T. Kanda, K. Ishii, and H. Kawaguchi, High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material, Radiology, vol.270, pp.834-841, 2014.

Y. Errante, V. Cirimele, and C. A. Mallio, Progressive increase of T1 signal intensity of the dentate nucleus on unenhanced magnetic resonance images is associated with cumulative doses of intravenously administered gadodiamide in patients with normal renal function, suggesting dechelation, Invest Radiol, vol.49, pp.685-690, 2014.

L. D. Weberling, P. J. Kieslich, and P. Kickingereder, Increased signal intensity in the dentate nucleus on unenhanced T1-weighted images after gadobenate dimeglumine administration, Invest Radiol, vol.50, pp.743-748, 2015.

V. M. Runge, Safety of the gadolinium-based contrast agents for magnetic resonance imaging, focusing in part on their accumulation in the brain and especially the dentate nucleus, Invest Radiol, vol.51, pp.273-279, 2016.

R. Geenen and G. P. Krestin, Non-tissue specific MR contrast media, Contrast Media. Safety Issues and ESUR Guidelines, pp.107-120, 2006.

R. J. Mcdonald, J. S. Mcdonald, and D. F. Kallmes, Intracranial gadolinium deposition after contrast-enhanced MR imaging, Radiology, vol.275, pp.772-782, 2015.

D. Food and . Administration, FDA Drug Safety Communication: FDA evaluating the risk of brain deposits with repeated use of gadolinium-based contrast agents for magnetic resonance imaging (MRI), 2015.

, European Medicine Agency. PRAC List of Questions. Procedure No. EMEA, 2016.

P. Robert, S. Lehericy, and S. Grand, T1-Weighted hypersignal in the deep cerebellar nuclei after repeated administrations of gadolinium-based contrast agents in healthy rats: difference between linear and macrocyclic agents, Invest Radiol, vol.50, pp.473-480, 2015.

P. Robert, X. Violas, and S. Grand, Linear gadolinium-based contrast agents are associated with brain gadolinium retention in healthy rats, Invest Radiol, vol.51, pp.73-82, 2016.

T. Grobner, Gadolinium-a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis?, Nephrol Dial Transplant, vol.21, pp.1104-1108, 2006.

M. Port, J. M. Idée, and C. Medina, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review, Biometals, vol.21, pp.469-490, 2008.

J. M. Idée, M. Port, and A. Dencausse, Involvement of gadolinium chelates in the mechanism of nephrogenic systemic fibrosis: an update, Radiol Clin North Am, vol.47, pp.855-869, 2009.

N. Fretellier, J. M. Idée, and A. Dencausse, Comparative in vivo dissociation of gadolinium chelates in renally impaired rats: a relaxometry study, Invest Radiol, vol.46, pp.292-300, 2011.

A. European-medicine, Assessment report for Gadolinium-containing contrast agents. Procedure No. EMEA/H/A-31/1097, 2010.

D. Food and . Administration, FDA Drug Safety Communication: New warnings for using gadolinium based contrast agents in patients with kidney dysfunction, 2010.

O. K. Duru, R. B. Vargas, and D. Kermah, High prevalence of stage 3 chronic kidney disease in older adults despite normal serum creatinine, J Gen Intern Med, vol.24, pp.86-92, 2009.

S. Barbieri, C. Schroeder, and J. M. Froehlich, High signal intensity in dentate nucleus and globus pallidus on unenhanced T1-weighted MR images in three patients with impaired renal function and vascular calcification, Contrast Media Mol Imaging, vol.11, pp.245-250, 2016.

Y. Cao, Y. Zhang, and G. Shih, Effect of renal function on gadolinium-related signal increases on unenhanced T1-weighted brain magnetic resonance imaging, Invest Radiol, vol.51, pp.677-682, 2016.

D. Food and . Administration, Center for Drug Evaluation and Research. Guidance for Industry. Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers, 2005.

A. Zarghami, F. Alinezhad, and S. Pandamooz, A modified method for cerebrospinal fluid collection in anesthetized rat and evaluation of the efficacy, Int J Mol Cell Med, vol.2, pp.97-98, 2013.

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, 2007.

T. Frenzel, P. Lengsfeld, and H. Schirmer, Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 degrees C, Invest Radiol, vol.43, pp.817-828, 2008.

N. Fretellier, N. Bouzian, and N. Parmentier, Nephrogenic systemic fibrosis-like effects of magnetic resonance imaging contrast agents in rats with adenineinduced renal failure, Toxicol Sci, vol.131, pp.259-270, 2013.

H. Pietsch, P. Lengsfeld, and T. Steger-hartmann, Impact of renal impairment on long-term retention of gadolinium in the rodent skin following the administration of gadolinium-based contrast agents, Invest Radiol, vol.44, pp.226-233, 2009.

S. Hirano and K. T. Suzuki, Exposure, metabolism, and toxicity of rare earths and related compounds, Environ Health Perspect, vol.104, issue.1, pp.85-95, 1996.

C. Vidaud, D. Bourgeois, and D. Meyer, Bone as target organ for metals: the case of f-elements, Chem Res Toxicol, vol.25, pp.1161-1175, 2012.

L. E. , Revisiting the pharmacokinetic profiles of gadolinium-based contrast agents: differences in long-term biodistribution and excretion, Invest Radiol, vol.51, pp.691-700, 2016.

C. Thakral, J. Alhariri, and J. L. Abraham, Long-term retention of gadolinium in tissues from nephrogenic systemic fibrosis patient after multiple gadolinium-enhanced MRI scans: case report and implications, Contrast Media Mol Imaging, vol.2, pp.199-205, 2007.

V. R. Drel, C. Tan, and J. L. Barnes, Centrality of bone marrow in the severity of gadolinium-based contrast-induced systemic fibrosis, FASEB J, vol.30, pp.3026-3038, 2016.

P. S. Rowe, L. V. Zelenchuk, and J. S. Laurence, Do ASARM peptides play a role in nephrogenic systemic fibrosis?, Am J Physiol Renal Physiol, vol.309, pp.764-769, 2015.

S. Laurent, L. V. Elst, and F. Copoix, Stability of MRI paramagnetic contrast media: a proton relaxometric protocol for transmetallation assessment, Invest Radiol, vol.36, pp.115-122, 2001.

J. Lohrke, A. L. Frisk, and T. Frenzel, Gadolinium deposition in skin and brain after multiple, extended doses of linear and macrocyclic gadolinium chelates in rats, RSNA

, 101th Scientific Assembly and Annual Meeting

C. E. Johanson, J. A. Duncan, and P. M. Klinge, Multiplicity of cerebrospinal fluid functions: New challenges in health and disease, Cerebrospinal Fluid Res, vol.5, p.10, 2008.

W. Zheng, Toxicology of choroid plexus: special reference to metal-induced neurotoxicities, Microsc Res Tech, vol.52, pp.89-103, 2001.

R. Nau, F. Sörgel, and H. Eiffert, Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections, Clin Microbiol Rev, vol.23, pp.858-883, 2010.

S. A. Liddelow, Development of the choroid plexus and blood-CSF barrier, Front Neurosci, vol.9, p.32, 2015.

G. Jost, D. C. Lenhard, and M. A. Sieber, Signal increase on unenhanced T1-weighted images in the rat brain after repeated, extended doses of gadoliniumbased contrast agents: comparison of linear and macrocyclic agents, Invest Radiol, vol.51, pp.83-89, 2016.

S. Naganawa, K. Suzuki, and M. Yamazaki, Serial scans in healthy volunteers following intravenous administration of gadoteridol: time course of contrast enhancement in various cranial fluid spaces, Magn Reson Med Sci, vol.13, pp.7-13, 2014.

B. F. Popescu, C. A. Robinson, and A. Rajput, Iron, copper, and zinc distribution of the cerebellum, Cerebellum, vol.8, pp.74-79, 2009.

A. H. Koeppen, R. L. Ramirez, and D. Yu, Friedreich's ataxia causes redistribution of iron, copper, and zinc in the dentate nucleus, Cerebellum, vol.11, pp.845-860, 2012.

R. A. Fishman, Permeability changes in experimental uremic encephalopathy, Arch Intern Med, vol.126, pp.835-837, 1970.

K. Hosoya and M. Tachikawa, Roles of organic anion/cation transporters at the bloodbrain and blood-cerebrospinal fluid barriers involving uremic toxins, Clin Exp Nephrol, vol.15, pp.478-485, 2011.

A. T. Rai and J. P. Hogg, Persistence of gadolinium in CSF: a diagnostic pitfall in patients with end-stage renal disease, AJNR Am J Neuroradiol, vol.22, pp.1357-1361, 2001.

B. V. Maramattom, E. M. Manno, and E. F. Wijdicks, Gadolinium encephalopathy in a patient with renal failure, Neurology, vol.64, pp.1276-1278, 2005.

F. K. Hui and M. Mullins, Persistence of gadolinium contrast enhancement in CSF: a possible harbinger of gadolinium neurotoxicity?, AJNR Am J Neuroradiol, vol.30, p.1, 2009.

M. Manto, Toxic agents causing cerebellar ataxia, Handbook of Clinical Neurology. Ataxic Disorders, vol.103, pp.201-213, 2012.

A. A. Kartamihardja, T. Nakajima, and S. Kameo, Impact of impaired renal function on gadolinium retention after administration of gadolinium-based contrast agents in a mouse model, Invest Radiol, vol.51, pp.655-660, 2016.

A. A. Kartamihardja, T. Nakajima, and S. Kameo, Distribution and clearance of retained gadolinium in the brain: differences between linear and macrocyclic gadolinium based contrast agents in a mouse model, Br J Radiol, vol.89, 2016.

O. Rees and S. K. Agarwal, Nephrogenic systemic fibrosis: UK survey of the use of gadolinium-based contrast media, Clin Radiol, vol.65, pp.636-641, 2010.

B. Snaith, M. A. Harris, and R. Clarke, Screening prior to gadolinium base contrast agent administration: a UK survey of guideline implementation and adherence. Radiography, 2016.

M. Port, J. M. Idée, and C. Medina, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review, Biometals, vol.21, pp.469-490, 2008.

P. Robert, X. Violas, and S. Grand, Linear gadolinium-based contrast agents are associated with brain gadolinium retention in healthy rats, Invest Radiol, vol.51, pp.73-82, 2016.

G. Jost, D. C. Lenhard, and M. A. Sieber, Signal increase on unenhanced T1-weighted images in the rat brain after repeated, extended doses of gadolinium-based contrast agents: comparison of linear and macrocyclic agents, Invest Radiol, vol.51, pp.83-89, 2016.

G. W. White, W. A. Gibby, and M. F. Tweedle, Comparison of Gd(DTPA-BMA) (Omniscan) versus Gd(HP-DO3A) (ProHance) relative to gadolinium retention in human bone tissue by inductively coupled plasma mass spectroscopy, Invest Radiol, vol.41, pp.272-278, 2006.

Y. Errante, V. Cirimele, and C. A. Mallio, Progressive increase of T1 signal intensity of the dentate nucleus on unenhanced magnetic resonance images is associated with cumulative doses of intravenously administered gadodiamide in patients with normal renal function, suggesting dechelation, Invest Radiol, vol.49, pp.685-690, 2014.

L. D. Weberling, P. J. Kieslich, and P. Kickingereder, Increased signal intensity in the dentate nucleus on unenhanced T1-weighted images after gadobenate dimeglumine administration, Invest Radiol, vol.50, pp.743-748, 2015.

R. J. Mcdonald, J. S. Mcdonald, and D. F. Kallmes, Intracranial gadolinium deposition after contrast-enhanced MR imaging, Radiology, vol.275, pp.772-782, 2015.

A. Radbruch, L. D. Weberling, and P. J. Kieslich, Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent, Radiology, vol.275, pp.783-791, 2015.

T. Kanda, K. Ishii, and H. Kawaguchi, High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material, Radiology, vol.270, pp.834-841, 2014.

A. Radbruch, L. D. Weberling, and P. J. Kieslich, Intraindividual analysis of signal intensity changes in the dentate nucleus after consecutive serial applications of linear and macrocyclic gadolinium-based contrast agents, Invest Radiol, vol.51, pp.683-690, 2016.

A. A. Kartamihardja, T. Nakajima, and S. Kameo, Distribution and clearance of retained gadolinium in the brain: differences between linear and macrocyclic gadolinium based contrast agents in a mouse model, Br J Radiol, vol.89, 2016.

J. Lohrke, A. L. Frisk, and T. Frenzel, Histology and gadolinium distribution in the rodent brain after the administration of cumulative high doses of linear and macrocyclic gadolinium-based contrast agents, Invest Radiol, vol.52, pp.324-333, 2017.

M. Scala, M. Koob, and S. De-buttet, A Pharmacokinetics, efficacy, and safety study of gadoterate meglumine in pediatric subjects aged younger than 2 years, Invest Radiol, vol.53, pp.70-79, 2018.

D. R. Roberts, A. R. Chatterjee, and M. Yazdani, Pediatric patients demonstrate progressive T1-weighted hyperintensity in the dentate nucleus following multiple doses of gadolinium-based contrast agent, AJNR Am J Neuroradiol, vol.37, pp.2340-2347, 2016.

D. M. Renz, S. Kümpel, and J. Böttcher, Comparison of unenhanced T1-weighted signal intensities within the dentate nucleus and the globus pallidus after serial applications of gadopentetate dimeglumine versus gadobutrol in a pediatric population, Invest Radiol, vol.53, pp.119-127, 2018.

J. Prola-netto, M. Woods, and V. Roberts, Gadolinium chelate safety in pregnancy: barely detectable gadolinium levels in the juvenile nonhuman primate after in utero exposure, Radiology, vol.286, pp.122-128, 2018.

K. Erdene, T. Nakajima, and S. Kameo, Organ retention of gadolinium in mother and pup mice: effect of pregnancy and type of gadolinium-based contrast agents, Jpn J Radiol, vol.35, pp.568-573, 2017.

M. A. Khairinisa, Y. Takatsuru, and I. Amano, The effect of perinatal gadoliniumbased contrast agents on adult mice behavior, Invest Radiol, vol.53, pp.110-118, 2018.

S. Barbieri, C. Schroeder, and J. M. Froehlich, High signal intensity in dentate nucleus and globus pallidus on unenhanced T1-weighted MR images in three patients with impaired renal function and vascular calcification, Contrast Media Mol Imaging, vol.11, pp.245-250, 2016.

Y. Cao, Y. Zhang, and G. Shih, Effect of renal function on gadolinium-related signal increases on unenhanced T1-weighted brain magnetic resonance imaging, Invest Radiol, vol.51, pp.677-682, 2016.

M. A. Cenci, I. Q. Whishaw, and T. Schallert, Animal models of neurological deficits: how relevant is the rat?, Nat Rev Neurosci, vol.3, pp.574-579, 2002.

A. Shah, T. Garzon-muvdi, and R. Mahajan, Animal models of neurological disease, Adv Exp Med Biol, vol.671, pp.23-40, 2010.

M. Rasschaert, J. M. Idée, and P. Robert, Moderate renal failure accentuates T1 signal enhancement in the deep cerebellar nuclei of gadodiamide-treated rats, Invest Radiol, vol.52, pp.255-264, 2017.

L. A. Stevens, G. Viswanathan, and D. E. Weiner, Chronic kidney disease and end-stage renal disease in the elderly population: current prevalence, future projections, and clinical significance, Adv Chronic Kidney Dis, vol.17, pp.293-301, 2010.

O. K. Duru, R. B. Vargas, and D. Kermah, High prevalence of stage 3 chronic kidney disease in older adults despite normal serum creatinine, J Gen Intern Med, vol.24, pp.86-92, 2009.

A. European-medicine, Assessment report for gadolinium-containing contrast agents. Procedure No. EMEA/H/A-31/1097, 2010.

V. M. Runge, Safety of the gadolinium-based contrast agents for magnetic resonance imaging, focusing in part on their accumulation in the brain and especially the dentate nucleus, Invest Radiol, vol.51, pp.273-279, 2016.

T. Kanda, Y. Nakai, and H. Oba, Gadolinium deposition in the brain, Magn Reson Imaging, vol.34, pp.1346-1350, 2016.

Y. Zhang, Y. Cao, and G. L. Shih, Extent of signal hyperintensity on unenhanced T1-weighted brain MR images after more than 35 administrations of linear gadolinium-based contrast agents, Radiology, vol.282, pp.516-525, 2017.

M. Rasschaert, A. Emerit, and N. Fretellier, Gadolinium retention, brain T1 hyperintensity, and endogenous metals: a comparative study of macrocyclic versus linear gadolinium chelates in renally sensitized rats, Invest Radiol, vol.53, pp.328-337, 2018.

E. Gianolio, P. Bardini, and F. Arena, Gadolinium retention in the rat brain: assessment of the amounts of insoluble gadolinium-containing species and intact gadolinium complexes after repeated administration of gadolinium-based contrast agents, Radiology, vol.285, pp.839-849, 2017.

T. Frenzel, C. Apte, and G. Jost, Quantification and assessment of the chemical form of residual gadolinium in the brain after repeated administration of gadolinium-based contrast agents: comparative study in rats, Invest Radiol, vol.52, pp.396-404, 2017.

P. Robert, S. Fingerhut, and C. Factor, One year retention of gadolinium in the brain: comparison of gadodiamide and gadoterate meglumine in a rodent model, Radiology, 2018.

A. P. Smith, M. Marino, and J. Roberts, Clearance of gadolinium from the brain with no pathologic effect after repeated administration of gadodiamide in healthy rats: An analytical and histologic study, Radiology, vol.282, pp.743-751, 2017.

T. Kanda, Y. Nakai, and A. Hagiwara, Distribution and chemical forms of gadolinium in the brain: a review, Br J Radiol, vol.90, 2017.

R. F. Egerton, New techniques in electron energy-loss spectroscopy and energyfiltered imaging, Micron, vol.34, pp.127-139, 2003.

R. J. Mcdonald, J. S. Mcdonald, and D. F. Kallmes, Intracranial gadolinium deposition after contrast-enhanced MR imaging, Radiology, vol.275, pp.772-782, 2015.

R. J. Mcdonald, J. S. Mcdonald, and D. F. Kallmes, Gadolinium deposition in human brain tissues after contrast-enhanced MR imaging in adult patients without intracranial abnormalities, Radiology, vol.285, pp.546-554, 2017.

J. Lohrke, A. L. Frisk, and T. Frenzel, Histology and gadolinium distribution in the rodent brain after the administration of cumulative high doses of linear and macrocyclic gadolinium-based contrast agents, Invest Radiol, vol.52, pp.324-333, 2017.

R. J. Mcdonald, J. S. Mcdonald, and D. Dai, Comparison of gadolinium concentrations within multiple rat organs after intravenous administration of linear versus macrocyclic gadolinium chelates, Radiology, vol.285, pp.536-545, 2017.

L. A. Stevens, G. Viswanathan, and D. E. Weiner, Chronic kidney disease and end-stage renal disease in the elderly population: current prevalence, future projections, and clinical significance, Adv Chronic Kidney Dis, vol.17, pp.293-301, 2010.

M. Rasschaert, J. M. Idée, and P. Robert, Moderate renal failure accentuates T1 signal enhancement in the deep cerebellar nuclei of gadodiamide-treated rats, Invest Radiol, vol.52, pp.255-264, 2017.

D. Food and . Administration, Center for Drug Evaluation and Research. Guidance for Industry. Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers, 2005.

J. A. Schroeder, C. Weingart, and B. Coras, Ultrastructural evidence of dermal gadolinium deposits in a patient with nephrogenic systemic fibrosis and end-stage renal disease, Clin J Am Soc Nephrol, vol.3, pp.968-975, 2008.

J. L. Guerquin-kern, T. D. Wu, and C. Quintana, Progress in analytical imaging of the cell by dynamic secondary ion mass spectrometry (SIMS microscopy)

, Biochim Biophys Acta, vol.1724, pp.228-238, 2005.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, NIH Image to ImageJ: 25 years of image analysis, Nat Methods, vol.9, pp.671-675, 2012.

C. Messaoudi, T. Boudier, S. Sorzano, and C. O. , TomoJ: tomography software for three-dimensional reconstruction in transmission electron microscopy, BMC Bioinformatics, vol.8, p.288, 2007.

P. Thévenaz, U. E. Ruttimann, and M. Unser, A pyramid approach to subpixel registration based on intensity, IEEE Trans Image Process, vol.7, pp.27-41, 1998.

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, 2007.

A. Bacyinski, M. Xu, and W. Wang, The paravascular pathway for brain waste clearance: current understanding, significance and controversy, Front Neuroanat, vol.11, p.101, 2017.

P. Robert, T. Frenzel, and C. Factor, Methodological aspects for preclinical evaluation of gadolinium presence in brain tissue: critical appraisal and suggestions for harmonization-A joint initiative, Invest Radiol, vol.53, pp.499-517, 2018.

C. Thakral and J. L. Abraham, Gadolinium-induced nephrogenic systemic fibrosis is associated with insoluble Gd deposits in tissues: in vivo transmetallation confirmed by microanalysis, J Cutan Pathol, vol.36, pp.1244-1254, 2009.

J. M. Idée, M. Port, and C. Robic, Role of thermodynamic and kinetic parameters in gadolinium chelate stability, J Magn Reson Imaging, vol.30, pp.1249-1258, 2009.

D. Cunha, M. M. Trepout, S. Messaoudi, and C. , Overview of chemical imaging methods to address biological questions, Micron, vol.84, pp.23-36, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01758315

J. Haylor, J. Schroeder, and B. Wagner, Skin gadolinium following use of MR contrast agents in a rat model of nephrogenic systemic fibrosis, Radiology, vol.263, pp.107-116, 2012.

R. Li, J. Z. Chang, and C. H. , Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design, ACS Nano, vol.8, pp.1771-1783, 2014.

E. P. Gilissen and L. Staneva-dobrovski, Distinct types of lipofuscin pigment in the hippocampus and cerebellum of aged cheirogaleid primates, Anat Rec (Hoboken), vol.296, pp.1895-1906, 2013.

C. Quintana, T. D. Wu, and B. Delatour, Morphological and chemical studies of pathological human and mice brain at the subcellular level: correlation between light, electron, and nanosims microscopies, Microsc Res Tech, vol.70, pp.281-295, 2007.

