D. Langevin, Influence of interfacial rheology on foam and emulsion properties, Adv. Colloid Interface, vol.88, issue.1-2, pp.209-222, 2000.

E. Dickinson, Adsorbed protein layers at fluid interfaces: interactions, structure and surface rheology, Colloid Surf. B, vol.15, issue.2, pp.161-176, 1999.

M. A. Bos and T. Van-vliet, Interfacial rheological properties of adsorbed protein layers and surfactants: a review, Adv. Colloid Interface, vol.91, issue.3, pp.437-471, 2001.

E. H. Lucassen-reynders, J. Benjamins, and V. B. Fainerman, Dilational rheology of protein films adsorbed at fluid interfaces, Curr. Opin. Colloid In, vol.15, issue.4, pp.264-270, 2010.

R. Douillard, M. Daoud, and V. Aguie-beghin, Polymer thermodynamics of adsorbed protein layers, Curr. Opin. Colloid In, vol.8, issue.4-5, pp.380-386, 2003.

V. Ducel, J. Richard, Y. Popineau, and F. Boury, Adsorption kinetics and rheological interfacial properties of plant proteins at the oil-water interface, Biomacromolecules, vol.5, issue.6, pp.2088-2093, 2004.

). J. (b, N. Wang, X. Q. Xia, S. W. Yang, J. R. Yin et al., Adsorption and dilatational rheology of heat-treated soy protein at the oilwater interface: relationship to structural properties, J. Agr. Food Chem, vol.60, issue.12, pp.3302-3310, 2012.

B. Berecz, E. N. Mills, L. Tamas, F. Lang, P. R. Shewry et al., Structural stability and surface activity of sunflower 2S albumins and nonspecific lipid transfer protein, J. Agr. Food Chem, vol.58, issue.10, pp.6490-6497, 2010.

). J. Patino, C. C. Sanchez, S. E. Ortiz, M. R. Nino, and M. C. Anon, Adsorption of soy globulin films at the air-water interface, Ind. Eng. Chem. Res, vol.43, issue.7, pp.1681-1689, 2004.

J. Ornebro, T. Nylander, and A. C. Eliasson, Interfacial behaviour of wheat proteins, J. Cereal Sci, vol.31, issue.2, pp.195-221, 2000.

N. W. Tschoegl, The surface chemistry of wheat gluten II. Measurements of surface viscoelasticity, J. Colloid Sci, vol.15, issue.2, pp.168-182, 1960.

M. Dahesh, A. Banc, A. Duri, M. H. Morel, and L. Ramos, polymeric assembly of gluten proteins in an aqueous ethanol solvent, J. Phys. Chem. B, vol.118, issue.38, pp.11065-11076, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01164758

D. M. Georget and P. S. Belton, Effects of temperature and water content on the secondary structure of wheat gluten studied by FTIR spectroscopy, Biomacromolecules, vol.7, issue.2, pp.469-475, 2006.

A. Boire, P. Menut, M. H. Morel, and C. Sanchez, Osmotic Compression of Anisotropic Proteins: Interaction Properties and Associated Structures in Wheat Gliadin Dispersions, J. Phys. Chem. B, vol.119, issue.17, pp.5412-5421, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01270211

T. Mita, K. Nikai, T. Hiraoka, S. Matsuo, and H. Matsumoto, Physicochemical Studies on Wheat-Protein Foams, J Colloid Interf Sci, vol.59, issue.1, pp.172-178, 1977.

R. C. Keller, R. Orsel, and R. J. Hamer, Competitive adsorption behaviour of wheat flour components and emulsifiers at an air-water interface, J Cereal Sci, vol.25, issue.2, pp.175-183, 1997.

M. A. Bos, B. Dunnewind, and T. Van-vliet, Foams and surface rheological properties of beta-casein, gliadin and glycinin, Colloid Surface B, vol.31, issue.1-4, pp.95-105, 2003.

K. Takeda, Y. Matsumura, and M. Shimizu, Emulsifying and surface properties of wheat gluten under acidic conditions, J Food Sci, vol.66, issue.3, pp.393-399, 2001.

D. F. Peng, W. P. Jin, J. Li, W. F. Xiong, Y. Q. Pei et al., Adsorption and Distribution of Edible Gliadin Nanoparticles at the Air/Water Interface, J Agr Food Chem, vol.65, issue.11, pp.2454-2460, 2017.

B. G. Thewissen, I. Celus, K. Brijs, and J. A. Delcour, Foaming Properties of Wheat Gliadin, J Agr Food Chem, vol.59, issue.4, pp.1370-1375, 2011.

M. Dahesh, A. Banc, A. Duri, M. H. Morel, and L. Ramos, Spontaneous gelation of wheat gluten proteins in a food grade solvent, Food Hydrocolloid, vol.52, pp.1-10, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01164767

N. H. Thomson, M. J. Miles, Y. Popineau, J. Harries, P. Shewry et al., Small angle X-ray scattering of wheat seed-storage proteins: alpha-, gamma-and omega-gliadins and the high molecular weight (HMW) subunits of glutenin, pp.359-366, 1999.

Z. Zhang and M. G. Scanlon, Solvent effects on the molecular structures of crude gliadins as revealed by density and ultrasound velocity measurements, J Cereal Sci, vol.54, issue.2, pp.181-186, 2011.

D. E. Aspnes, Optical-Properties of Thin-Films, Thin Solid Films, vol.89, issue.3, pp.249-262, 1982.

T. B. Robertson and J. E. Greaves, On the refractive indices of solutions of certain proteins. V. Gliadin, J Biol Chem, vol.9, issue.3, pp.181-184, 1911.

G. P. Loglio, R. Miller, A. V. Makievski, F. Ravera, M. Ferrari et al., Drop and bubble shape analysis as tool for dilatational rheology of interfacial layers, Novel Methods to Study Interfacial Layers, 2001.

J. Lekner, Theory of Reflection, 1987.

A. Stocco, K. Tauer, S. Pispas, and R. Sigel, Dynamics of amphiphilic diblock copolymers at the air-water interface, J Colloid Interf Sci, vol.355, issue.1, pp.172-178, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00786309

P. Ramirez, A. Stocco, J. Munoz, and R. Miller, Interfacial rheology and conformations of triblock copolymers adsorbed onto the water-oil interface, J Colloid Interf Sci, vol.378, pp.135-143, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00708076

T. Kairaliyeva, E. V. Aksenenko, N. Mucic, A. V. Makievski, V. B. Fainerman et al., Surface Tension and Adsorption Studies by Drop Profile Analysis Tensiometry, J Surfactants Deterg, vol.20, issue.6, pp.1225-1241, 2017.

J. K. Ferri, N. Gorevski, C. Kotsmar, M. E. Leser, and R. Miller, Desorption kinetics of surfactants at fluid interfaces by novel coaxial capillary pendant drop experiments, Colloid Surface A, vol.319, issue.1-3, pp.13-20, 2008.

E. M. Freer, K. S. Yim, G. G. Fuller, and C. J. Radke, Interfacial rheology of globular and flexible proteins at the hexadecane/water interface: comparison of shear and dilatation deformation, J. Phys. Chem. B, vol.108, issue.12, pp.3835-3844, 2004.

V. Mitropoulos, A. Mutze, and P. Fischer, Mechanical properties of protein adsorption layers at the air/water and oil/water interface: a comparison in light of the thermodynamical stability of proteins, Adv. Colloid Interface, vol.206, pp.195-206, 2014.

