P. Schaerli, K. Willimann, A. B. Lang, M. Lipp, P. Loetscher et al., CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function, J Exp Med, vol.192, pp.1553-62, 2000.

D. Breitfeld, L. Ohl, E. Kremmer, J. Ellwart, F. Sallusto et al., Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production, J Exp Med, vol.192, pp.1545-52, 2000.

C. S. Ma, E. K. Deenick, M. Batten, and S. G. Tangye, The origins, function, and regulation of T follicular helper cells, J Exp Med, vol.209, pp.1241-53, 2012.

J. L. Cannons, K. T. Lu, and P. L. Schwartzberg, T follicular helper cell diversity and plasticity, Trends Immunol, 2013.

C. G. Vinuesa, M. A. Linterman, C. C. Goodnow, and K. L. Randall, T cells and follicular dendritic cells in germinal center B-cell formation and selection, Immunol Rev, vol.237, pp.72-89, 2010.

R. I. Nurieva, Y. Chung, D. Hwang, X. O. Yang, H. S. Kang et al., Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages, Immunity, vol.29, pp.138-187, 2008.

R. I. Nurieva, Y. Chung, G. J. Martinez, X. O. Yang, S. Tanaka et al., Bcl6 mediates the development of T follicular helper cells, Science, vol.325, pp.1001-1006, 2009.

A. T. Bauquet, H. Jin, A. M. Paterson, M. Mitsdoerffer, I. C. Ho et al., The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells, Nat Immunol, vol.10, pp.167-75, 2009.

S. Crotty, T follicular helper cell differentiation, function, and roles in disease, Immunity, vol.41, pp.529-571, 2014.

N. Schmitt, Y. Liu, S. E. Bentebibel, and H. Ueno, Molecular Mechanisms Regulating T Helper 1 versus T Follicular Helper Cell Differentiation in Humans, Cell Rep, vol.16, pp.1082-95, 2016.

T. Donnarumma, G. R. Young, J. Merkenschlager, U. Eksmond, N. Bongard et al., Opposing Development of Cytotoxic and Follicular Helper CD4 T Cells Controlled by the TCF-1-Bcl6 Nexus, Cell Rep, vol.17, pp.1571-1583, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438159

K. T. Lu, Y. Kanno, J. L. Cannons, R. Handon, P. Bible et al., Functional and epigenetic studies reveal multistep differentiation and plasticity of in vitro-generated and in vivo-derived follicular T helper cells, Immunity, vol.35, pp.622-654, 2011.

R. Morita, N. Schmitt, S. E. Bentebibel, R. Ranganathan, L. Bourdery et al., Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion, Immunity, vol.34, pp.108-129, 2011.

N. Chevalier, D. Jarrossay, E. Ho, D. T. Avery, C. S. Ma et al., CXCR5 expressing human central memory CD4 T cells and their relevance for humoral immune responses, J Immunol, vol.186, pp.5556-68, 2011.

S. Pallikkuth, A. Parmigiani, S. Y. Silva, V. K. George, M. Fischl et al., Impaired peripheral blood T-follicular helper cell function in HIV, 2009.

, H1N1/09 vaccine, Blood, vol.120, pp.985-93

C. S. Ma and T. G. Phan, Here, there and everywhere: T follicular helper cells on the move, Immunology, 2017.

D. A. Rao, M. F. Gurish, J. L. Marshall, K. Slowikowski, C. Y. Fonseka et al., Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis, Nature, vol.542, pp.110-114, 2017.

M. A. Linterman, R. J. Rigby, R. K. Wong, D. Yu, R. Brink et al., Follicular helper T cells are required for systemic autoimmunity, J Exp Med, vol.206, pp.561-76, 2009.

S. E. Bentebibel, S. Lopez, G. Obermoser, N. Schmitt, C. Mueller et al., Induction of ICOS+CXCR3+CXCR5+ TH cells correlates with antibody responses to influenza vaccination, Sci Transl Med, vol.5, pp.176-208, 2013.

M. Locci, C. Havenar-daughton, E. Landais, J. Wu, M. A. Kroenke et al., Human circulating PD-1+CXCR3-CXCR5+ memory Tfh cells are highly functional and correlate with broadly neutralizing HIV antibody responses, Immunity, vol.39, pp.758-69, 2013.

K. Cohen, M. Altfeld, G. Alter, and L. Stamatatos, Early preservation of CXCR5+ PD-1+ helper T cells and B cell activation predict the breadth of neutralizing antibody responses in chronic HIV-1 infection, J Virol, vol.88, pp.13310-13331, 2014.

M. Lindqvist, J. Van-lunzen, D. Z. Soghoian, B. D. Kuhl, S. Ranasinghe et al., Expansion of HIV-specific T follicular helper cells in chronic HIV infection, J Clin Invest, 2012.

M. Perreau, A. L. Savoye, D. Crignis, E. Corpataux, J. M. Cubas et al., Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production, J Exp Med, 2012.

E. K. Deenick, A. Chan, C. S. Ma, D. Gatto, P. L. Schwartzberg et al., Follicular helper T cell differentiation requires continuous antigen presentation that is independent of unique B cell signaling, Immunity, vol.33, pp.241-53, 2010.

D. C. Douek, J. M. Brenchley, M. R. Betts, D. R. Ambrozak, B. J. Hill et al., HIV preferentially infects HIV-specific CD4+ T cells, Nature, vol.417, pp.95-103, 2002.

K. M. Chavele, E. Merry, and M. R. Ehrenstein, Cutting edge: circulating plasmablasts induce the differentiation of human T follicular helper cells via IL-6 production, J Immunol, vol.194, pp.2482-2487, 2015.

A. M. Aubertin, L. Grand, R. Wang, Y. Beyer, C. Tao et al., Generation of CD8+ T cell-generated suppressor factor and betachemokines by targeted iliac lymph node immunization in rhesus monkeys challenged with SHIV-89.6P by the rectal route, AIDS Res Hum Retroviruses, vol.16, pp.381-92, 2000.

F. Porichis and D. E. Kaufmann, HIV-specific CD4 T cells and immune control of viral replication, Curr Opin HIV AIDS, vol.6, pp.174-80, 2011.

T. Okazaki, S. Chikuma, Y. Iwai, S. Fagarasan, and T. Honjo, A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application, Nat Immunol, vol.14, pp.1212-1220, 2013.

D. Sauce, J. R. Almeida, M. Larsen, L. Haro, B. Autran et al., PD-1 expression on human CD8 T cells depends on both state of differentiation and activation status, Aids, vol.21, pp.2005-2018, 2007.

B. Youngblood, A. Noto, F. Porichis, R. S. Akondy, Z. M. Ndhlovu et al., Cutting edge: Prolonged exposure to HIV reinforces a poised epigenetic program for PD-1 expression in virus-specific CD8 T cells, J Immunol, vol.191, pp.540-544, 2013.

H. Hatano, S. A. Yukl, A. L. Ferre, E. H. Graf, M. Somsouk et al., Prospective antiretroviral treatment of asymptomatic, HIV-1 infected controllers, PLoS Pathog, vol.9, p.1003691, 2013.

D. Benati, M. Galperin, O. Lambotte, S. Gras, A. Lim et al., Public TCRs confer high-avidity responses to HIV Controllers, Journal of Clinical Investigation

E. Martin-gayo, J. Cronin, T. Hickman, Z. Ouyang, M. Lindqvist et al., Circulating CXCR5+CXCR3+PD-1lo Tfh-like cells in HIV-1 controllers with neutralizing antibody breadth, JCI Insight, vol.2, p.89574, 2017.

S. Buranapraditkun, F. Pissani, J. E. Teigler, B. T. Schultz, G. Alter et al., Preservation of Peripheral T Follicular Helper Cell Function in HIV Controllers, J Virol, p.91, 2017.

J. F. Scheid, H. Mouquet, N. Feldhahn, M. S. Seaman, K. Velinzon et al., Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals, Nature, vol.458, pp.636-676, 2009.

R. Cubas, J. Van-grevenynghe, S. Wills, L. Kardava, B. H. Santich et al., Reversible Reprogramming of Circulating Memory T Follicular Helper Cell Function during Chronic HIV Infection, J Immunol, vol.195, pp.5625-5661, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01351053

B. Vingert, D. Benati, O. Lambotte, P. De-truchis, L. Slama et al., HIV controllers maintain a population of highly efficient Th1 effector cells in contrast to patients treated in the long term, J Virol, vol.86, pp.10661-74, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00733917

S. Fernandez, S. Tanaskovic, K. Helbig, R. Rajasuriar, M. Kramski et al., CD4+ T-cell deficiency in HIV patients responding to antiretroviral therapy is associated with increased expression of interferon-stimulated genes in CD4+ T cells, J Infect Dis, vol.204, pp.1927-1962, 2011.

J. A. Harker, G. M. Lewis, L. Mack, and E. I. Zuniga, Late interleukin-6 escalates T follicular helper cell responses and controls a chronic viral infection, Science, vol.334, pp.825-834, 2011.

N. Jabado, A. Pallier, L. Deist, F. Bernard, F. Fischer et al., CD4 ligands inhibit the formation of multifunctional transduction complexes involved in T cell activation, J Immunol, vol.158, pp.94-103, 1997.

W. Bogers, S. W. Barnett, H. Oostermeijer, I. G. Nieuwenhuis, N. Beenhakker et al., Increased, durable B-cell and ADCC Responses Associated with T-helper Responses to HIV-1 Envelope in Macaques Vaccinated with gp140 Occluded at the CD4 Receptor Binding Site, J Virol, 2017.

P. Kiepiela, K. Ngumbela, C. Thobakgale, D. Ramduth, I. Honeyborne et al.,

C. Pierres, Z. Mncube, N. Mkhwanazi, K. Bishop, M. Van-der-stok et al., CD8+ T-cell responses to different HIV proteins have discordant associations with viral load, Nat Med, vol.13, pp.46-53, 2007.

S. Ranasinghe, D. Z. Soghoian, M. Lindqvist, M. Ghebremichael, F. Donaghey et al., HIV-1 Antibody Neutralization Breadth Is Associated with Enhanced HIV-Specific CD4+ T Cell Responses, J Virol, vol.90, pp.2208-2228, 2015.

M. Storcksdieck-genannt-bonsmann, T. Niezold, V. Temchura, F. Pissani, K. Ehrhardt et al., Enhancing the Quality of Antibodies to HIV-1 Envelope by GagPol-Specific Th Cells, J Immunol, vol.195, pp.4861-72, 2015.

J. Zhu, H. Yamane, and W. E. Paul, Differentiation of effector CD4 T cell populations (*), Annu Rev Immunol, vol.28, pp.445-489, 2010.

P. A. Roche and K. Furuta, The ins and outs of MHC class II-mediated antigen processing and presentation, Nat Rev Immunol, vol.15, pp.203-216, 2015.

S. J. Turner, P. C. Doherty, J. Mccluskey, and J. Rossjohn, Structural determinants of T-cell receptor bias in immunity, Nat Rev Immunol, vol.6, pp.883-894, 2006.

M. P. Lefranc, V. Giudicelli, C. Ginestoux, J. Bodmer, W. Muller et al., IMGT, the international ImMunoGeneTics database, Nucleic Acids Res, vol.27, pp.209-212, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02194546

N. Shimazaki and M. R. Lieber, Histone methylation and V(D)J recombination, Int J Hematol, vol.100, pp.230-237, 2014.

C. H. Bassing, W. Swat, and F. W. Alt, The mechanism and regulation of chromosomal V(D)J recombination, Cell, vol.109, pp.45-55, 2002.

M. R. Lieber, The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway, Annu Rev Biochem, vol.79, pp.181-211, 2010.

J. P. Cabaniols, N. Fazilleau, A. Casrouge, P. Kourilsky, and J. M. Kanellopoulos, Most alpha/beta T cell receptor diversity is due to terminal deoxynucleotidyl transferase, J Exp Med, vol.194, pp.1385-1390, 2001.

E. P. Rock, P. R. Sibbald, M. M. Davis, and Y. H. Chien, CDR3 length in antigenspecific immune receptors, J Exp Med, vol.179, pp.323-328, 1994.

M. M. Davis and P. J. Bjorkman, T-cell antigen receptor genes and T-cell recognition, Nature, vol.334, pp.395-402, 1988.

K. C. Garcia, M. Degano, R. L. Stanfield, A. Brunmark, M. R. Jackson et al., An alphabeta T cell receptor structure at 2.5 A and its orientation in the TCR-MHC complex, Science, vol.274, pp.209-219, 1996.

A. C. Carpenter and R. Bosselut, Decision checkpoints in the thymus, Nat Immunol, vol.11, pp.666-673, 2010.

E. T. Clambey, B. Davenport, J. W. Kappler, P. Marrack, and D. Homann, Molecules in medicine mini review: the alphabeta T cell receptor, J Mol Med (Berl), vol.92, pp.735-741, 2014.

J. S. Hale and P. J. Fink, T-cell receptor revision: friend or foe, Immunology, vol.129, pp.467-473, 2010.

T. K. Starr, S. C. Jameson, and K. A. Hogquist, Positive and negative selection of T cells, Annu Rev Immunol, vol.21, pp.139-176, 2003.

R. Forster, A. Schubel, D. Breitfeld, E. Kremmer, I. Renner-muller et al., CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs, Cell, vol.99, pp.23-33, 1999.

M. K. Jenkins, A. Khoruts, E. Ingulli, D. L. Mueller, S. J. Mcsorley et al., In vivo activation of antigen-specific CD4 T cells, Annu Rev Immunol, vol.19, pp.23-45, 2001.

D. J. Gasper, M. M. Tejera, and M. Suresh, CD4 T-cell memory generation and maintenance, Crit Rev Immunol, vol.34, pp.121-146, 2014.

S. L. Swain, K. K. Mckinstry, and T. M. Strutt, Expanding roles for CD4(+) T cells in immunity to viruses, Nat Rev Immunol, vol.12, pp.136-148, 2012.

C. D. Surh and J. Sprent, Homeostasis of naive and memory T cells, Immunity, vol.29, pp.848-862, 2008.

L. Rivino, M. Messi, D. Jarrossay, A. Lanzavecchia, F. Sallusto et al., Chemokine receptor expression identifies Pre-T helper (Th)1, Pre-Th2, and nonpolarized cells among human CD4+ central memory T cells, J Exp Med, vol.200, pp.725-735, 2004.

S. J. Potter, C. Lacabaratz, O. Lambotte, S. Perez-patrigeon, B. Vingert et al., Preserved central memory and activated effector memory CD4+ T-cell subsets in human immunodeficiency virus controllers: an ANRS EP36 study, J Virol, vol.81, pp.13904-13915, 2007.
URL : https://hal.archives-ouvertes.fr/pasteur-00193768

A. Boisvert, M. Bruneau, J. Soudeyns, H. Shoukry, and N. H. , Selective expansion of high functional avidity memory CD8 T cell clonotypes during hepatitis C virus reinfection and clearance, PLoS Pathog, vol.13, p.1006191, 2017.

A. Tanel, S. G. Fonseca, B. Yassine-diab, R. Bordi, J. Zeidan et al., Cellular and molecular mechanisms of memory T-cell survival, Expert Rev Vaccines, vol.8, pp.299-312, 2009.

L. Gattinoni, E. Lugli, Y. Ji, Z. Pos, C. M. Paulos et al., A human memory T cell subset with stem celllike properties, Nat Med, vol.17, pp.1290-1297, 2011.

G. Trinchieri, S. Pflanz, and R. A. Kastelein, The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses, Immunity, vol.19, pp.641-644, 2003.

R. V. Luckheeram, R. Zhou, A. D. Verma, and B. Xia, CD4(+)T cells: differentiation and functions, Clin Dev Immunol, p.925135, 2012.

C. A. Chambers, M. S. Kuhns, J. G. Egen, and J. P. Allison, CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy, Annu Rev Immunol, vol.19, pp.565-594, 2001.

E. L. Masteller, E. Chuang, A. C. Mullen, S. L. Reiner, and C. B. Thompson, Structural analysis of CTLA-4 function in vivo, J Immunol, vol.164, pp.5319-5327, 2000.

E. I. Buchbinder and A. Desai, CTLA-4 and PD-1 Pathways: Similarities, Differences, and Implications of Their Inhibition, Am J Clin Oncol, vol.39, pp.98-106, 2016.

M. F. Krummel and J. P. Allison, CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells, J Exp Med, vol.183, pp.2533-2540, 1996.

T. Takahashi, T. Tagami, S. Yamazaki, T. Uede, J. Shimizu et al., Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4, J Exp Med, vol.192, pp.303-310, 2000.

M. E. Keir, M. J. Butte, G. J. Freeman, and A. H. Sharpe, PD-1 and its ligands in tolerance and immunity, Annu Rev Immunol, vol.26, pp.677-704, 2008.

E. K. Deenick and C. S. Ma, The regulation and role of T follicular helper cells in immunity, Immunology, vol.134, pp.361-367, 2011.

B. T. Fife and J. A. Bluestone, Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways, Immunol Rev, vol.224, pp.166-182, 2008.

L. Chen, Co-inhibitory molecules of the B7-CD28 family in the control of Tcell immunity, Nat Rev Immunol, vol.4, pp.336-347, 2004.

R. Hino, K. Kabashima, Y. Kato, H. Yagi, M. Nakamura et al., Tumor cell expression of programmed cell death-1 ligand 1 is a prognostic factor for malignant melanoma, Cancer, vol.116, pp.1757-1766, 2010.

L. Baitsch, A. Legat, L. Barba, F. Marraco, S. A. Rivals et al., Extended co-expression of inhibitory receptors by human CD8 T-cells depending on differentiation, antigen-specificity and anatomical localization, PLoS One, vol.7, p.30852, 2012.

M. Afkarian, J. R. Sedy, J. Yang, N. G. Jacobson, N. Cereb et al., T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells, Nat Immunol, vol.3, pp.549-557, 2002.

U. Boehm, T. Klamp, M. Groot, and J. C. Howard, Cellular responses to interferon-gamma, Annu Rev Immunol, vol.15, pp.749-795, 1997.

T. Melzer, A. Duffy, L. M. Weiss, and S. K. Halonen, The gamma interferon (IFNgamma)-inducible GTP-binding protein IGTP is necessary for toxoplasma vacuolar disruption and induces parasite egression in IFN-gamma-stimulated astrocytes, Infect Immun, vol.76, pp.4883-4894, 2008.

O. Boyman and J. Sprent, The role of interleukin-2 during homeostasis and activation of the immune system, Nat Rev Immunol, vol.12, pp.180-190, 2012.

J. R. Groom and A. D. Luster, CXCR3 in T cell function, Exp Cell Res, vol.317, pp.620-631, 2011.

G. T. Belz, D. Wodarz, G. Diaz, M. A. Nowak, and P. C. Doherty, Compromised influenza virus-specific CD8(+)-T-cell memory in CD4(+)-T-cell-deficient mice, J Virol, vol.76, pp.12388-12393, 2002.

E. M. Janssen, E. E. Lemmens, T. Wolfe, C. U. , V. Herrath et al., CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes, Nature, vol.421, pp.852-856, 2003.

D. J. Shedlock and H. Shen, Requirement for CD4 T cell help in generating functional CD8 T cell memory, Science, vol.300, pp.337-339, 2003.

J. C. Sun and M. J. Bevan, Defective CD8 T cell memory following acute infection without CD4 T cell help, Science, vol.300, pp.339-342, 2003.

J. C. Sun, M. A. Williams, and M. J. Bevan, CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection, Nat Immunol, vol.5, pp.927-933, 2004.

L. M. Snell, I. Osokine, D. H. Yamada, J. R. De-la-fuente, H. J. Elsaesser et al., Overcoming CD4 Th1 Cell Fate Restrictions to Sustain Antiviral CD8 T Cells and Control Persistent Virus Infection, Cell Rep, vol.16, pp.3286-3296, 2016.

F. C. Kischkel, S. Hellbardt, I. Behrmann, M. Germer, M. Pawlita et al., Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor, EMBO J, vol.14, pp.5579-5588, 1995.

D. Masson and J. Tschopp, Isolation of a lytic, pore-forming protein (perforin) from cytolytic T-lymphocytes, J Biol Chem, vol.260, pp.9069-9072, 1985.

M. J. Smyth, J. M. Kelly, V. R. Sutton, J. E. Davis, K. A. Browne et al., Unlocking the secrets of cytotoxic granule proteins, J Leukoc Biol, vol.70, pp.18-29, 2001.

D. M. Brown, C. Kamperschroer, A. M. Dilzer, D. M. Roberts, and S. L. Swain, IL-2 and antigen dose differentially regulate perforin-and FasL-mediated cytolytic activity in antigen specific CD4+ T cells, Cell Immunol, vol.257, pp.69-79, 2009.

A. M. Workman, A. K. Jacobs, A. J. Vogel, S. Condon, and D. M. Brown, Inflammation enhances IL-2 driven differentiation of cytolytic CD4 T cells, PLoS One, vol.9, p.89010, 2014.

J. A. Juno, D. Van-bockel, S. J. Kent, A. D. Kelleher, J. J. Zaunders et al., Cytotoxic CD4 T Cells-Friend or Foe during Viral Infection? Front Immunol, vol.8, p.19, 2017.

E. L. Pearce, A. C. Mullen, G. A. Martins, C. M. Krawczyk, A. S. Hutchins et al., Control of effector CD8+ T cell function by the transcription factor Eomesodermin, Science, vol.302, pp.1041-1043, 2003.

L. Hua, S. Yao, D. Pham, L. Jiang, J. Wright et al., Cytokine-dependent induction of CD4+ T cells with cytotoxic potential during influenza virus infection, J Virol, vol.87, pp.11884-11893, 2013.

K. Eshima, S. Chiba, H. Suzuki, K. Kokubo, H. Kobayashi et al., Ectopic expression of a T-box transcription factor, eomesodermin, renders CD4(+) Th cells cytotoxic by activating both perforinand FasL-pathways, Immunol Lett, vol.144, pp.7-15, 2012.

A. Takeuchi, S. Badr-mel, K. Miyauchi, C. Ishihara, R. Onishi et al., CRTAM determines the CD4+ cytotoxic T lymphocyte lineage, J Exp Med, vol.213, pp.123-138, 2016.

N. Simpson, P. A. Gatenby, A. Wilson, S. Malik, D. A. Fulcher et al., Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus, Arthritis Rheum, vol.62, pp.234-244, 2010.

J. He, L. M. Tsai, Y. A. Leong, X. Hu, C. S. Ma et al., Circulating precursor CCR7(lo)PD-1(hi) CXCR5(+) CD4(+) T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure, Immunity, vol.39, pp.770-781, 2013.

C. S. Ma, G. Uzel, and S. G. Tangye, Human T follicular helper cells in primary immunodeficiencies, Curr Opin Pediatr, vol.26, pp.720-726, 2014.

