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Abstract

Robots are increasingly used in behavioural research as tools that can induce multimodal
stimuli to interact with animals. However, the robots used in most studies are simple
entities without the ability to make their own decisions and can only be used in simple
short-lived interactions with the animals. This approach can be extended further by
using autonomous and biomimetic robots able to socially integrate groups of animals with
closed-loop of interactions: the robots influence the animals, which, in turn, influence the
behaviour of the robots. However, the design of these robots is challenging, as they have
to be accepted by the animals as social companions and respond accordingly to social and
environmental stimuli.

This thesis addresses the problem of automatically designing animal behavioural mod-
els, that are implemented as controllers to drive biomimetic robots into socially integrating
animal groups, and forming mixed-groups of animals and robots. In particular, we in-
vestigate the integration of robots driven by biomimetic behavioural models into groups
of zebrafish (Danio rerio) and into groups of cockroaches (P. americana and B. german-
ica). In both cases, we show that these models can be automatically calibrated to drive
the robots into integrating groups of animals, mimicking their behaviour and exhibiting
similar collective dynamics compared to animal-only groups.

The main contributions of this thesis are:

• a methodology to automatically design microscopic models of agents behaviour to
correspond to the dynamics exhibited by a macroscopic model of behaviour. This
allows the automatic transition from a macroscopic description to a microscopic
one. This methodology was then used to design the controllers of robots driven to
socially integrate groups of cockroaches.

• a methodology to use automatically designed behavioural models to drive socially
integrated robots into modulating the collective behaviour of mixed-groups of cock-
roaches and robots.

• a behavioural model that captures zebrafish behaviour individual and collective
behaviour in a fragmented environment (i.e. environment with topological discon-
tinuities).

• a methodology to calibrate this model to exhibit the same individual and collec-
tive behaviour as the animals. We describe a set of metrics used to assess the
biomimetism of this calibrated model.

• a methodology to create mixed-groups of fish and robot. We used this calibrated
model to drive robots to socially integrate groups of zebrafish.
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Résumé

Les robots sont de plus en plus utilisés dans la recherche en ethologie collective comme
outils interagissant avec des animaux et pouvant induire des stimuli multimodaux. Cepen-
dant, les robots utilisés dans la plupart de ces études sont des entités simples qui ne
possèdent pas la capacité de prendre leurs propres décisions et qui ne peuvent être utilisés
que dans de simples interactions de courte durée avec les animaux. Cette approche peut
être étendue en utilisant des robots autonomes et biomimétiques capables d’intégrer so-
cialement des groupes d’animaux avec des interactions en boucle fermée : les robots
influencent les animaux, qui, à leur tour, influencent le comportement des robots. La
conception de ces robots est cependant difficile, car ils doivent être acceptés par les ani-
maux comme des compagnons sociaux et répondre en conséquence aux stimuli sociaux et
environnementaux.

Cette thèse aborde le problème de la conception automatique de modèles comportemen-
taux d’animaux. Ces modèles sont utilisés comme contrôleurs de robots biomimétiques
qui vont intégrer socialement les groupes d’animaux pour former des groupes mixtes
d’animaux et de robots. En particulier, nous étudions l’intégration de robots pilotés par
des modèles comportementaux biomimétiques avec des groupes de poissons zèbres (Danio
rerio) et avec des groupes de blattes (P. americana et B. germanica). Dans les deux cas,
nous montrons que ces modèles peuvent être calibrés automatiquement et utilisés comme
contrôleurs de robots. Cela permet aux robots d’intégrer des groupes d’animaux en imi-
tant leur comportement et en présentant des dynamiques collectives similaires à celles des
groupes d’animaux.

Les principales contributions de cette thèse sont :

• une méthodologie permettant de concevoir automatiquement des modèles micro-
scopiques de comportement pour correspondre aux dynamiques d’un modèle macro-
scopique de comportement. Cette méthodologie a ensuite été utilisée pour concevoir
des contrôleurs de robots destinés à intégrer socialement ces groupes de cafards.

