, ER_set: for D in D_set: for P in P_set: ait=[] #records the autoignition time based on maximum gradient tfR=

, T(K) | tf(ms) | dt(s) | ait (ms) ')

. T_set, Xf='C3H8:'+str(ER)+';O2:5;N2:18.81' gas.TPX=T,P,Xf Yf=gas.Y if eq: gas.equilibrate('TP') else: gas.equilibrate

C. B. Meher-homji, The historical evolution of turbomachinery, Proceedings of the 29th Turbomachinery Symposium, pp.281-322, 2000.

D. Ferguson, Pressure Gain Combustion for Land Based Power Generation, 2017.

R. Bank, Compressors for ultra-high-pressure-ratio aero-engines, CEAS Aeronaut. J, vol.7, issue.3, pp.455-470, 2016.

R. Bank, S. Donnerhack, A. Rae, M. Cazalens, A. Lundbladh et al., LEMCOTEC: Improving the Core-Engine Thermal Efficiency, Aircraft Engine; Fans and Blowers, vol.1, pp.1-01, 2014.

M. Darecki, Flightpath 2050 Eur. Vis. Aviat, p.28, 2011.

T. Grönstedt, GT2016-56123: Ultra Low Emission Technology Innovations for Mid-Century Aircraft Turbine Engines, Proceedings of ASME Turbo Expo, pp.1-13, 2016.

T. Grönstedt, M. Irannezhad, X. Lei, O. Thulin, and A. Lundbladh, First and Second Law Analysis of Future Aircraft Engines, J. Eng. Gas Turbines Power, vol.136, issue.3, p.31202, 2013.

C. A. Perullo, D. N. Mavris, and E. Fonseca, An Integrated Assessment of an Organic Rankine Cycle Concept for Use in Onboard Aircraft Power Generation, Cycle Innovations, vol.2, pp.2-3, 2013.

S. Kaiser, H. Kellermann, M. Nickl, and A. Seitz, A COMPOSITE CYCLE ENGINE CONCEPT FOR YEAR 2050, 2018.

S. Kaiser, A. Seitz, S. Donnerhack, and A. Lundbladh, Composite Cycle Engine Concept with Hectopressure Ratio, J. Propuls. Power, vol.32, issue.6, pp.1413-1421, 2016.

K. Kailasanath, Review of Propulsion Applications of Detonation Waves, AIAA J, vol.38, issue.9, pp.1698-1708, 2000.

T. G. Reichel, J. Schäpel, B. C. Bobusch, R. Klein, R. King et al., Shockless Explosion Combustion: Experimental Investigation of a New Approximate Constant Volume Combustion Process, J. Eng. Gas Turbines Power, vol.139, issue.2, p.21504, 2016.

M. R. Nalim, P. H. Snyder, and M. Kowalkowski, Experimental Test, Model Validation, and Viability Assessment of a Wave-Rotor Constant-Volume Combustor, J. Propuls. Power, vol.33, issue.1, pp.163-175, 2017.

B. Boust, Q. Michalski, and M. Bellenoue, Experimental Investigation of Ignition and Combustion Processes in a Constant-Volume Combustion Chamber for Air-Breathing Propulsion, 52nd AIAA/SAE/ASEE Joint Propulsion Conference, vol.C, pp.1-8, 2016.

L. Labarrere, T. Poinsot, A. Dauptain, F. Duchaine, M. Bellenoue et al., Experimental and numerical study of cyclic variations in a Constant Volume Combustion chamber, Combust. Flame, vol.172, pp.49-61, 2016.

S. Boulal, Comportements dynamiques de la détonation dans des compositions gazeuses non-uniformes, Poitiers ISAE-ENSMA, 2017.

S. Hansmetzger, Etude des modes de rotation continue d 'une détonation dans une chambre annulaire de section constante ou croissante, Poitiers ISAE ENSMA, pp.264-273, 2018.

R. and L. Dortz, Détermination des caractéristiques fondamentales de combustion de pré-mélange air-kérosène , de l ' allumage à la vitesse de flamme : représentativité de surrogates mono et multi-composants, 2018.

L. Labarrere, Etude théorique et numérique de la combustion à volume constant appliquée à la propulsion, 2016.

G. Exilard, Large Eddy Simulation of constant volume combustion in a ground-breaking new aeronautical engine
URL : https://hal.archives-ouvertes.fr/tel-02100677

T. Takaishi, R. Nakano, A. Numata, and K. Sakaguchi, Approach to High Efficiency Diesel and Gas Engines, Mitsubishi Heavy Ind. Ltd. Tech. Rev, vol.45, issue.1, p.21, 2008.

