A. J. Roger, S. A. Muñoz-gómez, and R. Kamikawa, The origin and diversification of mitochondria, Curr. Biol, vol.27, pp.1177-1192, 2017.

J. Nunnari and A. Suomalainen, Mitochondria: in sickness and in health, Cell, vol.148, pp.1145-1159, 2012.

D. Silva, D. Tu, Y. T. Amunts, A. Fontanesi, F. Barrientos et al., Mitochondrial ribosome assembly in health and disease, Cell Cycle, vol.14, pp.226-2250, 2015.

L. Chen and Y. Liu, Male sterility and fertility restoration in crops, Annu. Rev. Plant. Biol, vol.65, pp.579-606, 2014.

R. Horn, K. J. Gupta, and N. Colombo, Mitochondrion role in molecular basis of cytoplasmic male sterility, Mitochondrion, vol.19, pp.198-205, 2014.

P. Giegé, L. J. Sweetlove, V. Cognat, and C. J. Leaver, Coordination of nuclear and mitochondrial genome expression during mitochondrial biogenesis in Arabidopsis, Plant Cell, vol.17, pp.1497-1512, 2005.

R. N. Lightowlers, A. Rozanska, and Z. M. Chrzanowska-lightowlers, Mitochondrial protein synthesis: figuring the fundamentals, complexities and complications of mammalian mitochondrial translation, FEBS Lett, vol.588, pp.2496-2503, 2014.

K. Hammani and P. Giegé, RNA metabolism in plant mitochondria, Trends Plant Sci, vol.19, pp.380-389, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00999397

L. Sanchez and M. I. , RNA processing in human mitochondria, Cell Cycle, vol.10, pp.2904-2916, 2011.

A. Barkan and I. Small, Pentatricopeptide repeat proteins in plants, Annu. Rev. Plant Biol, vol.65, pp.415-442, 2014.

P. F. Chinnery, The challenges of mitochondrial replacement, PLoS Genet, vol.10, p.1004315, 2014.

P. Giegé, Pentatricopeptide repeat proteins, RNA Biol, vol.10, pp.1417-1418, 2013.

M. Uyttewaal, PPR336 is associated with polysomes in plant mitochondria, J. Mol. Biol, vol.375, pp.626-636, 2008.

K. Hammani, An Arabidopsis dual-localized pentatricopeptide repeat protein interacts with nuclear proteins involved in gene expression regulation, Plant Cell, vol.23, pp.730-740, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00610460

N. Haïli, The MTL1 pentatricopeptide repeat protein is required for both translation and splicing of the mitochondrial NADH dehydrogenase subunit 7 mRNA in Arabidopsis, Plant Physiol, vol.170, pp.354-366, 2016.

N. Mai, Z. M. Chrzanowska-lightowlers, and R. N. Lightowlers, The process of mammalian mitochondrial protein synthesis, Cell Tissue Res, vol.367, pp.5-20, 2017.

B. J. Greber and N. Ban, Structure and function of the mitochondrial ribosome, Annu. Rev. Biochem, vol.85, pp.103-132, 2016.

N. Planchard, The translational landscape of Arabidopsis mitochondria, Nucleic Acids Res, vol.46, pp.6218-6228, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02145349

B. G. Barrell, A. T. Bankier, and J. Drouin, A different genetic code in human mitochondria, Nature, vol.282, pp.189-194, 1979.

M. Helm, Search for characteristic structural features of mammalian mitochondrial tRNAs, RNA, vol.6, pp.1356-1379, 2000.

S. Pfeffer, M. W. Woellhaf, J. M. Herrmann, and F. Förster, Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography, Nat. Commun, vol.6, p.6019, 2015.

M. Ott, A. Amunts, and A. Brown, Organization and regulation of mitochondrial protein synthesis, Annu. Rev. Biochem, vol.85, pp.77-101, 2016.

T. Salinas-giegé, Polycytidylation of mitochondrial mRNAs in Chlamydomonas reinhardtii Thalia Salinas-Gieg e, Nucleic Acids Res, vol.45, pp.12963-12973, 2017.

M. Kitakawa, Identification and characterization of the genes for mitochondrial ribosomal proteins of Saccharomyces cerevisiae, Eur. J. Biochem, vol.245, pp.449-456, 1997.

S. Goldschmidt-reisin, Mammalian mitochondrial ribosomal proteins. N-terminal amino acid sequencing, characterization, and identification of corresponding gene sequences, J. Biol. Chem, vol.273, pp.34828-34836, 1998.

E. C. Koc, A proteomics approach to the identification of mammalian mitochondrial small subunit ribosomal proteins, J. Biol. Chem, vol.275, pp.32585-32591, 2000.

E. C. Koc, The large subunit of the mammalian mitochondrial ribosome: analysis of the complement of ribosomal proteins present, J. Biol. Chem, vol.276, pp.43958-43969, 2001.

L. Bonen and S. Calixte, Comparative analysis of bacterial-origin genes for plant mitochondrial ribosomal proteins, Mol. Biol. Evol, vol.23, pp.701-712, 2006.

A. Amunts, A. Brown, J. Toots, S. H. Scheres, and V. Ramakrishnan, The structure of the human mitochondrial ribosome, Science, vol.348, pp.95-98, 2015.

B. J. Greber, The complete structure of the 55S mammalian mitochondrial ribosome, Science, vol.348, pp.303-308, 2015.

N. Desai, A. Brown, A. Amunts, and V. Ramakrishnan, The structure of the yeast mitochondrial ribosome, Science, vol.355, pp.528-531, 2017.

Z. Chrzanowska-lightowlers, J. Rorbach, and M. Minczuk, Human mitochondrial ribosomes can switch structural tRNAs -but when and why?, RNA Biol, vol.14, pp.1668-1671, 2017.

A. Brown, Structure of the large ribosomal subunit from human mitochondria, Science, vol.346, pp.718-722, 2014.

C. J. Leaver and M. A. Harmey, Higher-plant mitochondrial ribosomes contain a 5S ribosomal ribonucleic acid component, Biochem. J, vol.157, pp.275-277, 1976.

V. A. Gold, P. Chroscicki, P. Bragoszewski, and A. Chacinska, Visualization of cytosolic ribosomes on the surface of mitochondria by electron cryotomography, EMBO Rep, vol.18, pp.1786-1800, 2017.

C. Lurin, Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis, Plant Cell, vol.16, pp.2089-2103, 2004.

M. F. Portereiko, Nuclear fusion defective 1 encodes the Arabidopsis RPL21M protein and is required for karyogamy during female gametophyte development and fertilization, Plant Physiol, vol.141, pp.957-965, 2006.

A. Amunts, Structure of the yeast mitochondrial large ribosomal subunit, Science, vol.343, pp.1485-1489, 2014.

M. Ramesh and J. L. Woolford, Eukaryote-specific rRNA expansion segments function in ribosome biogenesis, RNA, vol.22, pp.1153-1162, 2016.

P. Bieri, M. Leibundgut, M. Saurer, D. Boehringer, and N. Ban, The complete structure of the chloroplast 70S ribosome in complex with translation factor pY, EMBO J, vol.36, pp.475-486, 2017.

A. P. Boerema, Structure of the chloroplast ribosome with chl-RRF and hibernation-promoting factor, Nat. Plants, vol.4, pp.212-217, 2018.

M. Pusnik, I. Small, L. K. Read, T. Fabbro, and A. Schneider, Pentatricopeptide repeat proteins in Trypanosoma brucei function in mitochondrial ribosomes, Mol. Cell. Biol, vol.27, pp.6876-6888, 2007.

I. Aphasizheva, D. Maslov, X. Wang, L. Huang, and R. Aphasizhev, Pentatricopeptide repeat proteins stimulate mRNA adenylation/uridylation to activate mitochondrial translation in trypanosomes, Mol. Cell, vol.42, pp.106-117, 2011.

I. Aphasizheva, Ribosome-associated pentatricopeptide repeat proteins function as translational activators in mitochondria of trypanosomes, Mol. Microbiol, vol.99, pp.1043-1058, 2016.

D. Ramrath, Evolutionary shift toward protein-based architecture in trypanosomal mitochondrial ribosomes, Science, vol.7735, p.422, 2018.

P. Bieri, B. J. Greber, and N. Ban, High-resolution structures of mitochondrial ribosomes and their functional implications, Curr. Opin. Struct. Biol, vol.49, pp.44-53, 2018.

I. Kühl, L. Dujeancourt, M. Gaisne, C. J. Herbert, and N. Bonnefoy, A genome wide study in fission yeast reveals nine PPR proteins that regulate mitochondrial gene expression, Nucleic Acids Res, vol.39, pp.8029-8041, 2011.

F. Tavares-carreón, The pentatricopeptide repeats present in Pet309 are necessary for translation but not for stability of the mitochondrial Cox1 mRNA in yeast, J. Biol. Chem, vol.283, pp.1472-1479, 2008.

B. Ruzzenente, LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial mRNAs, EMBO J, vol.31, pp.443-456, 2012.

M. Uyttewaal, Characterization of Raphanus sativus pentatricopeptide repeat proteins encoded by the fertility restorer locus for Ogura cytoplasmic male sterility, Plant Cell, vol.20, pp.3331-3345, 2008.

C. J. Herbert, Yeast PPR proteins, watchdogs of mitochondrial gene expression, RNA Biol, vol.10, pp.1477-1494, 2013.

D. N. Wilson and J. H. Doudna-cate, The structure and function of the eukaryotic ribosome, Cold Spring Harb. Perspect. Biol, vol.4, pp.11536-011536, 2012.

A. Jobe, Z. Liu, C. Gutierrez-vargas, and J. Frank, New insights into ribosome structure andfunction, Cold Spring Harb. Perspect. Biol, vol.7, p.32615, 2018.

T. Hazle and L. Bonen, Comparative analysis of sequences preceding protein-coding mitochondrial genes in flowering plants, Mol. Biol. Evol, vol.24, pp.1101-1112, 2007.

S. J. Clough and A. F. Bent, Floral dip: a simplified method for Agrobacteriummediated transformation of Arabidopsis thaliana, Plant J, vol.16, pp.735-743, 1998.