• une méthodologie permettant d’utiliser des modèles comportementaux conçus au-
tomatiquement pour amener des robots socialement intégrés à moduler le comporte-
ment collectif de groupes mixtes de cafards et de robots.

• un modèle comportemental qui capture les comportements individuels et collectifs
des poissons zèbres dans un environnement fragmenté (i.e. environnement avec dis-
continuités topologiques).

• une méthodologie pour calibrer ce modèle afin qu’il présente les mêmes comporte-
ments individuels et collectifs que les animaux. Nous décrivons un ensemble de
mesures utilisées pour évaluer le biomimétisme de ce modèle calibré.

• une méthodologie pour créer des groupes mixtes de poissons et de robots. Nous
avons utilisé ce modèle calibré pour amener les robots à intégrer socialement des
groupes de poissons zèbres.

4



Lecture Guide

For really fast readers Read only framed texts in chapter 1, the 2 first pages (sum-
maries) of chapters 3,4,5,6, and the first and last sections of the conclusion (chap-
ter 7).

For fast readers Read chapter 1, the 2 first pages (summaries) and figures of chap-
ters 3,4,5,6, and the conclusion (chapter 7).

For people already knowledgeable with mixed-societies You can skip chapter 2.

For others Please read everything !
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Chapter 1

Introduction

1

The best way to observe a fish is to
become a fish.

Jacques Yves Cousteau

1.1 Concept and Objectives

The study of animal interactions and collective dynamics is a long-standing interest of
ethology. Animal communication rests on multimodal signals [2, 3, 4]. A typical methodol-
ogy to study animal behaviour consists of using artificial artifacts to interact with animals
by generating and exploiting the signals relevant for social behaviour [5, 6]. This method
was, at first, only used with simple and passive mock-ups (i.e. lures) to study specific
behaviours (i.e. the lure sends a particular signal to the animal to trigger a response,
then the interaction stops). An increasingly popular way of handling more complex inter-
actions is to use robotic devices instead of passive lures, and to teleoperate them. Robots
can produce calibrated social stimuli to test the animal responses [7, 8, 9, 10, 11, 12, 13].
Recently, efforts have been made to make these robots fully autonomous, capable of in-
teracting with groups of animals in a repetitive and sustained way, and to adapt their
behaviour to the animals [14, 15, 16, 17, 18].

This allows the creation of mixed-groups of animals and robots. These mixed-groups
are bio-hybrid systems (i.e. incorporating both living and artificial entities) where one
or several robots cooperate with the animal group with closed-loop interactions: the robots
influence the animals, which, in turn, influence the behaviour of the robots. The robots
have the capabilities to respond to animal behaviour. Mixed-groups could be further de-
veloped toward the creation of mixed-societies of animals and robots. Animal societies
are interdependent systems where animals interact with one another to develop organ-
ised patterns of relationship (e.g. hierarchical relationship, division of labor) and form
enduring and cooperating social groups. Robot societies can be defined with the same
manner. Mixed-societies would be an extension of mixed-groups, where robots societies
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would cooperate with animal societies [19, 20, 21]. All individuals of a mixed-society, nat-
ural of artificial, would be perceived as equivalent, and their collective dynamics would
result from the interactions between natural and artificial agents [1, 22, 23].

These mixed-groups and mixed-societies can serve several functions [14, 15, 16, 17, 24]:

• as a benchmarking tool for biomimetic robotic design.

• as an advanced tool for animal behavioural studies.

• to control the animals (e.g. for shepherding, wild-life species control, control of
welfare of domestic animals, etc.).

• to create societies with more capabilities as either animals-only or robots-only groups
(e.g. combine the extensive sensing capabilities of the animals with the programma-
bility and responsiveness of the robots).