J. Kurzke, Achieving maximum thermal efficiency with the simple gas turbine cycle, Proc. 9th CEAS Eur. Propuls. Forum ?, pp.1-12, 2003.

, Aircraft Engine Emissions Databank, 2018.

B. T. Richards and H. N. Wadley, Plasma spray deposition of tri-layer environmental barrier coatings, J. Eur. Ceram. Soc, vol.34, issue.12, pp.3069-3083, 2014.

K. Kailasanath, Review of Propulsion Applications of Detonation Waves, AIAA J, vol.38, issue.9, pp.1698-1708, 2000.

T. C. Adamson and G. R. Olsson, Performance Analysis of a Rotating Detonation Wave Rocket Engine, Astronaut. Acta, vol.13, issue.4, pp.405-415, 1967.

R. Huff, M. D. Polanka, M. J. Mcclearn, F. Schauer, M. L. Fotia et al., A Disk Rotating Detonation Engine Driven Auxiliary Power Unit, Jt. Propuls. Conf, pp.1-11, 2018.

A. Rasheed, A. H. Furman, and A. J. Dean, Pressure Measurements and Attenuation in a Hybrid Multitube Pulse Detonation Turbine System, J. Propuls. Power, vol.25, issue.1, pp.148-161, 2009.

K. Matsuoka, T. Mukai, and T. Endo, Development of a liquid-purge method for high-frequency operation of pulse detonation combustor, Combust. Sci. Technol, vol.187, issue.5, pp.747-764, 2015.

E. Wintenberger and J. E. Shepherd, Thermodynamic Cycle Analysis for Propagating Detonations, J. Propuls. Power, vol.22, issue.3, pp.694-698, 2006.

J. Shepherd and E. Wintenberger, Thermodynamic Analysis of Combustion Processes for Propulsion Systems, 42nd AIAA Aerospace Sciences Meeting and Exhibit, vol.1033, 2004.

S. Yungster, D. E. Paxson, and H. Perkins, Numerical Evaluation of an Ejector-Enhanced Resonant Pulse Combustor with a Poppet Inlet Valve and a Converging Exhaust Nozzle, 52nd AIAA/SAE/ASEE Jt. Propuls. Conf, pp.1-12, 2016.

P. Akbari and R. Nalim, Review of Recent Developments in Wave Rotor Combustion Technology, J. Propuls. Power, vol.25, issue.4, pp.833-844, 2009.

, Neff 1977-97, 1977.

A. Karimi, P. Chinnathambi, M. Rajagopal, and R. Nalim, Effect of jet composition in hot jet ignition of premixed mixture in a constant volume combustor, 8th US National Meeting, Combustion Institute, 2010.

S. Wijeyakulasuriya and R. Nalim, Multidimensional Modeling of Gas Mixing in Transient Translating Confined Turbulent Jets, 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, pp.1-17, 2011.

A. Karimi and M. R. Nalim, Ignition by Hot Transient Jets in Confined Mixtures of Gaseous Fuels and Air, J. Combust, vol.2016, pp.1-13, 2016.

B. Alparslan, M. R. Nalim, and P. H. Snyder, Wave Rotor Combustor Test Rig Preliminary Design, Process Industries, pp.177-185, 2004.

T. Elharis, S. Wijeyakulasuriya, and M. Nalim, Wave Rotor Combustor Aerothermodynamic Design and Model Validation Based on Initial Testing, 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, pp.1-39, 2010.

B. C. Bobusch, P. Berndt, C. O. Paschereit, and R. Klein, Shockless explosion combustion: An innovative way of efficient constant volume combustion in gas turbines, Combust. Sci. Technol, vol.186, issue.10-11, pp.1680-1689, 2014.

F. C. Yücel, F. Völzke, and C. O. Paschereit, Effect of the Switching Times on the Operating Behavior of a Shockless Explosion Combustor, pp.121-134, 2019.

A. G. Naples, J. Hoke, R. Battelle, and F. Schauer, T63 TURBINE RESPONSE TO ROTATING DETONATION COMBUSTOR EXHAUST FLOW, J. Eng. Gas Turbines Power, pp.1-11, 2018.

N. Watson and M. S. Janota, Turbocharging the Internal Combustion Engine. London: Macmillan Education UK, 1982.

A. Naples, J. Hoke, R. T. Battelle, M. Wagner, and F. R. Schauer, RDE Implementation into an Open-Loop T63 Gas Turbine Engine, 55th AIAA Aerospace Sciences Meeting, pp.1-9, 2017.