H. Heinsen, Lipofuscin in the cerebellar cortex of albino rats: an electron microscopic study, Anat Embryol (Berl), vol.155, pp.333-345, 1979.

H. Fedorow, F. Tribl, and G. Halliday, Neuromelanin in human dopamine neurons: comparison with peripheral melanins and relevance to Parkinson's disease, Prog Neurobiol, vol.75, pp.109-124, 2005.

A. Höhn and T. Grune, Lipofuscin: formation, effects and role of macroautophagy, Redox Biol, vol.1, pp.140-144, 2013.

E. P. Gilissen, K. Leroy, and Z. Yilmaz, A neuronal aging pattern unique to humans and common chimpanzees, Brain Struct Funct, vol.221, pp.647-664, 2016.

T. Jung, N. Bader, and T. Grune, Lipofuscin: formation, distribution, and metabolic consequences, Ann N Y Acad Sci, vol.1119, pp.97-111, 2007.

N. A. Jessen, A. S. Munk, and I. Lundgaard, The glymphatic system. A beginner's guide, Neurochem Res, vol.40, pp.2583-2599, 2015.

J. J. Iliff, H. Lee, and M. Yu, Brain-wide pathway for waste clearance captured by contrast-enhanced MRI, J Clin Invest, vol.123, pp.1299-1309, 2013.

P. K. Eide and G. Ringstad, MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain, Acta Radiol Open, vol.4, p.2058460115609635, 2015.

G. Jost, T. Frenzel, and J. Lohrke, Penetration and distribution of gadolinium-based contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue, Eur Radiol, vol.27, pp.2877-2885, 2017.

H. Lee, K. Mortensen, and S. Sanggaard, Quantitative Gd-DOTA uptake from cerebrospinal fluid into rat brain using 3D VFA-SPGR at 9.4 T, Magn Reson Med, vol.79, pp.1568-1578, 2018.

T. Taoka, G. Jost, and T. Frenzel, Impact of the glymphatic system on the kinetic and distribution of gadodiamide in the rat brain: observations by dynamic MRI and effect of circadian rhythm on tissue gadolinium concentrations, Invest Radiol, 2018.

A. Joutel, I. Haddad, and J. Ratelade, Perturbations of the cerebrovascular matrisome: A convergent mechanism in small vessel disease of the brain?, J Cereb Blood Flow Metab, vol.36, pp.143-157, 2016.

E. A. Porta, Pigments in aging: an overview, Ann N Y Acad Sci, vol.959, pp.57-65, 2002.

V. Lorusso, T. Arbughi, and P. Tirone, Pharmacokinetics and tissue distribution in animals of gadobenate ion, the magnetic resonance imaging contrast enhancing component of gadobenate dimeglumine 0.5 M solution for injection (MultiHance)

, J Comput Assist Tomogr, vol.23, issue.1, pp.181-194, 1999.

Y. Cao, Y. Zhang, and G. Shih, Effect of renal function on gadolinium-related signal increases on unenhanced T1-weighted brain magnetic resonance imaging, Invest Radiol, vol.51, pp.677-682, 2016.

N. J. Abbott, L. Ronnback, and E. Hansson, Astrocyte-endothelial interactions at the blood-brain barrier, Nat Rev Neurosci, vol.7, pp.41-53, 2006.

N. J. Abbott, A. A. Patabendige, D. E. Dolman, S. R. Yusof, and D. J. Begley, Structure and function of the blood-brain barrier, Neurobiol Dis, vol.37, pp.13-25, 2010.

N. J. Abbott, M. E. Pizzo, J. E. Preston, D. Janigro, and R. G. Thorne, The role of brain barriers in fluid movement in the CNS: is there a 'glymphatic' system?, Acta Neuropathol, vol.135, pp.387-407, 2018.

J. L. Abraham, C. Thakral, L. Skov, K. Rossen, and P. Marckmann, Dermal inorganic gadolinium concentrations: evidence for in vivo transmetallation and long-term persistence in nephrogenic systemic fibrosis, Br J Dermatol, vol.158, pp.273-280, 2008.

J. L. Abraham and C. Thakral, Tissue distribution and kinetics of gadolinium and nephrogenic systemic fibrosis, Eur J Radiol, vol.66, pp.200-207, 2008.

A. K. Abu-alfa, Nephrogenic systemic fibrosis and gadolinium-based contrast agents, Adv Chronic Kidney Dis, vol.18, pp.188-198, 2011.

A. College and . Radiology, ACR Manual on Contrast Media. Version, vol.10, issue.3, 2018.

M. D. Adams, S. J. Barco, K. P. Galen, M. R. Hynes, and W. H. Ralston, Motor coordination testing of the neurotoxicity of paramagnetic chelates, New Developments in Contrast Agents: Proceedings of the 3rd special topic seminar of the European Magnetic Resonance Forum. Hamburg: European Magnetic Resonance Forum Foundation, pp.51-58, 1993.

L. C. Adding, G. L. Bannenberg, and L. E. Gustafsson, Basic experimental studies and clinical aspects of gadolinium salts and chelates, Cardiovasc Drug Rev, vol.19, pp.41-56, 2001.

M. E. Adin, L. Kleinberg, D. Vaidya, E. Zan, S. Mirbagheri et al., Hyperintense dentate nuclei on T1-weighted MRI: relation to repeat gadolinium administration, AJNR Am J Neuroradiol, vol.36, pp.1859-1865, 2015.

J. Agris, H. Pietsch, and T. Balzer, What evidence is there that gadobutrol causes increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W MRI in patients with RRMS?, Eur Radiol, vol.26, pp.816-817, 2016.

S. Aime and P. Caravan, Biodistribution of gadolinium-based contrast agents, including gadolinium deposition, J Magn Reson Imaging, vol.30, pp.1259-1267, 2009.

F. F. Alamri, A. A. Shoyaib, A. Biggers, S. Jayaraman, J. Guindon et al., Applicability of the grip strength and automated von Frey tactile sensitivity tests in the mouse photothrombotic model of stroke, Behav Brain Res, vol.336, pp.250-255, 2018.

N. J. Albargothy, D. A. Johnston, M. Macgregor-sharp, R. O. Weller, A. Verma et al., Convective influx/glymphatic system: tracers injected into the CSF enter and leave the brain along separate periarterial basement membrane pathways, Acta Neuropathol, vol.136, pp.139-152, 2018.

G. E. Alexander, M. D. Crutcher, and M. R. Delong, Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, "prefrontal" and "limbic" functions, Prog Brain Res, vol.85, pp.119-146, 1990.

M. Ali, A. Kumar, M. Kumar, and B. N. Pandey, The interaction of human serum albumin with selected lanthanide and actinide ions: Binding affinities, protein unfolding and conformational changes, Biochimie, vol.123, pp.117-129, 2016.

M. Allard, J. M. Caillé, B. Bonnemain, D. Meyer, and G. Simonnet, Action of gadolinium complexes on different enzyme systems, Acta Radiol, vol.369, pp.572-574, 1986.

M. Allard, P. Kien, J. M. Caille, B. Bonnemain, D. Doucet et al., Subcellular localisation of gadolinium in the rat brain, J Neuroradiol, vol.14, pp.159-162, 1987.

M. Allard, D. Doucet, P. Kien, B. Bonnemain, and J. M. Caillé, Experimental study of DOTA-gadolinium. Pharmacokinetics and pharmacologic properties, Invest Radiol, vol.23, pp.271-274, 1988.

C. R. Angle, Chelation therapies for metal intoxication, Toxicology of Metals

. Boca-raton and U. Fl, , pp.487-504, 1996.

F. Arena, P. Bardini, F. Blasi, E. Gianolio, G. M. Marini et al., Gadolinium presence, MRI hyperintensities, and glucose uptake in the hypoperfused rat brain after repeated dministrations of gadodiamide, Neuroradiology, 2018.

S. Arlt, L. Cepek, H. H. Rustenbeck, H. Prange, and C. D. Reimers, Gadolinium encephalopathy due to accidental intrathecal administration of gadopentetate dimeglumine, J Neurol, vol.254, pp.810-812, 2007.

A. Armulik, G. Genové, M. Mäe, M. H. Nisancioglu, E. Wallgard et al., Pericytes regulate the blood-brain barrier, Nature, vol.468, pp.557-561, 2010.

M. Aschner and M. Gannon, Manganese (Mn) transport across the rat blood-brain barrier: saturable and transferrin-dependent transport mechanisms, Brain Res Bull, vol.33, pp.345-349, 1994.

J. S. Asem and P. C. Holland, Dorsolateral striatum implicated in the acquisition, but not expression, of immediate response learning in rodent submerged T-maze, Neurobiol Learn Mem, vol.123, pp.205-216, 2015.

B. ,

S. Bae, H. J. Lee, K. Han, Y. W. Park, Y. S. Choi et al., Gadolinium deposition in the brain: association with various GBCAs using a generalized additive model, Eur Radiol, vol.27, pp.3353-3361, 2017.

R. Bakshi, S. Ariyaratana, R. H. Benedict, and L. Jacobs, Fluid-attenuated inversion recovery magnetic resonance imaging detects cortical and juxtacortical multiple sclerosis lesions, Arch Neurol, vol.58, pp.742-748, 2001.

N. Bangsgaard, J. M. Hansen, P. Marckmann, and L. Skov, Nephrogenic systemic fibrosis symptoms alleviated by renal transplantation, Nephrol Dial Transplant, vol.40, pp.86-87, 2011.

C. Bao, P. Liu, H. Liu, J. X. Shi, Y. Wu et al., Difference in regional neural fluctuations and functional connectivity in Crohn's disease: a resting-state functional MRI study, Brain Imaging Behav, vol.12, pp.1795-1803, 2018.

Z. Baranyai, E. Brücher, F. Uggeri, A. Maiocchi, I. Tóth et al., The role of equilibrium and kinetic properties in the dissociation of Gd[DTPA-bis(methylamide)] (Omniscan) at near to physiological conditions, Chemistry, vol.21, pp.4789-4799, 2015.

S. Barbieri, C. Schroeder, J. M. Froehlich, A. Pasch, and H. C. Thoeny, High signal intensity in dentate nucleus and globus pallidus on unenhanced T1-weighted MR images in three patients with impaired renal function and vascular calcification, Contrast Media Mol Imaging, vol.11, pp.245-50, 2016.

J. A. Barden, R. Cooke, P. E. Wright, and C. G. Dos-remedios, Proton nuclear magnetic resonance and electron paramagnetic resonance studies on skeletal muscle actin indicate that the metal and nucleotide binding sites are separate, Biochemistry, vol.19, pp.5912-5916, 1980.

P. W. Baron, K. Cantos, D. J. Hillebrand, K. Q. Hu, O. N. Ojogho et al., Nephrogenic fibrosing dermopathy after liver transplantation successfully treated with plasmapheresis, Am J Dermatopathol, vol.25, pp.204-209, 2003.

J. J. Barski, J. Hartmann, C. R. Rose, F. Hoebeek, K. Mörl et al., Calbindin in cerebellar Purkinje cells is a critical determinant of the precision of motor coordination, J Neurosci, vol.23, pp.3469-3977, 2003.

M. R. Bashir, Magnetic resonance contrast agents for liver imaging, Magn Reson Imaging Clin N Am, vol.22, pp.283-293, 2014.

K. Bauer, A. Lathrum, O. Raslan, P. V. Kelly, Y. Zhou et al., Do Gadoliniumbased contrast agents affect (18)F-FDG PET/CT uptake in the dentate nucleus and the globus Ppallidus? A pilot study, J Nucl Med Technol, vol.45, pp.30-33, 2017.

O. Baumann, R. J. Borra, J. M. Bower, K. E. Cullen, C. Habas et al., Consensus paper: the role of the cerebellum in perceptual processes, Cerebellum, vol.14, pp.197-220, 2015.

S. Baumhueter, N. Dybdal, C. Kyle, and L. A. Lasky, Global vascular expression of murine CD34, a sialomucin-like endothelial ligand for L-selectin, Blood, vol.84, pp.2554-2565, 1994.

G. Bazzoni and E. Dejana, Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis, Physiol Rev, vol.84, pp.869-901, 2004.

M. J. Beck, E. L. Padgett, C. J. Bowman, D. T. Wilson, L. E. Kaufman et al., Developmental and reproductive toxicology. A practical approach, pp.263-328, 2006.

A. H. Behzadi, Z. Farooq, Y. Zhao, G. Shih, and M. R. Prince, Dentate nucleus signal Intensity decrease on T1-weighted MR Images after switching from gadopentetate dimeglumine to gadobutrol, Radiology, vol.287, pp.816-823, 2018.

M. F. Bellin and A. J. Van-der-molen, Extracellular gadolinium-based contrast media: an overview, Eur J Radiol, vol.66, pp.160-167, 2008.

, Benarroch EE. Circumventricular organs. Neurology, vol.77, pp.1198-1204, 2011.

M. L. Bennett, F. C. Bennett, S. A. Liddelow, B. Ajami, J. L. Zamanian et al., New tools for studying microglia in the mouse and human CNS, Proc Natl Acad Sci U S A, vol.113, pp.1738-1746, 2016.

A. Bernini, V. Venditti, O. Spiga, A. Ciutti, F. Prischi et al., NMR studies on the surface accessibility of the archaeal protein Sso7d by using TEMPOL and Gd(III)(DTPA-BMA) as paramagnetic probes, Biophys Chem, vol.137, pp.71-75, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00501713

A. Bertin, A. I. Michou-gallani, J. L. Gallani, and D. Felder-flesch, In vitro neurotoxicity of magnetic resonance imaging (MRI) contrast agents: influence of the molecular structure and paramagnetic ion, Toxicol In Vitro, vol.24, pp.1386-1394, 2010.

I. Bertini, I. Gelis, N. Katsaros, C. Luchinat, and A. Provenzani, Tuning the affinity for lanthanides of calcium binding proteins, Biochemistry, vol.42, pp.8011-8021, 2003.

B. Biagi and J. Enyeart, Gadolinium blocks low and high-threshold calcium currents in pituitary cells, Am J Physiol, vol.259, pp.515-520, 1990.

M. Birka, C. A. Wehe, L. Telgmann, M. Sperling, and U. Karst, Sensitive quantification of gadolinium-based magnetic resonance imaging contrast agents in surface waters using hydrophilic interaction liquid chromatography and inductively coupled plasma sector field mass spectrometry, J Chromatogr A, vol.1308, pp.125-131, 2013.

A. Bjørnerud, S. Vatnehol, C. Larsson, P. Due-tønnessen, P. K. Hol et al., Signal enhancement of the dentate nucleus at unenhanced MR Imaging after very high cumulative doses of the macrocyclic gadoliniumbased contrast agent gadobutrol: an observational study, Radiology, vol.285, pp.434-444, 2017.

F. Bloch, W. W. Hansen, and M. Packard, Nuclear induction. Phys Rev, vol.69, p.127, 1946.

G. M. Bolles, M. Yazdani, S. T. Stalcup, S. G. Creeden, H. R. Collins et al., Development of high signal intensity within the globus pallidus and dentate nucleus following multiple administrations of gadobenate dimeglumine, AJNR Am J Neuroradiol, vol.39, pp.415-420, 2018.

B. Bolon, R. Garman, K. Jensen, G. Krinke, and B. Stuart, Ad Hoc Working Group of the STP Scientific and Regulatory Policy Committee. A 'best practices' approach to neuropathologic assessment in developmental neurotoxicity testing--for today, Toxicol Pathol, vol.34, p.697, 2006.

C. Bose, J. K. Megyesi, S. V. Shah, K. M. Hiatt, K. A. Hall et al., Evidence suggesting a role of iron in a mouse model of nephrogenic systemic fibrosis, PLoS One, vol.10, p.136563, 2015.

A. C. Bostan and P. L. Strick, The basal ganglia and the cerebellum: nodes in an integrated network, Nat Rev Neurosci, vol.19, pp.338-350, 2018.

P. A. Bottomley, T. H. Foster, R. E. Argersinger, and L. M. Pfeifer, A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age, Med Phys, vol.11, pp.425-448, 1984.

P. Bourrinet, E. Martel, E. Amrani, A. I. Champeroux, P. Richard et al., Cardiovascular safety of gadoterate meglumine (Gd-DOTA), Invest Radiol, vol.42, pp.63-77, 2007.

J. C. Bousquet, S. Saini, D. D. Stark, P. F. Hahn, M. Nigam et al., Radiology, vol.166, pp.693-698, 1988.

J. Boyken, T. Frenzel, J. Lohrke, G. Jost, G. Schütz et al., Impact of treatment with chelating agents depends on the stability of administered GBCAs: a comparative study in rats, Invest Radiol, vol.54, pp.468-474, 2019.

A. Bozzao, R. Floris, F. Fasoli, L. M. Fantozzi, C. Colonnese et al., Cerebrospinal fluid changes after intravenous injection of gadolinium chelate: assessment by FLAIR MR imaging, Eur Radiol, vol.13, pp.592-597, 2003.

M. W. Bradbury, Transport of iron in the blood-brain-cerebrospinal fluid system, J Neurochem, vol.69, pp.443-454, 1997.

N. Braidy, A. Poljak, C. Marjo, H. Rutlidge, A. Rich et al., Identification of cerebral metal ion imbalance in the brain of aging Octodon degus, Front Aging Neurosci, vol.29, p.66, 2017.

M. Braun, T. Naidich, and . Le, Anatomie et Imagerie. IRM 9.4 T in vitro

P. J. Breen, E. K. Hild, and W. D. Horrocks, Spectroscopic studies of metal ion binding to a tryptophan-containing parvalbumin, Biochemistry, vol.24, pp.4991-4997, 1985.

J. P. Bressler, L. Olivi, J. H. Cheong, Y. Kim, A. Maerten et al., Metal transporters in intestine and brain: their involvement in metal-associated neurotoxicities, Hum Exp Toxicol, vol.26, pp.221-229, 2007.

J. Brettschneider, A. Petzold, S. D. Süssmuth, A. C. Ludolph, and H. Tumani, Axonal damage markers in cerebrospinal fluid are increased in ALS, Neurology, vol.66, pp.852-856, 2006.

J. Brettschneider, A. Petzold, S. Süssmuth, and H. Tumani, Cerebrospinal fluid biomarkers in Guillain-Barré syndrome--where do we stand?, J Neurol, vol.256, pp.3-12, 2009.

M. W. Brightman, The distribution within the brain of ferritin injected into cerebrospinal fluid compartments. I. Ependymal distribution, J Cell Biol, vol.26, pp.99-123, 1965.

T. Brinker, E. Stopa, J. Morrison, and P. Klinge, A new look at cerebrospinal fluid circulation, Fluids Barriers CNS, vol.11, p.10, 2014.

E. Brücher, Kinetic stability of gadolinium (III) chelates used as MRI contrast agents, Top Curr Chem, vol.221, pp.103-122, 2002.

J. E. Bruni, Ependymal development, proliferation, and functions: a review, Microsc Res Tech, vol.41, pp.2-13, 1998.

U. T. Brunk and A. Terman, Lipofuscin: mechanisms of age-related accumulation and influence on cell function, Free Radic Biol Med, vol.33, pp.611-619, 2002.

R. A. Bulman, Metabolism and toxicity of the lanthanides, Met Ions Biol Syst, vol.40, pp.683-706, 2003.

J. Bünzli and S. V. Eliseeva, Intriguing aspects of lanthanide luminescence, Chem Sci, vol.4, pp.1939-1949, 2013.

L. M. Burke, M. Ramalho, M. Alobaidy, C. E. Jay, M. Semelka et al., Self-reported gadolinium toxicity: a survey of patients with chronic symptoms, Magn Reson Imaging, vol.34, pp.1078-1080, 2016.

J. D. Bui, D. R. Nammari, D. L. Buckley, B. A. Inglis, X. S. Silver et al., In vivo dynamics and distribution of intracerebroventricularly administered gadodiamide, visualized by magnetic resonance imaging, Neuroscience, vol.90, pp.1115-1122, 1999.

L. D. Burtnick, Tb3+ as a luminescent probe of actin structure: effects of polymerization, KI, and the binding of deoxyribonuclease I, Arch Biochem Biophys, vol.216, pp.81-87, 1982.

S. Bussi, A. Coppo, C. Botteron, V. Fraimbault, A. Fanizzi et al., Differences in gadolinium retention after repeated injections of macrocyclic MR contrast agents to rats, J Magn Reson Imaging, vol.47, pp.746-752, 2018.

C. ,

Z. I. Cabantchik, Labile iron in cells and body fluids: physiology, pathology, and pharmacology, Front Pharmacol, vol.5, p.45, 2014.

C. Cabella, S. G. Crich, D. Corpillo, A. Barge, C. Ghirelli et al., Cellular labeling with Gd(III) chelates: only high thermodynamic stabilities prevent the cells acting as 'sponges' of Gd 3+ ions, Contrast Media Mol Imaging, vol.1, pp.23-29, 2006.

W. P. Cacheris, S. C. Quay, and S. M. Rocklage, The relationship between thermodynamics and the toxicity of gadolinium complexes, Magn Reson Imaging, vol.8, pp.467-81, 1990.

J. M. Caille, A. M. Bidabé, V. Dousset, and J. Berge, The use of contrast media in the brain, th International Congress of Radiology, vol.18, pp.757-758, 1994.

R. A. Caldwell, H. F. Clemo, and C. M. Baumgarten, Using gadolinium to identify stretch-activated channels: technical considerations, Am J Physiol, vol.275, pp.619-621, 1998.

A. C. Campos, M. V. Fogaça, D. C. Aguiar, and F. S. Guimarães, Animal models of anxiety disorders and stress, Rev Bras Psiquiatr, vol.35, pp.101-111, 2013.

C. B. Canto, R. Broersen, D. Zeeuw, and C. I. , Intrinsic excitement in cerebellar nuclei neurons during learning, Proc Natl Acad Sci USA, vol.115, pp.9824-9826, 2018.

Y. Cao, Y. Zhang, G. Shih, Y. Zhang, A. Bohmart et al., Effect of renal function on gadoliniumrelated signal increases on unenhanced T1-weighted brain magnetic resonance imaging, Invest Radiol, vol.51, pp.677-682, 2016.