However, the design of such social robots is challenging, not only because it requires
a luring capability (including appropriate robot behaviours), but also because the robots
have to be accepted by the animals as social companions. Their design can aim to mimic
features of the studied animal and using similar signals and behaviours: we call this design
aspect ”biomimetism”. Several strategies exist to build robot and animal interactions:

• the artificial systems do not copy any feature of the animal but send signals that the
animals responds to. For example, it can make use of supernormal stimuli (exagger-
ated versions of stimuli e.g. larger shapes [5]), repellent stimuli (e.g. threats, pain,
like electric shocks), or be attractant (e.g. food). This approach is not biomimetic
as the aim of the design of these robots is not to mimic a feature of the studied
animal. Indeed, being biomimetic is not a necessity to interact with animals.

• the artificial agent acts as a heterospecific entity (inter-species interactions). The
robot can be biomimetic (and pertains to the next strategy below) but to another
species (e.g. a dog for the sheep), if it copies the features and behaviour of this
other species [25]. Otherwise, this approach is not biomimetic (cf. first strategy),
the robot being just an alien agent interacting with the animals [15].

• the artificial agent is mimicking the animal, luring it as if it were of the same animal
species (conspecific) and using similar signals and behaviours [1]. This approach is
biomimetic and we define social integration as being part of a group displaying
repetitive interactions with biomimetic features similar to the animals.

Robots must be socially integrated to make possible sustained closed-loop interac-
tions with the animals, which are necessary to study more complex collective behaviours
through the creation of mixed-groups of animals and robots. In this thesis, we adopt the
third strategy and we investigate how biomimetic robotic system can socially
integrate groups of animals. We focus on describing methodologies to automatically
derive models of animal behaviour from experimental data, and use them as robotic con-
trollers. This allows the robots to mimic animal individual and collective behaviours,
making possible their social integration in animal groups.
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We aim to investigate the following scientific questions:

Main scientific questions addressed in this thesis

• Can we control biomimetic robots to socially integrate groups of animals (with
closed-loop interactions) and mimick their individual and collective behaviour,
thus creating mixed-groups of animals and robots ?

• Can robots in mixed-groups be accepted by the natural groups as if they were
animals ? Do mixed-groups display similar collective behaviours as animal-
only groups ?

• Can we automatically design robotic controllers directly from behavioural
experimental data extracted by observing the target species ?

• Can we use these robots, integrated in mixed-groups, to modulate the collec-
tive behaviour of the target animals ?

Our overall approach can be summarised by the workflow diagram in Fig. 1.1. Be-
havioural models pertain mainly to two different levels of description: macroscopic
(analytical description of the behaviour of the population [26]) or microscopic (explicit
description of the behaviour and states of individuals and their interactions with the envi-
ronment [27, 1, 28]). We consider both types of models, and show methods to design them
automatically from observed behaviour in experiments involving animal groups. Only mi-
croscopic models can be implemented in robots. Our approach is to first design models of
animal behaviour, and then use these models as robotic controllers to drive the behaviour
of biomimetic robots into the groups of animals, forming mixed-groups of animals and
robots.

We consider two kind of social animal species (Fig. 1.2) commonly used in ethological
studies: zebrafish (Danio rerio) and cockroaches (P. americana and B. germanica).
They each exhibit different type of collective behaviours and decision-making strategies.
Zebrafish in shoal form short-lived and dynamic sub-groups, and tend to move continually
from one point of interest to another, with only very few periods of stationary behaviour.
The cockroaches tend to explore their environment until they find a point of interest,
where they aggregate. As a result, mixed-groups of fish and mixed-groups of insects
involve different approaches and technical difficulties. In both cases, we show that we can
automatically design models of their behaviour to drive robots into integrating groups of
animals, mimicking their behaviour and exhibiting similar collective dynamics compared
to animal-only groups. Our methodology is validated in ”real-world” experiments for our
studies involving fish, and in simulations for our studies involving insects.

