L. , Using the fact that the distribution function is increasing, we introduce the local modulus of increase of the distribution function G at y = G ?1 (?) ? R as: 1. T 1 is a tree with nodes N 1 = {1, 2014.

.. .. For-i-=, d ? 1 and {a, b} ? E i with a = {a 1 , a 2 } and b = {b 1 , b 2 } it must hold that

K. Aas, C. Czado, and E. C. Brechmann, Truncated regular vines in high dimensions with application to financial data, Canadian Journal of Statistics, vol.40, issue.1, pp.68-85, 2012.

K. Aas, C. Czado, A. Frigessi, and H. Bakken, Pair-copula constructions of multiple dependence, Insurance, Mathematics and Economics, vol.44, pp.182-198, 2009.

S. Agrawal, Y. Ding, A. Saberi, Y. , and Y. , Price of correlations in stochastic optimization, Operations Research, vol.60, issue.1, pp.150-162, 2012.

G. Archer, A. Saltelli, and I. Sobol, Sensitivity measures, anova-like techniques and the use of bootstrap, Journal of Statistical Computation and Simulation, vol.58, issue.2, pp.99-120, 1997.

M. Baudin and J. Martinez, Introduction to sensitivity analysis with nisp, 2014.

M. Bayarri, J. Berger, R. Paulo, J. Sacks, J. Cafeo et al., A framework for validation of computer models, Technometrics, vol.49, pp.138-154, 2007.

D. Beaudoin and L. Lakhal-chaieb, Archimedean copula model selection under dependent truncation, Statistics in medicine, vol.27, issue.22, pp.4440-4454, 2008.

T. Bedford and R. M. Cooke, Probability density decomposition for conditionally dependent random variables modeled by vines, Annals of Mathematics and Artificial intelligence, vol.32, issue.1, pp.245-268, 2001.

T. Bedford and R. M. Cooke, Vines: A new graphical model for dependent random variables, Annals of Statistics, vol.30, issue.4, pp.1031-1068, 2002.

T. Bedford, J. Quigley, and L. Walls, Expert elicitation for reliable system design, Statistical Science, vol.21, issue.4, pp.428-450, 2006.

N. Benoumechiara, dep-impact: Uncertainty quantification under incomplete probability information with Python, 2018.

N. Benoumechiara and K. Elie-dit-cosaque, Shapley effects for sensitivity analysis with dependent inputs: bootstrap and kriging-based algorithms, ESAIM: Proceedings and Surveys, vol.65, pp.266-293, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01677501

N. Benoumechiara, B. Michel, P. Saint-pierre, and N. Bousquet, Detecting and modeling worst-case dependence structures between random inputs of computational reliability models, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01779484

G. Biau, L. Devroye, and G. Lugosi, Consistency of random forests and other averaging classifiers, Journal of Machine Learning Research, vol.9, pp.2015-2033, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00355368

S. Bobkov and M. Ledoux, One-dimensional empirical measures, order statistics and kantorovich transport distances, 2014.

E. Borgonovo, A new uncertainty importance measure, Reliability Engineering & System Safety, vol.92, issue.6, pp.771-784, 2007.

E. Borgonovo, W. Castaings, and S. Tarantola, Moment Independent Importance Measures: New Results and Analytical Test Cases, Risk Analysis, vol.31, issue.3, pp.404-428, 2011.
URL : https://hal.archives-ouvertes.fr/halsde-00683555

L. Breiman, Bagging predictors. Machine learning, vol.24, pp.123-140, 1996.

L. Breiman, Random forests. Machine learning, vol.45, pp.5-32, 2001.

L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen, Classification and regression trees, 1984.

T. Browne, J. Fort, B. Iooss, L. Gratiet, and L. , Estimate of quantile-oriented sensitivity indices, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01450891

Y. Caniou, Global sensitivity analysis for nested and multiscale modelling, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00864175

J. Castro, D. Gómez, and J. Tejada, Polynomial calculation of the shapley value based on sampling, Computers & Operations Research, vol.36, issue.5, pp.1726-1730, 2009.

