNi ∧ΠWi ,

(where −→yi is a vector of fresh variables in each disjunct) the unfolding of the
predicate P (−→x )[W ] is defined as follows:

UnfoldList]G(Σ, P (−→x )[W ], X,W ′) ,
∨

0≤i≤n
(((Σ \ P (−→x )[W ]) ∗ Σi),ΠNi ,ΠWi).
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According to the definitions of the summary predicates (Table 5.2, page 74),
in each disjunct, the generated sequence constraint ΠWi is either W = ε or
W = [X].W ′ where X , W are fresh logical variables in −→yi . Therefore, the
sequence variable W may be substituted by the sequence expression on the
right to obtain an abstract value where data word part is of the form required
by the general definition.

Predicate folding: In order to obtain loop invariants and normalize the ab-
stract values, the analysis should reconstruct the summaries. We define the
basic folding operation in the shape domain to construct a summary predicate
from the separating parts.

Let us fix an abstract shape Σ with a sub-formula specified as p(X;Y ) ∗
P (Y,−→y )[W ] where p ∈ {chk, fck} is a chunk or a free chunk atom, P ∈ {hls, hlsc, fls, flso}
is a summary atom, X,Y and −→y stand for the parameters according to the defi-
nitions of the predicates. If p is an atom matching P ’s definition and the node
Y is the start of the edge labeled by P [W ] (e.g., chk for hls because one case of
hls definition is chk(X;Y ) ∗ hls(Y ;Z)[W ]), then the sub-formula can be folded
using the folding operation FoldList]G defined as follows:

FoldList]G(Σ, p(X;Y )∗P (Y,−→y )[W ],W ′) , (Σ\(p(X;Y )∗P (−→y )[W ]))∗P (X,−→y )[W ′].

If the sub-formula in Σ is specified as P (−→y ,X)[W ] ∗ p(X;Y ), it can be also
folded and the folding is defined similar to FoldList]G. The folding operation
FoldList]G is called by the folding operation in the shape-value domain and
cooperates with other operations manipulating numerical constraints. It is
applied only when some conditions are satisfied which is explained in Sec-
tion 7.2.3.

Example 11 (Predicate folding). An example of folding hls which has three cases
is shown in Figure 7.2. The first one folds two separating chunks chk(X;Y ) ∗
chk(Y ;Z) into a heap list segment hls(X;Z)[W ] where W is a fresh sequence
variable. It is a special case of the second one because hls(Y ;Z)[W ] could be
chk(Y ;Z) if the list has only one chunk. The second one transforms chk(X;Y ) ∗
hls(Y ;Z)[W ] into hls(X;Z)[W ′]. The node Y is removed and a new summary
edge is added between node X and node Z. The third one folds hls(X;Y )[W ] ∗
chk(Y ;Z) into hls(X;Z)[W ′]. The fresh variables used in the folded edge will
be used to replaces some variables in the abstract value when doing the folding
in the shape-value domain. 4
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Z
hls[W]

Y …X
chk…

Z
hls[W’]

X ……

Y
hls[W]

X…
Z

chk …

fold

Z
hls[W’]

X ……fold

Z
chkY …X chk…

Z
hls[W]

X ……fold

Figure 7.2: Example of FoldList]G

7.2.1.2 Decomposing and Composing Summary

Decomposition: The decomposition operation applies the segment decomposi-
tion lemma (in Section 5.3.2, page 77). Given a spacial value Σ with a summary
P (−→x )[W ], the decomposition operation decomposes the summary P (−→x )[W ]

into two smaller parts and generates new pure constraints. It is denoted by
DecompList]G and defined as follows:

DecompList]G(Σ, P (−→x )[W ],W1,W2) , (Σn,Πn
N,Π

n
W)

where

Σn = (Σ \ P (−→x )[W ]) ∗ P (−→y )[W1] ∗ P (−→z )[W2] and Πn
W = (W = W1.W2),

W1,W2 are fresh sequence variables, −→y ,−→z are vectors of fresh variables rep-
resenting the parameters, and Πn

N is the numerical constraint over the fresh
variables in −→y ∪ −→z .

Composition: Two continuous separating summaries can be composed into
one summary using the composition operation ComposeList]G which is the reverse
of decomposition. Its definition is shown as follows:

ComposeList]G(Σ, P (−→x )[W1]∗P (−→y )[W2],−→z ,W ) , (Σ\(P (−→x )[W1]∗P (−→y )[W2]))∗P (−→z )[W ]

where −→z is a vector of fresh variables and W is a new fresh sequence variable.
This composition operation briefly manipulates the shape and can not be used
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independently. It is applied only in the composition operation in the shape-
value domain and the test on the pure constraints is required before applying.

Example 12 (Decomposing and composing summary hls). An example of
decomposing and composing is shown in Figure 7.3. The summary edge
hls[W ](X;Y ) is split and a new node is added between X and Y by the decom-
posing operation DecompList]G. The composition operation ComposeList]G
removes the middle node connecting two summary edges.

Y
hls[W]

X
decompose……

Z
hls[W1]

X
…

Y
…hls[W2]

X ≠ Z ⋀ Y ≠ Zcompose

Figure 7.3: Example of DecompList]G and ComposeList]G

DecompList]G(Σ, hls(X;Y )[W ],W1,W2) =

((Σ \ hls(X;Y )[W ]) ∗ (hls(X;Z)[W1] ∗ hls(Z;Y )[W2]), X 6= Z ∧ Z 6= Y ),

ComposeList]G(Σ, hls(X;Z)[W1] ∗ hls(Z;Y )[W2],W ) =

(Σ \ {hls(X;Z)[W1] ∗ hls(Z;Y )[W2]}) ∗ hls(X;Y )[W ].

4

7.2.1.3 Unfolding and Folding a Chunk

Unfolding a chunk: Recall that there are some predicates, like chk, fck spec-
ifying a chunk in the heap list and free list respectively, are not summary
predicates. The edges labeled by these predicates can be unfolded to materi-
alize a chunk head edge chd when the program statements mutate the value
of fields in a chunk. We define the following unfolding operation for edge chk

based on its definition:

UnfoldChk]
G(Σ, chk(X;Y ), Z) , ((Σ \ chk(X;Y )) ∗ chd(X;Z) ∗ blk(Z;Y ),Πn

N)

where Z is a fresh sequence variable and Πn
N is the generated pure constraint

(i.e., (Fsize(X) × sizeof(HDR) = Y −X)). Unfolding a chunk only works
on heap list abstraction, i.e., UnfoldChk]

G only manipulates ΣH in Σ.
Given a shape ΣH c ΣF , to unfold a free chunk edge fck(X;Y ) in ΣF , it

requires that the node X is also in ΣH , i.e., there is an edge chk(X;Z) in ΣH .
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If ΣH is summarized such that if there is no corresponding chunk is in ΣH ,
then ΣH should be decomposed (to materialize the node X) and unfolded (to
materialize the edge chk(X;Z)) first. Then we remove the edge fck(X;Y ) in
ΣF and unfold chk(X;Z) in ΣH using operation UnfoldChk]

G. This situation
is explained later in Section 7.2.4 which describes the hierarchical unfolding
operation.

Folding a chunk: A sub-formula chd(X;Z) ∗ blk(Z;Y ) in ΣH can be folded
by operation FoldChk]

G which is defined as follows:

FoldChk]
G(Σ, chd(X;Z) ∗ blk(Z;Y )) , (Σ \ chd(X;Z) ∗ blk(Z;Y )) ∗ chk(X;Y )

Similarly, these operations over shape should work with operations on
pure part when performed in the shape-value domain and can not be applied
independently.

7.2.1.4 Decomposing and Composing a Memory Block

Program statements involving pointer arithmetic, e.g., an assignment p = q + c

(where p,q are pointer variables and c is a constant), manipulate the memory
at the level of blocks of bytes. The abstract transformers of these statements
call a low-level abstract operation DecompBlk]

G which only works on the
heap list level. It splits a raw memory region, specified by blk(X;Y ) in the
abstract shape Σ into two blocks and generates a new numerical constraint.
DecompBlk]

G(Σ, blk(X;Y )) is defined using the corresponding decomposing
lemma of the predicate blk:

DecompBlk]
G(Σ, blk(X;Y ), Z) , ((Σ \ blk(X;Y ) ∗ blk(X;Z) ∗ blk(Z;Y ),Πn

N)

where Z is a fresh location variable and Πn
N is a numerical constraint over

X,Y, Z, i.e., X ≤ Z ≤ Y .

YX
blk

ZX
blk

Y
blksplit

… … ……

X ≤ Z ≤ Y merge

Figure 7.4: Example of DecompBlk]
G and ComposeBlk]

G
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The reverse operation of DecompBlk]
G is the composing operation ComposeBlk]

G

which merges two contiguous blocks. This operation is often used in analysing
SDMA algorithms with eager coalescing policy because they often coalesce
adjacent memory chunks. An example of DecompBlk]

G and ComposeBlk]
G is

shown in Figure 7.4.

7.2.2 Abstract Operations in Data Words Domain W]

7.2.2.1 Unfolding Operation

The unfolding operation, denoted by Unfold]
W, in the data words domain shall

collaborate with the unfolding operation provided by the shape domain, and
there is an important restriction: unfolding operation Unfold]

W only unfolds a
sequence variable in a sequence constraint which is a part of a well-formed shape-value.