C. S. Ma, N. Wong, G. Rao, D. T. Avery, J. Torpy et al., Monogenic mutations differentially affect the quantity and quality of T follicular helper cells in patients with human primary immunodeficiencies, J Allergy Clin Immunol, vol.136, pp.993-1006, 2015.

J. Tan, J. X. Zhao, R. Wei, X. Liu, Y. Kong et al., Beneficial effect of T follicular helper cells on antibody class switching of B cells in prostate cancer, Oncol Rep, vol.33, pp.1512-1518, 2015.

M. Lindqvist, J. Van-lunzen, D. Z. Soghoian, B. D. Kuhl, S. Ranasinghe et al., Expansion of HIV-specific T follicular helper cells in chronic HIV infection, J Clin Invest, vol.120, pp.985-993, 2012.

R. A. Cubas, J. C. Mudd, A. L. Savoye, M. Perreau, J. Van-grevenynghe et al., , 2013.

, Inadequate T follicular cell help impairs B cell immunity during HIV infection, Nat Med, vol.19, pp.494-499

M. Locci, C. Havenar-daughton, E. Landais, J. Wu, M. A. Kroenke et al., Human circulating PD-1+CXCR3-CXCR5+ memory Tfh cells are highly functional and correlate with broadly neutralizing HIV antibody responses, Immunity, vol.39, pp.758-769, 2013.

M. Perreau, A. L. Savoye, D. Crignis, E. Corpataux, J. M. Cubas et al., Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production, J Exp Med, vol.210, pp.143-156, 2013.

K. L. Boswell, R. Paris, E. Boritz, D. Ambrozak, T. Yamamoto et al., Loss of circulating CD4 T cells with B cell helper function during chronic HIV infection, PLoS Pathog, vol.10, p.1003853, 2014.

R. J. Johnston, A. C. Poholek, D. Ditoro, I. Yusuf, D. Eto et al., Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation, Science, vol.325, pp.1006-1010, 2009.

R. I. Nurieva, Y. Chung, G. J. Martinez, X. O. Yang, S. Tanaka et al., Bcl6 mediates the development of T follicular helper cells, Science, vol.325, pp.1001-1005, 2009.

D. Yu, S. Rao, L. M. Tsai, S. K. Lee, Y. He et al., The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment, Immunity, vol.31, pp.457-468, 2009.

R. J. Armitage, W. C. Fanslow, L. Strockbine, T. A. Sato, K. N. Clifford et al., Molecular and biological characterization of a murine ligand for CD40, Nature, vol.357, pp.80-82, 1992.

K. Ozaki, R. Spolski, R. Ettinger, H. P. Kim, G. Wang et al., Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6, J Immunol, vol.173, pp.5361-5371, 2004.

R. Ettinger, G. P. Sims, A. M. Fairhurst, R. Robbins, Y. S. Da-silva et al., IL-21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells, J Immunol, vol.175, pp.7867-7879, 2005.

V. L. Bryant, C. S. Ma, D. T. Avery, Y. Li, K. L. Good et al., Cytokine-mediated regulation of human B cell differentiation into Ig-secreting cells: predominant role of IL-21 produced by CXCR5+ T follicular helper cells, J Immunol, vol.179, pp.8180-8190, 2007.

R. I. Nurieva, Y. Chung, D. Hwang, X. O. Yang, H. S. Kang et al., Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages, Immunity, vol.29, pp.138-149, 2008.

C. King, New insights into the differentiation and function of T follicular helper cells, Nat Rev Immunol, vol.9, pp.757-766, 2009.

Y. S. Choi, R. Kageyama, D. Eto, T. C. Escobar, R. J. Johnston et al., ICOS receptor instructs T follicular helper cell versus effector cell differentiation via induction of the transcriptional repressor Bcl6, Immunity, vol.34, pp.932-946, 2011.

J. P. Weber, F. Fuhrmann, R. K. Feist, A. Lahmann, A. Baz et al., ICOS maintains the T follicular helper cell phenotype by down-regulating Kruppel-like factor 2, J Exp Med, vol.212, pp.217-233, 2015.

N. Fazilleau, L. J. Mcheyzer-williams, H. Rosen, and M. G. Mcheyzer-williams, The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding, Nat Immunol, vol.10, pp.375-384, 2009.

S. Crotty, T follicular helper cell differentiation, function, and roles in disease, Immunity, vol.41, pp.529-542, 2014.

M. Batten, N. Ramamoorthi, N. M. Kljavin, C. S. Ma, J. H. Cox et al., IL-27 supports germinal center function by enhancing IL-21 production and the function of T follicular helper cells, J Exp Med, vol.207, pp.2895-2906, 2010.

C. S. Ma, D. T. Avery, A. Chan, M. Batten, J. Bustamante et al., Functional STAT3 deficiency compromises the generation of human T follicular helper cells, Blood, vol.119, pp.3997-4008, 2012.

C. S. Ma, S. Suryani, D. T. Avery, A. Chan, R. Nanan et al., Early commitment of naive human CD4(+) T cells to the T follicular helper (T(FH)) cell lineage is induced by IL-12, Immunol Cell Biol, vol.87, pp.590-600, 2009.

N. Schmitt, R. Morita, L. Bourdery, S. E. Bentebibel, S. M. Zurawski et al., Human dendritic cells induce the differentiation of interleukin-21-producing T follicular helper-like cells through interleukin-12, Immunity, vol.31, pp.158-169, 2009.

D. Eto, C. Lao, D. Ditoro, B. Barnett, T. C. Escobar et al., IL-21 and IL-6 are critical for different aspects of B cell immunity and redundantly induce optimal follicular helper CD4 T cell (Tfh) differentiation, PLoS One, vol.6, p.17739, 2011.

A. Karnowski, S. Chevrier, G. T. Belz, A. Mount, D. Emslie et al., B and T cells collaborate in antiviral responses via IL-6, IL-21, and transcriptional activator and coactivator, Oct2 and OBF-1, J Exp Med, vol.209, pp.2049-2064, 2012.

N. Schmitt, Y. Liu, S. E. Bentebibel, I. Munagala, L. Bourdery et al., The cytokine TGF-beta co-opts signaling via STAT3-STAT4 to promote the differentiation of human TFH cells, Nat Immunol, vol.15, pp.856-865, 2014.

M. A. Kroenke, D. Eto, M. Locci, M. Cho, T. Davidson et al., Bcl6 and Maf cooperate to instruct human follicular helper CD4 T cell differentiation, J Immunol, vol.188, pp.3734-3744, 2012.

S. Crotty, R. J. Johnston, and S. P. Schoenberger, Effectors and memories: Bcl-6 and Blimp-1 in T and B lymphocyte differentiation, Nat Immunol, vol.11, pp.114-120, 2010.

J. I. Ellyard and C. G. Vinuesa, A BATF-ling connection between B cells and follicular helper T cells, Nat Immunol, vol.12, pp.519-520, 2011.

A. Sahoo, A. Alekseev, K. Tanaka, L. Obertas, B. Lerman et al., Batf is important for IL-4 expression in T follicular helper cells, Nat Commun, vol.6, p.7997, 2015.

W. Ise, M. Kohyama, B. U. Schraml, T. Zhang, B. Schwer et al., The transcription factor BATF controls the global regulators of class-switch recombination in both B cells and T cells, Nat Immunol, vol.12, pp.536-543, 2011.

A. T. Bauquet, H. Jin, A. M. Paterson, M. Mitsdoerffer, I. C. Ho et al., The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells, Nat Immunol, vol.10, pp.167-175, 2009.

A. Pratama and C. G. Vinuesa, Control of TFH cell numbers: why and how?, Immunol Cell Biol, vol.92, pp.40-48, 2014.

S. G. Tangye, C. S. Ma, R. Brink, and E. K. Deenick, The good, the bad and the ugly -TFH cells in human health and disease, Nat Rev Immunol, vol.13, pp.412-426, 2013.

J. P. Pereira, L. M. Kelly, Y. Xu, and J. G. Cyster, EBI2 mediates B cell segregation between the outer and centre follicle, Nature, vol.460, pp.1122-1126, 2009.

H. Qi, X. Chen, C. Chu, P. Lu, H. Xu et al., Follicular T-helper cells: controlled localization and cellular interactions, Immunol Cell Biol, vol.92, pp.28-33, 2014.

F. D. Batista and N. E. Harwood, The who, how and where of antigen presentation to B cells, Nat Rev Immunol, vol.9, pp.15-27, 2009.

I. C. Maclennan, K. M. Toellner, A. F. Cunningham, K. Serre, D. M. Sze et al., Extrafollicular antibody responses, Immunol Rev, vol.194, pp.8-18, 2003.

K. Samitas, J. Lotvall, and A. Bossios, B cells: from early development to regulating allergic diseases, Arch Immunol Ther Exp (Warsz), vol.58, pp.209-225, 2010.

C. G. De-vinuesa, M. C. Cook, J. Ball, M. Drew, Y. Sunners et al., Germinal centers without T cells, J Exp Med, vol.191, pp.485-494, 2000.

C. D. Allen, T. Okada, and J. G. Cyster, Germinal-center organization and cellular dynamics, Immunity, vol.27, pp.190-202, 2007.

D. Paus, T. G. Phan, T. D. Chan, S. Gardam, A. Basten et al., Antigen recognition strength regulates the choice between extrafollicular plasma cell and germinal center B cell differentiation, J Exp Med, vol.203, pp.1081-1091, 2006.

S. K. Lee, R. J. Rigby, D. Zotos, L. M. Tsai, S. Kawamoto et al., B cell priming for extrafollicular antibody responses requires Bcl-6 expression by T cells, J Exp Med, vol.208, pp.1377-1388, 2011.

M. Shapiro-shelef, K. I. Lin, L. J. Mcheyzer-williams, J. Liao, M. G. Mcheyzer-williams et al., Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells, Immunity, vol.19, pp.607-620, 2003.

A. C. Poholek, K. Hansen, S. G. Hernandez, D. Eto, A. Chandele et al., In vivo regulation of Bcl6 and T follicular helper cell development, J Immunol, vol.185, pp.313-326, 2010.

J. M. Odegard, B. R. Marks, L. D. Diplacido, A. C. Poholek, D. H. Kono et al., ICOS-dependent extrafollicular helper T cells elicit IgG production via IL-21 in systemic autoimmunity, J Exp Med, vol.205, pp.2873-2886, 2008.

D. Breitfeld, L. Ohl, E. Kremmer, J. Ellwart, F. Sallusto et al., Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production, J Exp Med, vol.192, pp.1545-1552, 2000.

P. Schaerli, K. Willimann, A. B. Lang, M. Lipp, P. Loetscher et al., CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function, J Exp Med, vol.192, pp.1553-1562, 2000.

C. H. Kim, L. S. Rott, I. Clark-lewis, D. J. Campbell, L. Wu et al., Subspecialization of CXCR5+ T cells: B helper activity is focused in a germinal center-localized subset of CXCR5+ T cells, J Exp Med, vol.193, pp.1373-1381, 2001.

T. Chtanova, S. G. Tangye, R. Newton, N. Frank, M. R. Hodge et al., T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells, J Immunol, vol.173, pp.68-78, 2004.

N. Fazilleau, L. Mark, L. J. Mcheyzer-williams, and M. Mg, Follicular helper T cells: lineage and location, Immunity, vol.30, pp.324-335, 2009.

J. R. Kim, H. W. Lim, S. G. Kang, P. Hillsamer, and C. H. Kim, Human CD57+ germinal center-T cells are the major helpers for GC-B cells and induce class switch recombination, BMC Immunol, vol.6, p.3, 2005.

D. Gatto and R. Brink, The germinal center reaction, J Allergy Clin Immunol, vol.126, pp.908-899, 2010.

D. Silva, N. S. Klein, and U. , Dynamics of B cells in germinal centres, Nat Rev Immunol, vol.15, pp.137-148, 2015.

I. C. Maclennan, Germinal centers, Annu Rev Immunol, vol.12, pp.117-139, 1994.

Y. Zhang, L. Garcia-ibanez, and K. M. Toellner, Regulation of germinal center Bcell differentiation, Immunol Rev, vol.270, pp.8-19, 2016.

V. H. Odegard and D. G. Schatz, Targeting of somatic hypermutation, Nat Rev Immunol, vol.6, pp.573-583, 2006.

M. A. Linterman, L. Beaton, D. Yu, R. R. Ramiscal, M. Srivastava et al., IL-21 acts directly on B cells to regulate Bcl-6 expression and germinal center responses, J Exp Med, vol.207, pp.353-363, 2010.

S. G. Tangye and D. M. Tarlinton, Memory B cells: effectors of long-lived immune responses, Eur J Immunol, vol.39, pp.2065-2075, 2009.

T. Kurosaki, K. Kometani, and W. Ise, Nat Rev Immunol, vol.15, pp.149-159, 2015.

H. Eibel, H. Kraus, H. Sic, A. K. Kienzler, and M. Rizzi, B cell biology: an overview, Curr Allergy Asthma Rep, vol.14, p.434, 2014.

S. G. Tangye, D. T. Avery, E. K. Deenick, and P. D. Hodgkin, Intrinsic differences in the proliferation of naive and memory human B cells as a mechanism for enhanced secondary immune responses, J Immunol, vol.170, pp.686-694, 2003.

S. G. Tangye, Y. J. Liu, G. Aversa, J. H. Phillips, and J. E. De-vries, Identification of functional human splenic memory B cells by expression of CD148 and CD27, J Exp Med, vol.188, pp.1691-1703, 1998.

S. Weller, M. C. Braun, B. K. Tan, A. Rosenwald, C. Cordier et al., Human blood IgM "memory" B cells are circulating splenic marginal zone B cells harboring a prediversified immunoglobulin repertoire, Blood, vol.104, pp.3647-3654, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00338311

M. A. Berkowska, G. J. Driessen, V. Bikos, C. Grosserichter-wagener, K. Stamatopoulos et al., Human memory B cells originate from three distinct germinal center-dependent and -independent maturation pathways, Blood, vol.118, pp.2150-2158, 2011.

M. G. Mcheyzer-williams and A. R. , B cell memory and the long-lived plasma cell, Curr Opin Immunol, vol.11, pp.172-179, 1999.

I. Sanz, C. Wei, F. E. Lee, and J. Anolik, Phenotypic and functional heterogeneity of human memory B cells, Semin Immunol, vol.20, pp.67-82, 2008.

S. L. Nutt, P. D. Hodgkin, D. M. Tarlinton, and L. M. Corcoran, The generation of antibody-secreting plasma cells, Nat Rev Immunol, vol.15, pp.160-171, 2015.

M. Shapiro-shelef, K. I. Lin, D. Savitsky, J. Liao, and K. Calame, Blimp-1 is required for maintenance of long-lived plasma cells in the bone marrow, J Exp Med, vol.202, pp.1471-1476, 2005.

R. Morita, N. Schmitt, S. E. Bentebibel, R. Ranganathan, L. Bourdery et al., Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion, Immunity, vol.34, pp.108-121, 2011.

N. Chevalier, D. Jarrossay, E. Ho, D. T. Avery, C. S. Ma et al., CXCR5 expressing human central memory CD4 T cells and their relevance for humoral immune responses, J Immunol, vol.186, pp.5556-5568, 2011.

S. Pallikkuth, P. Kanthikeel, S. Silva, S. Y. Fischl, M. Pahwa et al., Upregulation of IL-21 receptor on B cells and IL-21 secretion distinguishes novel 2009 H1N1 vaccine responders from nonresponders among HIV-infected persons on combination antiretroviral therapy, J Immunol, vol.186, pp.6173-6181, 2011.

B. T. Schultz, J. E. Teigler, F. Pissani, A. F. Oster, G. Kranias et al., Circulating HIV-Specific Interleukin-21(+)CD4(+) T Cells Represent Peripheral Tfh Cells with Antigen-Dependent Helper Functions, Immunity, vol.44, pp.167-178, 2016.

C. S. Ma and T. G. Phan, Here, there and everywhere: T follicular helper cells on the move, Immunology, 2017.

M. A. Linterman, R. J. Rigby, R. K. Wong, D. Yu, R. Brink et al., Follicular helper T cells are required for systemic autoimmunity, J Exp Med, vol.206, pp.561-576, 2009.

D. A. Rao, M. F. Gurish, J. L. Marshall, K. Slowikowski, C. Y. Fonseka et al., Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis, Nature, vol.542, pp.110-114, 2017.

S. E. Bentebibel, S. Lopez, G. Obermoser, N. Schmitt, C. Mueller et al., Induction of ICOS+CXCR3+CXCR5+ TH cells correlates with antibody responses to influenza vaccination, Sci Transl Med, vol.5, pp.176-132, 2013.

B. F. Haynes, P. B. Gilbert, M. J. Mcelrath, S. Zolla-pazner, G. D. Tomaras et al., Immune-correlates analysis of an HIV-1 vaccine efficacy trial, N Engl J Med, vol.366, pp.1275-1286, 2012.

E. A. Boritz, S. Darko, L. Swaszek, G. Wolf, D. Wells et al., Multiple Origins of Virus Persistence during Natural Control of HIV Infection, Cell, vol.166, pp.1004-1015, 2016.

F. Barre-sinoussi, J. C. Chermann, F. Rey, M. T. Nugeyre, S. Chamaret et al., Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS), Science, vol.220, pp.868-871, 1983.

M. S. Gottlieb, R. Schroff, H. M. Schanker, J. D. Weisman, P. T. Fan et al., Pneumocystis carinii pneumonia and mucosal candidiasis in previously healthy homosexual men: evidence of a new acquired cellular immunodeficiency, N Engl J Med, vol.305, pp.1425-1431, 1981.

Y. Voronin, L. M. Mofenson, C. K. Cunningham, M. G. Fowler, P. Kaleebu et al., HIV monoclonal antibodies: a new opportunity to further reduce mother-to-child HIV transmission, PLoS Med, vol.11, p.1001616, 2014.

S. D. Mehta, S. Moses, K. Agot, E. Odoyo-june, H. Li et al., The long-term efficacy of medical male circumcision against HIV acquisition, AIDS, vol.27, pp.2899-2907, 2013.

H. E. Gendelman, O. Narayan, S. Kennedy-stoskopf, J. E. Clements, and G. H. Pezeshkpour, Slow virus-macrophage interactions. Characterization of a transformed cell line of sheep alveolar macrophages that express a marker for susceptibility to ovine-caprine lentivirus infections, Lab Invest, vol.51, pp.547-555, 1984.

C. Vandergeeten, R. Fromentin, S. Dafonseca, M. B. Lawani, I. Sereti et al., Interleukin-7 promotes HIV persistence during antiretroviral therapy, Blood, vol.121, pp.4321-4329, 2013.

J. M. Watts, K. K. Dang, R. J. Gorelick, C. W. Leonard, J. W. Bess et al., Architecture and secondary structure of an entire HIV-1 RNA genome, Nature, vol.460, pp.711-716, 2009.

G. Maartens, C. Celum, and S. R. Lewin, HIV infection: epidemiology, pathogenesis, treatment, and prevention, Lancet, vol.384, pp.258-271, 2014.

H. Loemba, B. Brenner, M. A. Parniak, S. Ma'ayan, B. Spira et al., Genetic divergence of human immunodeficiency virus type 1 Ethiopian clade C reverse transcriptase (RT) and rapid development of resistance against nonnucleoside inhibitors of RT, Antimicrob Agents Chemother, vol.46, pp.2087-2094, 2002.

F. Gao, N. Vidal, Y. Li, S. A. Trask, Y. Chen et al., Evidence of two distinct subsubtypes within the HIV-1 subtype A radiation, AIDS Res Hum Retroviruses, vol.17, pp.675-688, 2001.

K. Triques, A. Bourgeois, N. Vidal, E. Mpoudi-ngole, C. Mulanga-kabeya et al., Near-fulllength genome sequencing of divergent African HIV type 1 subtype F viruses leads to the identification of a new HIV type 1 subtype designated K, AIDS Res Hum Retroviruses, vol.16, pp.139-151, 2000.

L. Buonaguro, M. L. Tornesello, and F. M. Buonaguro, Human immunodeficiency virus type 1 subtype distribution in the worldwide epidemic: pathogenetic and therapeutic implications, J Virol, vol.81, pp.10209-10219, 2007.

F. E. Mccutchan, Global epidemiology of HIV, J Med Virol, vol.78, pp.7-12, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01957321

J. Hemelaar, E. Gouws, P. D. Ghys, S. Osmanov, and W. Isolation, Global trends in molecular epidemiology of HIV-1 during, AIDS, vol.25, pp.679-689, 2000.
URL : https://hal.archives-ouvertes.fr/pasteur-01835506

J. Hemelaar, E. Gouws, P. D. Ghys, and S. Osmanov, Global and regional distribution of HIV-1 genetic subtypes and recombinants in, AIDS, vol.20, pp.13-23, 2004.

C. Montavon, C. Toure-kane, F. Liegeois, E. Mpoudi, A. Bourgeois et al., Most env and gag subtype A HIV-1 viruses circulating in West and West Central Africa are similar to the prototype AG recombinant virus IBNG, J Acquir Immune Defic Syndr, vol.23, pp.363-374, 2000.

S. Osmanov, C. Pattou, N. Walker, B. Schwardlander, J. Esparza et al., Estimated global distribution and regional spread of HIV-1 genetic subtypes in the year 2000, J Acquir Immune Defic Syndr, vol.29, pp.184-190, 2002.

S. Piyasirisilp, F. E. Mccutchan, J. K. Carr, E. Sanders-buell, W. Liu et al., A recent outbreak of human immunodeficiency virus type 1 infection in southern China was initiated by two highly homogeneous, geographically separated strains, circulating recombinant form AE and a novel BC recombinant, J Virol, vol.74, pp.11286-11295, 2000.

J. D. Roberts, K. Bebenek, and T. A. Kunkel, The accuracy of reverse transcriptase from HIV-1, Science, vol.242, pp.1171-1173, 1988.

D. D. Ho, A. U. Neumann, A. S. Perelson, W. Chen, J. M. Leonard et al., Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, Nature, vol.373, pp.123-126, 1995.

N. L. Michael, Host genetic influences on HIV-1 pathogenesis, Curr Opin Immunol, vol.11, pp.466-474, 1999.

N. Vidal, M. Peeters, C. Mulanga-kabeya, N. Nzilambi, D. Robertson et al., Unprecedented degree of human immunodeficiency virus type 1 (HIV-1) group M genetic diversity in the Democratic Republic of Congo suggests that the HIV-1 pandemic originated in Central Africa, J Virol, vol.74, pp.10498-10507, 2000.

B. Korber, M. Muldoon, J. Theiler, F. Gao, R. Gupta et al., Timing the ancestor of the HIV-1 pandemic strains, Science, vol.288, pp.1789-1796, 2000.

B. F. Keele, F. Van-heuverswyn, Y. Li, E. Bailes, J. Takehisa et al., Chimpanzee reservoirs of pandemic and nonpandemic HIV-1, Science, vol.313, pp.523-526, 2006.