G. Chastaing, F. Gamboa, and C. Prieur, Generalized hoeffding-sobol decomposition for dependent variables-application to sensitivity analysis, Electronic Journal of Statistics, vol.6, pp.2420-2448, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00649404

F. Chazal, P. Massart, and B. Michel, Rates of convergence for robust geometric inference, Electronic Journal of Statistics, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01157551

T. Chen and C. Guestrin, Xgboost: A scalable tree boosting system, Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pp.785-794, 2016.

U. Cherubini, E. Luciano, and W. Vecchiato, Copula methods in finance, 2004.

N. R. Commission, Reactor safety study. an assessment of accident risks in us commercial nuclear power plants. appendices iii and iv, 1975.

N. R. Council, Assessing the Reliability of Complex Models: Mathematical and statistical foundations of Verification, Validation and Uncertainty Quantification, 2012.

T. Crestaux, O. Le-maitre, and J. Martinez, Polynomial chaos expansion for sensitivity analysis, Reliability Engineering & System Safety, vol.94, issue.7, pp.1161-1172, 2009.

M. Csorgo, Quantile processes with statistical applications, vol.42, 1983.

R. Cukier, H. Levine, and K. Shuler, Nonlinear sensitivity analysis of multiparameter model systems, Journal of computational physics, vol.26, issue.1, pp.1-42, 1978.

C. Czado, Pair-copula constructions of multivariate copulas, Copula theory and its applications, pp.93-109, 2010.

S. Da-veiga, Global sensitivity analysis with dependence measures, Journal of Statistical Computation and Simulation, vol.85, issue.7, pp.1283-1305, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00903283

E. De-rocquigny, N. Devictor, and S. Tarantola, Uncertainty in industrial practice: a guide to quantitative uncertainty management, 2008.

S. Demarta and A. J. Mcneil, The t copula and related copulas, International statistical review, vol.73, issue.1, pp.111-129, 2005.

M. Denil, D. Matheson, D. Freitas, and N. , Narrowing the gap: Random forests in theory and in practice, International conference on machine learning, pp.665-673, 2014.

P. Derennes, J. Morio, and F. Simatos, Estimation of moment independent importance measures using a copula and maximum entropy framework, 2018 Winter Simulation Conference (WSC), pp.1623-1634, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02103155

P. Derennes, J. Morio, and F. Simatos, A nonparametric importance sampling estimator for moment independent importance measures, Reliability Engineering & System Safety, vol.187, pp.3-16, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02133955

J. Dissmann, E. C. Brechmann, C. Czado, and D. Kurowicka, Selecting and estimating regular vine copulae and application to financial returns, Computational Statistics & Data Analysis, vol.59, pp.52-69, 2013.

A. Dvoretzky, J. Kiefer, and J. Wolfowitz, Asymptotic minimax character of the sample distribution function and of the classical multinomial estimator, The Annals of Mathematical Statistics, pp.642-669, 1956.

F. D'auria, C. Camargo, and O. Mazzantini, The best estimate plus uncertainty (bepu) approach in licensing of current nuclear reactors, Nuclear Engineering and Design, vol.248, pp.317-328, 2012.

B. Efron, Nonparametric standard errors and confidence intervals, canadian Journal of Statistics, vol.9, issue.2, pp.139-158, 1981.

P. Embrechts, A. Mcneil, and D. Straumann, Correlation and dependence in risk management: properties and pitfalls. Risk management: value at risk and beyond, pp.176-223, 2002.

L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, 2015.