J. Gregori, L. Villareal, A. Sanchez, J. Baselga, and J. Villanueva, An effect size filter improves the reproducibility in spectral counting-based comparative proteomics, J. Proteom, vol.16, pp.55-65, 2013.

M. D. Robinson, D. J. Mccarthy, and G. K. Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.26, pp.139-140, 2010.

L. Lamattina, D. Gonzalez, J. Gualberto, and J. M. Grienenberger, Higher plant mitochondria encode an homologue of the nuclear-encoded 30-kDa subunit of bovine mitochondrial complex I, Eur. J. Biochem, vol.217, pp.831-838, 1993.

T. E. Elthon, R. L. Nickels, and L. Mcintosh, Monoclonal antibodies to the alternative oxidase of higher plant mitochondria, Plant Physiol, vol.89, pp.1311-1317, 1989.

B. Pineau, O. Layoune, A. Danon, and R. De-paepe, l-Galactono-1,4-lactone dehydrogenase isrequired for the accumulation of plant respiratory complex I, J. Biol. Chem, vol.283, pp.32500-32505, 2008.

C. Carrie, Conserved and novel functions for Arabidopsis thaliana MIA40 in assembly of proteins in mitochondria and peroxisomes, J. Biol. Chem, vol.285, pp.36138-36148, 2010.

C. M. Hooper, I. R. Castleden, S. K. Tanz, N. Aryamanesh, and A. H. Millar, SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations, Nucleic Acids Res, vol.45, pp.1064-1074, 2017.

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, vol.32, pp.1792-1797, 2004.

M. R. Karpenahalli, A. N. Lupas, and J. Söding, TPRpred: a tool for prediction of TPR-, PPR-and SEL1-like repeats from protein sequences, BMC Bioinformatics, vol.8, issue.2, 2007.

L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. J. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, Nat. Protoc, vol.10, p.845, 2015.

T. Obayashi, Y. Aoki, S. Tadaka, Y. Kagaya, K. Kinoshita et al., 2018: a plant coexpression database based on investigation of the statistical property of the mutual rank index. Special Issue -Databases, vol.59, pp.1-7, 2018.

J. M. De-la-rosa-trevín, Scipion: a software framework toward integration, reproducibility and validation in 3D electron microscopy, J. Struct. Biol, vol.195, pp.93-99, 2016.

J. M. De-la-rosa-trevín, Xmipp 3.0: an improved software suite for image processing in electron microscopy, J. Struct. Biol, vol.184, pp.321-328, 2013.

A. Rohou and N. Grigorieff, CTFFIND4: fast and accurate defocus estimation from electron micrographs, J. Struct. Biol, vol.192, pp.216-221, 2015.

V. Abrishami, A pattern matching approach to the automatic selection of particles from low-contrast electron micrographs, Bioinformatics, vol.29, pp.2460-2468, 2013.

S. H. Scheres, RELION: implementation of a Bayesian approach to cryo-EM structure determination, J. Struct. Biol, vol.180, pp.519-530, 2012.

N. Ban, A new system for naming ribosomal proteins, Curr. Opin. Struct. Biol, vol.24, pp.165-169, 2014.

R. M. Stupar, Complex mtDNA constitutes an approximate 620-kb insertion on Arabidopsis thaliana chromosome 2: Implication of potential sequencing errors caused by large-unit repeats, Proc. Natl Acad. Sci. USA, vol.98, pp.5099-5103, 2001.

K. L. Adams, D. O. Daley, J. Whelan, and J. D. Palmer, Genes for two mitochondrial ribosomal proteins in flowering plants are derived from their chloroplast or cytosolic counterparts, Plant Cell, vol.14, pp.931-943, 2002.

J. Noeske, High-resolution structure of the Escherichia coli ribosome, Nat. Struct. Mol. Biol, vol.22, pp.336-341, 2015.

, REFERENCES expression regulation. Plant Cell, vol.23, pp.730-770

B. Hartel, A. Zehrmann, D. Verbitskiy, J. A. Merwe, . Van-der et al., MEF10 is required for RNA editing at nad2-842 in mitochondria of Arabidopsis thaliana and interacts with MORF8, Plant Mol Biol, vol.81, pp.337-346, 2013.

E. Hartmann and R. K. Hartmann, The enigma of ribonuclease P evolution, Trends Genet, vol.19, pp.561-569, 2003.

A. Hernandez-cid, S. Aguirre-sampieri, A. Diaz-vilchis, and A. Torres-larios, , 2012.

, Ribonucleases P/MRP and the expanding ribonucleoprotein world, IUBMB Life, vol.64, pp.521-528

S. Holec, H. Lange, K. Kuhn, M. Alioua, T. Borner et al., Relaxed transcription in Arabidopsis mitochondria is counterbalanced by RNA stability control mediated by polyadenylation and polynucleotide phosphorylase, Mol Cell Biol, vol.26, pp.2869-2876, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00092897

J. Holzmann, P. Frank, E. Loffler, K. L. Bennett, C. Gerner et al., RNase P without RNA: identification and functional reconstitution of the human mitochondrial tRNA processing enzyme, Cell, vol.135, pp.462-474, 2008.

M. J. Howard, A. Karasik, B. P. Klemm, C. Mei, A. Shanmuganathan et al., Differential substrate recognition by isozymes of plant protein-only Ribonuclease P, RNA, vol.22, pp.782-792, 2016.

M. J. Howard, W. H. Lim, C. A. Fierke, and M. Koutmos, Mitochondrial ribonuclease P structure provides insight into the evolution of catalytic strategies for precursor-tRNA 5' processing, Proc Natl Acad Sci U S A, vol.109, pp.16149-16154, 2012.

N. Jarrous, Roles of RNase P and Its Subunits, Trends Genet, vol.33, pp.594-603, 2017.

A. A. Jourdain, M. Koppen, M. Wydro, C. D. Rodley, R. N. Lightowlers et al., GRSF1 regulates RNA processing in mitochondrial RNA granules, Cell Metab, vol.17, pp.399-410, 2013.

L. A. Kelley and M. J. Sternberg, Protein structure prediction on the Web: a case study using the Phyre server, Nat. Protoc, vol.4, pp.363-371, 2009.

T. Kleine, Arabidopsis thaliana mTERF proteins: evolution and functional classification, Front Plant Sci, vol.3, p.233, 2012.

B. P. Klemm, A. Karasik, and K. J. Kaitany, Molecular recognition of pre-tRNA by Arabidopsis protein-only Ribonuclease P. RNA, 2017.

M. Lechner, W. Rossmanith, R. K. Hartmann, C. Tholken, B. Gutmann et al., Distribution of Ribonucleoprotein and Protein-Only RNase P in Eukarya, Mol Biol Evol, vol.32, pp.3186-3193, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01378700

M. Lu and D. E. Draper, Bases defining an ammonium and magnesium ion-dependent tertiary structure within the large subunit ribosomal RNA, J Mol Biol, vol.244, pp.572-585, 1994.

M. J. Macias, M. Hyvonen, E. Baraldi, J. Schultz, M. Sudol et al., Structure of the WW domain of a kinase-associated protein complexed with a proline-rich peptide, Nature, vol.382, pp.646-649, 1996.

G. Mao, T. H. Chen, A. S. Srivastava, D. Kosek, P. K. Biswas et al., Cleavage of model substrates by Arabidopsis thaliana PRORP1 reveals new insights into its substrate requirements, PLoS One, p.160246, 2016.

N. Mockli, A. Deplazes, P. O. Hassa, Z. Zhang, M. Peter et al., Yeast split-ubiquitin-based cytosolic screening system to detect interactions between transcriptionally active proteins, Biotechniques, vol.42, pp.725-730, 2007.

S. Nakamura, S. Mano, and Y. Tanaka, Gateway binary vectors with the bialaphos resistance gene, bar, as a selection marker for plant transformation, Biosci Biotechnol Biochem, vol.74, pp.1315-1319, 2010.

R. Perrin, E. H. Meyer, M. Zaepfel, Y. J. Kim, R. Mache et al., Two exoribonucleases act sequentially to process mature 3'-ends of atp9 mRNAs in Arabidopsis mitochondria, J Biol Chem, vol.279, pp.25440-25446, 2004.

F. Pinker, G. Bonnard, A. Gobert, B. Gutmann, K. Hammani et al., PPR proteins shed a new light on RNase P biology, RNA Biol, vol.10, pp.1457-1468, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00875474

F. Pinker, C. Schelcher, P. Fernandez-millan, A. Gobert, C. Birck et al., Biophysical analysis of Arabidopsis protein-only RNase P alone and in complex with tRNA provides a refined model of tRNA binding, J. Biol. Chem, vol.292, pp.13904-13913, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01581835

M. D. Robinson, D. J. Mccarthy, and G. K. Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.26, pp.139-179, 2010.

T. Salinas-giegé, R. Giegé, and P. Giegé, tRNA biology in mitochondria. IJMS, vol.16, pp.4518-4532, 2015.

C. Schelcher, C. Sauter, and P. Giegé, Mechanistic and structural studies of protein-only RNase P compared to ribonucleoproteins reveal the two Faces of the same enzymatic activity, 2016.

A. Smirnov, C. Schneider, J. Hör, and J. Vogel, Discovery of new RNA classes and global RNA-binding proteins, Curr. Opin. Microbiol, vol.39, pp.1-9, 2017.

B. Stoll and S. Binder, Two NYN domain containing putative nucleases are involved in transcript maturation in Arabidopsis mitochondria, Plant J, vol.85, pp.278-288, 2016.

M. Takenaka, A. Zehrmann, D. Verbitskiy, M. Kugelmann, B. Hartel et al., Multiple organellar RNA editing factor (MORF) family proteins are required for RNA editing in mitochondria and plastids of plants, Proc Natl Acad Sci U S A, vol.109, pp.5104-5109, 2012.

A. Täschner, C. Weber, A. Buzet, R. K. Hartmann, A. Hartig et al., Nuclear RNase P of Trypanosoma brucei: A Single Protein in Place of the Multicomponent RNAProtein Complex, Cell Rep, vol.2, pp.19-25, 2012.

M. Uyttewaal, H. Mireau, M. Rurek, K. Hammani, N. Arnal et al., PPR336 is associated with polysomes in plant mitochondria, J Mol Biol, vol.375, pp.626-636, 2008.

