I. Balti, A. Mezni, A. Dakhlaoui-omrani, P. Léone, B. Viana et al., «Comparative Study of Ni-and Co-Substituted ZnO Nanoparticles: Synthesis, Optical, and Magnetic Properties, vol.115, pp.15758-15766, 2011.

I. Balti, L. S. Smiri, P. Rabu, E. Gautron, B. Viana et al., «Synthesis and characterization of rod-like ZnO decorated with y-Fe2O3, Journal of Alloys and Compounds, vol.586, issue.1, pp.476-482, 2014.

I. Balti, P. Chevallier, C. Ménager, A. Michel, N. Jouini et al., «Nanocrystals of Zn(Fe)O-based diluted magnetic semi-conductor as potential luminescent and magnetic bimodal bioimaging probes, » RSC Advances, vol.4, pp.58145-58150, 2014.

I. Balti, A. Barrere, V. Gueguen, L. Poussard, G. Pavon-djavid et al., «Preparation of cytocompatible luminescent and magnetic nanohybrids based on ZnO, Zn0.95Ni0.05O and core@shell ZnO@Fe2O3 polymer grafted nanoparticles for biomedical imaging, vol.14, p.1266, 2012.

J. F. Viles-gonzalez, V. Fuster, and J. J. Badimon, «Atherothrombosis: A widespread disease with unpredictable and life-threatening consequences, Eur Heart J, vol.25, issue.14, pp.1197-1207, 2004.

, American Heart Association

, American Heart Association, 2016.

R. K. Noyd, J. A. Krueger, and K. M. Hill, «The biology of chronic disease,» in Biology: Organisms and Adaptations, Media Update, Enhanced Edition, Cengage Learning, pp.650-652, 2016.

A. J. Lusis and «. Nature, , vol.407, pp.233-241, 2000.

H. C. Stary, A. B. Chandler, R. E. Dinsmore, V. Fuster, S. Glagov et al., «A Definition of Advanced Types of Atherosclerotic Lesions and a Histological Classification of Atherosclerosis: A Report From the Committee on Vascular Lesions of the Council on Arteriosclerosis, » Circulation, vol.92, issue.5, pp.1355-1374, 1995.

M. A. Haidekker, «Medical Imaging Technology, pp.1-12, 2013.

L. K. Jennings, «Role of platelets in atherothrombosis, Am. J. Cardiol, vol.103, issue.3, pp.4-10, 2009.

R. Ross, «Atherosclerosis is an inflammatory disease, vol.138, pp.419-420, 1999.

R. P. Mcever, «Adhesive interactions of leukocytes, platelets, and the vessel wall during hemostasis and inflammation, Thromb Haemost, vol.86, issue.3, pp.746-756, 2001.

M. Gawaz, H. Langer, and A. E. May, J. Clin. Invest, vol.2, pp.3378-3384, 2005.

D. D. Wagner, «New links between inflammation and thrombosis, Arterioscler,» Thromb. Vasc. Biol, vol.7, pp.1321-1324, 2005.

R. P. Mcever, «Selectin-carbohydrate interactions during inflammation and metastasis, Glycoconj. J, vol.5, pp.585-591, 1997.

C. Blondin, I. Bataille, and D. Letourneur, «Polysaccharides for vascular cell targeting, Crit. Rev. Ther. Drug Carrier Syst, vol.4, pp.327-375, 2000.

D. Vestweber and J. E. , Blanks, «Mechanisms that regulate the function of the selectins and their ligands, Physiol. Rev, vol.1, pp.181-213, 1999.

Y. Hiramatsu, H. Tsujishita, and H. Kondo, «Studies on selectin blocker. 3. Investigation of the carbohydrate ligand sialyl Lewis X recognition site of Pselectin, J. Med. Chem, vol.39, issue.23, pp.4547-4553, 1996.

J. Y. Ramphal, Z. L. Zheng, C. Perez, L. E. Walker, S. A. Defrees et al., «Structure-Activity Relationships of Sialyl Lewis x-Containing Oligosaccharides. 1. Effect of Modifications of the Fucose Moiety, J Med Chem, vol.37, pp.3459-63, 1994.

B. K. Brandley, M. Kiso, S. Abbas, P. Nikrad, O. Srivasatava et al., «Structure-function studies on selectin carbohydrate ligands. Modifications to fucose, sialic acid and sulphate as a sialic acid replacement, » Glycobiology, vol.6, pp.633-641, 1993.

L. Bachelet, I. Bertholon, D. Lavigne, R. Vassy, M. Jandrot-perrus et al., «Affinity of low molecular weight fucoidan for P-selectin triggers its binding to activated human platelets, Biochim. Biophys. Acta, vol.1790, pp.141-146, 2009.

T. V. Pochechueva, O. E. Galanina, N. A. Ushakova, M. E. Preobrazhenskaya, M. A. Sablina et al., «Uncharged P-selectin blockers, vol.20, pp.91-97, 2004.

A. Koenig, R. Jain, R. Vig, K. E. Norgard-sumnicht, K. L. Matta et al., «Selectin inhibition: synthesis and evaluation of novel sialylated, sulfated and fucosylated oligosaccharides, including the major capping group of GlyCAM-1, » Glycobiology, vol.7, issue.1, pp.79-93, 1997.

