, Phys. Rev. B -Condens. Matter Mater. Phys, vol.58, pp.14013-14019, 1998.

S. Iijima, C. Brabec, A. Maiti, and J. Bernholc, Structural flexibility of carbon nanotubes, J. Chem. Phys, vol.104, pp.2089-2092, 1996.

B. I. Yakobson, C. J. Brabec, and J. Bernholc, Nanomechanics of carbon tubes: Instabilities beyond linear response, Phys. Rev. Lett, vol.76, pp.2511-2514, 1996.

J. P. Lu, Elastic properties of carbon nanotubes and nanoropes, Phys. Rev. Lett, vol.79, 1997.

E. G. Rakov, The chemistry and application of carbon nanotubes, Russ. Chem. Rev, vol.70, pp.827-863, 2001.

H. Dai, Carbon nanotubes: Synthesis, integration, and properties, vol.35, pp.1035-1044, 2002.

J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng et al., Nanotube molecular wires as chemical sensors, Science (80-. ), vol.287, pp.622-625, 2000.

P. Collins, K. Bradley, M. Ishigami, and A. Zettl, Extreme oxygen sensitivity of electronic properties of carbon nanotubes, Science, vol.287, pp.1801-1804, 2000.

M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. Mclean et al., DNA-assisted dispersion and separation of carbon nanotubes, Nat. Mater, vol.2, pp.338-342, 2003.

M. Zheng, A. Jagota, M. S. Strano, A. P. Santos, P. Barone et al., Structure-based carbon nanotube sorting by sequence-dependent DNA assembly, Science, vol.302, pp.1545-1548, 2003.

T. A. Saleh, The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4, Appl. Surf. Sci, vol.257, pp.7746-7751, 2011.

J. Chen, Q. Chen, and Q. Ma, Influence of surface functionalization via chemical oxidation on the properties of carbon nanotubes, J. Colloid Interface Sci, vol.370, pp.32-38, 2012.

A. Hirsch, Functionalization of single-walled carbon nanotubes, Angew. Chemie -Int. Ed, vol.41, pp.1853-1859, 2002.

R. H. Baughman, A. A. Zakhidov, and W. A. De-heer, Carbon nanotubes -The route toward applications, Science (80-. ), vol.297, pp.787-792, 2002.

K. Balani, R. Anderson, T. Laha, M. Andara, J. Tercero et al., Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro, Biomaterials, vol.28, pp.618-624, 2007.

A. Bianco, K. Kostarelos, and M. Prato, Applications of carbon nanotubes in drug delivery, Curr. Opin. Chem. Biol, vol.9, pp.674-679, 2005.

N. W. Kam and H. Dai, Carbon nanotubes as intracellular protein transporters: Generality and biological functionality, J. Am. Chem. Soc, vol.127, pp.6021-6026, 2005.

M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon nanotubes : synthesis, structure, properties, and applications, 2001.

P. Mélinon and B. Masenelli, From small Fullerenes to superlattices : science and applications, 2012.

F. P. Bundy, The P , T phase and reaction diagram for elemental carbon, J. Geophys. Res, vol.85, p.6930, 1979.

S. Iijima, Helical microtubules of graphitic carbon, Nature, vol.354, pp.56-58, 1991.

D. S. Bethune, C. H. Klang, M. S. De-vries, G. Gorman, R. Savoy et al., Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, vol.363, pp.605-607, 1993.

S. Iijima and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter, Nature, vol.363, pp.603-605, 1993.

N. Arora and N. N. Sharma, Arc discharge synthesis of carbon nanotubes: Comprehensive review, Diam. Relat. Mater, vol.50, pp.135-150, 2014.

T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert et al., Selfassembly of tubular fullerenes, J. Phys. Chem, vol.99, pp.10694-10697, 1995.

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Catalytic Growth of Single-Walled Nanotubes by Laser Vaporization, Chem. Phys. Lett, vol.243, pp.49-54, 1995.

M. Mayne, N. Grobert, M. Terrones, R. Kamalakaran, M. Rühle et al., Pyrolytic production of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols, Chem. Phys. Lett, vol.338, pp.101-107, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00144727

B. Liu, F. Wu, H. Gui, M. Zheng, and C. Zhou, Chirality-Controlled synthesis and applications of single-wall carbon nanotubes, ACS Nano, vol.11, pp.31-53, 2017.