D. Walczyk, M. Gößringer, W. Rossmanith, T. S. Zatsepin, T. S. Oretskaya et al., Analysis of the Cleavage Mechanism by Protein-Only RNase P Using Precursor tRNA Substrates with Modifications at the Cleavage Site, J. Mol. Biol, vol.428, pp.4917-4928, 2016.

R. Yagi, L. F. Chen, K. Shigesada, Y. Murakami, and Y. Ito, A WW domain-containing yesassociated protein (YAP) is a novel transcriptional co-activator, EMBO J, vol.18, pp.2551-2562, 1999.

, Arabidopsis cells are ground by hand using a mortar and a pestle and a juice extractor is used for cauliflower

, In all cases the lysate was filtered and clarified by centrifugation at 1,500 g, 10 min at 4°C

, Supernatant was kept and centrifuged at 18,000 g, 15 min at 4°C. Organelle pellet was rebuffer: ? Flower: 300 mM sucrose, 15 mM tetrasodium-pyrophosphate decahydrate, 2 mM EDTA, 10 mM KH2PO4, 1% (w/v) PVP-40, 1% (w/v) BSA, 20 mM ascorbate, 5 mM cysteine

, ? Cells: 450 mM mannitol, 50 mM tetrasodium-pyrophosphate decahydrate, 0.5% (w/v) PVP-40, 0.5% (w/v) BSA, 20 mM ascorbate, 20 mM cysteine

?. Cauliflower, 300 mM mannitol, 30 mM tetrasodium-pyrophosphate decahydrate, 3 mM EDTA, 0.8% (w/v) PVP-25, 0.5% (w/v) BSA, 20 mM ascorbate, 5 mM cysteine, 2 mM ß mercaptoethanol

, ? Flower: 300 mM sucrose, 10 mM MOPS, 1 mM EGTA, vol.7

, ? Cells: 300 mM mannitol, 10 mM TES-KOH, pH, vol.7

?. Cauliflower, 300 mM mannitol, 10 mM phosphate buffer, 1 mM EDTA

, Gradient buffer: ? Flower: X% Percoll, 300 mM sucrose, 10 mM MOPS, pH 7.2 ? Cells: X% Percoll, 300 mM mannitol, 10 mM TES-KOH, vol.7

?. Cauliflower, X% Percoll, 300 mM mannitol, 10 mM phosphate buffer, 1 mM EDTA, vol.7

, Lysate was clarified by centrifugation at 30,000 g, 20 min at 4°C. The supernatant was loaded on a 50% sucrose cushion in monosome buffer (3 mL of cushion and 7-10 mL of supernatant) and centrifuged at 235,000 g, 3h, 4°C in an ultracentrifuge. The crude ribosomes pellet was resuspended in monosome buffer and loaded on a 10-30% sucrose gradient in the same buffer

, 100 mM KCl, 30 mM MgCl2, 1 mM DTT, 0.5 mg/ml heparin, 1.6% Triton X-100, 100 µg/ml chloramphenicol, ? Lysis buffer: 20 mM HEPES-KOH pH 7.6

. ?-monosome-buffer, 20 mM HEPES-KOH pH 7.6, 100 mM KCl, 30 mM MgCl2, 1 mM DTT, p.50

, /ml chloramphenicol

E. , after selection of the excitation wavelength. The specific fluorescence

L. During-sample-screening and . Analyses, ribosome samples were analyzed by electron microscopy to assess the integrity and the purity of the samples. The samples were visualized with a CM120 100Kv (FEI) transmission electron microscope equipped with a CCD ORIUS 1000 Gatan Camera at the IGBMC

, INSERM Bordeaux)in the temperature-and humidity-controlled Vitrobot apparatus Mark IV (FEI, T = 4°C, humidity 100%, Blot Force 5, Blot waiting time 30 sec) and vitrified in liquid ethane pre-cooled by liquid nitrogen, p.300

. Hooper, TargetP was also used for target sequence prediction, 2007.

, Protein similarities were analyzed through MUSCLE Alignments, 2004.

. Karpenahalli, PPR domain predictions were performed with TPRpred, 2007.

. Kelley, 2015) and molecular representations were prepared with the PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC or UCSF Chimera, Tridimensional structure predictions were built with Phyre2, 2004.

. Obayashi, Expression data was obtained from the Genevestigator® platform, 2008.

A. , To identify regions of similarity between biological sequences NCBI's BLAST was used. More specifically to find homologous proteins between organisms tblastn was used, 1997.

J. P. Abrahams, A. G. Leslie, R. Lutter, and J. E. Walker, Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria, Nature, vol.370, pp.621-628, 1994.

S. M. Adl, A. G. Simpson, C. E. Lane, J. Luke?, D. Bass et al., The Revised Classification of Eukaryotes, J. Eukaryot. Microbiol, vol.59, pp.429-514, 2012.

U. Ahting, C. Thun, R. Hegerl, D. Typke, F. E. Nargang et al., The TOM core complex: the general protein import pore of the outer membrane of mitochondria, J. Cell Biol, vol.147, pp.959-968, 1999.

S. Akabane, T. Ueda, K. H. Nierhaus, and N. Takeuchi, Ribosome Rescue and Translation Termination at Non-Standard Stop Codons by ICT1 in Mammalian Mitochondria, PLoS Genet, vol.10, p.1004616, 2014.

O. Van-aken and F. Van-breusegem, Licensed to Kill: Mitochondria, Chloroplasts, and Cell Death, Trends Plant Sci, vol.20, pp.754-766, 2015.

J. F. Allen, The function of genomes in bioenergetic organelles, Philos. Trans. R. Soc. B Biol. Sci, vol.358, pp.19-38, 2003.

S. Altman, A view of RNase P, Mol. Biosyst, vol.3, pp.604-607, 2007.

S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang et al., , 1997.

G. Blast and P. , a new generation of protein database search programs, Nucleic Acids Res, vol.25, pp.3389-3402

A. J. Alverson, D. W. Rice, S. Dickinson, K. Barry, and J. D. Palmer, Origins and Recombination of the Bacterial-Sized Multichromosomal Mitochondrial Genome of Cucumber, Plant Cell, vol.23, pp.2499-2513, 2011.

A. Amunts, A. Brown, X. Bai, J. L. Llácer, T. Hussain et al., Structure of the yeast mitochondrial large ribosomal subunit, Science, vol.343, pp.1485-1489, 2014.

A. Amunts, A. Brown, J. Toots, S. H. Scheres, and V. Ramakrishnan, The structure of the human mitochondrial ribosome, Science, vol.348, pp.95-98, 2015.

S. G. Andersson, A. Zomorodipour, J. O. Andersson, T. Sicheritz-pontén, U. C. Alsmark et al., The genome sequence of Rickettsia prowazekii and the origin ofmitochondria, Nature, vol.396, pp.133-140, 1998.

R. Aphasizhev, A. , and I. , Mitochondrial RNA editing in trypanosomes: Small RNAs in control, Biochimie, vol.100, pp.125-131, 2014.

G. C. Atkinson, A. Kuzmenko, P. Kamenski, M. Y. Vysokikh, V. Lakunina et al., Evolutionary and genetic analyses of mitochondrial translation initiation factors identify the missing mitochondrial IF3 in S. cerevisiae, Nucleic Acids Res, vol.40, pp.6122-6134, 2012.

S. Aubourg, N. Boudet, M. Kreis, and A. Lecharny, In Arabidopsis thaliana, 1% of the genome codes for a novel protein family unique to plants, Plant Mol. Biol, vol.42, pp.603-613, 2000.

N. Ban, R. Beckmann, J. H. Cate, J. D. Dinman, F. Dragon et al.,

A. Liljas and J. M. Lipton, A new system for naming ribosomal proteins, Curr. Opin. Struct. Biol, 2014.

J. A. Banks, T. Nishiyama, M. Hasebe, J. L. Bowman, M. Gribskov et al., The Selaginella Genome Identifies Genetic Changes Associated with the Evolution of Vascular Plants, Science, vol.332, pp.960-963, 2011.

A. Barkan and I. Small, Pentatricopeptide repeat proteins in plants, Annu. Rev. Plant Biol, vol.65, pp.415-442, 2014.

A. Barkan, M. Rojas, S. Fujii, A. Yap, Y. S. Chong et al., A Combinatorial Amino Acid Code for RNA Recognition by Pentatricopeptide Repeat Proteins, PLoS Genet, vol.8, pp.4-11, 2012.

A. Ben-shem, N. Garreau-de-loubresse, S. Melnikov, L. Jenner, G. Yusupova et al., The Structure of the Eukaryotic Ribosome at 3.0 A Resolution, Science, vol.334, pp.1524-1529, 2011.

S. Bentolila, W. P. Heller, T. Sun, A. M. Babina, G. Friso et al., , 2012.

, RIP1, a member of an Arabidopsis protein family, interacts with the protein RARE1 and broadly affects RNA editing, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.1453-61

H. S. Bernhardt, The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others), Biol. Direct, vol.7, p.23, 2012.

M. Bernt, A. Braband, B. Schierwater, and P. F. Stadler, Genetic aspects of mitochondrial genome evolution, Mol. Phylogenet. Evol, vol.69, pp.328-338, 2013.

P. Bieri, B. J. Greber, and N. Ban, High-resolution structures of mitochondrial ribosomes and their functional implications, Curr. Opin. Struct. Biol, vol.49, pp.44-53, 2018.

A. P. Boerema, S. Aibara, B. Paul, V. Tobiasson, D. Kimanius et al., Structure of the chloroplast ribosome with chl-RRF and hibernationpromoting factor, Nat. Plants, vol.4, pp.212-217, 2018.

D. F. Bogenhagen, A. G. Ostermeyer-fay, J. D. Haley, and M. Garcia-diaz, Kinetics and Mechanism of Mammalian Mitochondrial Ribosome Assembly, Cell Rep, vol.22, pp.1935-1944, 2018.

L. Bonen, C. , and S. , Comparative Analysis of Bacterial-Origin Genes for Plant Mitochondrial Ribosomal Proteins, Mol. Biol. Evol, vol.23, pp.701-712, 2006.