P. Wola?ski, Application of the Continuous Rotating Detonation to Gas Turbine, Appl. Mech. Mater, vol.782, pp.3-12, 2015.

M. Fernelius and S. Gorrell, Experimental analysis of an axial turbine driven by periodic pressure pulses, 52nd AIAA/SAE/ASEE Jt. Propuls. Conf. 2016, pp.1-14, 2016.

A. St, R. George, E. Driscoll, D. Gutmark, and . Munday, Experimental Comparison of Axial Turbine Performance Under Steady and Pulsating Flows, J. Turbomach, vol.136, issue.11, p.111005, 2014.

D. Paxson and K. Dougherty, Ejector Enhanced Pulsejet Based Pressure Gain Combustors: An Old Idea With a New Twist, 41st AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. & Exhib, 2005.

B. L. Naour, F. H. Falempin, and K. Coulon, MBDA R&T Effort Regarding Continuous Detonation Wave Engine for Propulsion -Status in 2016, 21st AIAA International Space Planes and Hypersonics Technologies Conference, pp.1-8, 2017.

J. B. Heywood, Internal Combustion Engine Fundementals, vol.21, 1988.

M. Metghalchi and J. C. Keck, Burning velocities of mixtures of air with methanol, isooctane, and indolene at high pressure and temperature, Combust. Flame, vol.48, issue.C, pp.90127-90131, 1982.

W. Contributors, Napier Nomad, Wikipedia, The Free Encyclopedia, p.7, 2018.

. Flight, An Engine of Outstanding Efficiency, 1954.

H. Holzwarth, The Gas Turbine, 1912.

W. Schule, THYSSEN-HOLZWARTH OIL AND GAS TURBINES, J. Am. Soc. Nav. Eng, vol.34, issue.3, pp.453-457, 2009.

, High Duty Cycle, Extended Operation Constant Volume Combustion Engine, Phase I

R. Disalvo, Constant Volume Rocket Motor, 2008.

R. Disalvo, Cosntant Volume Combustion Chamber, 2012.

C. Propulsion, Constant Volume Combustion Engine, 2019.

H. Van-der-meulen, Het constant volume gasturbine proces volgens Karavodine, 1979.

C. A. Bosco, Moteur thermique multicellulaire, à explosion ou à combustion sous volume constant, à détente prolongée et à disposition spéciale d'échange de chaleur, p.1006375, 1948.

P. Canarelli, Turbine à gaz, p.1131310, 1955.

E. Guenther, Multi-combustion chamber gas turbine with rotary valving, 1960.

M. Kadenacy, Apparatus for producing gas under pressure, p.2579321, 1951.

A. G. Forsyth, Periodically Actuated Jet Motor, p.2427845, 1947.

J. Semery, An intermittent combustion gas turbine plant, 1980.

W. V. Taylor, Gas turbine engine with rotary regenerator and rotating constant volume combustion chambers, p.3362157, 1968.

B. Robic, Chambre de Combustion CVC pour turbomachine d'aeronef comprenant une valve d'admission/d'échappement à tournant sphérique -WO2014020275A1, WO2014020275A1, 2014.

M. Aguilar, Réacteur notamment, reacteur d'aéronef, 2011.

B. G. Macarez, Pulsomoteur-Turbomoteur a impulsion-turbine a gaz a chambre de combustion impulsionnelle et a detente de bouffees, p.2829528, 2001.

G. Taliercio, Constant-volume combustion system for a turbine engine of an aircraft engine, WO2016132055, 2016.

M. Leyko, Constant-volume combustion module for a turbine engine, comprising communication-based ignition, pp.2016120555-2016120556

H. Holzwarth, Explosion Gas Turbine and Method of Operating Same, p.2054081, 1936.

B. Boust, Q. Michalski, and M. Bellenoue, Experimental Investigation of Ignition and Combustion Processes in a Constant-Volume Combustion Chamber for Air-Breathing Propulsion, 52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016.

D. Bradley, How fast can we burn?, Symp. Combust, vol.24, issue.1, pp.80034-80036, 1992.

A. N. Lipatnikov and J. Chomiak, Turbulent flame speed and thickness: Phenomenology, evaluation, and application in multi-dimensional simulations, Prog. Energy Combust. Sci, vol.28, issue.1, pp.1-74, 2002.