P. Caravan, J. J. Ellison, T. J. Mcmurry, and R. B. Lauffer, Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications, Chem Rev, vol.99, pp.2293-2352, 1999.

N. S. Caron, G. Wright, M. R. Hayden, M. P. Huntington-disease-;-adam, H. H. Ardinger et al., , 1998.

A. Casabona, G. Bosco, P. Perciavalle, and M. Valle, Processing of limb kinematics in the interpositus nucleus, Cerebellum, vol.9, pp.103-110, 2010.

M. J. Castelhano-carlos and V. Baumans, The impact of light, noise, cage cleaning and in-house transport on welfare and stress of laboratory rats, Lab Anim, vol.43, pp.311-327, 2009.

F. M. Cavagna, F. Maggioni, P. M. Castelli, M. Daprà, L. G. Imperatori et al., Gadolinium chelates with weak binding to serum proteins. A new class of high-efficiency, general purpose contrast agents for magnetic resonance imaging, Invest Radiol, vol.32, pp.780-96, 1997.

M. A. Cenci, Q. Whishawi, and T. Schallert, Animal models of neurological deficits: how relevant is the rat?, Nat Rev Neurosci, vol.3, pp.574-579, 2002.

N. L. Cerminara, E. J. Lang, R. V. Sillitoe, and R. Apps, Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits, Nat Rev Neurosci, vol.16, pp.79-93, 2015.

A. Chachuat, P. Molinier, B. Bonnemain, C. Chambon, and J. L. Gayet, Pharmacokinetics and tolerance of Gd-DOTA (Dotarem) in healthy volunteers and in patients with chronic renal failure, Eur Radiol, vol.2, pp.326-329, 1992.

A. M. Chacko, C. Li, D. A. Pryma, S. Brem, G. Coukos et al., Targeted delivery of antibody-based therapeutic and imaging agents to CNS tumors: crossing the blood-brain barrier divide, Expert Opin Drug Deliv, vol.10, pp.907-926, 2013.

C. S. Chaurasia, M. Müller, E. D. Bashaw, E. Benfeldt, J. Bolinder et al., AAPS-FDA workshop white paper: microdialysis principles, application and regulatory perspectives, Pharm Res, vol.24, pp.1014-1025, 2007.

J. Chaumont, Thèse es sciences. Organisation fonctionnelle de la boucle olivo-cortico-nucléaire : Influence de l'activité des cellules de Purkinje, 2014.

M. K. Chen and T. R. Guilarte, Translocator protein 18 kDa (TSPO): molecular sensor of brain injury and repair, Pharmacol Ther, vol.118, pp.1-17, 2008.

Y. J. Chen, F. C. Cheng, M. L. Sheu, H. L. Su, C. J. Chen et al., Detection of subtle neurological alterations by the Catwalk XT gait analysis system, J Neuroeng Rehabil, vol.11, p.62, 2014.

C. L. Civin, L. C. Strauss, C. Brovall, M. J. Fackler, J. F. Schwartz et al., Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells, J Immunol, vol.133, pp.157-165, 1984.

D. Clases, S. Fingerhut, A. Jeibmann, M. Sperling, P. Doble et al., LA-ICP-MS/MS improves limits of detection in elemental bioimaging of gadolinium deposition originating from MRI contrast agents in skin and brain tissues, J Trace Elem Med Biol, vol.51, pp.212-218, 2019.

O. Clément, P. Dewachter, C. Mouton-faivre, C. Nevoret, L. Guilloux et al., the investigators of the CIRTACI study. Immediate hypersensitivity to contrast agents: the French 5-year CIRTACI study, EclinicalMedicine, vol.1, pp.51-61, 2018.

T. A. Collidge, P. C. Thomson, P. B. Mark, J. P. Traynor, A. G. Jardine et al., Gadoliniumenhanced MR imaging and nephrogenic systemic fibrosis: retrospective study of a renal replacement therapy cohort, Radiology, vol.245, p.308, 2007.

G. Conte, L. Preda, E. Cocorocchio, S. Raimondi, C. Giannitto et al., Signal intensity change on unenhanced T1-weighted images in dentate nucleus and globus pallidus after multiple administrations of gadoxetate disodium: an intraindividual comparative study, Eur Radiol, vol.27, pp.4372-4378, 2017.

C. Corot, J. M. Idée, A. M. Hentsch, R. Santus, C. Mallet et al., Structure-activity relationship of macrocyclic and linear gadolinium chelates: investigation of transmetallation effect on the zinc-dependent metallopeptidase angiotensin-converting enzyme, J Magn Reson Imaging, vol.8, pp.695-702, 1998.

C. Corot, P. Robert, J. M. Idée, and M. Port, Recent advances in iron oxide nanocrystal technology for medical imaging, Adv Drug Deliv Rev, vol.58, pp.1471-1504, 2006.

J. R. Costello, B. Kalb, and D. R. Martin, Incidence and risk factors for gadolinium-based contrast agent immediate reactions, Top Magn Reson Imaging, vol.25, pp.257-263, 2016.

S. E. Cowper, H. S. Robin, S. M. Steinberg, L. D. Su, S. Gupta et al., Scleromyxoedema-like cutaneous diseases in renal-dialysis patients, Lancet, vol.356, pp.1000-1001, 2000.

S. E. Cowper, Nephrogenic systemic fibrosis: the nosological and conceptual evolution of nephrogenic fibrosing dermopathy, Am J Kidney Dis, vol.46, pp.763-765, 2005.

S. E. Cowper, Nephrogenic systemic fibrosis: a review and exploration of the role of gadolinium, Adv Dermatol, vol.23, pp.131-154, 2007.

S. E. Cowper, M. Rabach, and M. Girardi, Clinical and histological findings in nephrogenic systemic fibrosis, Eur J Radiol, vol.66, pp.191-199, 2008.

M. C. Cuffy, M. Singh, R. Formica, E. Simmons, A. Alfa et al., Renal transplantation for nephrogenic systemic fibrosis: a case report and review of the literature, Nephrol Dial Transplant, vol.26, pp.1099-1101, 2011.

D. J. Culley, M. G. Baxter, R. Yukhananov, and G. Crosby, Long-term impairment of acquisition of a spatial memory task following isoflurane-nitrous oxide anesthesia in rats, Anesthesiol, vol.100, pp.309-323, 2004.

S. Currie, N. Hoggard, I. J. Craven, M. Hadjivassiliou, and I. D. Wilkinson, Understanding MRI: basic MR physics for physicians, Postgrad Med J, vol.89, pp.209-223, 2013.

R. W. Cutler, R. K. Deuel, and C. F. Barlow, Albumin exchange between plasma and cerebrospinal fluid, Arch Neurol, vol.17, pp.261-270, 1967.

D. , A. E. , D. Zeeuw, and C. I. , Timing and plasticity in the cerebellum: focus on the granular layer, Trends Neurosci, vol.32, pp.30-40, 2009.

D. Cunha, M. M. Trepout, S. Messaoudi, C. Wu, T. D. Ortega et al., Overview of chemical imaging methods to address biological questions, Micron, vol.84, pp.23-36, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01758315

R. Damadian, Tumor detection by nuclear magnetic resonance, Science, vol.171, pp.1151-1153, 1971.

R. Damadian, M. Goldsmith, and L. Minkoff, NMR in cancer: XVI. FONAR image of the live human body, Physiol Chem Phys, vol.9, pp.97-100, 1977.

R. Daneman and A. Prat, The blood-brain barrier, Cold Spring Harb Perspect Biol, vol.7, p.20412, 2015.

H. Davson, Physiology of CSF, 1967.

E. De-kerviler, C. A. Cuenod, O. Clément, P. Halimi, G. Frija et al., est-ce qui est blanc en T1 ?, J Radiol, vol.79, pp.117-126, 1998.

L. M. De-león-rodríguez, A. F. Martins, M. C. Pinho, N. M. Rofsky, and A. D. Sherry, Basic MR relaxation mechanisms and contrast agent design, J Magn Reson Imaging, vol.42, pp.545-565, 2015.

D. Schaepdrijver, L. M. Bailey, G. P. Coogan, T. P. Ingram-ross, and J. L. , Juvenile Animal Toxicity Assessments: Decision Strategies and Study Design. Pediatric Drug Development: Concepts and Applications, pp.201-221, 2013.

R. M. Deacon and J. N. Rawlins, T-maze alternation in the rodent, Nat Protoc, vol.1, pp.7-12, 2006.

R. M. Deacon, Measuring the strength of mice, J Vis Exp, vol.76, p.2705, 2013.

G. J. Deblonde, M. Sturzbecher-hoehne, A. B. Mason, and R. J. Abergel, Receptor recognition of transferrin bound to lanthanides and actinides: a discriminating step in cellular acquisition of f-block metals, Metallomics, vol.5, pp.619-626, 2013.

E. Debroye, S. Laurent, V. Elst, L. Muller, R. N. Parac-vogt et al., Dysprosium complexes and their micelles as potential bimodal agents for magnetic resonance and optical imaging, Chemistry, vol.19, pp.16019-16028, 2013.

J. F. Deeken and W. Loscher, The blood-brain barrier and cancer: transporters, treatment, and Trojan horses, Clin Cancer Res, vol.13, pp.1663-1674, 2007.

J. Delafiori, G. Ring, and A. Furey, Clinical applications of HPLC-ICP-MS element speciation: A review, Talanta, vol.153, pp.306-331, 2016.

G. Deray, M. F. Bellin, B. Baumelou, J. P. Rey, H. Boulechfar et al., Renal tolerance of the paramagnetic contrast medium Gd-DOTA in patients with chronic renal failure, Am J Nephrol, vol.10, pp.522-523, 1990.

J. M. Didelot and L. Siwiec, Etat de l'art de la spectrométrie in vivo du proton par RMN, Projet DESS "TBH, p.66

D. C. Dorman, M. F. Struve, B. A. Wong, J. A. Dye, and I. D. Robertson, Correlation of brain magnetic resonance imaging changes with pallidal manganese concentrations in rhesus monkeys following subchronic manganese inhalation, Toxicol Sci, vol.92, pp.219-227, 2006.

V. R. Drel, C. Tan, J. L. Barnes, Y. Gorin, D. Y. Lee et al., Centrality of bone marrow in the severity of gadoliniumbased contrast-induced systemic fibrosis, FASEB J, vol.30, pp.3026-3038, 2016.

S. O. Dumoulin, A. Fracasso, W. Van-der-zwaag, J. Siero, and N. Petridou, Ultra-high field MRI: Advancing systems neuroscience towards mesoscopic human brain function, Neuroimage, vol.168, pp.345-357, 2018.

D. Dünger, M. Krause, D. Gräfe, A. Merkenschlager, C. Roth et al., Do we need gadolinium-based contrast medium for brain magnetic resonance imaging in children?, Pediatr Radiol, vol.48, pp.858-864, 2018.

O. K. Duru, R. B. Vargas, D. Kermah, A. R. Nissenson, and K. C. Norris, High prevalence of stage 3 chronic kidney disease in older adults despite normal serum creatinine, J Gen Intern Med, vol.24, pp.86-92, 2009.

E. R. Duval, A. Javanbakht, and I. Liberzon, Neural circuits in anxiety and stress disorders: a focused review, Ther Clin Risk Manag, vol.11, pp.115-126, 2015.

H. M. Duvernoy and P. Y. Risold, The circumventricular organs: an atlas of comparative anatomy and vascularization, Brain Res Rev, vol.56, pp.119-147, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00482220

P. K. Eide and G. Ringstad, MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain, Acta Radiol Open, vol.4, p.2058460115609635, 2015.

P. Eisele, A. Alonso, K. Szabo, A. Ebert, M. Ong et al., Lack of increased signal intensity in the dentate nucleus after repeated administration of a macrocyclic contrast agent in multiple sclerosis: An observational study, Medicine (Baltimore), vol.95, p.4624, 2016.

C. J. Ek, K. M. Dziegielewska, M. D. Habgood, and N. R. Saunders, Barriers in the developing brain and neurotoxicology, Neurotoxicology, vol.33, pp.586-604, 2012.

D. El-hamrani, Evaluation quantitative par IRM et 1H SRM de l'exposition à des xénobiotiques chez le petit animal dans un contexte clinique et environnemental, vol.4, pp.78-102, 2018.

S. V. Eliseeva and J. Bünzl, Rare earths: jewels for functional materials of the future, New J Chem, vol.35, pp.1165-1176, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02102851

A. D. Elster, Field-strength dependence of gadolinium enhancement: theory and implications, AJNR Am J Neuroradiol, vol.15, pp.1420-1423, 1994.

E. European-medicine and . Agency, Assessment report for gadolinium-containing contrast agents. Procedure No. EMEA/H/A-31/1097, 2010.

E. Hp, EMA's final opinion confirms restrictions on use of linear gadolinium agents in body scans, 2017.

J. Emsley, Nature's building blocks: an A-Z guide to the elements

J. Endrikat, S. Dohanish, N. Schleyer, S. Schwenke, S. Agarwal et al., 10 Years of nephrogenic systemic fibrosis: A comprehensive analysis of nephrogenic systemic fibrosis reports, Invest Radiol, vol.53, pp.541-550, 2006.

A. Ennaceur, One-trial object recognition in rats and mice: methodological and theoretical issues, Behav Brain Res, vol.215, pp.244-254, 2010.

A. Ennaceur and P. L. Chazot, Preclinical animal anxiety research -flaws and prejudices, Pharmacol Res Perspect, vol.4, p.223, 2016.

K. Erdene, T. Nakajima, S. Kameo, M. A. Khairinisa, O. Lamid-ochir et al., Organ retention of gadolinium in mother and pup mice: effect of pregnancy and type of gadolinium-based contrast agents, Jpn J Radiol, vol.35, pp.568-573, 2017.

K. M. Erikson, T. Syversen, E. Steinnes, and M. Aschner, Globus pallidus: a target brain region for divalent metal accumulation associated with dietary iron deficiency, J Nutr Biochem, vol.15, pp.335-341, 2004.

S. Fingerhut, M. Sperling, M. Holling, T. Niederstadt, T. Allkemper et al., Gadolinium-based contrast agents induce gadolinium deposits in cerebral vessel walls, while the neuropil is not affected: an autopsy study, Acta Neuropathol, vol.136, pp.127-138, 2018.

F. H. Firsching and S. N. Brune, Solubility products of the trivalent rare-earth phosphates, J Chem Eng Data, vol.36, pp.93-95, 1991.

T. F. Flood, N. V. Stence, J. A. Maloney, and D. M. Mirsky, Pediatric brain: repeated exposure to linear gadolinium-based contrast material is associated with increased signal intensity at unenhanced T1-weighted MR imaging, Radiology, vol.282, pp.222-228, 2017.

S. J. Flora and V. Pachauri, Chelation in metal intoxication, Int J Environ Res Public Health, vol.7, pp.2745-2788, 2010.

M. Flourens, Recherches expérimentales sur les propriétés et les fonctions du système nerveux, dans les animaux vertébrés (éd. 1), vol.26, p.20, 1824.

J. M. Ford and W. N. Hait, Pharmacologic circumvention of multidrug resistance, Cytotechnology, vol.12, pp.171-212, 1993.

Y. Forslin, S. Shams, F. Hashim, P. Aspelin, G. Bergendal et al., Retention of gadolinium-based contrast agents in multiple sclerosis: retrospective analysis of an 18-year longitudinal study, AJNR Am J Neuroradiol, vol.38, pp.1311-1316, 2017.

W. M. Freeze, R. S. Schnerr, W. M. Palm, J. F. Jansen, H. I. Jacobs et al., Pericortical enhancement on delayed postgadolinium fluid-attenuated inversion recovery images in normal aging, mild cognitive impairment, and Alzheimer disease, AJNR Am J Neuroradiol, vol.38, pp.1742-1747, 2017.

T. Frenzel, P. Lengsfeld, H. Schirmer, J. Hütter, and H. J. Weinmann, Stability of gadolinium-based magnetic resonance imaging contrast agents in human serum at 37 degrees C, Invest Radiol, vol.43, pp.817-828, 2008.

T. Frenzel, C. Apte, G. Jost, L. Schöckel, J. Lohrke et al., Quantification and assessment of the chemical form of residual gadolinium in the brain after repeated administration of gadolinium-based contrast agents: comparative study in rats, Invest Radiol, vol.52, pp.396-404, 2017.

N. Fretellier, J. M. Idée, S. Guerret, C. Hollenbeck, D. Hartmann et al., Clinical, biological, and skin histopathologic effects of ionic macrocyclic and nonionic linear gadolinium chelates in a rat model of nephrogenic systemic fibrosis, Invest Radiol, vol.46, pp.85-93, 2011.

N. Fretellier, J. M. Idée, A. Dencausse, O. Karroum, S. Guerret et al., Comparative in vivo dissociation of gadolinium chelates in renally impaired rats: a relaxometry study, Invest Radiol, vol.46, pp.292-300, 2011.

N. Fretellier, N. Bouzian, N. Parmentier, P. Bruneval, G. Jestin et al., Nephrogenic systemic fibrosis-like effects of magnetic resonance imaging contrast agents in rats with adenine-induced renal failure, Toxicol Sci, vol.131, pp.259-270, 2013.

N. Fretellier, A. Granottier, M. Rasschaert, A. L. Grindel, F. Baudimont et al., Does age interfere with gadolinium toxicity and presence in brain and bone tissues? A comparative gadoterate versus gadodiamide study in juvenile and adult rats, Invest Radiol, vol.54, pp.61-71, 2019.

N. Fretellier, Rôle des complexes de gadolinium dans le mécanisme de la fibrose systémique néphrogénique. Médecine Humaine et Pathologie, 2013.

J. Gadolin, Undersökning af en svart tung Stenart ifrån Ytterby Stenbrott i Roslagen. K Vetenskaps-Akad Nya Handl, vol.15, pp.137-155, 1794.

C. Galera, L. Ozygit, and P. Demoly, Anaphylaxie aux produits de contraste gadolinés, Rev Fr Allerg, vol.50, pp.556-562, 2010.

A. M. Garcia, F. P. Cardenas, and S. Morato, Effect of different illumination levels on rat behavior in the elevated plusmaze, Physiol Behav, vol.85, pp.265-270, 2005.

R. H. Garman, Histology of the central nervous system, Toxicol Pathol, vol.39, pp.22-35, 2011.

R. H. Garman, Recommended methods for brain processing and quantitative analysis in rodent developmental neurotoxicity Studies, Toxicol Pathol, vol.44, pp.14-42, 2016.

A. S. Geara, B. El-imad, and S. El-sayegh, Acetazolamide therapy in meningeal involvement of nephrogenic systemic fibrosis, Intern Med J, vol.40, pp.4-5, 2010.

E. A. Georgakopoulou, K. Tsimaratou, K. Evangelou, P. J. Fernandez-marcos, V. Zoumpourlis et al., Specific lipofuscin staining as a novel biomarker to detect replicative and stress-induced senescence. A method applicable in cryo-preserved and archival tissues, Aging, vol.5, pp.37-50, 2013.

S. J. George, S. M. Webb, J. L. Abraham, and S. P. Cramer, Synchrotron X-ray analyses demonstrate phosphate-bound gadolinium in skin in nephrogenic systemic fibrosis, Br J Dermatol, vol.163, pp.1077-1081, 2010.

S. G. Giakoumaki, Cognitive and prepulse inhibition deficits in psychometrically high schizotypal subjects in the general population: relevance to schizophrenia research, J Int Neuropsychol Soc, vol.18, pp.643-656, 2012.

E. Gianolio, P. Bardini, F. Arena, R. Stefania, D. Gregorio et al., Gadolinium retention in the rat brain: assessment of the amounts of insoluble gadolinium-containing species and intact gadolinium complexes after repeated administration of gadolinium-based contrast agents, Radiology, vol.285, pp.839-849, 2017.

M. J. Gillies, J. A. Hyam, A. R. Weiss, C. A. Antoniades, R. Bogacz et al., The Cognitive role of the globus pallidus interna; insights from disease states, Exp Brain Res, vol.235, pp.1455-1465, 2017.

E. Girard, L. Chantalat, J. Vicat, and R. Kahn, Gd-HPDO3A, a complex to obtain high-phasing-power heavy-atom derivatives for SAD and MAD experiments: results with tetragonal hen egg-white lysozyme, Acta Crystallogr D Biol Crystallogr, vol.58, pp.1-9, 2002.

M. Girardi, J. Kay, D. M. Elston, P. E. Leboit, A. Abu-alfa et al., Nephrogenic systemic fibrosis: clinicopathological definition and workup recommendations, J Am Acad Dermatol, vol.65, pp.1095-1106, 2011.

O. Y. Glushakova, A. Jeromin, J. Martinez, D. Johnson, N. Denslow et al., Cerebrospinal fluid protein biomarker panel for assessment of neurotoxicity induced by kainic acid in rats, Toxicol Sci, vol.130, pp.158-167, 2012.

B. I. Gold, Further studies on the role of calcium in the regulation of glutamate decarboxylase activity in brain slices, Neurochem Res, vol.8, pp.185-191, 1983.

J. G. Goldman, B. A. Vernaleo, R. Camicioli, N. Dahodwala, R. D. Dobkin et al., Cognitive impairment in Parkinson's disease: a report from a multidisciplinary symposium on unmet needs and future directions to maintain cognitive health, NPJ Parkinsons Dis, vol.26, pp.4-19, 2018.

E. P. Gomez-sanchez and C. E. Gomez-sanchez, 19-Nordeoxycorticosterone, aldosterone, and corticosterone excretion in sequential urine samples from male and female rats, Steroids, vol.56, pp.451-454, 1991.

C. J. Gorter, Paramagnetic relaxation. Physica (The Hague), vol.3, pp.504-505, 1936.

M. E. Götz, K. Double, M. Gerlach, M. B. Youdim, and P. Riederer, The relevance of iron in the pathogenesis of Parkinson's disease, Ann N Y Acad Sci, vol.1012, pp.193-208, 2004.

S. J. Grekin, M. J. Holcomb, G. M. Modi, Y. T. Huttenbach, E. L. Poythress et al., Lollipop lesions in nephrogenic systemic fibrosis mimicking a deep fungal infection, J Cutan Pathol, vol.39, pp.981-984, 2012.