Y. Wang, F. Wei, G. Luo, H. Yu, and G. Gu, The large-scale production of carbon nanotubes in a nano-agglomerate fluidized-bed reactor, Chem. Phys. Lett, vol.364, pp.568-572, 2002.

R. Philippe, Synthèse de nanotubes de carbone multi-parois par dépôt chimique en phase vapeur catalytique en lit fluidisé : nouvelle classe de catalyseurs, étude cinétique et modélisation, 2006.

P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert et al., Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chem. Phys. Lett, vol.313, issue.99, pp.1029-1034, 1999.

M. J. Bronikowski, P. A. Willis, D. T. Colbert, K. A. Smith, and R. E. Smalley, Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study, J. Vac. Sci. Technol. A Vacuum, Surfaces, Film, vol.19, pp.1800-1805, 2001.

R. S. Wagner and W. C. Ellis, Vapor-Liquid-Solid mechanism of single crystal growth, Appl. Phys. Lett, vol.4, pp.89-90, 1964.

R. T. Baker, Catalytic growth of carbon filaments, Carbon N. Y, vol.27, pp.90062-90068, 1989.

R. T. Baker, M. A. Barber, P. S. Harris, F. S. Feates, and R. J. Waite, Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene, J. Catal, vol.26, pp.51-62, 1972.

J. Rostrup-nielsen and D. L. Trimm, Mechanisms of carbon formation on nickel-containing catalysts, J. Catal, vol.48, pp.155-165, 1977.

F. Ding, A. Rosén, and K. Bolton, The role of the catalytic particle temperature gradient for SWNT growth from small particles, Chem. Phys. Lett, vol.393, pp.309-313, 2004.

F. Ding, A. Rosén, and K. Bolton, Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth, J. Chem. Phys, vol.121, p.2775, 2004.

J. Gavillet, J. Thibault, O. Stéphan, H. Amara, A. Loiseau et al., Nucleation and growth of single-walled nanotubes: the role of metallic catalysts, J. Nanosci. Nanotechnol, vol.4, pp.346-59, 2004.

V. Jourdain and C. Bichara, Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition, Carbon N. Y, vol.58, pp.2-39, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01067024

S. Helveg, C. López-cartes, J. Sehested, P. L. Hansen, B. S. Clausen et al., Atomic-scale imaging of carbon nanofibre growth, Nature, vol.427, pp.426-429, 2004.

Y. Saito, Nanoparticles and filled nanocapsules, Carbon N. Y, vol.33, pp.979-988, 1995.

M. Lin, J. P. , Y. Tan, and C. Boothroyd, Kian Ping Loh, Eng Soon Tok, YongLim Foo, Direct observation of single-walled carbon nanotube growth at the atomistic scale, 2006.

. Li, . Xie, . Qian, . Chang, . Zou et al., Large-Scale Synthesis of Aligned Carbon Nanotubes, Science (80-. ), vol.274, pp.1701-1704, 1996.

M. Chhowalla, K. B. Teo, C. Ducati, N. L. Rupesinghe, G. A. Amaratunga et al., Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition, J. Appl. Phys, vol.90, pp.5308-5317, 2001.

R. Zhang, Y. Zhang, and F. Wei, Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications, Chem. Soc. Rev, vol.46, pp.3661-3715, 2017.

J. Kong, A. M. Cassell, and H. Dai, Chemical vapor deposition of methane for single-walled carbon nanotubes, Chem. Phys. Lett, vol.292, issue.98, pp.745-748, 1998.

M. Cantoro, S. Hofmann, S. Pisana, V. Scardaci, A. Parvez et al., Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures, Nano Lett, vol.6, pp.1107-1112, 2006.

R. Sen, A. Govindaraj, and C. N. Rao, Carbon nanotubes by the metallocene route, Chem. Phys. Lett, vol.267, pp.276-280, 1997.

B. Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang et al., Organized assembly of carbon nanotubes, Nature, vol.416, pp.495-496, 2002.

S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, and M. Kohno, Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chem. Phys. Lett, vol.360, pp.229-234, 2002.

H. Dai, A. G. Rinzler, P. Nikolaev, A. Thess, D. T. Colbert et al., Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide

, Phys. Lett, vol.260, pp.471-475, 1996.

Y. Murakami, S. Chiashi, Y. Miyauchi, M. Hu, M. Ogura et al., Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy, Chem. Phys. Lett, vol.385, pp.298-303, 2004.