K. Fang, R. Li, and A. Sudjianto, Design and modeling for computer experiments, 2005.

R. Fisher, Statistical methods for research workers, 1925.

J. Fort, T. Klein, and N. Rachdi, New sensitivity analysis subordinated to a contrast, Communications in Statistics-Theory and Methods, vol.45, issue.15, pp.4349-4364, 2016.
URL : https://hal.archives-ouvertes.fr/hal-00821308

M. Frechet, Sur les tableaux de correlation dont les marges sont dollnes, 1951.

E. W. Frees and E. A. Valdez, Understanding relationships using copulas, North American actuarial journal, vol.2, issue.1, pp.1-25, 1998.

J. H. Friedman, Greedy function approximation: a gradient boosting machine, Annals of statistics, pp.1189-1232, 2001.

R. Genuer, J. Poggi, and C. Tuleau-malot, Variable selection using random forests, Pattern Recognition Letters, vol.31, issue.14, pp.2225-2236, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00755489

K. Goda, Statistical modeling of joint probability distribution using copula: Application to peak and permanent displacement seismic demands, Structural Safety, vol.32, issue.2, pp.112-123, 2010.

B. Gregorutti, B. Michel, and P. Saint-pierre, Grouped variable importance with random forests and application to multiple functional data analysis, Computational Statistics & Data Analysis, vol.90, pp.15-35, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01084301

A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf, Measuring statistical dependence with hilbert-schmidt norms, International conference on algorithmic learning theory, pp.63-77, 2005.

M. Grigoriu and C. Turkstra, Safety of structural systems with correlated resistances, Applied Mathematical Modelling, vol.3, issue.2, pp.130-136, 1979.

U. Grömping, Variable importance assessment in regression: linear regression versus random forest, The American Statistician, vol.63, issue.4, pp.308-319, 2009.

L. Gruber and C. Czado, Sequential bayesian model selection of regular vine copulas, Bayesian Analysis, vol.10, issue.4, pp.937-963, 2015.

I. H. Haff, How to select a good vine, International FocuStat Workshop on Focused Information Criteria and Related Themes, 2016.

J. Helton, Quantification of margins and uncertainties: conceptual and computational basis, Reliability Engineering and System Safety, vol.96, pp.976-1013, 2011.

W. Hoeffding, Scale-invariant correlation theory, vol.5, pp.181-233, 1940.

W. Hoeffding, A class of statistics with asymptotically normal distribution, Annals of Mathematical Statistics, vol.19, issue.3, pp.293-325, 1948.

T. Homma and A. Saltelli, Importance measures in global sensitivity analysis of nonlinear models, Reliability Engineering & System Safety, vol.52, issue.1, pp.1-17, 1996.

S. C. Hora and R. L. Iman, Comparison of maximus/bounding and bayes/monte carlo for fault tree uncertainty analysis, 1986.

, Sandia National Labs

R. L. Iman and W. Conover, A distribution-free approach to inducing rank correlation among input variables, Communications in Statistics-Simulation and Computation, vol.11, issue.3, pp.311-334, 1982.

R. L. Iman and S. C. Hora, A robust measure of uncertainty importance for use in fault tree system analysis, Risk analysis, vol.10, issue.3, pp.401-406, 1990.

B. Iooss and P. Lemaître, A review on global sensitivity analysis methods, Uncertainty Management in Simulation-Optimization of Complex Systems, pp.101-122, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00975701

B. Iooss and C. Prieur, Shapley effects for sensitivity analysis with dependent inputs: comparisons with sobol'indices, numerical estimation and applications, International Journal of uncertainty Quantification, 2017.

T. Ishigami and T. Homma, An importance quantification technique in uncertainty analysis for computer models, Proceedings., First International Symposium on, pp.398-403, 1990.

H. Ishwaran, Variable importance in binary regression trees and forests, Electronic Journal of Statistics, vol.1, pp.519-537, 2007.

H. Ishwaran and U. B. Kogalur, Consistency of random survival forests, Statistics & probability letters, vol.80, pp.1056-1064, 2010.