A. Varki, Proc. Natl. Acad. Sci. U S A, vol.91, pp.7390-7397, 1994.

A. C. Lake, R. Vassy, M. D. Benedetto, D. Lavigne, C. L. Visage et al., «Low molecular weight fucoidan increases VEGF165-induced endothelial cell migration by enhancing VEGF165 binding to VEGFR-2 and NRP1, J. Biol. Chem, vol.281, pp.37844-37852, 2006.

C. E. Luyt, A. Meddahi-pelle, B. Ho-tin-noe, S. Colliec-jouault, J. Guezennec et al., «Low-molecular-weight fucoidan promotes therapeutic revascularization in a rat model of critical hindlimb ischemia, J Pharmacol Exp Ther, vol.305, issue.1, pp.24-30, 2003.

J. F. Deux, A. Meddahi-pelle, A. F. Blanche, L. J. Feldman, S. Colliec-jouault et al., «Low Molecular Weight Fucoidan Prevents Neointimal Hyperplasia in Rabbit Iliac Artery In-Stent Restenosis Model, vol.22, pp.1604-1609, 2002.

M. Suzuki, L. Bachelet-violette, F. Rouzet, A. Beilvert, G. Autret et al., Serfaty and D. Letourneur, «Ultrasmall superparamagnetic iron oxide nanoparticles coated with fucoidan for molecular MRI of intraluminal thrombus, » Nanomedicine, vol.10, issue.1, pp.73-87, 2015.

L. Bachelet-violette, A. K. Silva, M. Maire, A. Michel, O. Brinza et al., «Strong and specific interaction of ultra small superparamagnetic iron oxide nanoparticles and human activated platelets mediated by fucoidan coating, » RSC Advances, vol.4, issue.10, pp.4864-4871, 2014.

P. Saboural, F. Chaubet, F. Rouzet, F. Al-shoukr, R. B. Azzouna et al., «Purification of a Low Molecular Weight Fucoidan for SPECT Molecular Imaging of Myocardial Infarction, Mar Drugs, vol.12, issue.9, pp.4851-4867, 2014.

B. Li, M. Juenet, R. Aid-launais, M. Maire, V. Ollivier et al., «Development of Polymer Microcapsules Functionalized with Fucoidan to Target P-Selectin Overexpressed in Cardiovascular Diseases, Adv Healthc Mater, vol.6, 2017.

. W. Ch, B. Sensen, and . Hallgrimsson, «Medical imaging modalities -An Introduction, Advanced Imaging in Biology and Medicine: Technology, Software Environments, Applications, pp.225-254, 2008.

W. A. Kalender, «Principles of Computed Tomography,» in Computed Tomography: Fundamentals, System Technology, Image Quality, p.21, 2011.

E. Iadanza and J. Dyro, «History of Engineering and Technology in Health Care,» in Clinical Engineering Handbook, p.8, 2004.

J. G. Fujimoto and D. Farkas, , p.164, 2009.

C. M. Moran, S. D. Pye, W. Ellis, A. Janeczko, K. D. Morris et al., «A Comparison of the Imaging Performance of High Resolution Ultrasound Scanners for Preclinical Imaging, » Ultrasound in Medicine & Biology, vol.37, issue.3, pp.493-501, 2011.

S. W. Hell and J. Wichmann, «Breaking the diffraction resolution limit by stimulated-emission: stimulated emission-depletion fluorescence microscopy, Opt. Lett, vol.19, pp.780-782, 1994.

T. A. Klar and S. W. , Hell, «Subdiffraction resolution in far-field fluorescence microscopy, Opt. Lett, vol.24, pp.954-956, 1999.

M. J. Rust, M. Bates, and X. Zhuang, «Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM, Nat. Methods, vol.3, pp.793-795, 2006.

S. T. Hess, T. P. Girirajan, and M. D. Mason, «Ultra-high resolution imaging by fluorescence photoactivation localization microscopy, Biophys. J, vol.91, pp.4258-4272, 2006.

J. Dowden and W. Schulz, «The Theory of Laser Materials Processing: Heat and Mass Transfer in Modern Technology, p.342, 2017.

M. C. Schanne-klein, «Second harmonic imaging of collagen organization in connective tissues,» European Microscopy Congress 2016: Proceedings, pp.197-198, 2016.

T. A. Theodossiou, C. Thrasivoulou, C. Ekwobi, and D. L. Becker, «Second Harmonic Generation Confocal Microscopy of Collagen Type I from Rat Tendon Cryosections, » Biophys J, vol.91, pp.4665-4677, 2006.

C. Teulon, A. Tidu, F. Portier, and M. C. Schanne-klein, «Probing the 3D structure of cornea-like collagen liquid crystals with polarization-resolved SHG microscopy, Optics Express, vol.24, issue.14, pp.16084-16098, 2016.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone et al., «Three-Dimensional High-Resolution Second-Harmonic Generation Imaging of Endogenous Structural Proteins in Biological Tissues, » Biophysical Journal, vol.82, issue.1, pp.493-508, 2002.

