S. S. Badour, C. K. Tan, and E. R. Waygood, Observations on cell development in Chlamydomonas Segnis (Chlorophyceae) at low and high carbon dioxide tension, 1977.

P. D. Bates, Analysis of Acyl Fluxes through Multiple Pathways of Triacylglycerol Synthesis in Developing Soybean Embryos, Plant Physiology, vol.150, issue.1, pp.55-72, 2009.

E. W. Becker, Micro-algae as a source of protein, Biotechnology Advances, vol.25, issue.2, pp.207-210, 2007.

B. K. Behera and A. Varma, Microbial resources for sustainable energy, Microbial Resources for Sustainable Energy, 2016.

S. Benedetti, Antioxidant properties of a novel phycocyanin extract from the bluegreen alga Aphanizomenon flos-aquae, Life Sciences, vol.75, issue.19, pp.2353-2362, 2004.

R. R. Bennett and R. Golestanian, A steering mechanism for phototaxis in Chlamydomonas, 2014.

B. A. Berger and A. E. Structure, Polar Lipids -Phospholipids and GlycolipidsAn Enhanced Omega-3 Structure Polar Lipids -Phospholipids and Glycolipids, 2014.

K. Bi?ová and V. Zachleder, Cell-cycle regulation in green algae dividing by multiple fission, Journal of Experimental Botany, vol.65, issue.10, pp.2585-2602, 2014.

P. Bondioli, Oil production by the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33', Bioresource Technology, vol.114, pp.567-572, 2012.

M. A. Borowitzka, High-value products from microalgae-their development and commercialisation, Journal of Applied Phycology, vol.25, issue.3, pp.743-756, 2013.

. Bosma, Ultrasound, a new separation technique to harvest microalgae', Evidence Based Midwifery, vol.15, pp.143-153, 2003.

G. Breuer, Opportunities to improve the areal oil productivity of microalgae, Bioresource Technology, vol.186, pp.294-302, 2015.

E. Briand, Evidence of the cost of the production of microcystins by Microcystis aeruginosa under differing light and nitrate environmental conditions, PLoS ONE, vol.7, issue.1, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01159094

E. H. Harris, D. B. Stern, and G. B. Witman, Chapter-1---The-GenusChlamydomonas_2009_The-Chlamydomonas-Sourcebook, p.1786, 1960.

E. H. Harris, D. B. Stern, and G. B. Witman, Chapter 2 -Cell Architecture', The Chlamydomonas Sourcebook, pp.25-64, 2009.

P. He, Gold immunolocalization of Rubisco and Rubisco Activase in pyrenoid of Chlamydomonas reinhardtii, vol.18, pp.121-127, 2003.

S. Ho, Perspectives on engineering strategies for improving biofuel production from microalgae -A critical review, Biotechnology Advances, vol.32, pp.1448-1459, 2014.

S. H. Ho, Optimizing biodiesel production in marine Chlamydomonas sp. JSC4 through metabolic profiling and an innovative salinity-gradient strategy, Biotechnology for Biofuels, vol.7, issue.1, pp.1-16, 2014.

A. B. Hossain, Biodiesel fuel production from algae as renewable energy, American Journal of Biochemistry and Biotechnology, vol.4, issue.3, pp.250-254, 2008.

. Hounslow, 7Kh 6Hdufk Iru D /Lslg 7Uljjhu 7Kh (Iihfw Ri 6Dow 6Wuhvv Rq Wkh /Lslg 3Uriloh Ri Wkh 0Rgho 0Lfurdojdo 6Shflhv, Current Biotechnology, vol.5, pp.305-313, 2016.

C. H. Hsieh and W. T. Wu, Cultivation of microalgae for oil production with a cultivation strategy of urea limitation', Bioresource Technology, vol.100, pp.3921-3926, 2009.

Q. Hu, Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances, Plant Journal, vol.54, issue.4, pp.621-639, 2008.

, WEO 2017 Chapter 1: Introduction and scope, IEA, pp.33-61, 2017.

J. Igielska-kalwat, A. Wawrzy?czak, and I. Nowak, ?-Carotene as an exemplary carotenoid and its application in cosmetic industry, Chemik, vol.66, issue.2, pp.140-144, 2012.

. Irena, Renewable Energy and Jobs: Annual Review, p.28, 2018.

J. Kumar and S. P. , Sustainable green solvents and techniques for lipid extraction from microalgae: A review', Algal Research, vol.21, pp.138-147, 2017.

C. D. Kang, Comparison of heterotrophic and photoautotrophic induction on astaxanthin production by Haematococcus pluvialis, Applied Microbiology and Biotechnology, vol.68, issue.2, pp.237-241, 2005.

R. Kapoore, Microwave-Assisted Extraction for Microalgae: From Biofuels to Biorefinery, Biology, vol.7, issue.1, p.18, 2018.

I. Khozin-goldberg and Z. Cohen, The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus, Phytochemistry, vol.67, issue.7, pp.696-701, 2006.

M. Koller, A. Muhr, and G. Braunegg, Microalgae as versatile cellular factories for valued products, pp.52-63, 2014.

V. Koufopanou, The Evolution of Soma in the Volvocales, Source: The American Naturalist, vol.143, issue.5, pp.907-931, 1994.

S. P. Kumar, Green solvents and technologies for oil extraction from oilseeds Green solvents and technologies for oil extraction from oilseeds, Chemistry Central Journal, 2017.

,

A. K. Lee, D. M. Lewis, and P. J. Ashman, Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements, Biomass and Bioenergy, vol.46, pp.89-101, 2012.

J. Y. Lee, Comparison of several methods for effective lipid extraction from microalgae, Bioresource Technology. Elsevier Ltd, issue.1, pp.75-77, 2010.

S. K. Lenka, Current advances in molecular, biochemical, and computational modeling analysis of microalgal triacylglycerol biosynthesis, Biotechnology Advances, 2016.