H. Ishwaran and M. Lu, Standard errors and confidence intervals for variable importance in random forest regression, classification, and survival, Statistics in medicine, 2018.

A. Janon, T. Klein, A. Lagnoux, M. Nodet, and C. Prieur, Asymptotic normality and efficiency of two sobol index estimators, ESAIM: Probability and Statistics, vol.18, pp.342-364, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00665048

M. J. Jansen, Analysis of variance designs for model output, Computer Physics Communications, vol.117, issue.1-2, pp.35-43, 1999.

M. J. Jansen, W. A. Rossing, and R. A. Daamen, Monte carlo estimation of uncertainty contributions from several independent multivariate sources, Predictability and Nonlinear Modelling in Natural Sciences and Economics, pp.334-343, 1994.

C. Jiang, W. Zhang, X. Han, B. Ni, and L. Song, A vine-copula-based reliability analysis method for structures with multidimensional correlation, Journal of Mechanical Design, vol.137, issue.6, p.61405, 2015.

H. Joe, Multivariate extreme-value distributions with applications to environmental data, Canadian Journal of Statistics, vol.22, issue.1, pp.47-64, 1994.

H. Joe, Families of m-variate distributions with given margins and m (m-1)/2 bivariate dependence parameters, Lecture Notes-Monograph Series, pp.120-141, 1996.

M. V. Johns, Importance sampling for bootstrap confidence intervals, Journal of the American Statistical Association, vol.83, issue.403, pp.709-714, 1988.

J. W. Johnson and J. M. Lebreton, History and use of relative importance indices in organizational research, Organizational research methods, vol.7, issue.3, pp.238-257, 2004.

M. G. Kendall, A new measure of rank correlation, Biometrika, vol.30, issue.1, pp.81-93, 1938.

D. G. Krige, A statistical approach to some basic mine valuation problems on the witwatersrand, Journal of the Southern African Institute of Mining and Metallurgy, vol.52, issue.6, pp.119-139, 1951.

S. Kucherenko, S. Tarantola, A. , and P. , Estimation of global sensitivity indices for models with dependent variables, Computer Physics Communications, vol.183, issue.4, pp.937-946, 2012.

D. Kurowicka, Optimal truncation of vines, Dependence Modeling: Vine Copula Handbook, 2011.

D. Kurowicka and R. M. Cooke, Uncertainty analysis with high dimensional dependence modelling, 2006.

L. Gratiet, L. Cannamela, C. Iooss, and B. , A bayesian approach for global sensitivity analysis of (multifidelity) computer codes, SIAM/ASA Journal on Uncertainty Quantification, vol.2, issue.1, pp.336-363, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00842432

M. Lemaire, A. Chateauneuf, and J. Mitteau, Fiabilité des structures: Couplage mécano-fiabiliste statique, 2005.

M. Lemaire, A. Chateauneuf, and J. Mitteau, Structural reliability, 2010.

G. Li and H. Rabitz, Global sensitivity analysis for systems with independent and/or correlated inputs, Procedia -Social and Behavioral Sciences, vol.2, issue.6, pp.7587-7589, 2010.

G. Li, S. Wang, C. Rosenthal, and H. Rabitz, High dimensional model representations generated from low dimensional data samples. i. mp-cut-hdmr, Journal of Mathematical Chemistry, vol.30, issue.1, pp.1-30, 2001.

G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts, Understanding variable importances in forests of randomized trees, Advances in neural information processing systems, pp.431-439, 2013.

S. M. Lundberg, G. G. Erion, and S. Lee, Consistent individualized feature attribution for tree ensembles, 2018.

K. L. Lunetta, L. B. Hayward, J. Segal, and P. Van-eerdewegh, Screening large-scale association study data: exploiting interactions using random forests, BMC genetics, vol.5, issue.1, p.32, 2004.