The operation Unfold]
W(ΠW,W, x,W

′) takes the sequence variableW bound
to the summary predicate needed to be unfolded in the sequence constraint ΠW,
then replaces a sequence W in ΠW with the concatenation of its head and its
tail. The head of w is represented by [x] and its tail is by W ′ where x and W ′ are
fresh variables. We denote by ”_“ in the returned value by Unfold]

W if Unfold]
W

does not return any new numerical constraints. The unfolding operation is
defined as follows:

Unfold]
W(ΠW,W, x,W

′) ,


( _ ,Proj]W(ΠW, {W}) if W = ε

( _ ,ΠW) if W = [X]

(Πn
N,Π

n
W) otherwise

where Proj]W is the projection operation. Whenw is the empty term, the returned
value of Unfold]

W is a sequence constraint Proj]W(ΠW, {W}) which is the result
of projecting out W in ΠW. And when w is a singleton, then the unfolding
returns the original sequence constraint. In the third case, the new constraints
(Πn

N,Π
n
W) are obtained by

1. creating a numerical constraint Πn
N on the head of W (represented by x)

obtained from AU in each universal constraint on W , i.e., adding AU (x) if
AG(x) is true;

2. replacing WL = w (L ∈ {H,F}) in ΠW with a new sequence constraint
WL = w[[x].W ′/W ];
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3. transferring all the universal constraints on W to W ′ in ΠW.

The operation which unfolds a sequence W at the end and generates a
sequence constraint of the form W = W ′.[x] is defined similarly.

7.2.2.2 Splitting Operation

The transformers for the decomposition of summary predicates generate se-
quence constraints of the formW = W1.W2. This constraint is used to transform
the associated data word abstract value. We define the corresponding abstract
transformer for splitting a sequence in the data words domain.

The transformer Split]W(ΠW,W,W1,W2) splits a sequence in w into two
parts represented by the fresh sequence variables, W1 and W2. It is defined as
follows:

Split]W(ΠW,W,W1,W2) ,


Proj]W(ΠW, {W}) if w = ε

ΠW if w = [X]

Πn
W otherwise

where in the third case the new sequence constraint Πn
W is obtained by

1. replacing WL = w (L ∈ {H,F}) in ΠW with a new sequence constraint
WL = w[W1.W2/W ];

2. adding universal quantified sequence constraints on W1 and W2 com-
puted from the universal constraints of W for each guard AG ∈ G, i.e.,
∀X ∈W1 ·AG ⇒ AU , ∀X ∈W2 ·AG ⇒ AU .

7.2.2.3 Concatenation Operation

Given a sequence constraint ΠW with two sequences represented by two se-
quence variables W1,W2, suppose for each guard form AGi ∈ G they are con-
strained by the following universal constraints:

∀X ∈W1 ·AGi ⇒ AUi , ∀X ∈W2 ·AGi ⇒ AUj .

If W1 or W2 is a singleton, i.e., [X], then for each guard AGi ∈ G, if ΠW ⇒
AGi(X), then we propagate the following universal constraints over the single-
ton in ΠW:

∀y ∈ [X], AGi ⇒ AUk
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W1 and W2 can be concatenated by using the concatenation operation
Concat]W(ΠW,W1,W2,W ) where W is a fresh sequence variable. It generates a
new sequence constraint which is obtained by

1. adding a new universal constraint over W , i.e.,
∧

AGi
∈G
∀X ∈ W1 · AGi ⇒

AUi tN AUj ;

2. replacingWL = w in ΠW with a new sequence constraintWL = w[W/W1.W2];

3. projecting out W1 and W2 in ΠW by calling operation Proj]W.

7.2.3 Abstract Operations in Shape-value Domain H]

Because the values in the shape-value domain H] contain elements in the shape
domain G] and data words domain W], most of abstract operations in H] require
careful coordination between operations provided by G] and W].

7.2.3.1 Unfolding and Folding Summary

Unfolding: The unfolding operation over summary predicates in the shape-
value domain H] takes an element (Σ ⇒ Π) and yields a disjunction of such
elements (Σ0 ⇒ Π0) ∨ (Σ1 ⇒ Π1)... ∨ (Σn ⇒ Πn). It uses the unfolding
operation UnfoldList]G to manipulate the shape and the unfolding operation
Unfold]

W to unfold the data word. The operation UnfoldList]G cooperates with
the operation Unfold]

W. We denote by UnfoldList]H the unfolding operation
in the shape-value domain H]. It returns a new shape which is the result of
unfolding of the shape and a new numerical constraint and a new sequence
constraint obtained from unfolding of the data word. The unfolding operation
UnfoldH is defined as follows:

UnfoldList]H((Σ,ΠN,ΠW, P (−→x )[W ], X,W ′) ,
∨

0≤i≤n
(Σi,ΠNuNΠNiuNΠn

Ni
,Πn

Wi
)

where ∨
0≤i≤n

(Σi,ΠNi ,ΠWi) = UnfoldList]G(Σ, P (−→x )[W ], X,W ′),∨
0≤i≤n

(Πn
Ni
,Πn

Wi
) = Unfold]

W(ΠW,W,X,W
′).

Each sequence constraint Πn
Wi

returned by Unfold]
W contains the sequence

constraint ΠWi generated by UnfoldList]G.
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Example 13 (Unfolding a heap list). We show an example of unfolding a heap
list hls in Figure 7.5. The first disjunct in the unfolded value is the case when
the shape is unfolded into emp. In this case, the universal constraints over
WH is removed. The second disjunct contains an unfolded shape chk(A;B) ∗
hls(B; hli)[W ′] and the new pure constraints. 4

hli
hls[WH]

A unfold emp
chk

A B hli

⋀  ∏ 0 A ≠ hli 
WH =[A].W’  

hls[W’]

⋀ A ≠ B ⋁
⋀ WH = w⋀ ∏ 0 ⋀ ∏ 0 A = hli ∀ x ∈ w･AG ⇒ AU⋀ ∀ x ∈W’･AG ⇒ AU⋀

⋀ AU (A)

Figure 7.5: Example of unfolding a heap list

Theorem 7.1 (Soundness of unfolding UnfoldList]H). If UnfoldList]H transforms
(Σ,ΠN,ΠW) into a finite number of disjuncts (Σ0,ΠN0 ,ΠW0) ∨ (Σ1,ΠN1 ,ΠW1)... ∨
(Σn,ΠNn ,ΠWn), then γH(Σ,ΠN,ΠW) ⊆

⋃
0≤i≤n

γH(Σi,ΠNi ,ΠWi). �

Folding: Given a shape-value (Σ⇒ Π) and a sub-formula p(−→x ) ∗ P (−→v )[W ]

in Σ which should be folded, FoldList]H calls FoldList]G to fold the shape and
Concat]W to concatenate words. Precisely, p(−→x ) is a chunk, could be chk(X;Y )

or fck(X;Y ) and the node Y should be the start of the summary edge speci-
fied by P (Y,−→y )[W ]. Concat]W in fact concatenates the singleton [X] and the
sequence W . Recall that the transformation lemma specified as follows:

p(X;Y ) ∗ P (Y, ~y)[W ] ∧ (∃−→u ·Π∆
N ∧Π∆

W)⇒ P (X, ~y)[W ′]

where Π∆
N and Π∆

W = (W ′ = [X].W ) are numerical and sequence constraints
the same as constraints in the definition of predicate P . Evidently, the folding
operation can be applied to fold p(X;Y ) ∗ P (Y, ~y)[W ] in the value (Σ,Π) only
if the condition is satisfied, i.e., Π⇒ Π∆

N ∧Π∆
W. The definition of FoldList]H is

given as follows:

FoldList]H((Σ,ΠN,ΠW), p(X;Y ) ∗ P (Y,−→y )[W ],W ′) , (Σn,Πn
N,Π

n
W)

where
Σn = FoldList]G(Σ, p(X;Y ) ∗ P (Y,−→y )[W ],W ′),

Πn
N = Proj]N(ΠN, {Y }),

Πn
W = Concat]W(ΠW, [X],W,W ′).
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Σn is the new shape returned by FoldList]G, Πn
N is the new numerical constraint

which is the result of projecting out Y in ΠN, and Πn
W is the new sequence con-

straint returned by Concat]W. Precisely, the sub-formula p(X;Y ) ∗ P (Y,−→y )[W ]

is folded as a new summary P (X,−→y )[W ′] in Σ where W ′ is the fresh variable.
The fresh sequence variable W ′ is also used to represent the concatenation
when calling operation Concat]W.

7.2.3.2 Decomposing and Composing Summary

The decomposition operation in the shape-value domain H] is defined using
the decomposition operation DecompList]G provided by the shape domain G]

and the splitting operation SplitmW of W]. Its definition is given as follow:

DecompList]H((Σ,ΠN,ΠW), P (−→x )[W ],W1,W2) , (Σn,ΠNuNΠn
NuNΠm

N ,ΠWuWΠm
W)

where

(Σn,Πn
N,Π

n
W) = DecompList]G(Σ, P (−→x )[W ],W1,W2),

(Πm
N ,Π

m
W) = Split]W(ΠW,W,W1,W2).