N. Gretz, R. Waldherr, and M. Strauch, The Remnant Kidney Model. Karger, pp.1-28, 1993.

H. Gries, Extracellular MRI contrast agents based on gadolinium, Top. Curr. Chem, vol.221, pp.1-24, 2002.

T. Grobner, Gadolinium: a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis?, Nephrol Dial Transplant, vol.21, p.1745, 2006.

P. M. Gross, Circumventricular organ capillaries, Prog Brain Res, vol.91, pp.219-233, 1992.

J. L. Guerquin-kern, T. D. Wu, C. Quintana, and A. Croisy, Progress in analytical imaging of the cell by dynamic secondary ion mass spectrometry (SIMS microscopy), Biochim Biophys Acta, vol.1724, pp.228-238, 2005.

R. A. Guilmette, R. Hakimi, P. W. Durbin, J. Xu, and K. N. Raymond, Competitive binding of Pu and Am with bone mineral and novel chelating agents, Radiat Prot Dosimetry, vol.105, pp.527-534, 2003.

V. Gulani, F. Calamante, F. G. Shellock, E. Kanal, and S. B. Reeder, International Society for Magnetic Resonance in Medicine. Gadolinium deposition in the brain: summary of evidence and recommendations, vol.16, pp.564-570, 2017.

A. M. Gutiérrez, E. González, M. Echevarría, C. S. Hernández, and G. Whittembury, The proximal straight tubule (PST) basolateral cell membrane water channel: selectivity characteristics, J Membr Biol, vol.143, pp.189-197, 1995.

M. Güven, D. D. Elalmi?, S. Binokay, and U. Tan, Population-level right-paw preference in rats assessed by a new computerized food-reaching test, Int J Neurosci, vol.113, pp.1675-1689, 2003.

W. Gwenzi, L. Mangori, C. Danha, N. Chaukura, N. Dunjana et al., Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants, Sci Total Environ, vol.636, pp.299-313, 2018.

C. Habas, N. Kamdar, D. Nguyen, K. Prater, C. F. Beckmann et al., Distinct cerebellar contributions to intrinsic connectivity networks, J Neurosci, vol.29, pp.8586-8594, 2009.

C. Habas, Functional imaging of the deep cerebellar nuclei: a review, Cerebellum, vol.9, pp.22-28, 2010.

J. Habermeyer, S. Von-hörste, G. Schütz, and H. Pietsch, Behavioral phenotyping in rats 5 to 30 weeks after multiple injections of gadobutrol and gadodiamide, 2018.

B. Haelewyn, T. Freret, E. Pacary, P. Schumann-bard, M. Boulouard et al., Long-term evaluation of sensorimotor and mnesic behaviour following striatal NMDA-induced unilateral excitotoxic lesion in the mouse, Behav Brain Res, vol.178, pp.235-243, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00867870

T. J. Haley, K. Raymond, N. Komesu, and H. C. Upham, Toxicological and pharmacological effects of gadolinium and samarium chlorides, Br J Pharmacol Chemother, vol.17, pp.526-532, 1961.

P. J. Haley, Pulmonary toxicity of stable and radioactive lanthanides, Health Phys, vol.61, pp.809-820, 1991.

B. Hallgren and P. Sourander, The effect of age on the non-haemin iron in the human brain, J Neurochem, vol.3, pp.41-51, 1958.

B. Hamm, T. Staks, A. Mühler, M. Bollow, M. Taupitz et al., Phase I clinical evaluation of Gd-EOB-DTPA as a hepatobiliary MR contrast agent: safety, pharmacokinetics, and MR imaging, Radiology, vol.195, pp.785-792, 1995.

H. Hanana, P. Turcotte, C. André, C. Gagnon, and F. Gagné, Comparative study of the effects of gadolinium chloride and gadolinium -based magnetic resonance imaging contrast agent on freshwater mussel, Dreissena polymorpha, Chemosphere, vol.181, pp.197-207, 2017.

M. J. Hannocks, M. E. Pizzo, J. Huppert, T. Deshpande, N. J. Abbott et al., Molecular characterization of perivascular drainage pathways in the murine brain, J Cereb Blood Flow Metab, vol.38, pp.669-686, 2018.

M. J. Hardonk, F. W. Dijkhuis, C. E. Hulstaert, and J. Koudstaal, Heterogeneity of rat liver and spleen macrophages in gadolinium chloride-induced elimination and repopulation, J Leukoc Biol, vol.52, pp.296-302, 1992.

E. S. Harpur, D. Worah, P. A. Hals, E. Holtz, K. Furuhama et al., Preclinical safety assessment and pharmacokinetics of gadodiamide injection, a new magnetic resonance imaging contrast agent, Invest Radiol, vol.28, pp.28-43, 1993.

K. M. Hasan, I. S. Walimuni, L. A. Kramer, and P. A. Narayana, Human brain iron mapping using atlas-based T2 relaxometry, Magn Reson Med, vol.67, pp.731-739, 2012.

M. B. Havnes, Y. Kerlefsen, and A. Møllerløkken, S100B and NSE serum concentrations after simulated diving in rats, Physiol Rep, vol.3, p.12546, 2015.

X. He, Z. Zhang, H. Zhang, Y. Zhao, and Z. Chai, Neurotoxicological evaluation of long-term lanthanum chloride exposure in rats, Toxicol Sci, vol.103, pp.354-361, 2008.

N. He, P. Huang, H. Ling, J. Langley, C. Liu et al., Dentate nucleus iron deposition is a potential biomarker for tremor-dominant Parkinson's disease, NMR Biomed, vol.30, p.3554, 2017.

C. Herazo-bustos, J. C. Tramontini, M. Sjas, J. F. Aluja, and C. Navas, Evaluación de la intensidad de señal en núcleo dentado, puente, globus pallidus y tálamo en pacientes con esclerosis múltiple: Valoración de la retención de gadolinio, Rev Chil Radiol, vol.23, pp.2-06, 2017.

S. Herculano-houzel, Coordinated scaling of cortical and cerebellar numbers of neurons, Front Neuroanat, vol.10, pp.4-12, 2010.

R. M. Herndon, The fine structure of the Purkinje cell, J Cell Biol, vol.18, pp.167-180, 1963.

J. R. Hesselink and G. A. Press, MR contrast enhancement of intracranial lesions with Gd-DTPA, Radiol Clin North Am, vol.26, pp.873-887, 1988.

W. A. High, R. A. Ayers, J. Chandler, G. Zito, and S. E. Cowper, Gadolinium is detectable within the tissue of patients with nephrogenic systemic fibrosis, J Am Acad Dermatol, vol.56, pp.21-26, 2007.

R. C. Hider, S. Roy, Y. M. Ma, L. Kong, X. Preston et al., The potential application of iron chelators for the treatment of neurodegenerative diseases, Metallomics, vol.3, pp.239-249, 2011.

C. Hippocrate-de,

S. Hirano and K. T. Suzuki, Exposure, metabolism, and toxicity of rare earths and related compounds, Environ Health Perspect, vol.104, pp.85-95, 1996.

E. Hitomi, A. N. Simpkins, M. Luby, L. L. Latour, R. J. Leigh et al., Blood-ocular barrier disruption in patients with acute stroke, Neurology, vol.90, pp.915-923, 2018.

S. B. Hladky and M. A. Barrand, Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence, Fluids Barriers CNS, vol.11, p.26, 2014.

L. T. Ho and S. M. Sprague, Renal osteodystrophy in chronic renal failure, Semin Nephrol, vol.22, pp.488-493, 2002.

A. Höck, U. Demmel, H. Schicha, K. Kasperek, and L. E. Feinendegen, Activation analysis of cobalt, iron, rubidium, selenium, zinc, chromium, silver, cesium, antimony and scandium, Brain, vol.98, pp.49-64, 1975.

K. E. Holter, B. Kehlet, A. Devor, T. J. Sejnowski, A. M. Dale et al., Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow, Proc Natl Acad Sci, vol.114, pp.9894-9899, 2017.

T. A. Hope, W. A. High, P. E. Leboit, B. Chaopathomkul, V. S. Rogut et al., Nephrogenic systemic fibrosis in rats treated with erythropoietin and intravenous iron, Radiology, vol.253, pp.390-398, 2009.

H. H. Hu, A. Pokorney, R. B. Towbin, and J. H. Miller, Increased signal intensities in the dentate nucleus and globus pallidus on unenhanced T1-weighted images: evidence in children undergoing multiple gadolinium MRI exams, Pediatr Radiol, vol.46, pp.1590-1598, 2016.

F. K. Hui and M. Mullins, Persistence of gadolinium contrast enhancement in CSF: a possible harbinger of gadolinium neurotoxicity?, AJNR Am J Neuroradiol, vol.30, p.1, 2009.

C. Hurst, China's rare earth element industry: What can the West learn? Institute for the analysis of Global Security, 2010.

E. Husztik, G. Làzar, and A. Pàrducz, Electron microscopic study of Kupffer-cell phagocytosis blockade induced by gadolinium chloride, Br J Exp Pathol, vol.61, pp.624-630, 1980.

C. Iadecola, The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease, Neuron, vol.96, pp.17-42, 2017.

S. Ichikawa, U. Motosugi, Y. Omiya, and H. Onishi, Contrast agent-induced high signal intensity in dentate nucleus on unenhanced T1-weighted images: comparison of gadodiamide and gadoxetic acid, Invest Radiol, vol.52, pp.389-395, 2017.

S. Ichikawa, Y. Omiya, H. Onishi, and U. Motosugi, Linear gadolinium-based contrast agent (gadodiamide and gadopentetate dimeglumine)-induced high signal intensity on unenhanced T(1) -weighted images in pediatric patients, J Magn Reson Imaging, vol.48, pp.1046-1052, 2019.

J. M. Idée, C. Berthommier, V. Goulas, C. Corot, R. Santus et al., Haemodynamic effects of macrocyclic and linear gadolinium chelates in rats: role of calcium and transmetallation, Biometals, vol.11, pp.113-123, 1998.

J. M. Idée, M. Port, I. Raynal, M. Schaefer, L. Greneur et al., Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review, Fundam Clin Pharmacol, vol.20, p.335, 2006.

J. M. Idée, M. Port, A. Dencausse, E. Lancelot, and C. Corot, Involvement of gadolinium chelates in the mechanism of nephrogenic systemic fibrosis: an update, Radiol Clin North Am, vol.47, pp.855-869, 2009.

J. M. Idée, M. Port, C. Robic, C. Medina, M. Sabatou et al., Role of thermodynamic and kinetic parameters in gadolinium chelate stability, J Magn Reson Imaging, vol.30, pp.1249-1258, 2009.

A. V. Idland, T. B. Wyller, R. Støen, G. T. Dahl, F. Frihagen et al., Cerebrospinal Fluid Phosphate in Delirium after Hip Fracture. Dement Geriatr Cogn Dis Extra, vol.7, pp.309-317, 2017.

J. J. Iliff, M. Wang, Y. Liao, B. A. Plogg, W. Peng et al., A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid ?, Sci Transl Med, vol.4, pp.147-111, 2012.

J. J. Iliff, M. Wang, D. M. Zeppenfeld, A. Venkataraman, B. A. Plog et al., Cerebral arterial pulsation drives paravascular CSF-interstitial fluid exchange in the murine brain, J Neurosci, vol.33, pp.18190-18199, 2013.

S. Irwin, Comprehensive observational assessment: Ia. A systematic, quantitative procedure for assessing the behavioral and physiologic state of the mouse, Psychopharmacologia, vol.13, pp.222-257, 1968.

H. Ishibashi, K. Hirao, J. Yamaguchi, and J. Nabekura, Inhibition of chloride outward transport by gadolinium in cultured rat spinal cord neurons, Neurotoxicology, vol.30, pp.155-159, 2009.

M. K. Islam, S. Kim, H. K. Kim, Y. H. Kim, Y. M. Lee et al., Synthesis and evaluation of manganese(II)-based ethylenediaminetetraacetic acid-ethoxybenzyl conjugate as a highly stable hepatobiliary magnetic resonance imaging contrast agent, Bioconjug Chem, vol.29, pp.3614-3625, 2018.

T. A. Jaffe, C. M. Miller, and E. M. Merkle, Practice patterns in imaging of the pregnant patient with abdominal pain: a survey of academic centers, AJR Am J Roentgenol, vol.189, pp.1128-1134, 2007.

I. Jakovljevi?, ?. Petrovi?, L. Joksovi?, I. Lazarevi?, and P. ?ur?evi?, Computer simulation of speciation of trivalent aluminum, gadolinium and yttrium ions in human blood plasma, Acta Chim Slov, vol.60, pp.861-869, 2013.

T. S. Jaw, S. H. Chen, Y. M. Wang, J. S. Hsu, Y. T. Kuo et al., Comparison of Gd-Bz-TTDA, Gd-EOB-DTPA, and Gd-BOPTA for dynamic MR imaging of the liver in rat models, Kaohsiung J Med Sci, vol.28, pp.130-137, 2012.

K. Jaworski, M. Styczy?ska, M. Mandecka, J. Walecki, and D. A. Kosior, Fahr Syndrome -an Important Piece of a Puzzle in the Differential Diagnosis of Many Diseases, Pol J Radiol, vol.82, pp.490-493, 2017.

W. A. Jefferies, M. R. Brandon, S. V. Hunt, A. F. Williams, K. C. Gatter et al., Transferrin receptor on endothelium of brain capillaries, Nature, vol.312, pp.162-163, 1984.

H. K. Jeong, J. K. Min, K. Joe, and E. H. , Brain inflammation and microglia: facts and misconceptions, Exp Neurobiol, vol.22, pp.59-67, 2013.

N. A. Jessen, A. S. Munk, I. Lundgaard, and M. Nedergaard, The Glymphatic system: A beginner's guide, Neurochem Res, vol.40, pp.2583-2599, 2015.

X. Jiang, M. Lachance, E. Rossignol, L. Rossignol, J. C. Carmant et al., Involvement of cortical fast-spiking parvalbumin-positive basket cells in epilepsy, Progress in Brain Research, p.226, 2011.

A. J. Jiménez, M. D. Domínguez-pinos, M. M. Guerra, P. Fernández-llebrez, and J. M. Pérez-fígares, Structure and function of the ependymal barrier and diseases associated with ependyma disruption, Tissue Barriers, vol.2, p.28426, 2014.

M. Joëls and E. R. De-kloet, 30 years of the mineralocorticoid receptor: The brain mineralocorticoid receptor: a saga in three episodes, J Endocrinol, vol.234, pp.49-66, 2017.

P. Joffé, H. S. Thomsen, and M. Meusel, Pharmacokinetics of gadodiamide injection in patients with severe renal insufficiency and patients undergoing hemodialysis or continuous ambulatory peritoneal dialysis, Acad Radiol, vol.5, pp.491-502, 1998.

S. G. Johansson, J. O. Hourihane, J. Bousquet, C. Bruijnzeel-koomen, S. Dreborg et al., EAACI (the European Academy of Allergology and Cinical Immunology) nomenclature task force. A revised nomenclature for allergy. An EAACI position statement from the EAACI nomenclature task force, Allergy, vol.56, pp.813-824, 2001.

P. A. Johansson, K. M. Dziegielewska, C. J. Ek, M. D. Habgood, K. Mollgard et al., Aquaporin-1 in the choroid plexuses of developing mammalian brain, Cell Tissue Res, vol.322, pp.353-364, 2005.

G. Jost, D. C. Lenhard, M. A. Sieber, J. Lohrke, T. Frenzel et al., Signal increase on unenhanced T1-weighted images in the rat brain after repeated, extended doses of gadolinium-based contrast agents: comparison of linear and macrocyclic agents, Invest Radiol, vol.51, pp.83-89, 2016.

G. Jost, T. Frenzel, J. Lohrke, D. C. Lenhard, S. Naganawa et al., Penetration and distribution of gadoliniumbased contrast agents into the cerebrospinal fluid in healthy rats: a potential pathway of entry into the brain tissue, Eur Radiol, vol.27, pp.2877-2885, 2017.

G. Jost, T. Frenzel, J. Boyken, J. Lohrke, V. Nischwitz et al., Long-term Excretion of gadolinium-based contrast agents: linear versus macrocyclic agents in an experimental rat model, Radiology, vol.290, pp.340-348, 2019.

S. E. Jung, J. Y. Byun, J. M. Lee, S. E. Rha, H. Kim et al., MR imaging of maternal diseases in pregnancy, Am J Roentgenol, vol.177, pp.1293-1300, 2001.

J. Kahn, H. Posch, I. G. Steffen, D. Geisel, C. Bauknecht et al., Is there long-term signal intensity increase in the central nervous system on T1-weighted images after MR imaging with the hepatospecific contrast agent gadoxetic acid? A cross-sectional study in 91 patients, Radiology, vol.282, pp.708-716, 2017.

U. S. Kanamalla and O. B. Boyko, Gadolinium diffusion into orbital vitreous and aqueous humor, perivascular space, and ventricles in patients with chronic renal disease, AJR Am J Roentgenol, vol.179, pp.1350-1352, 2002.

T. Kanda, K. Ishii, H. Kawaguchi, K. Kitajima, and D. Takenaka, High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material, Radiology, vol.270, pp.834-841, 2014.

T. Kanda, M. Osawa, H. Oba, K. Toyoda, J. Kotoku et al., High signal intensity in dentate nucleus on unenhanced T1-weighted MR images: association with linear versus macrocyclic gadolinium chelate administration, Radiology, vol.275, pp.803-809, 2015.

T. Kanda, T. Fukusato, M. Matsuda, K. Toyoda, H. Oba et al., Gadoliniumbased contrast agent accumulates in the brain even in subjects without severe renal dysfunction: evaluation of autopsy brain specimens with inductively coupled plasma mass spectroscopy, Radiology, vol.276, pp.228-232, 2015.

H. Kang, M. Hii, M. Le, R. Tam, A. Riddehough et al., Gadolinium deposition in deep brain structures: relationship with dose and ionization of linear gadolinium-based contrast agents, AJNR Am J Neuroradiol, vol.39, pp.1597-1603, 2018.

K. M. Kang, S. H. Choi, M. Hwang, T. J. Yun, J. H. Kim et al., T1 shortening in the globus pallidus after multiple administrations of gadobutrol: assessment with a multidynamic multiecho sequence, Radiology, vol.287, pp.258-266, 2018.

R. A. Kapoor, S. S. Ladak, and V. S. Gomase, MALDI-TOF based metabolomic approach, Int J Gen, vol.1, pp.44-46, 2009.

R. Kapoor, J. Liu, A. Devasenapathy, and V. Gordin, Gadolinium encephalopathy after intrathecal gadolinium injection, Pain Physician, vol.13, pp.321-326, 2010.

A. A. Kartamihardja, T. Nakajima, S. Kameo, H. Koyama, and Y. Tsushima, Impact of impaired renal function on gadolinium retention after administration of gadolinium-based contrast agents in a mouse model, Invest Radiol, vol.51, pp.655-660, 2016.

A. A. Kartamihardja, T. Nakajima, S. Kameo, H. Koyama, and Y. Tsushima, Distribution and clearance of retained gadolinium in the brain: differences between linear and macrocyclic gadolinium based contrast agents in a mouse model, Br J Radiol, vol.89, p.288, 2016.

S. Kasahara, Y. Miki, M. Kanagaki, A. Yamamoto, N. Mori et al., Hyperintense dentate nucleus on unenhanced T1-weighted MR images is associated with a history of brain irradiation, Radiology, vol.258, pp.222-228, 2011.

E. Kasper, H. P. Schemuth, S. Horry, and S. Kinner, Changes in signal intensity in the dentate nucleus at unenhanced T1-weighted magnetic resonance imaging depending on class of previously used gadolinium-based contrast agent, Pediatr Radiol, vol.48, pp.686-693, 2018.

B. Kastler, D. Vetter, Z. Patay, A. Pousse, and M. Parmentier, Images T1, T2 et densité protonique, Encycl Méd Chir, 2003.

C. Kaur, G. Rathnasamy, and E. A. Ling, The choroid plexus in healthy and diseased brain, J Neuropathol Exp Neurol, vol.75, pp.198-213, 2016.

J. Kay and W. A. High, Imatinib mesylate treatment of nephrogenic systemic fibrosis, Arthritis Rheum, vol.58, pp.2543-2548, 2008.

J. Keaney and M. Campbell, The dynamic blood-brain barrier, FEBS J, vol.282, pp.4067-4079, 2015.

P. Kelemen, J. Alaoui, D. Sieron, A. Chan, C. P. Kamm et al., T1-weighted grey matter signal intensity alterations after multiple administrations of gadobutrol in patients with multiple sclerosis, referenced to white matter, Sci Rep, vol.8, p.16844, 2018.

J. M. Kellogg, I. I. Rabi, N. F. Ramsey, and J. R. Zacharias, The magnetic moment of the proton and the deuteron. The radiofrequency spectrum of 2H in various magnetic fields, Phys Rev, vol.56, pp.728-743, 1939.

B. Kelly, M. Petitt, and R. Sanchez, Nephrogenic systemic fibrosis is associated with transforming growth factor beta and Smad without evidence of renin-angiotensin system involvement, J Am Acad Dermatol, vol.58, pp.1025-1030, 2008.

L. Kervezee, R. Hartman, D. J. Van-den-berg, S. Shimizu, Y. Emoto-yamamoto et al., Diurnal variation in P-glycoprotein-mediated transport and cerebrospinal fluid turnover in the brain, AAPS J, vol.16, pp.1029-1037, 2014.

S. Khadilkar, S. Jaggi, B. Patel, R. Yadav, P. Hanagandi et al., A practical approach to diseases affecting dentate nuclei, Clin Radiol, vol.71, pp.107-119, 2016.

M. A. Khairinisa, Y. Takatsuru, I. Amano, K. Erdene, T. Nakajima et al., The effect of perinatal gadolinium-based contrast agents on adult mice behavior, Invest Radiol, vol.53, pp.110-118, 2018.

Z. A. Khant, T. Hirai, Y. Kadota, R. Masuda, T. Yano et al., T(1) shortening in the cerebral cortex after multiple administrations of gadolinium-based contrast agents, Magn Reson Med Sci, vol.16, pp.84-86, 2017.