D. E. Graham and M. C. Phillips, Proteins at Liquid Interfaces. 1. Kinetics of adsorption and surface denaturation, J. Colloid Interf. Sci, vol.70, issue.3, pp.403-414, 1979.

T. Miura and K. Seki, Diffusion influenced adsorption kinetics, J. Phys. Chem. B, vol.119, issue.34, pp.10954-10961, 2015.

J. F. Douglas, H. E. Johnson, and S. Granick, A simple kinetic-model of polymer adsorption and desorption, Science, vol.262, issue.5142, pp.2010-2012, 1993.

I. Langmuir and V. J. Schaefer, The effect of dissolved salts on insoluble monolayers, J. Am. Chem. Soc, vol.59, pp.2400-2414, 1937.

A. F. Ward and L. Tordai, Time-dependence of boundary tensions of solutions. 1. the role of diffusion in time-effects, J. Chem. Phys, vol.14, issue.7, pp.453-461, 1946.

C. Ybert and J. M. Di-meglio, Study of protein adsorption by dynamic surface tension measurements: diffusive regime, Langmuir, vol.14, issue.2, pp.471-475, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01628734

F. K. Hansen and R. Myrvold, The kinetics of albumin adsorption to the air/ water interface measured by automatic axisymmetric drop shape analysis, J. Colloid Interf. Sci, vol.176, issue.2, pp.408-417, 1995.

M. Paulsson and P. Dejmek, Surface-film pressure of beta-lactoglobulin, alphalactalbumin and bovine serum-albumin at the air-water-interface studied by wilhelmy plate and drop volume, J. Colloid Interf. Sci, vol.150, issue.2, pp.394-403, 1992.

T. Miura and K. Seki, Effects of surface affinity on the ordering dynamics of selfassembled monolayers of chain molecules: transition from a parallel to a perpendicular structure, Phys. Rev. E, vol.91, issue.5, 2015.

N. Kovacs, D. Patko, N. Orgovan, S. Kurunczi, J. J. Ramsden et al., Optical anisotropy of flagellin layers. in situ and label-free measurement of adsorbed protein orientation using OWLS, Anal. Chem, vol.85, issue.11, pp.5382-5389, 2013.

R. Miller, V. B. Fainerman, E. V. Aksenenko, M. E. Leser, and M. Michel, Dynamic surface tension and adsorption kinetics of beta-casein at the solution air interface, Langmuir, vol.20, issue.3, pp.771-777, 2004.

J. Benjamins, A. Cagna, and E. H. Lucassenreynders, Viscoelastic properties of triacylglycerol/water interfaces covered by proteins, Colloid Surf. A, vol.114, pp.245-254, 1996.

). J. (b, E. H. Benjamins, and . Reynders, Static and dynamic properties of proteins adsorbed at three different liquid interfaces, pp.216-225, 2003.

J. Benjamins, J. Lyklema, and E. H. Lucassen-reynders, Compression/expansion rheology of oil/water interfaces with adsorbed proteins. Comparison with the air/water surface, Langmuir, vol.22, issue.14, pp.6181-6188, 2006.

). R. Miller, J. K. Ferri, A. Javadi, J. Kragel, N. Mucic et al., Rheology of interfacial layers, Colloid Polym. Sci, vol.288, issue.9, pp.937-950, 2010.

V. Ulaganathan, I. Retzlaff, J. Y. Won, G. Gochev, D. Z. Gunes et al., Beta-Lactoglobulin adsorption layers at the water/air surface: 2. dilational rheology: effect of pH and ionic strength, Colloid Surf. A, vol.521, pp.167-176, 2017.

P. Cicuta and I. Hopkinson, Studies of a weak polyampholyte at the air-buffer interface: the effect of varying pH and ionic strength, J. Chem. Phys, vol.114, issue.19, pp.8659-8670, 2001.

A. Banc, B. Desbat, D. Renard, Y. Popineau, U. Mangavel et al., Structure and orientation changes of omega-and gamma-gliadins at the air-water interface: a PM-IRRAS Spectroscopy and Brewster angle microscopy study, Langmuir, vol.23, issue.26, pp.13066-13075, 2007.

A. Hambardzumyan, V. Aguie-beghin, M. Daoud, and R. Douillard, beta-casein and symmetrical triblock copolymer (PEO-PPO-PEO and PPO-PEO-PPO) surface properties at the air-water interface, Langmuir, vol.20, issue.3, pp.756-763, 2004.

S. Ang, J. Kogulanathan, G. A. Morris, M. S. Kok, P. R. Shewry et al., Structure and heterogeneity of gliadin: a hydrodynamic evaluation, Eur. Biophys. J. Biophy, vol.39, issue.2, pp.255-261, 2010.

J. R. Lu, T. J. Su, R. K. Thomas, J. Penfold, and J. Webster, Structural conformation of lysozyme layers at the air/water interface studied by neutron reflection, J. Chem. Soc. Faraday T, vol.94, issue.21, pp.3279-3287, 1998.

I. M. Tucker, J. T. Petkov, J. Penfold, R. K. Thomas, A. R. Cox et al., Adsorption of hydrophobin-protein mixtures at the air-water interface: the impact of pH and electrolyte, Langmuir, vol.31, issue.36, pp.10008-10016, 2015.

J. R. Lu, S. Perumal, X. B. Zhao, F. Miano, V. Enea et al., Surface-induced unfolding of human lactoferrin, Langmuir, vol.21, issue.8, pp.3354-3361, 2005.

Y. F. Yano, Y. Kobayashi, T. Ina, K. Nitta, and T. Uruga, Hofmeister anion effects on protein adsorption at an air-water interface, Langmuir, vol.32, issue.38, pp.9892-9898, 2016.

P. Joos and G. Serrien, The principle of Braun-Le Chatelier at surfaces, J Colloid Interf. Sci, vol.145, issue.1, pp.291-294, 1991.

C. J. Beverung, C. J. Radke, and H. W. Blanch, Protein adsorption at the oil/water interface: characterization of adsorption kinetics by dynamic interfacial tension measurements, Biophys. Chem, vol.81, issue.1, pp.59-80, 1999.

P. Erni, E. J. Windhab, and P. Fischer, Emulsion drops with complex interfaces: globular versus flexible proteins, Macromol. Mater. Eng, vol.296, issue.3-4, pp.249-262, 2011.

M. Dabbour, R. He, H. Ma, and A. Musa, Optimization of ultrasound assisted extraction of protein from sunflower meal and its physicochemical and functional properties, Journal of Food Process Engineering, vol.41, issue.5, p.12799, 2018.

O. Adeyi, D. I. Ikhu-omoregbe, and V. A. Jideani, Rheological properties of sunflower oilin-water emulsion containing vinegar, stabilized with gelatinized bambara groundnut flour, International Journal of Engineering Research in Africa, vol.36, pp.85-97, 2018.

A. Sanchez and J. Burgos, Gelation of sunflower globulins hydrolysates : Rheological and calorimetric studies, pp.2407-2412, 1997.

M. A. Malik and C. S. Saini, Rheological and structural properties of protein isolates extracted from dephenolized sunflower meal : Effect of high intensity ultrasound, Food Hydrocolloids, vol.81, pp.229-241, 2018.

R. Uauy, A. Aro, R. Clarke, M. R. Ghafoorunissa, D. L'abbé et al., WHO Scientific Update on trans fatty acids : summary and conclusions, European Journal of Clinical Nutrition, vol.63, issue.S2, pp.68-75, 2009.

H. Neurath and H. B. Bull, The Surface Activity of Proteins, Chemical Reviews, vol.23, issue.3, pp.391-435, 1938.

W. Norde and J. Lyklema, Why proteins prefer interfaces, Journal of Biomaterials Science, vol.2, issue.3, pp.183-202, 1991.