Similarly, the composition operation ComposeList]H in the domain H] is
defined using the composition operation ComposeList]G in G] and the concate-
nation operation Concat]W in W]. Let us fix an abstract value (Σ,ΠN,ΠW) where
there are two separated segments in Σ, denoted by P (−→x )[W1] ∗ P (−→y )[W2], and
ΠW contains a sequence constraint with the subword W1.W2. Recall that the
transformation lemma specified as follows:

P (−→x )[W1] ∗ P (~y)[W2] ∧ (∃−→u ·Π∆
N ∧Π∆

W)⇒ P (~z)[W ]

where Π∆
N and Π∆

W = (W = W1.W2) are numerical and sequence constraints.
The composition operation can be applied if ΠN ∧ΠW ⇒ Π∆

N ∧Π∆
W. The compo-

sition operation is defined as follows:

ComposeList]H((Σ,ΠN,ΠW), P (−→x )[W1] ∗ P (−→y )[W2],W ) , (Σn,Πn
N,Π

n
W)

where

Σn = ComposeList]G(Σ, P (−→x )[W1] ∗ P (−→y )[W2],W ),

Πn
N = Proj]N(ΠN, {−→x ,−→y }) ∧ΠN(−→z ),

Πn
W = Concat]W(ΠW,W1,W2,W ),

and −→z and W are fresh variables in the new composed segment.
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7.2.3.3 Unfolding and Folding Chunk

The unfolding operation over a heap chunk in the shape-value domain is
denoted by UnfoldChk]

H which only works on the heap list abstraction. It
manipulates the shape and generates numerical constraint by calling operation
UnfoldChk]

G. Given an abstract value (Σ,ΠN,ΠW) and the chunk chk(X;Y ) in
Σ that should be unfolded, the definition of UnfoldChk]

H is defined as follows:

UnfoldChk]
H((Σ,ΠN,ΠW), chk(X;Y ), Z) , (Σn,ΠN uN Πn

N,ΠW)

where
(Σn,Πn

N) = UnfoldChk]
G(Σ, chk(X;Y ), Z)

and Z is a fresh variable. The value returned by UnfoldChk]
H is composed of

1). the new shape Σn, 2). a meet between the original numerical constraint and
the new numerical constraint Πn

N returned by UnfoldChk]
G, and 3). the original

sequence constraint. The procedure of unfolding free chunk UnfoldFck]
H is

defined similarly to the operation UnfoldFck]
G.

Given a shape-value ((ΣH c ΣF )⇒ Π) and chd(X;Z) ∗ blk(Z;Y ) is a sub-
formula in ΣH , if Π satisfies the data constraints in the definition of chk, i.e.,
Π⇒ Fsize(X)× sizeof(HDR) = Y −X), then chd(X;Z) ∗ blk(Z;Y ) can be
folded as a chunk chk(X;Y ) in ΣH by using the operation FoldChk]

H which is
defined as follows:

FoldChk]
H((Σ,ΠN,ΠW), chd(X;Z) ∗ blk(Z;Y )) , (Σn,Πn

N,ΠW)

where
Σn = FoldChk]

G(Σ, chd(X;Z) ∗ blk(Z;Y )),

Πn
N = Proj]N(ΠN, {Z}).

Notice that ΠW is not changed and the new numerical constraint is obtained by
projecting out Z in ΠN.

In fact, the chd(X;Z) ∗ blk(Z;Y ) can be folded as a free chunk fck(X;Y ) if
the pure constraints in fck’s definition are satisfied. The free chunk is added in
ΣF . This situation is explained in Section 7.2.5 which describes the hierarchical
folding operation.

7.2.3.4 Decomposing and Composing a Memory Block

In the shape-value domain, the decomposing operation DecompBlk]
H updates

the shape value and the numerical constraint. The new shape is the result
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of DecompBlk]
G and the new numerical constraint is the meet between the

old numerical constraint and the constraint returned by DecompBlk]
G. The

definition of DecompBlk]
H is shown as follows:

DecompBlk]
H((Σ,ΠN,ΠW), blk(X;Y ), Z) , (Σn,ΠN uN Πn

N,ΠW)

where (Σn,Πn
N) = DecompBlk]

G(Σ, blk(X;Y ), Z). The composition operation
is defined similarly:

ComposeBlk]
H((Σ,ΠN,ΠW), blk(X;Y ) ∗ blk(Y ;Z)) , (Σn,Πn

N,ΠW)

where
Σn = ComposeBlk]

G(Σ, blk(X;Y ) ∗ blk(Y ;Z)),

Πn
N = Proj]N(ΠN, {Y } ∧X < Z.

7.2.4 Hierarchical Unfolding

Order of predicates: Given a summary ΣH c ΣF and the information we
want to expose (e.g., the access of a field), the analysis needs to decide on which
level of abstraction the unfolding should be performed. For example, for a
summary atom representing a free list segment, the read access to the size
field requires unfolding the summary at the free list level to obtain a free chunk.
However, if the size field is written, the free chunk fck shall be instantiated at
the heap list level into a chunk and finally the chunk decomposed to obtain the
chunk header storing the size field.

We define the following partial order≺P between predicates blk ≺P chd ≺P

chk ≺P fck ≺P {hls, hlsc, fls, flso}which intuitively corresponds to an increasing
degree of specialisation. We denote by Q �P P if Q ≺P P or Q = P .

For each program statement stmt and each pointer variable x in stmt, an
atom P (X; . . .) with ε](x) = X is transformed using the unfolding transformers
to obtain the atom Q(X; . . .) such that Q is the maximal predicate satisfying
Q �P P and:

• if stmt reads in x the fields of HDR, then Q �P fck ,

• if stmt assigns x.isfree or x.fnx, then Q �P chk ,

• if stmt mutates x using pointer arithmetics or assigns x.size, then
Q �P chd.
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Hierarchical unfolding: We illustrate the hierarchical unfolding, Unfold]
H, by

using the program in Figure 6.6(b), the procedure of allocation. For simplicity,
we omit the pure constraints in the presented values. Before the traversal loop
of free list (at line 34), the abstract graph is given as a summary, i.e., the heap
list and the free list are described by hlsc and flso respectively, as shown in the
first frame in Figure 7.6.

The procedure aims to find a suitable free chunk by traversing the free list.
During the first iteration, the summary edge flso is unfolded to materialise a
chunk to which the pointer nxt points using UnfoldList]H operation as shown
in the 2nd frame in Figure 7.6. The edge fck(X;X ′) is also enough for statements
reading the fields of the chunk X . When the size of X does not satisfy the
condition, the pointer nxt points to the next free chunk by executing the
assignment nxt = nxt->fnx, i.e., nxt points to X ′, the start of the summary
flso(X ′, ...)[W1]. Then the summary flso(X ′, ...)[W1] is unfolded to materialise a
chunk. The abstract shape is in the 3rd frame shown in Figure 7.6.

We assume that in the i-th iteration (4th frame), the pointer prv points to
the chunk Y and the pointer nxt points to Z which is the start of the sum-
mary flso(Z, ...)[W3] in ΣF . The free chunks between X and Y are folded as
flso(X, ...)[W2]. The next step is to read the field size of Z. It requires to unfold
the summary flso(Z, ...)[W3]. Thus, flso(Z, ...)[W3] is split into two separated
parts, i.e., fck(Z;Z ′) ∗ flso(Z ′, ...)[W4].

Let us assume that the size of chunk Z is larger than nunits (5th frame).
Then the next step is to compute the post-image of the next statement at line
38, i.e., nxt->size-=nunits. The symbolic location Z shall be the root a chd

predicate. Thus, the free chunk at fck(Z,Z ′) is instantiated in the heap list by

1. decomposing and then unfolding the summary edge hls using DecompList]H
and UnfoldList]H, and by

2. unfolding the chunk chk to materialise the chd edge using the operation
UnfoldChk]

H.

The unfolding of chk requires to remove the fck atom from Z in the free list
because its definition is not more satisfied at the free list abstraction level.

The next assignment, nxt+=nxt->size involving pointer arithmetic, does
not require to transform the predicate rooted in Z because it is already chd.



Chapter 7. Static Analysis Operations and Algorithm 129

A hli
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flso[W1]fck
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A hli
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3
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Z
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fck flso[W4]flso[W2]

Z

Figure 7.6: Hierarchical unfolding at line 38
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Instead, the transformer adds a new symbolic location Z1 in the heap list level
by using DecompBlk]

G operation.
If Z1 goes beyond the limit of the block of the chunk starting at Z (i.e.,

outside the interval [Z0, B) in Figure 7.6), the analysis signals a chunk break-
ing. Otherwise, the blk atom from X is split using decomposing operation
DecompBlk]

G to insert Z1. The result is given in the top part of Figure 7.7. The
abstract transformer for the assignment involving pointer arithmetic is detailed
in Section 7.3.1.

7.2.5 Hierarchical Folding

To reduce the size of abstract values, the abstract transformers finish their com-
putation on an abstract value (ε],Σ,Π) by eliminating the symbolic locations
which are anonymous nodes in Σ. The elimination uses folding and composing
operations to replace sub-formulas using these variables by one predicate atom.
The graph representation eases the computation of sub-formulas matching the
left part of a folding operations. More precisely, the elimination process (Fold]

H)
has the following steps.