S. Y. Kim, M. H. Maurer, J. K. Richter, J. T. Heverhagen, and I. B. Boehm, Gadolinium depositions after the application of the hepatospecific gadolinium-based contrast agent gadoxetate disodium, Eur J Intern Med, vol.47, pp.9-11, 2018.

J. Kimura, T. Ishiguchi, J. Matsuda, R. Ohno, A. Nakamura et al., Human comparative study of zinc and copper excretion via urine after administration of magnetic resonance imaging contrast agents, Radiat Med, vol.23, pp.322-326, 2005.

S. Kinner, T. B. Schubert, R. J. Bruce, S. L. Rebsamen, C. A. Diamond et al., Deep brain nuclei T1 shortening after gadobenate dimeglumine in children: influence of radiation and chemotherapy, AJNR Am J Neuroradiol, vol.39, pp.24-30, 2018.

M. A. Kirchin, G. P. Pirovano, and A. Spinazzi, Gadobenate dimeglumine (Gd-BOPTA): an overview, Invest Radiol, vol.33, pp.798-809, 1998.

K. Kissel, S. Hamm, M. Schulz, A. Vecchi, C. Garlanda et al., Immunohistochemical localization of the murine transferrin receptor (TfR) on blood-tissue barriers using a novel anti-TfR monoclonal antibody, Histochem Cell Biol, vol.110, pp.63-72, 1998.

A. Knappe, P. Möller, P. Dulski, and A. Pekdeger, Positive gadolinium anomaly in surface water and ground water of the urban area, Chem Erde, vol.65, pp.167-189, 2005.

F. Knoepp, J. Bettmer, and M. Fronius, Gadolinium released by the linear gadolinium-based contrast-agent Gd-DTPA decreases the activity of human epithelial Na(+) channels (ENaCs), Biochim Biophys Acta, vol.1859, pp.1040-1048, 2017.

P. M. Kochanek, R. P. Berger, E. L. Fink, A. K. Au, H. Bay?r et al., The potential for bio-mediators and biomarkers in pediatric traumatic brain injury and neurocritical care, Front Neurol, vol.4, p.40, 2013.

A. H. Koeppen, The history of iron in the brain, J Neurol Sci, vol.134, pp.1-9, 1995.

A. H. Koeppen, S. C. Michael, M. D. Knutson, D. J. Haile, J. Qian et al., The dentate nucleus in Friedreich's ataxia: the role of iron-responsive proteins, Acta Neuropathol, vol.114, pp.163-173, 2007.

A. H. Koeppen, R. L. Ramirez, D. Yu, S. E. Collins, J. Qian et al., Friedreich's ataxia causes redistribution of iron, copper, and zinc in the dentate nucleus, Cerebellum, vol.11, pp.845-860, 2012.

H. Koppel, P. D. Lewis, and J. S. Wigglesworth, A study of the vascular supply to the external granular layer of the postnatal rat cerebellum, J Anat, vol.134, pp.73-84, 1982.

L. F. Koziol, D. E. Budding, and D. Chidekel, From movement to thought: executive function, embodied cognition, and the cerebellum, Cerebellum, vol.11, pp.505-525, 2012.

P. Kozler, O. Sobek, and J. Pokorný, Signs of myelin impairment in cerebrospinal fluid after osmotic opening of the blood-brain barrier in rats, Physiol Res, vol.64, pp.603-608, 2015.

S. F. Kralik, K. K. Singhal, M. S. Frank, and L. M. Ladd, Evaluation of gadolinium deposition in the brain after MR arthrography, AJR Am J Roentgenol, vol.211, pp.1063-1067, 2018.

K. K. Kramer, J. Liu, S. Choudhuri, and C. D. Klaassen, Induction of metallothionein mRNA and protein in murine astrocyte cultures, Toxicol Appl Pharmacol, vol.136, pp.94-100, 1996.

M. L. Kromrey, K. R. Liedtke, T. Ittermann, S. Langner, M. Kirsch et al., Intravenous injection of gadobutrol in an epidemiological study group did not lead to a difference in relative signal intensities of certain brain structures after 5 years, Eur Radiol, vol.27, p.778, 2017.

A. Kumar, NMDA receptor function during senescence: implication on cognitive performance, Front Neurosci, vol.9, p.473, 2015.

B. P. Kumar, D. Souza, S. L. Shivakumar, K. Rathinam, and K. , Cerium stimulates protein biosynthesis in rat heart in vivo, Biol Trace Elem Res, vol.50, pp.237-242, 1995.

H. Kuno, H. Jara, K. Buch, M. M. Qureshi, M. N. Chapman et al., Global and regional brain assessment with quantitative mr imaging in patients with prior exposure to linear gadolinium-based contrast agents, Radiology, vol.283, pp.195-204, 2017.

P. H. Kuo, E. Kanal, A. K. Abu-alfa, and S. E. Cowper, Gadolinium-based MR contrast agents and nephrogenic systemic fibrosis, Radiology, vol.242, pp.647-649, 2007.

M. Küper, A. Dimitrova, M. Thürling, S. Maderwald, J. Roths et al., Evidence for a motor and a non-motor domain in the human dentate nucleus-an fMRI study, Neuroimage, vol.54, pp.2612-2634, 2011.

L. Bas, J. F. Esteve, F. Grand, S. Rubin, C. Rémy et al., Spectroscopie RMN et pathologie cérébrale, J. Neuroradiol, vol.25, pp.55-69, 1998.

L. E. , Revisiting the pharmacokinetic profiles of gadolinium-based contrast agents: differences in longterm biodistribution and excretion, Invest Radiol, vol.51, pp.691-700, 2016.

F. Langlet, A. Mullier, S. G. Bouret, V. Prevot, and B. Dehouck, Tanycyte-like cells form a blood-cerebrospinal fluid barrier in the circumventricular organs of the mouse brain, J Comp Neurol, vol.521, pp.3389-3405, 2013.

S. Langner, M. L. Kromrey, J. P. Kuehn, M. Grothe, and M. Domin, Repeated intravenous administration of gadobutrol does not lead to increased signal intensity on unenhanced T1-weighted images-a voxel-based whole brain analysis, Eur Radiol, vol.27, pp.3687-3693, 2017.

L. Noce, A. Frigeni, V. Filatori, I. Danieli, A. Tirone et al., Gadobenate dimeglumine and cerebral glucose metabolism. Continuous monitoring of striatal lactate levels in freely moving rats, Acta Radiol, vol.41, pp.394-349, 2000.

J. Lansman, Blockade of current through single calcium channels by trivalent lanthanide cations, J Gen Physiol, vol.95, pp.679-696, 1990.

O. Larsell and J. Jansen, The comparative anatomy and histology of the cerebellum. The Human Cerebellum, Cerebellar Connections, and Cerebellar Cortex, 1972.

W. L. Lau, B. N. Huisa, and M. Fisher, The cerebrovascular-chronic kidney disease connection: perspectives and mechanisms, Transl Stroke Res, vol.8, pp.67-76, 2017.

R. B. Lauffer, Paramagnetic metal complexes as water proton relaxation agents for NMR imaging: theory and design, Chem Rev, vol.87, pp.901-927, 1987.

S. Laurent, L. V. Elst, F. Copoix, and R. N. Muller, Stability of MRI paramagnetic contrast media: a proton relaxometric protocol for transmetallation assessment, Invest Radiol, vol.36, pp.115-122, 2001.

S. Laurent, L. V. Elst, and R. N. Muller, Comparative study of the physicochemical properties of six clinical low molecular weight gadolinium contrast agents, Contrast Med. Mol. Imaging, vol.1, pp.128-137, 2006.

S. Laurent, L. Vander-elst, C. Henoumont, and R. N. Muller, How to measure the transmetallation of a gadolinium complex, Contrast Media Mol Imaging, vol.5, pp.305-308, 2010.

P. C. Lauterbur, Image formation by induced local interactions: examples employing nuclear magnetic resonance, Nature, vol.242, pp.190-191, 1973.

D. Lawson, A. Barger, E. Terreno, D. Parker, A. S. Botta et al., Optimizing the high-field relaxivity by selfassembling of macrocyclic Gd(III) complexes, Dalton Transactions, vol.44, pp.4910-4917, 2015.

L. Bihan, D. Breton, E. Lallemand, D. Grenier, P. Cabanis et al., MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders, Radiology, vol.161, pp.401-407, 1986.
URL : https://hal.archives-ouvertes.fr/hal-00349714

E. Ledneva, S. Karie, V. Launay-vacher, J. N. Deray, and G. , Renal safety of gadolinium-based contrast media in patients with chronic renal insufficiency, Radiology, vol.250, pp.618-628, 2009.

L. Lee and B. D. Sykes, Nuclear magnetic resonance determination of metal-proton distances in the EF site of carp parvalbumin using the susceptibility contribution to the line broadening of lanthanide-shifted resonances, Biochemistry, vol.19, pp.3208-3214, 1980.

J. Y. Lee, J. E. Park, H. S. Kim, S. O. Kim, J. Y. Oh et al., Up to 52 administrations of macrocyclic ionic MR contrast agent are not associated with intracranial gadolinium deposition: Multifactorial analysis in 385 patients, PLoS One, vol.12, p.183916, 2017.

M. Leger, A. Quiedeville, V. Bouet, B. Haelewyn, M. Boulouard et al., Object recognition test in mice, Nat Protoc, vol.8, pp.2531-2537, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02135259

R. Leite, M. Otaduy, G. Silva, M. Ferreira, and M. Aragao, Diagnostic methods for extra-temporal neocortical focal epilepsies, Arq. Neuro-Psiquiatr, vol.68, pp.119-126, 2010.

V. Leung, E. Zhang, and D. S. Pang, Real-time application of the Rat Grimace Scale as a welfare refinement in laboratory rats, Sci Rep, vol.6, p.31667, 2016.

M. H. Lev and P. W. Schaefer, Subarachnoid gadolinium enhancement mimicking subarachnoid hemorrhage on FLAIR MR images. Fluid attenuated inversion recovery (letter), AJR Am J Roentgenol, vol.173, pp.1414-1415, 1999.

J. M. Levine, R. A. Taylor, L. B. Elman, S. J. Bird, E. Lavi et al., Involvement of skeletal muscle in dialysis-associated systemic fibrosis (nephrogenic fibrosing dermopathy), Muscle Nerve, vol.30, pp.569-577, 2004.

L. M. Levy, Exceeding the limits of the normal blood-brain barrier: quo vadis gadolinium?, AJNR Am J Neuroradiol, vol.28, pp.1835-1836, 2007.

J. Li, Z. Zhang, X. Liu, Y. Wang, F. Mao et al., Study of GABA in healthy volunteers: pharmacokinetics and pharmacodynamics, Front Pharmacol, vol.6, p.260, 2015.

R. Li, J. Z. Chang, C. H. Dunphy, D. R. Cai, X. Meng et al., Surface interactions with compartmentalized cellular phosphates explain rare earth oxide nanoparticle hazard and provide opportunities for safer design, ACS Nano, vol.8, pp.1771-1783, 2014.

S. A. Liddelow, Development of the choroid plexus and blood-CSF barrier, Front Neurosci, vol.9, 2015.

J. Lohrke, A. L. Frisk, T. Frenzel, L. Schöckel, M. Rosenbruch et al., Histology and gadolinium distribution in the rodent brain after the administration of cumulative high doses of linear and macrocyclic gadolinium-based contrast agents, Invest Radiol, vol.52, pp.324-333, 2017.

R. López-pedrajas, D. T. Ramírez-lamelas, B. Muriach, M. V. Sánchez-villarejo, I. Almansa et al., Cocaine promotes oxidative stress and microglial-macrophage activation in rat cerebellum, Front Cell Neurosci, vol.9, p.279, 2015.

V. Lorusso, T. Arbughi, P. Tirone, and C. De-haën, Pharmacokinetics and tissue distribution in animals of gadobenate ion, the magnetic resonance imaging contrast enhancing component of gadobenate dimeglumine 0.5 M solution for injection (MultiHance), J Comput Assist Tomogr, vol.23, pp.181-194, 1999.

A. Louveau, I. Smirnov, T. J. Keyes, J. D. Eccles, S. J. Rouhani et al., Structural and functional features of central nervous system lymphatic vessels, Nature, vol.533, p.278, 2016.

L. Luciani, Il cervelletto: nuovi studi di fisiologia normale e patologica, 1891.

D. Lück, H. Scharf, N. Jakubowski, and U. Panne, A novel solid phase extraction method for pre-concentration of gadolinium and gadolinium based MRI contrast agents from the environment, J Anal At Spectrom, vol.25, pp.1573-1580, 2010.

T. N. Luong, H. J. Carlisle, A. Southwell, and P. H. Patterson, Assessment of motor balance and coordination in mice using the balance beam, J Vis Exp, issue.49, 2011.

A. Malhotra, B. Lesar, X. Wu, D. Durand, N. Das et al., Progressive T1 shortening of the dentate nucleus in patients with multiple sclerosis: result of multiple administrations of linear gadolinium contrast agents versus intrinsic disease, AJR Am J Roentgenol, vol.211, pp.1099-1105, 2018.

A. C. Mamourian, P. J. Hoopes, and L. D. Lewis, Visualization of intravenously administered contrast material in the CSF on fluid-attenuated inversion-recovery MR images: an in vitro and animal-model investigation, AJNR Am J Neuroradiol, vol.21, pp.105-111, 2000.

P. Mansfield and A. A. Maudsley, Planar spin imaging by NMR, J Phys C: Solid State Phys, vol.9, pp.409-412, 1976.

M. Manto, O. Ben-taib, and N. , Cerebellar nuclei: key roles for strategically located structures, Cerebellum, vol.9, pp.17-21, 2010.

M. Manto, Toxic agents causing cerebellar ataxias, Handb Clin Neurol, vol.103, pp.201-213, 2012.

M. Manto, J. M. Bower, A. B. Conforto, J. M. Delgado-garcía, S. N. Da-guarda et al., Consensus paper: roles of the cerebellum in motor control--the diversity of ideas on cerebellar involvement in movement, Cerebellum, vol.11, pp.457-487, 2012.

M. Manto, Agents causing cerebellar ataxia, Handbook of Clinical Neurology. Ataxic Disorders, vol.103, pp.201-213, 2012.

G. Manto-m-perrotta, Toxic-induced cerebellar syndrome: from the fetal period to the elderly, The Cerebellum: Disorders and, vol.155, 2018.

L. Manzo, A. F. Castoldi, T. Coccini, and L. D. Prockop, Assessing effects of neurotoxic pollutants by biochemical markers, Environ Res, vol.85, pp.31-36, 2001.

B. V. Maramattom, E. M. Manno, E. F. Wijdicks, and E. P. Lindell, Gadolinium encephalopathy in a patient with renal failure, Neurology, vol.64, pp.1276-1278, 2005.

P. Marckmann, L. Skov, K. Rossen, A. Dupont, M. B. Damholt et al., Nephrogenic systemic fibrosis: suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging, J Am Soc Nephrol, vol.17, pp.2359-2362, 2006.

H. B. Marcos, R. C. Semelka, and S. Worowattanakul, Normal placenta: gadolinium-enhanced dynamic MR imaging, Radiology, vol.205, pp.493-496, 1997.

J. W. Maricelli, Q. L. Lu, D. C. Lin, and B. D. Rodgers, Trendelenburg-like gait, instability and altered step patterns in a mouse model for limb girdle muscular dystrophy 2i, PLoS One, vol.11, p.161984, 2016.

G. Marie, P. Pozeg, R. A. Meuli, P. Maeder, and J. Forget, spatiotemporal pattern of gadodiamide-related T1 hyperintensity increase within the deep brain nuclei, Invest Radiol, vol.53, pp.748-754, 2018.

P. Mariën, H. Ackermann, M. Adamaszek, C. H. Barwood, A. Beaton et al., Consensus paper: Language and the cerebellum: an ongoing enigma, Cerebellum, vol.13, pp.386-410, 2014.

D. Marmolino and M. Manto, Pregabalin antagonizes copper-induced toxicity in the brain: in vitro and in vivo studies, Neurosignals, vol.18, pp.210-222, 2010.

D. Marr, A theory of cerebellar cortex, J Physiol, vol.202, pp.437-470, 1969.

C. D. Marsden,

, Rinsho Shinkeigaku, vol.22, pp.1093-1094, 1982.

J. H. Martin, S. E. Cooper, A. Hacking, and C. Ghez, Differential effects of deep cerebellar nuclei inactivation on reaching and adaptive control, J Neurophysiol, vol.83, pp.1886-1899, 2000.

M. Matsumae, O. Sato, A. Hirayama, N. Hayashi, K. Takizawa et al., Research into the physiology of cerebrospinal fluid reaches a new horizon: intimate exchange between cerebrospinal fluid and interstitial fluid may contribute to maintenance of homeostasis in the central nervous system, Neurologia. Medico-Chirurgica, vol.56, pp.416-441, 2016.

L. D. Mcbean, J. T. Dove, J. A. Halsted, and J. C. Smith, Zinc concentration in human tissues, Am J Clin Nutr, vol.25, pp.672-676, 1972.

H. L. Mcconnell, C. N. Kersch, R. L. Woltjer, and E. A. Neuwelt, The translational significance of the neurovascular unit, J Biol Chem, vol.292, pp.762-770, 2017.

R. J. Mcdonald, J. S. Mcdonald, D. F. Kallmes, M. E. Jentoft, D. L. Murray et al., Intracranial gadolinium deposition after contrast-enhanced MR Imaging, Radiology, vol.275, pp.772-782, 2015.

R. J. Mcdonald, J. S. Mcdonald, D. Dai, D. Schroeder, M. E. Jentoft et al., Comparison of gadolinium concentrations within multiple rat organs after intravenous administration of linear versus macrocyclic gadolinium chelates, Radiology, vol.285, pp.536-545, 2017.

R. J. Mcdonald, J. S. Mcdonald, D. F. Kallmes, M. E. Jentoft, M. A. Paolini et al., Gadolinium deposition in human brain tissues after contrast-enhanced MR imaging in adult patients without intracranial abnormalities, Radiology, vol.285, pp.546-554, 2017.

J. F. Megyesi, D. Maestro, and R. F. , Nuclear magnetic resonance in the investigation of cerebral tumors and cerebral edema: a clue to the cellular alterations that may affect the distribution of water, Biochem Cell Biol, vol.66, pp.1100-1109, 1988.

S. Menacherry, W. Hubert, and J. B. Justice, In vivo calibration of microdialysis probes for exogenous compounds, Anal Chem, vol.64, pp.577-583, 1992.

N. Menjot-de-champfleur and V. Costalat, , 2015.

H. Mestre, S. Kostrikov, R. I. Mehta, and M. Nedergaard, Perivascular spaces, glymphatic dysfunction, and small vessel disease, Clin Sci, vol.131, pp.2257-2274, 2017.

G. A. Metz, D. Merkler, V. Dietz, M. E. Schwab, and K. Fouad, Efficient testing of motor function in spinal cord injured rats, Brain Res, vol.883, pp.165-177, 2000.

D. Meyer, M. Schaefer, and B. Bonnemain, Gd-DOTA, A Potential MRI contrast agent. Current status of physicochemical knowledge, Invest Radiol, vol.23, pp.232-235, 1988.

F. A. Middleton and P. L. Strick, Basal ganglia and cerebellar loops: motor and cognitive circuits, Brain Res Brain Res Rev, vol.31, pp.236-250, 2000.

D. S. Miller, B. Bauer, and A. M. Hartz, Modulation of P-glycoprotein at the blood-brain barrier: opportunities to improve central nervous system pharmacotherapy, Pharmacol Rev, vol.60, pp.196-209, 2008.

J. H. Miller, H. H. Hu, A. Pokorney, P. Cornejo, and R. Towbin, MRI brain signal intensity changes of a child during the course of 35 gadolinium contrast examinations, Pediatrics, vol.136, pp.1637-1640, 2015.

E. Mills, X. P. Dong, F. Wang, and H. Xu, Mechanisms of brain iron transport: insight into neurodegeneration and CNS disorders, Future Med Chem, vol.2, pp.51-64, 2010.

E. Milward, B. Acikyol, B. Bassett, E. Williams, R. Graham et al., Brain changes in iron loading disorders, Metal Ions in Neurological Systems, pp.17-29, 2012.

J. W. Mink, The basal ganglia: focused selection and inhibition of competing motor programs, Prog Neurobiol, vol.50, pp.381-425, 1996.

H. Mitoma, M. Manto, and C. S. Hampe, Pathogenic roles of glutamic aAcid decarboxylase 65 autoantibodies in cerebellar ataxias, J Immunol Res, p.2913297, 2017.

S. Miyata, New aspects in fenestrated capillary and tissue dynamics in the sensory circumventricular organs of adult brains, Front Neurosci, vol.9, p.390, 2015.

A. Montagne, A. W. Toga, and B. V. Zlokovic, Blood-Brain Barrier Permeability and Gadolinium: Benefits and Potential Pitfalls in Research, JAMA Neurol, vol.73, pp.13-14, 2016.

C. P. Montoya, L. J. Campbell-hope, K. D. Pemberton, and S. B. Dunnett, The "staircase test": a measure of independent forelimb reaching and grasping abilities in rats, J Neurosci Methods, vol.36, pp.219-228, 1991.

J. Moreno, N. B. Vaz, J. C. Soler, J. L. Carrasco, S. Podlipnick et al., High signal intensity in the dentate nucleus on unenhanced T1-weighted MR Images in meloma patients receiving macrocyclic gadolinium-based contrast, J Radiol Diagn Methods, vol.1, p.101, 2018.

A. Morisetti, S. Bussi, P. Tirone, and C. De-haën, Toxicological safety evaluation of gadobenate dimeglumine 0.5 M solution for injection (MultiHance), a new magnetic resonance imaging contrast medium, J Comput Assist Tomogr, vol.23, pp.207-217, 1999.

S. Morita and S. Miyata, Different vascular permeability between the sensory and secretory circumventricular organs of adult mouse brain, Cell Tissue Res, vol.349, pp.589-603, 2012.

R. Morris, Developments of a water-maze procedure for studying spatial learning in the rat, J Neurosci Methods, vol.11, pp.47-60, 1984.