B. V. Elsevier, , vol.34, pp.1046-1063

Y. Li-beisson, Acyl-Lipid Metabolism, 2010.

Y. Li-beisson, F. Beisson, and W. Riekhof, Metabolism of acyl-lipids in Chlamydomonas reinhardtii, Plant Journal, 2015.

C. Li, Combined effects of carbon, phosphorus and nitrogen on lipid accumulation of Chlorella vulgaris in mixotrophic culture, Journal of Chemical Technology and Biotechnology, vol.91, issue.3, pp.680-684, 2016.

T. Lien and G. Knutsen, Synchronous Growth of Chlamydomonas Reinhardtii (Chlorophyceae): a Review of Optimal Conditions, Journal of Phycology, pp.191-200, 1979.

. Liu, Freshwater microalgae harvested via flocculation induced by pH decrease, Biotechnology for Biofuels. Biotechnology for Biofuels, vol.6, p.98, 2013.

R. T. Lorenz and G. R. Cysewski, , vol.18, pp.160-167, 2000.

. Lynn, Effect of nutrient availability on the biochemical and elemental stoichiometry in the freshwater diatom, J. Phycol, vol.522, pp.510-522, 2000.

M. R. Mansor, Life cycle assessment of natural fiber polymer composites, Agricultural Biomass Based Potential Materials, 2015.

P. Mercer and R. E. Armenta, Developments in oil extraction from microalgae, European Journal of Lipid Science and Technology, vol.113, issue.5, pp.539-547, 2011.

S. R. Medipally, Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production, Microalgae as Sustainable Renewable Energy Feedstock for Biofuel Production, p.519513, 2015.

A. P. Middelberg, Process-scale disruption of microorganisms, Biotechnology Advances, vol.13, issue.3, pp.491-551, 1995.

R. Miller, Changes in Transcript Abundance in Chlamydomonas reinhardtii following Nitrogen Deprivation Predict Diversion of Metabolism, Plant Physiology, vol.154, issue.4, pp.1737-1752, 2010.

J. R. Miranda, P. C. Passarinho, and L. Gouveia, Bioethanol production from Scenedesmus obliquus sugars: The influence of photobioreactors and culture conditions on biomass production, Applied Microbiology and Biotechnology, vol.96, issue.2, pp.555-564, 2012.

S. K. Mishra, Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method', Bioresource Technology, vol.155, pp.330-333, 2014.

E. R. Moellering and C. Benning, RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii, Eukaryotic Cell, vol.9, issue.1, pp.97-106, 2010.

S. Z. Mohd-nani, Potential health benefits of deep sea water: A review', Evidencebased Complementary and Alternative Medicine, 2016.

K. J. Mulders, Phototrophic pigment production with microalgae: Biological constraints and opportunities, Journal of Phycology, vol.50, issue.2, pp.229-242, 2014.

P. Nautiyal, K. A. Subramanian, and M. G. Dastidar, Recent Advancements in the Production of Biodiesel from Algae: A Review, Reference Module in Earth Systems and Environmental Sciences, 2014.

H. M. Nguyen, Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: With focus on proteins involved in lipid metabolism, Proteomics, vol.11, issue.21, pp.4266-4273, 2012.

S. Nomanbhay and M. Y. Ong, A Review of Microwave-Assisted Reactions for Biodiesel Production, Bioengineering, vol.4, issue.4, p.57, 2017.

P. D. Nichols, NEW AUSTRALIAN SINGLE CELL AND CROP PLANT SOURCES OF HEALTH-ENHANCING LONG-CHAIN OMEGA-3 OILS, 2003.

J. C. Ogbonna and H. Tanaka, Light requirement and photosynthetic cell cultivationDevelopment of processes for efficient light utilization in photobioreactors, Journal of Applied Phycology, vol.12, pp.207-218, 2000.

M. Olaizola, Commercial production of astaxanthin from Haematococcus, pp.499-506, 2000.

. Chapter, , p.97

P. Padmavathi and K. Veeraiah, Studies on the influence of Microcystis aeruginosa on the ecology and fish production of carp culture ponds, Journal of Biotechnology, vol.8, issue.9, pp.1911-1918, 2009.

I. Pancha, Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp, CCNM 1077', Bioresource Technology, vol.156, pp.146-154, 2014.

J. Paniagua-michel, Microalgal Nutraceuticals, Handbook of Marine Microalgae: Biotechnology Advances, 2015.

C. Paper, R. A. City, and O. Scientific, Green Renewable Energy for Sustainable Socio-Economic Development, 2015.

A. Parmar, Purification, characterization and comparison of phycoerythrins from three different marine cyanobacterial cultures', Bioresource Technology, vol.102, pp.1795-1802, 2011.

B. E. Rittmann, Opportunities for renewable bioenergy using microorganisms, Biotechnology and Bioengineering, vol.100, issue.2, pp.203-212, 2008.

K. Roberts, J. M. Phillips, and G. J. Hills, Structure, composition and morphogenesis of the cell wall of Chlamydomonas reinhardi. VI. The flagellar collar, vol.5, pp.90021-90022, 1969.

S. Saha and P. Murray, Exploitation of Microalgae Species for Nutraceutical Purposes: Cultivation Aspects, vol.4, p.46, 2018.

N. Sahad, . Md, A. Som, and A. Sulaiman, Review of green solvents for oil extraction from natural products using different extraction methods, Applied Mechanics and Materials, vol.661, pp.58-62, 2014.

F. Saifuddin, Effect of Microwave and Ultrasonic Pretreatments on Biogas Production from Anaerobic Digestion of Palm Oil Mill Effleunt, American Journal of Engineering and Applied Sciences, vol.2, issue.1, pp.139-146, 2009.

N. Sato, Environmental effects on acidic lipids of thylakoid membranes, Biochemical Society transactions, vol.28, issue.6, pp.912-914, 2000.

M. M. Shah, Astaxanthin-Producing Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products, Frontiers in Plant Science, vol.7, 2016.

F. Shahidi and J. Brown, Carotenoid Pigments in Seafoods and Aquaculture', Food Science and Nutrition, pp.37-41, 1998.

P. Valdivia-lefort, An Optimal Harvesting and Dewatering System Mechanism for Microalgae, Jornal of Agricultural Machinery Science, vol.7, issue.2, pp.211-215, 2011.