J. L. Brash and T. A. Horbett, Proteins at Interfaces : An Overview, Proteins at Interfaces II, vol.602, pp.1-23, 1995.

C. J. Wilson, R. E. Clegg, D. I. Leavesley, and M. J. Pearcy, Mediation of Biomaterial-Cell Interactions by Adsorbed Proteins : A Review, Tissue Engineering, vol.11, issue.1-2, pp.1-18, 2005.

D. Ramiandrisoa, Adsorption de protéines sur des colloïdes et agrégation induite, 2014.

A. Nesterenko, Etude et fonctionnalisation de protéines végétales en vue de leur application en microencapsulation, 2013.

I. Gitlin, J. Carbeckand, and G. M. Whitesides, Why are proteins charged ?, Angew. Chem. Int, vol.45, pp.3022-3060, 2006.

J. Benjamins, Static and dynamic properties of proteins adsorbed at liquid interfaces, 2000.

T. Osborne, Journal of the society f chemical industry banner, 1924.

D. Salunkhe, J. Chavan, R. Adsule, and S. Kadam, Chemistry, Technology and Utilization, L. of Congress, 1992.

J. W. Gibbs and ;. Gibbs, The collected works of, vol.1, 1931.

S. Arditty, Fabrication, stabilité et propriétés rhéologiques des émulsions stabilisées par des particules colloïdales, 2004.

N. Mucic, A. Javadi, M. Karbaschi, A. Sharipova, V. B. Fainerman et al., Surfactant Adsorption Kinetics, Encyclopedia of Colloid and Interface Science, T. Tadros, pp.1090-1126, 2013.

I. Langmuir and D. F. Waugh, The adsorption of proteins at oil-water interfaces and artificial protein-lipoid membranes, Journal of general physiology, vol.21, issue.6, pp.745-755, 1938.

I. Langmuir, The constitution and fundamental properties of solids and liquids. part I, Journal of the American Chemical Society, vol.38, issue.11, pp.2221-2295, 1916.

J. Eastoe and J. S. Dalton, Dynamic surface tensioon and adsorption mechanisms of surfactants at air-water interface, Advances Colloid and Interface Science, 2000.

T. Miura and K. Seki, Diffusion Influenced Adsorption Kinetics, The Journal of Physical Chemistry B, vol.119, issue.34, pp.10-954, 2015.

I. Langmuir and V. J. Schaefer, The Effect of Dissolved Salts on Insoluble Monolayers, Journal of the American Chemical Society, vol.59, issue.11, p.2406, 1937.

F. Macritchie and A. E. Alexander, Kinetics of adsorption of proteins at interfaces. Part I. The role of bulk diffusion in adsorption, Journal of Colloid Science, vol.18, issue.5, pp.453-457, 1963.

F. Ravera, L. Liggieri, and A. Steinchen, Sorption kinetics considered as a renormalized diffusion process, Journal of Colloid and Interface Science, vol.156, issue.1, pp.109-116, 1993.

C. Ybert and J. M. Di-meglio, Study of protein adsorption by dynamic surface tension measurements : Diffusive regime, Langmuir, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01628734

H. A. Dieu and H. B. Bull, Monolayers of Pepsin and of Insulin, Journal of the American Chemical Society, vol.71, issue.2, pp.450-452, 1949.

H. B. Bull, Determination of molecular weights of proteins in spread monolayers, Journal of biological chemistry, vol.185, pp.27-38, 1950.

V. Fainerman, E. Lucassen-reynders, and R. Miller, Description of the adsorption behaviour of proteins at water/fluid interfaces in the framework of a two-dimensional solution model, Advances in Colloid and Interface Science, vol.106, issue.1-3, pp.237-259, 2003.

V. B. Fainerman, V. I. Kovalchuk, E. V. Aksenenko, I. I. Zinkovych, A. V. Makievski et al., Dilational Viscoelasticity of Proteins Solutions in Dynamic Conditions, Langmuir, vol.34, issue.23, pp.6678-6686, 2018.

B. Noskov and A. Mikhailovskaya, Adsorption kinetics of globular proteins and protein/surfactant complexes at the liquid-gas interface, Soft Matter, vol.9, issue.39, p.9392, 2013.

F. Macritchie and A. E. Alexander, Kinetics of adsorption of proteins at interfaces. Part III. The role of electrical barriers in adsorption, Journal of Colloid Science, vol.18, issue.5, pp.464-469, 1963.

J. M. Lankveld and J. Lyklema, Adsorption of polyvinyl alcohol on the paraffin-water interface. I. Interfacial tension as a function of time and concentration, Journal of Colloid and Interface Science, vol.41, issue.3, pp.454-465, 1972.

K. Hamaguchi, Studies on proteins denaturation by surface chemical method, The Journal of Biochemistry, vol.42, issue.5, pp.449-459, 1955.

E. Lucassen-reynders, J. Benjamins, and V. Fainerman, Dilational rheology of protein films adsorbed at fluid interfaces, Current Opinion in Colloid & Interface Science, vol.15, issue.4, pp.264-270, 2010.

A. Banc, B. Desbat, D. Renard, Y. Popineau, C. Mangavel et al., Structure and orientation changes of w-and y-gliadins at the air-water interface : A PM-IRRAS spectroscopy and Brewster angle microscopy study, Langmuir, vol.23, issue.26, pp.13-066, 2007.

R. Xu, E. Dickinson, and B. S. Murray, Morphological chnages in adsorbedprotein films at the oil-water interface subjected to compression, expension and heat processing, Langmuir, vol.24, issue.5, pp.1979-1988, 2008.

Y. F. Yano, T. Uruga, H. Tanida, H. Toyokawa, Y. Terada et al., Driving Force Behind Adsorption-Induced Protein Unfolding : A Time-Resolved X-ray Reflectivity Study on Lysozyme Adsorbed at an Air/Water Interface, Langmuir, vol.25, issue.1, pp.32-35, 2009.

C. J. Beverung, C. J. Radke, and H. W. Blanch, Protein adsorption at the oil/water interface : characterization of adsorption kinetics by dynamic interfacial tension measurements, Biophysical Chemistry, p.22, 1999.

S. Pezennec, The protein net electric charge determines the surface rheological properties of ovalbumin adsorbed at the air-water interface, Food Hydrocolloids, vol.14, issue.5, pp.463-472, 2000.

E. M. Freer, K. S. Yim, G. G. Fuller, and C. J. Radke, Interfacial Rheology of Globular and Flexible Proteins at the Hexadecane/Water Interface : Comparison of Shear and Dilatation Deformation, The Journal of Physical Chemistry B, vol.108, issue.12, pp.3835-3844, 2004.

A. Poirier, A. Banc, A. Stocco, M. In, and L. Ramos, Multistep building of a soft plant protein film at the air-water interface, Journal of Colloid and Interface Science, vol.526, pp.337-346, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01788790

V. Aguié-béghin, E. Leclerc, M. Daoud, and R. Douillard, Asymmetric Multiblock Copolymers at the Gas-Liquid Interface : Phase Diagram and Surface Pressure, Journal of Colloid and Interface Science, vol.214, issue.2, pp.143-155, 1999.

R. Douillard, M. Daoud, and V. Aguie-beghin, Polymer thermodynamics of adsorbed protein layers, p.7, 2003.

P. Cicuta and I. Hopkinson, Studies of a weak polyampholyte at the air-buffer interface : The effect of varying p H and ionic strength, The Journal of Chemical Physics, vol.114, issue.19, pp.8659-8670, 2001.