G. Bonnard, A. Gobert, M. Arrivé, F. Pinker, T. Salinas-giegé et al., Transfer RNA maturation in Chlamydomonas mitochondria, chloroplast and the nucleus by a single RNase P protein, Plant J, vol.87, pp.270-280, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01405505

N. Bonnefoy and T. D. Fox, Directed Alteration of Saccharomyces cerevisiae Mitochondrial DNA by Biolistic Transformation and Homologous Recombination, Methods in Molecular Biology, pp.153-166, 2007.

C. Boussardon, V. Salone, A. Avon, R. Berthome, K. Hammani et al., Two Interacting Proteins Are Necessary for the Editing of the NdhD-1 Site in Arabidopsis Plastids, Plant Cell, vol.24, pp.3684-3694, 2012.

J. Brito-querido, E. Mancera-martínez, Q. Vicens, A. Bochler, J. Chicher et al., The cryo-EM Structure of a Novel 40S Kinetoplastid-Specific Ribosomal Protein, Structure, vol.25, pp.1785-1794, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02177145

J. R. Brown, Ancient horizontal gene transfer, Nat. Rev. Genet, vol.4, pp.121-132, 2003.

A. Brown, A. Amunts, X. Bai, Y. Sugimoto, P. C. Edwards et al., Structure of the large ribosomal subunit from human mitochondria, Science, vol.346, pp.718-722, 2014.

A. Brown, S. Rathore, D. Kimanius, S. Aibara, X. Bai et al., Structures of the human mitochondrial ribosome in native states of assembly, Nat. Struct. Mol. Biol, vol.24, pp.866-869, 2017.

G. G. Brown and O. Ostersetzer-biran, Group II intron splicing factors in plant mitochondria, Front. Plant Sci, vol.5, p.35, 2014.

J. B. Bultema, H. Braun, E. J. Boekema, and R. Kou?il, Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato, Biochim. Biophys. Acta -Bioenerg, vol.1787, pp.60-67, 2009.

G. Burger, M. W. Gray, F. Lang, and B. , Mitochondrial genomes: anything goes, Trends Genet, vol.19, pp.709-716, 2003.

G. Burger, M. W. Gray, L. Forget, and B. F. Lang, Strikingly bacteria-like and gene-rich mitochondrial genomes throughout jakobid protists, Genome Biol. Evol, vol.5, pp.418-438, 2013.

A. B. Cahoon and A. A. Qureshi, Leaderless mRNAs are circularized in Chlamydomonas reinhardtii mitochondria, Curr. Genet, vol.0, pp.1-13, 2018.

G. Canino, E. Bocian, N. Barbezier, M. Echeverría, J. Forner et al., Arabidopsis encodes four tRNase Z enzymes, Plant Physiol, vol.150, pp.1494-1502, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00697567

T. Cavalier-smith, Archaebacteria and Archezoa, Nature, vol.339, pp.100-101, 1989.

C. Cazalet, L. Gomez-valero, C. Rusniok, M. Lomma, D. Dervins-ravault et al., Analysis of the Legionella longbeachae Genome and Transcriptome Uncovers Unique Strategies to Cause Legionnaires' Disease, PLoS Genet, vol.6, p.1000851, 2010.

T. R. Cech, The generality of self-splicing RNA: Relationship to nuclear mRNA splicing, Cell, vol.44, pp.207-210, 1986.

L. Chen and Y. Liu, Male Sterility and Fertility Restoration in Crops, Annu. Rev. Plant Biol, vol.65, pp.579-606, 2014.

S. Cheng, B. Gutmann, X. Zhong, Y. Ye, M. F. Fisher et al., Redefining the structural motifs that determine RNA binding and RNA editing by pentatricopeptide repeat proteins in land plants, Plant J, vol.85, pp.532-547, 2016.

Y. Cho, Y. L. Qiu, P. Kuhlman, and J. D. Palmer, Explosive invasion of plant mitochondria by a group I intron, Proc. Natl. Acad. Sci. U. S. A, vol.95, pp.14244-14249, 1998.

T. Christianson and M. Rabinowitz, Identification of multiple transcriptional initiation sites on the yeast mitochondrial genome by in vitro capping with guanylyltransferase, J. Biol. Chem, vol.258, pp.14025-14033, 1983.

Z. Chrzanowska-lightowlers, J. Rorbach, and M. Minczuk, Human mitochondrial ribosomes can switch structural tRNAs -but when and why?, RNA Biol, vol.6286, pp.0-00, 2017.

Z. M. Chrzanowska-lightowlers, A. Pajak, and R. N. Lightowlers, Termination of protein synthesis in mammalian mitochondria, J. Biol. Chem, vol.286, pp.34479-34485, 2011.

D. E. Clapham, Calcium Signaling, Cell, vol.131, pp.1047-1058, 2007.

M. G. Claros, J. Perea, Y. Shu, F. A. Samatey, J. Popot et al., Limitations to in vivo Import of Hydrophobic Proteins into Yeast Mitochondria. The Case of a Cytoplasmically Synthesized Apocytochrome b, Eur. J. Biochem, vol.228, pp.762-771, 1995.

S. J. Clough and A. F. Bent, Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana, Plant J, vol.16, pp.735-743, 1998.

J. Colcombet, M. Lopez-obando, L. Heurtevin, C. Bernard, K. Martin et al., Systematic study of subcellular localization of Arabidopsis PPR proteins confirms a massive targeting to organelles, RNA Biol, vol.10, pp.1557-1575, 2013.

S. Coquille, A. Filipovska, T. Chia, L. Rajappa, J. P. Lingford et al., An artificial PPR scaffold for programmable RNA recognition, Nat. Commun, vol.5, p.5729, 2014.

J. A. Cotton and J. O. Mcinerney, Eukaryotic genes of archaebacterial origin are more important than the more numerous eubacterial genes, irrespective of function, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.17252-17255, 2010.

D. N. De-grey and A. , Forces maintaining organellar genomes: is any as strong as genetic code disparity or hydrophobicity?, BioEssays, vol.27, pp.436-446, 2005.

W. T. Daems and E. Wisse, Shape and attachment of the cristae mitochondriales in mouse hepatic cell mitochondria, J. Ultrastruct. Res, vol.16, pp.123-140, 1966.

C. Darwin, On the origin of species by means of natural selection, or, the preservation of favoured races in the struggle for life, 1859.

K. M. Davies, M. Strauss, B. Daum, J. H. Kief, H. D. Osiewacz et al., Macromolecular organization of ATP synthase and complex I in whole mitochondria, Proc. Natl. Acad. Sci, vol.108, pp.14121-14126, 2011.

P. J. Dekker, M. T. Ryan, J. Brix, H. Müller, A. Hönlinger et al., Preprotein translocase of the outer mitochondrial membrane: molecular dissection and assembly of the general import pore complex, Mol. Cell. Biol, vol.18, pp.6515-6524, 1998.

N. D. Denslow, J. C. Anders, and T. W. Brien, Bovine mitochondrial ribosomes possess a high affinity binding site for guanine nucleotides, J. Biol. Chem, vol.266, pp.9586-9590, 1991.

K. S. Derbikova, S. A. Levitsky, I. V. Chicherin, E. N. Vinogradova, and P. A. Kamenski, Activation of Yeast Mitochondrial Translation: Who Is in Charge?, Biochem, vol.83, pp.87-97, 2018.

N. Desai, A. Brown, A. Amunts, and V. Ramakrishnan, The structure of the yeast mitochondrial ribosome, Science, vol.355, pp.528-531, 2017.

R. G. Dorrell and C. J. Howe, What makes a chloroplast? Reconstructing the establishment of photosynthetic symbioses, J. Cell Sci, vol.125, pp.1865-1875, 2012.

I. Duarte, S. B. Nabuurs, R. Magno, and M. Huynen, Evolution and Diversification of the Organellar Release Factor Family, Mol. Biol. Evol, vol.29, pp.3497-3512, 2012.

P. Dube, M. Wieske, H. Stark, M. Schatz, J. Stahl et al., , 1998.

, The 80S rat liver ribosome at 25 å resolution by electron cryomicroscopy and angular reconstitution, Structure, vol.6, pp.389-399

M. R. Dyson, C. P. Lee, N. Mandal, B. L. Seong, U. Varshney et al., Identity of a Prokaryotic Initiator tRNA, The Translational Apparatus, pp.23-33, 1993.

R. C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res, vol.32, pp.1792-1797, 2004.

O. Emanuelsson, S. Brunak, G. Von-heijne, and H. Nielsen, Locating proteins in the cell using TargetP, SignalP and related tools, Nat. Protoc, vol.2, pp.953-971, 2007.

L. Eme, A. Spang, J. Lombard, C. W. Stairs, and T. J. Ettema, Archaea and the origin of eukaryotes, Nat. Rev. Microbiol, vol.15, pp.711-723, 2017.

H. Eubel, L. Jänsch, and H. Braun, New insights into the respiratory chain of plant mitochondria. Supercomplexes and a unique composition of complex II, Plant Physiol, vol.133, pp.274-286, 2003.

J. E. Feagin, M. I. Harrell, J. C. Lee, K. J. Coe, B. H. Sands et al., The Fragmented Mitochondrial Ribosomal RNAs of Plasmodium falciparum, PLoS One, vol.7, p.38320, 2012.

A. R. Fernie, F. Carrari, and L. J. Sweetlove, Respiratory metabolism: glycolysis, the TCA cycle and mitochondrial electron transport, Curr. Opin. Plant Biol, vol.7, pp.254-261, 2004.

J. Fey, A. Dietrich, A. Cosset, T. Desprez, and L. Drouard, Evolutionary aspects of "chloroplast-like" trnN and trnH expression in higher-plant mitochondria, Curr. Genet, vol.32, pp.358-360, 1997.

A. Filipovska and O. Rackham, Modular recognition of nucleic acids by PUF, TALE and PPR proteins, Mol. Biosyst, vol.8, p.699, 2012.

J. Forner, B. Weber, S. Thuss, S. Wildum, and S. Binder, Mapping of mitochondrial mRNA termini in Arabidopsis thaliana: t-elements contribute to 5' and 3' end formation, Nucleic Acids Res, vol.35, pp.3676-3692, 2007.

D. Fournier, G. A. Palidwor, S. Shcherbinin, A. Szengel, M. H. Schaefer et al., Functional and genomic analyses of alpha-solenoid proteins, PLoS One, vol.8, p.79894, 2013.