P. Varshney, Extremophilic micro-algae and their potential contribution in biotechnology, Bioresource Technology. Elsevier Ltd, vol.184, pp.363-372, 2015.

A. Vonshak, Spirulina platensis (Arthrospira) Physiology, cell-biology and biotechnology, 1997.

Z. T. Wang, Algal lipid bodies: Stress induction, purification, and biochemical characterization in wild-type and starchless chlamydomonas reinhardtit, Eukaryotic Cell, vol.8, issue.12, pp.1856-1868, 2009.

R. H. Wijffels and J. M. Barbosa, Perspective. An Outlook on Microalgal Biofuels, Science \r, vol.329, pp.796-799, 2010.
URL : https://hal.archives-ouvertes.fr/halshs-00422242

C. Wilhelm and T. Jakob, From photons to biomass and biofuels: Evaluation of different strategies for the improvement of algal biotechnology based on comparative energy balances, Applied Microbiology and Biotechnology, vol.92, issue.5, pp.909-919, 2011.

J. Wingfield and K. Lechtreck, Chlamydomonas Basal Bodies as Flagella Organizing Centers', Cells, vol.7, p.79, 2018.

I. Woertz, Algae Grown on Dairy and Municipal Wastewater for Simultaneous Nutrient Removal and Lipid Production for Biofuel Feedstock, Journal of Environmental Engineering, vol.135, issue.11, pp.1115-1122, 2009.

. Wu, Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium', Bioresource Technology, pp.496-502, 2012.

T. Wu, Ultrasonic disruption of yeast cells: Underlying mechanism and effects of processing parameters', Innovative Food Science and Emerging Technologies, vol.28, pp.59-65, 2015.

C. Xia, A new cultivation method for microbial oil production: Cell pelletization and lipid accumulation by Mucor circinelloides, Biotechnology for Biofuels, p.4, 2011.

L. Yuan-kun, Commercial production of microalgae in the Asia-Pacific rim, Journal of Applied Phycology, vol.9, pp.403-411, 1997.

T. Yusaf and R. A. Al-juboori, Alternative methods of microorganism disruption for agricultural applications', Applied Energy, vol.114, pp.909-923, 2014.

V. Zachleder, K. Bisova, and M. Vitova, The Physiology of Microalgae, 2016.

B. M. Zeldes, Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals, Frontiers in Microbiology, vol.6, 2015.

X. Zhang, Microalgae removal of CO2 from flue gas, References Chapter II -Materials and methods, p.95, 2015.

F. André and L. M. Mir, DNA electrotransfer: its principles and an updated review of its therapeutic applications, Gene Therapy, vol.11, pp.33-42, 2004.

W. M. Arnold and U. Zimmermann, Rotating-field-induced rotation and measurement of the membrane capacitance of single mesophyll cells of avena sativa, Zeitschrift fur Naturforschung -Section C Journal of Biosciences, vol.37, issue.10, pp.908-915, 1982.

P. S. Brito, Comparison between monopolar and bipolar microsecond range pulsed electric fields in enhancement of apple juice extraction, IEEE Transactions on Plasma Science, vol.40, issue.10, pp.2348-2354, 2012.

M. Coustets, Flow process for electroextraction of total proteins from microalgae, Journal of Membrane Biology, vol.246, issue.10, pp.751-760, 2013.

E. C. Chabrol and R. Charonnat, Une nouvelle reaction pour l'études des lipides: l'oleidemie, 1937.

, La Presse Medicale, vol.45, pp.1713-1714

A. Dietzel, Microsystems for pharmatechnology: Manipulation of fluids, particles, droplets, and cells, Microsystems for Pharmatechnology: Manipulation of Fluids, Particles, Droplets, and Cells, 2016.

G. S. Fiorini and D. T. Chiu, Disposable microfluidic devices: Fabrication, function, and application, BioTechniques, vol.38, issue.3, pp.429-446, 2005.

K. Flisar, Testing a prototype pulse generator for a continuous flow system and its use for E. coli inactivation and microalgae lipid extraction, Bioelectrochemistry. Elsevier B.V, vol.100, pp.44-51, 2014.

G. Foltz, Algae Lysis with Pulsed Electric Fields', Master's Theses and Project Reports, 2012.

F. S. Barnes and B. G. , Biological and Medical Aspects of Electromagnetic Fields (Handbook of Biological Effects of Electromagnetic Fields) 3Ed, 2006.

M. Goettel, Pulsed electric fi eld assisted extraction of intracellular valuables from microalgae, vol.2, pp.401-408, 2013.

S. Haberl, Cell membrane electroporation-Part 2: The applications, IEEE Electrical Insulation Magazine, vol.29, issue.1, pp.29-37, 2013.

M. P. Ho, Combining electrolysis and electroporation for tissue ablation, Handbook of Electroporation, vol.3, pp.1733-1753, 2017.

C. Joannes, The Potential of Using Pulsed Electric Field (PEF) Technology as the Cell Disruption Method to Extract Lipid from Microalgae for Biodiesel Production, International Journal of Renewable Energy Research (IJRER), vol.5, issue.2, pp.598-621, 2015.

M. A. Kempkes, I. Roth, and M. P. Gaudreau, Pulsed Electric Field (PEF) method for continuous enhanced extraction of oil and lipids from small aquatic plants, 2015.

H. S. Kim, T. P. Devarenne, and A. Han, Microfluidic systems for microalgal biotechnology: A review, Algal Research, vol.30, pp.149-161, 2018.

T. Kotnik, Cell membrane electroporation -Part 1: The phenomenon, 2012.

, Electrical Insulation Magazine, vol.28, issue.5, pp.14-23

T. Kotnik, D. Miklav?i?, and L. M. Mir, Cell membrane electropermeabilization by symmetrical bipolar rectangular pulses: Part II. Reduced electrolytic contamination, Bioelectrochemistry, vol.54, issue.1, pp.91-95, 2001.

E. W. Lee, S. Thai, and S. T. Kee, Irreversible electroporation: A novel image-guided cancer therapy, pp.99-104, 2010.

Z. A. Levine and P. T. Vernier, Life cycle of an electropore: Field-dependent and fieldindependent steps in pore creation and annihilation, Journal of Membrane Biology, vol.236, issue.1, pp.27-36, 2010.