Y. Malevergne and D. Sornette, Testing the gaussian copula hypothesis for financial assets dependences, Quantitative Finance, vol.3, issue.4, pp.231-250, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00520539

T. A. Mara and S. Tarantola, Variance-based sensitivity indices for models with dependent inputs, Reliability Engineering & System Safety, vol.107, pp.115-121, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00918985

T. A. Mara, S. Tarantola, A. , and P. , Non-parametric methods for global sensitivity analysis of model output with dependent inputs, Environmental Modelling & Software, vol.72, pp.173-183, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01182302

A. Marrel, B. Iooss, B. Laurent, and O. Roustant, Calculations of sobol indices for the gaussian process metamodel, Reliability Engineering & System Safety, vol.94, issue.3, pp.742-751, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00239494

J. D. Martin and T. W. Simpson, On the use of kriging models to approximate deterministic computer models, ASME 2004 international design engineering technical conferences and computers and information in engineering conference, pp.481-492, 2004.

P. Massart, The tight constant in the dvoretzky-kiefer-wolfowitz inequality. The Annals of Probability, pp.1269-1283, 1990.

G. Matheron, Traité de géostatistique appliquée, Editions Technip, vol.1, 1962.

V. Maume-deschamps and I. Niang, Estimation of quantile oriented sensitivity indices, Statistics & Probability Letters, vol.134, pp.122-127, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01448360

M. D. Mckay, Nonparametric variance-based methods of assessing uncertainty importance. Reliability engineering & system safety, vol.57, pp.267-279, 1997.

M. D. Mckay, R. J. Beckman, and W. J. Conover, Comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, vol.21, issue.2, pp.239-245, 1979.

A. J. Mcneil and J. Ne?lehová, Multivariate archimedean copulas, d-monotone functions and l-norm symmetric distributions, The Annals of Statistics, pp.3059-3097, 2009.

L. Mentch and G. Hooker, Quantifying uncertainty in random forests via confidence intervals and hypothesis tests, The Journal of Machine Learning Research, vol.17, issue.1, pp.841-881, 2016.

O. Morales-nápoles, Bayesian belief nets and vines in aviation safety and other applications, 2010.

O. Morales-nápoles, Counting vines, 2011.

M. D. Morris, Factorial sampling plans for preliminary computational experiments, vol.33, pp.161-174, 1991.

R. B. Nelsen, An introduction to copulas, 2007.

W. K. Newey and D. Mcfadden, Large sample estimation and hypothesis testing. Handbook of econometrics, vol.4, pp.2111-2245, 1994.

T. Nilsen and T. Aven, Models and model uncertainty in the context of risk analysis, Reliability Engineering & System Safety, vol.79, issue.3, pp.309-317, 2003.

J. E. Oakley and A. Hagan, Probabilistic sensitivity analysis of complex models: a bayesian approach, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.66, issue.3, pp.751-769, 2004.

M. Osborne, R. Garnett, and S. Roberts, Gaussian processes for global optimization, Proceedings of the 3rd International Conference on Learning and Intelligent Optimization, 2009.

A. B. Owen, Sobol'indices and shapley value, SIAM/ASA Journal on Uncertainty Quantification, vol.2, issue.1, pp.245-251, 2014.

A. B. Owen and C. Prieur, On shapley value for measuring importance of dependent inputs, SIAM/ASA Journal on Uncertainty Quantification, vol.5, issue.1, pp.986-1002, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01379188

E. Parzen, On estimation of a probability density function and mode, Ann. Math. Statist, vol.33, issue.3, pp.1065-1076, 1962.

B. Pass, Multi-marginal optimal transport: Theory and applications. ESAIM: M2AN, vol.49, pp.1771-1790, 2015.

S. Rahman, A polynomial chaos expansion in dependent random variables, Journal of Mathematical Analysis and Applications, vol.464, issue.1, pp.749-775, 2018.