K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura et al., Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes, Science, vol.306, pp.1362-1366, 2004.

T. Yamada, A. Maigne, M. Yudasaka, K. Mizuno, D. N. Futaba et al., Revealing the Secret of Water-Assisted Carbon Nanotube Synthesis by Microscopic Observation of the Interaction of Water on the Catalysts, Nano Lett, vol.8, pp.4288-4292, 2008.

P. Chen, X. Wu, J. Lin, H. Li, and K. L. Tan, Comparative studies on the structure and electronic properties of carbon nanotubes prepared by the catalytic pyrolysis of CH4 and disproportionation of CO, Carbon N. Y, vol.38, issue.99, pp.99-107, 2000.

T. Y. Lee, J. Han, S. H. Choi, J. Yoo, C. Park et al., Comparison of source gases and catalyst metals for growth of carbon nanotube, Surf. Coatings Technol, pp.108-115, 2003.

A. Gohier, T. M. Minea, M. A. Djouadi, and A. Granier, Impact of the etching gas on vertically oriented single wall and few walled carbon nanotubes by plasma enhanced chemical vapor deposition, J. Appl. Phys, vol.101, p.54317, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00391948

F. Rao, T. Li, and Y. Wang, Effect of hydrogen on the growth of single-walled carbon nanotubes by thermal chemical vapor deposition, Phys. E Low-Dimensional Syst, Nanostructures, vol.40, pp.779-784, 2008.

C. Castro, M. Pinault, D. Porterat, C. Reynaud, and M. Mayne-l'hermite, The role of hydrogen in the aerosol-assisted chemical vapor deposition process in producing thin and densely packed vertically aligned carbon nanotubes, Carbon N. Y, vol.61, pp.585-594, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00955747

M. Cadek, R. Murphy, B. Mccarthy, A. Drury, B. Lahr et al., Optimisation of the arc-discharge production of multi-walled carbon nanotubes, Carbon N. Y, vol.40, pp.221-225, 2002.

E. Muñoz, W. K. Maser, A. M. Benito, M. T. Martínez, G. F. De-la-fuente et al., Gas and pressure effects on the production of single-walled carbon nanotubes by laser ablation, Carbon N. Y, vol.38, pp.1445-1451, 2000.

L. C. Qin, CVD synthesis of carbon nanotubes, J. Mater. Sci. Lett, vol.16, pp.457-459, 1997.

Y. A. Kasumov, A. Shailos, I. I. Khodos, V. T. Volkov, V. I. Levashov et al., CVD growth of carbon nanotubes at very low pressure of acetylene, Appl. Phys. A Mater. Sci. Process, vol.88, pp.687-691, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00283053

G. Zhong, T. Iwasaki, K. Honda, Y. Furukawa, I. Ohdomari et al., Low Temperature Synthesis of Extremely Dense and Vertically Aligned Single-Walled Carbon Nanotubes, Jpn. J. Appl. Phys, vol.44, pp.1558-1561, 2005.

W. Z. Li, J. G. Wen, Y. Tu, and Z. F. Ren, Effect of gas pressure on the growth and structure of carbon nanotubes by chemical vapor deposition, Appl. Phys. A Mater. Sci. Process, vol.73, pp.259-264, 2001.

C. L. Cheung, A. Kurtz, H. Park, and C. M. Lieber, Diameter-controlled synthesis of carbon nanotubes, J. Phys. Chem. B, vol.106, pp.2429-2433, 2002.

M. Su, B. Zheng, and J. Liu, A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity, Chem. Phys. Lett, vol.322, pp.321-326, 2000.

H. Ago, K. Nakamura, S. Imamura, and M. Tsuji, Growth of double-wall carbon nanotubes with diameter-controlled iron oxide nanoparticles supported on MgO, Chem. Phys. Lett, vol.391, pp.308-313, 2004.

T. Bligaard, J. K. Nørskov, S. Dahl, J. Matthiesen, C. H. Christensen et al., The Brønsted-Evans-Polanyi relation and the volcano curve in heterogeneous catalysis, J. Catal, vol.224, pp.206-217, 2004.

B. Hammer, Y. Morikawa, and J. K. Nørskov, CO chemisorption at metal surfaces and overlayers, Phys. Rev. Lett, vol.76, pp.2141-2144, 1996.

S. Saadi, F. Abild-pedersen, S. Helveg, J. Sehested, B. Hinnemann et al., On the role of metal step-edges in graphene growth, J. Phys. Chem. C, vol.114, pp.11221-11227, 2010.