First, it searches sequences of sub-formula of the form chd(X0;X1)∗blk(X1;X2)∗
. . . ∗ blk(Xn−1;Xn) where none of Xi (1 ≤ i < n) is in img(ε]). Such sub-
formulas are folded into chk(X0;Xn) if the pure part of the abstract value im-
pliesX0.size×sizeof(HDR) = Xn−X0 (see Table 5.2) using ComposeBlk]

H

and FoldChk]
H operations. We use the variable elimination (Proj]N) provided

by the numerical domain N] to project out {X1, . . . , Xn−1} from the pure part.
An example is shown in the top of Figure 7.7, i.e., the shape value is obtained
by folding chd(Z;Z0) ∗ blk(Z0;Z1) (a sub-formula in the value shown at the
bottom of Figure 7.6) into a chunk denoted by fck(Z;Z1).

Furthermore, if a chunk chk(X;Y ) is in ΣH and the pure part implies
Fisfree(X) = 1, then the chunk atom (and its start address) is promoted
as fck to the free list level. That means a free chunk edge should be added
into ΣF . An example is shown in Figure 7.6 (in the 2nd frame), the free chunk
fck(Z,Z ′) is added in ΣF .

The next step of the hierarchical folding is to search sequences of sub-
formula in ΣH of the form chk(X0;X1)∗chk(X1;X2)∗ . . .∗chk(Xn−1;Xn) where
none of Xi (1 ≤ i < n) is in img(ε]) that is Xi is an anonymous node. By
using FoldList]H operation, such sub-formulas are folded into summary edges
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Figure 7.7: Hierarchical folding after line 38
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PH(X0, ...)[Wi] where PH could be hls or hlsc depending on the type of heap
list used in the SDMA and the pure constraints.

Then, hierarchical folding searches the sub-formula of the form chk(X0;X1)∗
PH(X1, ...)[W ] (or PH(..., X0)[W ] ∗ chk(X0;X1) in ΣH ) and searches the sub-
formula of the form fck(X0;X1)∗PF (X1, ...)[W ] (or PF (..., X0)[W ]∗fck(X0;X1))
in ΣF where PF is fls or flso and checks the pure constraints in pure part. By
using the composition operation ComposeList]H and concatenation operation
Concat]W, such sub-formulas are folded into a totally summarized value. An
example is shown in Figure 7.7, the value in the third frame is obtained by
unfolding chunk chk(Z;Z1) inside the segment hlsc(A, ..., Z)[W7]. The final
shape shown in the 4th frame is obtained after performing unfolding in heap
list and free list.

7.3 Abstract Transformers

In this section, we define the abstract transformers for assignments and condi-
tion tests. Table 7.1 summaries the basic abstract operations provided by the
domains which are used in the following content.

Numerical domain N]

Guard]
N : Bexp× N] → N]

Assign]
N : LVar× V× N] → N]

Proj]N : N] × P(LVar)→ N]

Data words domain W]

Unfold]
W : W] ×W] × P(LVar)→ W] × N]

Split]W : W] ×W] × P(LVar)→ W]

Concat]W : W] ×W] × P(LVar)→ W]

Proj]W : W] × P(LVar)→ W]

Shape domain G]

UnfoldList]G : G] × E× P(LVar)→ P(G] × N] ×W])

FoldList]G : G] × E× LVar→ G]

DecompList]G : G] × E× P(LVar)→ G] × N] ×W]

ComposeList]G : G] × E× LVar→ G]

UnfoldChk]
G : G] × E× LVar→ G] × N]
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FoldChk]
G : G] × E→ G]

DecompBlk]
G : G] × E× LVar→ G] × N]

ComposeBlk]
G : G] × E→ G]

Shape-value domain H]

UnfoldList]H : H] × E× P(LVar)→ P(H])

FoldList]H : H] × E× LVar→ H]

DecompList]H : H] × E× P(LVar)→ H]

ComposeList]H : H] × E× LVar→ H]

UnfoldChk]
H : H] × E× LVar→ H]

FoldChk]
H : H] × E→ H]

DecompBlk]
H : H] × E× LVar→ H]

ComposeBlk]
H : H] × E→ H]

Extended symbolic heap domain M]

EvalL]
M : Loc× M] → E× E?

EvalE]
M : Exp× M] → LVar× E?

Mutate]M : E× LVar× M] → M]

Sbrk]
M : E× LVar× M] → M]

Assign]
M : Loc× Exp× T× M] → P(M])

Assign]
sbrk : Loc× Exp× M] → M]

Guard]
M : Bexp× M] → P(M])

Unfold]
M : M] × P(E)× P(LVar)→ P(M])

Combined abstract domain A]

Assign]
A : Loc× Exp× T× A] → A]

Assign]
sbrk : Loc× Exp× A] → A]

Guard] : Bexp× A] → A]

Table 7.1: Abstract operations of domains
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7.3.1 Assignments

Recall that the abstract transformers for the assignment loc :=t exp and the sys-
tem assignment loc :=t sbrk(exp) are denoted by Assign]

M and Assign]
sbrk, re-

spectively. Given an assignment with an abstract value, Assign]
M and Assign]

sbrk

should compute a sound post-condition for the assignment.
Let m] be the abstract value representing the abstract state in the input of

transformer. We assume that the numerical domain provides the transformer
Assign]

N for the assignment on scalar variables. For assignment on pointer type
variables, before manipulating the abstract value, the abstract transformers
Assign]

M and Assign]
sbrk call two operations: location evaluation and expres-

sion evaluation to expose the locations changed or read by the assignment.

7.3.1.1 Location and Expression Evaluations

Location evaluation: Given a location expression loc and an abstract state
(ε],Σ,Π), the aim of location evaluation operation, denoted by EvalL]

M, is to
locate an edge in Σ that includes the left value location denoted by loc. The
operation is defined as follows:

EvalL]
M : Loc× M] → E× E?.

Recall that E represents the set of edges in the abstract heap which is defined in
Section 6.3.5 and E? is an optional value. If the location denoted by loc appears
in an edge which is not summarized, the value returned by EvalL]

M can be a
points-to edge (e.g., (p, ∗, X) represents program variable p points to node X),
or an edge labelled by an unsummarized predicate atom, (e.g., in the second
frame of Figure 7.6, the location nxt->fnx is evaluated to an edge (X, fck, X ′)).

If the location expression operation involves exposing a memory cell sum-
marized by an edge, then EvalL]

M returns the information for unfolding, i.e.,
the summary edge. The unfolding operation shall be performed on the summa-
rized edge to materialize the needed edge. For example, in the abstract state
presented in the third frame of Figure 7.6, to evaluate the location nxt->fnx,
EvalL]

M returns the summary edge (X ′, flso[W1], nil) which should be unfolded.
Recall that the unfolding operation returns a disjunction of abstract values. The
analysis will evaluate loc again on each disjunct generated by the unfolding.
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Expression evaluation: The expression evaluation operation EvalE]
M evalu-

ates an expression to a location value or a numerical variable. Similarly, the
unfolding operation is required if the node denoted by the expression is in-
cluded in a summary edge and a node should be materialized in the shape. In
this case, EvalE]

M returns the information, i.e., an edge for unfolding.

EvalE]
M : Exp× M] → LVar× E?

Algorithm 3: Algorithm of Assign]
M

input :an assignment loc :=t exp and an abstract value m ∈ M]

output :a new abstract value

begin
(l], el)← EvalL]

M(loc,m); . evaluate a location
(v], ev)← EvalE]

M(exp,m); . evaluate an expression
if (el ∪ ev) is empty then

n] ←Mutate]M(l], v],m); . mutate the value
return Norm(n]); . return normalised value

else
R← ∅;
foreach (disjunct u in Unfold]

M(m, el ∪ ev)) do
(l], el)← EvalL]

M(loc, u);
(v], ev)← EvalE]

M(exp, u);
n] ←Mutate]M(l], v], u);
R← R ∪ {n]};

end
return Norm(

∨
ai∈R

ai);

end
end

Transformer function for assignment: The algorithm of Assign]
M is described

in Algorithm 3. The first case is for a fully exposed value. The location and
expression evaluation operations directly return evaluated values and no un-
folding is needed.

The second one is the unfolding is needed to evaluate the location or the
expression. Given an abstract value and a set of edges, the unfolding operation
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Unfold]
M selects an appropriate unfolding operation (shown in Table 7.1 ) pro-

vided by the shape-value domain H] for each edge which should be unfolded.
Since unfolding may generate a disjunction of states, Assign]

M performs the
operations like the first case to reflect the assignment on each unfolded shape.

Theorem 7.2 (Soundness of Assign]
M). The abstract transformer Assign]

M computes
a sound postconditon for the assignment statement loc :=t exp. If (ε, h) ∈ γM(m]),
then

(ε, h[LJlocK(ε, h)←t EJexpK(ε, h)]) ∈ γM(Assign]
M(loc, exp, t,m])).

�

The overall abstract transformer for assignment is denoted by Assign]
A is

defined based on Assign]
M. The definition is given as follows:

Assign]
A(loc, exp, t, S]) , Norm(

⋃
{Assign]

M(loc, exp, t, v)|v ∈ S]})

Theorem 7.3 (Soundness of Assign]
A). The abstract transformer Assign]

A computes
a sound postconditon for the assignment statement loc :=t exp. If (ε, h) ∈ γA(m]),
then

(ε, h[LJlocK(ε, h)←t EJexpK(ε, h)]) ∈
⋃
{γM(m]

u) |m]
u ∈ Assign]

A(loc, exp, t,m])}.