L. B. Rall, Automatic differentiation: Techniques and applications, 1981.

H. Robbins and S. Monro, A stochastic approximation method. The annals of mathematical statistics, pp.400-407, 1951.

M. Rosenblatt, Remarks on a multivariate transformation. The annals of mathematical statistics, vol.23, pp.470-472, 1952.

J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, Design and analysis of computer experiments, Statistical science, pp.409-423, 1989.

A. Saltelli, Making best use of model evaluations to compute sensitivity indices, Computer Physics Communications, vol.145, issue.2, pp.280-297, 2002.

A. Saltelli, P. Annoni, I. Azzini, F. Campolongo, M. Ratto et al., Variance based sensitivity analysis of model output. design and estimator for the total sensitivity index, Computer Physics Communications, vol.181, issue.2, pp.259-270, 2010.

A. Saltelli, K. Chan, and E. M. Scott, Sensitivity analysis, vol.1, 2000.
URL : https://hal.archives-ouvertes.fr/inria-00386559

A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni et al., Global sensitivity analysis: the primer, 2008.

A. Saltelli and S. Tarantola, On the relative importance of input factors in mathematical models: safety assessment for nuclear waste disposal, Journal of the American Statistical Association, vol.97, issue.459, pp.702-709, 2002.

A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto, Sensitivity analysis in practice: a guide to assessing scientific models, 2004.

A. Saltelli, S. Tarantola, C. , and K. , A quantitative model-independent method for global sensitivity analysis of model output, Technometrics, vol.41, issue.1, pp.39-56, 1999.

R. Salvador, J. Pinol, S. Tarantola, and E. Pla, Global sensitivity analysis and scale effects of a fire propagation model used over mediterranean shrublands, Ecological Modelling, vol.136, issue.2-3, pp.175-189, 2001.

T. J. Santner, B. J. Williams, W. Notz, and B. J. Williams, The design and analysis of computer experiments, vol.1, 2003.

H. Scarf, K. Arrow, and S. Karlin, A min-max solution of an inventory problem. Studies in the mathematical theory of inventory and production, vol.10, p.201, 1958.

C. Schoelzel and P. Friederichs, Multivariate non-normally distributed random variables in climate research-introduction to the copula approach, Nonlin. Processes Geophys, vol.15, issue.5, pp.761-772, 2008.
URL : https://hal.archives-ouvertes.fr/cea-00440431

E. Scornet, G. Biau, and J. Vert, Consistency of random forests, vol.43, pp.1716-1741, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00990008

L. S. Shapley, A value for n-person games, Contributions to the Theory of Games, vol.2, pp.307-317, 1953.

L. S. Shapley and M. Shubik, A method for evaluating the distribution of power in a committee system, American political science review, vol.48, issue.3, pp.787-792, 1954.

B. W. Silverman, Density estimation for statistics and data analysis, vol.26, 1986.

A. Sklar, Fonctions de répartition à n dimensions et leurs marges, vol.8, 1959.

A. Sklar, Random variables, distribution functions, and copulas: a personal look backward and forward. Lecture notes-monograph series, pp.1-14, 1996.

&. Sobol and I. , Global sensitivity analysis indices for the investigation of nonlinear mathematical models, Matematicheskoe Modelirovanie, vol.19, pp.23-24, 2007.

I. M. Sobol, Sensitivity estimates for nonlinear mathematical models, Mathematical Modelling and Computational Experiments, vol.1, issue.4, pp.407-414, 1993.

I. M. Sobol, Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates, Mathematics and computers in simulation, vol.55, issue.1-3, pp.271-280, 2001.

E. Song, B. L. Nelson, and J. Staum, Shapley effects for global sensitivity analysis: Theory and computation, SIAM/ASA Journal on Uncertainty Quantification, vol.4, issue.1, pp.1060-1083, 2016.

C. Strobl, A. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis, Conditional variable importance for random forests, BMC bioinformatics, vol.9, issue.1, p.307, 2008.