S. Ichikawa, Volcano-shaped curves in heterogeneous catalysis, Chem. Eng. Sci, vol.45, pp.529-535, 1990.

J. Robertson, Heterogeneous catalysis model of growth mechanisms of carbon nanotubes, graphene and silicon nanowires, J. Mater. Chem, vol.22, 2012.

D. Takagi, Y. Kobayashi, and Y. Homma, Carbon nanotube growth from diamond, J. Am. Chem. Soc, vol.131, pp.6922-6923, 2009.

G. H. Jeong, S. Suzuki, Y. Kobayashi, A. Yamazaki, H. Yoshimura et al., Effect of nanoparticle density on narrow diameter distribution of carbon nanotubes and particle evolution during chemical vapor deposition growth, J. Appl. Phys, vol.98, p.124311, 2005.

F. Yang, X. Wang, D. Zhang, J. Yang, D. Luo et al., Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts, Nature, vol.510, pp.522-524, 2014.

W. Chiang and R. M. Sankaran, Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning Ni x Fe1?x nanoparticles, Nat. Mater, vol.8, pp.882-886, 2009.

J. W. Ward, B. Q. Wei, and P. M. Ajayan, Substrate effects on the growth of carbon nanotubes by thermal decomposition of methane, Chem. Phys. Lett, vol.376, pp.717-725, 2003.

S. Chai, S. H. Zein, and A. R. Mohamed, Preparation of carbon nanotubes over cobaltcontaining catalysts via catalytic decomposition of methane, Chem. Phys. Lett, vol.426, pp.345-350, 2006.

M. Su, Y. Li, B. Maynor, A. Buldum, J. P. Lu et al., Lattice-oriented growth of singlewalled carbon nanotubes, J. Phys. Chem. B, vol.104, pp.6505-6508, 2000.

M. Maret, K. Hostache, M. Schouler, B. Marcus, F. Roussel-dherbey et al., Oriented growth of single-walled carbon nanotubes on a MgO(001) surface, Carbon N. Y, vol.45, pp.180-187, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00140832

K. A. Shah and B. A. Tali, Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates, Mater. Sci. Semicond. Process, vol.41, pp.67-82, 2016.

Y. Yao, Q. Li, J. Zhang, R. Liu, L. Jiao et al., Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions, Nat. Mater, vol.6, pp.293-296, 2007.

H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, Nanotubes as nanoprobes in scanning probe microscopy, Nature, vol.384, pp.147-150, 1996.

S. S. Wong, A. T. Woolley, T. W. Odom, J. L. Huang, P. Kim et al., Single-walled carbon nanotube probes for high-resolution nanostructure imaging, Appl. Phys. Lett, vol.73, pp.3465-3467, 1998.

P. Wagner, S. Nock, J. A. Spudich, W. D. Volkmuth, S. Chu et al., Bioreactive self-assembled monolayers on hydrogenpassivated Si(111) as a new class of atomically flat substrates for biological scanning probe microscopy, J. Struct. Biol, vol.119, pp.189-201, 1997.

G. Nagy, M. Levy, R. Scarmozzino, R. M. Osgood, H. Dai et al., Carbon nanotube tipped atomic force microscopy for measurement of <100 nm etch morphology on semiconductors, Appl. Phys. Lett, vol.73, pp.529-531, 1998.

H. Nishijima, S. Kamo, S. Akita, Y. Nakayama, K. I. Hohmura et al., Carbon-nanotube tips for scanning probe microscopy: Preparation by a controlled process and observation of deoxyribonucleic acid, Appl. Phys. Lett, vol.74, pp.4061-4063, 1999.

S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, and C. M. Lieber, Covalently functionalized nanotubes as nanometresized probes in chemistry and biology, Nature, vol.394, pp.52-55, 1998.

H. Dai, N. Franklin, and J. Han, Exploiting the properties of carbon nanotubes for nanolithography, Appl. Phys. Lett, vol.73, pp.1508-1510, 1998.

R. M. Stevens, N. A. Frederick, B. L. Smith, D. E. Morse, G. D. Stucky et al., Carbon nanotubes as probes for atomic force microscopy, Nanotechnology, vol.11, pp.1-5, 2000.