M. Frugier, T. Bour, M. Ayach, S. Santos, J. Rudinger-thirion et al., Low Complexity Regions behave as tRNA sponges to help co-translational folding of plasmodial proteins, FEBS Lett, vol.584, pp.448-454, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00526424

D. Gagliardi and C. J. Leaver, Polyadenylation accelerates the degradation of the mitochondrial mRNA associated with cytoplasmic male sterility in sunflower, EMBO J, vol.18, pp.3757-3766, 1999.

R. Gaur, D. Grasso, P. P. Datta, P. D. Krishna, G. Das et al., A single mammalian mitochondrial translation initiation factor functionally replaces two bacterial factors, Mol. Cell, vol.29, pp.180-190, 2008.

P. Giegé, Z. Konthur, G. Walter, and A. Brennicke, An ordered Arabidopsis thaliana mitochondrial cDNA library on high-density filters allows rapid systematic analysis of plant gene expression: a pilot study, Plant J, vol.15, pp.721-726, 1998.

M. Van-der-giezen, Hydrogenosomes and mitosomes: conservation and evolution of functions, J. Eukaryot. Microbiol, vol.56, pp.221-231, 2009.

A. B. Gipson, K. J. Morton, R. J. Rhee, S. Simo, J. A. Clayton et al., Disruptions in valine degradation affect seed development and germination in Arabidopsis, Plant J, vol.90, pp.1029-1039, 2017.

A. P. Gleave, A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome, Plant Mol. Biol, vol.20, pp.1203-1207, 1992.

A. Gobert, B. Gutmann, A. Taschner, M. Gössringer, J. Holzmann et al., A single Arabidopsis organellar protein has RNase P activity, Nat. Struct. Mol. Biol, vol.17, pp.740-744, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00508570

V. A. Gold, P. Chroscicki, P. Bragoszewski, and A. Chacinska, Visualization of cytosolic ribosomes on the surface of mitochondria by electron cryo-tomography, EMBO Rep, 2017.

S. Goldschmidt-reisin, M. Kitakawa, E. Herfurth, B. Wittmann-liebold, L. Grohmann et al., Mammalian mitochondrial ribosomal proteins. N-terminal amino acid sequencing, characterization, and identification of corresponding gene sequences, J. Biol. Chem, vol.273, pp.34828-34836, 1998.

M. W. Gray, Mitochondrial evolution, Cold Spring Harb. Perspect. Biol, vol.4, p.11403, 2012.

M. W. Gray, Mosaic nature of the mitochondrial proteome: Implications for the origin and evolution of mitochondria, Proc. Natl. Acad. Sci. U. S. A, vol.112, pp.10133-10138, 2015.

M. W. Gray, G. Burger, and B. F. Lang, Mitochondrial evolution, Science, vol.283, pp.1476-1481, 1999.

B. J. Greber and N. Ban, Structure and Function of the Mitochondrial Ribosome, Annu. Rev. Biochem, vol.85, 2016.

B. J. Greber, D. Boehringer, A. Leitner, P. Bieri, F. Voigts-hoffmann et al., Architecture of the large subunit of the mammalian mitochondrial ribosome, Nature, vol.505, pp.515-519, 2013.

B. J. Greber, P. Bieri, M. Leibundgut, A. Leitner, R. Aebersold et al., The complete structure of the 55S mammalian mitochondrial ribosome, Science, vol.348, pp.303-308, 2015.

J. Gregori, A. Sanchez, and V. J. , msmsTests: LC-MS/MS Differential Expression Tests, 2013.

L. Griparic and A. M. Van-der-bliek, The Many Shapes of Mitochondrial Membranes, Traffic, vol.2, pp.235-244, 2001.

J. Gu, M. Wu, R. Guo, K. Yan, J. Lei et al., The architecture of the mammalian respirasome, Nature, vol.537, pp.639-643, 2016.

J. M. Gualberto and K. J. Newton, Plant Mitochondrial Genomes: Dynamics and Mechanisms of Mutation, Annu. Rev. Plant Biol, vol.68, pp.225-252, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01521803

J. M. Gualberto, L. Lamattina, G. Bonnard, J. Weil, and J. Grienenberger, RNA editing in wheat mitochondria results in the conservation of protein sequences, Nature, vol.341, pp.660-662, 1989.

C. O. Gualerzi and C. L. Pon, Initiation of mRNA translation in prokaryotes, Biochemistry, vol.29, pp.5881-5889, 1990.

B. Gutmann, A. Gobert, and P. Giegé, Mitochondrial Genome Evolution and the Emergence of PPR Proteins, Advances in Botanical Research, pp.253-313, 2012.

B. Gutmann, A. Gobert, and P. Giegé, PRORP proteins support RNase P activity in both organelles and the nucleus in Arabidopsis, Genes Dev, vol.26, pp.1022-1027, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00701324

P. Haffter, T. W. Mcmullin, and T. D. Fox, A genetic link between an mRNA-specific translational activator and the translation system in yeast mitochondria, Genetics, vol.125, pp.495-503, 1990.

A. Hahn, K. Parey, M. Bublitz, D. J. Mills, V. Zickermann et al., Structure of a Complete ATP Synthase Dimer Reveals the Molecular Basis of Inner Mitochondrial Membrane Morphology, Mol. Cell, vol.63, pp.445-456, 2016.

N. Haïli, N. Arnal, M. Quadrado, S. Amiar, G. Tcherkez et al., The pentatricopeptide repeat MTSF1 protein stabilizes the nad4 mRNA in Arabidopsis mitochondria, Nucleic Acids Res, vol.41, pp.6650-6663, 2013.

N. Haïli, N. Planchard, N. Arnal, M. Quadrado, N. Vrielynck et al., The MTL1 Pentatricopeptide Repeat Protein Is Required for Both Translation and Processing Enzyme, Cell, vol.135, pp.462-474, 2016.

C. M. Hooper, I. R. Castleden, S. K. Tanz, N. Aryamanesh, and A. H. Millar, SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations, Nucleic Acids Res, vol.45, pp.1064-1074, 2017.

R. Horn, K. J. Gupta, and N. Colombo, Mitochondrion role in molecular basis of cytoplasmic male sterility, 2014.

M. J. Howard, W. H. Lim, C. A. Fierke, and M. Koutmos, Mitochondrial ribonuclease P structure provides insight into the evolution of catalytic strategies for precursor-tRNA 5' processing, Proc. Natl. Acad. Sci, vol.109, pp.16149-16154, 2012.

T. Hruz, O. Laule, G. Szabo, F. Wessendorp, S. Bleuler et al., Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes, Adv. Bioinformatics, p.420747, 2008.

D. Huchon, A. Szitenberg, S. Shefer, M. Ilan, and T. Feldstein, Mitochondrial group I and group II introns in the sponge orders Agelasida and Axinellida, BMC Evol. Biol, vol.15, p.278, 2015.

A. Jalal, C. Schwarz, C. Schmitz-linneweber, O. Vallon, J. Nickelsen et al., A Small Multifunctional Pentatricopeptide Repeat Protein in the Chloroplast of Chlamydomonas reinhardtii, Mol. Plant, vol.8, pp.412-426, 2015.

F. Jühling, J. Pütz, C. Florentz, and P. F. Stadler, Armless mitochondrial tRNAs in enoplea (nematoda), RNA Biol, vol.9, pp.1161-1166, 2012.

T. Jühling, E. Duchardt-ferner, S. Bonin, J. Wöhnert, J. Pütz et al., Small but large enough: structural properties of armless mitochondrial tRNAs from the nematode Romanomermis culicivorax, Nucleic Acids Res, vol.46, pp.9170-9180, 2018.

M. Kalanon and G. I. Mcfadden, Malaria, Plasmodium falciparum and its apicoplast, Biochem. Soc. Trans, vol.38, pp.775-782, 2010.

A. Karnkowska, V. Vacek, Z. Zubá?ová, S. C. Treitli, R. Petr?elková et al., A Eukaryote without a Mitochondrial Organelle, Curr. Biol, vol.26, pp.1274-1284, 2016.

M. R. Karpenahalli, A. N. Lupas, and J. Söding, TPRpred: a tool for prediction of TPR-, PPR-and SEL1-like repeats from protein sequences, BMC Bioinformatics, vol.8, issue.2, 2007.

J. Ke, R. Chen, T. Ban, X. E. Zhou, X. Gu et al., Structural basis for RNA recognition by a dimeric PPR-protein complex, Nat. Struct. Mol. Biol, vol.20, pp.1377-1382, 2013.

L. A. Kelley, S. Mezulis, C. M. Yates, M. N. Wass, and M. J. Sternberg, The Phyre2 web portal for protein modeling, prediction and analysis, Nat. Protoc, vol.10, pp.845-858, 2015.

H. Khatter, A. G. Myasnikov, S. K. Natchiar, and B. P. Klaholz, Structure of the human 80S ribosome, Nature, vol.520, pp.640-645, 2015.

L. E. Kirby and D. Koslowsky, Mitochondrial dual-coding genes in Trypanosoma brucei, PLoS Negl. Trop. Dis, vol.11, p.5989, 2017.

M. Kitakawa, H. R. Graack, L. Grohmann, S. Goldschmidt-reisin, E. Herfurth et al., Identification and characterization of the genes for mitochondrial ribosomal proteins of Saccharomyces cerevisiae, Eur. J. Biochem, vol.245, pp.449-456, 1997.

E. C. Koc, W. Burkhart, K. Blackburn, A. Moseley, H. Koc et al., A proteomics approach to the identification of mammalian mitochondrial small subunit ribosomal proteins, J. Biol. Chem, vol.275, pp.32585-32591, 2000.

E. C. Koc, W. Burkhart, K. Blackburn, M. B. Moyer, D. M. Schlatzer et al., The Large Subunit of the Mammalian Mitochondrial Ribosome, J. Biol. Chem, vol.276, pp.43958-43969, 2001.

C. M. Koehler, E. Jarosch, K. Tokatlidis, K. Schmid, R. J. Schweyen et al., Import of mitochondrial carriers mediated by essential proteins of the intermembrane space, Science, vol.279, pp.369-373, 1998.