�

7.3.1.2 Assignment loc := loc′

Assignment with no folding: We select as running example the assignment
(at line 32, nxt:=nxt->fnx) in the implementation of LA allocator shown
in Figure 6.6 to illustrate the abstract transformer for this kind of assignment.
In this paragraph, we illustrate the simplest case where none of the locations
appearing in either side of the assignment are summarized. Suppose that the
abstract state before the assignment is the one in Figure 7.8(a). Because this
assignment only works on the free list level, for simplicity, we remove part of
the abstract value concerning the heap list. The abstract state shown on the right
of Figure 7.8(a) is obtained after applying the abstract transformer Assign]

M.
Assign]

M first calls the location evaluation which evaluates the location expres-
sion nxt to an edge in the shape. In Figure 7.8(a), the edge corresponding to
the location expression is a points-to edge from variable nxt to node C. Then,



Chapter 7. Static Analysis Operations and Algorithm 137

Assign]
M calls the expression evaluation to evaluate nxt->fnx. The first step

is to replace the program variable nxt with a symbolic variable in the abstract
shape by using the abstract environment ε]. We obtain the node C. The next
step is to access the fnx field of the node C. Recall that in the definition of
fck(C;D), D represents the location stored in the fnx field of node C, thus the
access of fnx field leads to exposing the fck edge. The expression evaluation
yields the node D. Finally, the points-to edge is updated to point to the node
specified by nxt->fnx, i.e., node D, by the mutation function Mutate]M.

A B

frhd prv

C

nxt

#D
fckfck flso[W2]flso[W1]

A B

frhd

C #D
fckfck flso[W2]flso[W1]

prv nxt

 ∏ ∏ 0 0

(a) The abstract value is not summarized

A B

frhd prv

C

nxt

#
fck flso[W2]flso[W1]

A B

frhd

C #D
fckfck flso[W3]flso[W1]

prv nxt

 ∏ 

 ∏ 

A B

frhd

C #
fckfckflso[W1]

prv nxt

 ∏ 

⋁

0

1

2

(b) The edge is materialized by unfolding operation

Figure 7.8: Applying Assign]
M to assignment nxt:=nxt->fnx

Assignment over summary: Let us consider the case where the location in
the assignment is summarized in the abstract value. The unfolding operation
has to be called to materialize the desired edge. This situation appears for our
running example when assignment nxt:=nxt->fnx is done on the abstract
state on the left of Figure 7.8(b). The program variable nxt points to node C
which is the start node of a summary edge labelled by the list segment atom
flso[W2]. The expression evaluation fails when evaluating the right side of the
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assignment because the free chunk corresponding to the expression nxt->fnx

is summarized as part of the list segment. Thus, the summary edge flso[W2]

should be unfolded to materialize an edge for the next field. Recall that the
unfolding operation generates a disjunction of abstract values. On the abstract
values obtained by the unfolding, Assign]

M performs the evaluations again and
now acts as in the previous paragraph. The abstract state obtained is shown on
the right of Figure 7.8(b).

 ∏

 ∏ 

A hli
hlsc[W1]

_hsta

B C D
chd blk hlsc[W2]

hend

A hli
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nxt hend
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 ∏ 
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E
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Figure 7.9: Applying Assign]
A to assignment nxt+=nxt->size
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7.3.1.3 Assignment loc := exp

Assignments of this form are frequently used in SDMA to perform pointer
arithmetics. We focus on one form of the assignment whose right-hand side
is an expression that adds a positive integer to a location, e.g., loc :=t loc

′ + c.
We select as running example the assignment (at line 36, nxt+=nxt->size)
from the implementation of LA allocator (shown in Figure 6.6) to explain the
procedure. The assignment is normalized to nxt:=nxt+nxt->size at first.
We detail the steps of the abstract transformer in the following.

We assume that the abstract state before the assignment has the form shown
on the top of Figure 7.9. For simplicity, we remove the shape of the free list
because we suppose that the hierarchical unfolding has instantiated the location
pointed by nxt at the heap list level. More precisely, nxt points to a chunk
represented by node B which as been unfolded into a chunk header (from node
B to node C) and a body part (from node C to node D).

The evaluation of the left-hand side loc of the assignment is the same as
in the previous section. We obtain the points-to edge in the shape for nxt.
However, there is no explicit node in the shape when evaluating the right-hand
side expression nxt+nxt->size.

The abstract transformer creates a new node in the shape to represent the
location of nxt+nxt->size. The position at which the new node is added
depends on the value of nxt->size. The different cases are tested in the
analysis. In our running example, nxt->size is less than the size of chunk
starting from C, a new node E is added between C and D. This step calls the
abstract operation DecompBlk]

G defined in Section 7.2.3.4 and yields a middle
state as shown in the 2nd frame of Figure 7.9. Now nxt points to the node
E. Between the node E and the node D is an edge labeled by the atom blk

representing a raw memory region.
According to the type of nxt, the location to which nxt points should be the

start address of a chunk. Thus, the raw memory region blk(E,D) is split into
a chunk header and a chunk body and the new node F is added. Notice that
E is a new free chunk after the assignment at line 37 (nxt->size:=nuits),
thus it will be added into the free list. This communication between the two
abstractions is explained in Section 7.2.5. The final abstract state on heap list
level is obtained by calling the normalisation function.
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Algorithm 4: Algorithm of Assign]
sbrk

input :an assignment loc :=t sbrk(exp) and an abstract value v ∈ M]

output :a new abstract value

begin
(e, el)← EvalL]

M(loc,m); . evaluate a location
(v], er)← EvalE]

M(exp,m); . evaluate an expression
if ((el ∪ er) = ∅) then

n] ← Sbrk]
M(e, v],m); . mutate the value

return Norm(n]); . return normalised value
else

R← ∅;
foreach (disjunct u in Unfold]

M(m, el ∪ er)) do
(e, el)← EvalL]

M(loc, u);
(v], er)← EvalE]

M(exp, u);
n] ← Sbrk]

M(e, v], u);
R← R ∪ {n]};

end
return Norm(

∨
ai∈R

ai);

end
end

7.3.1.4 System Assignment: loc := sbrk(exp)

The essence of system assignment loc := sbrk(exp) is to extend the data
segment of the current process, so also the SDMA’s memory region. The overall
algorithm of its abstract transformer Assign]

sbrk is described in Algorithm 4.
It calls the location evaluation and expression evaluation which is as same as
Assign]

M.
The underlying operation used in Assign]

sbrk is Sbrk]
M. It takes an edge

which is the evaluation of the location loc, an evaluation v of exp and an
unfolded abstract value (ε],Σ,Π) and then returns a new value. In most cases,
the edge is a points-to edge, that is a program variable points to a node in the
abstract graph, i.e., {loc 7→ n} ∈ ε].

The algorithm for Sbrk]
M is defined in Algorithm 5. There are two cases.

When constraint on the value v implies it is equal to zero, it means that the
memory is not extended. And that the points-to edge will be updated to point
to the heap limitation address, i.e., the address right after the last address of
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Algorithm 5: Algorithm of Sbrk]
M

input :an unfolded abstract value (ε],Σ,Π), an edge ( {loc 7→ n} ∈ ε]), a
value v ≥ 0,

output :a new abstract value

begin
if v = 0 then

ε] ← (ε] \ {loc 7→ n}) ∪ {loc 7→ hli}; . update points-to edge
return (ε],Σ,Π);

else
if ∃X,P · P (X; hli) ∈ Σ then

Y ← hli; . create a new node
ε] ← (ε] \ {loc 7→ n}) ∪ {loc 7→ Y };
Σ← (Σ \ P (X; hli)) ∗ P (X;Y ) ∗ blk(Y ; hli); . add a blk edge
Π← Π[X/hli] ∧ (hli−X = v); . add a constraint
return (ε],Σ,Π);

else
X ← hli;
ε] ← (ε] \ {loc 7→ n}) ∪ {loc 7→ X};
Σ← Σ ∗ blk(X; hli);
Π← Π[X/hli] ∧ (hli−X = v);
return (ε],Σ,Π);

end
end

end

the memory region, denoted by node hli. When it is strictly greater than zero,
the memory is extended and represented by adding a new edge in the shape.
An example of applying Sbrk]

M on the assignment (p=sbrk(exp)) is shown
in Figure 7.10. The program variable p originally points to the node B. After
the assignment, p points to the new node X . The edge node hli is replaced by
a node X and a new edge blk(X, hli) is added. The new pure constraint Π1 is
obtained by substituting hli by X in Π and by adding the constraint hli−X = v.

7.3.2 Condition Tests

The concrete semantics of a condition test b ∈ Bexp (e.g., a boolean expression or
a linear inequality) is the function GuardJ.K which inputs a set of concrete states
S and returns the subset of S in which b evaluates to true. The corresponding
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B hli
chk

A B
chk

X
chk

 ∏ 0  ∏ 1

A
chk

hli
blk

p p

Figure 7.10: An example of applying Sbrk]
M on assignment: p:=sbrk(exp)

abstract transformer, denoted by Guard]J.K filters out abstract values in which
b does not evaluates to true.