E. Luengo, Effect of pulsed electric field treatments on permeabilization and extraction of pigments from Chlorella vulgaris, The Journal of membrane biology, vol.247, issue.12, pp.1269-77, 2014.

S. K. Mishra, Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method', Bioresource Technology, vol.155, pp.330-333, 2014.

O. V. Ostapenko, Influence of electroporation conditions on transfection of muscle fibers in vivo, Russian Journal of Genetics, vol.40, issue.1, pp.33-39, 2004.

G. Pataro, On the modeling of electrochemical phenomena at the electrodesolution interface in a PEF treatment chamber: Methodological approach to describe the phenomenon of metal release, Journal of Food Engineering, vol.165, pp.34-44, 2015.

M. Pavlin, Chapter Seven Electroporation of Planar Lipid Bilayers and Membranes, Advances in Planar Lipid Bilayers and Liposomes, vol.6, pp.6007-6010, 2008.

M. Puc, Quantitative model of small molecules uptake after in vitro cell electropermeabilization, Bioelectrochemistry, vol.60, issue.1-2, pp.1-10, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00320027

M. Reber?ek, Cell membrane electroporation-Part 3: The equipment, IEEE Electrical Insulation Magazine, vol.30, issue.3, pp.8-18, 2014.

. Schlager, Electroporation System for Sterilizing Water Amounts of chemicals needed for sterilization are reduced, pp.25-26, 2005.

J. Teissie, M. Golzio, and M. P. Rols, Mechanisms of cell membrane electropermeabilization: A minireview of our present (lack of ?) knowledge, Biochimica et Biophysica Acta -General Subjects, vol.1724, issue.3, pp.270-280, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00078716

J. Teissié and M. Rols, An Experimental Evaluation of the Critical Potential Difference, Biophysical Journal, vol.65, pp.409-413, 1993.

M. D. Zbinden, Pulsed electric field (PEF) as an intensification pretreatment for greener solvent lipid extraction from microalgae, Biotechnology and Bioengineering, vol.110, issue.6, pp.1605-1615, 2013.

U. Zimmermann, Electrical breakdown, electropermeabilization and electrofusion, Biochemistry and Pharmacology, vol.105, pp.175-256, 1986.

.. .. Acknowledgments,

.. .. References,

.. .. Complementary-results,

.. .. Conclusions,

T. Adarme-vega, D. K. Lim, M. Timmins, F. Vernen, Y. Li et al., Microalgal biofactories: a promising approach towards sustainable omega-3 fatty acid production, Microb. Cell Fact, vol.11, 2012.

G. S. Araujo, L. J. Matos, J. O. Fernandes, S. J. Cartaxo, L. R. Gonçalves et al., Extraction of lipids from microalgae by ultrasound application: Prospection of the optimal extraction method, Ultrason. Sonochem, vol.20, pp.95-98, 2013.

A. E. Atabani, .. S. Silitonga, I. A. Badruddin, T. M. Mahlia, H. H. Masjuki et al., A comprehensive review on biodiesel as an alternative energy resource and its characteristics, Renew. Sustain. Energy Rev, vol.16, pp.2070-2093, 2012.

H. R. Azencott, G. F. Peter, and M. R. Prausnitz, Influence of the cell wall on intracellular delivery to algal cells by electroporation and sonication, Ultrasound Med. Biol, vol.33, pp.1805-1822, 2007.

S. Behera, R. Singh, R. Arora, N. K. Sharma, and M. Shukla, Scope of algae as third generation biofuels, vol.2, pp.1-13, 2015.

V. Benito, F. Goñi-de-cerio, and P. Brettes, BODIPY vital staining as a tool for flow cytometric monitoring of intracellular lipid accumulation in Nannochloropsis gaditana, J. Appl. Phycol, vol.27, pp.233-241, 2015.

P. Bodénès, F. Lopes, D. Pareau, O. Français, and B. Le-pioufle, Microdevice for studying the in situ permeabilization and characterization of Chlamydomonas reinhardtii in lipid accumulation phase, Algal Res, vol.16, pp.357-367, 2016.

M. S. Bono, R. D. Garcia, D. V. Sri-jayantha, B. A. Ahner, and B. J. Kirby, Measurement of Lipid Accumulation in Chlorella vulgaris via Flow Cytometry and Liquid-State 1 H NMR Spectroscopy for Development of an NMR-Traceable Flow Cytometry Protocol, PLoS One, vol.10, 2015.

C. P. Bravo-fritz, C. A. S??ez-navarrete, L. A. Herrera-zeppelin, and F. Varas-concha, Multiscenario energy-economic evaluation for a biorefinery based on microalgae biomass with application of anaerobic digestion, Algal Res, vol.16, pp.292-307, 2016.

A. R. Byreddy, A. Gupta, C. J. Barrow, and M. Puri, A quick colorimetric method for total lipid quantification in microalgae, J. Microbiol. Methods, vol.125, pp.28-32, 2016.

M. Cooney, G. Young, and N. Nagle, Extraction of bio-oils from microalgae, Sep. Purif. Rev, vol.38, pp.291-325, 2009.

C. J. Eing, M. Goettel, R. Straessner, C. Gusbeth, and W. Frey, Pulsed Electric Field Treatment of Microalgae-Benefits for Microalgae Biomass Processing, IEEE Trans. Plasma Sci, vol.41, pp.2901-2907, 2013.

, Chapter III -Lipid extraction 157

T. Geng, Y. Zhan, H. Y. Wang, S. R. Witting, K. G. Cornetta et al., Flow-through electroporation based on constant voltage for large-volume transfection of cells, J. Control. Release, vol.144, pp.91-100, 2010.

J. A. Gerde, M. Montalbo-lomboy, L. Yao, D. Grewell, and T. Wang, Evaluation of microalgae cell disruption by ultrasonic treatment, Bioresour. Technol, vol.125, pp.175-181, 2012.