J. M. Morris and G. M. Miller, Increased signal in the subarachnoid space on fluid-attenuated inversion recovery imaging associated with the clearance dynamics of gadolinium chelate: a potential diagnostic pitfall, AJNR Am J Neuroradiol, vol.28, pp.1964-1967, 2007.

F. G. Moser, C. T. Watterson, S. Weiss, M. Austin, J. Mirocha et al., High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted mr images: comparison between gadobutrol and linear gadolinium-based contrast agents, AJNR Am J Neuroradiol, 2018.

R. J. Motekaitis, Y. Sun, and A. E. Martell, New synthetic, selective, high-affinity ligands for effective trivalent metal ion binding and transport, Inorg Chim Acta, vol.198, pp.421-428, 1992.

E. Motovilova and H. Shaoying, Magnetic materials for nuclear magnetic resonance and magnetic resonance imaging, Advances in Magnetic Materials, ed. Sam Zhang and Dongliang Zhao, 2017.

A. Mrini, H. Moukhles, H. Jacomy, O. Bosler, and G. Doucet, Efficient immunodetection of various protein antigens in glutaraldehyde-fixed brain tissue, J Histochem Cytochem, vol.43, pp.1285-1291, 1995.

A. A. Mufaddel and A. Ga, Familial idiopathic basal ganglia calcification (Fahr`s disease), Neurosciences (Riyadh), vol.19, pp.171-177, 2014.

S. Mugikura and K. Takase, Fear of linear gadolinium-based contrast agents and the Japanese radiologist's choice, Jpn J Radiol, vol.35, pp.695-696, 2017.

A. Mühler, M. Saeed, R. C. Brasch, and C. B. Higgins, Amelioration of cardiodepressive effects of gadopentate dimeglumine with addition of ionic calcium, Radiology, vol.184, pp.159-164, 1992.

M. R. Mühler, O. Clément, L. J. Salomon, D. Balvay, G. Autret et al., Maternofetal pharmacokinetics of a gadolinium chelate contrast agent in mice, Radiology, vol.258, pp.455-460, 2011.

A. Müller, A. Jurcoane, B. Mädler, P. Ditter, H. Schild et al., Brain relaxometry after macrocyclic Gd-based contrast agent, Clin Neuroradiol, vol.27, pp.459-468, 2017.

P. Mulqueen, J. M. Tingey, and W. D. Horrocks, Characterization of lanthanide (III) ion binding to calmodulin using luminescence spectroscopy, Biochemistry, vol.24, pp.6639-6645, 1985.

V. Muoio, P. B. Persson, and M. M. Sendeski, The neurovascular unit -concept review, Acta Physiol (Oxf), vol.210, pp.790-798, 2014.

N. Murata, L. F. Gonzalez-cuyar, K. Murata, C. Fligner, R. Dills et al., Macrocyclic and other nongroup 1 gadolinium contrast agents deposit low levels of gadolinium in brain and bone tissue: preliminary results from 9 patients with normal renal function, Invest Radiol, vol.51, pp.447-453, 2016.

L. B. Nachtigall, N. Karavitaki, K. Kiseljak-vassiliades, L. Ghalib, H. Fukuoka et al., Physicians' awareness of gadolinium retention and MRI timing practices in the longitudinal management of pituitary tumors: a "Pituitary Society, survey. Pituitary, vol.22, pp.37-45, 2019.

S. Naganawa, H. Kawai, M. Sone, and T. Nakashima, Increased sensitivity to low concentration gadolinium contrast by optimized heavily T2-weighted 3D-FLAIR to visualize endolymphatic space, Magn Reson Med Sci, vol.9, pp.73-80, 2010.

S. Naganawa, K. Suzuki, M. Yamazaki, Y. Sakurai, and M. Ikeda, Time course for measuring endolymphatic size in healthy volunteers following intravenous administration of gadoteridol, Magn Reson Med Sci, vol.13, pp.73-80, 2014.

S. Naganawa, T. Nakane, H. Kawai, and T. Taoka, Gd-based contrast enhancement of the perivascular spaces in the basal ganglia, Magn Reson Med Sci, vol.16, pp.61-65, 2017.

S. Naganawa, T. Taoka, H. Kawai, M. Yamazaki, and K. Suzuki, Appearance of the organum vasculosum of the lamina terminalis on contrast-enhanced MR imaging, Magn Reson Med Sci, vol.17, pp.132-137, 2018.

A. Nambu, H. Tokuno, and M. Takada, Functional significance of the cortico-subthalamo-pallidal 'hyperdirect' pathway, Neurosci Res, vol.43, pp.111-117, 2002.

P. Nandi and S. M. Lunte, Recent trends in microdialysis sampling integrated with conventional and microanalytical systems for monitoring biological events: a review, Anal Chim Acta, vol.651, pp.1-14, 2009.

A. Nassery, C. A. Palmese, H. Sarva, M. Groves, J. Miravite et al., Psychiatric and cognitive effects of deep brain stimulation for Parkinson's disease, Curr Neurol Neurosci Rep, vol.16, p.87, 2016.

B. P. Nathan, J. Yost, M. T. Litherland, R. G. Struble, and P. V. Switzer, Olfactory function in apoE knockout mice, Behav Brain Res, vol.150, pp.1-7, 2004.

R. Nau, F. Sörgel, and H. Eiffert, Penetration of drugs through the blood-cerebrospinal fluid/blood-brain barrier for treatment of central nervous system infections, Clin Microbiol Rev, vol.23, pp.858-883, 2010.

J. Naud, L. P. Laurin, J. Michaud, S. Beauchemin, F. A. Leblond et al., Effects of chronic renal failure on brain drug transporters in rats, Drug Metab Dispos, vol.40, pp.39-46, 2012.

M. Nedergaard and S. A. Goldman, Brain drain. Sci Am, vol.314, pp.44-49, 2016.

A. K. Nehra, R. J. Mcdonald, A. M. Bluhm, T. M. Gunderson, D. L. Murray et al., Accumulation of gadolinium in human cerebrospinal fluid after gadobutrol-enhanced MR imaging: a prospective observational cohort Study, Radiology, vol.288, pp.416-423, 2018.

A. B. Nelson and A. C. Kreitzer, Reassessing models of basal ganglia function and dysfunction, Annu Rev Neurosci, vol.37, pp.117-135, 2014.

C. Nilsson, F. Ståhlberg, C. Thomsen, O. Henriksen, M. Herning et al., Circadian variation in human cerebrospinal fluid production measured by magnetic resonance imaging, Am J Physiol, vol.262, pp.20-24, 1992.

N. Nishimura, H. Nishimura, A. Ghaffar, and C. Tohyama, Localization of metallothionein in the brain of rat and mouse, J Histochem Cytochem, vol.40, pp.309-315, 1992.

A. Nongnuch, K. Panorchan, and A. Davenport, Brain-kidney crosstalk, Crit Care, vol.18, pp.225-235, 2014.

J. P. O'callaghan, Assessment of neurotoxicity: use of glial fibrillary acidic protein as a biomarker, Biomed Environ Sci, vol.4, pp.197-206, 1991.

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, Brain magnetic resonance imaging with contrast dependent on blood oxygenation, Proc Natl Acad Sci USA, vol.87, pp.9868-9872, 1990.

T. Ogurusu, S. Wakabayashi, and M. Shigekawa, Functional characterization of lanthanide binding sites in the sarcoplasmic reticulum Ca(2+)-ATPase: do lanthanide ions bind to the calcium transport site?, Biochemistry, vol.30, pp.9966-9973, 1991.

K. Y. Oh, V. H. Roberts, M. C. Schabel, K. L. Grove, M. Woods et al., Gadolinium chelate contrast material in pregnancy: fetal biodistribution in the nonhuman primate, Radiology, vol.276, pp.110-118, 2015.

T. Ohashi, S. Naganawa, T. Katagiri, and K. Kuno, Relationship between contrast enhancement of the perivascular space in the basal ganglia and endolymphatic volume ratio, Magn Reson Med Sci, vol.17, pp.67-72, 2018.

T. Ohashi, S. Naganawa, E. Ogawa, T. Katagiri, and K. Kuno, Signal intensity of the cerebrospinal fluid after intravenous administration of gadolinium-based cContrast agents: strong contrast enhancement around the vein of Labbe, Magn Reson Med Sci, 2018.

M. Ohta and K. Ohta, Detection of myelin basic protein in cerebrospinal fluid, Expert Rev Mol Diagn, vol.2, pp.627-633, 2002.

O. Okazaki, N. Murayama, N. Masubuchi, H. Nomura, and H. Hakusui, Placental transfer and milk secretion of gadodiamide injection in rats, Arzneimittelforschung, vol.46, pp.83-86, 1996.

A. N. Oksendal and P. A. Hals, Biodistribution and toxicity of MR imaging contrast media, J Magn Reson Imaging, vol.3, pp.157-165, 1993.

C. Olchowy, K. Cebulski, M. ?asecki, R. Chaber, A. Olchowy et al., The presence of the gadolinium-based contrast agent depositions in the brain and symptoms of gadolinium neurotoxicity -A systematic review, PLoS One, vol.12, p.171704, 2017.

A. Y. Öner, B. Barutcu, ?. Aykol, and E. T. Tali, Intrathecal Contrast-enhanced magnetic resonance imaging-related brain signal changes: residual gadolinium deposition?, Invest Radiol, vol.52, pp.195-197, 2017.

E. M. Ong and I. B. Yeh, High signal in the cerebrospinal fluid following prior gadolinium administration in a patient with renal impairment, Singapore Med J, vol.48, pp.296-298, 2007.

N. Ortonne, D. Lipsker, F. Chantrel, N. Boehm, E. Grosshans et al., Presence of CD45RO+ CD34+ cells with collagen synthesis activity in nephrogenic fibrosing dermopathy: a new pathogenic hypothesis, Br J Dermatol, vol.150, pp.1050-1052, 2004.

A. Pal and R. Prasad, Regional distribution of copper, zinc and iron in brain of wistar rat model for non-wilsonian brain copper toxicosis, Ind J Clin Biochem, vol.31, pp.93-98, 2016.

A. Pa?asz and P. Czekaj, Toxicological and cytophysiological aspects of lanthanides action, Acta Biochim Pol, vol.47, pp.1107-1114, 2000.

W. M. Pardridge, Blood-brain barrier delivery, Drug Discov Today, vol.12, pp.54-61, 2007.

M. Parillo, M. Sapienza, F. Arpaia, F. Magnani, C. A. Mallio et al., Qua rocchi CC. A structured survey on adverse events occurring within 24 hours after intravenous exposure to gadodiamide or gadoterate meglumine: a controlled prospective cComparison study

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, 2007.

S. Pellow, P. Chopin, S. E. File, and M. Briley, Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat, J Neurosci Methods, vol.14, pp.149-167, 1985.

T. V. Peres, H. Eyng, S. C. Lopes, D. Colle, F. M. Gonçalves et al., Developmental exposure to manganese induces lasting motor and cognitive impairment in rats, Neurotoxicology, vol.50, pp.28-37, 2015.

G. Perrotta, T. Metens, J. Absil, M. Lemort, and M. Manto, Absence of clinical cerebellar syndrome after serial injections of more than 20 doses of gadoterate, a macrocyclic GBCA: a monocenter retrospective study, J Neurol, vol.264, pp.2277-2283, 2017.

A. M. Petros, L. Mueller, and K. D. Kopple, NMR identification of protein surfaces using paramagnetic probes, Biochemistry, vol.29, pp.10041-10048, 1990.

A. D. Piersson and P. N. Gorleku, The use of gadolinium-based contrast agents in Ghana with a focus on residual intracranial gadolinium deposition, Radiography (Lond.), vol.24, pp.51-55, 2018.

H. Pietsch, P. Lengsfeld, T. Steger-hartmann, A. Löwe, T. Frenzel et al., Impact of renal impairment on long-term retention of gadolinium in the rodent skin following the administration of gadolinium-based contrast agents, Invest Radiol, vol.44, pp.226-233, 2009.

M. E. Pizzo and R. G. Thorne, The extracellular and perivascular spaces of the brain

, Brain Edema: from Molecular Mechanisms to Clinical Practice, pp.103-128, 2017.

B. A. Plog and M. Nedergaard, The glymphatic system in central nervous system health and disease: past, present, and future, Annu Rev Pathol, vol.13, pp.379-394, 2018.

, PMDA. Pharmaceutical and Medical Devices Agency. Report on the investigation results, 2017.

B. F. Popescu, C. A. Robinson, A. Rajput, A. H. Rajput, S. L. Harder et al., Iron, copper, and zinc distribution of the cerebellum, Cerebellum, vol.8, pp.74-79, 2009.

B. F. Popescu and H. Nichol, Mapping brain metals to evaluate therapies for neurodegenerative disease, CNS Neurosci Ther, vol.17, pp.256-268, 2011.

M. Port, C. Corot, X. Violas, P. Robert, I. Raynal et al., How to compare the efficiency of albumin-bound and nonalbumin-bound contrast agents in vivo: the concept of dynamic relaxivity, Invest Radiol, vol.40, pp.565-573, 2005.

M. Port, J. M. Idée, C. Medina, C. Robic, M. Sabatou et al., thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review, Biometals, vol.21, pp.469-490, 2008.

H. T. Prekop, A. Kroiss, V. Rook, L. Zagoraiou, T. M. Jessell et al., Sox14 is required for a specific subset of cerebello-olivary projections, J Neurosci, vol.38, pp.9539-9550, 2018.

M. L. Pritt, D. G. Hall, W. H. Jordan, D. W. Ballard, K. K. Wang et al., Initial biological qualification of SBDP-145 as a biomarker of compound-induced neurodegeneration in the rat, Toxicol Sci, vol.141, pp.398-408, 2014.

J. P. Prybylski, R. C. Semelka, and M. Jay, Can gadolinium be re-chelated in vivo? Considerations from decorporation therapy, Magn Reson Imaging, vol.34, pp.1391-1393, 2016.

E. M. Purcell, H. C. Torrey, and R. V. Pound, Resonance absorption by nuclear moments in a solid, Phys Rev, vol.69, pp.37-38, 1946.

N. R. Puttagunta, W. A. Gibby, and G. T. Smith, Human in vivo comparative study of zinc and copper transmetallation after administration of magnetic resonance imaging contrast agents, Invest Radiol, vol.12, pp.739-781, 1996.

C. C. Quattrocchi, C. A. Mallio, Y. Errante, V. Cirimele, L. Carideo et al., Gadodiamide and dentate nucleus T1 hyperintensity in patients with meningioma evaluated by multiple follow-up contrast-enhanced magnetic resonance examinations with no systemic interval therapy, Invest Radiol, vol.50, pp.470-472, 2015.

C. C. Quattrocchi, C. A. Mallio, Y. Errante, and B. B. Zobel, High T1 signal intensity in dentate nucleus after multiple injections of linear gadolinium chelates, Radiology, vol.276, pp.616-617, 2015.

C. C. Quattrocchi, C. Piervincenzi, V. Cirimele, and F. Carducci, Gadolinium-retention effect on brain resting state functional connectivity in patients with inflammatory bowel disease and repetitive not-confounded i.v. exposure to gadodiamide, Invest Radiol: CMR, vol.52, pp.767-798, 2017.

C. Quintana, T. D. Wu, B. Delatour, M. Dhenain, J. L. Guerquin-kern et al., Morphological and chemical studies of pathological human and mice brain at the subcellular level: correlation between light, electron, and nanosims microscopies, Microsc Res Tech, vol.70, pp.281-295, 2007.

A. Radbruch, L. D. Weberling, P. J. Kieslich, O. Eidel, S. Burth et al., Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent, Radiology, vol.275, pp.783-791, 2015.

A. Radbruch, L. D. Weberling, P. J. Kieslich, J. Hepp, P. Kickingereder et al., Highsignal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted images: evaluation of the macrocyclic gadolinium-based contrast Agent gadobutrol, Invest Radiol, vol.50, pp.805-810, 2015.

A. Radbruch, Are some agents less likely to deposit gadolinium in the brain?, Magn Reson Imaging, vol.34, pp.1351-1354, 2016.

A. Radbruch, D. R. Roberts, O. Clément, A. Rovira, and C. C. Quattrocchi, Chelated or dechelated gadolinium deposition, Lancet Neurol, vol.16, p.955, 2017.

A. Radbruch, R. Haase, P. Kickingereder, P. Bäumer, S. Bickelhaupt et al., Pediatric Brain: No increased signal Iintensity in the dentate nucleus on unenhanced T1-weighted MR images after consecutive exposure to a macrocyclic gadolinium-based contrast Agent, Radiology, vol.283, pp.828-836, 2017.

R. M. Rai, J. X. Zhang, M. G. Clemens, and A. M. Diehl, Gadolinium chloride alters the acinar distribution of phagocytosis and balance between pro and anti-inflammatory cytokines, Shock, vol.6, pp.243-247, 1996.

A. T. Rai and J. P. Hogg, Persistence of gadolinium in CSF: a diagnostic pitfall in patients with end-stage renal disease, AJNR Am J Neuroradiol, vol.22, pp.1357-1361, 2001.

J. Ramalho, M. Castillo, M. Alobaidy, R. H. Nunes, M. Ramalho et al., High signal intensity in globus pallidus and dentate nucleus on unenhanced T1-weighted MR images: evaluation of two linear gadolinium-based contrast agents, Radiology, vol.276, pp.836-880, 2015.

J. Ramalho, M. Ramalho, M. Alobaidy, R. H. Nunes, M. Castillo et al., T1 signal-intensity increase in the dentate nucleus after multiple exposures to gadodiamide: intraindividual comparison between 2 commonly used sequences, AJNR Am J Neuroradiol, vol.37, pp.1427-1431, 2016.

J. Ramalho, M. Ramalho, and R. C. Semelka, Gadolinium deposition and toxicity: a global concern, Curr Radiol Rep, vol.4, p.59, 2016.

J. Ramalho, R. C. Semelka, M. Alobaidy, M. Ramalho, R. H. Nunes et al., Signal intensity change on unenhanced T1-weighted images in dentate nucleus following gadobenate dimeglumine in patients with and without previous multiple administrations of gadodiamide, Eur Radiol, vol.26, pp.4080-4088, 2016.

D. E. Ray, J. B. Cavanagh, C. C. Nolan, and S. C. Williams, Neurotoxic effects of gadopentetate dimeglumine: behavioral disturbance and morphology after intracerebroventricular injection in rats, AJNR Am J Neuroradiol, vol.17, pp.365-373, 1996.

J. A. Rees, G. J. Deblonde, D. D. An, C. Ansoborlo, S. S. Gauny et al., Evaluating the potential of chelation therapy to prevent and treat gadolinium deposition from MRI contrast agents, Sci Rep, vol.8, p.4419, 2018.

R. N. Rej, K. R. Holme, and A. S. Perlin, Marked stereoselectivity in the binding of copper ions by heparin. Contrasts with the binding of gadolinium and calcium ions, Carbohydr Res, vol.207, pp.143-152, 1990.

D. M. Renz, S. Kümpel, J. Böttcher, A. Pfeil, F. Streitparth et al., Comparison of unenhanced T1-weighted signal intensities within the dentate nucleus and the globus pallidus after serial applications of gadopentetate dimeglumine versus gadobutrol in a pediatric population, Invest Radiol, vol.53, pp.119-127, 2018.

P. A. Rinck and R. N. Muller, Field strength and dose dependence of contrast enhancement by gadolinium-based MR contrast agents, Eur Radiol, vol.9, pp.998-1004, 1999.

R. Roales-buján, P. Páez, M. Guerra, S. Rodríguez, K. Vío et al., Astrocytes acquire morphological and functional characteristics of ependymal cells following disruption of ependyma in hydrocephalus, Acta Neuropathol, vol.124, pp.531-546, 2012.

P. Robert, S. Lehericy, S. Grand, X. Violas, N. Fretellier et al., T1-weighted hypersignal in the deep cerebellar nuclei after repeated administrations of gadolinium-based contrast agents in healthy rats: difference between linear and macrocyclic agents, Invest Radiol, vol.50, pp.473-480, 2015.

P. Robert, X. Violas, S. Grand, S. Lehericy, J. M. Idée et al., Linear gadolinium-based contrast agents are associated with brain gadolinium retention in healthy rats, Invest Radiol, vol.51, pp.73-82, 2016.

P. Robert, S. Fingerhut, C. Factor, V. Vives, J. Letien et al., One-year retention of gadolinium in the brain: comparison of gadodiamide and gadoterate meglumine in a rodent model, Radiology, vol.288, pp.424-433, 2018.

P. Robert, T. Frenzel, C. Factor, G. Jost, M. Rasschaert et al., Methodological aspects for preclinical evaluation of gadolinium presence in brain tissue: critical appraisal and Ssuggestions for harmonization. A joint initiative, Invest Radiol, vol.53, pp.499-517, 2018.

D. R. Roberts, A. R. Chatterjee, M. Yazdani, B. Marebwa, T. Brown et al., Pediatric patients demonstrate progressive T1-weighted hyperintensity in the dentate nucleus following multiple doses of gadolinium-based contrast agent, AJNR Am J Neuroradiol, vol.37, pp.2340-2347, 2016.

D. R. Roberts and K. R. Holden, Progressive increase of T1 signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images in the pediatric brain exposed to multiple doses of gadolinium contrast, Brain Dev, vol.38, pp.331-336, 2016.

D. R. Roberts, C. A. Welsh, D. P. Lebel, and W. C. Davis, Distribution map of gadolinium deposition within the cerebellum following GBCA administration, Neurology, vol.88, pp.1206-1208, 2017.

R. A. Roberts, M. Aschner, D. Calligaro, T. R. Guilarte, J. P. Hanig et al., Translational biomarkers of neurotoxicity: a Health and Environmental Sciences Institute perspective on the way forward, Toxicol Sci, vol.148, pp.332-340, 2015.

C. Robic, S. Catoen, M. C. De-goltstein, J. M. Idée, and M. Port, The role of phosphate on Omniscan(®) dechelation: an in vitro relaxivity study at pH 7, Biometals, vol.24, pp.759-768, 2011.

R. K. Robison, A. Pokorney, and J. H. Miller, Evaluation of the effect of switching from a linear to a macrocyclic contrast agent on the T(1) -weighted brain signal intensity of a child during the course of 43 contrast-enhanced MRI examinations, J Magn Reson Imaging, vol.49, pp.608-609, 2019.