B. Boust, J. Sotton, and M. Bellenoue, Unsteady heat transfer during the turbulent combustion of a lean premixed methane-air flame: Effect of pressure and gas dynamics, Proc. Combust. Inst, vol.31, pp.1411-1418, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00360538

S. Malheiro, Etude experimentale de la combustion d'un mélange méthane-air hétérogène globalement pauvre, 2002.

L. Muller, Etude expérimentale de l'interaction flamme-paroi instationnaire dans des conditions initiales non, pp.267-273

G. Levée, Gasoline Direct Injection, SIA/CNAM 2012, pp.1-42, 2012.

A. Boutier, Métrologie laser pour la mécanique des fluides, 2012.

R. Maly, Spark Ignition: Its Physics and Effect on the Internal Combustion Engine, Fuel Econ. Road Veh. Powered by Spark Ignition Engines, issue.4, pp.91-148, 1984.

B. Sforzo, J. Kim, J. Jagoda, and J. Seitzman, Ignition Probability in a Stratified Turbulent Flow With a Sunken Fire Igniter, J. Eng. Gas Turbines Power, vol.137, issue.1, p.11502, 2014.

G. Lacaze, E. Richardson, and T. Poinsot, Large eddy simulation of spark ignition in a turbulent methane jet, Combust. Flame, vol.156, issue.10, 1993.
URL : https://hal.archives-ouvertes.fr/hal-00429662

Q. Michalski, C. J. Benito-parejo, A. Claverie, J. Sotton, and M. Bellenoue, An application of speckle-based background oriented schlieren for optical calorimetry, Exp. Therm. Fluid Sci, vol.91, 2018.

C. B. Parejo, Caractérisation expérimentale de décharges électriques et de la formation du noyau d'allumage. Application à l'étude des performances d'allumeurs innovants, 2019.

D. Verhoeven, Interferometric spark calorimetry, Exp. Fluids, vol.28, issue.1, pp.86-92, 2000.

S. Regitz and N. Collings, Fast response air-to-fuel ratio measurements using a novel device based on a wide band lambda sensor, Meas. Sci. Technol, vol.19, issue.7, 2008.

U. Asad, J. Tjong, and M. Zheng, Exhaust gas recirculation -Zero dimensional modelling and characterization for transient diesel combustion control, Energy Convers. Manag, vol.86, pp.309-324, 2014.

M. Raffel, C. E. Willert, and J. Kompenhans, Particle Image Velocimetry, 1998.

J. Sotton, Interactions entre une combustion turbulente et la paroi dans une enceinte fermée, 2010.

B. Wieneke, PIV uncertainty quantification from correlation statistics, Meas. Sci. Technol, vol.26, issue.7, 2015.

T. Poinsot and D. Veynante, Theoretical and Numerical Combustion, Combust. Flame, pp.176-185, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00270731

J. O. Hinze, Turbulence: An Introduction to Its Mechanism and Theory, 1959.

J. Borée and P. C. Miles, Cylinder Flow, 2012.

O. Pajot, Étude expérimentale de l'influence de l'aérodynamique sur le comportement et la structure du front de flamme dans les conditions d'un moteur à allumage commandé, 2000.

K. Y. Kang and J. H. Baek, Turbulence characteristics of tumble flow in a four-valve engine, Exp. Therm. Fluid Sci, vol.18, issue.3, pp.10023-10030, 1998.

P. Druault, P. Guibert, and F. Alizon, Use of proper orthogonal decomposition for time interpolation from PIV data: Application to the cycle-to-cycle variation analysis of in-cylinder engine flows, Exp. Fluids, vol.39, issue.6, pp.1009-1023, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02140533

C. Strozzi, J. Sotton, A. Mura, and M. Bellenoue, Characterization of a two-dimensional temperature field within a rapid compression machine using a toluene planar laser-induced fluorescence imaging technique, Meas. Sci. Technol, vol.20, issue.12, p.125403, 2009.

F. J. Förster, C. Crua, M. Davy, and P. Ewart, Time-resolved gas thermometry by laser-induced grating spectroscopy with a high-repetition rate laser system, Exp. Fluids, vol.58, issue.7, pp.268-273, 2017.

R. Speth, Cantera/cantera: Cantera 2.3.0, 2017.

G. F. Hohenberg, Advanced Approaches for Heat Transfer Calculations, 1979.

S. Labuda, M. Karrer, J. Sotton, and M. Bellenoue, Experimental study of single-wall flame quenching at high pressures, Combust. Sci. Technol, vol.183, issue.5, pp.409-426, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00421264

D. Lacoste, Etude experimentale de la combustion de mélanges stratifiés globalement pauvres en chambre à volume constant, 2002.