We first consider the case when the condition b is a constraint over only
scalar variables, thus, it is not needed to check the spacial part of the abstract
value. We assume that the numerical domain used provides the operation
Guard]

N which is the abstract condition test. The type of Guard]
N is presented

in Table 7.1. Given a boolean expression and a set of numerical constraint,
Guard]

N returns an abstract element in which b evaluates to true. In this case,
the abstract transformer for condition tests is defined as follows:

Guard]JbK(S]) , {(ε]j ,Σj ,Πj) | Πj ∈ Guard]
N(b)(S]

N)}

where S] = {(ε]0,Σ0,Π0), ..., (ε]n,Σn,Πn)} and S]
N = {Π0, ...,Πn}.

When the condition b is the constraint over location variables, the transfer
function will check the shape. Given a comparison exp1 n exp2, the first step is
to call expression evaluation operation EvalE]

M to evaluate exp1 and exp2 on an
abstract value m] = (ε],Σ,Π).

Guard]JbK(S]) ,match b with:

| ¬b → Guard]J¬bK(S])

| b1 ∧ b2 → Guard]Jb2K(Guard]Jb1K(S]))

| b1 ∨ b2 → Guard]Jb1K(S]) tA Guard]Jb2K(S])

| exp1 n exp2 →
⋃
{Guard]

M(b,m]) | m] ∈ S])}

Figure 7.11: Abstract transformer of condition tests

Because Guard]
M may need to perform the unfolding operation, Guard]

M

shall return a finite set of abstract values {m]
0, ...,m

]
n} filtered by the imput

constraint.
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Given a constraint b = exp1 n exp2, we denote by el and er the evaluated
values of exp1 and exp2 returned by EvalE]

M respectively and they may be
obtained after unfolding the input value. We define the operator Guard]

M

which takes a constraint b, an abstract value m] = (ε],Σ,Π) then returns a new
value. Precisely, in each element m]

i , Guard]
M propagates constraint Πp in the

pure part where Πp is (elner).

Guard]
M(b,m]) ,


⋃
{(ε]i,Σi,Πi ∧Πp)} if m] should be unfolded

(ε],Σ,Π ∧Πp) otherwise

Property 7.3.1 (Soundness of Guard]). The abstract transformer of the condition
test is sound, i.e., for all S and S] such that S ⊆ γA(S]), we obtain

GuardJbKS ⊆ γA(GuardJbK(S]))

7.4 Analysis Algorithm

We now describe the specific issues of the static analysis algorithm based on
the hierarchical abstract domain presented in the last two chapters.

7.4.1 Main principles

The analysis algorithm consists of the following three steps. The first step
targets on discovering the properties of the free and heap lists in order to select
a suitable set of list segment predicates.

1 int main(void) {

2 minit(1024);

3 void* p = malloc(20);

4 malloc(20);

5 mfree(p); p = NULL;

6 p = malloc(20);

7 malloc(20);

8 mfree(p); p = NULL;

9 return 0;

10 }

Figure 7.12: A client program

It consists of an inter-procedural and non
relational symbolic execution of a correct client
program like the one in Figure 7.12. The sets
of reachable configurations are represented
by abstract values of our domain built over
the chunk and block atoms only, i.e., atoms
using predicates fck, chk, chd, and blk. Thus,
the heap and the free lists are completely un-
folded.

For example, the abstract value computed
for the start location of method malloc (line

28 in Figure 6.6) when executing the client program in Figure 7.12 is built from
four disjuncts whose shape part is given in Figure 7.13.
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The client programs are chosen to reveal the heap list organisation (includ-
ing chunk coalescing) and the shape of the free list. We don’t employ the most
general client or a client using an incorrect sequence of calls to the SDMA
methods in order to speed-up this step and avoid configurations leading to
error states that increases the size of abstract values.
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Figure 7.13: Spatial formulas at line 28 of allocation in 6.6

The second step transforms the abstract values computed by the previous
step to obtain an abstract value representing a pre-condition of the SDMA
method that constrains the global variables and the parameters of the method.
For this, the variables of the client program (e.g., p in Figure 7.12) are projected
out and folding lemmas are applied to obtain list atoms. For example, the trans-
formation of the abstract value in Figure 7.13 leads to an abstract value with
one disjunct whose spatial part is hlsc(A, 0; hli, 0)[WH ] c flso(A,A; nil, hli)[WF ].
The resulting pre-condition is not the weakest one, but it is bigger than (as re-
gards v) the abstract value computed by the symbolic execution at this control
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location.
The third step does forward, non-relational abstract interpretation [CC77a]

starting from the computed pre-conditions of each SDMA method. The anal-
ysis uses the widening operator to speed-up the convergence of the fix-point
computation for program loops.

7.4.2 Experiments

We implemented the abstract domain and the analysis algorithm in Ocaml as a
plug-in of the Frama-C platform [KKP+15]. We are using several modules of
Frama-C, e.g., C parsing, abstract syntax tree transformations, and the fix-point
computation. The data word domain uses as numerical join-latticeN the library
of polyhedra with congruence constraints included in APRON [JM09]. To obtain
precise numerical invariants, we manually transform program statements using
bit-vector operations (e.g., line 16 of Figure 6.6(a)) into statements allowed by
the polyhedra domain which over-approximate the original effect.

Table 7.2: Benchmark of SDMA

DMA LOC List pred. Time (s) |a]| |WH |/|WF | Invariants
DKFF 176 hlsc, flso 0.05 25 8/5 first-fit, MIN_SIZE-size
DKBF 130 hlsc, flso 0.05 26 8/6 best-fit, MIN_SIZE-size
LA 181 hlsc, flso 0.07 25 8/5 first-fit, 0-size
DKNF 137 hlsc, flso 0.05 30 8/6 first-fit, MIN_SIZE-size
KR 284 hlsc, flso 2.8 32 8/6 first-fit, 0-size

We applied our analysis on the benchmark of SDMA in Table 7.2. All of
them are less than 300 lines of code. The second column represents the types of
heap and free lists used in the allocator. DKFF and DKBF are implementations
of Algorithms A and B from Section 2.5 of [Knu73]. These SDMA keep an
acyclic free list sorted by the start addresses of chunks. The deallocation does
coalescing of successive free chunks. The allocation implements a first-fit resp.
best-fit policy such that the fitting chunk is not split if the remaining free part is
less than MIN_SIZE (variant proposed in [Knu73]). This property is expressed
by the following sub-formula of the invariant “MIN_SIZE-size” (for MIN_SIZE
= 8):

∀X ∈WH ·X.size ≥ 8 (7.1)

which is inferred by our analysis. The first-fit policy is implied by an abstract
value similar to the one described in Section 5.3.1 (page 77). The best-fit policy
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is implied by a value using the constraint:

∀X ∈Wi ·X.size ≥ rsz⇒ X.size ≥ Y .size (7.2)

where rsz is the requested size, Y is the symbolic address of the fitting chunk,
and Wi represents a list segment around the fitting chunk. Recall that in the
universal constraints, the type of guard is fixed in the abstract domain.

LA is our running example in Figure 6.6; it follows the same principles as
DKFF, but get rid of the constraint for chunk splitting. For this case study,
our analyser infers the “0-size” invariant, i.e., ∀X ∈ WH · X.size ≥ 4

(=sizeof(HDR)). Notice that the code analysed fixes an obvious problem
of the malloc method published in [Ald08]. DKNF implements the next-fit
policy using the “roving pointer” technique proposed in [Knu73]: a global
variable points to the chunk in the free list involved in the last allocation or
deallocation; malloc searches for a fitting free chunk starting from this pointer.
Thus, the next-fit policy is a first-fit from the roving pointer. DKNF is challeng-
ing because the roving pointer introduces a case splitting that increases the
size (number of disjuncts) in abstract values. The KR allocator [KR88] keeps a
circular singly linked free list, circularly sorted by the chunk start addresses;
the start of the free list points to the last deallocated block. The circular shape
of the list requires to keep track of the free chunk with the biggest start address
and this increases the size of the abstract values.

The analysis times reported in Table 7.2 have been obtained on a 2.53 GHz
Intel Core 2 Duo laptop with 4GB of RAM. They correspond to the total time
of the three steps of the analysis starting from the client given in Figure 7.12.
The universally quantified invariants inferred for SDMA policies are given in
the last column. Columns |a]| and |WH |/|WF | provide the maximum number
of disjuncts generated for an abstract value resp. the maximum number of
predicate atoms in each abstraction level.

7.5 Related Work and Conclusion

Our analysis infers complex invariants of free list SDMA implementations due
to the combination of two ingredients: the hierarchical representation of the
shape of the memory region managed by the SDMA and an abstract domain
for the numerical constraints based on universally quantified formulas. The
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abstract domain has a clear logical definition, which facilitates the use of the
inferred invariants by other verification methods.

The proposed abstract domain extends previous works [CDOY06, BDES11,
Dra11, LYP11, DES13]. We consider the SL fragment proposed in [CDOY06]
to analyse programs using pointer arithmetic. We enrich this fragment in
both spatial and pure formulas to infer a richer class of invariants. E.g., we
add a heap list level to track properties like chunk overlapping and universal
constraints to infer first-fit policy invariants.