1.2 Scientific collaborators and acknowledgments

This thesis was part of (and funded by) the European project (FP7) ASSISIbf (Animal and
robot Societies Self-organise and Integrate by Social Interaction with bees and fish) [24].
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Figure 1.1 – Workflow of the methodology used in this manuscript to automatically model
observed behaviours of animal groups. The chapters addressing each part of the workflow are
reported in red. From experimentally observation of behaviours (e.g. animal trajectories) we de-
rive models of individual or collective behaviour. These models are then used to drive biomimetic
robots into groups of animals to socially integrate them with closed-loop of interactions, and cre-
ating mixed-groups of animals and robots. Individual behaviour models are microscopic and
collective behaviour models are macroscopic.

A B

Figure 1.2 – Mixed-groups of animals and robots studied in this thesis. Panel A: Zebrafish
(Danio rerio) group interacting with one Fishbot robot [29, 30]. Panel B: Cockroaches (P. amer-
icana) group interacting with one robot (this figure was taken from [1]).
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The goal of ASSISIbf is to conceive autonomous and self-organised mixed-societies of
animals (in this case, with fish and bees) and robots, with robots capable of learning how
to interact with the animals, of adapting their behaviour to the animals response, and
of modulating their collective behaviour, by using the methodology described in [1], and
adopted in this manuscript.

Six partners are part of the ASSISIbf project. Our team at the Université Paris Diderot
(LIED lab) developed fish behavioural models and performed experiments involving fish
and robots. The roboticists at the EPFL (LSRO lab) designed and built the robots
used during our experiments with fish and robots. Meanwhile, the four other partners
were involved with mixed-groups of bees and robots. The roboticists from the university
of Zagreb (LARICS lab) designed and built robots and software tools used to conducts
experiments involving mixed-groups of bees and robots, with some parts developed by
another partner, the company Cybertronica. The ethologists from the University of Graz
(Artificial Life lab) performed these experiments. The group from the University of Lisbon
(FCiências.ID lab) developed multi-agents simulation tools and optimisation frameworks.

As such, most of the work involving mixed-groups of fish and robots presented in this
thesis was made in collaboration with several partners of the project. This allowed me to
collaborate with people with various scientific interests, including: ethologists (Bertrand
Collignon, Axel Seguret, Yohann Chemtob), roboticists (Frank Bonnet, Francesco Mon-
dada, Alexey Gribovskiy), as well as my two supervisors: Nicolas Bredeche (evolutionary
roboticist) and José Halloy (physicist).

Note that the works presented in this thesis involving mixed-groups of cockroaches and
robots were not made in collaboration with the teams of the ASSISIbf project. Their re-
alisation involved only myself and my two supervisors. They, however, used experimental
data from the LEURRE European project [1].

1.3 Contributions

This thesis has a multi-disciplinary nature, with contributions in the fields of artificial
intelligence, robotics, ethology and collective adaptive systems.

Prior to this thesis, few works established the social integration of a robot into a group
of animals (despite a very large number of ethological works using robots to study an-
imal behaviour). Even fewer works demonstrated this social integration by a rigorous
quantification of the biomimetism of the robot (either in term of physical or behavioural
features) [1]. Specifically, the integration of robots into a group of cockroaches was already
demonstrated in [1].

We extend further this approach, by automating the design of robotic controllers to
drive robots in a mixed-group settings, either with groups of cockroaches and with groups
of fish. We present the first system making possible a closed-loop social integration of
a robot in a mixed-group of fish and robots, and demonstrate this social integration
by quantifying the biomimetism of the robot behaviour. Previous works on fish-robot
interactions did not create mixed-groups of fish and robots: they did not create closed-loop
animal-robot interactions, or did not demonstrate robot social integration [31, 32, 33, 34].
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Here is a list of the main contributions of this thesis:

Main contributions

• a methodology to automatically design microscopic models of agents be-
haviour to correspond to the dynamics exhibited by a macroscopic model
of behaviour. This allows the automatic transition from a macroscopic de-
scription to a microscopic one. This methodology was then used to design the
controllers of robots driven to socially integrate groups of cockroaches.