Q. Michalski, K. Kha, B. Boust, V. Robin, M. Bellenoue et al., Joint Numerical and Experimental Characterization of the Turbulent Reactive Flow within a Constant Volume Vessel, 2018 Joint Propulsion Conference, vol.V, pp.1-12, 2018.

K. Kha, Rapport de Post-doc CAPA, 2018.

&. Openfoam and . Openfoam, , p.31, 2018.

T. Kasraoui, K. Joulain, R. Bertossi, M. Bellenoue, B. Boust et al., Modeling of Unsteady Heat Transfer by Impact Between Gas Particles and a Cold Wall in a Spherical Combustion Vessel, Int. J. Comput. Methods Exp. Meas, vol.5, pp.44-54, 2017.

M. J. Mcclearn, M. D. Polanka, M. R. Mataczynski, F. R. Schauer, and D. E. Paxson, The Design of a Small-Scale Wave Rotor for Use As a Modified Brayton-Cycle Engine, 54th AIAA Aerosp. Sci. Meet, pp.1-14, 2016.

V. Robin, A. Mura, M. Champion, P. Plion, &. Variable et al., Combust. Sci. Technol, vol.178, issue.10-11, pp.1843-1870, 2006.

S. R. , Turns, An introduction to combustion concepts and applications, 2012.

H. Xiao, M. J. Gollner, and E. S. Oran, From fire whirls to blue whirls and combustion with reduced pollution, Proc. Natl. Acad. Sci, vol.113, pp.9457-9462, 2016.

B. Boust, Etude expérimentale et modélisation des pertes thermiques pariétales lors de l'interaction flamme -paroi instationnaire, 2006.

B. Boust, J. Sotton, and M. Bellenoue, Experimental Study by High-Speed Particle Image Velocimetry of Unsteady Flame-Wall Interaction in Turbulent Combustion, 13th Int Symp on Applications of Laser Techniques to Fluid Mechanics, pp.26-29, 2006.

C. C. Luijten, E. Doosje, and L. P. De-goey, Accurate analytical models for fractional pressure rise in constant volume combustion, Int. J. Therm. Sci, vol.48, issue.6, pp.1213-1222, 2009.

T. P. Almeida and A. R. Muxworthy, Three dimensional visualisation and reconstruction of the luminosity distribution of a flame using digital imaging techniques Three dimensional visualisation and reconstruction of the luminosity distribution of a flame using digital imaging techniques, 2005.

M. Buschbeck, N. Bittner, T. Halfmann, and S. Arndt, Dependence of combustion dynamics in a gasoline engine upon the in-cylinder flow field, determined by high-speed PIV, Exp. Fluids, vol.53, issue.6, pp.1701-1712, 2012.

M. Baum and T. Poinsot, Effects of Mean Flow on Premixed Flame Ignition, Combust. Sci. Technol, vol.106, issue.1-3, pp.19-39, 1995.

K. V. Rao and A. H. Lefebvre, Minimum ignition energies in flowing kerosine-air mixtures, vol.269, p.273

. Flame, , vol.27, pp.1-20, 1976.

D. R. Ballal and A. H. Lefebvre, The influence of flow parameters on minimum ignition energy and quenching distance, Symp. Combust, vol.15, issue.1, pp.1473-1481, 1975.

J. Tauer, H. Kofler, and E. Wintner, Laser-initiated ignition, Laser Photonics Rev, vol.4, issue.1, pp.99-122, 2010.

G. H. Markstein, Nonsteady Flame Propagation, p.328, 1964.

P. Clavin, Dynamic behavior of premixed flame fronts in laminar and turbulent flows, Prog. Energy Combust. Sci, vol.11, issue.1, pp.1-59, 1985.

M. Matalon and B. J. Matkowsky, Flames as gasdynamic discontinuities, J. Fluid Mech, vol.124, issue.1, p.239, 1982.

A. P. Kelley and C. K. Law, Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames, Combust. Flame, vol.156, issue.9, pp.1844-1851, 2009.

G. K. Giannakopoulos, A. Gatzoulis, C. E. Frouzakis, M. Matalon, and A. G. Tomboulides, Consistent definitions of 'Flame Displacement Speed' and 'Markstein Length' for premixed flame propagation, Combust. Flame, vol.162, issue.4, pp.1249-1264, 2015.