J. H. Hafner, C. Cheung, T. H. Oosterkamp, and C. M. Lieber, High-Yield Assembly of Individual Single-Walled Carbon Nanotube Tips for Scanning Probe Microscopies, J. Phys. Chem. B, vol.105, pp.743-746, 2001.

J. H. Hafner, C. L. Cheung, and C. M. Lieber, Growth of nanotubes for probe microscopy tips, Nature, vol.398, pp.761-762, 1999.

J. H. Hafner, C. L. Cheung, and C. M. Lieber, Direct Growth of Single-Walled Carbon Nanotube Scanning Probe Microscopy Tips, J. Am. Chem. Soc, vol.121, pp.9750-9751, 1999.

C. L. Cheung, J. H. Hafner, and C. M. Lieber, Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging, Proc. Natl. Acad. Sci, vol.97, pp.3809-3813, 2000.

T. Hertel, R. Martel, and P. Avouris, Manipulation of individual carbon nanotubes and their interaction with surfaces, J. Phys. Chem. B, vol.102, pp.910-915, 1998.

E. Yenilmez, Q. Wang, R. J. Chen, D. Wang, and H. Dai, Wafer scale production of carbon nanotube scanning probe tips for atomic force microscopy, Appl. Phys. Lett, vol.80, pp.2225-2227, 2002.

L. A. Wade, I. R. Shapiro, Z. Ma, S. R. Quake, and C. P. Collier, Correlating AFM probe morphology to image resolution for single-wall carbon nanotube tips, Nano Lett, vol.4, pp.725-731, 2004.

E. S. Snow, P. M. Campbell, and J. P. Novak, Single-wall carbon nanotube atomic force microscope probes, Appl. Phys. Lett, vol.80, pp.2002-2004, 2002.

S. D. Solares, Y. Matsuda, and W. A. Goddard, Influence of the carbon nanotube probe tilt angle on the effective probe stiffness and image quality in tapping-mode atomic force microscopy, J. Phys. Chem. B, vol.109, pp.16658-16664, 2005.

Z. W. Xu and F. Z. Fang, Configuration control of carbon nanotube probe in atomic force, J. Vac. Sci. Technol. B Microelectron. Nanom. Struct, vol.27, pp.1388-1393, 2009.

J. P. Edgeworth, D. P. Burt, P. S. Dobson, J. M. Weaver, and J. Macpherson, Growth and morphology control of carbon nanotubes at the apexes of pyramidal silicon tips, Nanotechnology, vol.21, p.105605, 2010.

S. Akita, H. Nishijima, and Y. Nakayama, Influence of stiffness of carbon-nanotube probes in atomic force microscopy, J. Phys. D. Appl. Phys, vol.33, pp.2673-2677, 2000.

A. Bonnot, F. Gay, and P. H. Perrier, Procédé de croissance d'un nanotube de carbone sur pointe nanométrique, 2008.

A. S. Rollier, C. Bernard, S. Marsaudon, A. M. Bonnot, M. Faucher et al., High yield grafting of carbon nanotube on ultrasharp silicon nanotips: Mechanical characterization and AFM imaging, Proc. Ieee Twent. Annu. Int. Conf. Micro Electro Mech. Syst. Vols, vol.1, pp.878-881, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01553035

R. Haubner and B. Lux, Diamond growth by hot-filament chemical vapor deposition: state of the art, Diam. Relat. Mater, vol.2, pp.1277-1294, 1993.

M. Kumar and Y. Ando, Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production, J. Nanosci. Nanotechnol, vol.10, pp.3739-3758, 2010.

G. A. Jablonski, F. W. Geurts, A. Sacco, and R. R. Biederman, Carbon deposition over iron, nickel, and cobalt foils from carbon monoxide-hydrogen-methane-carbon dioxide-water, carbon monoxide-carbon dioxide, methane-hydrogen, carbon monoxidehydrogen-water gas mixture: I. Morphology, Carbon N. Y, vol.30, p.90112, 1992.

G. Zhang, P. Qi, X. Wang, Y. Lu, D. Mann et al., Hydrogenation and hydrocarbonation and etching of single-walled carbon nanotubes, J. Am. Chem. Soc, vol.128, pp.6026-6027, 2006.

W. Wasel, K. Kuwana, P. T. Reilly, and K. Saito, Experimental characterization of the role of hydrogen in CVD synthesis of MWCNTs, Carbon N. Y, vol.45, pp.833-838, 2007.