S. C. Russev, T. V. Arguirov, and T. D. Gurkov, b-Casein adsorption kinetics on air-water and oil-water interfaces studied by ellipsometry, Colloids and surfaces B : Biointerfaces, p.12, 2000.

P. Ramírez, A. Stocco, J. Muñoz, and R. Miller, Interfacial rheology and conformations of triblock copolymers adsorbed onto the water-oil interface, Journal of Colloid and Interface Science, vol.378, issue.1, pp.135-143, 2012.

A. Banc, B. Desbat, D. Renard, Y. Popineau, C. Mangavel et al., Structure and orientation changes of ?-and ?-gliadins at the air-water interface : A PM-IRRAS spectroscopy and Brewster angle microscopy study, Langmuir, vol.23, issue.26, pp.13-066, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00550429

E. Dickinson, D. S. Horne, J. S. Phipps, and R. M. Richardson, A neutron reflectivity study of the adsorption of .beta.-casein at fluid interfaces, Langmuir, vol.9, issue.1, pp.242-248, 1993.

J. R. Lu, T. J. Su, R. K. Thomas, and J. P. Webster, Structural conformation of lysozyme layers at the air-water interface studied by neutron reflection, J. Chem. Faraday Trans, vol.94, pp.3279-3287, 1998.

Y. F. Yano, E. Arakawa, W. Voegeli, C. Kamezawa, and T. Matsushita, Initial Conformation of Adsorbed Proteins at an Air-Water Interface, The Journal of Physical Chemistry B, vol.122, issue.17, pp.4662-4666, 2018.

K. S. Birdi, The determination of work of compression of protein monolayers at the air-water interface, Kolloid-Zeitschrift & Zeitschrift für Polymere, vol.250, pp.222-226, 1972.

D. E. Graham and M. C. Phillips, Proteins at liquid interfaces : III molecular structures of adsorbed films, Journal of colloid and Interface science, vol.70, pp.427-439, 1979.

F. Ravera, G. Loglio, and V. I. Kovalchuk, Interfacial dilational rheology by oscillating bubble/drop methods, Current Opinion in Colloid & Interface Science, vol.15, issue.4, pp.217-228, 2010.

D. Langevin, Surface shear rheology of monolayers at the surface of water, Advances in Colloid and Interface Science, vol.207, pp.121-130, 2014.

J. Maldonado-valderrama, V. B. Fainerman, M. J. Galvez-ruiz, A. Martin-rodriguez, M. A. Cabrerizo-vilchez et al., Dilatational rheology of b-casein adsorbed layers at liquidfluid interfaces, The Journal of Physical Chemistry B, vol.109, issue.37, pp.17-608, 2005.

R. Miller, Colloids and Interfaces, Colloids and Interfaces, vol.1, issue.1, p.9, 2017.

O. Soo-gun and J. C. Slattery, Disk and biconical interfacial viscometers, Journal of Colloid and Interface Science, vol.67, issue.3, pp.516-525, 1978.

F. C. Goodrich, The Theory of Capillary Excess Viscosities, Proceedings of the Royal Society A : Mathematical, Physical and Engineering Sciences, vol.374, issue.1758, pp.341-370, 1981.

C. F. Brooks, G. G. Fuller, C. W. Frank, and C. R. Robertson, An interfacial stress rheometer to study rheological transitions in monolayers at the air-water interfaces, Langmuir, vol.15, issue.7, pp.2450-2459, 1999.

L. G. Pereira, O. Théodoly, H. W. Blanch, and C. J. Radke, Dilatational Rheology of BSA Conformers at the Air/Water Interface, Langmuir, vol.19, issue.6, pp.2349-2356, 2003.

E. Lucassen-reynders, Interfacial Viscoelasticity in Emulsions and Foams, Food Structure, 1993.

D. Langevin and F. Monroy, Marangoni stresses and surface compression rheology of surfactant solutions. Achievements and problems, Advances in Colloid and Interface Science, vol.206, pp.141-149, 2014.

V. Lesage, Contribution à la validation fonctionnelle du gène majeur contrôlant la dureté/tendreté de l'albumen de grain de blé par l'étude de lignées quasi-isogéniques, 2011.

J. H. Woychik, J. A. Boundy, and R. J. Dimler, Starch gel electrophoresis of wheat gluten proteins with concentrated urea, Archives of Biochemistry and Biophysics, vol.94, issue.3, pp.477-482, 1961.

R. Urade, N. Sato, and M. Sugiyama, Gliadins from wheat grain : an overview, from primary structure to nanostructures of aggregates, Biophysical Reviews, vol.10, issue.2, pp.435-443, 2018.

M. Dahesh, Etude des mécanismes de structuration du gluten : Approche modèle et multi échelles, 2014.

P. R. Shewry, B. J. Miflin, E. J. Lew, and D. D. Kasarda, The Preparation and Characterization of an Aggregated Gliadin Fraction from Wheat, Journal of Experimental Botany, vol.34, issue.11, pp.1403-1410, 1983.

A. Boire, P. Menut, M. Morel, and C. Sanchez, Phase behaviour of a wheat protein isolate, Soft Matter, vol.9, issue.47, p.11417, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01268494

M. Dahesh, A. Banc, A. Duri, M. Morel, and L. Ramos, Polymeric Assembly of Gluten Proteins in an Aqueous Ethanol Solvent, The Journal of Physical Chemistry B, vol.118, pp.11-065, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01164758

J. Pincemaille, Interactions et assemblages de protéines du gluten, 2018.

J. Brown and R. Flavell, Fractionation of wheat gliadin and glutenin subunits by twodimensional electrophoresis and the role of group 6 and group 2 chromosomes in gliadin synthesis, Theoretical and Applied Genetics, vol.59, issue.6, 1981.

A. Banc, Approches biomimétiques de l'assemblage de protéines de réserve de blé, 2007.

D. M. Georget and P. S. Belton, Effects of temperature and water content on the secondary structure of wheat gluten studied by ftir spectroscopy, Biomacromolecules, vol.7, issue.2, pp.469-475, 2006.

A. S. Tatham and P. R. Shewry, The conformation of wheat gluten proteins. The secondary structures and thermal stabilities of ?-, ? -, ?-and ?-Gliadins, Journal of Cereal Science, vol.3, issue.2, pp.103-113, 1985.

T. Mita, E. Ishida, and H. Matsumoto, Physicochemical studies on wheat protein foams. ii. relationship between bubble size and stability of foams prepared with gluten and gluten components, Journal of Colloid and Interface Science, vol.64, issue.1, pp.143-153, 1978.

V. Ducel, J. Richard, Y. Popineau, and F. Boury, Adsorption kinetics and rheological interfacial properties of plant proteins at the oil water interface, Biomacromolecules, vol.5, issue.6, pp.2088-2093, 2004.

M. A. Bos, B. Dunnewind, and T. Van-vliet, Foams and surface rheological properties of b-casein, gliadin and glycinin, Colloids and Surfaces B : Biointerfaces, vol.31, issue.1-4, pp.95-105, 2003.

D. Peng, W. Jin, J. Li, W. Xiong, Y. Pei et al., Adsorption and Distribution of Edible Gliadin Nanoparticles at the Air/Water Interface, Journal of Agricultural and Food Chemistry, vol.65, issue.11, pp.2454-2460, 2017.

B. Khatkar, R. Fido, A. Tatham, and J. Schofield, Functional Properties of Wheat Gliadins. II. Effects on Dynamic Rheological Properties of Wheat Gluten, Journal of Cereal Science, vol.35, issue.3, pp.307-313, 2002.