S. E. Kolitz and J. R. Lorsch, Eukaryotic initiator tRNA: Finely tuned and ready for action, FEBS Lett, vol.584, pp.396-404, 2010.

A. Körte, V. Forsbach, T. Gottenöf, and G. Rödel, In vitro and in vivo studies on the mitochondrial import of CBS1, a translational activator of cytochrome b in yeast, Mol. Gen. Genet, vol.217, pp.162-167, 1989.

J. Kruszewski and P. Golik, Pentatricopeptide motifs in the N-terminal extension domain of yeast mitochondrial RNA polymerase Rpo41p are not essential for its function, Biochem, vol.81, pp.1101-1110, 2016.

W. Kühlbrandt, The Resolution Revolution, Science, vol.343, pp.1443-1444, 2014.

K. Kühn, U. Richter, E. H. Meyer, E. Delannoy, A. F. De-longevialle et al., Phage-type RNA polymerase RPOTmp performs gene-specific transcription in mitochondria of Arabidopsis thaliana, Plant Cell, vol.21, pp.2762-2779, 2009.

E. Kummer, M. Leibundgut, O. Rackham, R. G. Lee, D. Boehringer et al., Unique features of mammalian mitochondrial translation initiation revealed by cryo-EM, Nature, vol.560, pp.263-267, 2018.

A. Kuzmenko, G. C. Atkinson, S. Levitskii, N. Zenkin, T. Tenson et al., Mitochondrial translation initiation machinery: Conservation and diversification, Biochimie, vol.100, pp.132-140, 2014.

D. L. Lafontaine and D. Tollervey, The function and synthesis of ribosomes, Nat. Rev. Mol. Cell Biol, vol.2, pp.514-520, 2001.

M. Lagouge, A. Mourier, H. Ju-lee, H. Spåhr, T. Wai et al., SLIRP Regulates the Rate of Mitochondrial Protein Synthesis and Protects LRPPRC from Degradation, PLOS Genet. | DOI, 2015.

N. Lane, Energetics and genetics across the prokaryote-eukaryote divide, Biol. Direct, vol.6, p.35, 2011.

N. Lane, Serial endosymbiosis or singular event at the origin of eukaryotes?, J. Theor. Biol, vol.434, pp.58-67, 2017.

N. Lane, M. , and W. , The energetics of genome complexity, Nature, vol.467, pp.929-934, 2010.

B. F. Lang, G. Burger, C. J. O'kelly, R. Cedergren, G. B. Golding et al., An ancestral mitochondrial DNA resembling a eubacterial genome in miniature, Nature, vol.387, pp.493-497, 1997.

W. C. Lau and J. L. Rubinstein, Subnanometre-resolution structure of the intact Thermus thermophilus H+-driven ATP synthase, Nature, vol.481, pp.214-218, 2012.

M. Lechner, W. Rossmanith, R. K. Hartmann, C. Thölken, B. Gutmann et al., Distribution of Ribonucleoprotein and Protein-Only RNase P in Eukarya, Mol. Biol. Evol, vol.32, p.187, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01378700

K. Liere and T. Börner, Plant Mitochondria, 2011.

K. Liere, A. Weihe, and T. Börner, The transcription machineries of plant mitochondria and chloroplasts: Composition, function, and regulation, J. Plant Physiol, vol.168, pp.1345-1360, 2011.

R. N. Lightowlers and Z. M. Chrzanowska-lightowlers, Human pentatricopeptide proteins: only a few and what do they do?, RNA Biol, vol.10, pp.1433-1438, 2013.

R. Lill, K. Diekert, A. Kaut, H. Lange, W. Pelzer et al., The Essential Role of Mitochondria in the Biogenesis of Cellular Iron-Sulfur Proteins, Biol. Chem, vol.380, pp.1157-1166, 1999.

D. Litonin, M. Sologub, Y. Shi, M. Savkina, M. Anikin et al., Human Mitochondrial Transcription Revisited, J. Biol. Chem, vol.285, pp.18129-18133, 2010.

M. Liu and L. Spremulli, Interaction of Mammalian Mitochondrial Ribosomes with the Inner Membrane, J. Biol. Chem, vol.275, pp.29400-29406, 2000.

C. Lurin, C. Andrés, S. Aubourg, M. Bellaoui, F. Bitton et al., Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis, Plant Cell, vol.16, pp.2089-2103, 2004.

O. Malek and V. Knoop, Trans-splicing group II introns in plant mitochondria: the complete set of cis-arranged homologs in ferns, fern allies, and a hornwort, RNA, vol.4, pp.1599-1609, 1998.

S. Manna, An overview of pentatricopeptide repeat proteins and their applications, Biochimie, vol.113, pp.93-99, 2015.

G. M. Manthey and J. E. Mcewen, The product of the nuclear gene PET309 is required for translation of mature mRNA and stability or production of intron-containing RNAs derived from the mitochondrial COX1 locus of Saccharomyces cerevisiae, EMBO J, vol.14, pp.4031-4043, 1995.

J. Marienfeld, M. Unseld, and A. Brennicke, The mitochondrial genome of Arabidopsis is composed of both native and immigrant information, Trends Plant Sci, vol.4, pp.495-502, 1999.

J. Martijn, J. Vosseberg, L. Guy, P. Offre, and T. J. Ettema, Deep mitochondrial origin outside the sampled alphaproteobacteria, Nature, vol.557, pp.101-105, 2018.

W. Martin and M. J. Russell, On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells, Philos. Trans. R. Soc. B Biol. Sci, vol.358, pp.59-85, 2003.

W. Martin, T. Rujan, E. Richly, A. Hansen, S. Cornelsen et al., Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus, Proc. Natl. Acad. Sci, vol.99, pp.12246-12251, 2002.

D. P. Maxwell, Y. Wang, and L. Mcintosh, The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells, Proc. Natl. Acad. Sci, vol.96, pp.8271-8276, 1999.

A. E. Mcdonald and G. C. Vanlerberghe, Origins, evolutionary history, and taxonomic distribution of alternative oxidase and plastoquinol terminal oxidase, Comp. Biochem. Physiol. Part D Genomics Proteomics, vol.1, pp.357-364, 2006.

S. Melnikov, A. Ben-shem, N. Garreau-de-loubresse, L. Jenner, G. Yusupova et al., One core, two shells: bacterial and eukaryotic ribosomes, Nat. Struct. Mol. Biol, vol.19, pp.560-567, 2012.

W. C. Merrick, Cap-dependent and cap-independent translation in eukaryotic systems, Gene, vol.332, pp.1-11, 2004.

K. Mihara and R. Sato, Molecular cloning and sequencing of cDNA for yeast porin, an outer mitochondrial membrane protein: a search for targeting signal in the primary structure, EMBO J, vol.4, pp.769-774, 1985.

M. Minczuk, J. He, A. M. Duch, T. J. Ettema, A. Chlebowski et al., TEFM (c17orf42) is necessary for transcription of human mtDNA, Nucleic Acids Res, vol.39, pp.4284-4299, 2011.

R. G. Miranda, J. J. Mcdermott, and A. Barkan, RNA-binding specificity landscapes of designer pentatricopeptide repeat proteins elucidate principles of PPR-RNA interactions, Nucleic Acids Res, vol.46, pp.2613-2623, 2018.

P. Mitchell, Coupling of Phosphorylation to Electron and Hydrogen Transfer by a ChemiOsmotic type of Mechanism, Nature, vol.191, pp.144-148, 1961.

S. J. Mueller and R. Reski, Mitochondrial Dynamics and the ER: The Plant Perspective. Front, Cell Dev. Biol, vol.3, p.78, 2015.

A. W. Mühleip, F. Joos, C. Wigge, A. S. Frangakis, W. Kühlbrandt et al., Helical arrays of U-shaped ATP synthase dimers form tubular cristae in ciliate mitochondria, Proc. Natl. Acad. Sci. U. S. A, vol.113, pp.8442-8447, 2016.

A. G. Myasnikov, A. Simonetti, S. Marzi, and B. P. Klaholz, Structure-function insights into prokaryotic and eukaryotic translation initiation, Curr. Opin. Struct. Biol, vol.19, pp.300-309, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00420170

J. Noeske, M. R. Wasserman, D. S. Terry, R. B. Altman, S. C. Blanchard et al., Highresolution structure of the Escherichia coli ribosome, Nat. Struct. Mol. Biol, vol.22, pp.336-341, 2015.

J. Nosek and ?. Tomá?ka, Mitochondrial genome diversity: evolution of the molecular architecture and replication strategy, Curr. Genet, vol.44, pp.73-84, 2003.

J. Nunnari and A. Suomalainen, Mitochondria: In sickness and in health, Cell, 2012.

R. C. O'malley, C. C. Barragan, and J. R. Ecker, A user's guide to the Arabidopsis T-DNA insertion mutant collections, Methods Mol. Biol, vol.1284, pp.323-342, 2015.

N. O'toole, M. Hattori, C. Andres, K. Iida, C. Lurin et al., On the Expansion of the Pentatricopeptide Repeat Gene Family in Plants, Mol. Biol. Evol, vol.25, pp.1120-1128, 2008.

T. Obayashi, Y. Aoki, S. Tadaka, Y. Kagaya, and K. Kinoshita, ATTED-II in 2018: A Plant Coexpression Database Based on Investigation of the Statistical Property of the Mutual Rank Index, Plant Cell Physiol, vol.59, p.3, 2018.

D. Ojala, C. Merkel, R. Gelfand, A. , and G. , The tRNA genes punctuate the reading of genetic information in human mitochondrial DNA, Cell, vol.22, pp.393-403, 1980.

D. Ojala, J. Montoya, A. , and G. , tRNA punctuation model of RNA processing in human mitochondria, Nature, vol.290, pp.470-474, 1981.

K. Okuda, F. Myouga, R. Motohashi, K. Shinozaki, and T. Shikanai, Conserved domain structure of pentatricopeptide repeat proteins involved in chloroplast RNA editing, Proc. Natl. Acad. Sci, vol.104, pp.8178-8183, 2007.

K. Okuda, A. Chateigner-boutin, T. Nakamura, E. Delannoy, M. Sugita et al., Pentatricopeptide Repeat Proteins with the DYW Motif Have Distinct Molecular Functions in RNA Editing and RNA Cleavage in Arabidopsis Chloroplasts, PLANT CELL ONLINE, vol.21, pp.146-156, 2009.