M. E. Bridge, K. A. Prior, and R. M. Lambert, The effects of surface carbide formation on the adsorption-desorption kinetics of CO on smooth and stepped cobalt surfaces, Surf. Sci. Lett, vol.97, pp.90098-90107, 1980.

A. R. Biris, Z. Li, E. Dervishi, D. Lupu, Y. Xu et al., Effect of hydrogen on the growth and morphology of single wall carbon nanotubes synthesized on a Fe{single bond}Mo/MgO catalytic system, Phys. Lett. Sect. A Gen. At. Solid State Phys, vol.372, pp.3051-3057, 2008.

Y. Xu, E. Flor, H. Schmidt, R. E. Smalley, and R. H. Hauge, Effects of atomic hydrogen and active carbon species in 1mm vertically aligned single-walled carbon nanotube growth, Appl. Phys. Lett, vol.89, p.123116, 2006.

M. F. Anne-marie, V. Bonnot, and . Bouchiat, , 2004.

S. Sato, A. Kawabata, D. Kondo, M. Nihei, and Y. Awano, Carbon nanotube growth from titanium-cobalt bimetallic particles as a catalyst, Chem. Phys. Lett, vol.402, pp.149-154, 2005.

A. Bonnot, F. Gay, and P. H. Perrier, Procédé de croissance d'un nanotube de carbone sur pointe nanométrique, 2008.

V. Jourdain and C. Bichara, Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition, Carbon N. Y, vol.58, pp.2-39, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01067024

K. E. Lehtinen and M. R. Zachariah, Energy accumulation in nanoparticle collision and coalescence processes, J. Aerosol Sci, vol.33, p.177, 2002.

M. Fiawoo, Etude par microscopie électronique en transmission de la germination et de la croissance des nanotubes de carbone synthétisés à moyenne température, 2009.

E. E. Flater, G. E. Zacharakis-jutz, B. G. Dumba, I. A. White, and C. A. Clifford, Towards easy and reliable AFM tip shape determination using blind tip reconstruction, Ultramicroscopy, vol.146, pp.130-143, 2014.

I. Misumi, K. Naoi, K. Sugawara, and S. Gonda, Profile surface roughness measurement using metrological atomic force microscope and uncertainty evaluation, Measurement, vol.73, pp.295-303, 2015.

C. Wang and H. Itoh, Toward a Quantitative Understanding of the Effect of Tip Shape on Measurements of Surface Roughness by AFM Based on Computer Simulations, Proc. 20th Int. Colloq. Scanning Probe Microsc, p.11005, 2013.

D. L. Sedin and K. L. Rowlen, Influence of tip size on AFM roughness measurements, Appl. Surf. Sci, vol.182, pp.40-48, 2001.

M. He, Y. Magnin, H. Jiang, H. Amara, E. Kauppinen et al., Growth Modes and Chiral Selectivity of Single-Walled Carbon Nanotubes, Nanoscale, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01706361

R. A. Patterson, Crystal structure of titanium and chromium, Phys. Rev, vol.26, pp.56-59, 1925.

W. E. Alvarez, B. Kitiyanan, A. Borgna, and D. E. Resasco, Synergism of Co and Mo in the catalytic production of single-wall carbon nanotubes by decomposition of CO, Carbon N. Y, vol.39, pp.547-558, 2001.

Y. Murakami, S. Chiashi, Y. Miyauchi, and S. Maruyama, Direct synthesis of single-walled carbon nanotubes on silicon and quartz-based systems, Japanese J. Appl. Physics, Part, vol.1

. Regul and . Pap, Short Notes Rev. Pap, vol.43, pp.1221-1226, 2004.

J. P. Edgeworth, D. P. Burt, P. S. Dobson, J. M. Weaver, and J. Macpherson, Growth and morphology control of carbon nanotubes at the apexes of pyramidal silicon tips, Nanotechnology, vol.21, p.105605, 2010.

M. Schwander and K. Partes, A review of diamond synthesis by CVD processes, Diam. Relat. Mater, vol.20, pp.1287-1301, 2011.

A. M. Lewis, B. Derby, and I. A. Kinloch, Influence of gas phase equilibria on the chemical vapor deposition of graphene, ACS Nano, vol.7, pp.3104-3117, 2013.

R. Haubner and B. Lux, Diamond growth by hot-filament chemical vapor deposition: state of the art, Diam. Relat. Mater, vol.2, pp.1277-1294, 1993.