S. Gonzalez-perez and J. M. Vereijken, Review sunflower proteins : overview of their physicochemical, structural and functional properties, Journal of the Science of Food and Agriculture, vol.87, pp.2173-2191, 2007.

M. A. Malik, H. K. Sharma, and C. S. Saini, Effect of removal of phenolic compounds on structural and thermal properties of sunflower protein isolate, Journal of Food Science and Technology, vol.53, issue.9, pp.3455-3464, 2016.

A. Clérivet, I. Alami, F. Breton, D. Garcia, and C. Sanier, Les composés phénoliques et la résistance des plantes aux agents pathogènes, Acta Botanica Gallica, vol.143, issue.6, pp.531-538, 1996.

D. Karefyllakis, S. Altunkaya, C. C. Berton-carabin, A. J. Van-der-goot, and C. V. Nikiforidis, Physical bonding between sunflower proteins and phenols : Impact on interfacial properties, Food Hydrocolloids, vol.73, pp.326-334, 2017.

B. J. Hudson, New and Developing Sources of Food Proteins, p.840284306, 1994.

C. Pickardt, P. Eisner, D. R. Kammerer, and R. Carle, Pilot plant preparation of light-coloured protein isolates from de-oiled sunflower (Helianthus annuus L.) press cake by mild-acidic protein extraction and polyphenol adsorption, Food Hydrocolloids, vol.44, pp.208-219, 2015.

N. M. Lovatto, F. R. Goulart, B. B. Loureiro, C. S. Speroni, A. B. Bender et al., Crambe (Crambe abyssinica) and sunflower (Helianthus annuus) protein concentrates : production methods and nutritional properties for use in fish feed, Anais da Academia Brasileira de Ciências, vol.89, issue.3, pp.2495-2504, 2017.

N. Song, H. Song, W. Jo, and K. B. Song, Physical properties of a composite film containing sunflower seed meal protein and its application in packaging smoked duck meat, Journal of Food Engineering, vol.116, issue.4, pp.789-795, 2013.

H. Mazhar, R. Quayle, R. J. Fido, A. K. Stobart, J. A. Napier et al., Synthesis of storage reserves in developing seeds of sunflower, Phytochemistry, vol.48, issue.3, pp.429-432, 1998.

E. Derbyshire, D. Wright, and D. Boulter, Legumin and vicilin, storage proteins of legume seeds, Phytochemistry, vol.15, issue.1, pp.3-24, 1976.

R. Reichelt, K. Schwenke, T. König, W. Pähtz, and G. Wangermann, Electron microsocpic studies for estimation of the quaternary structure of the 11s globulin (Helianthinin) from sunflower seed (Helianthus annuus L.), Biochemie und Physiologie der Pflanzen, vol.175, issue.7, pp.653-663, 1980.

K. D. Schwenke, W. Pahtz, K. J. Linow, B. Raab, and M. Schultz, On seed proteins part 11. purification, chemical composition, and some physico-chemical properties of the 11 s globulin (helianthinin) in sunflower seed, Nahrung, vol.23, pp.241-254, 1979.

S. Gonzalez-perez, J. M. Vereijken, K. B. Merck, G. A. Koningsveld, H. Gruppen et al., Conformational states of sunflower (helianthus annuus) helianthinin : Effect of heat and ph, J. Agric. Food Chemistry, vol.52, pp.6770-6778, 2004.

R. A. Haar, R. D. Allen, E. A. Cohen, C. L. Nessler, and T. L. Thomas, Organization of the sunflower 11s storage protein gene family, Gene, vol.74, issue.2, pp.433-443, 1988.

M. I. Molina, S. Petruccelli, and M. C. Anon, Effect of ph and ionic strength modifications on thermal denaturation of the 11s globulin of sunflower (helianthus annuus), J. Agric. Food Chem, vol.52, pp.6023-6029, 2004.

S. Gonzalez-perez, Sunflower Proteins, pp.331-393, 2015.

P. Plietz, G. Damaschun, J. J. Muller, and K. D. Schwenke, The structure of 11-S globulins from sunflower and rape seed a small-angle x-ray scattering study, Eur. J. Biochem, vol.130, pp.315-320, 1983.

M. Dalgalarrondo, J. Raymon, and J. Azana, Sunflower seed proteins : Characterization and subunit composition of the globulin fraction, Journal of Experimental Botany, vol.35, issue.11, pp.1618-1628, 1984.

I. N. Anisimova, R. J. Fido, A. S. Tatham, and P. R. Shewry, Genotypic variation and polymorphism of 2s albumins of sunflower, Euphytica, vol.83, issue.1, pp.15-23, 1995.

A. A. Kortt and J. Caldwell, Low molecular weight albumins from sunflower seed : identification of a methionine-rich albumin, Phytochemistry, vol.29, issue.9, pp.2805-2810, 1990.

S. Gonzalez-perez, J. M. Vereijken, G. A. Koningsveld, H. Gruppen, and A. G. , Physicochemical properties of 2s albumins and the corresponding protein isolate from sunflower (helianthus annuus), J of Food Science, vol.70, pp.98-103, 2005.

M. J. Pandya, R. B. Sessions, P. B. Williams, C. E. Dempsey, A. S. Tatham et al., Structural characterization of a methionine-rich, emulsifying protein from sunflower seed, Proteins : Structure, Function, and Genetics, vol.38, issue.3, pp.341-349, 2000.

S. González-pérez, J. M. Vereijken, K. B. Merck, H. Gruppen, and A. G. Voragen, Emulsion Properties of Sunflower ( Helianthus annuus ) Proteins, Journal of Agricultural and Food Chemistry, vol.53, issue.6, pp.2261-2267, 2005.

J. Rodriguezpatino, J. Minonesconde, H. Linares, J. Pedrochejimenez, C. Carrerasanchez et al., Interfacial and foaming properties of enzyme-induced hydrolysis of sunflower protein isolate, Food Hydrocolloids, vol.21, issue.5-6, pp.782-793, 2007.

S. González-pérez, J. M. Vereijken, K. B. Merck, H. Gruppen, and A. G. Voragen, Emulsion Properties of Sunflower ( Helianthus annuus ) Proteins, Journal of Agricultural and Food Chemistry, vol.53, issue.6, pp.2261-2267, 2005.

Y. Popineau, A. S. Tatham, P. R. Shewry, D. Marion, and J. Guéguen, 2s Sunflower Albumins : Functional Properties of Native and Modified Proteins," in Plant Proteins from European Crops, pp.131-135, 1998.

A. C. Sanchez and J. Burgos, Factors Affecting the Gelation Properties of Hydrolyzed Sunflower Proteins, Journal of Food Science, vol.62, issue.2, pp.284-288, 1997.

S. E. Fleming, F. W. Sosulski, and N. W. Hamon, Gelation and phenomena of vegetable protein products, Journal of Food Science, vol.40, issue.4, pp.805-807, 1975.

I. Schmidt, D. Renard, D. Rondeau, P. Richomme, Y. Popineau et al., Detailed Physicochemical Characterization of the 2S Storage Protein from Rape ( Brassica napus L.), Journal of Agricultural and Food Chemistry, vol.52, issue.19, pp.5995-6001, 2004.

S. H. Tan, R. J. Mailer, C. L. Blanchard, and S. O. Agboola, Extraction and characterization of protein fractions from Australian canola meals, Food Research International, vol.44, issue.4, pp.1075-1082, 2011.