M. Goettel, C. Eing, C. Gusbeth, R. Straessner, and W. Frey, Pulsed electric fi eld assisted extraction of intracellular valuables from microalgae, vol.2, pp.401-408, 2013.

U. W. Goodenough and J. E. Heuser, The Chlamydomonas Cell Wall Glycoproteins Analyzed by the Technique and Its Constituent Quick-Freeze, Deep-Etch, vol.101, 1985.

D. S. Gorman and R. P. , TAP and Tris-minimal* medium, Proc. Natl. Acad. Sci, pp.1665-1669, 1965.

T. Govender, L. Ramanna, I. Rawat, and F. Bux, BODIPY staining, an alternative to the Nile Red fluorescence method for the evaluation of intracellular lipids in microalgae, Bioresour. Technol, vol.114, pp.507-511, 2012.

E. Günerken, E. D'hondt, M. H. Eppink, L. Garcia-gonzalez, K. Elst et al., Cell disruption for microalgae biorefineries, Biotechnol. Adv, vol.33, pp.243-260, 2015.

R. Halim, M. K. Danquah, and P. A. Webley, Extraction of oil from microalgae for biodiesel production: A review, Biotechnol. Adv, vol.30, pp.709-732, 2012.

R. Halim, T. W. Rupasinghe, D. L. Tull, and P. A. Webley, Mechanical cell disruption for lipid extraction from microalgal biomass, Bioresour. Technol, vol.140, pp.53-63, 2013.

D. Y. Kim, D. Vijayan, R. Praveenkumar, J. I. Han, K. Lee et al., Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus, Bioresour. Technol, vol.199, pp.300-310, 2016.

J. Kim, G. Yoo, H. Lee, J. Lim, K. Kim et al., Methods of downstream processing for the production of biodiesel from microalgae, Biotechnol. Adv, vol.31, pp.862-876, 2013.

J. Knight, S. Anderson, and J. M. Rawle, ChemicalBasisof the Sulfo-phospho-vanillin Reactionfor Estimating Total Serum Lipids, pp.199-202, 1972.

S. P. Kumar, S. R. Prasad, R. Banerjee, D. K. Agarwal, K. S. Kulkarni et al., Green solvents and technologies for oil extraction from oilseeds Green solvents and technologies for oil extraction from oilseeds, Chem. Cent. J, 2017.

Y. S. Lai, P. Parameswaran, A. Li, M. Baez, and B. E. Rittmann, Effects of pulsed electric field treatment on enhancing lipid recovery from the microalga, Scenedesmus. Bioresour. Technol, vol.173, pp.457-461, 2014.

A. K. Lee, D. M. Lewis, and P. J. Ashman, Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements, Biomass and Bioenergy, vol.46, pp.89-101, 2012.

S. Y. Lee, J. M. Cho, Y. K. Chang, and Y. K. Oh, Cell disruption and lipid extraction for microalgal biorefineries: A review, Bioresour. Technol, vol.244, pp.1317-1328, 2017.

K. Miazek, L. Kratky, R. Sulc, T. Jirout, M. Aguedo et al., Effect of organic solvents on microalgae growth, metabolism and industrial bioproduct extraction: A review, Int. J. Mol. Sci, vol.18, 2017.

S. K. Min, G. H. Yoon, J. H. Joo, S. J. Sim, and H. S. Shin, Mechanosensitive physiology of chlamydomonas reinhardtii under direct membrane distortion, 2014.

A. K. Minhas, P. Hodgson, C. J. Barrow, and A. Adholeya, A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids, Front. Microbiol, vol.7, pp.1-19, 2016.

S. K. Mishra, W. I. Suh, W. Farooq, M. Moon, A. Shrivastav et al., Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method, Bioresour. Technol, vol.155, pp.330-333, 2014.

M. Mojaat, A. Foucault, J. Pruvost, and J. Legrand, Optimal selection of organic solvents for biocompatible extraction of ? -carotene from Dunaliella salina 133, pp.433-441, 2008.

H. Nezammahalleh, M. Nosrati, and F. Ghanati, Exergy-based screening of biocompatible solvents for in situ lipid extraction from Chlorella vulgaris, J. Appl. Phycol, 2016.

I. L. Olmstead, S. E. Kentish, P. J. Scales, and G. J. Martin, Low solvent, low temperature method for extracting biodiesel lipids from concentrated microalgal biomass, Bioresour. Technol, vol.148, pp.615-619, 2013.

P. , J. K. Kumar, V. Dash, A. Scholz, P. Banerjee et al., Sustainable green solvents and techniques for lipid extraction from microalgae : A review, ALGAL, vol.21, pp.138-147, 2017.

G. Pataro, M. Goettel, R. Straessner, C. Gusbeth, G. Ferrari et al., Effect of PEF treatment on extraction of valuable compounds from microalgae C, Vulgaris. Chem. Eng. Trans, vol.57, pp.67-72, 2017.

P. R. Postma, T. L. Miron, G. Olivieri, M. J. Barbosa, R. H. Wijffels et al., Mild disintegration of the green microalgae Chlorella vulgaris using bead milling, Bioresour. Technol, vol.184, pp.297-304, 2015.

D. Qin, Y. Xia, and G. M. Whitesides, Soft lithography for micro-and nanoscale patterning, Nat. Protoc, vol.5, pp.491-502, 2010.

S. Rakesh, D. W. Dhar, R. Prasanna, A. K. Saxena, S. Saha et al., Cell disruption methods for improving lipid extraction efficiency in unicellular microalgae, Eng. Life Sci, vol.15, pp.443-447, 2015.

R. Kumar, R. Hanumantha-rao, P. Arumugam, and M. , Lipid Extraction Methods from Microalgae: A Comprehensive Review. Front. Energy Res, vol.2, pp.1-9, 2015.

K. Roberts, J. M. Phillips, and G. J. Hills, Structure, composition and morphogenesis of the cell wall of Chlamydomonas reinhardi. VI. The flagellar collar, Micron, vol.5, pp.90021-90022, 1969.

E. Ryckebosch, K. Muylaert, and I. Foubert, Optimization of an analytical procedure for extraction of lipids from microalgae, J. Am. Oil Chem. Soc, vol.89, pp.189-198, 2012.