• a methodology to use automatically designed behavioural models to drive
socially integrated robots into modulating the collective behaviour of mixed-
groups of cockroaches and robots.

• a behavioural model that captures zebrafish behaviour individual and collec-
tive behaviour in a fragmented environment (i.e. environment with topological
discontinuities).

• a methodology to calibrate this model to exhibit the same individual and
collective behaviour as the animals. We describe a set of metrics used to
assess the biomimetism of this calibrated model.

• a methodology to create mixed-groups of fish and robot. We used this cali-
brated model to drive robots to socially integrate groups of zebrafish.

Additionally, we collected ethological knowledge, through our study of fish in mixed-
group settings, that portrays how fish interact with each other (and with artificial agents),
and how these interactions affect their collective behaviour.

We constructed a set-up and frameworks to conduct long-lasting experiments involving
mixed-groups of fish and robots. This experimental framework was designed during this
thesis in collaboration with roboticists from the EPFL and with ethologists from Univer-
sité Paris Diderot. In particular, the EPFL designed and built the robots used for our
experiments involving fish (mainly Frank Bonnet, supervised by Francesco Mondada).
My most significant personal contribution to this framework was the development of a
control and tracking software (named CATS ) to drive these robots in a biohybrid setting,
in collaboration with roboticists from the EPFL (Alexey Gribovskiy, Frank Bonnet and
Marcello Elias de Oliveira). The fish behavioural models used in this thesis were designed
in collaboration with ethologists from the Université Paris Diderot (Bertrand Collignon,
Axel Séguret, and Yohann Chemtob), and coded and implemented in robots by myself.

1.4 Outline

This manuscript is divided in two parts: the first part investigates mixed-groups of fish
and robots (Chapter 3, 4 and Annex A); the second part investigates mixed-groups of
insects and robots (Chapter 5, 6).
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Chapter 2 presents a general introduction to biohybrid systems, and describes how
robots can be controlled in such settings.

Chapters 3, 4, 5 and 6 are based on several scientific articles written during this
thesis. Each of these chapters tackles different aspects of the problematic posed in this
thesis. These aspects, and the links between these chapters, are found in Fig. 1.1 which
describes the general workflow of our approach.

Chapter 3 tackles the problem of integrating a biomimetic robot driven by a biomimetic
behavioural model into a zebrafish group. We investigate how to quantify and to discrim-
inate between sets of biomimetic features needed for a robotic fish to become socially
integrated into a group of fish as an autonomous member of the group. We detail the
design (realised empirically) of this microscopic, agent-based, biomimetic, and multi-level
model of fish behaviour. We present an experimental framework enabling long-lasting
experiments involving groups of fish and a biomimetic lure, magnetically coupled with
a wheeled robot positioned under the experimental fish tank. We use this biomimetic
model to drive the robot into the fish group. We define metrics assessing the degree of
biomimetism of the model compared to the experimental behavioural data, and the de-
gree of social acceptation of the robot. We show that both visual appearance of the lure
and the biomimetism of the robot behaviour are important for the robot to be socially
integrated.

Chapter 4 builds on the results of chapter 3, and describes a methodology to automat-
ically calibrate a microscopic biomimetic model of fish-behaviour to match fish behaviour
observed in experiments. This calibrated model is used to drive the behaviour of a robot
into a group of fish.

Chapter 5 tackles the problem of automatically deriving a microscopic model of insect
behaviour (that can be implemented as the controller of a robot in a mixed-group setting)
from a macroscopic description of the collective dynamics of an animal group (calibrated
to match the observed collective dynamics from experiments). Then, these microscopic
models are tested in simulation to build a biohybrid collective adaptive system of cock-
roaches and robots.