A. F. Fercher, K. Mengedoht, and W. Werner, «Eye-length measurement by interferometry with partially coherent light, Optics Letters, vol.13, issue.3, pp.186-188, 1988.

W. Drexler, «Cellular and functional optical coherence tomography of the human retina: the cogan lecture,» Investigative Ophthalmology and Visual Science, vol.48, pp.5340-5351, 2007.

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, «In vivo human retinal imaging by Fourier domain optical coherence tomography, Journal of Biomedical Optics, vol.7, issue.3, pp.457-463, 2002.

D. A. Dartt, P. Bex, P. D'amore, R. Dana, L. Mcloon et al., «Ocular Periphery and Disorders, p.238, 2011.

D. Malcius, M. Jonkus, G. Kuprionis, A. Maleckas, E. Monastyreckiene et al., «The accuracy of different imaging techniques in diagnosis of acute hematogenous osteomyelitis, Medicina (Kaunas), vol.45, issue.8, pp.624-655, 2009.

W. C. Lavely, S. Goetze, K. P. Friedman, J. P. Leal, Z. Zhang et al., «Comparison of SPECT/CT, SPECT, and Planar Imaging with Single-and Dual-Phase 99mTc-Sestamibi Parathyroid Scintigraphy, J Nucl Med, vol.48, pp.1084-1089, 2007.

L. Cheng, J. Li, M. Liu, S. Wang, H. C. Jiang et al., «Comparison of dynamic optical breast imaging (DOBI) and mammography in sensitivity, specificity and safety of breast cancer diagnosis: a prospective analysis of 62 patients in two centers, Beijing Da Xue Xue Bao Yi Xue Ban, vol.43, issue.3, pp.467-71, 2011.

V. Jacques, S. Dumas, W. Sun, J. S. Troughton, M. T. Greenfield et al., «High relaxivity MRI contrast agents part 2: Optimization of inner-and second-sphere relaxivity, » Invest Radiol, vol.45, issue.10, pp.613-624, 2010.

S. Dumas, V. Jacques, W. Sun, J. S. Troughton, J. T. Welch et al., «High relaxivity MRI contrast agents part 1: Impact of single donor atom substitution on relaxivity of serum albumin-bound gadolinium complexes, » Invest Radiol, vol.45, issue.10, pp.600-612, 2010.

M. Rohrer, H. Bauer, and J. Mintorovitch, «Comparison of Magnetic Properties of MRI Contrast Media Solutions at Different Magnetic Field Strengths,» Investigative Radiology, vol.40, pp.715-724, 2005.

I. Solomon, «Relaxation Processes in a System of Two Spins, vol.99, pp.559-565, 1955.

N. Bloembergen, Relaxation Times in Paramagnetic Solutions, The Journal of Chemical Physics, vol.27, issue.2, p.572, 1957.

N. Bloembergen and L. O. Morgan, «Proton Relaxation Times in Paramagnetic Solutions. Effects of Electron Spin Relaxation, The Journal of Chemical Physics, vol.34, issue.3, p.842, 1961.

N. T. Nghia, «Developmement of microscopy system for time-resolved fluorescence detection of gadolinium/terbium hybrid macromolecular complexes for bimodal imaging of atherothrombosis, 2014.

A. Bjornerud and L. Johansson, «The utility of superparamagnetic contrast agents in MRI: theoretical consideration and applications in the cardiovascular system, NMR in Biomedicine, vol.17, issue.7, pp.465-477, 2004.

G. Strijkers, W. M. Mulder, G. F. Tilborg, and K. Nicolay, «MRI Contrast Agents: Current Status and Future Perspectives, vol.7, pp.291-305, 2007.

C. V. Bowen, X. Zhang, G. Saab, P. J. Gareau, and B. K. Rutt, «Application of the static dephasing regime theory to superparamagnetic iron-oxide loaded cells, Magn Reson Med, vol.48, issue.1, pp.52-61, 2002.

Y. X. Wang, S. M. Hussain, and G. P. Krestin, «Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging, vol.11, pp.2319-2331, 2001.

R. Weissleder, G. Elizondo, J. Wittenberg, C. A. Rabito, H. H. Bengele et al., «Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging, » Radiology, vol.175, issue.2, pp.489-493, 1990.

R. Weissleder, A. Bogdanov, E. A. Neuwelt, and M. Papisov, «Long-circulating iron oxides for MR imaging, » Advanced Drug Delivery Reviews, vol.16, issue.2-3, pp.321-334, 1995.

P. Wunderbaldinger, L. Josephson, and R. Weissleder, «Crosslinked iron oxides (CLIO): a new platform for the development of targeted MR contrast agents, Acad Radiol, vol.9, issue.2, pp.304-306, 2002.

H. Nakamura, N. Ito, F. Kotake, Y. Mizokami, and T. Matsuoka, «Tumor-detecting capacity and clinical usefulness of SPIO-MRI in patients with hepatocellular carcinoma, J Gastroenterol, vol.35, issue.11, pp.849-855, 2000.

S. Richard, V. Eder, G. Caputo, C. Journé, P. Ou et al., «USPIO size control through microwave nonaqueous sol-gel method for neoangiogenesis T2 MRI contrast agent, Nanomedicine, vol.11, 2016.