A. Santana, S. Jesus, M. A. Larrayoz, and R. M. Filho, Supercritical carbon dioxide extraction of algal lipids for the biodiesel production, Procedia Eng, vol.42, pp.1755-1761, 2012.

P. M. Slegers, B. J. Koetzier, F. Fasaei, R. H. Wijffels, G. Van-straten et al., A model-based combinatorial optimisation approach for energy-efficient processing of microalgae, 2014.

, Algal Res, vol.5, pp.140-157

T. Takeshita, Competitiveness, role, and impact of microalgal biodiesel in the global energy future, Appl. Energy, vol.88, pp.3481-3491, 2011.

M. Vanthoor-koopmans, R. H. Wijffels, M. J. Barbosa, and M. H. Eppink, Biorefinery of microalgae for food and fuel, Bioresour. Technol, vol.135, pp.142-149, 2013.

N. Velmurugan, M. Sung, S. S. Yim, M. S. Park, J. W. Yang et al., Evaluation of intracellular lipid bodies in Chlamydomonas reinhardtii strains by flow cytometry, Bioresour. Technol, vol.138, pp.30-37, 2013.

B. H. Yap, S. A. Crawford, G. J. Dumsday, P. J. Scales, and G. J. Martin, A mechanistic study of algal cell disruption and its effect on lipid recovery by solvent extraction, ALGAL, vol.5, pp.112-120, 2014.

B. H. Yap, G. J. Dumsday, P. J. Scales, and G. J. Martin, Energy evaluation of algal cell disruption by high pressure homogenisation, Bioresour. Technol, vol.184, pp.280-285, 2015.

M. D. Zbinden, B. S. Sturm, R. D. Nord, W. J. Carey, D. Moore et al., Pulsed electric field (PEF) as an intensification pretreatment for greener solvent lipid extraction from microalgae, Biotechnol. Bioeng, vol.110, pp.1605-1615, 2013.

M. .. Materials,

.. .. Microalgae,

, Pulse Electric Field (PEF) conditions

, Characterization of reversible and irreversible pores using Sytox Green

.. .. Energetic,

, Characterization of reversible pores life duration

.. .. Results,

E. and .. .. ,

, Effect of biomass concentration on the permeabilization sensitivity

, Cell growth after reversible and irreversible permeabilization conditions

, Life time of reversible pores with different treatments

, Investigation towards pore size determination

.. .. Discussion,

.. .. Pef,

, Pore characterization: pore sizes

, Pore characterization: dynamics of pore resealing

.. .. Conclusions,

. Chapter, Studying and characterizing the impact of preatreatments on Chlamydomonas reinhardtii's structural properties and cell composition 189

.. .. Acknowledgements,

.. .. Conflict,

, 208 1.11 Declaration of authors agreement to authorship and submission of the manuscript, p.208

.. .. References,

.. .. Supplementary,

. .. , 212 2.Chlamydomonas reinhardtii's structural response to stress conditions, Pulsed Electric Fields and mechanical compressions for an efficient and controlled compound extraction

.. .. Abstract,

. Materials and . .. Methods,

.. .. Microalgae-strain,

.. .. Pretreatments,

C. and .. .. ,

C. Reinhardtii,

D. .. Results,

C. R. , 220 2.4.2 Impact of stress conditions on C. reinhardtii physiology and structure

.. .. Conclusions,

.. .. Acknowledgements,

.. .. References,

.. .. Conclusions,

. Chapter, Studying and characterizing the impact of preatreatments on Chlamydomonas reinhardtii's structural properties and cell composition

T. Kotnik, W. Frey, M. Sack, S. Megli?, M. Peterka et al., Electroporation-based applications in biotechnology, Trends Biotechnol, vol.33, pp.480-488, 2015.

J. Teissie, M. Golzio, and M. P. Rols, Mechanisms of cell membrane electropermeabilization: A minireview of our present (lack of ?) knowledge, Biochim. Biophys. Acta -Gen. Subj, vol.1724, pp.270-280, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00078716

M. Goettel, C. Eing, C. Gusbeth, R. Straessner, and W. Frey, Pulsed electric field assisted extraction of intracellular valuables from microalgae, Algal Res, vol.2, pp.401-408, 2013.

M. Coustets, N. Al-karablieh, C. Thomsen, and J. Teissié, Flow process for electroextraction of total proteins from microalgae, J. Membr. Biol, vol.246, pp.751-760, 2013.

G. P. Lam, P. R. Postma, D. A. Fernandes, R. A. Timmermans, M. H. Vermuë et al., Pulsed Electric Field for protein release of the microalgae Chlorella vulgaris and Neochloris oleoabundans, Algal Res, vol.24, pp.181-187, 2017.

E. Luengo, S. Condón-abanto, I. Alvarez, and J. Raso, Effect of Pulsed Electric Field Treatments on Permeabilization and Extraction of Pigments from Chlorella vulgaris, J. Membr. Biol, vol.247, pp.1269-77, 2014.

O. Parniakov, F. J. Barba, N. Grimi, L. Marchal, S. Jubeau et al., Pulsed electric field and pH assisted selective extraction of intracellular components from microalgae nannochloropsis, Algal Res, vol.8, pp.128-134, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01935729

M. D. Zbinden, B. S. Sturm, R. D. Nord, W. J. Carey, D. Moore et al., Pulsed electric field (PEF) as an intensification pretreatment for greener solvent lipid extraction from microalgae, Biotechnol. Bioeng, vol.110, pp.1605-1615, 2013.

K. Flisar, S. H. Meglic, J. Morelj, J. Golob, and D. Miklavcic, Testing a prototype pulse generator for a continuous flow system and its use for E. coli inactivation and microalgae lipid extraction, Bioelectrochemistry, vol.100, pp.44-51, 2014.

M. C. Vernhes, P. A. Cabanes, and J. Teissie, Chinese hamster ovary cells sensitivity to localized electrical stresses, Bioelectrochemistry Bioenerg, vol.48, pp.239-245, 1999.