Chapter 6 builds on the results of chapter 5. While the microscopic models presented
in chapter 5 where automatically calibrated to exhibit the same dynamics as those of a
given macroscopic description, chapter 6 describes a method to automatically calibrate
microscopic models to drive the behaviour of robots in a mixed-group setting to modulate
the collective dynamics of this group, compared to the dynamics found in animal-only
experimental data.

Chapter 7 summarises the contributions of this thesis, and provides perspectives.
Chapter 8 lists the publications written during this thesis (including several works

outside the scope of this manuscript).
Annex A details the set-up used to conduct experiments with mixed-groups of fish

and robots.
Annex B includes additional supplementary information materials for the papers pre-

sented in chapters 3 and 5.
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Society exists only as a mental
concept; in the real world there are
only individuals.

Oscar Wilde

Society does not consist of individuals
but expresses the sum of
interrelations, the relations within
which these individuals stand.

Karl Marx

2.1 From passive lures to mixed-societies

2.1.1 The use of passive lures in ethology

Research in ethology and behavioural biology has shown that interaction with animals
can be achieved using simple signals that are socially relevant for the animal [35]. This
method was first applied by early ethologists in the twentieth century [5, 6, 36, 37],
who designed simple artificial artifacts (e.g. lures, decoys) to interact with an animal (as
illustrated in Fig. 2.1). These artifacts were designed to test only one specific behaviour
(e.g. attraction or repulsion towards stimuli, motor response to stimuli, etc.), then the
interaction stopped. They were only simple passive devices that lacked the capability to
respond to the animal and the ability to entertain sustained interactions.

Figure 2.1 – Example of passive lures used by Nikolaas Tinberben to study fish behaviour: five
stickleback lures, one mimicking accurately the stickleback (N), the four others only displaying
particular aspects of the fish characteristics (R). [5]

2.1.2 Using robots to study animal behaviour

Since then, this method has been developed to handle more and more complex kind of
interactions (Table 2.1, e.g. repetitive movements, emission of sounds).
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In particular, the availability of low-cost robots allowed researchers to use actuated
robotic artificial devices (e.g. robotised lures) to interact with animals, and test more
complex hypotheses [8, 38, 11, 18]. There is a growing number of scientific projects
using robotic systems to study animal behaviour [7, 9, 10, 12, 13] (examples are found
in Fig. 2.2). However, the robotised artifacts used in most studies are still rather simple
from a robotic point of view, as they are not autonomous entities capable of making their
own decisions and repeat or modulate stimuli. Often they are teleoperated by a human,
and can only work for short amount of time (limited battery), which limits their use in
sustained interactions with the animals. It also renders the interaction with groups of
animals challenging, and most studies only use a single robot to interact with a single
animal (very few research projects deal with such issues).

2.1.3 Autonomous robots interacting with animal groups

More recently, several studies (examples in Fig. 2.3) have used artificial systems able to
respond to the animals and adapt their behaviour. This allows these robotic devices to
handle more complex interactions, not just with one animal, but with groups of animals.

The first example of using an autonomous robot to interact with a group of animals is
the Robot Sheepdog project, where an autonomous mobile robot was designed to gather
a flock of ducks and lead them to a specified location [15] (Fig. 2.3a) by using behaviours
inspired from sheepdogs. This research made use of a model of duck flocking to design
and predict the global behaviour. This showed that a robotic system can use animal
collective behaviour to solve a possibly useful task.

Several kind of autonomous mobile robots have also been designed to interact with
rats [44, 45, 46, 47] (Fig. 2.3f, e.g. the WR-4 robot) and study their behaviour. These
robots were made to only interact in a one-robot-to-one-animal manner, and with limited
adaptability. The associated studies aimed either to autonomously teach a rat tasks by
exploiting principles of operant conditioning [44, 45], or to model the development of
behavioural disorders. In [47], a system is presented where an autonomous rat-like robot
interacts with a rat and modulates its behaviour, by exhibiting several pre-programmed
behavioural patterns.