A. Moezzi, A. M. Mcdonagh, and M. B. Cortie, «Zinc oxide particles: Synthesis, properties and applications, vol.1, pp.1-22, 2012.

K. M. Lee, C. W. Lai, K. S. Ngai, and J. C. Juan, «Recent Developments of Zinc Oxide Based Photocatalyst in Water Treatment Technology: A Review, Water Research, vol.88, pp.428-488, 2016.

V. Sivasubramanian, «Environmental Sustainability Using Green Technologies, p.85, 2016.

K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, and J. A. , Voigt, «Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, » Appl. Phys. Lett, vol.68, pp.403-405, 1996.

S. Monticone, R. Tufeu, and A. V. , Kanaev, «Complex Nature of the UV and Visible Fluorescence of Colloidal ZnO Nanoparticles, J. Phys. Chem. B, vol.102, pp.2854-2862, 1998.

A. V. Dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, «The Kinetics of the Radiative and Nonradiative Processes in Nanocrystalline ZnO Particles upon Photoexcitation, J. Phys. Chem. B, vol.104, pp.1715-1723, 2000.

Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov et al., «A comprehensive review of ZnO materials and devices, vol.98, 2005.

A. Van-dijken, E. A. Meulenkamp, D. Vanmaekelbergh, and A. Meijerink, «Identification of the transition responsible for the visible emission in ZnO using quantum size effects, J. Lumin, vol.90, pp.123-128, 2000.

L. Zhang, L. Yin, C. Wang, N. Lun, Y. Qi et al., «Origin of Visible Photoluminescence of ZnO Quantum Dots: Defect-Dependent and SizeDependent, J. Phys. Chem. C, vol.114, pp.9651-9658, 2010.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, «Semiconductor nanocrystals as fluorescent biological labels,» Science, vol.28, pp.2013-2016, 1998.

W. C. Chan and S. Nie, «Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection,» Science, vol.281, pp.2016-2018, 1998.

T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani et al., » Biomaterials, vol.28, pp.4717-4732, 2007.

F. M. Winnik and D. Maysinger, «Quantum dot cytotoxicity and ways to reduce it, vol.46, pp.672-680, 2013.

C. E. Bradburne, J. B. Delehanty, G. K. Boeneman, B. C. Mei, H. Mattoussi et al., «Cytotoxicity of quantum dots used for in vitro cellular labeling: role of QD surface ligand, delivery modality, cell type, and direct comparison to organic fluorophores, » Bioconjug Chem, vol.24, issue.9, pp.1570-1583, 2013.

G. Auer, W. D. Griebler, and B. Jahn, «Industrial Inorganic Pigments,» in White pigments, p.82, 2005.

W. Wu, J. Shen, P. Banerjee, and S. Zhou, «A Multifuntional Nanoplatform Based on Responsive Fluorescent Plasmonic ZnO-Au@PEG Hybrid Nanogels, Adv. Funct. Mater, vol.21, issue.5, pp.2830-2839, 2011.

X. Tang, E. S. Choo, L. Li, J. Ding, and J. Xue, «One-Pot Synthesis of WaterStable ZnO Nanoparticles via a Polyol Hydrolysis Route and Their Cell Labeling Applications,» Langmuir, vol.25, pp.5271-5275, 2009.

H. M. Xiong, Y. Xu, Q. G. Ren, and Y. Y. Xia, «Stable Aqueous ZnO@Polymer Core-Shell Nanoparticles with Tunable Photoluminescence and Their Application in Cell Imaging, J. Am. Chem. Soc, vol.130, pp.7522-7523, 2008.

H. M. Xiong, «ZnO nanoparticles applied to bioimaging and drug delivery, vol.25, pp.5329-5335, 2013.

Z. Song, T. A. Kelf, W. H. Sanchez, M. S. Roberts, J. Ri?ka et al., Zvyagin, «Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport, Biomed Opt Express, vol.2, pp.3321-3333, 2011.

J. Drbohlavova, V. Adam, R. Kizek, and J. Hubalek, «Quantum DotsCharacterization, Preparation and Usage in Biological Systems, Int. J. Mol. Sci, vol.10, issue.2, pp.656-673, 2009.

T. R. Dunkern, G. Fritz, and B. Kaina, «Ultraviolet light-induced DNA damage triggers apoptosis in nucleotide excision repair-deficient cells via Bcl-2 decline and caspase-3/-8 activation, » Oncogene, vol.20, pp.6026-6038, 2001.

N. Goosen and G. F. , Moolenaar, «Repair of UV damage in bacteria, DNA Repair (Amst), vol.7, issue.3, pp.353-379, 2008.

K. Hikishima, Y. Komaki, F. Seki, Y. Ohnishi, H. J. Okano et al., «In vivo microscopic voxel-based morphometry with a brain template to characterize strainspecific structures in the mouse brain, » Scientific Reports, vol.7, p.85, 2017.

D. Stucht, K. A. Danishad, P. Schulze, F. Godenschweger, M. Zaitsev et al., «Highest Resolution In Vivo Human Brain MRI Using Prospective Motion Correction, vol.10, 2015.