J. P. Clewley, Enigmas and paradoxes: the genetic diversity and prevalence of the primate lentiviruses, Curr HIV Res, vol.2, pp.113-125, 2004.

A. Ayouba, S. Souquieres, B. Njinku, P. M. Martin, M. C. Muller-trutwin et al., HIV-1 group N among HIV-1-seropositive individuals in Cameroon, AIDS, vol.14, pp.2623-2625, 2000.

M. Peeters, A. Gueye, S. Mboup, F. Bibollet-ruche, E. Ekaza et al., Geographical distribution of HIV-1 group O viruses in Africa, AIDS, vol.11, pp.493-498, 1997.

F. Gao, E. Bailes, D. L. Robertson, Y. Chen, C. M. Rodenburg et al., Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes, Nature, vol.397, pp.436-441, 1999.

B. H. Hahn, G. M. Shaw, D. Cock, K. M. Sharp, and P. M. , AIDS as a zoonosis: scientific and public health implications, Science, vol.287, pp.607-614, 2000.

P. M. Sharp and B. H. Hahn, The evolution of HIV-1 and the origin of AIDS, Philos Trans R Soc Lond B Biol Sci, vol.365, pp.2487-2494, 2010.

E. Bailes, F. Gao, F. Bibollet-ruche, V. Courgnaud, M. Peeters et al., Hybrid origin of SIV in chimpanzees, Science, vol.300, p.1713, 2003.

A. Chitnis, D. Rawls, and M. J. , Origin of HIV type 1 in colonial French Equatorial Africa?, AIDS Res Hum Retroviruses, vol.16, pp.5-8, 2000.

J. Pepin and A. C. Labbe, Noble goals, unforeseen consequences: control of tropical diseases in colonial Central Africa and the iatrogenic transmission of blood-borne viruses, Trop Med Int Health, vol.13, pp.744-753, 2008.

M. Worobey, M. Gemmel, D. E. Teuwen, T. Haselkorn, K. Kunstman et al., Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960, Nature, vol.455, pp.661-664, 2008.

T. I. De-silva, M. Cotten, and R. Sl, HIV-2: the forgotten AIDS virus, Trends Microbiol, vol.16, pp.588-595, 2008.

O. T. Campbell-yesufu and R. T. Gandhi, Update on human immunodeficiency virus (HIV)-2 infection, Clin Infect Dis, vol.52, pp.780-787, 2011.

F. Damond, M. Worobey, P. Campa, I. Farfara, C. G. Matheron et al., Identification of a highly divergent HIV type 2 and proposal for a change in HIV type 2 classification, AIDS Res Hum Retroviruses, vol.20, pp.666-672, 2004.

A. Macneil, A. D. Sarr, J. L. Sankale, S. T. Meloni, S. Mboup et al., Direct evidence of lower viral replication rates in vivo in human immunodeficiency virus type 2 (HIV-2) infection than in HIV-1 infection, J Virol, vol.81, pp.5325-5330, 2007.

R. Marlink, P. Kanki, I. Thior, K. Travers, G. Eisen et al., Reduced rate of disease development after HIV-2 infection as compared to HIV-1, Science, vol.265, pp.1587-1590, 1994.

P. Lemey, O. G. Pybus, B. Wang, N. K. Saksena, M. Salemi et al., Tracing the origin and history of the HIV-2 epidemic, Proc Natl Acad Sci U S A, vol.100, pp.6588-6592, 2003.

W. I. Sundquist and H. G. Krausslich, HIV-1 assembly, budding, and maturation, Cold Spring Harb Perspect Med, vol.2, p.6924, 2012.

W. C. Greene, Regulation of HIV-1 gene expression, Annu Rev Immunol, vol.8, pp.453-475, 1990.

X. Meng, G. Zhao, E. Yufenyuy, D. Ke, J. Ning et al., Protease cleavage leads to formation of mature trimer interface in HIV-1 capsid, PLoS Pathog, vol.8, p.1002886, 2012.

A. Engelman and P. Cherepanov, The structural biology of HIV-1: mechanistic and therapeutic insights, Nat Rev Microbiol, vol.10, pp.279-290, 2012.

F. Sinangil, A. Loyter, and D. J. Volsky, Quantitative measurement of fusion between human immunodeficiency virus and cultured cells using membrane fluorescence dequenching, FEBS Lett, vol.239, pp.88-92, 1988.

S. Frey, M. Marsh, S. Gunther, A. Pelchen-matthews, P. Stephens et al., Temperature dependence of cell-cell fusion induced by the envelope glycoprotein of human immunodeficiency virus type 1, J Virol, vol.69, pp.1462-1472, 1995.

S. E. Kuhmann, E. J. Platt, S. L. Kozak, and D. Kabat, Cooperation of multiple CCR5 coreceptors is required for infections by human immunodeficiency virus type 1, J Virol, vol.74, pp.7005-7015, 2000.

E. J. Platt, K. Wehrly, S. E. Kuhmann, B. Chesebro, and D. Kabat, Effects of CCR5 and CD4 cell surface concentrations on infections by macrophagetropic isolates of human immunodeficiency virus type 1, J Virol, vol.72, pp.2855-2864, 1998.

P. Pugach, N. Ray, P. J. Klasse, T. J. Ketas, E. Michael et al., Inefficient entry of vicriviroc-resistant HIV-1 via the inhibitor-CCR5 complex at low cell surface CCR5 densities, Virology, vol.387, pp.296-302, 2009.

S. A. Gallo, C. M. Finnegan, M. Viard, Y. Raviv, A. Dimitrov et al., The HIV Env-mediated fusion reaction, Biochim Biophys Acta, vol.1614, pp.36-50, 2003.

O. F. Brandenberg, C. Magnus, P. Rusert, R. R. Regoes, and A. Trkola, Different Infectivity of HIV-1 Strains Is Linked to Number of Envelope Trimers Required for Entry, PLoS Pathog, vol.11, p.1004595, 2015.

C. B. Wilen, J. C. Tilton, and R. W. Doms, HIV: cell binding and entry. Cold Spring Harb Perspect Med 2, 2012.

S. G. Sarafianos, B. Marchand, K. Das, D. M. Himmel, M. A. Parniak et al., Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition, J Mol Biol, vol.385, pp.693-713, 2009.

S. B. Chabria, S. Gupta, and M. J. Kozal, Deep sequencing of HIV: clinical and research applications, Annu Rev Genomics Hum Genet, vol.15, pp.295-325, 2014.

J. M. Coffin, HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy, Science, vol.267, pp.483-489, 1995.

V. Simon, N. Bloch, and N. R. Landau, Intrinsic host restrictions to HIV-1 and mechanisms of viral escape, Nat Immunol, vol.16, pp.546-553, 2015.

M. A. Endsley, A. D. Somasunderam, G. Li, N. Oezguen, V. Thiviyanathan et al., Nuclear trafficking of the HIV-1 pre-integration complex depends on the ADAM10 intracellular domain, Virology, vol.454, pp.60-66, 2014.

Y. Suzuki and R. Craigie, The road to chromatin -nuclear entry of retroviruses, Nat Rev Microbiol, vol.5, pp.187-196, 2007.

N. Chomont, M. El-far, P. Ancuta, L. Trautmann, F. A. Procopio et al., HIV reservoir size and persistence are driven by T cell survival and homeostatic proliferation, Nat Med, vol.15, pp.893-900, 2009.

A. T. Das, A. Harwig, and B. Berkhout, The HIV-1 Tat protein has a versatile role in activating viral transcription, J Virol, vol.85, pp.9506-9516, 2011.

I. Taniguchi, N. Mabuchi, and M. Ohno, HIV-1 Rev protein specifies the viral RNA export pathway by suppressing TAP/NXF1 recruitment, Nucleic Acids Res, vol.42, pp.6645-6658, 2014.

A. Ono, A. A. Waheed, and E. O. Freed, Depletion of cellular cholesterol inhibits membrane binding and higher-order multimerization of human immunodeficiency virus type 1 Gag, Virology, vol.360, pp.27-35, 2007.

S. B. Kutluay and P. D. Bieniasz, Analysis of the initiating events in HIV-1 particle assembly and genome packaging, PLoS Pathog, vol.6, p.1001200, 2010.

S. A. Datta, F. Heinrich, S. Raghunandan, S. Krueger, J. E. Curtis et al., HIV-1 Gag extension: conformational changes require simultaneous interaction with membrane and nucleic acid, J Mol Biol, vol.406, pp.205-214, 2011.

J. S. Saad, J. Miller, J. Tai, A. Kim, R. H. Ghanam et al., Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly, Proc Natl Acad Sci U S A, vol.103, pp.11364-11369, 2006.

L. Brandano and M. Stevenson, A highly conserved residue in the C-terminal helix of HIV-1 matrix is required for envelope incorporation into virus particles, J Virol, vol.86, pp.2347-2359, 2012.

S. I. Jang, Y. H. Kim, S. Y. Paik, and J. C. You, Development of a cell-based assay probing the specific interaction between the human immunodeficiency virus type 1 nucleocapsid and psi RNA in vivo, J Virol, vol.81, pp.6151-6155, 2007.

M. Bleck, M. S. Itano, D. S. Johnson, V. K. Thomas, A. J. North et al., Temporal and spatial organization of ESCRT protein recruitment during HIV-1 budding, Proc Natl Acad Sci U S A, vol.111, pp.12211-12216, 2014.

G. Alkhatib, C. Combadiere, C. C. Broder, Y. Feng, P. E. Kennedy et al., CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1, Science, vol.272, pp.1955-1958, 1996.

Y. Feng, C. C. Broder, P. E. Kennedy, and E. A. Berger, HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor, Science, vol.272, pp.872-877, 1996.

E. Oberlin, A. A. Bachelerie, F. Bessia, C. Virelizier, J. L. Arenzana-seisdedos et al., The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1, Nature, vol.382, pp.833-835, 1996.

L. Gray, J. Sterjovski, M. Churchill, P. Ellery, N. Nasr et al., Uncoupling coreceptor usage of human immunodeficiency virus type 1 (HIV-1) from macrophage tropism reveals biological properties of CCR5-restricted HIV-1 isolates from patients with acquired immunodeficiency syndrome, Virology, vol.337, pp.384-398, 2005.

P. J. Peters, M. J. Duenas-decamp, W. M. Sullivan, and P. R. Clapham, Variation of macrophage tropism among HIV-1 R5 envelopes in brain and other tissues, J Neuroimmune Pharmacol, vol.2, pp.32-41, 2007.

P. J. Peters, M. J. Duenas-decamp, W. M. Sullivan, R. Brown, C. Ankghuambom et al., Variation in HIV-1 R5 macrophage-tropism correlates with sensitivity to reagents that block envelope: CD4 interactions but not with sensitivity to other entry inhibitors, Retrovirology, vol.5, p.5, 2008.

S. G. Turville, J. Arthos, K. M. Donald, G. Lynch, H. Naif et al., HIV gp120 receptors on human dendritic cells, Blood, vol.98, pp.2482-2488, 2001.

B. Lee, M. Sharron, L. J. Montaner, D. Weissman, and R. W. Doms, Quantification of CD4, CCR5, and CXCR4 levels on lymphocyte subsets, dendritic cells, and differentially conditioned monocyte-derived macrophages, Proc Natl Acad Sci U S A, vol.96, pp.5215-5220, 1999.

L. Burleigh, P. Y. Lozach, C. Schiffer, I. Staropoli, V. Pezo et al., Infection of dendritic cells (DCs), not DC-SIGN-mediated internalization of human immunodeficiency virus, is required for long-term transfer of virus to T cells, J Virol, vol.80, pp.2949-2957, 2006.

N. Izquierdo-useros, M. Lorizate, M. C. Puertas, M. T. Rodriguez-plata, N. Zangger et al., Siglec-1 is a novel dendritic cell receptor that mediates HIV-1 trans-infection through recognition of viral membrane gangliosides, PLoS Biol, vol.10, p.1001448, 2012.

D. L. Tuttle, J. K. Harrison, C. Anders, J. W. Sleasman, and M. M. Goodenow, Expression of CCR5 increases during monocyte differentiation and directly mediates macrophage susceptibility to infection by human immunodeficiency virus type 1, J Virol, vol.72, pp.4962-4969, 1998.

H. Lahouassa, W. Daddacha, H. Hofmann, D. Ayinde, E. C. Logue et al., Margottin-Goguet F. 2012. SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates, Nat Immunol, vol.13, pp.223-228

P. J. Maddon, D. R. Littman, M. Godfrey, D. E. Maddon, L. Chess et al., The isolation and nucleotide sequence of a cDNA encoding the T cell surface protein T4: a new member of the immunoglobulin gene family, Cell, vol.42, pp.93-104, 1985.

D. Klatzmann, E. Champagne, S. Chamaret, J. Gruest, D. Guetard et al., T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV, Nature, vol.312, pp.767-768, 1984.

J. Wang, K. Crawford, M. Yuan, H. Wang, P. R. Gorry et al., Regulation of CC chemokine receptor 5 and CD4 expression and human immunodeficiency virus type 1 replication in human macrophages and microglia by T helper type 2 cytokines, J Infect Dis, vol.185, pp.885-897, 2002.

G. W. Lynch, E. K. Slaytor, F. D. Elliott, A. Saurajen, S. G. Turville et al., CD4 is expressed by epidermal Langerhans' cells predominantly as covalent dimers, Exp Dermatol, vol.12, pp.700-711, 2003.

M. O. Muench, M. G. Roncarolo, and R. Namikawa, Phenotypic and functional evidence for the expression of CD4 by hematopoietic stem cells isolated from human fetal liver, Blood, vol.89, pp.1364-1375, 1997.

U. Moebius, L. K. Clayton, S. Abraham, A. Diener, J. J. Yunis et al., Human immunodeficiency virus gp120 binding C'C" ridge of CD4 domain 1 is also involved in interaction with class II major histocompatibility complex molecules, Proc Natl Acad Sci, vol.89, pp.12008-12012, 1992.

U. Moebius, L. K. Clayton, S. Abraham, S. C. Harrison, and E. L. Reinherz, The human immunodeficiency virus gp120 binding site on CD4: delineation by quantitative equilibrium and kinetic binding studies of mutants in conjunction with a high-resolution CD4 atomic structure, J Exp Med, vol.176, pp.507-517, 1992.

A. Peterson and B. Seed, Genetic analysis of monoclonal antibody and HIV binding sites on the human lymphocyte antigen CD4, Cell, vol.54, pp.65-72, 1988.

F. Bachelerie, A. Ben-baruch, A. M. Burkhardt, C. Combadiere, J. M. Farber et al., International Union of Basic and Clinical Pharmacology, 2014.

. Lxxxix, Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors, Pharmacol Rev, vol.66, pp.1-79

Q. Tan, Y. Zhu, J. Li, Z. Chen, G. W. Han et al., Structure of the CCR5 chemokine receptor-HIV entry inhibitor maraviroc complex, Science, vol.341, pp.1387-1390, 2013.

Y. Percherancier, T. Planchenault, A. Valenzuela-fernandez, J. L. Virelizier, F. Arenzana-seisdedos et al., Palmitoylation-dependent control of degradation, life span, and membrane expression of the CCR5 receptor, J Biol Chem, vol.276, pp.31936-31944, 2001.

C. Blanpain, V. Wittamer, J. M. Vanderwinden, A. Boom, B. Renneboog et al., Palmitoylation of CCR5 is critical for receptor trafficking and efficient activation of intracellular signaling pathways, J Biol Chem, vol.276, pp.23795-23804, 2001.

H. X. Liao, R. Lynch, T. Zhou, F. Gao, S. M. Alam et al., Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus, Nature, vol.496, pp.469-476, 2013.

T. Dragic, A. Trkola, S. W. Lin, K. A. Nagashima, F. Kajumo et al., Aminoterminal substitutions in the CCR5 coreceptor impair gp120 binding and human immunodeficiency virus type 1 entry, J Virol, vol.72, pp.279-285, 1998.

M. Farzan, H. Choe, L. Vaca, K. Martin, Y. Sun et al., A tyrosine-rich region in the N terminus of CCR5 is important for human immunodeficiency virus type 1 entry and mediates an association between gp120 and CCR5, J Virol, vol.72, pp.1160-1164, 1998.

C. Blanpain, B. J. Doranz, J. Vakili, J. Rucker, C. Govaerts et al., Multiple charged and aromatic residues in CCR5 amino-terminal domain are involved in high affinity binding of both chemokines and HIV-1 Env protein, J Biol Chem, vol.274, pp.34719-34727, 1999.

B. Lee, M. Sharron, C. Blanpain, B. J. Doranz, J. Vakili et al., Epitope mapping of CCR5 reveals multiple conformational states and distinct but overlapping structures involved in chemokine and coreceptor function, J Biol Chem, vol.274, pp.9617-9626, 1999.

T. Dragic, A. Trkola, D. A. Thompson, E. G. Cormier, F. A. Kajumo et al., A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5, Proc Natl Acad Sci U S A, vol.97, pp.5639-5644, 2000.

J. Garcia-perez, P. Rueda, J. Alcami, D. Rognan, F. Arenzana-seisdedos et al., Allosteric model of maraviroc binding to CC chemokine receptor 5 (CCR5), J Biol Chem, vol.286, pp.33409-33421, 2011.

E. Schnur, N. Kessler, Y. Zherdev, E. Noah, T. Scherf et al., NMR mapping of RANTES surfaces interacting with CCR5 using linked extracellular domains, FEBS J, vol.280, pp.2068-2084, 2013.

E. G. Cormier, M. Persuh, D. A. Thompson, S. W. Lin, T. P. Sakmar et al., Specific interaction of CCR5 amino-terminal domain peptides containing sulfotyrosines with HIV-1 envelope glycoprotein gp120, Proc Natl Acad Sci U S A, vol.97, pp.5762-5767, 2000.

M. Farzan, S. Chung, W. Li, N. Vasilieva, P. L. Wright et al., Tyrosine-sulfated peptides functionally reconstitute a CCR5 variant lacking a critical amino-terminal region, J Biol Chem, vol.277, pp.40397-40402, 2002.

G. Chen, J. Way, S. Armour, C. Watson, K. Queen et al., Use of constitutive G protein-coupled receptor activity for drug discovery, Mol Pharmacol, vol.57, pp.125-134, 2000.

B. Lagane, S. Ballet, T. Planchenault, K. Balabanian, L. Poul et al., Mutation of the DRY motif reveals different structural requirements for the CC chemokine receptor 5-mediated signaling and receptor endocytosis, Mol Pharmacol, vol.67, pp.1966-1976, 2005.

J. Garcia-perez, P. Rueda, I. Staropoli, E. Kellenberger, J. Alcami et al., New insights into the mechanisms whereby low molecular weight CCR5 ligands inhibit HIV-1 infection, J Biol Chem, vol.286, pp.4978-4990, 2011.

P. Colin, Y. Benureau, I. Staropoli, Y. Wang, N. Gonzalez et al., HIV-1 exploits CCR5 conformational heterogeneity to escape inhibition by chemokines, Proc Natl Acad Sci U S A, vol.110, pp.9475-9480, 2013.
URL : https://hal.archives-ouvertes.fr/pasteur-00825629

R. Berro, P. J. Klasse, D. Lascano, A. Flegler, K. A. Nagashima et al., Multiple CCR5 conformations on the cell surface are used differentially by human immunodeficiency viruses resistant or sensitive to CCR5 inhibitors, J Virol, vol.85, pp.8227-8240, 2011.

A. J. Flegler, G. C. Cianci, and T. J. Hope, CCR5 conformations are dynamic and modulated by localization, trafficking and G protein association, PLoS One, vol.9, p.89056, 2014.

R. Berro, A. Yasmeen, R. Abrol, B. Trzaskowski, S. Abi-habib et al., Use of Gprotein-coupled and -uncoupled CCR5 receptors by CCR5 inhibitor-resistant and -sensitive human immunodeficiency virus type 1 variants, J Virol, vol.87, pp.6569-6581, 2013.

J. Jin, P. Colin, I. Staropoli, E. Lima-fernandes, C. Ferret et al., Targeting spare CC chemokine receptor 5 (CCR5) as a principle to inhibit HIV-1 entry, J Biol Chem, vol.289, pp.19042-19052, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01027514

D. H. Nguyen and D. Taub, Cholesterol is essential for macrophage inflammatory protein 1 beta binding and conformational integrity of CC chemokine receptor 5, Blood, vol.99, pp.4298-4306, 2002.

C. M. Cardaba, J. S. Kerr, and A. Mueller, CCR5 internalisation and signalling have different dependence on membrane lipid raft integrity, Cell Signal, vol.20, pp.1687-1694, 2008.

C. Blanpain, I. Migeotte, B. Lee, J. Vakili, B. J. Doranz et al., CCR5 binds multiple CC-chemokines: MCP-3 acts as a natural antagonist, vol.94, pp.1899-1905, 1999.

H. Bayram, R. J. Sapsford, M. M. Abdelaziz, and O. A. Khair, Effect of ozone and nitrogen dioxide on the release of proinflammatory mediators from bronchial epithelial cells of nonatopic nonasthmatic subjects and atopic asthmatic patients in vitro, J Allergy Clin Immunol, vol.107, pp.287-294, 2001.

M. Oppermann, Chemokine receptor CCR5: insights into structure, function, and regulation, Cell Signal, vol.16, pp.1201-1210, 2004.

F. Barmania and M. S. Pepper, 2013. C-C chemokine receptor type five (CCR5): An emerging target for the control of HIV infection, Appl Transl Genom, vol.2, pp.3-16

M. Samson, G. Larosa, F. Libert, P. Paindavoine, M. Detheux et al., The second extracellular loop of CCR5 is the major determinant of ligand specificity, J Biol Chem, vol.272, pp.24934-24941, 1997.

B. R. Starcich, B. H. Hahn, G. M. Shaw, P. D. Mcneely, S. Modrow et al., Identification and characterization of conserved and variable regions in the envelope gene of HTLV-III/LAV, the retrovirus of AIDS, Cell, vol.45, pp.637-648, 1986.

R. L. Willey, R. A. Rutledge, S. Dias, T. Folks, T. Theodore et al., Identification of conserved and divergent domains within the envelope gene of the acquired immunodeficiency syndrome retrovirus, Proc Natl Acad Sci U S A, vol.83, pp.5038-5042, 1986.

P. D. Kwong, R. Wyatt, J. Robinson, R. W. Sweet, J. Sodroski et al., Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody, Nature, vol.393, pp.648-659, 1998.

B. Chen, E. M. Vogan, H. Gong, J. J. Skehel, D. C. Wiley et al., Structure of an unliganded simian immunodeficiency virus gp120 core, Nature, vol.433, pp.834-841, 2005.

A. Harris, M. J. Borgnia, D. Shi, A. Bartesaghi, H. He et al., Trimeric HIV-1 glycoprotein gp140 immunogens and native HIV-1 envelope glycoproteins display the same closed and open quaternary molecular architectures, Proc Natl Acad Sci U S A, vol.108, pp.11440-11445, 2011.