D. Lapalme, R. Lemaire, and P. Seers, Assessment of the method for calculating the Lewis number of H 2 /CO/CH 4 mixtures and comparison with experimental results, Int. J. Hydrogen Energy, vol.42, issue.12, pp.8314-8328, 2017.

C. K. Law and C. J. Sung, Structure, aerodynamics, and geometry of premixed flamelets, Prog. Energy Combust. Sci, vol.26, issue.4, pp.459-505, 2000.

M. Akram, V. R. Kishore, and S. Kumar, Laminar Burning Velocity of Propane/CO2/N2 -Air Mixtures at Elevated Temperatures, Energy & Fuels, vol.26, issue.9, pp.5509-5518, 2012.

C. Endouard, F. Halter, C. Chauveau, and F. Foucher, Effects of CO2, H2O, and Exhaust Gas Recirculation Dilution on Laminar Burning Velocities and Markstein Lengths of Iso-Octane/Air Mixtures, Combust. Sci. Technol, vol.188, issue.4-5, pp.516-528, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01312847

S. Payet, A. Naudin, P. Domingo, B. Labegorre, and L. Vervisch, Studying Flame Dilution By Burnt Gases Using, pp.1-13, 2006.

H. Wang, USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds, p.3, 2007.

M. Metghalchi and J. C. Keck, Laminar burning velocity of propane-air mixtures at high temperature and pressure, Combust. Flame, vol.38, pp.90046-90048, 1980.

M. T. Nguyen, D. W. Yu, and S. S. Shy, General correlations of high pressure turbulent burning velocities with the consideration of Lewis number effect, Proc. Combust. Inst, vol.000, pp.1-8, 2018.

Y. Moriyoshi, E. Komatsu, and H. Morikawa, -09 ) Analysis of Turbulent Combustion in Idealized Stratified Charge Conditions, pp.226-231, 2001.

B. Saravanan, Experimental investigation of flame propagation through stratified mixture field, Institut National des Sciences Appliquées de Rouen, 2011.

B. Lewis and G. Von-elbe, Combustion Waves in Laminar Flow, Combustion, Flames and Explosions of Gases, pp.215-417, 1987.

S. Kondo, A. Takahashi, and K. Tokuhashi, Calculation of minimum ignition energy of premixed gases, J. Hazard. Mater, vol.103, issue.1-2, pp.11-23, 2003.

S. P. Bane, Spark Ignition : Experimental and Numerical Investigation With Application to Aviation Safety Thesis by, Dissertation, vol.2010, 2010.

, ASTM E582-1999 Standard Test Method for Minimum Ignition Energy and Quenching Distance in Gaseous Mixtures.pdf, ASTM, 1999.

S. P. Bane, J. L. Ziegler, P. A. Boettcher, S. A. Coronel, and J. E. Shepherd, Experimental investigation of spark ignition energy in kerosene, hexane, and hydrogen, J. Loss Prev. Process Ind, vol.26, issue.2, pp.290-294, 2013.

S. P. Bane, J. E. Shepherd, E. Kwon, and A. C. Day, Statistical analysis of electrostatic spark ignition of lean H2/O2/Ar mixtures, Int. J. Hydrogen Energy, vol.36, issue.3, pp.2344-2350, 2011.

R. K. Eckhoff, M. Ngo, and W. Olsen, On the minimum ignition energy (MIE) for propane/air, J. Hazard. Mater, vol.175, issue.1-3, pp.293-297, 2010.

C. Strozzi, P. Gillard, and J. P. Minard, Laser-induced spark ignition of gaseous and quiescent n-decane-air mixtures, Combust. Sci. Technol, vol.186, issue.10-11, pp.1562-1581, 2014.

C. Xu, D. Fang, Q. Luo, J. Ma, and Y. Xie, A comparative study of laser ignition and spark ignition with gasoline-air mixtures, Opt. Laser Technol, vol.64, pp.343-351, 2014.

S. P. Moffett, S. G. Bhanderi, J. E. Shepherd, and E. Kwon, Investigation of Statistical Nature of Spark Ignition, Fall Meet. theWestern States Sect. Combust. Institute, Sandia Natl. Lab, pp.1-19, 2007.

E. Mastorakos, Forced ignition of turbulent spray flames, Proc. Combust. Inst, vol.36, issue.2, pp.2367-2383, 2017.

S. P. Bane, J. L. Ziegler, and J. E. Shepherd, Investigation of the effect of electrode geometry on spark ignition, Combust. Flame, vol.162, issue.2, pp.462-469, 2015.