M. Werner and R. Locher, Growth and application of undoped and doped diamond films, Reports Prog. Phys, vol.61, pp.1665-1710, 1998.

G. A. Somorjai and F. Zaera, Heterogeneous catalysis on the molecular scale, J. Phys. Chem, vol.86, pp.3070-3078, 1982.

, Conducting carbon cement (Leit-C)

J. P. Edgeworth, D. P. Burt, P. S. Dobson, J. M. Weaver, and J. V. Macpherson, Growth and morphology control of carbon nanotubes at the apexes of pyramidal silicon tips, Nanotechnology, vol.21, p.105605, 2010.

, AFM tip -NCH -Pointprobe series -NanoWorld

, AFM Probe HQ:CSC17/Al BS -MikroMasch

T. Li, A. Ayari, and L. Bellon, Adhesion energy of single wall carbon nanotube loops on various substrates, J. Appl. Phys, vol.117, p.164309, 2015.
URL : https://hal.archives-ouvertes.fr/ensl-01059883

A. S. Rollier, C. Bernard, S. Marsaudon, A. M. Bonnot, M. Faucher et al., High yield grafting of carbon nanotube on ultra-sharp silicon nanotips: Mechanical characterization and AFM imaging, Proc. Ieee Twent. Annu. Int. Conf. Micro Electro Mech. Syst. Vols, vol.1, pp.878-881, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01553035

T. Sugai, T. Okazaki, H. Yoshida, and H. Shinohara, Syntheses of single-and double-wall carbon nanotubes by the HTPAD and HFCVD methods, New J. Phys, vol.6, pp.21-21, 2004.

J. Bonard, Carbon nanostructures by Hot Filament Chemical Vapor Deposition: Growth, properties, applications, Thin Solid Films, vol.501, pp.8-14, 2006.

M. F. Fiawoo, A. M. Bonnot, H. Amara, C. Bichara, J. Thibault-pénisson et al., Evidence of correlation between catalyst particles and the single-wall carbon nanotube diameter: A first step towards chirality control, Phys. Rev. Lett, vol.108, p.195503, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01075303

H. , Desk Handbook: Phase Diagram for Binary Alloys, 2010.

I. Langmuir, The dissociation of hydrogen into atoms, J. Am. Chem. Soc, vol.34, pp.860-877, 1912.

S. Matsumoto, Y. Sato, M. Tsutsumi, and N. Setaka, Growth of diamond particles from methane-hydrogen gas, J. Mater. Sci, vol.17, pp.3106-3112, 1982.

R. Haubner and B. Lux, Diamond growth by hot-filament chemical vapor deposition: state of the art, Diam. Relat. Mater, vol.2, pp.1277-1294, 1993.

A. Bonnot, F. Gay, and P. H. Perrier, Procédé de croissance d'un nanotube de carbone sur pointe nanométrique, 2008.

C. P. Green and J. E. Sader, Frequency response of cantilever beams immersed in viscous fluids near a solid surface with applications to the atomic force microscope, J. Appl. Phys, vol.98, pp.1-12, 2005.

F. J. Giessibl, Forces and frequency shifts in atomic-resolution dynamic-force microscopy, Phys. Rev. B -Condens. Matter Mater. Phys, vol.56, pp.16010-16015, 1997.

S. D. Solares, Y. Matsuda, and W. A. Goddard, Influence of the carbon nanotube probe tilt angle on the effective probe stiffness and image quality in tapping-mode atomic force microscopy, J. Phys. Chem. B, vol.109, pp.16658-16664, 2005.

B. I. Yakobson, C. J. Brabec, and J. Bernholc, Nanomechanics of carbon tubes: Instabilities beyond linear response, Phys. Rev. Lett, vol.76, pp.2511-2514, 1996.

M. C. Strus, L. Zalamea, A. Raman, R. B. Pipes, C. V. Nguyen et al., Peeling force spectroscopy: Exposing the adhesive nanomechanics of one-dimensional nanostructures, Nano Lett, vol.8, pp.544-550, 2008.