J. Liu, A. Bartesaghi, M. J. Borgnia, G. Sapiro, and S. Subramaniam, Molecular architecture of native HIV-1 gp120 trimers, Nature, vol.455, pp.109-113, 2008.

C. C. Huang, S. N. Lam, P. Acharya, M. Tang, S. H. Xiang et al., Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4, Science, vol.317, pp.1930-1934, 2007.

C. C. Huang, M. Tang, M. Y. Zhang, S. Majeed, E. Montabana et al., Structure of a V3-containing HIV-1 gp120 core, Science, vol.310, pp.1025-1028, 2005.

E. G. Cormier and T. Dragic, The crown and stem of the V3 loop play distinct roles in human immunodeficiency virus type 1 envelope glycoprotein interactions with the CCR5 coreceptor, J Virol, vol.76, pp.8953-8957, 2002.

P. Tamamis and C. A. Floudas, Molecular recognition of CCR5 by an HIV-1 gp120 V3 loop, PLoS One, vol.9, p.95767, 2014.

M. Farzan, T. Mirzabekov, P. Kolchinsky, R. Wyatt, M. Cayabyab et al., Tyrosine sulfation of the amino terminus of CCR5 facilitates HIV-1 entry, Cell, vol.96, pp.667-676, 1999.

M. M. Lederman, A. Penn-nicholson, M. Cho, and D. Mosier, Biology of CCR5 and its role in HIV infection and treatment, JAMA, vol.296, pp.815-826, 2006.

A. E. Proudfoot, T. M. Handel, Z. Johnson, E. K. Lau, P. Liwang et al., Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines, Proc Natl Acad Sci U S A, vol.100, pp.1885-1890, 2003.

C. Ottaviani, F. Nasorri, C. Bedini, O. De-pita, G. Girolomoni et al., CD56brightCD16(-) NK cells accumulate in psoriatic skin in response to CXCL10 and CCL5 and exacerbate skin inflammation, Eur J Immunol, vol.36, pp.118-128, 2006.

E. Menu, F. Braet, M. Timmers, I. Van-riet, V. Camp et al., The F-actin content of multiple myeloma cells as a measure of their migration, 2002.

, Ann N Y Acad Sci, vol.973, pp.124-136

J. Udi, J. Schuler, D. Wider, G. Ihorst, J. Catusse et al., Potent in vitro and in vivo activity of sorafenib in multiple myeloma: induction of cell death, CD138-downregulation and inhibition of migration through actin depolymerization, Br J Haematol, vol.161, pp.104-116, 2013.

P. Poncelet, G. Poinas, P. Corbeau, C. Devaux, N. Tubiana et al., Surface CD4 density remains constant on lymphocytes of HIV-infected patients in the progression of disease, Res Immunol, vol.142, pp.291-298, 1991.

J. P. Moore, Coreceptors: implications for HIV pathogenesis and therapy, Science, vol.276, pp.51-52, 1997.

M. Paiardini, B. Cervasi, E. Reyes-aviles, L. Micci, A. M. Ortiz et al., Low levels of SIV infection in sooty mangabey central memory CD(4)(+) T cells are associated with limited CCR5 expression, Nat Med, vol.17, pp.830-836, 2011.

X. Yang, Y. M. Jiao, R. Wang, Y. X. Ji, H. W. Zhang et al., High CCR5 density on central memory CD4+ T cells in acute HIV-1 infection is mostly associated with rapid disease progression, PLoS One, vol.7, p.49526, 2012.

J. Reynes, P. Portales, M. Segondy, V. Baillat, P. Andre et al., CD4+ T cell surface CCR5 density as a determining factor of virus load in persons infected with human immunodeficiency virus type 1, J Infect Dis, vol.181, pp.927-932, 2000.

M. Marmor, J. Krowka, and J. D. Goldberg, CD4+ T cell surface CCR5 density and virus load in persons infected with human immunodeficiency virus type 1, J Infect Dis, vol.182, pp.1284-1286, 2000.

M. Dean, M. Carrington, C. Winkler, G. A. Huttley, M. W. Smith et al., Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, vol.273, pp.1856-1862, 1996.

C. Blanpain, B. Lee, M. Tackoen, B. Puffer, A. Boom et al., Multiple nonfunctional alleles of CCR5 are frequent in various human populations, Blood, vol.96, pp.1638-1645, 2000.

M. Benkirane, D. Y. Jin, R. F. Chun, R. A. Koup, and K. T. Jeang, Mechanism of transdominant inhibition of CCR5-mediated HIV-1 infection by ccr5delta32, J Biol Chem, vol.272, pp.30603-30606, 1997.

L. Agrawal, J. Q. Altenburg, J. Meyer, L. Tubiana, R. Theodorou et al., CCR5Delta32 protein expression and stability are critical for resistance to human immunodeficiency virus type 1 in vivo, J Virol, vol.81, pp.8041-8049, 2007.

A. Garzino-demo, R. B. Moss, J. B. Margolick, F. Cleghorn, A. Sill et al., Spontaneous and antigeninduced production of HIV-inhibitory beta-chemokines are associated with AIDSfree status, Proc Natl Acad Sci U S A, vol.96, pp.11986-11991, 1999.

L. Furci, G. Scarlatti, S. Burastero, G. Tambussi, C. Colognesi et al., Antigen-driven C-C chemokine-mediated HIV-1 suppression by CD4(+) T cells from exposed uninfected individuals expressing the wild-type CCR-5 allele, J Exp Med, vol.186, pp.455-460, 1997.

B. Shieh, Y. P. Yan, N. Y. Ko, Y. E. Liau, Y. C. Liu et al., Detection of elevated serum beta-chemokine levels in seronegative Chinese individuals exposed to human immunodeficiency virus type 1, Clin Infect Dis, vol.33, pp.273-279, 2001.

W. A. Paxton, R. Liu, S. Kang, L. Wu, T. R. Gingeras et al., Reduced HIV-1 infectability of CD4+ lymphocytes from exposeduninfected individuals: association with low expression of CCR5 and high production of beta-chemokines, Virology, vol.244, pp.66-73, 1998.

H. Ullum, C. Lepri, A. Victor, J. Aladdin, H. Phillips et al., Production of beta-chemokines in human immunodeficiency virus (HIV) infection: evidence that high levels of macrophage inflammatory protein-1beta are associated with a decreased risk of HIV disease progression, J Infect Dis, vol.177, pp.331-336, 1998.

F. Cocchi, A. L. Devico, R. Yarchoan, R. Redfield, F. Cleghorn et al., Higher macrophage inflammatory protein (MIP)-1alpha and MIP-1beta levels from CD8+ T cells are associated with asymptomatic HIV-1 infection, Proc Natl Acad Sci U S A, vol.97, pp.13812-13817, 2000.

K. R. Fowke, T. Dong, R. Sl, J. Oyugi, W. J. Rutherford et al., HIV type 1 resistance in Kenyan sex workers is not associated with altered cellular susceptibility to HIV type 1 infection or enhanced beta-chemokine production, AIDS Res Hum Retroviruses, vol.14, pp.1521-1530, 1998.

S. T. Butera, T. L. Pisell, K. Limpakarnjanarat, N. L. Young, T. W. Hodge et al., Production of a novel viral suppressive activity associated with resistance to infection among female sex workers exposed to HIV type 1, AIDS Res Hum Retroviruses, vol.17, pp.735-744, 2001.

H. Schmidtmayerova, H. S. Nottet, G. Nuovo, T. Raabe, C. R. Flanagan et al., Human immunodeficiency virus type 1 infection alters chemokine beta peptide expression in human monocytes: implications for recruitment of leukocytes into brain and lymph nodes, Proc Natl Acad Sci U S A, vol.93, pp.700-704, 1996.

B. Canque, M. Rosenzwajg, A. Gey, E. Tartour, W. H. Fridman et al., Macrophage inflammatory protein-1alpha is induced by human immunodeficiency virus infection of monocyte-derived macrophages, Blood, vol.87, pp.2011-2019, 1996.

M. A. Ostrowski, S. J. Justement, A. Catanzaro, C. A. Hallahan, L. A. Ehler et al., Expression of chemokine receptors CXCR4 and CCR5 in HIV-1-infected and uninfected individuals, J Immunol, vol.161, pp.3195-3201, 1998.

F. Sallusto, J. Geginat, and A. Lanzavecchia, Central memory and effector memory T cell subsets: function, generation, and maintenance, Annu Rev Immunol, vol.22, pp.745-763, 2004.

A. Cayota, F. Vuillier, D. Scott-algara, and G. Dighiero, Preferential replication of HIV-1 in memory CD4+ subpopulation, Lancet, vol.336, p.941, 1990.

C. A. Spina, H. E. Prince, and D. D. Richman, Preferential replication of HIV-1 in the CD45RO memory cell subset of primary CD4 lymphocytes in vitro, J Clin Invest, vol.99, pp.1774-1785, 1997.

L. M. Ebert and S. R. Mccoll, Up-regulation of CCR5 and CCR6 on distinct subpopulations of antigen-activated CD4+ T lymphocytes, J Immunol, vol.168, pp.65-72, 2002.

A. L. Meditz, M. K. Haas, J. M. Folkvord, K. Melander, R. Young et al., HLA-DR+ CD38+ CD4+ T lymphocytes have elevated CCR5 expression and produce the majority of R5-tropic HIV-1 RNA in vivo, J Virol, vol.85, pp.10189-10200, 2011.

H. Mo, S. Monard, H. Pollack, J. Ip, G. Rochford et al., Expression patterns of the HIV type 1 coreceptors CCR5 and CXCR4 on CD4+ T cells and monocytes from cord and adult blood, AIDS Res Hum Retroviruses, vol.14, pp.607-617, 1998.

L. Kestens, G. Vanham, C. Vereecken, M. Vandenbruaene, G. Vercauteren et al., Selective increase of activation antigens HLA-DR and CD38 on CD4+ CD45RO+ T lymphocytes during HIV-1 infection, Clin Exp Immunol, vol.95, pp.436-441, 1994.

A. A. Okoye and L. J. Picker, CD4(+) T-cell depletion in HIV infection: mechanisms of immunological failure, Immunol Rev, vol.254, pp.54-64, 2013.

P. Loetscher, M. Uguccioni, L. Bordoli, M. Baggiolini, B. Moser et al., CCR5 is characteristic of Th1 lymphocytes, Nature, vol.391, pp.344-345, 1998.

C. C. Bleul, M. Farzan, H. Choe, C. Parolin, I. Clark-lewis et al., The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry, Nature, vol.382, pp.829-833, 1996.

Y. R. Zou, A. H. Kottmann, M. Kuroda, I. Taniuchi, and D. R. Littman, Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development, Nature, vol.393, pp.595-599, 1998.

K. Balabanian, B. Lagane, S. Infantino, K. Y. Chow, J. Harriague et al., The chemokine SDF, 2005.

, /CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes, J Biol Chem, vol.280, pp.35760-35766

Y. Zhou, T. Kurihara, R. P. Ryseck, Y. Yang, C. Ryan et al., Impaired macrophage function and enhanced T cell-dependent immune response in mice lacking CCR5, the mouse homologue of the major HIV-1 coreceptor, J Immunol, vol.160, pp.4018-4025, 1998.

J. Ng-cashin, J. J. Kuhns, S. E. Burkett, J. D. Powderly, R. R. Craven et al., Host absence of CCR5 potentiates dendritic cell vaccination, J Immunol, vol.170, pp.4201-4208, 2003.

K. Tachibana, S. Hirota, H. Iizasa, H. Yoshida, K. Kawabata et al., The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract, Nature, vol.393, pp.591-594, 1998.

F. Sierro, C. Biben, L. Martinez-munoz, M. Mellado, R. M. Ransohoff et al., Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7, Proc Natl Acad Sci U S A, vol.104, pp.14759-14764, 2007.

T. Nagasawa, S. Hirota, K. Tachibana, N. Takakura, S. Nishikawa et al., Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1, Nature, vol.382, pp.635-638, 1996.

Q. Ma, D. Jones, P. R. Borghesani, R. A. Segal, T. Nagasawa et al., Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4-and SDF-1-deficient mice, Proc Natl Acad Sci U S A, vol.95, pp.9448-9453, 1998.

K. Tokoyoda, T. Egawa, T. Sugiyama, B. I. Choi, and T. Nagasawa, Cellular niches controlling B lymphocyte behavior within bone marrow during development, Immunity, vol.20, pp.707-718, 2004.

L. Calderon and T. Boehm, Three chemokine receptors cooperatively regulate homing of hematopoietic progenitors to the embryonic mouse thymus, Proc Natl Acad Sci U S A, vol.108, pp.7517-7522, 2011.

C. C. Bleul, L. Wu, J. A. Hoxie, T. A. Springer, and C. R. Mackay, The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes, Proc Natl Acad Sci U S A, vol.94, pp.1925-1930, 1997.

F. Sallusto, D. Lenig, R. Forster, M. Lipp, and A. Lanzavecchia, Two subsets of memory T lymphocytes with distinct homing potentials and effector functions, Nature, vol.401, pp.708-712, 1999.

J. K. Nicholson, S. W. Browning, R. L. Hengel, E. Lew, L. E. Gallagher et al., CCR5 and CXCR4 expression on memory and naive T cells in HIV-1 infection and response to highly active antiretroviral therapy, J Acquir Immune Defic Syndr, vol.27, pp.105-115, 2001.

T. Doyle, C. Goujon, and M. H. Malim, HIV-1 and interferons: who's interfering with whom?, Nat Rev Microbiol, vol.13, pp.403-413, 2015.

A. Jarmuz, A. Chester, J. Bayliss, J. Gisbourne, I. Dunham et al., An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22, Genomics, vol.79, pp.285-296, 2002.

E. W. Refsland, M. D. Stenglein, K. Shindo, J. S. Albin, W. L. Brown et al., Quantitative profiling of the full APOBEC3 mRNA repertoire in lymphocytes and tissues: implications for HIV-1 restriction, Nucleic Acids Res, vol.38, pp.4274-4284, 2010.

M. H. Malim and P. D. Bieniasz, HIV Restriction Factors and Mechanisms of Evasion, Cold Spring Harb Perspect Med, vol.2, p.6940, 2012.

B. Mangeat, P. Turelli, G. Caron, M. Friedli, L. Perrin et al., Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts, Nature, vol.424, pp.99-103, 2003.

S. Nair, S. Sanchez-martinez, J. X. Rein, and A. , Biochemical and biological studies of mouse APOBEC3, J Virol, vol.88, pp.3850-3860, 2014.

K. N. Bishop, R. K. Holmes, A. M. Sheehy, N. O. Davidson, S. J. Cho et al., Cytidine deamination of retroviral DNA by diverse APOBEC proteins, Curr Biol, vol.14, pp.1392-1396, 2004.

X. Yu, Y. Yu, B. Liu, K. Luo, W. Kong et al., Induction of APOBEC3G ubiquitination and degradation by an HIV-1 Vif-Cul5-SCF complex, Science, vol.302, pp.1056-1060, 2003.

C. C. Bailey, G. Zhong, I. C. Huang, and M. Farzan, IFITM-Family Proteins: The Cell's First Line of Antiviral Defense, Annu Rev Virol, vol.1, pp.261-283, 2014.

A. A. Compton, T. Bruel, F. Porrot, A. Mallet, M. Sachse et al., IFITM proteins incorporated into HIV-1 virions impair viral fusion and spread, Cell Host Microbe, vol.16, pp.736-747, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01109877

A. Brandariz-nunez, J. C. Valle-casuso, T. E. White, N. Laguette, M. Benkirane et al., Role of SAMHD1 nuclear localization in restriction of HIV-1 and SIVmac, Retrovirology, vol.9, p.49, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00722913

D. Ayinde, T. Bruel, S. Cardinaud, F. Porrot, J. G. Prado et al., SAMHD1 limits HIV-1 antigen presentation by monocyte-derived dendritic cells, J Virol, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01372403

N. Laguette, B. Sobhian, N. Casartelli, M. Ringeard, C. Chable-bessia et al., SAMHD1 is the dendriticand myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx, Nature, vol.474, pp.654-657, 2011.

A. Rosa, A. Chande, S. Ziglio, D. Sanctis, V. Bertorelli et al., HIV-1 Nef promotes infection by excluding SERINC5 from virion incorporation, Nature, vol.526, pp.212-217, 2015.

C. Sood, M. Marin, A. Chande, M. Pizzato, and G. B. Melikyan, SERINC5 protein inhibits HIV-1 fusion pore formation by promoting functional inactivation of envelope glycoproteins, J Biol Chem, vol.292, pp.6014-6026, 2017.

T. Doyle, C. Goujon, and M. H. Malim, HIV-1 and interferons: who's interfering with whom?, Nat Rev Microbiol, 2015.

K. Strebel, T. Klimkait, F. Maldarelli, and M. A. Martin, Molecular and biochemical analyses of human immunodeficiency virus type 1 vpu protein, J Virol, vol.63, pp.3784-3791, 1989.

S. J. Neil, The antiviral activities of tetherin, Curr Top Microbiol Immunol, vol.371, pp.67-104, 2013.

R. P. Galao, L. Tortorec, A. Pickering, S. Kueck, T. Neil et al., Innate sensing of HIV-1 assembly by Tetherin induces NFkappaB-dependent proinflammatory responses, Cell Host Microbe, vol.12, pp.633-644, 2012.

D. Sauter, D. Hotter, B. Van-driessche, C. M. Sturzel, S. F. Kluge et al., Differential regulation of NF-kappaB-mediated proviral and antiviral host gene expression by primate lentiviral Nef and Vpu proteins, Cell Rep, vol.10, pp.586-599, 2015.

E. Campbell, Are we done monkeying around with TRIM5alpha?, Mol Ther, vol.22, pp.1072-1073, 2014.

J. Luban, TRIM5 and the Regulation of HIV-1 Infectivity, Mol Biol Int, p.426840, 2012.

E. Battivelli, J. Migraine, D. Lecossier, P. Yeni, F. Clavel et al., Gag cytotoxic T lymphocyte escape mutations can increase sensitivity of HIV-1 to human TRIM5alpha, linking intrinsic and acquired immunity, J Virol, vol.85, pp.11846-11854, 2011.

C. Granier, E. Battivelli, C. Lecuroux, A. Venet, O. Lambotte et al., Pressure from TRIM5alpha contributes to control of HIV-1 replication by individuals expressing protective HLA-B alleles, J Virol, 2013.

/. Jvi, , pp.1313-1326

M. Stevenson, T. L. Stanwick, M. P. Dempsey, and C. A. Lamonica, HIV-1 replication is controlled at the level of T cell activation and proviral integration, EMBO J, vol.9, pp.1551-1560, 1990.

J. A. Zack, S. J. Arrigo, S. R. Weitsman, A. S. Go, A. Haislip et al., HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure, Cell, vol.61, pp.213-222, 1990.

J. A. Zack, A. M. Haislip, P. Krogstad, and I. S. Chen, Incompletely reversetranscribed human immunodeficiency virus type 1 genomes in quiescent cells can function as intermediates in the retroviral life cycle, J Virol, vol.66, pp.1717-1725, 1992.

S. D. Gowda, B. S. Stein, N. Mohagheghpour, C. J. Benike, and E. G. Engleman, Evidence that T cell activation is required for HIV-1 entry in CD4+ lymphocytes, J Immunol, vol.142, pp.773-780, 1989.

J. S. Mcdougal, A. Mawle, S. P. Cort, J. K. Nicholson, G. D. Cross et al., Cellular tropism of the human retrovirus HTLV-III/LAV. I. Role of T cell activation and expression of the T4 antigen, J Immunol, vol.135, pp.3151-3162, 1985.

R. S. Veazey, K. G. Mansfield, I. C. Tham, A. C. Carville, D. E. Shvetz et al., Dynamics of CCR5 expression by CD4(+) T cells in lymphoid tissues during simian immunodeficiency virus infection, J Virol, vol.74, pp.11001-11007, 2000.

B. Descours, V. Avettand-fenoel, C. Blanc, A. Samri, A. Melard et al., Immune responses driven by protective human leukocyte antigen alleles from long-term nonprogressors are associated with low HIV reservoir in central memory CD4 T cells, Clin Infect Dis, vol.54, pp.1495-1503, 2012.

H. M. Baldauf, X. Pan, E. Erikson, S. Schmidt, W. Daddacha et al., SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells, vol.18, pp.1682-1687, 2012.

E. Maggi, M. Mazzetti, A. Ravina, F. Annunziato, M. De-carli et al., Ability of HIV to promote a TH1 to TH0 shift and to replicate preferentially in TH2 and TH0 cells, Science, vol.265, pp.244-248, 1994.

Y. Tanaka, Y. Koyanagi, R. Tanaka, Y. Kumazawa, T. Nishimura et al., Productive and lytic infection of human CD4+ type 1 helper T cells with macrophage-tropic human immunodeficiency virus type 1, J Virol, vol.71, pp.465-470, 1997.

J. A. Mikovits, D. D. Taub, S. M. Turcovski-corrales, and F. W. Ruscetti, Similar levels of human immunodeficiency virus type 1 replication in human TH1 and TH2 clones, J Virol, vol.72, pp.5231-5238, 1998.

M. Moonis, B. Lee, R. T. Bailer, Q. Luo, and L. J. Montaner, CCR5 and CXCR4 expression correlated with X4 and R5 HIV-1 infection yet not sustained replication in Th1 and Th2 cells, AIDS, vol.15, pp.1941-1949, 2001.

M. L. Vetter, M. E. Johnson, A. K. Antons, D. Unutmaz, and R. T. D'aquila, Differences in APOBEC3G expression in CD4+ T helper lymphocyte subtypes modulate HIV-1 infectivity, PLoS Pathog, vol.5, p.1000292, 2009.

K. Oswald-richter, S. M. Grill, M. Leelawong, M. Tseng, S. A. Kalams et al., Identification of a CCR5-expressing T cell subset that is resistant to R5-tropic HIV infection, PLoS Pathog, vol.3, p.58, 2007.

A. T. Haase, Perils at mucosal front lines for HIV and SIV and their hosts, Nat Rev Immunol, vol.5, pp.783-792, 2005.

A. T. Haase, Early events in sexual transmission of HIV and SIV and opportunities for interventions, Annu Rev Med, vol.62, pp.127-139, 2011.

M. Bomsel and A. Alfsen, Entry of viruses through the epithelial barrier: pathogenic trickery, Nat Rev Mol Cell Biol, vol.4, pp.57-68, 2003.

F. Hladik and M. J. Mcelrath, Setting the stage: host invasion by HIV, Nat Rev Immunol, vol.8, pp.447-457, 2008.

A. T. Haase, Targeting early infection to prevent HIV-1 mucosal transmission, Nature, vol.464, pp.217-223, 2010.

C. Jolly and Q. J. Sattentau, Human immunodeficiency virus type 1 virological synapse formation in T cells requires lipid raft integrity, J Virol, vol.79, pp.12088-12094, 2005.