H. Bridge and S. Clare, «High-resolution MRI: in vivo histology?, » Philosophical Transactions of the Royal Society B: Biological Sciences, vol.361, pp.137-146, 1465.

P. Eghbali, H. Fattahi, S. Laurent, R. N. Muller, and Y. M. Oskoei, «Fluorophore-tagged superparamagnetic iron oxide nanoparticles as bimodal contrast agents for MR/optical imaging, Journal of the Iranian Chemical Society, vol.13, issue.1, pp.87-93, 2016.

A. Beilvert, D. P. Cormode, F. Chaubet, K. C. Briley-saebo, V. Mani et al., «Tyrosine polyethylene glycol (PEG)-micelle magnetic resonance contrast agent for the detection of lipid rich areas in atherosclerotic plaque, » Magnetic Resonance in Medicine, vol.62, issue.5, pp.1195-1201, 2009.

C. Bremer, V. Ntziachristos, and R. Weissleder, «Optical-based molecular imaging: contrast agents and potential medical applications,» Eur Radio, vol.13, pp.231-243, 2003.

I. Hemmilä, S. Dakubu, V. M. Mukkala, H. Siitari, and T. Lövgren, «Europium as a label in time-resolved immunofluorometric assays, vol.137, pp.335-343, 1984.

W. L. Scaff, D. L. Dyer, and K. Mor, Journal of bacteriology, vol.98, issue.1, pp.246-248, 1969.

J. C. Bünzli and L. Bioprobes, Chemistry Letters, vol.38, issue.2, pp.104-109, 2009.

J. Yuan and G. Wang, «Lanthanide complex-based fluorescence label, J Fluoresc, vol.15, issue.4, pp.559-568, 2005.

M. Ceulemans, K. Nuyts, W. M. De-borggraeve, and T. N. , Parac-Vogt, «Gadolinium(III)-DOTA Complex Functionalized with BODIPY as a Potential Bimodal Contrast Agent for MRI and Optical Imaging, » Inorganics, vol.3, issue.4, pp.516-533, 2015.

N. T. Nghia, E. Tinet, D. Ettori, A. Beilvert, G. Pavon-djavid et al., Chaubet, «Gadolinium/terbium hybrid macromolecular complexes for bimodal imaging of atherothrombosis, J Biomed Opt, vol.22, issue.7, p.76004, 2017.

J. Cao, W. Fu, H. Yang, Q. Yu, Y. Zhang et al., «Fabrication, characterization and application in electromagnetic wave absorption of flower-like ZnO/Fe3O4 nanocomposites, » Materials Science and Engineering: B, vol.175, issue.1, pp.56-59, 2010.

H. L. Liu, J. H. Wu, J. H. Min, X. Y. Zhang, and Y. K. Kim, «Tunable synthesis and multifunctionalities of Fe3O4-ZnO hybrid core-shell nanocrystals, Materials Research Bulletin, vol.48, issue.2, pp.551-558, 2013.

J. Wan, H. Li, and K. Chen, «Synthesis and characterization of Fe3O4@ZnO coreshell structured nanoparticles, » Materials Chemistry and Physics, vol.114, issue.1, pp.30-32, 2009.

S. V. Vinogradov, T. K. Bronich, and A. V. Kabanov, «Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells, Adv Drug Deliv Rev, vol.54, issue.1, pp.135-147, 2002.

H. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer et al., Frangioni, «Renal clearance of quantum dots, Nature Biotechnology, vol.25, pp.1165-1170, 2007.

E. Casals, T. Pfaller, A. Duschl, G. J. Oostingh, and V. Puntes, «Time Evolution of the Nanoparticle Protein Corona, vol.4, pp.3623-3632, 2010.

T. Cedervall, I. Lynch, M. Foy, T. Berggad, S. Donnelly et al., Angew Chem Int Ed, vol.46, pp.5754-5756, 2007.

J. V. Jokerst, T. Lobovkina, R. N. Zare, and S. S. Gambhi, «Nanoparticle PEGylation for imaging and therapy, vol.6, pp.715-728, 2011.

L. Lutterotti, S. Matthies, and H. R. Wenk, «Maud: a friendly java program for material analysis using diffraction, » Newsletter of the CPD, vol.21, pp.14-15, 1999.

D. Ficai and A. M. Grumezescu, «Synthetic methods for preparation of metal nanoparticles,» in Nanostructures for Novel Therapy: Synthesis, Characterization and Applications, p.15, 2017.

M. L. Chapelle and A. Pucci, «Nanoparticle synthesis,» in Nanoantenna: Plasmon-Enhanced Spectroscopies for Biotechnological Applications, p.107, 2013.

M. L. Dinesha, G. D. Prasanna, C. S. Naveen, and H. S. Jayanna, «Structural and dielectric properties of Fe doped ZnO nanoparticles, Indian J Phys, vol.87, issue.2, pp.147-153, 2013.

M. A. Ciciliati, M. F. Silva, D. M. Fernandes, M. A. Melo, A. Adelin et al., «Fe-doped ZnO nanoparticles: Synthesis by a modified sol-gel method and characterization, Materials Letters, vol.159, pp.84-86, 2015.