K. C. Smith, R. S. Son, T. R. Gowrishankar, and J. C. Weaver, Emergence of a large pore subpopulation during electroporating pulses, Bioelectrochemistry, vol.100, pp.3-10, 2014.

Y. U. Hou, R. O. Umon, J. I. Ui, and C. H. Eng, THE SIZE OF SONOPORATION PORES ON THE CELL MEMBRANE, vol.35, pp.1756-1760, 2009.

G. Saulis and R. Saule, Size of the pores created by an electric pulse: Microsecond vs Chapter IV -Studying and characterizing the impact of preatreatments on Chlamydomonas reinhardtii's structural properties and cell composition 210 millisecond pulses, Biochim. Biophys. Acta -Biomembr, vol.1818, pp.3032-3039, 2012.

P. Bodénès, F. Lopes, D. Pareau, O. Français, and B. L. Pioufle, Microdevice for studying the in situ permeabilization and characterization of Chlamydomonas reinhardtii in lipid accumulation phase, Algal Res, vol.16, pp.357-367, 2016.

G. P. Lam, J. A. Van-der, A. Kolk, M. H. Chordia, G. Vermue et al., Mild and Selective Protein Release of Cell Wall De fi cient Microalgae with Pulsed Electric Field, 2017.

C. Safi, L. Rodriguez, W. J. Mulder, N. Engelen-smit, W. Spekking et al., Energy consumption and water-soluble protein release by cell wall disruption of Nannochloropsis gaditana, Bioresour. Technol, 2017.

P. Bodénès, F. Lopes, D. Pareau, O. Français, and B. L. Pioufle, Microdevice for studying the in situ permeabilization and characterization of Chlamydomonas reinhardtii in lipid accumulation phase, Algal Res, vol.16, pp.357-367, 2016.

S. Bensalem, F. Lopes, P. Bodénès, D. Pareau, O. Français et al., Structural changes of Chlamydomonas reinhardtii cells during lipid enrichment and after solvent exposure, Data Br, vol.17, 2018.

M. S. Bono, B. A. Ahner, and B. J. Kirby, Detection of algal lipid accumulation due to nitrogen limitation via dielectric spectroscopy of Chlamydomonas reinhardtii suspensions in a coaxial transmission line sample cell, Bioresour. Technol, vol.143, pp.623-631, 2013.

S. Bensalem, F. Lopes, P. Bodénès, D. Pareau, O. Français et al., Understanding the mechanisms of lipid extraction from microalga Chlamydomonas reinhardtii after electrical field solicitations and mechanical stress within a microfluidic device, Bioresour. Technol, vol.257, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01789219

G. Saulis, M. S. Venslauskas, and J. Naktinis, Kinetics of pore resealing in cell-membranes after electroporation, Bioelectrochemistry Bioenerg, vol.26, pp.1-13, 1991.

W. Krassowska and P. D. Filev, Modeling electroporation in a single cell, Biophys. J, vol.92, pp.404-417, 2007.

A. Winter, Impact of Pulsed Electric Fields (PEF) on post-permeabilization processes in plant cells, p.76, 2011.

W. Sung and P. J. Park, Dynamics of pore growth in membranes and membrane stability, Biophys. J, vol.73, pp.1797-1804, 1997.

A. Angersbach, V. Heinz, and D. Knorr, Effects of pulsed electric fields on cell membranes in real food systems, Innov. Food Sci. Emerg. Technol, vol.1, pp.135-149, 2000.

B. Chemistry, T. Helmholtz, and B. , Chemistry, 1. Introduction, vol.19, pp.211-225, 1984.

E. Puértolas, O. Cregenzán, E. Luengo, I. Álvarez, and J. Raso, Pulsed-electric-field-assisted extraction of anthocyanins from purple-fleshed potato, Food Chem, vol.136, pp.1330-1336, 2013.

S. G. Ball and P. A. Deschamps, Exploration of Microalgae Biorefinery by Optimizing Sequential Extraction of Major Metabolites from Scenedesmus obliquus, Industrial and Engineering Chemistry Research, vol.2, issue.12, pp.3407-3412, 2009.

A. A. Arnold, Identification of lipid and saccharide constituents of whole microalgal cells by13C solid-state NMR, Biochimica et Biophysica Acta -Biomembranes, 2015.

B. V. Elsevier, , vol.1848, pp.369-377

S. G. Ball, Physiology of starch storage in the monocellular alga Chlamydomonas reinhardtii, pp.1-9, 1990.

S. G. Ball and P. ;. Deschamps, Understanding the mechanisms of lipid extraction from microalga Chlamydomonas reinhardtii after electrical field solicitations and mechanical stress within a microfluidic device, Bioresource Technology, vol.2, p.257, 2009.

P. Bodénès, Microdevice for studying the in situ permeabilization and characterization of Chlamydomonas reinhardtii in lipid accumulation phase, Algal Research, vol.16, pp.357-367, 2016.

P. Bodénès, Inducing reversible or irreversible pores in Chlamydomonas reinhardtii with electroporation: Impact of treatment parameters', Algal Research, vol.37, pp.124-132, 2018.

. Chapter, Studying and characterizing the impact of preatreatments on Chlamydomonas reinhardtii's structural properties and cell composition 231

C. W. Cho, Toxicity assessment of common organic solvents using a biosensor based on algal photosynthetic activity measurement, Journal of Applied Phycology, vol.21, issue.6, pp.683-689, 2009.

A. Dubini, Green energy: Biofuel production from Chlamydomonas reinhardtii, The Biochemical Society, 2011.

R. M. Ferreira and A. R. Teixeira, Sulfur starvation in Lemna leads to degradation of ribulose-bisphosphate carboxylase without plant death, Journal of Biological Chemistry, vol.267, issue.11, pp.7253-7257, 1992.

P. J. Flory, Principles of Polymer Chemistry, 1953.

H. G. Gerken, B. Donohoe, and E. P. Knoshaug, Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production, Planta, vol.237, issue.1, pp.239-253, 2013.

M. Giordano, V. Pezzoni, and R. Hell, Strategies for the Allocation of Resources under Sulfur Limitation in the Green Alga Dunaliella salina, Plant Physiology, vol.124, issue.2, pp.857-864, 2000.