T. C. Quinn, Circumcision and HIV transmission, Curr Opin Infect Dis, vol.20, pp.33-38, 2007.

G. Pantaleo and A. S. Fauci, Immunopathogenesis of HIV infection, Annu Rev Microbiol, vol.50, pp.825-854, 1996.

A. R. Stacey, P. J. Norris, L. Qin, E. A. Haygreen, E. Taylor et al., Induction of a striking systemic cytokine cascade prior to peak viremia in acute human immunodeficiency virus type 1 infection, in contrast to more modest and delayed responses in acute hepatitis B and C virus infections, J Virol, vol.83, pp.3719-3733, 2009.

J. M. Coffin, S. H. Hughes, and H. E. Varmus, The Interactions of Retroviruses and their Hosts, Coffin JM, Hughes SH, Varmus HE, 1997.

J. W. Mellors, C. R. Rinaldo, J. Gupta, P. White, R. M. Todd et al., Prognosis in HIV-1 infection predicted by the quantity of virus in plasma, Science, vol.272, pp.1167-1170, 1996.

N. Cerf-bensussan and D. Guy-grand, Intestinal intraepithelial lymphocytes, Gastroenterol Clin North Am, vol.20, pp.549-576, 1991.

R. S. Veazey, P. A. Marx, and A. A. Lackner, The mucosal immune system: primary target for HIV infection and AIDS, Trends Immunol, vol.22, pp.626-633, 2001.

G. Pantaleo, C. Graziosi, J. F. Demarest, L. Butini, M. Montroni et al., HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease, Nature, vol.362, pp.355-358, 1993.

P. A. Anton, J. Elliott, M. A. Poles, I. M. Mcgowan, J. Matud et al., Enhanced levels of functional HIV-1 co-receptors on human mucosal T cells demonstrated using intestinal biopsy tissue, AIDS, vol.14, pp.1761-1765, 2000.

S. Mehandru, M. A. Poles, K. Tenner-racz, A. Horowitz, A. Hurley et al., Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract, J Exp Med, vol.200, pp.761-770, 2004.

J. M. Brenchley, T. W. Schacker, L. E. Ruff, D. A. Price, J. H. Taylor et al., CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract, J Exp Med, vol.200, pp.749-759, 2004.

M. Guadalupe, E. Reay, S. Sankaran, T. Prindiville, J. Flamm et al., Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy, J Virol, vol.77, pp.11708-11717, 2003.

J. J. Mattapallil, D. C. Douek, B. Hill, Y. Nishimura, M. Martin et al., Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection, Nature, vol.434, pp.1093-1097, 2005.

M. L. Gougeon, H. Lecoeur, A. Dulioust, M. G. Enouf, M. Crouvoiser et al., Programmed cell death in peripheral lymphocytes from HIV-infected persons: increased susceptibility to apoptosis of CD4 and CD8 T cells correlates with lymphocyte activation and with disease progression, J Immunol, vol.156, pp.3509-3520, 1996.

H. Garg, J. Mohl, and A. Joshi, HIV-1 induced bystander apoptosis, Viruses, vol.4, pp.3020-3043, 2012.

T. H. Finkel, G. Tudor-williams, N. K. Banda, M. F. Cotton, T. Curiel et al., Apoptosis occurs predominantly in bystander cells and not in productively infected cells of HIV-and SIV-infected lymph nodes, Nat Med, vol.1, pp.129-134, 1995.

M. Biard-piechaczyk, V. Robert-hebmann, R. V. Roland, J. Hipskind, R. A. Devaux et al., Caspase-dependent apoptosis of cells expressing the chemokine receptor CXCR4 is induced by cell membrane-associated human immunodeficiency virus type 1 envelope glycoprotein (gp120), Virology, vol.268, pp.329-344, 2000.
URL : https://hal.archives-ouvertes.fr/hal-02196839

N. K. Banda, J. Bernier, D. K. Kurahara, R. Kurrle, N. Haigwood et al., Crosslinking CD4 by human immunodeficiency virus gp120 primes T cells for activation-induced apoptosis, J Exp Med, vol.176, pp.1099-1106, 1992.

C. A. Chougnet and B. L. Shacklett, T Cell Responses During Human Immunodeficiency Virus (HIV)-1 Infection, pp.141-169, 2012.

A. Boasso, A. W. Hardy, A. L. Landay, J. L. Martinson, S. A. Anderson et al., PDL-1 upregulation on monocytes and T cells by HIV via type I interferon: restricted expression of type I interferon receptor by CCR5-expressing leukocytes, Clin Immunol, vol.129, pp.132-144, 2008.

G. Doitsh, M. Cavrois, K. G. Lassen, O. Zepeda, Z. Yang et al., Abortive HIV infection mediates CD4 T cell depletion and inflammation in human lymphoid tissue, Cell, vol.143, pp.789-801, 2010.

G. Doitsh, N. L. Galloway, X. Geng, Z. Yang, K. M. Monroe et al., Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection, Nature, vol.505, pp.509-514, 2014.

F. Hadida, V. Vieillard, L. Mollet, I. Clark-lewis, M. Baggiolini et al., Cutting edge: RANTES regulates Fas ligand expression and killing by HIV-specific CD8 cytotoxic T cells, J Immunol, vol.163, pp.1105-1109, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02129966

S. Isaaz, K. Baetz, K. Olsen, E. Podack, and G. M. Griffiths, Serial killing by cytotoxic T lymphocytes: T cell receptor triggers degranulation, re-filling of the lytic granules and secretion of lytic proteins via a non-granule pathway, Eur J Immunol, vol.25, pp.1071-1079, 1995.

M. A. Eller, N. Goonetilleke, B. Tassaneetrithep, L. A. Eller, M. C. Costanzo et al., Expansion of Inefficient HIV-Specific CD8 T Cells during Acute Infection, J Virol, vol.90, pp.4005-4016, 2016.

P. Borrow, H. Lewicki, B. H. Hahn, G. M. Shaw, and M. B. Oldstone, Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection, J Virol, vol.68, pp.6103-6110, 1994.

X. Jin, D. E. Bauer, S. E. Tuttleton, S. Lewin, A. Gettie et al., Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques, J Exp Med, vol.189, pp.991-998, 1999.

R. A. Koup, J. T. Safrit, Y. Cao, C. A. Andrews, G. Mcleod et al., Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome, J Virol, vol.68, pp.4650-4655, 1994.

J. E. Schmitz, M. J. Kuroda, S. Santra, V. G. Sasseville, M. A. Simon et al., Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes, vol.283, pp.857-860, 1999.

L. A. Trimble and J. Lieberman, Circulating CD8 T lymphocytes in human immunodeficiency virus-infected individuals have impaired function and downmodulate CD3 zeta, the signaling chain of the T-cell receptor complex, Blood, vol.91, pp.585-594, 1998.

H. Streeck, R. Lu, N. Beckwith, M. Milazzo, M. Liu et al., Emergence of individual HIV-specific CD8 T cell responses during primary HIV-1 infection can determine long-term disease outcome, J Virol, vol.88, pp.12793-12801, 2014.

B. Walker and A. Mcmichael, The T-cell response to HIV. Cold Spring Harb Perspect Med 2, 2012.

N. Goonetilleke, M. K. Liu, J. F. Salazar-gonzalez, G. Ferrari, G. E. Ganusov et al., The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection, J Exp Med, vol.206, pp.1253-1272, 2009.

M. Lichterfeld, X. G. Yu, D. Cohen, M. M. Addo, J. Malenfant et al., HIV-1 Nef is preferentially recognized by CD8 T cells in primary HIV-1 infection despite a relatively high degree of genetic diversity, AIDS, vol.18, pp.1383-1392, 2004.

E. L. Turnbull, M. Wong, S. Wang, X. Wei, N. A. Jones et al., Kinetics of expansion of epitope-specific T cell responses during primary HIV-1 infection, J Immunol, vol.182, pp.7131-7145, 2009.

E. S. Rosenberg, J. M. Billingsley, A. M. Caliendo, S. L. Boswell, P. E. Sax et al., Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia, Science, vol.278, pp.1447-1450, 1997.

J. Rychert, S. Saindon, S. Placek, D. Daskalakis, and E. Rosenberg, Sequence variation occurs in CD4 epitopes during early HIV infection, J Acquir Immune Defic Syndr, vol.46, pp.261-267, 2007.

N. Erdmann, V. Y. Du, J. Carlson, M. Schaefer, A. Jureka et al., HLA Class-II Associated HIV Polymorphisms Predict Escape from CD4+ T Cell Responses, vol.11, p.1005111, 2015.

V. Appay, J. J. Zaunders, L. Papagno, J. Sutton, A. Jaramillo et al., Characterization of CD4(+) CTLs ex vivo, J Immunol, vol.168, pp.5954-5958, 2002.

J. J. Zaunders, M. L. Munier, D. E. Kaufmann, S. Ip, P. Grey et al., Early proliferation of CCR5(+) CD38(+++) antigen-specific CD4(+) Th1 effector cells during primary HIV-1 infection, Blood, vol.106, pp.1660-1667, 2005.

S. Johnson, M. Eller, J. E. Teigler, S. M. Maloveste, B. T. Schultz et al., Cooperativity of HIV-Specific Cytolytic CD4 T Cells and CD8 T Cells in Control of HIV Viremia, J Virol, vol.89, pp.7494-7505, 2015.

D. Z. Soghoian, H. Jessen, M. Flanders, K. Sierra-davidson, S. Cutler et al., HIV-specific cytolytic CD4 T cell responses during acute HIV infection predict disease outcome, Sci Transl Med, vol.4, pp.123-125, 2012.

F. Moukambi, H. Rabezanahary, V. Rodrigues, G. Racine, L. Robitaille et al., Early Loss of Splenic Tfh Cells in SIV-Infected Rhesus Macaques, PLoS Pathog, vol.11, p.1005287, 2015.

R. Muir, T. Metcalf, V. Tardif, H. Takata, N. Phanuphak et al., Altered Memory Circulating T Follicular Helper-B Cell Interaction in Early Acute HIV Infection, PLoS Pathog, vol.12, p.1005777, 2016.

J. J. Hong, P. K. Amancha, K. Rogers, A. A. Ansari, and F. Villinger, Spatial alterations between CD4(+) T follicular helper, B, and CD8(+) T cells during simian immunodeficiency virus infection: T/B cell homeostasis, activation, and potential mechanism for viral escape, J Immunol, vol.188, pp.3247-3256, 2012.

P. Liu, R. G. Overman, N. L. Yates, S. M. Alam, N. Vandergrift et al., Dynamic antibody specificities and virion concentrations in circulating immune complexes in acute to chronic HIV-1 infection, J Virol, vol.85, pp.11196-11207, 2011.

J. P. Moore, Y. Cao, D. D. Ho, and R. A. Koup, Development of the anti-gp120 antibody response during seroconversion to human immunodeficiency virus type, 1994.

, J Virol, vol.68, pp.5142-5155

D. D. Richman, T. Wrin, S. J. Little, and C. J. Petropoulos, Rapid evolution of the neutralizing antibody response to HIV type 1 infection, Proc Natl Acad Sci U S A, vol.100, pp.4144-4149, 2003.

X. Wei, J. M. Decker, S. Wang, H. Hui, J. C. Kappes et al., Antibody neutralization and escape by HIV-1, Nature, vol.422, pp.307-312, 2003.

F. Garces, D. Sok, L. Kong, R. Mcbride, H. J. Kim et al., Structural evolution of glycan recognition by a family of potent HIV antibodies, Cell, vol.159, pp.69-79, 2014.

A. M. Trama, M. A. Moody, S. M. Alam, F. H. Jaeger, B. Lockwood et al., HIV-1 envelope gp41 antibodies can originate from terminal ileum B cells that share cross-reactivity with commensal bacteria, Cell Host Microbe, vol.16, pp.215-226, 2014.

C. A. Muro-cacho, G. Pantaleo, and A. S. Fauci, Analysis of apoptosis in lymph nodes of HIV-infected persons. Intensity of apoptosis correlates with the general state of activation of the lymphoid tissue and not with stage of disease or viral burden, J Immunol, vol.154, pp.5555-5566, 1995.

O. T. Fackler, T. T. Murooka, A. Imle, and T. R. Mempel, Adding new dimensions: towards an integrative understanding of HIV-1 spread, Nat Rev Microbiol, vol.12, pp.563-574, 2014.

T. W. Chun, L. Carruth, D. Finzi, X. Shen, J. A. Digiuseppe et al., Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection, Nature, vol.387, pp.183-188, 1997.

T. W. Chun, D. Finzi, J. Margolick, K. Chadwick, D. Schwartz et al., In vivo fate of HIV-1-infected T cells: quantitative analysis of the transition to stable latency, Nat Med, vol.1, pp.1284-1290, 1995.

E. Eisele and R. F. Siliciano, Redefining the viral reservoirs that prevent HIV-1 eradication, Immunity, vol.37, pp.377-388, 2012.

R. T. Davey, N. Bhat, C. Yoder, T. W. Chun, J. A. Metcalf et al., HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression, Proc Natl Acad Sci U S A, vol.96, pp.15109-15114, 1999.

J. D. Siliciano, J. Kajdas, D. Finzi, T. C. Quinn, K. Chadwick et al., Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells, Nat Med, vol.9, pp.727-728, 2003.

J. M. Brenchley, B. J. Hill, D. R. Ambrozak, D. A. Price, F. J. Guenaga et al., T-cell subsets that harbor human immunodeficiency virus (HIV) in vivo: implications for HIV pathogenesis, J Virol, vol.78, pp.1160-1168, 2004.

T. Pierson, T. L. Hoffman, J. Blankson, D. Finzi, K. Chadwick et al., Characterization of chemokine receptor utilization of viruses in the latent reservoir for human immunodeficiency virus type 1, J Virol, vol.74, pp.7824-7833, 2000.

E. Bohnlein, J. W. Lowenthal, M. Siekevitz, D. W. Ballard, B. R. Franza et al., The same inducible nuclear proteins regulates mitogen activation of both the interleukin-2 receptor-alpha gene and type 1 HIV, Cell, vol.53, pp.827-836, 1988.

G. Nabel and D. Baltimore, An inducible transcription factor activates expression of human immunodeficiency virus in T cells, Nature, vol.326, pp.711-713, 1987.

N. M. Archin, J. M. Sung, C. Garrido, N. Soriano-sarabia, and D. M. Margolis, Eradicating HIV-1 infection: seeking to clear a persistent pathogen, Nat Rev Microbiol, vol.12, pp.750-764, 2014.

C. T. Costiniuk and M. A. Jenabian, Cell-to-cell transfer of HIV infection: implications for HIV viral persistence, J Gen Virol, vol.95, pp.2346-2355, 2014.

C. C. Carter, A. Onafuwa-nuga, L. A. Mcnamara, R. Jt, D. Bixby et al., HIV-1 infects multipotent progenitor cells causing cell death and establishing latent cellular reservoirs, Nat Med, vol.16, pp.446-451, 2010.

M. Perreau, A. L. Savoye, D. Crignis, E. Corpataux, J. M. Cubas et al., Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production, J Exp Med, 2012.

R. Banga, F. A. Procopio, A. Noto, G. Pollakis, M. Cavassini et al., PD-1(+) and follicular helper T cells are responsible for persistent HIV-1 transcription in treated aviremic individuals, Nat Med, vol.22, pp.754-761, 2016.

S. Moir, T. W. Chun, and A. S. Fauci, Pathogenic mechanisms of HIV disease, Annu Rev Pathol, vol.6, pp.223-248, 2011.

J. M. Brenchley, M. Paiardini, K. S. Knox, A. I. Asher, B. Cervasi et al., Differential Th17 CD4 T-cell depletion in pathogenic and nonpathogenic lentiviral infections, Blood, vol.112, pp.2826-2835, 2008.

V. Cecchinato, C. J. Trindade, A. Laurence, J. M. Heraud, J. M. Brenchley et al., Altered balance between Th17 and Th1 cells at mucosal sites predicts AIDS progression in simian immunodeficiency virus-infected macaques, Mucosal Immunol, vol.1, pp.279-288, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-01675685

J. M. Brenchley and D. C. Douek, Microbial translocation across the GI tract, Annu Rev Immunol, vol.30, pp.149-173, 2012.

N. R. Klatt, N. T. Funderburg, and J. M. Brenchley, Microbial translocation, immune activation, and HIV disease, Trends Microbiol, vol.21, pp.6-13, 2013.

M. R. Betts, D. R. Ambrozak, D. C. Douek, S. Bonhoeffer, J. M. Brenchley et al., Analysis of total human immunodeficiency virus (HIV)-specific CD4(+) and CD8(+) T-cell responses: relationship to viral load in untreated HIV infection, J Virol, vol.75, pp.11983-11991, 2001.

L. Papagno, V. Appay, J. Sutton, T. Rostron, G. M. Gillespie et al., Comparison between HIV-and CMV-specific T cell responses in long-term HIV infected donors, Clin Exp Immunol, vol.130, pp.509-517, 2002.

C. H. Cook and J. Trgovcich, Cytomegalovirus reactivation in critically ill immunocompetent hosts: a decade of progress and remaining challenges, Antiviral Res, vol.90, pp.151-159, 2011.

J. M. Doisne, A. Urrutia, C. Lacabaratz-porret, C. Goujard, L. Meyer et al., CD8+ T cells specific for EBV, cytomegalovirus, and influenza virus are activated during primary HIV infection, J Immunol, vol.173, pp.2410-2418, 2004.

L. Papagno, C. A. Spina, A. Marchant, M. Salio, N. Rufer et al., Immune activation and CD8+ T-cell differentiation towards senescence in HIV-1 infection, PLoS Biol, vol.2, p.20, 2004.

T. J. Fry, E. Connick, J. Falloon, M. M. Lederman, D. J. Liewehr et al., A potential role for interleukin-7 in T-cell homeostasis, vol.97, pp.2983-2990, 2001.

L. A. Napolitano, R. M. Grant, S. G. Deeks, D. Schmidt, D. Rosa et al., Increased production of IL-7 accompanies HIV-1-mediated T-cell depletion: implications for T-cell homeostasis, Nat Med, vol.7, pp.73-79, 2001.

Y. Miura and Y. Koyanagi, Death ligand-mediated apoptosis in HIV infection, Rev Med Virol, vol.15, pp.169-178, 2005.

H. H. Oberg, B. Lengl-janssen, D. Kabelitz, and O. Janssen, Activation-induced T cell death: resistance or susceptibility correlate with cell surface fas ligand expression and T helper phenotype, Cell Immunol, vol.181, pp.93-100, 1997.

X. R. Zhang, L. Y. Zhang, S. Devadas, L. Li, A. D. Keegan et al., Reciprocal expression of TRAIL and CD95L in Th1 and Th2 cells: role of apoptosis in T helper subset differentiation, Cell Death Differ, vol.10, pp.203-210, 2003.

F. Aillet, H. Masutani, C. Elbim, H. Raoul, L. Chene et al., Human immunodeficiency virus induces a dual regulation of Bcl-2, resulting in persistent infection of CD4(+) T-or monocytic cell lines, J Virol, vol.72, pp.9698-9705, 1998.

M. Fevrier, K. Dorgham, and A. Rebollo, CD4+ T cell depletion in human immunodeficiency virus (HIV) infection: role of apoptosis, Viruses, vol.3, pp.586-612, 2011.

A. Khaitan and D. Unutmaz, Revisiting immune exhaustion during HIV infection, Curr HIV/AIDS Rep, vol.8, pp.4-11, 2011.

M. M. Addo, X. G. Yu, A. Rathod, D. Cohen, R. L. Eldridge et al., Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load, J Virol, vol.77, pp.2081-2092, 2003.

V. Appay, D. F. Nixon, S. M. Donahoe, G. M. Gillespie, T. Dong et al., HIV-specific CD8(+) T cells produce antiviral cytokines but are impaired in cytolytic function, J Exp Med, vol.192, pp.63-75, 2000.

J. Lieberman, P. Shankar, N. Manjunath, and J. Andersson, Dressed to kill? A review of why antiviral CD8 T lymphocytes fail to prevent progressive immunodeficiency in HIV-1 infection, Blood, vol.98, pp.1667-1677, 2001.

D. E. Speiser, D. T. Utzschneider, S. G. Oberle, C. Munz, P. Romero et al., T cell differentiation in chronic infection and cancer: functional adaptation or exhaustion?, Nat Rev Immunol, vol.14, pp.768-774, 2014.

H. Streeck and D. F. Nixon, T cell immunity in acute HIV-1 infection, J Infect Dis, vol.202, pp.302-308, 2010.

E. J. Wherry and R. Ahmed, Memory CD8 T-cell differentiation during viral infection, J Virol, vol.78, pp.5535-5545, 2004.

S. D. Blackburn, H. Shin, W. N. Haining, T. Zou, C. J. Workman et al., Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection, Nat Immunol, vol.10, pp.29-37, 2009.

C. Petrovas, Y. M. Mueller, and P. D. Katsikis, Apoptosis of HIV-specific CD8+ T cells: an HIV evasion strategy, Cell Death Differ, vol.12, pp.859-870, 2005.

X. N. Xu, B. Laffert, G. R. Screaton, M. Kraft, D. Wolf et al., Induction of Fas ligand expression by HIV involves the interaction of Nef with the T cell receptor zeta chain, J Exp Med, vol.189, pp.1489-1496, 1999.

J. C. Mudd and M. M. Lederman, CD8 T cell persistence in treated HIV infection, Curr Opin HIV AIDS, vol.9, pp.500-505, 2014.

M. F. Geertsma, A. Van-wengen-stevenhagen, E. M. Van-dam, K. Risberg, F. P. Kroon et al., Decreased expression of zeta molecules by T lymphocytes is correlated with disease progression in human immunodeficiency virus-infected persons, J Infect Dis, vol.180, pp.649-658, 1999.

L. A. Trimble, P. Shankar, M. Patterson, J. P. Daily, and J. Lieberman, Human immunodeficiency virus-specific circulating CD8 T lymphocytes have downmodulated CD3zeta and CD28, key signaling molecules for T-cell activation, J Virol, vol.74, pp.7320-7330, 2000.

G. S. Wood, The immunohistology of lymph nodes in HIV infection: a review, Prog AIDS Pathol, vol.2, pp.25-32, 1990.

R. Cubas and M. Perreau, The dysfunction of T follicular helper cells, Curr Opin HIV AIDS, vol.9, pp.485-491, 2014.

C. Petrovas, T. Yamamoto, M. Y. Gerner, K. L. Boswell, K. Wloka et al., CD4 T follicular helper cell dynamics during SIV infection, J Clin Invest, vol.122, pp.3281-3294, 2012.

H. C. Lane, H. Masur, L. C. Edgar, G. Whalen, A. H. Rook et al., Abnormalities of B-cell activation and immunoregulation in patients with the acquired immunodeficiency syndrome, N Engl J Med, vol.309, pp.453-458, 1983.