G. Chabanon, Hydrolyses enzymatiques d'isolats proteiques issus de tourteaux de colza, 2005.
URL : https://hal.archives-ouvertes.fr/tel-01752518

M. Naczk, R. Amarowicz, A. Sullivan, and F. Shahidi, Current research developments on polyphenolics of rapeseed/canola : a review, Food Chemistry, vol.62, issue.4, pp.489-502, 1998.

S. H. Tan, R. J. Mailer, C. L. Blanchard, and S. O. Agboola, Canola Proteins for Human Consumption : Extraction, Profile, and Functional Properties, Journal of Food Science, vol.76, issue.1, pp.16-28, 2011.

W. J. Evans, E. J. Mccourtney, and R. I. Shrager, Titration studies of phytic acid, Journal of the American Oil Chemists' Society, vol.59, issue.4, pp.189-191, 1982.

M. Cheryan and J. J. Rackis, Phytic acid interactions in food systems, C R C Critical Reviews in Food Science and Nutrition, vol.13, issue.4, pp.297-335, 1980.

M. R. Tandang-silvas, T. Fukuda, C. Fukuda, K. Prak, and C. Cabanos, Conservation and divergence on plant seed 11s globulines based on crystal structures, Biochim. Biophys. Acta, vol.1804, pp.1432-1442, 2010.

M. Rico, M. Bruix, C. González, R. I. Monsalve, and R. Rodríguez, 1h nmr assignment and global fold of napin bnib, a representative 2s albumin seed protein, Biochemistry, vol.35, issue.49, p.8961930, 1996.

S. , Extraction of protein mixture from rapeseed for food applications, 2018.

K. D. Schwenke, M. Schultz, K. Linow, K. Gast, and D. Zirwer, Hydrodynamic and quasielastic light scattering studies on the 12s globulin from rapeseed, International Journal of Peptide and Protein Research, vol.16, issue.1, pp.12-18, 2009.

K. D. Schwenke, B. Raab, K. Linow, W. Pahtz, and J. Uhlig, Isolation of the 12 S globulin from Rapeseed (Brassica napus L.) and characterization as a "neutral" protein On seed proteins, Food / Nahrung, vol.13, issue.3, pp.271-280, 1981.

S. Perera, T. Mcintosh, and J. Wanasundara, Structural Properties of Cruciferin and Napin of Brassica napus (Canola) Show Distinct Responses to Changes in pH and Temperature, Plants, vol.5, issue.3, p.36, 2016.

R. Jung, Y. W. Nam, I. Saalbach, K. Müntz, and N. C. Nielsen, Role of the sulfhydryl redox state and disulfide bonds in processing and assembly of 11s seed globulins, The Plant Cell, vol.9, issue.11, pp.2037-2050, 1997.

A. E. Simon, K. M. Tenbarge, S. R. Scofield, R. R. Finkelstein, and M. L. Crouch, Nucleotide sequence of a cDNA clone of Brassica napus 12s storage protein shows homology with legumin from Pisum sativum, Plant Molecular Biology, vol.5, issue.3, pp.191-201, 1985.

M. Dalgalarrondo, J. Robin, and J. Azanza, Subunit composition of the globulin fraction of rapeseed (Brassica napus L, Plant Science, vol.43, issue.2, pp.115-124, 1986.

R. I. Monsalve, M. Villalba, C. López-otín, and R. Rodríguez, Structural analysis of the small chain of the 2s albumin, napin nIII, from rapeseed. Chemical and spectroscopic evidence of an intramolecular bond formation, Biochimica et Biophysica Acta (BBA) -Protein Structure and Molecular Enzymology, vol.1078, issue.2, pp.265-272, 1991.

E. Muren, B. Ek, I. Bjork, and L. Rask, Structural Comparison of the Precursor and the Mature Form of Napin, the 2s Storage Protein in Brassica napus, European Journal of Biochemistry, vol.242, issue.2, pp.214-219, 1996.

J. Krause and K. Schwenke, Behaviour of a protein isolate from rapeseed (Brassica napus) and its main protein components -globulin and albumin -at air/solution and solid interfaces, and in emulsions, Colloids and Surfaces B : Biointerfaces, vol.21, issue.1-3, pp.29-36, 2001.

K. D. Schwenke, Y. H. Kim, J. Kroll, E. Lange, and G. Mieth, Modification of the lowmolecular weight basic albumin fraction from rapeseed (Brassica napus L.) by acetylation. Part 2. Selected functional properties, Food / Nahrung, vol.35, issue.3, pp.293-301, 1991.

S. H. Tan, R. J. Mailer, C. L. Blanchard, and S. O. Agboola, Emulsifying properties of proteins extracted from Australian canola meal, LWT -Food Science and Technology, vol.57, issue.1, pp.376-382, 2014.

L. W. Léger and S. D. Arntfield, Thermal gelation of the 12s canola globulin, Journal of the American Oil Chemists' Society, vol.70, issue.9, pp.853-861, 1993.

R. Khattab and S. Arntfield, Functional properties of raw and processed canola meal, LWTFood Science and Technology, vol.42, issue.6, pp.1119-1124, 2009.

M. Aider and C. Barbana, Canola proteins : composition, extraction, functional properties, bioactivity, applications as a food ingredient and allergenicity -A practical and critical review, Trends in Food Science & Technology, vol.22, issue.1, pp.21-39, 2011.

P. Culmann, Nouveaux réfractomètres, Journal de Physique Théorique et Appliquée, vol.10, issue.1, pp.691-704, 1901.

E. Abbe and B. Dibner, Neue Apparate zur Bestimmung des Brechungs-und Zerstreuungsvermögens fester und flüssiger körper. Jena : Mauke's Verlag

D. E. Aspnes, Optical properties of thin films, vol.89, pp.249-262, 1982.

S. Arntfield and E. Murray, The Influence of Processing Parameters on Food Protein Functionality I. Differential Scanning Calorimetry as an Indicator of Protein Denaturation, Canadian Institute of Food Science and Technology Journal, vol.14, issue.4, pp.289-294, 1981.

C. Giancola, C. Sena, D. Fessas, G. Graziano, and G. Barone, DSC studies on bovine serum albumin denaturation Effects of ionic strength and SDS concentration, International Journal of Biological Macromolecules, vol.20, issue.3, pp.193-204, 1997.

W. Hergert and T. Wriedt, The Mie Theory, 2012.

V. Roger, Viscosité et dynamique microscopique dans les suspensions colloïdales concentrées, 2015.

V. Roger, H. Cottet, and L. Cipelletti, A New Robust Estimator of Polydispersity from Dynamic Light Scattering Data, Analytical Chemistry, vol.88, issue.5, pp.2630-2636, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01285518

J. Appell, G. Porte, and E. Buhler, Self-Diffusion and Collective Diffusion of Charged Colloids Studied by Dynamic Light Scattering, The Journal of Physical Chemistry B, vol.109, issue.27, pp.13-186, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00005578

D. E. Koppel, Analysis of Macromolecular Polydispersity in Intensity Correlation Spectroscopy : The Method of Cumulants, The Journal of Chemical Physics, vol.57, issue.11, pp.4814-4820, 1972.

M. Gilliot, Caractérisation de couches minces nanostruturées par ellipsometrie spectroscopique, 2006.

F. Bernoux, J. Piel, B. Castellon, and C. Defranoux, Ellipsométrie, 2000.

, Handbook of ellipsometry, 2005.