U. W. Goodenough and J. E. Heuser, The Chlamydomonas Cell Wall Glycoproteins Analyzed by the Technique and Its Constituent Quick-Freeze, Deep-Etch, p.101, 1985.

E. Günerken, Cell disruption for microalgae biorefineries, Biotechnology Advances, vol.33, issue.2, pp.243-260, 2015.

. Harris, Chlamydomoans as a model organism, Annual Review of Plant Physiology and Plant Molecular Biology, vol.52, issue.1, pp.363-406, 2001.

E. H. Harris, . Stern, B. David, and G. B. Witman, The Chlamydomonas Sourcebook, 2nd Edition Chapter IV -Studying and characterizing the impact of preatreatments on Chlamydomonas reinhardtii's structural properties, p.232, 2009.

M. Hayes, Microalgal proteins for feed, food and health', Microalgae-Based Biofuels and Bioproducts: From Feedstock Cultivation to End-Products, pp.347-368, 2017.

S. Khanra, Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: A review', Food and Bioproducts Processing, vol.110, pp.60-84, 2018.

D. Y. Kim, Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus', Bioresource Technology, pp.300-310, 0199.

J. Kim, Methods of downstream processing for the production of biodiesel from microalgae', Biotechnology Advances, vol.31, pp.862-876, 2013.

M. Kröger, M. Klemm, and M. Nelles, Hydrothermal disintegration and extraction of different microalgae species, Energies, vol.11, issue.2, pp.1-13, 2018.

A. K. Lee, D. M. Lewis, and P. J. Ashman, Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements, Biomass and Bioenergy, vol.46, pp.89-101, 2012.

S. Y. Lee, Cell disruption and lipid extraction for microalgal biorefineries: A review, Bioresource Technology, vol.244, pp.1317-1328, 2017.

G. B. Leite, A. E. Abdelaziz, and P. C. Hallenbeck, Algal biofuels: Challenges and opportunities, Bioresource Technology, vol.145, pp.134-141, 2013.

K. Miazek, Effect of organic solvents on microalgae growth, metabolism and Chapter IV -Studying and characterizing the impact of preatreatments on Chlamydomonas reinhardtii's structural properties and cell composition 233 industrial bioproduct extraction: A review, International Journal of Molecular Sciences, issue.7, p.18, 2017.

D. H. Miller, I. R. Mellman, and D. T. Lamport, The chemical composition of the cell wall of Chlamydomonas Gymnogama and the concept of a plant cell wall protein, vol.63, pp.420-429, 1974.

M. Mubarak, . Shaija, and T. V. Suchithra, A review on the extraction of lipid from microalgae for biodiesel production', Algal Research, vol.7, pp.117-123, 2015.

J. Y. Park, Sonication-assisted homogenization system for improved lipid extraction from Chlorella vulgaris', Renewable Energy, vol.79, pp.3-8, 2015.

R. Praveenkumar, Breaking Dormancy: An energy-efficient means of recovering astaxanthin from microalgae, ARPN Journal of Engineering and Applied Sciences, 2014.

D. Qin, Y. Xia, and G. M. Whitesides, Soft lithography for micro-and nanoscale patterning', Nature Protocols, vol.5, pp.491-502, 2010.

X. Ren, Current lipid extraction methods are significantly enhanced adding a water treatment step in Chlorella protothecoides', Microbial Cell Factories, BioMed Central, vol.16, issue.1, pp.1-13, 2017.

K. Roberts, J. M. Phillips, and G. J. Hills, Structure, composition and morphogenesis of the cell wall of Chlamydomonas reinhardi. VI. The flagellar collar, vol.5, pp.90021-90022, 1969.

G. Saulis, Electroporation of cell membranes: The fundamental effects of pulsed Chapter IV -Studying and characterizing the impact of preatreatments on Chlamydomonas reinhardtii's structural properties and cell composition 234 electric fields in food processing, Food Engineering Reviews, vol.2, issue.2, pp.52-73, 2010.

M. A. Scranton, Chlamydomonas as a model for biofuels and bio-products production, Plant Journal, vol.82, issue.3, pp.523-531, 2015.

J. Sheng, R. Vannela, and B. E. Rittmann, Evaluation of cell-disruption effects of pulsed-electric-field treatment of Synechocystis PCC 6803, Environmental Science and Technology, vol.45, issue.8, pp.3795-3802, 2011.

L. S. Sierra, C. K. Dixon, and L. R. Wilken, Enzymatic cell disruption of the microalgae Chlamydomonas reinhardtii for lipid and protein extraction, 2017.

, , vol.25, pp.149-159

A. Singh, P. S. Nigam, and J. D. Murphy, Mechanism and challenges in commercialisation of algal biofuels', Bioresource Technology, vol.102, pp.26-34, 2011.

K. C. Smith, Emergence of a large pore subpopulation during electroporating pulses, Bioelectrochemistry. Elsevier B.V, vol.100, pp.3-10, 2014.

S. P. Ventura, Extraction of value-added compounds from microalgae', Microalgae-Based Biofuels and Bioproducts: From Feedstock Cultivation to End-Products, pp.461-483, 2017.

Z. T. Wang, Algal lipid bodies: Stress induction, purification, and biochemical characterization in wild-type and starchless chlamydomonas reinhardtit, Eukaryotic Cell, vol.8, issue.12, pp.1856-1868, 2009.

V. H. Work, Biocommodities From Photosynthetic Microorganisms, /ep. Chapter IV -Studying and characterizing the impact of preatreatments on Chlamydomonas reinhardtii's structural properties, vol.39, p.235, 2013.

M. D. Zbinden, Pulsed electric field (PEF) as an intensification pretreatment for greener solvent lipid extraction from microalgae, Biotechnology and Bioengineering, vol.110, issue.6, pp.1605-1615, 2013.

L. Zhang, T. Happe, and A. Melis, Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga, /s004250100660. Chapter IV -Studying and characterizing the impact of preatreatments on Chlamydomonas reinhardtii's structural properties and cell composition, vol.214, pp.552-561, 2002.