C. M. Buckner, S. Moir, J. Ho, W. Wang, J. G. Posada et al., Characterization of plasmablasts in the blood of HIV-infected viremic individuals: evidence for nonspecific immune activation, J Virol, vol.87, pp.5800-5811, 2013.

A. Malaspina, S. Moir, S. Kottilil, C. W. Hallahan, L. A. Ehler et al., Deleterious effect of HIV-1 plasma viremia on B cell costimulatory function, J Immunol, vol.170, pp.5965-5972, 2003.

V. L. Ng, B-lymphocytes and autoantibody profiles in HIV disease, Clin Rev Allergy Immunol, vol.14, pp.367-384, 1996.

O. Martinez-maza and E. C. Breen, B-cell activation and lymphoma in patients with HIV, Curr Opin Oncol, vol.14, pp.528-532, 2002.

A. De-milito, C. Morch, A. Sonnerborg, and F. Chiodi, Loss of memory (CD27) B lymphocytes in HIV-1 infection, AIDS, vol.15, pp.957-964, 2001.

K. Titanji, D. Milito, A. Cagigi, A. Thorstensson, R. Grutzmeier et al., Loss of memory B cells impairs maintenance of long-term serologic memory during HIV-1 infection, Blood, vol.108, pp.1580-1587, 2006.

J. Van-grevenynghe, R. A. Cubas, A. Noto, S. Dafonseca, Z. He et al., Loss of memory B cells during chronic HIV infection is driven by Foxo3a-and TRAILmediated apoptosis, J Clin Invest, vol.121, pp.3877-3888, 2011.

S. Swingler, J. Zhou, C. Swingler, A. Dauphin, T. Greenough et al., Evidence for a pathogenic determinant in HIV-1 Nef involved in B cell dysfunction in HIV/AIDS, Cell Host Microbe, vol.4, pp.63-76, 2008.

O. H. Iwajomo, A. Finn, P. Moons, R. Nkhata, E. Sepako et al., Deteriorating pneumococcal-specific B-cell memory in minimally symptomatic African children with HIV infection, J Infect Dis, vol.204, pp.534-543, 2011.

M. Hart, A. Steel, S. A. Clark, G. Moyle, M. Nelson et al., Loss of discrete memory B cell subsets is associated with impaired immunization responses in HIV-1 infection and may be a risk factor for invasive pneumococcal disease, J Immunol, vol.178, pp.8212-8220, 2007.

S. Moir and A. S. Fauci, Insights into B cells and HIV-specific B-cell responses in HIV-infected individuals, Immunol Rev, vol.254, pp.207-224, 2013.

S. Moir, J. Ho, A. Malaspina, W. Wang, A. C. Dipoto et al., Evidence for HIV-associated B cell exhaustion in a dysfunctional memory B cell compartment in HIV-infected viremic individuals, J Exp Med, vol.205, pp.1797-1805, 2008.

E. Meffre, A. Louie, J. Bannock, L. J. Kim, J. Ho et al., Maturational characteristics of HIV-specific antibodies in viremic individuals, JCI Insight, vol.1, 2016.

L. Kardava, S. Moir, N. Shah, W. Wang, R. Wilson et al., Abnormal B cell memory subsets dominate HIV-specific responses in infected individuals, J Clin Invest, vol.124, pp.3252-3262, 2014.

S. Moir, A. Malaspina, O. K. Pickeral, E. T. Donoghue, J. Vasquez et al., Decreased survival of B cells of HIV-viremic patients mediated by altered expression of receptors of the TNF superfamily, J Exp Med, vol.200, pp.587-599, 2004.

G. D. Tomaras, N. L. Yates, P. Liu, L. Qin, G. G. Fouda et al., Initial B-cell responses to transmitted human immunodeficiency virus type 1: virion-binding immunoglobulin M (IgM) and IgG antibodies followed by plasma anti-gp41 antibodies with ineffective control of initial viremia, J Virol, vol.82, pp.12449-12463, 2008.

B. F. Keele, E. E. Giorgi, J. F. Salazar-gonzalez, J. M. Decker, K. T. Pham et al., Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection, Proc Natl Acad Sci U S A, vol.105, pp.7552-7557, 2008.

C. Moog, H. J. Fleury, I. Pellegrin, A. Kirn, and A. M. Aubertin, Autologous and heterologous neutralizing antibody responses following initial seroconversion in human immunodeficiency virus type 1-infected individuals, J Virol, vol.71, pp.3734-3741, 1997.

S. D. Frost, T. Wrin, D. M. Smith, K. Pond, S. L. Liu et al., Neutralizing antibody responses drive the evolution of human immunodeficiency virus type 1 envelope during recent HIV infection, Proc Natl Acad Sci U S A, vol.102, pp.18514-18519, 2005.

S. G. Deeks, B. Schweighardt, T. Wrin, J. Galovich, R. Hoh et al., Neutralizing antibody responses against autologous and heterologous viruses in acute versus chronic human immunodeficiency virus (HIV) infection: evidence for a constraint on the ability of HIV to completely evade neutralizing antibody responses, J Virol, vol.80, pp.6155-6164, 2006.

J. Overbaugh and L. M. Rudensey, Alterations in potential sites for glycosylation predominate during evolution of the simian immunodeficiency virus envelope gene in macaques, J Virol, vol.66, pp.5937-5948, 1992.

B. Chackerian, L. M. Rudensey, and J. Overbaugh, Specific N-linked and O-linked glycosylation modifications in the envelope V1 domain of simian immunodeficiency virus variants that evolve in the host alter recognition by neutralizing antibodies, J Virol, vol.71, pp.7719-7727, 1997.

C. Herrera, C. Spenlehauer, M. S. Fung, D. R. Burton, S. Beddows et al., Nonneutralizing antibodies to the CD4-binding site on the gp120 subunit of human immunodeficiency virus type 1 do not interfere with the activity of a neutralizing antibody against the same site, J Virol, vol.77, pp.1084-1091, 2003.

E. M. Bunnik, L. Pisas, A. C. Van-nuenen, and H. Schuitemaker, Autologous neutralizing humoral immunity and evolution of the viral envelope in the course of subtype B human immunodeficiency virus type 1 infection, J Virol, vol.82, pp.7932-7941, 2008.

E. Landais, X. Huang, C. Havenar-daughton, B. Murrell, M. A. Price et al., Broadly Neutralizing Antibody Responses in a Large Longitudinal Sub-Saharan HIV Primary Infection Cohort, vol.12, p.1005369, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01283876

D. H. Barouch, J. B. Whitney, B. Moldt, F. Klein, T. Y. Oliveira et al., Therapeutic efficacy of potent neutralizing HIV-1-specific monoclonal antibodies in SHIV-infected rhesus monkeys, Nature, vol.503, pp.224-228, 2013.

H. Mouquet, Antibody B cell responses in HIV-1 infection, Trends Immunol, vol.35, pp.549-561, 2014.

F. Pissani and H. Streeck, Emerging concepts on T follicular helper cell dynamics in HIV infection, Trends Immunol, vol.35, pp.278-286, 2014.

D. Sok, K. M. Le, M. Vadnais, K. Saye-francisco, J. G. Jardine et al., Rapid elicitation of broadly neutralizing antibodies to HIV by immunization in cows, Nature, 2017.

A. Biancotto, S. J. Iglehart, C. Vanpouille, C. E. Condack, A. Lisco et al., HIV-1 induced activation of CD4+ T cells creates new targets for HIV-1 infection in human lymphoid tissue ex vivo, Blood, vol.111, pp.699-704, 2008.

D. C. Douek, M. R. Betts, J. M. Brenchley, B. J. Hill, D. R. Ambrozak et al., A novel approach to the analysis of specificity, clonality, and frequency of HIV-specific T cell responses reveals a potential mechanism for control of viral escape, J Immunol, vol.168, pp.3099-3104, 2002.

J. M. Brenchley, L. E. Ruff, J. P. Casazza, R. A. Koup, D. A. Price et al., Preferential infection shortens the life span of human immunodeficiency virusspecific CD4+ T cells in vivo, J Virol, vol.80, pp.6801-6809, 2006.

A. Harari, G. P. Rizzardi, K. Ellefsen, D. Ciuffreda, P. Champagne et al., Analysis of HIV-1-and CMV-specific memory CD4 T-cell responses during primary and chronic infection, Blood, vol.100, pp.1381-1387, 2002.

A. Harari, F. Vallelian, P. R. Meylan, and G. Pantaleo, Functional heterogeneity of memory CD4 T cell responses in different conditions of antigen exposure and persistence, J Immunol, vol.174, pp.1037-1045, 2005.

B. E. Palmer, E. Boritz, and C. C. Wilson, Effects of sustained HIV-1 plasma viremia on HIV-1 Gag-specific CD4+ T cell maturation and function, J Immunol, vol.172, pp.3337-3347, 2004.

Y. Sun, J. E. Schmitz, P. M. Acierno, S. Santra, R. A. Subbramanian et al., Dysfunction of simian immunodeficiency virus/simian human immunodeficiency virus-induced IL-2 expression by central memory CD4+ T lymphocytes, J Immunol, vol.174, pp.4753-4760, 2005.

R. Zhang, C. J. Fichtenbaum, D. A. Hildeman, J. D. Lifson, and C. Chougnet, CD40 ligand dysregulation in HIV infection: HIV glycoprotein 120 inhibits signaling cascades upstream of CD40 ligand transcription, J Immunol, vol.172, pp.2678-2686, 2004.

M. D'souza, A. P. Fontenot, D. G. Mack, C. Lozupone, S. Dillon et al., Programmed death 1 expression on HIV-specific CD4+ T cells is driven by viral replication and associated with T cell dysfunction, J Immunol, vol.179, pp.1979-1987, 2007.

L. R. Cockerham, V. Jain, E. Sinclair, D. V. Glidden, W. Hartogenesis et al., Programmed death-1 expression on CD4(+) and CD8(+) T cells in treated and untreated HIV disease, AIDS, vol.28, pp.1749-1758, 2014.

F. Porichis, D. S. Kwon, J. Zupkosky, D. P. Tighe, A. Mcmullen et al., Responsiveness of HIV-specific CD4 T cells to PD-1 blockade, Blood, vol.118, pp.965-974, 2011.

N. Frahm, D. E. Kaufmann, K. Yusim, M. Muldoon, C. Kesmir et al., Increased sequence diversity coverage improves detection of HIV-specific T cell responses, J Immunol, vol.179, pp.6638-6650, 2007.

A. Kassu, R. A. Marcus, D. Souza, M. B. Kelly-mcknight, E. A. Golden-mason et al., Regulation of virusspecific CD4+ T cell function by multiple costimulatory receptors during chronic HIV infection, J Immunol, vol.185, pp.3007-3018, 2010.

M. A. Brockman, D. S. Kwon, D. P. Tighe, D. F. Pavlik, P. C. Rosato et al., IL-10 is up-regulated in multiple cell types during viremic HIV infection and reversibly inhibits virus-specific T cells, Blood, vol.114, pp.346-356, 2009.

E. A. Said, F. P. Dupuy, L. Trautmann, Y. Zhang, Y. Shi et al., Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection, Nat Med, vol.16, pp.452-459, 2010.

X. Tian, A. Zhang, C. Qiu, W. Wang, Y. Yang et al., The upregulation of LAG-3 on T cells defines a subpopulation with functional exhaustion and correlates with disease progression in HIV-infected subjects, J Immunol, vol.194, pp.3873-3882, 2015.

L. A. Trimble, L. W. Kam, R. S. Friedman, Z. Xu, and J. Lieberman, CD3zeta and CD28 down-modulation on CD8 T cells during viral infection, Blood, vol.96, pp.1021-1029, 2000.

M. Schweneker, D. Favre, J. N. Martin, S. G. Deeks, and J. M. Mccune, HIV-induced changes in T cell signaling pathways, J Immunol, vol.180, pp.6490-6500, 2008.

A. M. Nyakeriga, C. J. Fichtenbaum, J. Goebel, S. A. Nicolaou, L. Conforti et al., Engagement of the CD4 receptor affects the redistribution of Lck to the immunological synapse in primary T cells: implications for T-cell activation during human immunodeficiency virus type 1 infection, J Virol, vol.83, pp.1193-1200, 2009.

M. Lichterfeld, D. E. Kaufmann, X. G. Yu, S. K. Mui, M. M. Addo et al., Loss of HIV-1-specific CD8+ T cell proliferation after acute HIV-1 infection and restoration by vaccine-induced HIV-1-specific CD4+ T cells, J Exp Med, vol.200, pp.701-712, 2004.

Y. Nakanishi, B. Lu, C. Gerard, and A. Iwasaki, CD8(+) T lymphocyte mobilization to virus-infected tissue requires CD4(+) T-cell help, Nature, vol.462, pp.510-513, 2009.

A. Demoustier, B. Gubler, O. Lambotte, M. G. De-goer, C. Wallon et al., In patients on prolonged HAART, a significant pool of HIV infected CD4 T cells are HIV-specific, AIDS, vol.16, pp.1749-1754, 2002.

D. C. Douek, J. M. Brenchley, M. R. Betts, D. R. Ambrozak, B. J. Hill et al., HIV preferentially infects HIV-specific CD4+ T cells, Nature, vol.417, pp.95-98, 2002.

C. Petrovas, T. Yamamoto, M. Y. Gerner, K. L. Boswell, K. Wloka et al., CD4 T follicular helper cell dynamics during SIV infection, J Clin Invest, 2012.

Y. Xu, C. Weatherall, M. Bailey, S. Alcantara, D. Rose et al., Simian immunodeficiency virus infects follicular helper CD4 T cells in lymphoid tissues during pathogenic infection of pigtail macaques, J Virol, vol.87, pp.3760-3773, 2013.

M. Lindqvist, J. Van-lunzen, D. Z. Soghoian, B. D. Kuhl, S. Ranasinghe et al., Expansion of HIVspecific T follicular helper cells in chronic HIV infection, J Clin Invest, vol.122, pp.3271-3280, 2012.

G. H. Mylvaganam, V. Velu, J. J. Hong, S. Sadagopal, S. Kwa et al., Diminished viral control during simian immunodeficiency virus infection is associated with aberrant PD-1hi CD4 T cell enrichment in the lymphoid follicles of the rectal mucosa, J Immunol, vol.193, pp.4527-4536, 2014.

Y. Fukazawa, R. Lum, A. A. Okoye, H. Park, K. Matsuda et al., B cell follicle sanctuary permits persistent productive simian immunodeficiency virus infection in elite controllers, Nat Med, vol.21, pp.132-139, 2015.

E. C. Breen, A. R. Rezai, K. Nakajima, G. N. Beall, R. T. Mitsuyasu et al., Infection with HIV is associated with elevated IL-6 levels and production, J Immunol, vol.144, pp.480-484, 1990.

H. Xu, X. Wang, N. Malam, P. P. Aye, X. Alvarez et al., Persistent Simian Immunodeficiency Virus Infection Drives Differentiation, Aberrant Accumulation, and Latent Infection of Germinal Center Follicular T Helper Cells, J Virol, vol.90, pp.1578-1587, 2015.

A. Chowdhury, D. R. Estrada, P. M. Tharp, G. K. Trible, R. P. Amara et al., Decreased T Follicular Regulatory Cell/T Follicular Helper Cell (TFH) in Simian Immunodeficiency Virus-Infected Rhesus Macaques May Contribute to Accumulation of TFH in Chronic Infection, J Immunol, vol.195, pp.3237-3247, 2015.

L. R. De-armas, N. Cotugno, S. Pallikkuth, L. Pan, S. Rinaldi et al., Induction of IL21 in Peripheral T Follicular Helper Cells Is an Indicator of Influenza Vaccine Response in a Previously Vaccinated HIV-Infected Pediatric Cohort, J Immunol, vol.198, pp.1995-2005, 2017.

L. Colineau, A. Rouers, T. Yamamoto, Y. Xu, A. Urrutia et al., HIV-Infected Spleens Present Altered Follicular Helper T Cell (Tfh) Subsets and Skewed B Cell Maturation, PLoS One, vol.10, p.140978, 2015.
URL : https://hal.archives-ouvertes.fr/inserm-01222249

S. L. Kohler, M. N. Pham, J. M. Folkvord, T. Arends, S. M. Miller et al., Germinal Center T Follicular Helper Cells Are Highly Permissive to HIV-1 and Alter Their Phenotype during Virus Replication, J Immunol, vol.196, pp.2711-2722, 2016.

S. Pallikkuth, M. Sharkey, D. Z. Babic, S. Gupta, G. W. Stone et al., Peripheral T Follicular Helper Cells Are the Major HIV Reservoir within Central Memory CD4 T Cells in Peripheral Blood from Chronically HIV-Infected Individuals on Combination Antiretroviral Therapy, J Virol, vol.90, pp.2718-2728, 2015.

G. H. Mylvaganam, D. Rios, H. M. Abdelaal, S. Iyer, G. Tharp et al., Dynamics of SIV-specific CXCR5+ CD8 T cells during chronic SIV infection, Proc Natl Acad Sci U S A, vol.114, pp.1976-1981, 2017.

Y. Xu, C. Phetsouphanh, K. Suzuki, A. Aggrawal, S. Graff-dubois et al., HIV-1 and SIV Predominantly Use CCR5 Expressed on a Precursor Population to, Establish Infection in T Follicular Helper Cells. Front Immunol, vol.8, p.376, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01526959

B. Miles, S. M. Miller, J. M. Folkvord, A. Kimball, M. Chamanian et al., Follicular regulatory T cells impair follicular T helper cells in HIV and SIV infection, Nat Commun, vol.6, p.8608, 2015.

K. Cohen, M. Altfeld, G. Alter, and L. Stamatatos, Early preservation of CXCR5+ PD-1+ helper T cells and B cell activation predict the breadth of neutralizing antibody responses in chronic HIV-1 infection, J Virol, vol.88, pp.13310-13321, 2014.

P. Borrow and M. A. Moody, Immunologic characteristics of HIV-infected individuals who make broadly neutralizing antibodies, Immunol Rev, vol.275, pp.62-78, 2017.

T. Yamamoto, R. M. Lynch, R. Gautam, R. Matus-nicodemos, S. D. Schmidt et al., Quality and quantity of TFH cells are critical for broad antibody development in SHIVAD8 infection, Sci Transl Med, vol.7, pp.298-120, 2015.

A. Moris, A. Pajot, F. Blanchet, F. Guivel-benhassine, M. Salcedo et al., Dendritic cells and HIV-specific CD4+ T cells: HIV antigen presentation, Tcell activation, and viral transfer, Blood, vol.108, pp.1643-1651, 2006.
URL : https://hal.archives-ouvertes.fr/pasteur-01372632

D. Candotti, D. Costagliola, C. Joberty, O. Bonduelle, C. Rouzioux et al., Status of long-term asymptomatic HIV-1 infection correlates with viral load but not with virus replication properties and cell tropism. French ALT Study Group, J Med Virol, vol.58, pp.256-263, 1999.

J. F. Okulicz, V. C. Marconi, M. L. Landrum, S. Wegner, A. Weintrob et al., Clinical outcomes of elite controllers, viremic controllers, and longterm nonprogressors in the US Department of Defense HIV natural history study, J Infect Dis, vol.200, pp.1714-1723, 2009.

S. G. Deeks and B. D. Walker, Human immunodeficiency virus controllers: mechanisms of durable virus control in the absence of antiretroviral therapy, Immunity, vol.27, pp.406-416, 2007.

S. Grabar, H. Selinger-leneman, S. Abgrall, G. Pialoux, L. Weiss et al., Prevalence and comparative characteristics of long-term nonprogressors and HIV controller patients in the French Hospital Database on HIV, AIDS, vol.23, pp.1163-1169, 2009.

J. F. Okulicz and O. Lambotte, Epidemiology and clinical characteristics of elite controllers, Curr Opin HIV AIDS, vol.6, pp.163-168, 2011.

J. F. Okulicz, V. C. Marconi, M. L. Landrum, S. Wegner, A. Weintrob et al., Clinical outcomes of elite controllers, viremic controllers, and long-term nonprogressors in the US Department of Defense HIV natural history study, J Infect Dis, vol.200, pp.1714-1723, 2009.

B. D. Walker, Elite control of HIV Infection: implications for vaccines and treatment, Top HIV Med, vol.15, pp.134-136, 2007.

D. Sauce, M. Larsen, S. Fastenackels, M. Pauchard, H. Ait-mohand et al., HIV disease progression despite suppression of viral replication is associated with exhaustion of lymphopoiesis, Blood, vol.117, pp.5142-5151, 2011.

Y. Yang, M. Al-mozaini, M. J. Buzon, J. Beamon, S. Ferrando-martinez et al., CD4 T-cell regeneration in HIV-1 elite controllers, AIDS, vol.26, pp.701-706, 2012.

F. Pereyra, S. Palmer, T. Miura, B. L. Block, A. Wiegand et al., Persistent low-level viremia in HIV-1 elite controllers and relationship to immunologic parameters, J Infect Dis, vol.200, pp.984-990, 2009.

J. B. Dinoso, S. Y. Kim, A. M. Wiegand, S. E. Palmer, S. J. Gange et al., Treatment intensification does not reduce residual HIV-1 viremia in patients on highly active antiretroviral therapy, Proc Natl Acad Sci U S A, vol.106, pp.9403-9408, 2009.

H. Hatano, E. L. Delwart, P. J. Norris, T. H. Lee, J. Dunn-williams et al., Evidence for persistent low-level viremia in individuals who control human immunodeficiency virus in the absence of antiretroviral therapy, J Virol, vol.83, pp.329-335, 2009.

H. Mens, M. Kearney, A. Wiegand, W. Shao, K. Schonning et al., HIV-1 continues to replicate and evolve in patients with natural control of HIV infection, J Virol, vol.84, pp.12971-12981, 2010.

X. D. Yao, R. W. Omange, B. M. Henrick, R. T. Lester, J. Kimani et al., Acting locally: innate mucosal immunity in resistance to HIV-1 infection in Kenyan commercial sex workers, Mucosal Immunol, vol.7, pp.268-279, 2013.

C. Goujard, M. L. Chaix, O. Lambotte, C. Deveau, M. Sinet et al., Agence Nationale de Recherche sur le Sida PSG. 2009. Spontaneous control of viral replication during primary HIV infection: when is "HIV controller" status established?, Clin Infect Dis, vol.49, pp.982-986

Y. Madec, F. Boufassa, K. Porter, M. Prins, C. Sabin et al., Natural History of HIV control since seroconversion, AIDS, vol.27, pp.2451-2460, 2013.

T. Miura, Z. L. Brumme, M. A. Brockman, P. Rosato, J. Sela et al., Impaired replication capacity of acute/early viruses in persons who become HIV controllers, J Virol, vol.84, pp.7581-7591, 2010.

Y. Madec, F. Boufassa, C. Rouzioux, J. F. Delfraissy, L. Meyer et al., Undetectable viremia without antiretroviral therapy in patients with HIV seroconversion: an uncommon phenomenon?, Clin Infect Dis, vol.40, pp.1350-1354, 2005.