V. G. Il'ves, S. Yu, and A. M. Sokovnin, Murzakaev, «Influence of Fe-Doping on the Structural and Magnetic Properties of ZnO Nanopowders, Produced by the Method of Pulsed Electron Beam Evaporation, Journal of Nanotechnology, vol.2016, 2016.

P. A. Arciniegas-grijalba, M. C. Patiño-portela, L. P. Mosquera-sánchez, J. A. Guerrero-vargas, and J. E. , Rodríguez-Páez, «ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor, » Applied Nanoscience, vol.7, issue.5, pp.225-241, 2017.

A. Mezni, F. Kouki, S. Romdhane, B. Warot-fonrose, S. Joulie et al., «Facile synthesis of ZnO nanocrystals in polyol, Materials Letters, vol.86, pp.153-156, 2012.

P. Guo, L. Cui, Y. Wang, M. Lv, B. Wang et al., «Facile synthesis of ZnFe2O4 nanoparticles with tunable magnetic and sensing properties, » Langmuir, vol.29, pp.8997-9003, 2013.

C. Yao, Q. Zeng, G. F. Goya, T. Torres, J. Liu et al., «ZnFe2O4 Nanocrystals: Synthesis and Magnetic Properties, vol.111, pp.12274-12278, 2007.

E. G. Bylander, «Surface effects on the low-energy cathodoluminescence of zinc oxide, Journal of Applied Physics, vol.49, issue.3, pp.1188-1196, 1978.

U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov et al., «A comprehensive review of ZnO materials and devices, J. Appl. Phys, vol.98, pp.41301-041403, 2005.

K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt et al., Gnade, «Mechanisms behind green photoluminescence in ZnO phosphor powders, J. Appl. Phys, vol.79, pp.7983-7990, 1996.

N. Lee, D. Yoo, D. Ling, M. H. Cho, T. Hyeon et al., «Iron Oxide Based Nanoparticles for Multimodal Imaging and Magnetoresponsive Therapy, Chem. Rev, vol.115, pp.10637-10689, 2015.

M. Leclerc and R. Gauvin, «New trends in sustainable development and biomedical applications,» in Functional Materials: For Energy, Sustainable Development and Biomedical Sciences, p.340, 2014.

L. M. Parkes, R. Hodgson, T. L. Lu, D. L. Tung, I. Robinson et al., «Cobalt nanoparticles as a novel magnetic resonance contrast agent--relaxivities at 1. 5 and 3 Tesla, » Contrast Media Mol Imaging, vol.3, issue.4, pp.150-156, 2008.

D. L. Thorek, A. K. Chen, J. Czupryna, and A. Tsourkas, «Superparamagnetic iron oxide nanoparticle probes for molecular imaging, Ann Biomed Eng, vol.34, issue.1, pp.23-38, 2006.

N. Chan, M. Laprise-pelletier, P. Chevallier, A. Bianchi, M. A. Fortin et al., Copolymer-Stabilized Ultrasmall Superparamagnetic Iron Oxide Nanoparticles with Enhanced Colloidal Stability for Magnetic Resonance Imaging, » Biomacromolecules, vol.15, pp.2146-2156, 2014.

M. F. Casula, P. Floris, C. Innocenti, A. Lascialfari, M. Marinone et al., «Magnetic Resonance Imaging Contrast Agents Based on Iron Oxide Superparamagnetic Ferrofluids, vol.22, pp.1739-1748, 2010.

B. H. Kim, N. Lee, H. Kim, K. An, Y. I. Park et al.,

. Hyeon, Synthesis of Uniform and Extremely Small-Sized Iron Oxide Nanoparticles for High-Resolution T1 Magnetic Resonance Imaging Contrast Agents, J. Am. Chem. Soc, vol.133, pp.12624-12631, 2011.

P. Kucheryavy, J. He, V. T. John, P. Maharjan, L. Spinu et al., «Superparamagnetic Iron Oxide Nanoparticles with Variable Size and an Iron Oxidation State as Prospective Imaging Agents, » Langmuir, vol.29, issue.2, pp.710-716, 2013.

U. I. Tromsdorf, O. T. Bruns, S. C. Salmen, U. Beisiegel, and H. Weller, «A Highly Effective, Nontoxic T1 MR Contrast Agent Based on Ultrasmall PEGylated Iron Oxide Nanoparticles, » Nano Lett, vol.9, pp.4434-4440, 2009.

G. Wang, X. Zhang, A. Skallberg, Y. Liu, Z. Hu et al., «One-step synthesis of water-dispersible ultra-small Fe3O4 nanoparticles as contrast agents for T1 and T2 magnetic resonance imaging, » Nanoscale, vol.6, issue.5, pp.2953-2963, 2014.

S. M. Hoque, M. S. Hossain, S. Choudhury, S. Akhter, and F. Hyder, «Synthesis and characterization of ZnFe2O4 nanoparticles and its biomedical applications, » Mater Lett, vol.12, pp.60-63, 2016.

J. Wan, X. Jiang, H. Li, and K. Chen, «Facile synthesis of zinc ferrite nanoparticles as non-lanthanide T1 MRI contrast agents, Royal Society of Chemistry, vol.22, pp.13500-13505, 2012.