T. Omura, Mitochondria-targeting sequence, a multi-role sorting sequence recognized at all steps of protein import into mitochondria, J. Biochem, vol.123, pp.1010-1016, 1998.

M. Ott and J. M. Herrmann, Co-translational membrane insertion of mitochondrially encoded proteins, Biochim. Biophys. Acta -Mol. Cell Res, vol.1803, pp.767-775, 2010.

M. Ott, M. Prestele, H. Bauerschmitt, S. Funes, N. Bonnefoy et al., Mba1, a membrane-associated ribosome receptor in mitochondria, EMBO J, vol.25, pp.1603-1610, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00132809

M. Ott, A. Amunts, and A. Brown, Organization and Regulation of Mitochondrial Protein Synthesis, Annu. Rev. Biochem, vol.85, 2016.

G. E. Palade, A small particulate component of the cytoplasm, J. Cell Biol, vol.1, pp.59-68, 1955.

S. F. Pearce, P. Rebelo-guiomar, A. R. Souza, C. A. Powell, L. Van-haute et al., Regulation of Mammalian Mitochondrial Gene Expression: Recent Advances, Trends Biochem. Sci, vol.42, pp.625-639, 2017.

R. Perrin, H. Lange, J. Grienenberger, and D. Gagliardi, AtmtPNPase is required for multiple aspects of the 18S rRNA metabolism in Arabidopsis thaliana mitochondria, Nucleic Acids Res, vol.32, pp.5174-5182, 2004.

K. Peters, K. Belt, and H. Braun, 3D Gel Map of Arabidopsis Complex I. Front, Plant Sci, vol.4, p.153, 2013.

E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt et al., UCSF Chimera?A visualization system for exploratory research and analysis, J. Comput. Chem, vol.25, pp.1605-1612, 2004.

S. Pfeffer, M. W. Woellhaf, J. M. Herrmann, and F. Förster, Organization of the mitochondrial translation machinery studied in situ by cryoelectron tomography, Nat. Commun, vol.6, p.6019, 2015.

F. Pinker, G. Bonnard, A. Gobert, B. Gutmann, K. Hammani et al., PPR proteins shed a new light on RNase P biology, RNA Biol, vol.10, pp.1457-1468, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00875474

F. Pinker, C. Schelcher, P. Fernandez-millan, A. Gobert, C. Birck et al., Biophysical analysis of Arabidopsis protein-only RNase P alone and in complex with tRNA provides a refined model of tRNA binding, J. Biol. Chem, vol.292, pp.13904-13913, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01581835

A. Poole and D. Penny, Engulfed by speculation, Nature, vol.447, pp.913-913, 2007.

M. F. Portereiko, NUCLEAR FUSION DEFECTIVE1 Encodes the Arabidopsis RPL21M Protein and Is Required for Karyogamy during Female Gametophyte Development and Fertilization, Plant Physiol, vol.141, pp.957-965, 2006.

C. G. Poutre and T. D. Fox, PET111, a Saccharomyces cerevisiae nuclear gene required for translation of the mitochondrial mRNA encoding cytochrome c oxidase subunit II, Genetics, vol.115, pp.637-647, 1987.

J. Prikryl, M. Rojas, G. Schuster, and A. Barkan, Mechanism of RNA stabilization and translational activation by a pentatricopeptide repeat protein, Proc. Natl. Acad. Sci. U. S. A, vol.108, pp.415-420, 2011.

M. Pusnik, I. Small, L. K. Read, T. Fabbro, and A. Schneider, Pentatricopeptide repeat proteins in Trypanosoma brucei function in mitochondrial ribosomes, Mol. Cell. Biol, vol.27, pp.6876-6888, 2007.

D. J. Ramrath, M. Niemann, M. Leibundgut, P. Bieri, C. Prange et al., Evolutionary shift toward protein-based architecture in trypanosomal mitochondrial ribosomes, Science, 2018.

R. Richter, J. Rorbach, A. Pajak, P. M. Smith, H. J. Wessels et al., A functional peptidyl-tRNA hydrolase, ICT1, has been recruited into the human mitochondrial ribosome, EMBO J, vol.29, pp.1116-1125, 2010.

R. Ringel, M. Sologub, Y. I. Morozov, D. Litonin, P. Cramer et al., Structure of human mitochondrial RNA polymerase, Nature, vol.478, pp.269-273, 2011.

M. D. Robinson, D. J. Mccarthy, and G. K. Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.26, pp.139-140, 2010.

A. Roll-mecak, B. S. Shin, T. E. Dever, and S. K. Burley, Engaging the ribosome: universal IFs of translation, Trends Biochem. Sci, vol.26, pp.705-709, 2001.

B. Ruzzenente, M. D. Metodiev, A. Wredenberg, A. Bratic, C. B. Park et al., LRPPRC is necessary for polyadenylation and coordination of translation of mitochondrial mRNAs, EMBO J, vol.31, pp.443-456, 2012.

L. Sagan, On the origin of mitosing cells, J. Theor. Biol, vol.14, pp.225-231, 1967.

T. Salinas-giegé, R. Giegé, and P. Giegé, tRNA Biology in Mitochondria, Int. J. Mol. Sci, vol.16, pp.4518-4559, 2015.

T. Salinas-giegé, M. Cavaiuolo, V. Cognat, E. Ubrig, C. Remacle et al., Polycytidylation of mitochondrial mRNAs in Chlamydomonas reinhardtii, Nucleic Acids Res, pp.1-11, 2017.

T. Salinas, A. M. Duchêne, and L. Drouard, Recent advances in tRNA mitochondrial import, Trends Biochem. Sci, vol.33, pp.320-329, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00309524

V. Salone, M. Rüdinger, M. Polsakiewicz, B. Hoffmann, M. Groth-malonek et al., A hypothesis on the identification of the editing enzyme in plant organelles, FEBS Lett, vol.581, pp.4132-4138, 2007.

J. Santo-domingo and N. Demaurex, Perspectives on: SGP symposium on mitochondrial physiology and medicine: the renaissance of mitochondrial pH, J. Gen. Physiol, vol.139, pp.415-423, 2012.

J. Sapp, The prokaryote-eukaryote dichotomy: meanings and mythology. Microbiol, Mol. Biol. Rev, vol.69, pp.292-305, 2005.

B. Schaefke, W. Sun, Y. Li, L. Fang, C. et al., The evolution of posttranscriptional regulation, Wiley Interdiscip. Rev. RNA, vol.9, p.1485, 2018.

C. Schelcher, C. Sauter, and P. Giegé, Mechanistic and Structural Studies of Protein-Only RNase P Compared to Ribonucleoproteins Reveal the Two Faces of the Same Enzymatic Activity, Biomol, vol.6, p.30, 2016.

A. F. Schimper, Über die Entwicklung der Chlorophyllkörner und Farbkörper, 1883.

C. Schmitz-linneweber and I. Small, Pentatricopeptide repeat proteins: a socket set for organelle gene expression, Trends Plant Sci, vol.13, pp.663-670, 2008.

E. Scolnick, R. Tompkins, T. Caskey, and M. Nirenberg, Release factors differing in specificity for terminator codons, Proc. Natl. Acad. Sci. U. S. A, vol.61, pp.768-774, 1968.

G. S. Shadel, Coupling the mitochondrial transcription machinery to human disease, Trends Genet, vol.20, pp.513-519, 2004.

M. R. Sharma, E. C. Koc, P. P. Datta, T. M. Booth, L. L. Spremulli et al., Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteins, Cell, vol.115, pp.97-108, 2003.

M. R. Sharma, T. M. Booth, L. Simpson, D. A. Maslov, and R. K. Agrawal, Structure of a mitochondrial ribosome with minimal RNA, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.9637-9642, 2009.

C. Shen, D. Zhang, Z. Guan, Y. Liu, Z. Yang et al., Structural basis for specific single-stranded RNA recognition by designer pentatricopeptide repeat proteins, Nat. Commun, vol.7, p.11285, 2016.

T. Shikanai and K. Okuda, In Vitro RNA-Binding Assay for Studying Trans-Factors for RNA Editing in Chloroplasts, Methods in Molecular Biology, pp.199-208, 2011.

J. Shine and L. Dalgarno, The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites, Proc. Natl. Acad. Sci. U. S. A, vol.71, pp.1342-1346, 1974.

S. Shoji, C. M. Dambacher, Z. Shajani, J. R. Williamson, and P. G. Schultz, Systematic Chromosomal Deletion of Bacterial Ribosomal Protein Genes, J. Mol. Biol, vol.413, pp.751-761, 2011.

S. J. Siira, H. Spåhr, A. J. Shearwood, B. Ruzzenente, N. Larsson et al., LRPPRC-mediated folding of the mitochondrial transcriptome, Nat. Commun, vol.8, p.1532, 2017.

D. Silva, D. Tu, Y. Amunts, A. Fontanesi, F. Barrientos et al., Mitochondrial ribosome assembly in health and disease, Cell Cycle, vol.14, pp.2226-2250, 2015.

C. Sirrenberg, M. F. Bauer, B. Guiard, W. Neupert, and M. Brunner, Import of carrier proteins into the mitochondrial inner membrane mediated by Tim22, Nature, vol.384, pp.582-585, 1996.

D. B. Sloan, A. J. Alverson, J. P. Chuckalovcak, M. Wu, D. E. Mccauley et al., Rapid Evolution of Enormous, Multichromosomal Genomes in Flowering Plant Mitochondria with Exceptionally High Mutation Rates, PLoS Biol, vol.10, p.1001241, 2012.

D. B. Sloan, Z. Wu, and J. Sharbrough, Correction of Persistent Errors in Arabidopsis Reference Mitochondrial Genomes, Plant Cell, vol.30, pp.525-527, 2018.

D. B. Sloan, J. M. Warren, A. M. Williams, Z. Wu, S. E. Abdel-ghany et al., Cytonuclear integration and co-evolution, Nat. Rev. Genet, vol.19, pp.635-648, 2018.

E. O. Van-der-sluis, H. Bauerschmitt, T. Becker, T. Mielke, J. Frauenfeld et al., Parallel Structural Evolution of Mitochondrial Ribosomes and OXPHOS Complexes, Genome Biol. Evol, vol.7, pp.1235-1251, 2015.