A. Stocco, G. Su, M. Nobili, M. In, and D. Wang, In situ assessment of the contact angles of nanoparticles adsorbed at fluid interfaces by multiple angle of incidence ellipsometry, Soft Matter, vol.10, issue.36, pp.6999-7007, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01064084

R. M. Azzam and N. M. Bashara, Ellipsometry and polarized light, Amsterdam, 1977.

J. Lekner, Theory of reflection, pp.28-1987

R. Miller, E. V. Aksenenko, V. S. Alahverdjieva, V. B. Fainerman, C. S. Kotsmar et al., Thermodynamics and kinetics of mixed protein/surfactant adsorption layers at liquid interfaces, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02066422

J. Meunier, Optical reflectivity of thin rough films : Application to ellipsometric measurements on liquid films, Physical Review E, vol.75, issue.6, 2007.

E. G. Bortchagovsky, V. Lozovski, and T. Mishakova, Model for the effective medium approximation of nanostructured layers with the account of interparticle interactions, Proc. os SPIE, vol.8070, p.5, 2011.

A. Stocco, K. Tauer, S. Pispas, and R. Sigel, Dynamics of amphiphilic diblock copolymers at the air-water interface, Journal of Colloid and Interface Science, vol.355, pp.172-178, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00786309

J. P. Day, P. D. Pudney, and C. D. Bain, Ellipsometric study of the displacement of milk proteins from the oil-water interface by the non-ionic surfactant C10e8, Physical Chemistry Chemical Physics, vol.12, issue.18, p.4590, 2010.

A. N. Bashkatov and E. A. Genina, Water refractive index in dependence on temperature and wavelength : a simple approximation, Water refractive index in dependence on temperature and wavelength, pp.393-395, 2003.

T. Young, An essay on the cohesion of fluids, Philosophical transactions of the royal society of London, vol.95, pp.65-87, 1805.

P. S. Laplace, Sur l'action capillaire. Gallica, 1806, pp.349-417

J. D. Berry, M. J. Neeson, R. R. Dagastine, D. Y. Chan, and R. F. Tabor, Measurement of surface and interfacial tension using pendant drop tensiometry, Journal of Colloid and Interface Science, vol.454, pp.226-237, 2015.

R. Miller, J. K. Ferri, A. Javadi, J. Krägel, N. Mucic et al., Rheology of interfacial layers, Colloid and Polymer Science, vol.288, issue.9, pp.937-950, 2010.

J. Lucassen, M. Van-den, and . Tempel, Dynamic measurements of dilational properties of a liquid interface, Chemical Engineering Science, vol.27, issue.6, pp.1283-1291, 1972.

H. Xu, P. X. Li, K. Ma, R. K. Thomas, J. Penfold et al., Limitations in the Application of the Gibbs Equation to Anionic Surfactants at the Air/Water Surface : Sodium Dodecylsulfate and Sodium Dodecylmonooxyethylenesulfate Above and Below the CMC, Langmuir, vol.29, issue.30, pp.9335-9351, 2013.

J. K. Ferri, N. Gorevski, C. Kotsmar, M. E. Leser, and R. Miller, Desorption kinetics of surfactants at fluid interfaces by novel coaxial capillary pendant drop experiments, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.319, issue.1-3, pp.13-20, 2008.

S. Lin, K. Mckeigue, and C. Maldarelli, Diffusion-controlled surfactant adsorption studied by pendant drop digitization, AIChE Journal, vol.36, issue.12, pp.1785-1795, 1990.

H. Wege, J. Holgado-terriza, A. Neumann, and M. Cabrerizo-vilchez, Axisymmetric drop shape analysis as penetration film balance applied at liquid-liquid interfaces, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.156, issue.1-3, pp.509-517, 1999.

J. M. Brake and N. L. Abbott, An experimental system for imaging the reversible adsorption of amphiphiles at aqueous/liquid crystal interfaces, Langmuir, vol.18, issue.16, pp.6101-6109, 2002.

H. N. Po and N. M. Senozan, The Henderson-Hasselbalch Equation : Its History and Limitations, Journal of chemical education, vol.78, pp.1499-1503, 2001.

G. N. Lewis and M. Randall, The activity coefficient of strong electrolytes, p.43, 1921.

Z. Zhang and M. G. Scanlon, Solvent effects on the molecular structures of crude gliadins as revealed by density and ultrasound velocity measurements, Journal of Cereal Science, vol.54, pp.181-186, 2011.

H. Fischer, I. Polikarpov, and A. F. Craievich, Average protein density is a molecular-weightdependent function, Protein Science, vol.13, pp.2825-2828, 2009.

D. Hand, The refractivity of protein solutions, Journal of biological chemistry, 1935.

J. , New method for quantitative nitrogen determination, Zeitschrift fur analytische Chemie, vol.22, pp.366-383, 1883.

E. Layne, Spectrophotometric and turbidimetric methods for measuring proteins, Spectrophotometric and turbidimetric methods for measuring proteins, ser. Methods in Enzymology, vol.3, pp.447-454, 1957.

P. Stratil, B. Klejdus, and V. Kubá?, Determination of phenolic compounds and their antioxidant activity in fruits and cereals, Talanta, vol.71, issue.4, pp.1741-1751, 2007.

C. Cater, S. Gheyasuddin, and K. Mattil, The effect of chlorogenic, quinic and caffeic acid on the solubility and color of protein isolates, especially from sunflower seed, Cereal science, vol.495, pp.508-522, 1972.

A. A. Kortt and J. B. Caldwell, Sunflower 11s globulin, susceptibility to proteolytic cleavage of the subunits of native helianthinin during isolation : Hplc fractionation of the subunits, Phytochemistry, vol.29, issue.5, pp.1389-1396, 1990.

J. Raymond, J. M. Robin, and J. L. Azanza, 11 s seed storage proteins fromhelianthus species (compositae) : Biochemical, size and charge heterogeneity, Plant Systematics and Evolution, vol.198, issue.3, pp.195-208, 1995.

I. N. Anisimova, R. J. Fido, A. S. Tatham, and P. R. Shewry, Genotypic variation and polymorphism of 2s albumins of sunflower, Euphytica, vol.83, issue.1, pp.15-23, 1995.

M. Rostagno, N. Manchón, M. D'arrigo, E. Guillamón, A. Villares et al., Fast and simultaneous determination of phenolic compounds and caffeine in teas, mate, instant coffee, soft drink and energetic drink by high-performance liquid chromatography using a fused-core column, Analytica Chimica Acta, vol.685, issue.2, pp.204-211, 2011.

A. Vries, Y. Gomez, B. Jansen, E. Van-der-linden, and E. Scholten, Controlling Agglomeration of Protein Aggregates for Structure Formation in Liquid Oil : A Sticky Business, ACS Applied Materials & Interfaces, vol.9, issue.11, pp.10-136, 2017.

N. H. Thomson, M. J. Miles, Y. Popineau, J. Harries, P. Shewry et al., Small angle x-ray scattering of wheat seed-storage proteins : ?-, ?-and ?-gliadins and the high molecular weight (hmw) subunits of glutenin, Biochimica et Biophysica Acta (BBA) -Protein Structure and Molecular Enzymology, vol.1430, issue.2, pp.359-366, 1999.

P. Shukla, P. M. Cotts, R. D. Miller, T. P. Russell, B. A. Smith et al., Conformational transition studies of organosilane polymers by light and neutron scattering, Macromolecules, vol.24, issue.20, pp.5606-5613, 1991.

A. Rizos, D. Spandidos, and E. Krambovitis, Light scattering characterization of synthetic MUC-1 peptides and their behavior in dilute solution, International Journal of Molecular Medicine, 2003.