F. Boufassa, A. Saez-cirion, J. Lechenadec, D. Zucman, V. Avettand-fenoel et al., CD4 dynamics over a 15 year-period among HIV controllers enrolled in the ANRS French observatory, PLoS One, vol.6, p.18726, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01420582

N. Noel, N. Lerolle, C. Lecuroux, C. Goujard, A. Venet et al., Immunologic and Virologic Progression in HIV Controllers: The Role of Viral "Blips" and Immune Activation in the ANRS CO21 CODEX Study, PLoS One, vol.10, p.131922, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01415218

L. Alexander, E. Weiskopf, T. C. Greenough, N. C. Gaddis, M. R. Auerbach et al., Unusual polymorphisms in human immunodeficiency virus type 1 associated with nonprogressive infection, J Virol, vol.74, pp.4361-4376, 2000.

R. Mariani, F. Kirchhoff, T. C. Greenough, J. L. Sullivan, R. C. Desrosiers et al., High frequency of defective nef alleles in a long-term survivor with nonprogressive human immunodeficiency virus type 1 infection, J Virol, vol.70, pp.7752-7764, 1996.

N. L. Michael, G. Chang, L. A. Arcy, P. K. Ehrenberg, R. Mariani et al., Defective accessory genes in a human immunodeficiency virus type 1-infected long-term survivor lacking recoverable virus, J Virol, vol.69, pp.4228-4236, 1995.

T. Miura, M. A. Brockman, C. J. Brumme, Z. L. Brumme, J. M. Carlson et al., Genetic characterization of human immunodeficiency virus type 1 in elite controllers: lack of gross genetic defects or common amino acid changes, J Virol, vol.82, pp.8422-8430, 2008.

J. R. Bailey, K. O'connell, H. C. Yang, Y. Han, J. Xu et al., Transmission of human immunodeficiency virus type 1 from a patient who developed AIDS to an elite suppressor, J Virol, vol.82, pp.7395-7410, 2008.

R. W. Buckheit, T. G. Allen, A. Alme, M. Salgado, K. A. O'connell et al., Host factors dictate control of viral replication in two HIV-1 controller/chronic progressor transmission pairs, Nat Commun, vol.3, p.716, 2012.

S. A. Migueles, M. S. Sabbaghian, W. L. Shupert, M. P. Bettinotti, F. M. Marincola et al., , 2000.

. Hla-b*, 5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors, Proc Natl Acad Sci, vol.97, pp.2709-2714

F. Pereyra, M. M. Addo, D. E. Kaufmann, Y. Liu, T. Miura et al., Genetic and immunologic heterogeneity among persons who control HIV infection in the absence of therapy, J Infect Dis, vol.197, pp.563-571, 2008.

I. Honeyborne, A. Prendergast, F. Pereyra, A. Leslie, H. Crawford et al., Control of human immunodeficiency virus type 1 is associated with HLA-B*13 and targeting of multiple gag-specific CD8+ T-cell epitopes, J Virol, vol.81, pp.3667-3672, 2007.

R. S. Ntale, D. R. Chopera, N. K. Ngandu, A. De-rosa, D. Zembe et al., Temporal association of HLA-B*81:01-and HLA-B*39:10-mediated HIV-1 p24 sequence evolution with disease progression, J Virol, vol.86, pp.12013-12024, 2012.

C. Lecuroux, A. Saez-cirion, I. Girault, P. Versmisse, F. Boufassa et al., Both HLA-B*57 and plasma HIV RNA levels contribute to the HIV-specific CD8+ T cell response in HIV controllers, J Virol, vol.88, pp.176-187, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01420526

J. Huang, J. J. Goedert, E. J. Sundberg, T. D. Cung, P. S. Burke et al., HLA-B*35-Px-mediated acceleration of HIV-1 infection by increased inhibitory immunoregulatory impulses, J Exp Med, vol.206, pp.2959-2966, 2009.

H. A. Stephens, HIV-1 diversity versus HLA class I polymorphism, Trends Immunol, vol.26, pp.41-47, 2005.

J. Fellay, K. V. Shianna, D. Ge, S. Colombo, B. Ledergerber et al., A whole-genome association study of major determinants for host control of HIV-1, Science, vol.317, pp.944-947, 2007.

J. Guergnon, C. Dalmasso, P. Broet, L. Meyer, S. J. Westrop et al., Singlenucleotide polymorphism-defined class I and class III major histocompatibility complex genetic subregions contribute to natural long-term nonprogression in HIV infection, J Infect Dis, vol.205, pp.718-724, 2012.

R. Thomas, R. Apps, Y. Qi, X. Gao, V. Male et al., HLA-C cell surface expression and control of HIV/AIDS correlate with a variant upstream of HLA-C, Nat Genet, vol.41, pp.1290-1294, 2009.

A. L. Ferre, P. W. Hunt, D. H. Mcconnell, M. M. Morris, J. C. Garcia et al., HIV controllers with HLA-DRB1*13 and HLA-DQB1*06 alleles have strong, polyfunctional mucosal CD4+ Tcell responses, J Virol, vol.84, pp.11020-11029, 2010.

U. Malhotra, S. Holte, S. Dutta, M. M. Berrey, E. Delpit et al., Role for HLA class II molecules in HIV-1 suppression and cellular immunity following antiretroviral treatment, J Clin Invest, vol.107, pp.505-517, 2001.

B. Julg, E. S. Moodley, Y. Qi, D. Ramduth, S. Reddy et al., Possession of HLA class II DRB1*1303 associates with reduced viral loads in chronic HIV-1 clade C and B infection, J Infect Dis, vol.203, pp.803-809, 2011.

S. Ranasinghe, S. Cutler, I. Davis, R. Lu, D. Z. Soghoian et al., Association of HLA-DRB1-restricted CD4 T cell responses with HIV immune control, Nat Med, 2013.

M. Quigley, F. Pereyra, B. Nilsson, F. Porichis, C. Fonseca et al., Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF, Nat Med, vol.16, pp.1147-1151, 2010.

J. Yan, S. Sabbaj, A. Bansal, N. Amatya, J. J. Shacka et al., HIV-specific CD8+ T cells from elite controllers are primed for survival, J Virol, vol.87, pp.5170-5181, 2013.

S. A. Migueles, A. C. Laborico, W. L. Shupert, M. S. Sabbaghian, R. Rabin et al., HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors, Nat Immunol, vol.3, pp.1061-1068, 2002.

M. Lichterfeld, D. Mou, T. D. Cung, K. L. Williams, M. T. Waring et al., Telomerase activity of HIV-1-specific CD8+ T cells: constitutive up-regulation in controllers and selective increase by blockade of PD ligand 1 in progressors, Blood, vol.112, pp.3679-3687, 2008.

M. R. Betts, M. C. Nason, S. M. West, D. Rosa, S. C. Migueles et al., HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells, Blood, vol.107, pp.4781-4789, 2006.

Z. M. Ndhlovu, J. Proudfoot, K. Cesa, D. M. Alvino, A. Mcmullen et al., Elite controllers with low to absent effector CD8+ T cell responses maintain highly functional, broadly directed central memory responses, J Virol, vol.86, pp.6959-6969, 2012.

A. Saez-cirion, C. Lacabaratz, O. Lambotte, P. Vermisse, A. Urrutia et al., HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar CTL activation phenotype, Proc Natl Acad Sci U S A, vol.104, pp.6776-6781, 2007.

A. R. Hersperger, F. Pereyra, M. Nason, K. Demers, P. Sheth et al., Perforin expression directly ex vivo by HIV-specific CD8 T-cells is a correlate of HIV elite control, PLoS Pathog, vol.6, p.1000917, 2010.

R. W. Buckheit, M. Salgado, R. F. Silciano, and J. N. Blankson, Inhibitory potential of subpopulations of CD8+ T cells in HIV-1-infected elite suppressors, J Virol, vol.86, pp.13679-13688, 2012.

L. Shan, K. Deng, N. S. Shroff, C. M. Durand, S. A. Rabi et al., Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation, Immunity, vol.36, pp.491-501, 2012.

A. L. Ferre, P. W. Hunt, J. W. Critchfield, D. H. Young, M. M. Morris et al., Mucosal immune responses to HIV-1 in elite controllers: a potential correlate of immune control, Blood, vol.113, pp.3978-3989, 2009.

B. H. Edwards, A. Bansal, S. Sabbaj, J. Bakari, M. J. Mulligan et al., Magnitude of functional CD8+ T-cell responses to the gag protein of human immunodeficiency virus type 1 correlates inversely with viral load in plasma, J Virol, vol.76, pp.2298-2305, 2002.

P. Kiepiela, K. Ngumbela, C. Thobakgale, D. Ramduth, I. Honeyborne et al., CD8+ T-cell responses to different HIV proteins have discordant associations with viral load, Nat Med, vol.13, pp.46-53, 2007.

R. Zuniga, A. Lucchetti, P. Galvan, S. Sanchez, C. Sanchez et al., Relative dominance of Gag p24-specific cytotoxic T lymphocytes is associated with human immunodeficiency virus control, J Virol, vol.80, pp.3122-3125, 2006.

A. Saez-cirion, M. Sinet, S. Y. Shin, A. Urrutia, P. Versmisse et al., Heterogeneity in HIV suppression by CD8 T cells from HIV controllers: association with Gag-specific CD8 T cell responses, J Immunol, vol.182, pp.7828-7837, 2009.

B. Julg, K. L. Williams, S. Reddy, K. Bishop, Y. Qi et al., Enhanced anti-HIV functional activity associated with Gag-specific CD8 T-cell responses, J Virol, 2010.

/. Jvi, , pp.2031-2040

J. R. Almeida, D. A. Price, L. Papagno, Z. A. Arkoub, D. Sauce et al., Superior control of HIV-1 replication by CD8+ T cells is reflected by their avidity, polyfunctionality, and clonal turnover, J Exp Med, vol.204, pp.2473-2485, 2007.

B. Mothe, A. Llano, J. Ibarrondo, J. Zamarreno, M. Schiaulini et al., CTL responses of high functional avidity and broad variant cross-reactivity are associated with HIV control, PLoS One, vol.7, p.29717, 2012.

J. R. Almeida, D. Sauce, D. A. Price, L. Papagno, S. Y. Shin et al., Antigen sensitivity is a major determinant of CD8+ T-cell polyfunctionality and HIVsuppressive activity, Blood, vol.113, pp.6351-6360, 2009.

C. T. Berger, N. Frahm, D. A. Price, B. Mothe, M. Ghebremichael et al., High-functional-avidity cytotoxic T lymphocyte responses to HLA-B-restricted Gag-derived epitopes associated with relative HIV control, J Virol, vol.85, pp.9334-9345, 2011.

M. C. Iglesias, J. R. Almeida, S. Fastenackels, D. J. Van-bockel, M. Hashimoto et al., Escape from highly effective public CD8+ T-cell clonotypes by HIV, 2011.

D. A. Price, T. E. Asher, N. A. Wilson, M. C. Nason, J. M. Brenchley et al., Public clonotype usage identifies protective Gag-specific CD8+ T cell responses in SIV infection, J Exp Med, vol.206, pp.923-936, 2009.

O. Lambotte, G. Ferrari, C. Moog, N. L. Yates, H. X. Liao et al., Heterogeneous neutralizing antibody and antibody-dependent cell cytotoxicity responses in HIV-1 elite controllers, AIDS, vol.23, pp.897-906, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00387059

M. E. Ackerman, A. Mikhailova, E. P. Brown, K. G. Dowell, B. D. Walker et al., Polyfunctional HIV-Specific Antibody Responses Are Associated with Spontaneous HIV Control, PLoS Pathog, vol.12, p.1005315, 2016.

N. A. Doria-rose, R. M. Klein, M. G. Daniels, O. Dell, S. Nason et al., Breadth of human immunodeficiency virus-specific neutralizing activity in sera: clustering analysis and association with clinical variables, J Virol, vol.84, pp.1631-1636, 2010.

Y. Li, S. A. Migueles, B. Welcher, K. Svehla, A. Phogat et al., Broad HIV-1 neutralization mediated by CD4-binding site antibodies, Nat Med, vol.13, pp.1032-1034, 2007.

A. S. Dugast, K. Arnold, G. Lofano, S. Moore, M. Hoffner et al., Virus-driven Inflammation Is Associated With the Development of bNAbs in Spontaneous Controllers of HIV, Clin Infect Dis, vol.64, pp.1098-1104, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01514330

M. Pernas, C. Casado, V. Sandonis, C. Arcones, C. Rodriguez et al., Prevalence of HIV-1 dual infection in LTNP-Elite Controllers, J Acquir Immune Defic Syndr, 2013.

J. F. Scheid, H. Mouquet, N. Feldhahn, M. S. Seaman, K. Velinzon et al., Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals, Nature, vol.458, pp.636-640, 2009.

J. F. Scheid, H. Mouquet, N. Feldhahn, B. D. Walker, F. Pereyra et al., A method for identification of HIV gp140 binding memory B cells in human blood, J Immunol Methods, vol.343, pp.65-67, 2009.

J. F. Scheid, H. Mouquet, B. Ueberheide, R. Diskin, F. Klein et al., Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding, Science, vol.333, pp.1633-1637, 2011.

S. Pensieroso, L. Galli, S. Nozza, N. Ruffin, A. Castagna et al., B-cell subset alterations and correlated factors in HIV-1 infection, AIDS, vol.27, pp.1209-1217, 2013.

C. M. Buckner, L. Kardava, X. Zhang, K. Gittens, J. S. Justement et al., Maintenance of HIV-Specific Memory B-Cell Responses in Elite Controllers Despite Low Viral Burdens, J Infect Dis, vol.214, pp.390-398, 2016.

R. Cubas, J. Van-grevenynghe, S. Wills, L. Kardava, B. H. Santich et al., Reversible Reprogramming of Circulating Memory T Follicular Helper Cell Function during Chronic HIV Infection, J Immunol, vol.195, pp.5625-5636, 2015.
URL : https://hal.archives-ouvertes.fr/pasteur-01351053

S. Buranapraditkun, F. Pissani, J. E. Teigler, B. T. Schultz, G. Alter et al., Preservation of Peripheral T Follicular Helper Cell Function in HIV Controllers, J Virol, p.91, 2017.

B. M. Bussmann, S. Reiche, B. Bieniek, I. Krznaric, F. Ackermann et al., Loss of HIV-specific memory B-cells as a potential mechanism for the dysfunction of the humoral immune response against HIV, Virology, vol.397, pp.7-13, 2010.

A. Rouers, J. Klingler, B. Su, A. Samri, G. Laumond et al., HIVSpecific B Cell Frequency Correlates with Neutralization Breadth in Patients Naturally Controlling HIV-Infection. EBioMedicine, vol.21, pp.158-169, 2017.

M. Lichterfeld, G. Pantaleo, and M. Altfeld, Loss of HIV-1-specific T cell proliferation in chronic HIV-1 infection: cause or consequence of viral replication, AIDS, vol.19, pp.1225-1227, 2005.

P. W. Hunt, H. Hatano, E. Sinclair, T. H. Lee, M. P. Busch et al., HIV-specific CD4+ T cells may contribute to viral persistence in HIV controllers, Clin Infect Dis, vol.52, pp.681-687, 2011.

S. I. Staprans, A. P. Barry, G. Silvestri, J. T. Safrit, N. Kozyr et al., Enhanced SIV replication and accelerated progression to AIDS in macaques primed to mount a CD4 T cell response to the SIV envelope protein, Proc Natl Acad Sci U S A, vol.101, pp.13026-13031, 2004.

S. Ranasinghe, M. Flanders, S. Cutler, D. Z. Soghoian, M. Ghebremichael et al., HIVspecific CD4 T cell responses to different viral proteins have discordant associations with viral load and clinical outcome, J Virol, vol.86, pp.277-283, 2012.

N. Seth, D. Kaufmann, T. Lahey, E. S. Rosenberg, and K. W. Wucherpfennig, Expansion and contraction of HIV-specific CD4 T cells with short bursts of viremia, but physical loss of the majority of these cells with sustained viral replication, J Immunol, vol.175, pp.6948-6958, 2005.

L. Sabado, R. Kavanagh, D. G. Kaufmann, D. E. Fru, K. Babcock et al., In vitro priming recapitulates in vivo HIV-1 specific T cell responses, revealing rapid loss of virus reactive CD4 T cells in acute HIV-1 infection, PLoS One, vol.4, p.4256, 2009.

B. Emu, E. Sinclair, D. Favre, W. J. Moretto, P. Hsue et al., Phenotypic, functional, and kinetic parameters associated with apparent T-cell control of human immunodeficiency virus replication in individuals with and without antiretroviral treatment, J Virol, vol.79, pp.14169-14178, 2005.

W. B. Dyer, J. J. Zaunders, F. F. Yuan, B. Wang, J. C. Learmont et al., Mechanisms of HIV non-progression, 2008.

, robust and sustained CD4+ T-cell proliferative responses to p24 antigen correlate with control of viraemia and lack of disease progression after long-term transfusion-acquired HIV-1 infection, Retrovirology, vol.5, p.112

S. A. Younes, B. Yassine-diab, A. R. Dumont, M. R. Boulassel, Z. Grossman et al., HIV-1 viremia prevents the establishment of interleukin 2-producing HIV-specific memory CD4+ T cells endowed with proliferative capacity, J Exp Med, vol.198, pp.1909-1922, 2003.

B. Vingert, S. Perez-patrigeon, P. Jeannin, O. Lambotte, F. Boufassa et al., HIV controller CD4+ T cells respond to minimal amounts of Gag antigen due to high TCR avidity, PLoS Pathog, vol.6, p.1000780, 2010.

B. Vingert, D. Benati, O. Lambotte, P. De-truchis, L. Slama et al., HIV controllers maintain a population of highly efficient Th1 effector cells in contrast to patients treated in the long term, J Virol, vol.86, pp.10661-10674, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00733917

F. Laher, S. Ranasinghe, F. Porichis, N. Mewalal, K. Pretorius et al., HIV Controllers Exhibit Enhanced Frequencies of Major Histocompatibility Complex Class II Tetramer+ Gag-Specific CD4+ T Cells in Chronic Clade C HIV-1 Infection, J Virol, p.91, 2017.

R. E. Owen, J. W. Heitman, D. F. Hirschkorn, M. C. Lanteri, H. H. Biswas et al., HIV+ elite controllers have low HIV-specific T-cell activation yet maintain strong, polyfunctional T-cell responses, AIDS, vol.24, pp.1095-1105, 2010.

E. Van-braeckel, I. Desombere, F. Clement, L. Vandekerckhove, C. Verhofstede et al., Polyfunctional CD4(+) T cell responses in HIV-1-infected viral controllers compared with those in healthy recipients of an adjuvanted polyprotein HIV-1 vaccine, Vaccine, vol.31, pp.3739-3746, 2013.

J. Van-grevenynghe, F. A. Procopio, Z. He, N. Chomont, C. Riou et al., Transcription factor FOXO3a controls the persistence of memory CD4(+) T cells during HIV infection, Nat Med, vol.14, pp.266-274, 2008.

D. E. Kaufmann, D. G. Kavanagh, F. Pereyra, J. J. Zaunders, E. W. Mackey et al., Upregulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction, Nat Immunol, vol.8, pp.1246-1254, 2007.

M. A. Williams, E. V. Ravkov, and M. J. Bevan, Rapid culling of the CD4+ T cell repertoire in the transition from effector to memory, Immunity, vol.28, pp.533-545, 2008.

D. Zehn, S. Y. Lee, and M. J. Bevan, Complete but curtailed T-cell response to very low-affinity antigen, Nature, vol.458, pp.211-214, 2009.

A. Ma, High-avidity CD8+ T cells: optimal soldiers in the war against viruses and tumors, Immunol Res, vol.31, pp.13-24, 2005.

B. Neveu, E. Debeaupuis, K. Echasserieau, B. Le-moullac-vaidye, M. Gassin et al., Selection of high-avidity CD8 T cells correlates with control of hepatitis C virus infection, Hepatology, vol.48, pp.713-722, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-01402305

S. Kuchen, R. Robbins, G. P. Sims, C. Sheng, T. M. Phillips et al., Essential role of IL-21 in B cell activation, expansion, and plasma cell generation during CD4+ T cell-B cell collaboration, J Immunol, vol.179, pp.5886-5896, 2007.

G. Monteleone, F. Pallone, and T. T. Macdonald, Interleukin-21: a critical regulator of the balance between effector and regulatory T-cell responses, Trends Immunol, vol.29, pp.290-294, 2008.

R. Zeng, R. Spolski, S. E. Finkelstein, S. Oh, P. E. Kovanen et al., Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function, J Exp Med, vol.201, pp.139-148, 2005.

H. Elsaesser, K. Sauer, and D. G. Brooks, IL-21 is required to control chronic viral infection, Science, vol.324, pp.1569-1572, 2009.

A. Frohlich, J. Kisielow, I. Schmitz, S. Freigang, A. T. Shamshiev et al., IL-21R on T cells is critical for sustained functionality and control of chronic viral infection, Science, vol.324, pp.1576-1580, 2009.

J. S. Yi, M. Du, and A. J. Zajac, A vital role for interleukin-21 in the control of a chronic viral infection, Science, vol.324, pp.1572-1576, 2009.

A. Iannello, M. R. Boulassel, S. Samarani, O. Debbeche, C. Tremblay et al., Dynamics and consequences of IL-21 production in HIV-infected individuals: a longitudinal and cross-sectional study, J Immunol, vol.184, pp.114-126, 2010.

A. Iannello, C. Tremblay, J. P. Routy, M. R. Boulassel, T. E. Ahmad et al., Decreased levels of circulating IL-21 in HIV-infected AIDS patients: correlation with CD4+ T-cell counts, Viral Immunol, vol.21, pp.385-388, 2008.

F. Y. Yue, C. Lo, A. Sakhdari, E. Y. Lee, C. M. Kovacs et al., HIV-specific IL-21 producing CD4+ T cells are induced in acute and chronic progressive HIV infection and are associated with relative viral control, J Immunol, vol.185, pp.498-506, 2010.

M. F. Chevalier, B. Julg, A. Pyo, M. Flanders, S. Ranasinghe et al., HIV-1-specific interleukin-21+ CD4+ T cell responses contribute to durable viral control through the modulation of HIV-specific CD8+ T cell function, J Virol, vol.85, pp.733-741, 2011.

P. J. Norris, H. F. Moffett, O. O. Yang, D. E. Kaufmann, M. J. Clark et al., Beyond help: direct effector functions of human immunodeficiency virus type 1-specific CD4(+) T cells, J Virol, vol.78, pp.8844-8851, 2004.

J. J. Zaunders, W. B. Dyer, B. Wang, M. L. Munier, M. Miranda-saksena et al., Identification of circulating antigen-specific CD4+ T lymphocytes with a CCR5+, cytotoxic phenotype in an HIV-1 long-term nonprogressor and in CMV infection, Blood, vol.103, pp.2238-2247, 2004.