L. Roccatagliata, L. Vuolo, L. Bonzano, A. Pichiecchio, and G. L. Mancardi, Multiple sclerosis: hyperintense dentate nucleus on unenhanced T1-weighted MR images is associated with the secondary progressive subtype, Radiology, vol.251, pp.503-510, 2009.

J. Rogowska, E. Olkowska, W. Ratajczyk, and L. Wolska, Gadolinium as a new emerging contaminant of aquatic environments, Environ Toxicol Chem, vol.37, pp.1523-1534, 2018.

M. Rohrer, H. Bauer, J. Mintorovitch, M. Requardt, and H. J. Weinmann, Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths, Invest Radiol, vol.40, pp.715-724, 2005.

C. Rose, R. F. Butterworth, J. Zayed, L. Normandin, K. Todd et al., Manganese deposition in basal ganglia structures results from both portal-systemic shunting and liver dysfunction, Gastroenterology, vol.117, pp.640-644, 1999.

R. S. Rosenson, A. Mccormick, and E. F. Uretz, Distribution of blood viscosity values and biochemical correlates in healthy adults, Clin Chem, vol.42, pp.1189-1195, 1996.

M. C. Rossi-espagnet, B. Bernardi, L. Pasquini, L. Figà-talamanca, P. Tomà et al., Signal intensity at unenhanced T1-weighted magnetic resonance in the globus pallidus and dentate nucleus after serial administrations of a macrocyclic gadolinium-based contrast agent in children, Pediatr Radiol, vol.47, p.1366, 2017.

E. Rostami, J. Davidsson, K. C. Ng, J. Lu, A. Gyorgy et al., A model for mild traumatic brain injury that induces limited transient memory impairment and increased levels of axon related serum biomarkers, Front Neurol, vol.3, p.115, 2012.

S. Roux, E. Sablé, and R. D. Porsolt, Primary observation (Irwin) test in rodents for assessing acute toxicity of a test agent and its effects on behavior and physiological function, Curr Protoc Pharmacol, 2005.

V. M. Runge, Macrocyclic versus linear gadolinium chelates, Invest Radiol, vol.50, p.811, 2015.

V. M. Runge and J. T. Heverhagen, Advocating the Development of next-generation high-relaxivity gadolinium chelates for clinical magnetic resonance, Invest Radiol, vol.53, pp.381-389, 2018.

E. A. Sadowski, L. K. Bennett, M. R. Chan, A. L. Wentland, A. L. Garrett et al., Nephrogenic systemic fibrosis: risk factors and incidence estimation, Radiology, vol.243, pp.148-157, 2007.

V. S. Sajja, N. Hlavac, and P. J. Vandevord, Role of glia in memory deficits following traumatic brain injury: biomarkers of glia dysfunction, Front Integr Neurosci, vol.10, p.7, 2016.

A. M. Salvan, J. Vion-dury, S. Confort-gouny, N. F. Lamoureux, S. Cozzone et al., Brain proton magnetic resonance spectroscopy in HIV-related encephalopathy: identification of evolving metabolic patterns in relation to dementia and therapy, AIDS Res Hum Retroviruses, vol.13, pp.1055-1066, 1997.

G. Schieren, N. Wirtz, P. Altmeyer, L. C. Rump, S. M. Weiner et al., Nephrogenic systemic fibrosis--a rapidly progressive disabling disease with limited therapeutic options, J Am Acad Dermatol, vol.61, pp.868-874, 2009.

F. Schlachetzki and W. M. Pardridge, P-glycoprotein and caveolin-1alpha in endothelium and astrocytes of primate brain, Neuroreport, vol.14, pp.2041-2046, 2003.

L. Schlemm, C. Chien, J. Bellmann-strobl, J. Dörr, J. Wuerfel et al., Gadopentetate but not gadobutrol accumulates in the dentate nucleus of multiple sclerosis patients, Mult Scler, vol.23, pp.963-972, 2017.

J. D. Schmahmann, J. B. Weilburg, and J. C. Sherman, The neuropsychiatry of the cerebellum -insights from the clinic, Cerebellum, vol.6, pp.254-267, 2007.

J. D. Schmahmann, The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy, Neuropsychol Rev, vol.20, pp.236-260, 2010.

C. Schmitt, N. Strazielle, P. Richaud, A. Bouron, and J. F. Ghersi-egea, Active transport at the blood-CSF barrier contributes to manganese influx into the brain, J Neurochem, vol.117, pp.747-756, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01060697

G. K. Schneider, J. Stroeder, G. Roditi, C. Colosimo, P. Armstrong et al., T1 Signal Measurements in pediatric brain: findings after multiple exposures to gadobenate dimeglumine for imaging of nonneurologic disease, AJNR Am J Neuroradiol, vol.38, pp.1799-1806, 2017.

K. Schomäcker, D. Mocker, R. Münze, and G. J. Beyer, Stabilities of lanthanide-protein complexes, Int J Rad Appl Instrum A, vol.39, pp.261-264, 1988.

H. Schroll and F. H. Hamker, Computational models of basal-ganglia pathway functions: focus on functional neuroanatomy, Front Syst Neurosci, vol.7, p.122, 2013.

M. E. Sears, Chelation: harnessing and enhancing heavy metal detoxification-a review, ScientificWorldJournal, p.219840, 2013.

M. L. Seibenhener and M. C. Wooten, Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice, J Vis Exp, issue.96, p.52434, 2015.

R. C. Semelka, M. Ramalho, M. Alobaidy, and J. Ramalho, Gadolinium in humans: A family of disorders, AJR Am J Roentgenol, vol.207, pp.229-233, 2016.

R. C. Semelka, J. Ramalho, A. Vakharia, M. Alobaidy, L. M. Burke et al., Gadolinium deposition disease: Initial description of a disease that has been around for a while, Magn Reson Imaging, vol.34, pp.1383-1390, 2016.

R. C. Semelka, C. W. Commander, M. Jay, L. M. Burke, and M. Ramalho, Presumed gadolinium toxicity in subjects with normal renal function: a report of 4 cases, Invest Radiol, vol.51, pp.661-665, 2016.

R. C. Semelka, M. Ramalho, M. Jay, L. Hickey, and J. Hickey, Intravenous calcium-/zinc-diethylene triamine pentaacetic acid in patients with presumed gadolinium deposition disease: A preliminary report on 25 patients, Invest Radiol, vol.53, pp.373-379, 2018.

B. D. Semple, K. Blomgren, K. Gimlin, D. M. Ferriero, and L. J. Noble-haeusslein, Brain development in rodents and humans: identifying benchmarks of maturation and vulnerability to injury across species, Prog Neurobiol, pp.106-107, 2013.

S. Sen, M. R. Flynn, G. Du, A. I. Tröster, H. An et al., Manganese accumulation in the olfactory bulbs and other brain regions of "asymptomatic" welders, Toxicol Sci, vol.121, pp.160-167, 2011.

P. Sengupta, The laboratory rat: relating its age with human's, Int J Prev Med, vol.4, 2013.

J. L. Sessler, T. D. Mody, G. W. Hemmi, and V. Lynch, Synthesis and structural characterization of lanthanide(III) texaphyrins, Inorg Chem, vol.32, pp.3175-3187, 1993.

A. Shah, T. Garzon-muvdi, R. Mahajan, V. J. Duenas, and A. Quiñones-hinojosa, Animal models of neurological disease, Adv Exp Med Biol, vol.671, pp.23-40, 2010.

R. Shah, D. 'arco, F. Soares, B. Cooper, J. Brierley et al., Use of gadolinium contrast agents in paediatric population: Donald Rumsfeld meets Hippocrates!, Br J Radiol, vol.92, p.20180746, 1094.

F. G. Shellock and E. Kanal, Safety of magnetic resonance imaging contrast agents, J Magn Reson Imaging, vol.10, pp.477-484, 1999.

A. D. Sherry, P. Caravan, and R. E. Lenkinski, Primer on gadolinium chemistry, J Magn Reson Imaging, vol.30, p.1240, 2009.

H. Shimada, M. Nagano, T. Funakoshi, and S. Kojima, Pulmonary toxicity of systemic terbium chloride in mice, J Toxicol Environ Health, vol.48, pp.81-92, 1996.

L. E. Sidney, M. J. Branch, S. E. Dunphy, H. S. Dua, and A. Hopkinson, Concise review: evidence for CD34 as a common marker for diverse progenitors, Stem Cells, vol.32, pp.1380-1389, 2014.

M. A. Sieber, P. Lengsfeld, T. Frenzel, S. Golfier, H. Schmitt-willich et al., Preclinical investigation to compare different gadolinium-based contrast agents regarding their propensity to release gadolinium in vivo and to trigger nephrogenic systemic fibrosis-like lesions, Eur Radiol, vol.18, pp.2164-2173, 2008.

A. P. Silverman, An ethologist's approach to behavioural toxicology, Neurotoxicol Teratol, vol.10, pp.85-92, 1988.

P. Simon, R. Dupuis, and J. Costentin, Thigmotaxis as an index of anxiety in mice. Influence of dopaminergic transmissions, Behav Brain Res, vol.61, pp.59-64, 1994.

A. J. Smith, B. Jin, and A. S. Verkman, Muddying the water in brain edema?, Trends Neurosci, vol.38, pp.1-2, 2015.

A. P. Smith, M. Marino, J. Roberts, J. M. Crowder, J. Castle et al., Clearance of gadolinium from the brain with no pathologic effect after repeated administration of gadodiamide in healthy rats: an analytical and histologic study, Radiology, vol.282, pp.743-751, 2017.

R. M. Smith and A. E. Martell, Critical Stability Constants, vol.6, 1989.

J. Sobotta, Sobotta's Textbook and Atlas of Human Anatomy. WB Saunders, 1909.

B. J. Soher, B. M. Dale, and E. M. Merkle, A review of MR physics: 3T versus 1.5T, Magn Reson Imaging Clin N Am, vol.15, pp.277-290, 2007.

A. Somogyi, K. Medjoubi, G. Baranton, L. Roux, V. Ribbens et al., Optical design and multi-length-scale scanning spectro-microscopy possibilities at the Nanoscopium beamline of Synchrotron Soleil, J Synchrotron Radiat, vol.22, pp.1118-1129, 2015.

S. G. Sotocinal, R. E. Sorge, A. Zaloum, A. H. Tuttle, L. J. Martin et al., The Rat Grimace Scale: a partially automated method for quantifying pain in the laboratory rat via facial expressions, Mol Pain, vol.7, p.55, 2011.

N. Sousa, O. F. Almeida, and C. T. Wotjak, A hitchhiker's guide to behavioral analysis in laboratory rodents, Genes Brain Behav, vol.5, pp.5-24, 2006.

J. F. Spalding, L. M. Holland, and G. L. Tietjen, Influence of the visible color spectrum on activity in mice. II. Influence of sex, color, and age on activity, Lab Anim Care, vol.19, pp.209-213, 1969.

U. Speck, W. R. Press, and W. Mützel, Osmolality-related effects of injections into the central nervous system, Invest Radiol, vol.23, pp.114-117, 1988.

A. J. Spencer, S. A. Wilson, J. Batchelor, A. Reid, J. Rees et al., Gadolinium chloride toxicity in the rat, Toxicol Pathol, vol.25, pp.245-255, 1997.

A. Spinazzi, V. Lorusso, G. Pirovano, and M. Kirchin, Safety, tolerance, biodistribution and MR imaging enhancement of the liver with Gd-BOPTA: results of clinical pharmacologic and pilot imaging studies in non-patient and patient volunteers, Acad Radiol, vol.6, pp.282-291, 1999.

A. Splendiani, M. Perri, C. Marsecano, V. Vellucci, G. Michelini et al., Effects of serial macrocyclicbased contrast materials gadotérate meglumine and gadobutrol administrations on gadolinium-related dentate nuclei signal increases in unenhanced T1-weighted brain: a retrospective study in 158 multiple sclerosis (MS) patients, Radiol Med, vol.123, pp.125-134, 2018.

P. Srivanitchapoom, Y. Pitakpatapee, and A. Suengtaworn, Parkinsonian syndromes: A review, Neurol India, vol.66, pp.15-25, 2018.

G. J. Stanisz, E. E. Odrobina, J. Pun, M. Escaravage, S. J. Graham et al., T1, T2 relaxation and magnetization transfer in tissue at 3T, Magn Reson Med, vol.54, pp.507-512, 2005.

L. A. Stevens, G. Viswanathan, and D. E. Weiner, Chronic kidney disease and end-stage renal disease in the elderly population: current prevalence, future projections, and clinical significance, Adv Chronic Kidney Dis, vol.17, pp.293-301, 2010.

D. A. Stojanov, A. Aracki-trenkic, S. Vojinovic, D. Benedeto-stojanov, and S. Ljubisavljevic, Increasing signal intensity within the dentate nucleus and globus pallidus on unenhanced T1W magnetic resonance images in patients with relapsing-remitting multiple sclerosis: correlation with cumulative dose of a macrocyclic gadoliniumbased contrast agent, gadobutrol, Eur Radiol, vol.26, pp.807-822, 2016.

P. Stratta, C. Canavese, and A. S. , Gadolinium-enhanced magnetic resonance imaging, renal failure and nephrogenic systemic fibrosis/nephrogenic fibrosing dermopathy, Curr Med Chem, vol.15, pp.1229-1235, 2008.

N. Strazielle and J. F. Ghersi-egea, Choroid plexus in the central nervous system: biology and physiopathology, J Neuropathol Exp Neurol, vol.59, pp.561-574, 2000.

P. L. Strick, R. P. Dum, and J. A. Fiez, Cerebellum and nonmotor function, Annu Rev Neurosci, vol.32, pp.413-434, 2009.

F. Sultan and M. Glickstein, The cerebellum: Comparative and animal studies, Cerebellum, vol.6, pp.168-176, 2007.

D. Sulzer, E. Mosharov, Z. Talloczy, F. A. Zucca, J. D. Simon et al., Neuronal pigmented autophagic vacuoles: lipofuscin, neuromelanin, and ceroid as macroautophagic responses during aging and disease, J Neurochem, vol.106, pp.24-36, 2008.

P. C. Sundgren, Is there a need for use of contrast in the pregnant mother and in small children, Proc 17th Annual Meeting International Society of Magnetic Resonance in Medicine, ISMRM

P. C. Sundgren and P. Leander, Is administration of gadolinium-based contrast media to pregnant women and small children justified?, J Magn Reson Imaging, vol.34, pp.750-757, 2011.

K. T. Suzuki, E. Kobayashi, Y. Ito, H. Ozawa, and E. Suzuki, Localization and health effects of lanthanum chloride instilled intratracheally into rats, Toxicology, vol.76, pp.141-152, 1992.

S. Suzuki, S. Nishio, K. Takata, T. Morioka, and M. Fukui, Radiation-induced brain calcification: paradoxical high signal intensity in T1-weighted MR images, Acta Neurochir (Wien), vol.142, pp.801-804, 2000.

S. Swaminathan and S. V. Shah, New insights into nephrogenic systemic fibrosis, J Am Soc Nephrol, vol.18, pp.2636-2643, 2007.

M. D. Sweeney, S. Ayyadurai, and B. V. Zlokovic, Pericytes of the neurovascular unit: key functions and signaling pathways, Nat Neurosci, vol.19, pp.771-783, 2016.

. Switzer-rc-3rd, C. Lowry-franssen, and S. A. Benkovic, Recommended neuroanatomical sampling practices for comprehensive brain evaluation in nonclinical safety studies, Toxicol Pathol, vol.39, pp.73-84, 2011.

P. Tagliaferro, C. J. Tandler, A. J. Ramos, P. Saavedra, J. Brusco et al., A new procedure based on the Schiff-quenching method, J Neurosci Methods, vol.77, pp.235-236, 1997.

F. Taillieu, L. J. Salomon, N. Siauve, O. Clément, F. N. Balvay et al., Placental perfusion and permeability: simultaneous assessment with dual-echo contrast-enhanced MR imaging in mice, Radiology, vol.241, pp.737-745, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00163736

B. Tamrazi, C. J. Liu, S. Y. Cen, M. B. Nelson, G. Dhall et al., Brain irradiation and gadobutrol administration in pediatric patients with brain tumors: effect on MRI brain signal intensity, Radiology, vol.289, pp.188-194, 2018.

B. Tamrazi, B. Nguyen, C. J. Liu, C. G. Azen, M. B. Nelson et al., Changes in signal intensity of the dentate nucleus and globus pallidus in pediatric patients: impact of brain irradiation and presence of primary brain tumors independent of linear gadolinium-based contrast agent administration, Radiology, vol.287, pp.452-460, 2018.

M. Tanaka, K. Nakahara, and M. Kinoshita, Increased signal intensity in the dentate nucleus of patients with multiple sclerosis in comparison with neuromyelitis optica spectrum disorder after multiple doses of gadolinium contrast, Eur Neurol, vol.75, pp.195-203, 2016.

T. Taoka, G. Jost, T. Frenzel, S. Naganawa, and H. Pietsch, Impact of the glymphatic system on the kinetic and distribution of gadodiamide in the rat brain: observations by dynamic MRI and effect of circadian rhythm on tissue gadolinium concentrations, Invest Radiol, vol.53, pp.529-534, 2018.

M. Taupitz, N. Stolzenburg, M. Ebert, J. Schnorr, R. Hauptmann et al., Gadoliniumcontaining magnetic resonance contrast media: investigation on the possible transchelation of Gd(3+) to the glycosaminoglycan heparin, Contrast Media Mol Imaging, vol.8, pp.108-116, 2013.

D. M. Taylor, J. R. Duffield, D. R. Williams, L. Yuele, P. W. Gaskin et al., Binding of f-elements to the iron transport protein transferrin, Eur J Solid State Inorg Chem, vol.28, pp.271-274, 1991.

D. M. Taylor and R. W. Leggett, A generic biokinetic model for predicting the behavior of the lanthanide elements in the human body, Radiat Prot Dosimetry, vol.105, pp.193-198, 2003.

E. Tedeschi, G. Palma, A. Canna, S. Cocozza, C. Russo et al., In vivo dentate nucleus MRI relaxometry correlates with previous administration of gadolinium-based contrast agents, Eur Radiol, vol.26, pp.4577-4584, 2016.

A. Teigler, D. Komljenovic, A. Draguhn, K. Gorgas, and W. W. Just, Defects in myelination, paranode organization and Purkinje cell innervation in the ether lipid-deficient mouse cerebellum, Hum Mol Genet, vol.18, pp.1897-1908, 2009.

L. Telgmann, C. A. Wehe, J. Künnemeyer, A. C. Bülter, M. Sperling et al., Speciation of Gd-based MRI contrast agents and potential products of transmetalation with iron ions or parenteral iron supplements, Anal Bioanal Chem, vol.404, pp.2133-2141, 2012.

Y. Temel, A. Blokland, H. W. Steinbusch, and V. Visser-vandewalle, The functional role of the subthalamic nucleus in cognitive and limbic circuits, Prog Neurobiol, vol.76, pp.393-413, 2005.

C. Thakral, J. Alhariri, and J. L. Abraham, Long-term retention of gadolinium in tissues from nephrogenic systemic fibrosis patient after multiple gadolinium-enhanced MRI scans: case report and implications, Contrast Media Mol Imaging, vol.2, pp.199-205, 2007.

C. Thakral and J. L. Abraham, Gadolinium-induced nephrogenic systemic fibrosis is associated with insoluble Gd deposits in tissues: in vivo transmetallation confirmed by microanalysis, J Cutan Pathol, vol.36, pp.1244-1254, 2009.

H. S. Thomsen, Magnetic resonance contrast media, Eur J Hosp Pharm, vol.2, pp.60-62, 2005.

H. S. Thomsen, Nephrogenic systemic fibrosis: a serious adverse reaction to gadolinium, 1997.

, Acta Radiol, vol.57, pp.515-520, 2016.

M. S. Thomsen, L. J. Routhe, and T. Moos, The vascular basement membrane in the healthy and pathological brain, J Cereb Blood Flow Metab, vol.37, pp.3300-3317, 2017.

D. Tibussek, C. Rademacher, J. Caspers, B. Turowski, J. Schaper et al., Gadolinium brain deposition after macrocyclic gadolinium administration: a pediatric case-control study, Radiology, vol.285, pp.223-230, 2017.

A. Tracqui, J. Tayot, P. Kintz, G. Alves, M. A. Bosque et al., Determination of manganese in human brain samples, Forensic Sci Int, vol.76, pp.199-203, 1995.

O. Turk, N. G. Ozdemir, I. B. Atci, T. Saygi, H. Yilmaz et al., Intraventricular Gadoteric Acid Intoxication: First Report. World Neurosurg, vol.111, pp.264-268, 2018.

K. Tuschl, P. B. Mills, and P. T. Clayton, Manganese and the brain, Int Rev Neurobiol, vol.110, pp.277-312, 2013.

M. F. Tweedle, J. J. Hagan, K. Kumar, S. Mantha, and C. A. Chang, Reaction of gadolinium chelates with endogenously available ions, Magn Reson Imaging, vol.9, pp.409-415, 1991.

M. F. Tweedle, P. Wedeking, and K. Kumar, Biodistribution of radiolabeled, formulated gadopentetate, gadoteridol, gadoterate, and gadodiamide in mice and rats, Invest Radiol, vol.30, pp.372-380, 1995.

M. S. Valiathan, C. C. Kartha, J. T. Eapen, H. S. Dang, and C. M. Sunta, A geochemical basis for endomyocardial fibrosis, Cardiovasc Res, vol.23, pp.647-648, 1989.

A. J. Van-der-molen, Diagnostic efficacy of gadolinium-based contrast media, Contrast Media, Medical Radiology. Diagnostic Imaging, pp.181-191, 2014.

L. Vander-elst, F. Maton, S. Laurent, F. Seghi, F. Chapelle et al., A multinuclear MR study of Gd-EOB-DTPA: comprehensive preclinical characterization of an organ specific MRI contrast agent, Magn Reson Med, vol.38, pp.604-614, 1997.

J. Varani, M. Dasilva, R. L. Warner, M. O. Deming, A. G. Barron et al., Effects of gadoliniumbased magnetic resonance imaging contrast agents on human skin in organ culture and human skin fibroblasts, Invest Radiol, vol.44, pp.74-81, 2009.