D. Dietzel, M. Faucher, A. Iaia, J. P. Aimé, S. Marsaudon et al., Analysis of mechanical properties of single wall carbon nanotubes fixed at a tip apex by atomic force microscopy, Nanotechnology, pp.73-78, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01551921

J. Buchoux, J. P. Aimé, R. Boisgard, C. Nguyen, L. Buchaillot et al., Investigation of the carbon nanotube AFM tip contacts: Free sliding versus pinned contact, Nanotechnology, vol.20, p.475701, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00472743

T. Li, A. Ayari, and L. Bellon, Adhesion energy of single wall carbon nanotube loops on various substrates, J. Appl. Phys, vol.117, p.164309, 2015.
URL : https://hal.archives-ouvertes.fr/ensl-01059883

C. Bernard, Propriétés métécaniques des nanotubes de carbone en tant que nanosondes et leur fonctionnalisation par bio-nanoparticules, 2007.

C. Bernard, S. Marsaudon, R. Boisgard, and J. P. Aimé, Competition of elastic and adhesive properties of carbon nanotubes anchored to atomic force microscopy tips, Nanotechnology, vol.19, p.35709, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00250904

D. Dietzel, S. Marsaudon, J. P. Aimé, C. V. Nguyen, and G. Couturier, Mechanical properties of a carbon nanotube fixed at a tip apex: A frequency-modulated atomic force microscopy study, Phys. Rev. B, vol.72, p.35445, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01552735

S. Marsaudon, C. Bernard, D. Dietzel, C. V. Nguyen, A. B. Aimé et al., Carbon Nanotubes as SPM Tips : Mechanical Properties of Nanotube Tips and Imaging, Carbon Nanotub, pp.137-181

P. W. Rothemund, Folding DNA to create nanoscale shapes and patterns, Nature, vol.440, pp.297-302, 2006.

P. W. Rothemund, Folding DNA to create nanoscale shapes and patterns, Nature, vol.440, pp.297-302, 2006.

X. Xu and A. Raman, Comparative dynamics of magnetically, acoustically, and Brownian motion driven microcantilevers in liquids, J. Appl. Phys, vol.102, p.34303, 2007.

T. Ando and T. Uchihashi, High Speed AFM and imaging of biomolecular processes, pp.711-742, 2013.

T. Berthold, G. Benstetter, W. Frammelsberger, R. Rodríguez, and M. Nafría, Numerical study of hydrodynamic forces for AFM operations in liquid, p.2017, 2017.

, SCANASYST-FLUID -Bruker AFM Probes

A. Peakforce-hirs-f-b--bruker and . Probes,

, AFM tips qp-HBC -NANOSENSORS, 2018.

R. M. Stevens, C. V. Nguyen, and M. Meyyappan, Carbon Nanotube Scanning Probe for Imaging in Aqueous Environment, IEEE Trans. Nanobioscience, vol.3, pp.56-60, 2004.

Y. Ke, S. Lindsay, Y. Chang, Y. Liu, and H. Yan, Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays, Science (80-. ), vol.319, pp.180-183, 2008.

, Conclusions et Perspectives Les sondes à NTC présentent de nombreux avantages dont l'amélioration de la durée de vie de la sonde et l'aptitude à imager à haute résolution des échantillons dans l'air et l'eau. Leur déploiement industriel à grande échelle est toutefois limité par les contraintes de fabrication (contrôle de l'orientation et de la taille du NTC, faible rendement, coût de production élevé). C'est pourquoi l'analyse des méthodes de synthèse et l

, Annexe 2 : Paramètres des synthèses de NTC mono-paroi

, Chaque ligne correspond aux paramètres d'une synthèse réalisée au cours de cette thèse

, Du fait du grand nombre de paramètres, la lecture de ce tableau peut être difficile sur papier. La visualisation est plus facile en version électronique de la thèse

, Annexe 3 : Technique d'analyse dispersive en énergie (EDX)

, La technique d'analyse dispersive en énergie (EDX ou EDS) est généralement combinée à la microscopie électronique. Un faisceau électron de haute énergie est envoyé sur l'échantillon

, Une ionisation entraîne la création d'une paire d'électron-trou. Un champ électrique permet de collecter les électrons et ainsi de déterminer le nombre d'ionisations. Grâce à l'étalonnage du détecteur, ce nombre est ensuite converti en énergie pour le photon incident. L'intensité des rayons X est proportionnelle à la fraction de l'élément présent dans l'échantillon. La résolution de l'analyse, Suite aux ionisations et excitations de l'échantillon induites par le faisceau, les atomes impactés détecteurs utilisés sont souvent des semi-conducteurs

, La précision de la technique EDX est de quelques pourcentages de la composition totale

, Un élément peut émettre plusieurs pics caractéristiques (tels que K?, K? ...) correspondant