I. D. Small and N. Peeters, The PPR motif -a TPR-related motif prevalent in plant organellar proteins, Trends Biochem. Sci, vol.25, pp.46-47, 2000.

D. R. Smith, J. Hua, and R. W. Lee, Evolution of linear mitochondrial DNA in three known lineages of Polytomella, Curr. Genet, vol.56, pp.427-438, 2010.

P. Smits, J. A. Smeitink, L. P. Van-den-heuvel, M. A. Huynen, and T. J. Ettema, , 2007.

, Reconstructing the evolution of the mitochondrial ribosomal proteome, Nucleic Acids Res, vol.35, pp.4686-4703

I. C. Soto, F. Fontanesi, R. S. Myers, P. Hamel, and A. Barrientos, A Heme-Sensing Mechanism in the Translational Regulation of Mitochondrial Cytochrome c Oxidase Biogenesis, Cell Metab, vol.16, pp.801-813, 2012.

J. S. Sousa, D. J. Mills, J. Vonck, and W. Kühlbrandt, , p.144, 2016.

J. S. Sousa, E. D'imprima, and J. Vonck, Mitochondrial Respiratory Chain Complexes, pp.167-227, 2018.

P. M. Sousa, M. A. Videira, F. A. Santos, B. L. Hood, T. P. Conrads et al., The bc:caa3 supercomplexes from the Gram positive bacterium Bacillus subtilis respiratory chain: A megacomplex organization?, Arch. Biochem. Biophys, vol.537, pp.153-160, 2013.

R. R. Staples and C. L. Dieckmann, Suppressor analyses of temperature-sensitive cbp1 strains of Saccharomyces cerevisiae: the product of the nuclear gene SOC1 affects mitochondrial cytochrome b mRNA post-transcriptionally, Genetics, vol.138, pp.565-575, 1994.

O. Stehling and R. Lill, The role of mitochondria in cellular iron-sulfur protein biogenesis: mechanisms, connected processes, and diseases, Cold Spring Harb. Perspect. Biol, vol.5, p.11312, 2013.

D. Stock, Molecular Architecture of the Rotary Motor in ATP Synthase, Science, vol.286, pp.1700-1705, 1999.

B. Stoll and S. Binder, Two NYN domain containing putative nucleases are involved in transcript maturation in Arabidopsis mitochondria, Plant J, vol.85, pp.278-288, 2016.

B. Stoll, D. Zendler, and S. Binder, RNA Processing Factor 7 and Polynucleotide Phosphorylase Are Necessary for Processing and Stability of nad2 mRNA in Arabidopsis Mitochondria, RNA Biol, vol.11, pp.968-976, 2014.

T. Sun, S. Bentolila, and M. R. Hanson, The Unexpected Diversity of Plant Organelle RNA Editosomes, Trends Plant Sci, vol.21, pp.962-973, 2016.

G. Szyrach, M. Ott, N. Bonnefoy, W. Neupert, J. M. Herrmann et al., Ribosome binding to the Oxa1 complex facilitates co-translational protein insertion in mitochondria, EMBO J, vol.22, pp.6448-6457, 2003.

J. Taanman, The mitochondrial genome: structure, transcription, translation and replication, Biochim. Biophys. Acta -Bioenerg, vol.1410, pp.103-123, 1999.

M. Takenaka, D. Verbitskiy, J. A. Van-der-merwe, A. Zehrmann, and A. Brennicke, The process of RNA editing in plant mitochondria, Mitochondrion, vol.8, pp.35-46, 2008.

R. Temperley, R. Richter, S. Dennerlein, R. N. Lightowlers, and Z. M. Chrzanowska-lightowlers, Hungry codons promote frameshifting in human mitochondrial ribosomes, Science, vol.327, p.301, 2010.

R. Tomecki, A. Dmochowska, K. Gewartowski, A. Dziembowski, and P. P. Stepien, Identification of a novel human nuclear-encoded mitochondrial poly(A) polymerase, Nucleic Acids Res, vol.32, pp.6001-6014, 2004.

S. Tyagi, V. Pande, and A. Das, Whole mitochondrial genome sequence of an Indian Plasmodium falciparum field isolate, Korean J. Parasitol, vol.52, pp.99-103, 2014.

M. Unseld, J. R. Marienfeld, P. Brandt, and A. Brennicke, The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides, Nat. Genet, vol.15, pp.57-61, 1997.

M. Uyttewaal, H. Mireau, M. Rurek, K. Hammani, N. Arnal et al., PPR336 is Associated with Polysomes in Plant Mitochondria, J. Mol. Biol, vol.375, pp.626-636, 2008.

J. E. Vance, MAM (mitochondria-associated membranes) in mammalian cells: Lipids and beyond, Biochim. Biophys. Acta -Mol. Cell Biol. Lipids, vol.1841, pp.595-609, 2014.

G. Vanlerberghe, Alternative Oxidase: A Mitochondrial Respiratory Pathway to Maintain Metabolic and Signaling Homeostasis during Abiotic and Biotic Stress in Plants, Int. J. Mol. Sci, vol.14, pp.6805-6847, 2013.

A. Verschoor, J. R. Warner, S. Srivastava, R. A. Grassucci, and J. Frank, Three-dimensional structure of the yeast ribosome, Nucleic Acids Res, vol.26, pp.655-661, 1998.

C. Wang, Y. , and R. J. , The Role of Mitochondria in Apoptosis, Annu. Rev. Genet, vol.43, p.95, 2009.

S. Wang, G. Bai, S. Wang, L. Yang, F. Yang et al., Chloroplast RNA-Binding Protein RBD1 Promotes Chilling Tolerance through 23S rRNA Processing in Arabidopsis, PLOS Genet, vol.12, p.1006027, 2016.

M. Weisser, T. Schäfer, M. Leibundgut, D. Böhringer, C. H. Aylett et al., Structural and Functional Insights into Human Re-initiation Complexes, Mol. Cell, vol.67, pp.447-456, 2017.

S. Wende, E. G. Platzer, F. Jühling, J. Pütz, C. Florentz et al., Biological evidence for the world's smallest tRNAs, Biochimie, vol.100, pp.151-158, 2014.

J. F. Wolters, K. Chiu, and H. L. Fiumera, Population structure of mitochondrial genomes in Saccharomyces cerevisiae, BMC Genomics, vol.16, p.451, 2015.

Y. Yagi, S. Hayashi, K. Kobayashi, T. Hirayama, and T. Nakamura, Elucidation of the RNA Recognition Code for Pentatricopeptide Repeat Proteins Involved in Organelle RNA Editing in Plants, PLoS One, vol.8, p.57286, 2013.

T. Yamashita, E. Nakamaru-ogiso, H. Miyoshi, A. Matsuno-yagi, Y. et al., Roles of bound quinone in the single subunit NADH-quinone oxidoreductase (Ndi1) from Saccharomyces cerevisiae, J. Biol. Chem, vol.282, pp.6012-6020, 2007.

P. Yin, Q. Li, C. Yan, Y. Liu, J. Liu et al., , 2013.

, Structural basis for the modular recognition of single-stranded RNA by PPR proteins, Nature, vol.504, pp.168-171

A. Yonath, Large facilities and the evolving ribosome, the cellular machine for genetic-code translation, J. R. Soc. Interface, vol.6, pp.575-585, 2009.

G. Yusupova, L. Jenner, B. Rees, D. Moras, Y. et al., Structural basis for messenger RNA movement on the ribosome, Nature, vol.444, pp.391-394, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00188236

K. Zaremba-niedzwiedzka, E. F. Caceres, J. H. Saw, D. Bäckström, L. Juzokaite et al., Asgard archaea illuminate the origin of eukaryotic cellular complexity, Nature, vol.541, pp.353-358, 2017.

R. Zeng, E. Smith, and A. Barrientos, Yeast Mitoribosome Large Subunit Assembly Proceeds by Hierarchical Incorporation of Protein Clusters and Modules on the Inner Membrane, Cell Metab, vol.27, pp.645-656, 2018.

X. Zeng, A. Hourset, and A. Tzagoloff, The Saccharomyces cerevisiae ATP22 Gene Codes for the Mitochondrial ATPase Subunit 6-Specific Translation Factor, Genetics, vol.175, pp.55-63, 2006.

K. Ziaja, G. Michaelis, and T. Lisowsky, Nuclear Control of the Messenger RNA Expression for Mitochondrial ATPase Subunit 9 in a New Yeast Mutant, J. Mol. Biol, vol.229, pp.909-916, 1993.

C. Zimmer, On the Origin of Eukaryotes, Science, vol.325, pp.666-668, 2009.

, Résumé en français

, Résultats Au cours de ma thèse, j'ai tout d'abord établi un protocole efficace de purification de mitochondries d'Arabidopsis thaliana à partir de cultures cellulaires

P. Hamman, De plus un suivie de la purification a été réalisé à l'aide d'anticorps permettant soit la détection d'une protéine ribosomale cytosolique soit d'une protéine ribosomale mitochondriale. Pour me permettre d'analyser de façon efficace la composition du ribosome mitochondrial d'Arabidopsis, j'ai créé une lignée de plante complémentée exprimant avec une version étiquetée d'une de mes protéines candidates, -Esplanade), mais également directement sur microscope électronique à transmission en collaboration avec Yaser Hashem (IBMC, Strasbourg puis INSERM Bordeaux), 2008.

, utilisé cette lignée pour purifier des mitochondries et réaliser des co-immuno-précipitation de rPPR1HA. La co-immuno-précipitation a permis de confirmer que rPPR1 était un composant du mitoribosome d'Arabidopsis, associé à la petite sous-unité

, En croisant les données de protéomiques obtenues par purification biochimique classique avec mes données de co-immuno-précipitation, j'ai pu obtenir une liste complète des composants protéiques du mitoribosome d'Arabidopsis. Cela m'a permis d'établir que le mitoribosome est constitué de 81 protéines différentes, dont 19 sont spécifiques des plantes. Parmi ces protéines, 10 font partie de la famille des protéines PPR. En séparant biochimiquement petite et grande sousunités du ribosome

, L'analyse par cryo-électron microscopie des mitoribosomes d'Arabidopsis a permis de