J. Varga, S. Ferenczi, K. J. Kovács, A. Garafova, D. Jezova et al., Comparison of stress-induced changes in adults and pups: is aldosterone the main adrenocortical stress hormone during the perinatal period in rats?, PLoS One, vol.8, p.72313, 2013.

K. P. Vercruysse, H. Li, Y. Luo, and G. D. Prestwich, Thermosensitive lanthanide complexes of hyaluronan, Biomacromolecules, vol.3, pp.639-643, 2002.

E. Vergauwen, A. M. Vanbinst, C. Brussaard, P. Janssens, D. Clerck et al., Central nervous system gadolinium accumulation in patients undergoing periodical contrast MRI screening for hereditary tumor syndromes, Hered Cancer Clin Pract, vol.16, issue.2, 2018.

C. Vidaud, D. Bourgeois, and D. Meyer, Bone as target organ for metals: the case of f-elements, Chem Res Toxicol, vol.25, pp.1161-1175, 2012.

V. Vilgrain, V. Beers, B. E. Pastor, and C. M. , Insights into the diagnosis of hepatocellular carcinomas with hepatobiliary MRI, J Hepatol, vol.64, pp.708-716, 2016.

C. V. Vorhees and M. T. Williams, Morris water maze: procedures for assessing spatial and related forms of learning and memory, Nat Protoc, vol.1, pp.848-858, 2006.

A. A. Walf and C. A. Frye, The use of the elevated plus maze as an assay of anxiety-related behavior in rodents, Nat Protoc, vol.2, pp.322-328, 2007.

R. N. Walsh and R. A. Cummins, The Open-Field Test: a critical review, Psychol Bull, vol.83, pp.482-504, 1976.

C. Wan, Y. Zhan, R. Xue, Y. Wu, X. Li et al., Gd-DTPA-induced dynamic metabonomic changes in rat biofluids, Magn Reson Imaging, vol.44, pp.15-25, 2017.

H. W. Wang, M. S. Amin, E. El-shahat, B. S. Huang, B. S. Tuana et al., Effects of central sodium on epithelial sodium channels in rat brain, Am J Physiol Regul Integr Comp Physiol, vol.299, pp.222-233, 2010.

J. Wang, H. Zhang, K. Yang, and C. Niu, Computer simulation of Gd(III) speciation in human interstitial fluid, Biometals, vol.17, pp.599-603, 2004.

X. Wang, T. Takano, and M. Nedergaard, Astrocytic calcium signaling: mechanism and implications for functional brain imaging, Methods Mol Biol, vol.489, pp.93-109, 2009.

X. K. Wang, H. L. Zhang, F. H. Meng, M. Chang, Y. Z. Wang et al., Elevated levels of S100B, tau and pNFH in cerebrospinal fluid are correlated with subtypes of Guillain-Barré syndrome, Neurol Sci, vol.34, pp.655-61, 2013.

R. J. Ward, F. A. Zucca, J. H. Duyn, R. R. Crichton, and L. Zecca, The role of iron in brain ageing and neurodegenerative disorders, Lancet Neurol, vol.13, pp.1045-1060, 2014.

M. L. Wastie and K. H. Latief, Gadolinium: named after Finland's most famous chemist, Br J Radiol, vol.77, pp.146-147, 2004.

E. Waubant, Biomarkers indicative of blood-brain barrier disruption in multiple sclerosis, Dis Markers, vol.22, pp.235-244, 2006.

J. A. Webb and H. S. Thomsen, Morcos SK; Members of Contrast Media Safety Committee of European Society of Urogenital Radiology (ESUR). The use of iodinated and gadolinium contrast media during pregnancy and lactation, Eur Radiol, vol.15, pp.1234-1240, 2005.

L. D. Weberling, P. J. Kieslich, P. Kickingereder, W. Wick, M. Bendszus et al., Increased signal intensity in the dentate Nnucleus on unenhanced T1-weighted Iimages after gadobenate dimeglumine administration, Invest Radiol, vol.50, pp.743-748, 2015.

P. Wedeking, K. Kumar, and M. F. Tweedle, Dissociation of gadolinium chelates in mice: relationship to chemical characteristics, Magn Reson Imaging, vol.10, pp.641-648, 1992.

K. Wei, Z. Yin, and Y. Xie, Roles of the kidney in the formation, remodeling and repair of bone, J Nephrol, vol.29, pp.349-357, 2016.

B. Welk, E. Mcarthur, S. A. Morrow, P. Macdonald, J. Hayward et al., Association between gadolinium contrast exposure and the risk of parkinsonism, JAMA, vol.316, pp.96-98, 2016.

R. O. Weller, M. M. Sharp, M. Christodoulides, R. O. Carare, and K. Møllgård, The meninges as barriers and facilitators for the movement of fluid, cells and pathogens related to the rodent and human CNS, Acta Neuropathol, vol.135, pp.363-385, 2018.

K. Wiedemeyer, H. Kutzner, J. L. Abraham, C. Thakral, J. A. Carlson et al., The evolution of osseous metaplasia in localized cutaneous nephrogenic systemic fibrosis: a case report, Am J Dermatopathol, vol.31, pp.674-681, 2009.

K. J. Willan, K. H. Wallace, J. C. Jaton, and R. A. Dwek, The use of gadolinium as a probe in the Fc region of a homogeneous anti-(type-III pneumococcal polysaccharide) antibody, Biochem J, vol.161, pp.205-211, 1977.

G. Williams, A survey of the chronics effects of retained Gd from contrast MRIs, 2014.

F. Woimant, J. M. Trocello, P. Chaine, P. Rémy, P. Chappuis et al., Neurologie.com, vol.2, pp.255-258, 2010.

D. J. Wolak and R. G. Thorne, Diffusion of macromolecules in the brain: implications for drug delivery, Mol Pharm, vol.10, pp.1492-1504, 2013.

A. D. Wong, M. Ye, A. F. Levy, J. D. Rothstein, D. E. Bergles et al., The blood-brain barrier: an engineering perspective. Front Neuroeng, 2013.

D. Xia, R. L. Davis, J. A. Crawford, and J. L. Abraham, Gadolinium released from MR contrast agents is deposited in brain tumors: in situ demonstration using scanning electron microscopy with energy dispersive X-ray spectroscopy, Acta Radiol, vol.51, pp.1126-1236, 2010.

Z. Xie, D. J. Culley, Y. Dong, G. Zhang, B. Zhang et al., The common inhalation anesthetic isoflurane induces caspase activation and increases amyloid beta-protein level in vivo, Ann Neurol, vol.64, pp.618-645, 2008.

L. Xie, H. Kang, Q. Xu, M. J. Chen, Y. Liao et al., Sleep drives metabolite clearance from the adult brain, Science, vol.342, pp.373-377, 2013.

J. Y. Yager and D. S. Hartfield, Neurologic manifestations of iron deficiency in childhood, Pediatr Neurol, vol.27, pp.85-92, 2002.

H. Yang, J. Q. Zhang, and X. , Studies on effects of yttrium chloride and praseodymium chloride on frequency of micronucleus in human blood lymphocytes, Zhonghua Yu Fang Yi Xue Za Zhi, vol.32, pp.156-158, 1998.

L. Yang, I. Krefting, A. Gorovets, L. Marzella, J. Kaiser et al., Nephrogenic systemic fibrosis and class labeling of gadolinium-based contrast agents by the Food and Drug Administration, Radiology, vol.265, pp.248-253, 2012.

Z. Yang and K. K. Wang, Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker, Trends Neurosci, vol.38, pp.364-374, 2015.

J. R. Young, W. B. Pope, and M. Bobinski, Gadolinium deposition within the pediatric brain: no increased intrinsic T1-weighted signal intensity within the dentate nucleus following the administration of a minimum of 4 doses of the macrocyclic agent gadoteridol, AJNR Am J Neuroradiol, vol.39, pp.1604-1608, 2018.

J. R. Young, I. Orosz, M. A. Franke, H. J. Kim, D. Woodworth et al., Gadolinium deposition in the paediatric brain: T1-weighted hyperintensity within the dentate nucleus following repeated gadolinium-based contrast agent administration, Clin Radiol, vol.73, pp.290-295, 2018.

J. R. Young, J. Qiao, I. Orosz, N. Salamon, M. A. Franke et al., Gadolinium deposition within the paediatric brain: no increased intrinsic T1-weighted signal intensity within the dentate nucleus following the administration of a minimum of four doses of the macrocyclic agent gadobutrol, Eur Radiol, 2018.

O. Zak and P. Aisen, Spectroscopic and thermodynamic studies on the binding of gadolinium(III) to human serum transferrin, Biochemistry, vol.27, pp.1075-1080, 1988.

P. Zalewski, A. Truong-tran, S. Lincoln, D. Ward, A. Shankar et al., Use of a zinc fluorophore to measure labile pools of zinc in body fluids and cell-conditioned media, Biotechniques, vol.40, pp.509-520, 2006.

L. Zanetta, S. G. Marcus, J. Vasile, M. Dobryansky, H. Cohen et al., Expression of Von Willebrand factor, an endothelial cell marker, is up-regulated by angiogenesis factors: a potential method for objective assessment of tumor angiogenesis, Int J Cancer, vol.85, pp.281-288, 2000.

A. Zapata, V. I. Chefer, and T. S. Shippenberg, Microdialysis in rodents, Curr Protoc Neurosci, issue.2, 2009.

E. T. Zhang, C. B. Inman, and R. O. Weller, Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum, J. Anat, vol.170, pp.111-123, 1990.

Y. Zhang, Y. Cao, G. L. Shih, E. M. Hecht, and M. R. Prince, Extent of signal hyperintensity on unenhanced T1-weighted brain MR images after more than 35 administrations of linear gadolinium-based contrast agents, Radiology, vol.282, pp.516-525, 2017.

J. Zhao, Z. Q. Zhou, J. C. Jin, L. Yuan, H. He et al., Mitochondrial dysfunction induced by different concentrations of gadolinium ion, Chemosphere, vol.100, pp.194-199, 2014.

W. Zheng, Toxicology of choroid plexus: special reference to metal-induced neurotoxicities, Microsc Res Tech, vol.52, pp.89-103, 2001.

W. Zheng, Blood-Brain Barrier and Blood-CSF Barrier in Metal-Induced Neurotoxicities, Handbook of Neurotoxicology, 2002.

L. Zheng, J. Yang, Q. Liu, F. Yu, S. Wu et al., Lanthanum chloride impairs spatial learning and memory and downregulates NF-?B signalling pathway in rats, Arch Toxicol, vol.87, pp.2105-2117, 2013.

J. Zhong, D. P. Carrozza, K. Williams, D. B. Pritchett, and P. B. Molinoff, Expression of mRNAs encoding subunits of the NMDA receptor in developing rat brain, J Neurochem, vol.64, pp.531-539, 1995.

W. F. Zhu, S. Q. Xu, H. Zhang, P. P. Shao, D. S. Wu et al., Investigation of children intelligence quotient in REE mining area-I. Bio-effect study of REE mining area in South Jiangxi, Physics of MRI -Detailed. My-MS.org, vol.1, 1996.

, Site internet 6 : Socité Française de Radiologie. Echo de Spin et dérivés Flair, Stir, ESR, Bandes de saturation

, Site internet 8 : Les ganglions de la base ou noyaux gris centraux. M. Bosc, E Hérault

, Site internet 10 : Electron energy loss spectroscopy (EELS) for chemical and compositional analysis

, Site internet 11 : Blood-Brain Barrier

, Site internet 12 : Blood brain barrier and cerebral metabolism. Dash

, Site internet 13 : Atlas d'histologie en microscopie optique

, Site internet 14 : Atlas d'histologie humaine et animale. Substance grise et substance blanche

, Exprimé par les astrocytes matures et présent dans l'espace extracellulaire, Site internet 15 : Cerebellar pathways. College of Medicine & Health Sciences, Al Ain, Emirats Arabes Unis

. Wang, Sajja, 2013.

, TSPO (Translocator Protein)

, Augmente aussi lors de lésion gliales ou microgliales. Impliqué dans la synthèse des neurostéroïdes qui modulent

C. , , 2008.

, Annexe 6 : Transports du fer à travers les différents composants de l'unité neurovasculaire

, BVEC : cellule endothéliale des vaisseaux ; CD200= glycoprotéine membranaire OX-2 ; CD200R : récepteur de Cd200 ; Cp : céruléoplasmine ; DMT1 : transporteur de métaux divalents

, Hepc : hepcidine ; IRP : iron-regulatory protein ; MS : feuillet de myéline ; N : noyau ; Tf : transferrine ; TfR1 : récepteur de la transferrine-1 ; Tim2 : récepteur de la ferritine, 2014.

:. , FIGURE 1

S. Spins and S. B0, FIGURE, vol.2, issue.2

. Schema-de-l'orientation-des, P. Spins, L. Xy, L. De-l'etat-d'equilibre, and . Relaxation, FIGURE, vol.3

. Relaxation-des, A. Nucleaires, E. Vert), and C. , FIGURE, vol.4, 2013.

A. De-180°-sur-l'orientation-des, P. Spins, . Sur-le, . Plan-xy.-l'inversion, P. Entre-c-et-d et al., FIGURE, vol.5, 2013.

C. Sequence-d'acquisition, A. Structures, E. T. Images, and . Associees, FIGURE, vol.6

E. Des, . De, . Et, A. Lanthanides, E. T. Motovilova et al., FIGURE, p.23, 2017.

R. Gd, A. , D. Interne, U. Via, and . Leon-rodriguez, FIGURE, vol.8, 2015.

E. Transversale and M. Diminues, FIGURE, vol.9

P. Nmrd, . Proton, . Differents, . De, A. Dans-l'eau et al., FIGURE, vol.10, 2006.

C. Gd and R. Par-kcond, FIGURE, vol.11, p.34, 2008.

D. Gd, D. Heures, and C. Port, FIGURE, vol.12, issue.1, 2008.

A. Ioniques, FIGURE, vol.13, 2008.

A. Gadoterate, C. De, . Ionique, and . Macrocyclique, 38 FIGURE 15 : REPRESENTATION DES 8 CYCLES A 5, FIGURE, vol.14

R. Johansson, FIGURE, vol.16, 2001.

C. Manifestations and . Cowper, ET GIRARDI, vol.17, p.47, 2008.

P. Girardi, , vol.18, 2011.

M. Averees, FIGURE, vol.19, 2013.

A. Cerebrales, FIGURE, vol.20, 2014.

L. Injectees and E. Dentele, CEMRI : « CONTRAST-ENHANCED MAGNETIC RESONANCE IMAGING, vol.21, 2015.

R. De, I. De-gadopentetate-(magnevist®, L. , O. U. De-gadoterate-(dotarem®, M. Lineaire et al., FIGURE, vol.22, issue.50, 2015.

C. Pallidus, L. E. Thalamus, L. Vs, . La, and . Cumulee-de-gadodiamide, FIGURE, vol.23, 2015.

L. Gd and A. Travail, FIGURE, vol.24

R. Centraux, FIGURE, vol.25

. Decomposition, . Cervelet, E. Lobules, E. T. Profonds-(a), . Sagittale-sur et al., FIGURE, vol.26

A. Patient and E. La, FIGURE, vol.27, 1909.

2. ). Irm-(errante-;-robert, I. L. Sur-de-telles-images, E. N. Est, S. Fait, B. Emboliforme et al., , 2014.

D. , E. Anterieur, E. N. Vert, E. Noyau-interpose-posterieur, A. Le-rat et al., FIGURE, vol.28, 2007.

L. Ventricules, P. Ventricules), and . Cervelet, , p.PUIS

D. Extracellulaire and «. Ecf,

S. Barriere and . Lcr,

E. Lcr, , 2010.

L. Zoom-sur, . Barrieres-a-traverser-avant-d'atteindre, . Le, and . Cerebral, FIGURE, vol.43

T. , P. Extracellulaire, L. A. Membrane, . Presente, . Barriere et al., , 2010.

A. Sections, P. La, . Du, and . Sanguin, FIGURE, vol.44, 2017.

R. Soutien, S. Qu'il-s'agit-d'arteres, D. , D. E. Capillaires, . De-veinules et al., FIGURE, vol.45, 2017.

. Organisation-de-l'unite, C. Neurovasculaire, E. N. Hematoencephalique, and . Coupes-transversale, FIGURE, vol.46

R. Capillaires, FIGURE, vol.47

. Les, B. Choroïdes, . Physique, . Circulation, . Et et al., FIGURE, vol.48, 2015.

R. Choroïdes, R. Sur, U. N. Lame-basale-et, O. Stroma, and . Dendritiques, FIGURE, vol.49, 2016.

M. Choroïdes, FIGURE, vol.50, 2015.

, FIGURE 51 : BARRIERE LCR -SANG, 2016.

. Localisation-des-organes, S. Circumventriculaires, and . Sagittal, SITE INTERNET, vol.52, p.117

). Fort-grossissement, . On, L. Parfaitement, ). Mol-;-1, and L. Separant, FIGURE, vol.53

L. En-profondeur and . Blanche,

P. , Q. , A. Leur, G. Sur-le-detecteur, I. Caracteristique et al., FIGURE, vol.54, 2016.

S. Vers-l'echantillon-pour-l'ioniser, T. Lentilles, and V. Cunha, FIGURE, vol.55, 2016.

I. Rats, L. De-gadodiamide, J. Plus-tard, and . Cerebral, FIGURE, vol.56

R. Petites, D. La, C. Delimitee-en-rouge), D. Zone-d'interet, . Structures et al., FIGURE, vol.57, p.143, 2007.

A. Fixation, D. Ongles, and . Xrf, FIGURE, vol.58

L. A. Station-de, . Nanosonde-permettant-l'analyse, E. Xrf, S. Sonde-nanoscopium, and . Soleil, FIGURE, vol.59

E. Booklet, . Center-for-x-ray, . Light, L. Source, . Berkeley et al., FIGURE, vol.60, 2001.

C. Energies, . De-l'element, and . Gd, FIGURE, vol.61

C. Cartographie-du-gadolinium, F. Niveau, L. Le-chlore, L. E. Phosphore, . Le et al., FIGURE, vol.62

P. Mn, D. U. Co-(non-represente)-et-du, F. E. Il, C. Mieux-tenir, P. Cartographies et al., MN (VERT) ET FE (ROSE). LES 3, DIFFERENTS SPECTRES IDENTIFIES : SPECTRE TOTAL (BLEU), GD (NOIR), vol.63

. Spectre-moyen-de-la, . Delimitee, . Le, and . Rouge, LES PICS A, vol.64

C. Scannee, X150 µM, vol.65

C. De-l'echantillon-sur, . Une, . Situee-a-;-?m, . Du, . De-depart et al., LES TRACES BLANCHES VERTICALES SONT ARTEFACTUELLES, vol.66

C. De-l'echantillon-sur, . De-depart, S. Des, . L. Vaisseau, . Stries et al., FIGURE, vol.67

C. De-l'echantillon-sur, . Une, . Situee-a-23-;-?m, . Du, . De-depart et al., FIGURE, vol.68

. Support-en-peek-obtenu-par, R. Impression-3d, and . Kapton, FIGURE, vol.69

D. U. Cartographie-elementaire-du-gd-(a), E. Ca-(b), and . De-l'echantillon-g, FIGURE, vol.70, issue.C

D. U. Cartographie-elementaire-du-gd-(a), E. Ca-(b), and . De-l'echantillon-c, FIGURE, vol.71, issue.C

L. Image-de and . De-delimiter-cette-zone-d'interet, FIGURE, vol.72

. Spectre-d'absorption-(b)-et, . De, . Horizontal-(c)-et, L. Vertical-(d)-obtenus-sur, and S. Plus-d'informations, FIGURE, vol.73

A. De-7-?m-de-l'echantillon-g-;, E. N. Coloration-he, A. U. Microscope, L. En-grossissement-x-63, and . Zone, X 100 µM), vol.74

C. Gd,

. Structures, . Noyaux, . Profonds, . Leurs, . Via et al., FIGURE, vol.75, 2014.

L. Texte,

C. , A. Centre, . Le, . Voies, . Serait et al., FIGURE, vol.76, 2013.

L. , P. Vers-le, L. Thalamus, L. E. Hippocampe, E. Colliculus-superieur et al., FIGURE, vol.77, p.177, 2015.

C. Cell-», O. U. Cellule, . En-brosse), . Les, P. Grimpantes-(en-rouge) et al., FIGURE, vol.78, 2015.

A. Boucles, A. Fonctions-retroactives, and . Part, FIGURE, vol.79

L. Part, SITE INTERNET, vol.15

L. Synthese-sur and . Siwiec, FIGURE, vol.80, p.186

P. Perfusat and E. Charasia, FIGURE, vol.81, 2007.

T. De-l'evaluation-comportementale and . Generale, FIGURE, vol.82

. Tests-permettant-l'evaluation, A. De-l'anxiete-;, A. Surelevee, and . Fermes, A) OPENFIELD (1 X 1 M), vol.83

, FIGURE, vol.84

L. A. Tests-permettant-d'evaluer, . Coordination, and . Du-rat, FIGURE, vol.85

L. Frey, C. Place-sur-une, A. Grille, and . Sensibilite-(d'apres-ferrier, FIGURE, vol.86, 2016.

E. Chronologie-generale-de-l'etude-(inj-:-injection-;-of-:-openfield and . De-l'ecriture, FIGURE, vol.87

D. Ethovision®, FIGURE, vol.88

D. Pour, L. Groupe, and . Groupe, FIGURE, vol.89

R. Sessions-;-a, D. ). , L. A. Distance, E. Parcourue-(b, E. T. La-duree-d'immobilite-totale-(c et al., FIGURE, vol.90

R. Semblent, E. T. Se-deplacer, . Rester, . En-peripherie-(zone, E. N. Non-anxiogene et al., FIGURE, vol.91, issue.14

L. Videos, . Groupe-nacl-0,9%-n'a-pas-ete-enregistree, C. E. Correctement, . Qui, . Un et al.,

. Populations, . Du, and . Cerebelleux, , vol.238

H. , FIGURE, vol.126

H. , VOIE PERI-VASCULAIRE (ILLUSTRATION : MIGUEL SOARES), vol.127