The split of shape abstraction on levels is inspired by work on overlaid data
structures [LYP11, DES13]. We consider here a specific overlapping schema
based on set inclusion which is adequate for the class of SDMA we consider.
We propose new abstract transformers which do not require user annotations
like in [LYP11]. Another hierarchical analysis of shape and numeric properties
has been proposed in [SR12]. They consider the analysis of linked data struc-
tures coded in arrays and track the shape of these data structures and not the
organisation of the set of free chunks. Their approach is not based on logic and
the invariants inferred on the content of list segments are simpler.

Our abstract domain includes a simpler version of the data word domain
proposed in [BDES11, Dra11], since the universal constraints quantify only
one position in the list. Several abstract domains have been defined to infer
invariants over arrays, e.g., [GLAS09] for array sizes, [GMT08, HP08] for array
content. These works infer invariants of different kind on array partitions and
they can not be applied directly to sequences of addresses. Recently, [LR15]
defined an abstract domain for the analysis of array properties and applies it to
the Minix 1.1 SDMA which uses chunks of fixed size. A modular combination
of shape and numerical domains has been proposed in [CR13]. We extend their
proposal to combine shape domains with domains on sequences of integers.
Precise analyses exist for low level code in C [Min06] or for binary code [BR06].
They efficiently track properties about pointer alignment and memory region
separations, but can not infer shape properties.



CHAPTER 8
Conclusion

8.1 Summary

In the first part of this thesis, we first provide a complete hierarchy of mod-
els, published in [FS17, FSG+17], for the full class of list based SDMA. The
hierarchy is built based on the stepwise refinement method and in a modular
way. Our set of specifications is complete for the techniques usually employed
in the list based SDMA. The refinement strategy and the principles we pro-
pose allow to extend the hierarchy to specify other policies used in SDMA.
We construct the models in the Rodin platform by using the Event-B spec-
ification language. Several projects report on the mechanical proofs using
theorem provers of (partial) correctness of code for specific purpose SDMA, e.g.,
[MAY06, TKN07a, KEH+09, HP09, Chl11]. Most of these works use Separation
Logic [ORY01] which provides a scalable and expressive reasoning framework.
Our work is complementary to these projects. We provide reusable and com-
plete specifications for all list based SDMA by applying several refinement
steps, while they focus on the verification of specifications for a particular
SDMA code.

The second part of the thesis focuses we focus on the verification of SDMA
implementations by static analysis has been considered, which has been con-
sidered in [CDOY06, LR15, FS16]. All these methods infer only some properties
for particular allocators. Indeed, they employ fragments of Separation Logic
or some logics over arrays which are not expressive enough to cover fully
the invariants of the SDMA analysed (e.g., the fit policy). The formalization
we considered for SDMA provides reference specifications to compare with
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the inferred ones, in a logic fragment more general than Separation Logic. It
motivates the extension or the direct application of general purpose methods
based on Separation Logic, e.g., [CDNQ12, QHL+14]. Thus, we design an anal-
ysis [FS16] based on abstract interpretation using abstract domains based on a
fragment of Separation Logic that is able to infer some invariants proposed in
Event-B models. The Separation Logic fragment we proposed, called SLMA,
could express properties of SDMA concerning the shape of the memory data
structures stored in the memory region and the data value stored inside the
memory. The abstract domain is built based on the logical formulae of SLMA.
We make intensive use of two important techniques defined for the design of
abstract domains: the hierarchical abstraction of memory region managed by
the SDMA and the product of abstract domains.

8.2 Discussion

Formalization in Event-B: Notice that we use Event-B specification language
to construct models for sequential programs. Event-B is a formalism for devel-
oping and verifying systems using events. The obvious problem is the semantic
gap between sequential requirements and guard-action style event model. In
an Event-B model, each event used to specify a transition or a function in se-
quential program is an atomic operation. It is non-deterministically selected for
execution if its guards are satisfied under a state. To obtain a sequential model,
one way is to constrain execution of events in the model, i.e., include a deter-
ministic scheduler of events. The sequential program can be generated from
the Event-B model and there exist several translation tools, such as translating
Event-B to C, or Java. However, these translation tools have no formal result
stating that the translation preserves the semantics.

Combining abstract domains: To infer spatial and numerical properties of
heap-manipulating programs, designing an abstract domain using formulae
from fragments of Separation Logic is a trend in static analysis based on abstract
interpretation. The different families of properties are captured by distinct
domains. The unbound heap regions (e.g., list) are specified by inductive
predicates in shape abstraction and the numerical properties over data values
(e.g., integer) are described by numerical and data word domains. Providing
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the communication between different domains is a complex task which has
been handled while designing the analyzer.

8.3 Future Work

This thesis focuses on sequential allocators, however there are lots of concurrent
dynamic allocators used in the operating systems for multiprocessors architec-
tures. An aspect that can be the object of further investigation is to formalize
and verify such concurrent allocators.

One recent survey paper [DD15] summaries different approaches to veri-
fying linearizability and gives a detailed comparison between them. One of
techniques for proving linearizability is construction-based proof. Abrial et al.
introduce a constructive approach [AC05] to linearizability by using Event-B
modelling. They present a completely formal development of concurrent queue
algorithms. Building models for concurrent dynamic memory allocators is a
more complex task. The most important steps are to determine the atomic
operations in the concurrent allocators and to formalize multiple processors
in the models. Another approach is to use CIVL [SZL+15] which is a concur-
rency intermediate verification language. It provides a general concurrency
model capable of representing programs in a variety of concurrency dialects.
For static analysis, our fragment of Separation Logic has inductive predicates
specifying distinct types of free list used in SDMA. They specify mainly singly-
linked list. An extension of the logic is to add inductive predicates to describe
doubly-linked list. Another direction for future work is the design of decision
procedures for fragments of this logic.



Annexe: Résumé en Français

Ces dernières années, les logiciels jouent un rôle important dans notre vie
quotidienne. Les logiciels devenant de plus en plus complexes, la création de
logiciels sans bugs devient une tâche difficile. En particulier pour les systèmes
critiques pour la sécurité, tels que les systèmes de contrôle de vol ou les voitures
sans conducteur, les erreurs potentielles dans les programmes peuvent avoir
des conséquences catastrophiques. Par conséquent, il est important de détecter
les erreurs dans les programmes ou de prouver qu’il n’y a pas de bogues.

Obtenir un logiciel correct n’est pas si simple. Dans l’industrie, le test est
la méthode la plus utilisée pour garantir la qualité des logiciels. Il vérifie de
manière informelle la conformité des exécutions logicielles sous les entrées
données. Cependant, les tests ne peuvent pas épuiser toutes les possibilités
et ne peuvent donc pas éliminer toutes les erreurs potentielles dans les pro-
grammes. Contrairement aux tests de logiciels, les méthodes formelles utilisent
des modèles mathématiques et des logiques pour analyser les programmes. La
vérification formelle du logiciel est un domaine de recherche actif en informa-
tique. Différentes technologies ont été proposées, notamment les catégories
suivantes:

• La vérification de programme déductive construit un ensemble d’obligations
de preuve mathématique basées sur la spécification donnée (par exem-
ple, invariants de boucle, contrats de fonction, preuves de terminaison)
auxquelles les programmes doivent obéir. La justesse des programmes est
garantie par la preuve des obligations. Ils sont déchargés en utilisant soit
des solveurs SMT automatisés [BCD+11, DMB08] ou des démonstrateurs
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de théorèmes interactifs [NPW02, BC13].

• La vérification de modèle [McM93] explore de manière exhaustive et
automatique les modèles abstraits d’un programme pour décider si ses
exécutions satisfont aux propriétés souhaitées. Cette méthode est con-
frontée à plusieurs défis, tels que gérer l’explosion des états [CGJ+01] et
concevoir une transformation automatique des programmes vers leurs
modèles.

• L’analyse statique fonctionne sur une abstraction d’un programme et est
exécutée sans exécuter de programme. Cette méthode est saine, c’est-à-
dire qu’elle ne renvoie jamais de faux négatif. Cependant, il est limité
aux propriétés sur les domaines décidables. L’interprétation abstraite
[CC76, CC77b] est un cadre permettant de construire des surestimations
sonores des programmes.

Cette thèse porte sur la modélisation formelle et la vérification des alloca-
teurs de mémoire dynamique. La gestion du tas est un module indispensable
dans de nombreux noyaux de systèmes d’exploitation et sa correction a un im-
pact majeur sur l’ensemble du système. La gestion de la mémoire est également
un module où des erreurs surviennent fréquemment dans le système.

Cette thèse se concentre sur l’allocateur de mémoire dynamique séquentiel,
c’est-à-dire, les allocateurs de mémoire sans prise en charge des demandes
simultanées de mémoire. Plus précisément, une SDMA est un logiciel gérant
une région réservée de la mémoire programme. Il apparaît dans des biblio-
thèques à usage général (par exemple, une bibliothèque standard C) ou dans
le cadre d’applications dans lesquelles l’allocation dynamique doit être con-
trôlée pour éviter une défaillance due à un épuisement de la mémoire (par
exemple, un logiciel critique intégré). Un programme client interagit avec la
SDMA en demandant une quantité de mémoire pouvant être libérée à tout
moment. Pour offrir ce service, la SDMA gère la région de mémoire réservée
en la partitionnant en blocs de mémoire de taille variable ou fixe, également
appelés morceaux. Lorsqu’un bloc est alloué à un programme client, la SDMA
ne peut pas le déplacer pour compacter la région mémoire (comme dans les
ramasse-miettes) et ignore le type (valeur ou valeur) des données stockées.