A. Banerjee, B. Blasiak, E. Pasquier, B. Tomanek, and S. Trudel, «Synthesis, characterization, and evaluation of PEGylated first-row transition metal ferrite nanoparticles as T2 contrast agents for high-field MRI, » RSC Adv, vol.7, pp.38125-38134, 2017.

J. W. Uhr, M. L. Huebschman, E. P. Frenkel, N. L. Lane, R. Ashfaq et al., «Molecular profiling of individual tumor cells by hyperspectral microscopic imaging, Translational Research, vol.159, pp.366-375, 2011.

D. Zopf, J. Jatschka, A. Dathe, N. Jahr, W. Fritzsche et al., «Hyperspectral imaging of plasmon resonances in metallic nanoparticlesBiosensors and Bioelectronics, vol.81, pp.287-293, 2016.

M. D. Peña, A. Gottipati, S. Tahiliani, N. M. Neu-baker, M. D. Frame et al., «Hyperspectral imaging of nanoparticles in biological samples: Simultaneous visualization and elemental identification, vol.79, pp.349-358, 2016.

R. E. Thompson, D. R. Larson, and W. W. Webb, «Precise Nanometer Localization Analysis for Individual Fluorescent Probes, » Biophysical Journal, vol.82, pp.2775-2783, 2002.

S. Wieser and G. J. Schütz, «Tracking single molecules in the live cell plasma membrane-Do's and Don't's,» Methods, vol.46, pp.131-140, 2008.

B. V. Broek, B. Ashcroft, T. H. Oosterkamp, and J. V. Noort, «Parallel Nanometric 3D Tracking of Intracellular Gold Nanorods Using Multifocal TwoPhoton Microscopy, Nano Letter, vol.13, issue.3, pp.980-986, 2013.

Y. Katayama, O. Burkacky, M. Meyer, C. Bräuchle, E. Gratton et al., «Real-time nanomicroscopy via three-dimensional single-particle tracking, vol.10, pp.2458-2464, 2009.

R. Parthasarathy, «Rapid, accurate particle tracking by calculation of radial symmetry centers, Nature Methods, vol.9, pp.724-726, 2012.

S. L. Liu, J. Li, Z. L. Zhang, Z. G. Wang, Z. Q. Tian et al., «Fast and High-Accuracy Localization for Three-Dimensional Single-Particle Tracking, vol.3, pp.1-5, 2013.

A. Martinez-marrades, J. F. Rupprecht, M. Gross, and G. Tessier, «Stochastic 3D optical mapping by holographic localization of Brownian scatterers, Optics Express, vol.22, issue.23, pp.29191-29203, 2014.

F. A. Kruse, A. B. Lefkoff, J. W. Boardman, K. B. Heidebrecht, A. T. Shapiro et al., «The Spectral Image Processing System (SIPS)-Interactive Visualization and Analysis of Imaging Spectrometer Data, vol.44, pp.145-163, 1993.

S. Anidjar, J. L. Salzmann, D. Gentric, P. Lagneau, J. P. Camilleri et al., «Elastase-induced experimental aneurysms in rats,» Circulation, vol.82, pp.973-981, 1990.

F. Rouzet, L. Bachelet-violette, J. M. Alsac, M. Suzuki, A. Meulemans et al., «Radiolabeled fucoidan as a p-selectin targeting agent for in vivo imaging of platelet-rich thrombus and endothelial activation, J Nucl Med, vol.52, issue.9, pp.1433-1440, 2011.

L. Bachelet, I. Bertholon, D. Lavigne, R. Vassy, M. Jandrot-perrus et al., «Affinity of low molecular weight fucoidan for P-selectin triggers its binding to activated human platelets, Biochimica et Biophysica Acta (BBA) -General Subjects, vol.1790, issue.2, pp.141-146, 2009.

S. Richard, V. Eder, G. Caputo, C. Journé, P. Ou et al., Nicola Pinna & Yoann Lalatonne, «USPIO size control through microwave nonaqueous sol-gel method for neoangiogenesis T2 MRI contrast agent, Nanomedicine, vol.11, 2016.

H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori, «Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review, vol.65, pp.271-284, 2000.

A. Varki, Trends Mol Med, vol.14, issue.8, pp.351-360, 2008.

H. Maeda, T. Sawa, T. Konno, H. Maeda, T. Sawa et al., Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS, J Control Release, vol.74, pp.47-61, 2001.

N. Bertrand, J. Wu, X. Xu, N. Kamaly, and O. C. Farokhzad, «Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology, Adv. Drug Deliv, vol.66, pp.2-25, 2014.

X. Yu, I. Trase, M. Ren, K. Duval, X. Guo et al., «Design of NanoparticleBased Carriers for Targeted Drug Delivery, J Nanomater, 2016.

L. Y. Chou, K. Ming, and W. C. Chan, Chem. Soc. Rev, vol.40, pp.233-245, 2011.

A. Albanese, P. S. Tang, and W. C. Chan, «The effect of nanoparticle size, shape, and surface chemistry on biological systems, Annu. Rev. Biomed. Eng, vol.14, pp.1-16, 2012.

Y. Li, M. Kröger, and W. K. Liu, «Shape effect in cellular uptake of pegylated nanoparticles: comparison between sphere, rod, cube and disk, Nanoscale, vol.7, pp.16631-16646, 2015.