M. Kono, K. Hatori, and K. Iinuma, Investigation on ignition ability of composite sparks in flowing mixtures, Symp. Combust, vol.20, issue.1, pp.80496-80499, 1985.

T. W. Lee, V. Jain, and S. Kozola, Measurements of minimum ignition energy by using laser sparks for hydrocarbon fuels in air: Propane, dodecane, and jet-A fuel, Combust. Flame, vol.125, issue.4, pp.248-254, 2001.

S. Okhovat, Temperature Evolution of Spark Kernels in Quiescent and Cross-flow Conditions, 2015.

S. F. Ahmed and E. Mastorakos, Spark ignition of lifted turbulent jet flames, Combust. Flame, vol.146, issue.1-2, pp.215-231, 2006.

B. Lewis and G. Von-elbe, Combustion, Flames and Explosions of Gases, 1961.

. Radius, Projet Radius, p.23, 2018.

A. Violi, S. Yan, E. G. Eddings, and A. F. Sarofim, Combustion Science and Technology Experimental formulation and kinetic model for JP-8 surrogate mixtures, pp.37-41, 2010.

G. Rudinger, Penetration of Particles Injected into a Constant Cross Flow, vol.12, pp.1138-1140, 1973.

H. Wang, A high-temperature chemical kinetic model of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures, JetSurF version 2.0, 2010.

H. Quintens, C. Strozzi, R. Zitoun, and M. Bellenoue, Deflagration/Autoignition/Detonation Transition Induced by Flame Propagation in an N-Decane/O2 /Ar Mixture, Flow, Turbul. Combust, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02292082

F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Fundamentals of Heat and Mass Transfer, 2007.

, San Diego Mechanism web page, Mechanical and Aerospace Enginnering (Combustion Research), 2018.

J. C. Prince and F. A. Williams, Short chemical-kinetic mechanisms for low-temperature ignition of propane and ethane, Combust. Flame, vol.159, issue.7, pp.2336-2344, 2012.

J. Keller, Method for preparing the working gas in a gas turbine installation, p.5197276, 1993.

X. Wang, V. Robin, and A. Mura, A normalized residence time transport equation for the numerical simulation of combustion with high-temperature air, Combust. Theory Model, 2019.

, Optical Material Product Information, 2014.

R. J. Kee, M. E. Coltrin, and P. Glarborg, Chemically Reacting Flow, 2005.

H. Wang, USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds, 2007.

Z. Qin, V. Lissianski, H. Yang, W. C. Gardiner, and S. G. Davis, Combustion Chemistry Of Propane: A Case Study of Detailed Reaction Mechanism Optimization, Proc. Combust. Inst, vol.28, issue.2, pp.1663-1669, 2000.

C. M. Vagelopoulos and F. N. Egolfopoulos, Theory and Measure in Strange Situation.Pdf, pp.80441-80445, 1998.

, San Diego Mechanism web page, Mechanical and Aerospace Enginnering (Combustion Research), 2018.

S. M. Gallagher, H. J. Curran, W. K. Metcalfe, D. Healy, J. M. Simmie et al., A rapid compression machine study of the oxidation of propane in the negative temperature coefficient regime, Combust. Flame, vol.153, issue.1-2, pp.316-333, 2008.

F. Nicoud and F. Ducros, Subgrid-scale stress modelling based on the square of the velocity, Agric. Econ. Res. Rev, vol.19, pp.37-48, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00910373

K. Q. Kha, C. Losier, V. Robin, A. Mura, and M. Champion, Relevance of Two Basic Turbulent Premixed Combustion Models for the Numerical Simulations of V-Shaped Flames, Combust. Sci. Technol, vol.188, issue.11-12, pp.1878-1903, 2016.

J. Rivère and M. Mechkor, Modélisation des échanges thermiques sur la paroi de la chambre de combustion, 2005.

T. J. Poinsot, Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys, vol.99, issue.2, p.90227, 2004.

W. Norton and U. S. , Experimental & Prototype Aircraft Projects: Fighters 1939-1945, 2008.

J. Jewel, C. Soret, and P. Bradley, CFM56-3 ENGINE SETS NEW WORLD'S RECORD FOR TIME ON-WING, p.20, 1997.

M. F. Da and . Silva, Some considerations about thermodynamic cycles, Eur. J. Phys, vol.33, issue.1, pp.13-42, 2012.

H. Vandermeulen, The Constant Volume Gas Turbine Cycle According to Karavodine, pp.1-13, 1982.

L. F. Richardson, Weather prediction by numerical process, 1922.

A. N. Kolmogorov, The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Numbers, Proc. R. Soc. A Math. Phys. Eng. Sci, vol.434, issue.1890, pp.9-13, 1991.