C. Strobl, A. Boulesteix, A. Zeileis, and T. Hothorn, Bias in random forest variable importance measures: Illustrations, sources and a solution, BMC bioinformatics, vol.8, issue.1, p.25, 2007.

C. Strobl, J. Malley, and G. Tutz, An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests, Psychological methods, vol.14, issue.4, p.323, 2009.

B. Sudret, Uncertainty propagation and sensitivity analysis in mechanical modelscontributions to structural reliability and stochastic spectral methods. Habilitationa diriger des recherches, 2007.

G. J. Székely and M. L. Rizzo, Energy statistics: A class of statistics based on distances, Journal of statistical planning and inference, vol.143, issue.8, pp.1249-1272, 2013.

X. Tang, D. Li, G. Rong, K. Phoon, and C. Zhou, Impact of copula selection on geotechnical reliability under incomplete probability information, Computers and Geotechnics, vol.49, pp.264-278, 2013.

X. Tang, D. Li, C. Zhou, and K. Phoon, Copula-based approaches for evaluating slope reliability under incomplete probability information, Structural Safety, vol.52, pp.90-99, 2015.

S. Tarantola, D. Gatelli, S. Kucherenko, and W. Mauntz, Estimating the approximation error when fixing unessential factors in global sensitivity analysis, Reliability Engineering & System Safety, vol.92, issue.7, pp.957-960, 2007.

S. Tarantola, D. Gatelli, M. , and T. A. , Random balance designs for the estimation of first order global sensitivity indices, Reliability Engineering & System Safety, vol.91, issue.6, pp.717-727, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01065897

P. Thoft-christensen and J. D. Sørensen, Reliability of structural systems with correlated elements, Applied Mathematical Modelling, vol.6, issue.3, pp.171-178, 1982.

D. R. Thomas, E. Hughes, and B. D. Zumbo, On variable importance in linear regression, Social Indicators Research, vol.45, issue.1-3, pp.253-275, 1998.

J. Tissot and C. Prieur, Bias correction for the estimation of sensitivity indices based on random balance designs, Reliability Engineering & System Safety, vol.107, pp.205-213, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00507526

A. W. Van-der-vaart, Asymptotic statistics, vol.3, 2000.

C. Villani, Optimal transport: old and new, vol.338, 2008.

S. Wager, T. Hastie, and B. Efron, Confidence intervals for random forests: The jackknife and the infinitesimal jackknife, The Journal of Machine Learning Research, vol.15, issue.1, pp.1625-1651, 2014.

P. Wei, Z. Lu, and J. Song, A comprehensive comparison of two variable importance analysis techniques in high dimensions: Application to an environmental multi-indicators system, Environmental Modelling & Software, vol.70, pp.178-190, 2015.

P. Wei, Z. Lu, and X. Yuan, Monte carlo simulation for moment-independent sensitivity analysis, Reliability Engineering & System Safety, vol.110, pp.60-67, 2013.

G. E. Wilson, Historical insights in the development of best estimate plus uncertainty safety analysis, Annals of Nuclear Energy, vol.52, pp.2-9, 2013.

S. J. Winham, C. L. Colby, R. R. Freimuth, X. Wang, M. De-andrade et al., Snp interaction detection with random forests in high-dimensional genetic data, BMC bioinformatics, vol.13, issue.1, p.164, 2012.

L. Zhang, Z. Lu, L. Cheng, F. , and C. , A new method for evaluating borgonovo moment-independent importance measure with its application in an aircraft structure, Reliability Engineering & System Safety, vol.132, pp.163-175, 2014.

R. Zhu, D. Zeng, and M. R. Kosorok, Reinforcement learning trees, Journal of the American Statistical Association, vol.110, issue.512, pp.1770-1784, 2015.

S. J. Zinkle and G. Was, Materials challenges in nuclear energy, Acta Materialia, vol.61, issue.3, pp.735-758, 2013.