Les implémentations existantes de SDMA utilisent diverses structures de
données pour gérer l’ensemble des blocs créés dans la région de la mémoire.
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Dans cette thèse, nous nous concentrons sur la SDMA qui enregistre tous les
morceaux en utilisant une liste, également appelée liste de tas. Dans cette
structure de données, les blocs sont stockés dans l’ordre croissant de leur
adresse de départ et la relation de successeur entre les blocs est calculée à partir
d’informations stockées dans le début du bloc, par exemple la taille du bloc.
Notez que cette structure de données permet de gérer des blocs de taille fixe ou
variable.

Pour accélérer l’allocation d’un bloc libre, SDMA indexe l’ensemble des
blocs non utilisés (blocs libres) dans une structure de données supplémentaire.
Nous nous concentrons ici sur les alloca- teurs de listes libres [Knu73,WJNB95a]
qui enregistrent des morceaux libres dans une liste. Cette classe de SDMA basée
sur des listes est très répandue et comprend des exemples de manuels [Knu73,
KR88] et des allocateurs réels [Lea12].

Le objectif de cette thèse est de contribuer à la conception de la SDMA avec
un code efficace et correct. Pour cela, la thèse considère deux approches. La
première approche consiste à construire des logiciels corrects par construction.
Cette thèse définit un cadre général pour la spécification formelle des techniques
efficaces existantes employées par la SDMA. La seconde approche consiste à
vérifier l’exactitude par une analyse statique. Cette thèse conçoit une analyse
statique originale capable de déduire et de vérifier les propriétés invariantes
complexes de la SDMA.

Le premier objectif est une tâche difficile pour plusieurs raisons.
Premièrement, il n’y a pas de solution générale optimale pour obtenir une

SDMA qui offre à la fois une faible charge pour la gestion de la région mémoire
et une vitesse élevée pour satisfaire les demandes de mémoire, comme le montre
l’enquête [WJNB95a]. Par conséquent, la conception d’une SDMA doit prendre
en compte son utilisation spécifique et ajuster la combinaison de techniques
pour obtenir une solution optimale pour cette utilisation. Cela conduit à une
grande variété d’implémentations SDMA à spécifier et à prouver.

Deuxièmement, les méthodes formelles utilisées pour prouver l’exactitude
doivent traiter des implémentations optimisées qui combinent généralement
un code de bas niveau (par exemple, arithmétique de pointeur, champs de
bits) avec des structures de données de haut niveau efficaces (par exemple, des
tables de hachage avec des listes doublement liées). La difficulté d’analyser
formellement des implémentations DMA particulières a été démontrée par
plusieurs projets [CDOY06, MAY06, TKN07a, KEH+09, Chl11]. Ces projets
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utilisent des logiques très expressives pour spécifier l’organisation et le contenu
de la mémoire, par exemple les logiques de second ordre ou la logique de sépa-
ration [ORY01], qui nécessitent des outils sophistiqués pour être traitées. Enfin,
rien ne prouve que les techniques développées dans ces projets puissent être
appliquées pour vérifier l’exactitude des implémentations SDMA en utilisant
différentes personnalisations.

L’analyse automatisée de SDMA est confrontée à plusieurs défis.
Bien que le code de SDMA ne soit pas long (entre cent et mille LOC), il

est hautement optimisé pour fournir de bonnes performances. Le code de bas
niveau (par exemple, arithmétique de pointeur, champs de bits, appels à des
routines système comme sbrk) est utilisé pour gérer efficacement (c’est-à-dire
avec un faible coût supplémentaire en mémoire et en temps) les opérations
sur les blocs dans la région de mémoire réservée. En même temps, la liste
libre est manipulée en utilisant des opérations de haut niveau sur des blocs de
mémoire typés (valeurs de structures C) en mutant des champs de pointeur
sans arithmétique de pointeur. L’analyseur doit gérer efficacement cet usage
polaire du tas réalisé par la SDMA. Les invariants maintenus par la SDMA sont
complexes. La région de mémoire est organisée en une liste de segments basée
sur les informations de taille stockées dans l’en-tête de segment de telle sorte
que le chevauchement de blocs et les fuites de mémoire sont évités. Les adresses
de départ des blocs doivent être alignées sur une certaine constante. La liste
libre peut avoir des formes complexes (cyclique, acyclique, à double liaison)
et peut être triée en fonction de l’adresse de début des blocs afin de faciliter la
fusion des blocs libres. Une analyse précise doit garder la trace des propriétés
numériques et des propriétés de forme pour déduire des spécifications impli-
quant de tels invariants pour les méthodes d’allocation et de désallocation de
la SDMA.

Formalisation basée sur le raffinement: Le travail de la première partie [FS17,
FSG+17] de cette thèse constitue un premier pas vers une implémentation cor-
recte et formellement prouvée de la SDMA. Nous adoptons une approche
correcte par construction, différente de la plupart des recherches dans ce do-
maine. Dans cette approche, un modèle abstrait est progressivement affiné
pour obtenir un modèle suffisamment détaillé pour la génération de code ou
l’annotation de code. Nous appliquons cette approche à la classe complète
de la SDMA basée sur une liste. Nous obtenons un ensemble de modèles
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formels organisés selon une hiérarchie par relations de raffinement qui établit
une taxonomie spécifiée formellement des techniques employées par les im-
plémentations de la SDMA basée sur des listes. Cette taxonomie spécifiée
formellement forme une théorie de l’algorithme [SL90] pour la SDMA de liste
libre, c’est-à-dire une structure commune à toutes les implémentations de cette
classe, qui élimine les problèmes d’implémentation spécifiques. Pour limiter la
complexité de ce travail, nous considérons SDMA sans prise en charge de la
concurrence, c’est-à-dire utilisée dans un paramètre séquentiel.

Notre travail a une conséquence plus théorique. Il révèle la classe de logique
nécessaire pour spécifier précisément chacune des tactiques de conception
considérées et constitue donc un guide utile pour la vérification formelle de
la SDMA. Par exemple, nous avons identifié la technique qui nécessite une
logique de second ordre pour capturer son invariant d’état précis: l’utilisation
d’une liste de blocs libres qui n’est pas triée par l’adresse de début des blocs. À
l’exception de cette technique, les modèles proposés utilisent uniquement des
invariants d’état du premier ordre, quantifiés universellement, ce qui est une
bonne classe pour les prouveurs automatiques.

Interprétation abstraite basée sur la logique pour SDMA: Nous proposons
une analyse statique [FS16] capable d’inférer les invariants complexes de SDMA
sur la liste de tas et la liste libre. Nous définissons un domaine abstrait qui utilise
des formules logiques pour abstraire les configurations SDMA. La logique
proposée étend le fragment de tas symbolique de SL avec un opérateur de com-
position hiérarchique, c, pour spécifier que la liste libre couvre partiellement la
liste de tas. Cet opérateur fournit une abstraction hiérarchique de la région de
mémoire sous le contrôle SDMA: les manipulations de mémoire de bas niveau
sont spécifiées au niveau de la liste de segments de mémoire et propagées de
manière contrôlée par l’abstraction au niveau de la liste libre.

La spécification de forme est combinée à un fragment de logique de premier
ordre sur des tableaux pour capturer les propriétés de blocs dans des listes,
comme dans [BDES11]. Cette combinaison est effectuée de manière précise
en ce qui concerne la logique en incluant des séquences d’adresses de blocs
dans les définitions inductives des segments de liste. En résumé, les principales
contributions de cette thèse sont:

• Nous formalisons une hiérarchie de modèles pour un ensemble de SDMA.
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La hiérarchie est classée selon les relations de raffinement formellement
prouvées et inclut des spécifications complètes et saines des implémenta-
tions SDMA existantes. Bien qu’extensible à d’autres tactiques de concep-
tion, notre hiérarchie couvre en fait toutes les techniques utilisées pour
les listes de tas de gestion.

• Nous proposons une théorie des algorithmes pour la SDMA et iden-
tifions une signature représentant une abstraction à partir des détails
d’implémentation de la SDMA et lions les modèles formels proposés avec
les implémentations concrètes.

• Nous illustrons l’application de ce travail aux techniques de génération,
de test et de vérification de code basées sur des modèles.

• Nous proposons un fragment SLMA de séparation pour exprimer les
propriétés de la SDMA concernant la forme des structures de mémoire
ainsi que leurs tailles et les valeurs de données qu’elles contiennent. La
logique contient un fragment logique de tableau et nous montrons que
cette logique est en général indécidable à cause du fragment logique
indécidable du tableau.

• Nous proposons un domaine abstrait dont les éléments sont basés sur
le sous-ensemble des formules logiques de SLMA. nous donnons une
approximation sonore de la logique impliquée pour l’analyse statique de
la SDMA. Le domaine abstrait donne une haute précision de l’abstraction
capable de capturer les propriétés complexes des implémentations SDMA.
Le domaine abstrait est construit de manière modulaire, ce qui permet de
réutiliser des domaines abstraits existants pour l’analyse de listes liées
avec des données entières.

• Nous avons implémenté une plate-forme abstraite à l’intérieur de la
plateforme Frama-C [KKP+15] et l’avons appliquée à de simples SDMA.
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