L. Onsager, Statistical hydrodynamics, Nuovo Cim, vol.6, issue.S2, pp.279-287, 1949.

Q. Michalski, B. Boust, and M. Bellenoue, Influence of Operating Conditions and Residual Burned Gas Properties on Cyclic Operation of Constant-Volume Combustion, vol.127, pp.215-233, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02282625

H. Quintens, Etude des transitions de régimes de combustion générées par une déflagration

V. Bjerknes, Meteorology as an Exact Science, Mon. Weather Rev, pp.11-14, 1914.

, Dans cette étude, une solution qui repose sur l'intégration dans une turbomachine de chambres de combustion à volume constant sans piston (CVCSP) est considérée. Les objectifs de ces travaux de thèse sont doubles : dans un premier temps de développer et de caractériser extensivement un nouveau dispositif (CV2) dédié à la Combustion à volume constant sans piston sur un cas de référence et, dans un second temps, de proposer à travers plusieurs études, une analyse de l'influence de l'aérodynamique et de la dilution sur les processus d'allumage et, plus généralement de combustion. Le dispositif CV2 permet la combustion aérobie en allumage commandé d'un mélange de propane ou de n-décane, injecté directement dans la chambre, Les turbomachines actuelles ont atteint un niveau de maturité technique très élevé. De nouvelles architectures reposant sur des cycles thermodynamiques basés sur une combustion à gain de pression, comme la combustion à volume constant (CVC), ont le potentiel d'augmenter leur efficacité

, On montre notamment que, pour un mélange donné, il existe une corrélation statistique entre une vitesse statistique limite et la probabilité d'allumage moyenne. Pour représenter l'effet de pression dans un plénum en amont d'une turbine, on réalise une étude paramétrique sur la pression d'échappement. La dilution résultante, croissant avec la pression d'échappement, diminue la vitesse fondamentale de flamme et ralentit donc la combustion. Les niveaux de températures des gaz brûlés résiduels résultent des échanges de chaleur qui ont lieu sur toute la durée du cycle, de l'allumage du cycle N à celui du cycle N+1 suivant. Des extrapolations sur des cycles à température de paroi plus élevée et à échappement plus court montrent que l'adiabaticité du cycle est améliorée (de 20 %) et que l'effet de dilution en température est alors favorable à une vitesse de flamme turbulente qui est alors plus élevée. Un phénomène d'allumage par gaz brûlé résiduel est observé sur certains cycles de combustion, Dans un fonctionnement sans balayage, on montre que cette variabilité cyclique est liée au premier ordre à la variation de la dilution en gaz brûlé résiduel du mélange et à la vitesse locale

, Ce travail prend place dans le cadre de la chaire industrielle CAPA sur la combustion alternative pour la propulsion aérobie financée par SAFRAN Tech

. Mots-clés, EXPERIMENTAL STUDY OF CONSTANT-VOLUME COMBUSTION FOR AIR-BREATHING PROPULSION: INFLUENCE OF AERODYNAMICS AND DILUTION ON IGNITION AND COMBUSTION Abstract: Current turbomachines have reached a very high level of technical maturity. Thermodynamic cycles based on pressure-gain combustion, such as constantvolume combustion (CVC), feature a clear potential for efficiency improvement. The present study considers the integration in a turbomachine of piston-less CVC chambers. The thesis work is twofold. First, a new experimental setup (CV2) dedicated to cyclic piston-less CVC is developed and thoroughly characterized on a reference operating point. Second, the influence of the aerodynamics and dilution on the processes of ignition and, in a larger sense, on combustion is discussed through dedicated studies. The CV2 device allows for the spark-ignited air-breathing combustion of a mixture of either propane or n-decane, directly injected into the chamber. A reference condition is characterized in details using: PIV velocity field measurements, chemiluminescence of combustion and a 0D modeling of the device. This detailed characterization evidenced that the CV2 combustion chamber successfully replicates, on a number of cycles allowing a reasonable statistical convergence, a turbulent deflagrative constant-volume combustion in a mixture stratified in composition, Gaz de combustion, Moteurs-Combustion, Vélocimétrie par images de particules, Turbulence, Aéronautique-Economie d'énergie, IndustrieAspect environnemental, Combustion à gain de pression, Combustion à volume constant, Allumage, Flamme turbulente, Modélisation 0D, Combustion, Injection directe, n-Décane, Combustion stratifiée