S. Johnson, M. Eller, J. E. Teigler, S. M. Maloveste, B. T. Schultz et al., Cooperativity of HIV-specific cytolytic CD4+ T cells and CD8+ T cells in control of HIV viremia, J Virol, 2015.

J. B. Sacha, G. -. Vela, J. P. Buechler, M. B. Martins, M. A. Maness et al., Gag-and Nef-specific CD4+ T cells recognize and inhibit SIV replication in infected macrophages early after infection, Proc Natl Acad Sci U S A, vol.106, pp.9791-9796, 2009.

M. C. Gauduin, Y. Yu, A. Barabasz, A. Carville, M. Piatak et al., Induction of a virus-specific effector-memory CD4+ T cell response by attenuated SIV infection, J Exp Med, vol.203, pp.2661-2672, 2006.

E. Martin-gayo, J. Cronin, T. Hickman, Z. Ouyang, M. Lindqvist et al., Circulating CXCR5+CXCR3+PD-1lo Tfh-like cells in HIV-1 controllers with neutralizing antibody breadth, JCI Insight, vol.2, p.89574, 2017.

H. Chen, C. Li, J. Huang, T. Cung, K. Seiss et al., CD4+ T cells from elite controllers resist HIV-1 infection by selective upregulation of p21, J Clin Invest, vol.121, pp.1549-1560, 2011.

A. Saez-cirion, C. Hamimi, A. Bergamaschi, A. David, P. Versmisse et al., Restriction of HIV-1 replication in macrophages and CD4+ T cells from HIV controllers, Blood, vol.118, pp.955-964, 2011.
URL : https://hal.archives-ouvertes.fr/pasteur-01420583

W. E. Walker, S. Kurscheid, S. Joshi, C. A. Lopez, G. Goh et al., Increased Levels of Macrophage Inflammatory Proteins Result in Resistance to R5-Tropic HIV-1 in a Subset of Elite Controllers, J Virol, vol.89, pp.5502-5514, 2015.

H. Meijerink, A. R. Indrati, S. Soedarmo, F. Utami, C. A. De-jong et al., Heroin use in Indonesia is associated with higher expression of CCR5 on CD4+ cells and lower ex-vivo production of CCR5 ligands, AIDS, vol.29, pp.385-388, 2015.

N. Noel, R. Pena, A. David, V. Avettand-fenoel, I. Erkizia et al., Long-Term Spontaneous Control of HIV-1 Is Related to Low Frequency of Infected Cells and Inefficient Viral Reactivation, J Virol, vol.90, pp.6148-6158, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01414933

S. A. Rabi, K. A. O'connell, D. Nikolaeva, J. R. Bailey, B. L. Jilek et al., Unstimulated primary CD4+ T cells from HIV-1-positive elite suppressors are fully susceptible to HIV-1 entry and productive infection, J Virol, vol.85, pp.979-986, 2011.

K. A. O'connell, S. A. Rabi, R. F. Siliciano, and J. N. Blankson, CD4+ T cells from elite suppressors are more susceptible to HIV-1 but produce fewer virions than cells from chronic progressors, Proc Natl Acad Sci U S A, vol.108, pp.689-698, 2011.

S. Graff-dubois, A. Rouers, and A. Moris, Impact of Chronic HIV/SIV Infection on T Follicular Helper Cell Subsets and Germinal Center Homeostasis, Front Immunol, vol.7, p.501, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01405198

D. Benati, M. Galperin, O. Lambotte, S. Gras, A. Lim et al.,

, Public T cell receptors confer high-avidity CD4 responses to HIV controllers, J Clin Invest, vol.126, pp.2093-2108

R. Bonecchi, G. Bianchi, P. P. Bordignon, D. 'ambrosio, D. Lang et al., Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s, J Exp Med, vol.187, pp.129-134, 1998.

M. Zhou and W. Ouyang, The function role of GATA-3 in Th1 and Th2 differentiation, Immunol Res, vol.28, pp.25-37, 2003.

S. Sakaguchi, N. Sakaguchi, M. Asano, M. Itoh, and M. Toda, Immunologic selftolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25), J Immunol, vol.155, pp.1151-1164, 1995.

J. M. Kim and A. Rudensky, The role of the transcription factor Foxp3 in the development of regulatory T cells, Immunol Rev, vol.212, pp.86-98, 2006.

C. O. Tabler, M. B. Lucera, A. A. Haqqani, D. J. Mcdonald, S. A. Migueles et al., CD4+ memory stem cells are infected by HIV-1 in a manner regulated in part by SAMHD1 expression, J Virol, vol.88, pp.4976-4986, 2014.

M. Cavrois, D. Noronha, C. Greene, and W. C. , A sensitive and specific enzymebased assay detecting HIV-1 virion fusion in primary T lymphocytes, Nat Biotechnol, vol.20, pp.1151-1154, 2002.

N. C. Flerin, H. Chen, T. D. Glover, P. A. Lamothe, J. H. Zheng et al., T-Cell Receptor, 2017.

, Clonotype-Specific Differences in Inhibitory Activity of HIV-1 Cytotoxic T-Cell Clones Is Not Mediated by TCR Alone, J Virol, vol.91

R. M. Paris, C. Petrovas, S. Ferrando-martinez, E. Moysi, K. L. Boswell et al., Selective Loss of Early Differentiated, Highly Functional PD1high CD4 T Cells with HIV Progression, vol.10, p.144767, 2015.

J. P. Casazza, J. M. Brenchley, B. J. Hill, A. R. Ambrozak, D. Roederer et al., Autocrine production of beta-chemokines protects CMV-Specific CD4 T cells from HIV infection, PLoS Pathog, vol.5, p.1000646, 2009.

S. F. Sieg, B. Rodriguez, R. Asaad, W. Jiang, D. A. Bazdar et al., Peripheral S-phase T cells in HIV disease have a central memory phenotype and rarely have evidence of recent T cell receptor engagement, J Infect Dis, vol.192, pp.62-70, 2005.

L. Gattinoni, D. E. Speiser, M. Lichterfeld, and C. Bonini, T memory stem cells in health and disease, Nat Med, vol.23, pp.18-27, 2017.

N. R. Klatt, S. E. Bosinger, M. Peck, L. E. Richert-spuhler, A. Heigele et al., Limited HIV infection of central memory and stem cell memory CD4+ T cells is associated with lack of progression in viremic individuals, PLoS Pathog, vol.10, p.1004345, 2014.

G. Silvestri, D. L. Sodora, R. A. Koup, M. Paiardini, O. Neil et al., Nonpathogenic SIV infection of sooty mangabeys is characterized by limited bystander immunopathology despite chronic high-level viremia, Immunity, vol.18, pp.441-452, 2003.

L. Guglielmi, S. Gimenez, M. Larroque, X. Tong, P. Portales et al., Circulating human CD4+ T cells have intracellular pools of CCR5 molecules, Blood, vol.118, pp.1177-1178, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00635939

E. Barker, C. E. Mackewicz, G. Reyes-teran, A. Sato, S. A. Stranford et al., Virological and immunological features of long-term human immunodeficiency virus-infected individuals who have remained asymptomatic compared with those who have progressed to acquired immunodeficiency syndrome, Blood, vol.92, pp.3105-3114, 1998.

A. Parmentier and M. , Genetics of resistance to HIV infection: Role of co-receptors and co-receptor ligands, Semin Immunol, vol.18, pp.387-403, 2006.

F. Porichis and D. E. Kaufmann, HIV-specific CD4 T cells and immune control of viral replication, Curr Opin HIV AIDS, vol.6, pp.174-180, 2011.

L. A. Chakrabarti and V. Simon, Immune mechanisms of HIV control, Curr Opin Immunol, vol.22, pp.488-496, 2010.

Y. Guan, M. M. Sajadi, R. Kamin-lewis, T. R. Fouts, A. Dimitrov et al., Discordant memory B cell and circulating anti-Env antibody responses in HIV-1 infection, Proc Natl Acad Sci U S A, vol.106, pp.3952-3957, 2009.

A. Rouers, J. Klingler, B. Su, A. Samri, G. Laumond et al., HIVSpecific B Cell Frequency Correlates with Neutralization Breadth in Patients Naturally Controlling HIV-Infection, 2017.

S. Ranasinghe, D. Z. Soghoian, M. Lindqvist, M. Ghebremichael, F. Donaghey et al., , vol.1, 2015.

, Antibody Neutralization Breadth Is Associated with Enhanced HIV-Specific CD4+ T Cell Responses, J Virol, vol.90, pp.2208-2220

M. Storcksdieck-genannt-bonsmann, T. Niezold, V. Temchura, F. Pissani, K. Ehrhardt et al., Enhancing the Quality of Antibodies to HIV-1 Envelope by GagPol-Specific Th Cells, J Immunol, vol.195, pp.4861-4872, 2015.

K. M. Chavele, E. Merry, and M. R. Ehrenstein, Cutting edge: circulating plasmablasts induce the differentiation of human T follicular helper cells via IL-6 production, J Immunol, vol.194, pp.2482-2485, 2015.

J. M. Heather, K. Best, T. Oakes, E. R. Gray, J. K. Roe et al., Dynamic Perturbations of the T-Cell Receptor Repertoire in Chronic HIV Infection and following, Antiretroviral Therapy. Front Immunol, vol.6, p.644, 2015.

M. Hebeisen, L. Baitsch, D. Presotto, P. Baumgaertner, P. Romero et al., SHP-1 phosphatase activity counteracts increased T cell receptor affinity, J Clin Invest, vol.123, pp.1044-1056, 2013.

C. G. King, S. Koehli, B. Hausmann, M. Schmaler, D. Zehn et al., T cell affinity regulates asymmetric division, effector cell differentiation, and tissue pathology, Immunity, vol.37, pp.709-720, 2012.

N. J. Tubo and M. K. Jenkins, TCR signal quantity and quality in CD4 T cell differentiation, Trends Immunol, vol.35, pp.591-596, 2014.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society Series B, vol.57, pp.289-300, 1995.

T. Zhao and H. Liu, The huge Package for High-dimensional Undirected Graph Estimation in R, Journal of Machine Learning Research, 2012.

J. Daudin, F. Picard, and S. Robin, Mixture model for random graphs, Statistics and Computing, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01197569

W. N. Venables and B. D. Ripley, Modern Applied Statistics with S. Fourth Edition, 2002.

, Déplétion du compartiment muqueux de cellules T CD4+ mémoires au cours de l'infection par le virus de l'immunodéficience humaine (VIH) : causes et conséquences Virologie, Carcelain viremia. Science, vol.11, issue.5, pp.1447-1450, 1997.

D. C. Douek, HIV preferentially infects HIV-specific CD4

. +-t-cells, Nature, vol.417, issue.6884, pp.95-98, 2002.

L. Sabado and R. , In vitro priming recapitulates in vivo HIV-1 specific T cell responses, revealing rapid loss of virus reactive CD4 T cells in acute HIV-1 infection, PLoS One, vol.4, issue.1, p.4256, 2009.

O. Lambotte, HIV controllers: a homogeneous group of HIV-1-infected patients with spontaneous control of viral replication, Clin Infect Dis, vol.41, issue.7, pp.1053-1056, 2005.

L. A. Chakrabarti and V. Simon, Immune mechanisms of HIV control, Curr Opin Immunol, vol.22, issue.4, pp.488-496, 2010.

A. Saez-cirion, HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar CTL activation phenotype, Proc Natl Acad Sci, vol.104, issue.16, pp.6776-6781, 2007.

J. R. Almeida, Antigen sensitivity is a major determinant of CD8
URL : https://hal.archives-ouvertes.fr/inserm-00668485

+. Polyfunctionality and H. Activity, Blood, vol.113, issue.25, pp.6351-6360, 2009.

K. Ladell, A molecular basis for the control of preimmune escape variants by HIV-specific CD8

, + T cells. Immunity, vol.38, issue.3, pp.425-436, 2013.

H. Chen, TCR clonotypes modulate the protective effect of HLA class I molecules in HIV-1 infection, Nat Immunol, vol.13, issue.7, pp.691-700, 2012.

J. R. Almeida, Superior control of HIV-1 replication by CD8

, + T cells is reflected by their avidity, polyfunctionality, and clonal turnover

, J Exp Med, vol.204, issue.10, pp.2473-2485, 2007.

M. C. Iglesias, Escape from highly effective public CD8+ T-cell clonotypes by HIV, Blood, vol.118, issue.8, pp.2138-2149, 2011.

S. A. Younes, HIV-1 viremia prevents the establishment of interleukin 2-producing HIV-specific memory CD4

, + T cells endowed with proliferative capacity, J Exp Med, vol.198, issue.12, pp.1909-1922, 2003.

A. Harari, Functional heterogeneity of memory CD4 T cell responses in different conditions of antigen exposure and persistence, J Immunol, vol.174, issue.2, pp.1037-1045, 2005.

J. Grevenynghe, Transcription factor FOXO3a controls the persistence of memory CD4(+) T cells during HIV infection, Nat Med, vol.14, issue.3, pp.266-274, 2008.

S. J. Potter, Preserved central memory and activated effector memory CD4
URL : https://hal.archives-ouvertes.fr/pasteur-00193768

, + T-cell subsets in human immunodeficiency virus controllers: an ANRS EP36 study, J Virol, vol.81, issue.24, pp.13904-13915, 2007.

D. E. Kaufmann, Limited durability of viral control following treated acute HIV infection, PLoS Med, vol.1, issue.2, p.36, 2004.

S. Ranasinghe, HIV-specific CD4 T cell responses to different viral proteins have discordant associations with viral load and clinical outcome, J Virol, vol.86, issue.1, pp.277-283, 2012.

A. L. Ferre, HIV controllers with HLA-DRB1*13 and HLA-DQB1*06 alleles have strong

+. Responses,

, J Virol, vol.84, issue.21, pp.11020-11029, 2010.

B. Vingert, HIV controllers maintain a population of highly efficient Th1 effector cells in contrast to patients treated in the long term, J Virol, vol.86, pp.10661-10674, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-00733917

D. E. Kaufmann, Upregulation of CTLA-4 by HIV-specific CD4

, + T cells correlates with disease progression and defines a reversible immune dysfunction, Nat Immunol, vol.8, issue.11, pp.1246-1254, 2007.

F. Porichis, Responsiveness of HIVspecific CD4 T cells to PD-1 blockade, Blood, vol.118, issue.4, pp.965-974, 2011.

B. Vingert, , p.4

, + T cells respond to minimal amounts of Gag antigen due to high TCR avidity, PLoS Pathog, vol.6, issue.2, p.1000780, 2010.

A. Ma, High-avidity CD8

, + T cells: optimal soldiers in the war against viruses and tumors, Immunol Res, vol.31, issue.1, pp.13-24, 2005.

C. T. Berger, High functional avidity CTL responses to HLA-B-restricted Gag-derived epitopes associate with relative HIV control, J Virol, vol.85, issue.18, pp.9334-9345, 2011.

D. E. Kaufmann, Comprehensive analysis of human immunodeficiency virus type 1-specific CD4 responses reveals marked immunodominance of gag and nef and the presence of broadly recognized peptides, J Virol, vol.78, issue.9, pp.4463-4477, 2004.

L. Wooldridge, Tricks with tetramers: how to get the most from multimeric peptide-MHC, Immunology, vol.126, issue.2, pp.147-164, 2009.

A. Lim, Frequent contribution of T cell clonotypes with public TCR features to the chronic response against a dominant EBV-derived epitope: application to direct detection of their molecular imprint on the human peripheral T cell repertoire, J Immunol, vol.165, issue.4, pp.2001-2011, 2000.

S. Hacein-bey-abina, Efficacy of gene therapy for X-linked severe combined immunodeficiency, N Engl J Med, vol.363, issue.4, pp.355-364, 2010.

E. Alamyar, R)) tools for the nucleotide analysis of immunoglobulin (IG) and T cell receptor (TR) V-(D)-J repertoires, polymorphisms, and IG mutations: IMGT/V-QUEST and IMGT/HighV-QUEST for NGS, Methods Mol Biol, vol.882, pp.569-604, 2012.

V. Venturi, A mechanism for TCR sharing between T cell subsets and individuals revealed by pyrosequencing, J Immunol, vol.186, issue.7, pp.4285-4294, 2011.

S. J. Turner, Structural determinants of T-cell receptor bias in immunity, Nat Rev Immunol, vol.6, issue.12, pp.883-894, 2006.

S. Gras, T-cell receptor bias and immunity, Curr Opin Immunol, vol.20, issue.1, pp.119-125, 2008.

J. Rossjohn, T cell antigen receptor recognition of antigen-presenting molecules, Annu Rev Immunol, vol.33, pp.169-200, 2015.

M. R. Betts, HIV nonprogressors preferentially maintain highly functional HIV-specific CD8

. +-t-cells, Blood, vol.107, issue.12, pp.4781-4789, 2006.

P. Liu, Characterization of human alphabeta-TCR repertoire and discovery of D-D fusion in TCRbeta chains, Protein Cell, vol.5, issue.8, pp.603-615, 2014.

G. M. Gillespie, Strong TCR conservation and altered T cell cross-reactivity characterize a B*57-restricted immune response in HIV-1 infection, J Immunol, vol.177, issue.6, pp.3893-3902, 2006.

H. N. Kloverpris,

, + TCR bias immunodominance in HIV-1 infection, J Immunol, vol.194, issue.11, pp.5329-5345, 2015.

M. A. Williams, Rapid culling of the CD4 + T cell repertoire in the transition from effector to memory, Immunity, vol.28, issue.4, pp.533-545, 2008.

I. M. Belyakov, Impact of vaccine-induced mucosal high-avidity CD8

, + CTLs in delay of AIDS viral dissemination from mucosa, Blood, vol.107, issue.8, pp.3258-3264, 2006.

E. Corse, Attenuated T cell responses to a high-potency ligand in vivo, PLoS Biol, vol.8, issue.9, p.1000481, 2010.

S. Valitutti, The serial engagement model 17 years after: from TCR triggering to immunotherapy, Front Immunol, vol.3, p.272, 2012.

G. Thorborn, Clonotypic composition of the CD4

, + T cell response to a vectored retroviral antigen is determined by its speed, J Immunol, vol.193, issue.4, pp.1567-1577, 2014.

S. L. Swain, Expanding roles for CD4(+) T cells in immunity to viruses, Nat Rev Immunol, vol.12, issue.2, pp.136-148, 2012.

D. Blanco-melo, Intrinsic cellular defenses against human immunodeficiency viruses, Immunity, vol.37, issue.3, pp.399-411, 2012.

M. L. Vetter, Differences in APOBEC3G expression in CD4

, + T helper lymphocyte subtypes modulate HIV-1 infectivity, PLoS Pathog, vol.5, issue.2, p.1000292, 2009.

K. Oswald-richter, Identification of a CCR5-expressing T cell subset that is resistant to R5-tropic HIV infection, PLoS Pathog, vol.3, issue.4, p.58, 2007.

A. Saez-cirion, Restriction of HIV-1 replication in macrophages and CD4
URL : https://hal.archives-ouvertes.fr/pasteur-01420583

, + T cells from HIV controllers. Blood, vol.118, issue.4, pp.955-964, 2011.

E. L. Reinherz and J. H. Wang, Codification of bidentate pMHC interaction with TCR its co-receptor, Trends Immunol, vol.36, issue.5, pp.300-306, 2015.

S. J. Rihn, Extreme genetic fragility of the HIV-1 capsid, PLoS Pathog, vol.9, issue.6, p.1003461, 2013.

S. G. Hansen, Cytomegalovirus vectors violate CD8

, + T cell epitope recognition paradigms, Science, vol.340, issue.6135, p.1237874, 2013.

S. Ghorashian, CD8 T cell tolerance to a tumor-associated self-antigen is reversed by CD4 T cells engineered to express the same T cell receptor, J Immunol, vol.194, issue.3, pp.1080-1089, 2015.

, , 2017.

A. , Annexe 2 : MHC Class II Tetramer Labeling of Human Primary CD4 + T Cells from HIV Infected Patients www

, Iss 06, vol.7, 2017.

, USA. The tetramers are provided at a concentration in the 1-1.5 mg/ml range, APC-conjugated antigen-loaded MHC II tetramers can be obtained through the NIH Tetramer Core Facility

, APC-conjugated MHC II tetramers loaded with an irrelevant peptide (usually the CLIP peptide: PVSKMRMATPLLMQA can be obtained through the

, Mouse-anti-human CD4 BD Horizon TM PE-CF594 (clone RPA-T4) (BD, BD Biosciences, p.562281

, Mouse-anti-human CD8 Brilliant Violet 785 TM (clone RPA-T8)

, Mouse-anti-human CD14 VioGreen ® (clone TÜK4) (Miltenyi Biotec, catalog number, pp.130-096

, Mouse-anti-human CD20 VioGreen ® (clone LT20) (Miltenyi Biotec, catalog number, pp.130-096

, Fixable Viability Dye eFluor 506 ® (Affymetrix, eBioscience, catalog number, pp.65-0866

, 16% paraformaldehyde (PFA) solution (Electron Microscopy Sciences, catalog number: 15710) 12. Phosphate buffered saline (PBS), pH, vol.7

, Gibco TM, p.61870044

, HyClone TM Fetal bovine serum (FBS) (South America), research grade (GE Healthcare, catalog number: SV30160.03) 15. Penicillin-streptomycin (10,000 U/ml)

M. Hepes-buffer, Dominique Dutscher SAS, pp.5-01100

, Bovine serum albumin (BSA) (Sigma-Aldrich, catalog number: A3912)

, Sodium azide (NaN3) 5% (w/v) (VWR, BDH ® , catalog number, pp.7465-7467

, Human AB serum (PAN-Biotech, pp.30-2901

, Complete RPMI (see Recipes)

, Benchtop centrifuge (Thermo Fisher Scientific, model: Sorvall TM Legend TM XTR)

, Benchtop microcentrifuge (Eppendorf, model: 5254 R)

, BD LSRFortessa TM cell analyzer (BD, BD Biosciences, model: BD LSRFortessa TM Cell Analyzer

, Iss 06, vol.7, 2017.

, Iss 06, vol.7, 2017.

, Iss 06, vol.7, 2017.

R. 1. Benati, D. Galperin, M. Lambotte, O. Gras, S. Lim et al.,

K. A. Campbell, B. Lemercier, M. Claireaux, S. Hendou, P. Lechat et al., Public T cell receptors confer high-avidity CD4 responses to HIV controllers, J Clin Invest, vol.126, issue.6, pp.2093-2108, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01319968

. N. Seth, D. Kaufmann, T. Lahey, E. S. Rosenberg, and K. W. Wucherpfennig, , 2005.

, Expansion and contraction of HIV-specific CD4 T cells with short bursts of viremia, but physical loss of the majority of these cells with sustained viral replication, J Immunol, vol.175, issue.10, pp.6948-58