E. H. Rahma and M. S. Narasinga, Characterization of sunflower proteins, Journal of food science, vol.44, pp.579-582, 1979.

A. M. Shetty and M. J. Solomon, Aggregation in dilute solutions of high molar mass poly(ethylene) oxide and its effect on polymer turbulent drag reduction, Polymer, vol.50, issue.1, pp.261-270, 2009.

W. Sun, S. Yu, X. Yang, J. Wang, J. Zhang et al., Study on the rheological properties of heat-induced whey protein isolate-dextran conjugate gel, Food Research International, vol.44, issue.10, pp.3259-3263, 2011.

C. M. Lakemond, H. H. De-jongh, M. Paques, T. Vliet, H. Gruppen et al., Gelation of soy glycinin ; influence of ph and ionic strength on network structure in relation to protein conformation, Food Hydrocolloids, vol.17, issue.3, pp.365-377, 2003.

J. Topps, Canola and rapeseed. Production, chemistry, nutrition and processing technology, Bioresource Technology, vol.40, issue.3, p.283, 1992.

J. Wu and A. Muir, Comparative Structural, Emulsifying, and Biological Properties of 2 Major Canola Proteins, Cruciferin and Napin, Journal of Food Science, vol.73, issue.3, pp.210-216, 2008.

R. Miller, V. B. Fainerman, E. V. Aksenenko, M. E. Leser, and M. Michel, Dynamic Surface Tension and Adsorption Kinetics of ? -Casein at the Solution/Air Interface, Langmuir, vol.20, issue.3, pp.771-777, 2004.

L. Razumovsky and S. Damodaran, Surface activity-compressibility relationship of proteins at the air-water interface, Langmuir, vol.15, issue.4, pp.1392-1399, 1999.

V. B. Fainerman, R. Miller, and V. I. Kovalchuk, Influence of the Compressibility of Adsorbed Layers on the Surface Dilational Elasticity, Langmuir, vol.18, issue.20, pp.7748-7752, 2002.

V. Ulaganathan, I. Retzlaff, J. Won, G. Gochev, C. Gehin-delval et al., ? -Lactoglobulin adsorption layers at the water/air surface : 1. Adsorption kinetics and surface pressure isotherm : Effect of pH and ionic strength, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.519, pp.153-160, 2017.

J. Wang, N. Xia, X. Yang, S. Yin, J. Qi et al., Adsorption and Dilatational Rheology of Heat-Treated Soy Protein at the Oil-Water Interface : Relationship to Structural Properties, Journal of Agricultural and Food Chemistry, vol.60, issue.12, pp.3302-3310, 2012.

L. Liu, Q. Zhao, T. Liu, and M. Zhao, Dynamic surface pressure and dilatational viscoelasticity of sodium caseinate/xanthan gum mixtures at the oil-water interface, Food Hydrocolloids, vol.25, issue.5, pp.921-927, 2011.

T. Van-vliet, A. H. Martin, and M. A. Bos, Gelation and interfacial behaviour of vegetable proteins, Current Opinion in Colloid & Interface Science, vol.7, issue.5-6, pp.462-468, 2002.

J. Benjamins, J. A. De-feijter, M. T. Evans, D. E. Graham, and M. C. Phillips, Dynamic and static properties of proteins adsorbed at the air/water interface, Faraday Discussions of the Chemical Society, vol.59, p.218, 1975.

D. E. Graham and M. C. Phillips, Proteins at liquid interfaces : II adsorption isotherms, Journal of colloid and Interface science, vol.70, pp.415-426, 1979.

M. Blank, J. Lucassen, and M. Van-den-tempel, The elasticities of spread monolayers of bovine serum albumin and of ovalbumin, Journal of Colloid and Interface Science, vol.33, issue.1, pp.94-100, 1970.

M. A. Bos and T. Van-vliet, Interfacial rheological properties of adsorbed protein layers and surfactants : a review, Advances in Colloid and Interface Science, vol.91, issue.3, pp.437-471, 2001.

A. Hambardzumyan, V. Aguie-beghin, M. Daoud, and R. Douillard, b-casein and symmetrical triblock copolymer, surface properties at air water interface, Langmuir, vol.20, issue.3, pp.756-763, 2004.

M. Lexis and N. Willenbacher, Relating foam and interfacial rheological properties of ? -lactoglobulin solutions, Soft Matter, vol.10, issue.48, pp.9626-9636, 2014.

C. Ybert and J. Di-meglio, Ascending air bubbles in protein solutions, The European Physical Journal B, vol.4, issue.3, pp.313-319, 1998.
URL : https://hal.archives-ouvertes.fr/hal-01628735

P. Erni, E. J. Windhab, and P. Fischer, Emulsion Drops with Complex Interfaces : Globular Versus Flexible Proteins, Macromolecular Materials and Engineering, vol.296, issue.3-4, pp.249-262, 2011.

D. Barthes-biesel and H. Sgaier, Role of membrane viscosity in the orientation and deformation of a spherical capsule suspended in shear flow, Journal of Fluid Mechanics, vol.160, pp.119-135, 1985.

A. Williams, J. Janssen, and A. Prins, Behaviour of droplets in simple shear flow in the presence of a protein emulsifier, Colloids and Surfaces A : Physicochemical and Engineering Aspects, vol.125, issue.2-3, pp.189-200, 1997.

R. Mothes, K. D. Schwenke, D. Zirwer, and K. Gast, Rapeseed protein -polyanion interactions. Soluble complexes between the 2 S protein fraction (napin) and phytic acid, Food / Nahrung, vol.34, issue.4, pp.375-385, 1990.

, Nous nous intéressons aux propriétés fonctionnelles des protéines de blé, de tournesol et de colza, en volume et aux interfaces. Nous avons montré que des gels de protéines de tournesol avec des élasticités modulables sont obtenus par dénaturation thermique. La dynamique de formation de films protéiques aux interfaces fluides a été étudiée en combinant des mesures de tensiométrie, de viscoélasticité dilatationnelle et d'ellipsométrie. Les mesures sur plusieurs ordres de grandeurs en concentrations et en temps mettent en évidence différents régimes de structuration associés à différentes dynamiques d'adsorption pour les trois protéines de blé, Les enjeux de santé publique et de développement durable conduisent à intensifier l'utilisation de protéines végétales notamment dans les secteurs de biens de consommation comme l'industrie pharmaceutique, l'agro-alimentaire et les cosmétiques

T. Gluten, . Colza, . Interface, T. Gel, . De-surface-dynamique et al., Il ne peut être ni reproduit ni exploité sans l'autorisation expresse de la SAS PIVERT. Challenges of public health and sustainable development trend to intensify the use of vegetables proteins, particularly in consumer goods sectors such as pharmaceutical, food and cosmetics industries. The recent overcome of technical limitation allows the industrial purification of vegetables proteins derived from meal made by vegetable oils production. These proteins are valuable as substitutes for saturated fats in structuring oils for human consumption. The lack of unsaturated vegetable oil texture can be reduced by these proteins acting as stabilizers and gelling agents in emulsions. We are interested in the functional properties of wheat, sunflower and rapeseed proteins, by volume and at interfaces. We have shown that sunflower protein gels with modulable elasticities are obtained by thermal denaturation. In addition, we studied the dynamics of protein film formation at fluid interfaces by combining measurements of tensiometry, dilatational viscoelasticity and ellipsometry. We highlight different structuring regimes and discuss the role of protein flexibility in this structuring, Ce document est confidentiel, et a été réalisé dans le cadre du programme de recherche GENESYS de la SAS PIVERT