A. C. Croce and G. Bottiroli, «Autofluorescence Spectroscopy and Imaging: A Tool for Biomedical Research and Diagnosis, vol.58, p.2461, 2014.

P. A. Jarzyna, A. Gianella, T. Skajaa, G. Knudsen, L. H. Deddens et al., Wiley Interdiscip Rev Nanomed Nanobiotechnol, vol.2, issue.2, pp.138-150, 2010.

S. Mitragotri and J. Lahann, «Physical approaches to biomaterial design, Nature Materials, vol.8, pp.15-23, 2009.

G. Wu, P. Li, H. Feng, X. Zhang, and P. K. Chu, «Engineering and functionalization of biomaterials via surface modification, J. Mater. Chem. B, vol.3, pp.2024-2042, 2015.

M. A. Garcia, J. M. Merino, E. F. Pinel, A. Quesada, J. D. Venta et al., «Magnetic Properties of ZnO Nanoparticles, vol.7, pp.1489-1494, 2007.

T. T. John, K. R. Priolkar, A. Bessiere, P. R. Sarode, and B. Viana, Linkages on Luminescent Properties of ZnO Nanoparticles, vol.115, pp.18070-18075, 2011.

O. Lupan, T. Pauporté, T. L. Bahers, I. Ciofini, and B. Viana, «High Aspect Ratio Ternary Zn1-xCdxO Nanowires by Electrodeposition for Light-Emitting Diode Applications, vol.115, pp.14548-14558, 2011.

O. Lupan, T. Pauporte, L. Chow, B. Viana, F. Pelle et al., «Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium, » Applied Surface Science, vol.256, pp.1895-1907, 2010.

Z. Y. Zhang and H. M. Xiong, «Photoluminescent ZnO Nanoparticles and Their Biological Applications,» Materials, vol.8, pp.3101-3127, 2015.

J. Cheon and J. H. Lee, «Synergistically Integrated Nanoparticles as Multimodal Probes for Nanobiotechnology, vol.41, pp.1630-1640, 2008.

V. J. Pansare, S. Hejazi, W. J. Faenza, and R. K. , Prud'homme, «Review of LongWavelength Optical and NIR Imaging Materials: Contrast Agents, Fluorophores, and Multifunctional Nano Carriers, Chemistry of Materials, vol.24, issue.5, pp.812-827, 2012.

P. Wunderbaldinger, L. Josephson, and R. Weissleder, «Tat Peptide Directs Enhanced Clearance and Hepatic Permeability of Magnetic Nanoparticles, Bioconjugate Chemistry, vol.13, issue.2, pp.264-268, 2002.

Y. Wu, J. Guo, W. Yang, C. Wang, and S. Fu, «Preparation and characterization of chitosan-poly(acrylic acid) polymer magnetic microspheres, » Polymer, vol.47, pp.5287-5294, 2006.

I. L. Hsiao and Y. J. Huang, «Titanium Oxide Shell Coatings Decrease the Cytotoxicity of ZnO Nanoparticles, vol.24, pp.303-313, 2013.

N. H. Cho, T. C. Cheong, J. H. Min, J. H. Wu, S. J. Lee et al., «A multifunctional core-shell nanoparticle for dendritic cell-based cancer immunotherapy, Nature Nanotechnology, vol.6, pp.675-682, 2011.

T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, «Zener model description of ferromagnetism in zinc-blende magnetic semiconductors, » Science, vol.287, pp.1019-1041, 2000.

V. Filipe, A. Hawe, and W. Jiskoot, «Critical Evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the Measurement of Nanoparticles and Protein Aggregates, » Pharm Res, vol.27, issue.5, pp.796-810, 2010.

T. Wagner, H. G. Lipinski, and M. Wiemann, «Dark field nanoparticle tracking analysis for size characterization of plasmonic and non-plasmonic particles, J Nanopart Res, vol.16, p.2419, 2014.

C. Y. Soo, Y. Song, Y. Zheng, E. C. Campbell, A. C. Riches et al., Powis, «Nanoparticle tracking analysis monitors microvesicle and exosome secretion from immune cells, » Immunology, vol.136, issue.2, pp.192-197, 2012.

R. A. Dragovic, C. Gardiner, A. S. Brooks, D. S. Tannetta, D. J. Ferguson et al., «Sizing and phenotyping of cellular vesicles using Nanoparticle Tracking Analysis, vol.7, pp.780-788, 2011.

. Gringer, , 2009.

B. Chu, «Laser Light Scattering: Basic Principles and Practice,» in Optical mixing spectrometers, p.83, 1991.

M. W. Davidson, «microscopyu.com,» National High Magnetic Field Laboratory, 2016.

M. Kass and A. Ivaska, «Spectrophotometric determination of iron(III) and total iron by sequential injection analysis technique, » Talanta, vol.58, issue.6, pp.1131-1137, 2002.

, JCPDS : Zn0.82 Fe0.123 O Lattice parameters, pp.83-88

, Coherent domains of diffraction (nm) 5

, JCPDS : Zn0.82 Fe0.123 O Lattice parameters