There is a growing interest in using autonomous robots to study honeybees behaviour.
In particular, Landgraf et al. [48] (Fig. 2.3d) investigates the honeybees dance commu-
nication system: a challenging open subject with many unproven hypothesis on which
stimuli are involved in the communication process. The use of robots helps to study the
impact of different signal combinations.

Several studies designed autonomous mobile robots to play the role of the leader in a
group of domestic chicks [49, 50, 51] 1 or quail chicks [52, 53]. They relied on the filial im-
printing mechanism: the robot was presented to the animals shortly after hatching, which
brought about a following behaviour in the chicks, as if they followed their mother hen.
In these study, the interaction between autonomous robots and animals were sustained
for long period of time (40 min or more for [49, 50], 11 days for [53]), however, the robots

1Note that I am co-author of [51]
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(a) Patricelli et al. 2002 [7] (b) Goth et al. 2004 [9] (c) MacLaren et al. 2004 [39]

(d) Brian Smith et al. 2006 [40] (e) Rundus et al. 2007 [41] (f) Taylor et al. 2008 [12]

(g) Leaver et al. 2008 [42] (h) Le Maho et al. 2014 [43]

Figure 2.2 – Several examples of robotised lures in behavioural studies. (a) robotic female satin
bowerbird to study sexual selection. (b) robotic brushturkey chick to test nest mate recognition.
(c) dummy fish with different details to test mating preference of female sailfin mollies. (d)
robotic Sagebrush lizard to test nonverbal communication. (e) robotic squirrel to study predator
avoidance. (f) robotic tungara frog to study mate selection. (g) life-size dog replica with an
actuated tail. (h) penguin chick replica mounted on a teleoperated rover.

26 Control of biohybrid systems



(a) Vaughan et al. 2000 [15] (b) Halloy et al. 2007 [1] (c) Correll et al. 2008 [17]

(d) Landgraf et al. 2010 [48] (e) Gribovskiy et al.
2010/2015 [49, 51]

(f) Shi et al. 2013 [47]

(g) Griparic et al. 2015 [54] (h) Jolly et al. 2016 [53] (i) Donati et al. 2016 [34]

Figure 2.3 – A selection of previous works where autonomous robots interacted socially with
animals. (a) The robotic sheepdog with a flock of ducks. (b) The InsBot mobile robot with
cockroaches. (c) Social control of cows herd by a mounted sensing and actuation device. (d)
Robotic lure dancing with honeybees. (e) The PoulBot mobile robot with chicks. (f) WR-4 robot
built to interact with rats. (g) A stationary robotic unit with actuators and sensors designed to
interact with honeybees. (h) Modified e-puck mobile robot used to interact with quail chicks. (i)
Biomimetic robot lure interacting with M. rume electric fish.
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Passive
lures
(Fig. 2.1)

One non-
autonomous
robot
(Fig. 2.2)

One or several
autonomous
robot(s)
(Fig. 2.3)

Mixed-group
of animals
and robots
(Fig. 2.3b)

Mixed-society
of animals and
robots

Biohybrid yes yes yes yes yes
Number of
animals

single
animal

single animal groups groups groups

Number of
devices

one one one or small-
group

one or small-
group

group

Autonomous
artificial
devices

no no yes yes yes

Sustained in-
teractions

no no yes yes yes

Social inte-
gration

no no possible (e.g.
[54, 55, 53])

yes yes

Able to mod-
ulate while
integrated

- - possible yes yes

Closed-loop no no no yes yes
Organised
patterns of
interactions

no no no no yes

Description Immobile
or ma-
nipu-
lated
by hu-
mans [5,
6].

Few or no sen-
sors and ac-
tuators, little
autonomy, re-
motely teleop-
erated by hu-
man. Only
test one ani-
mal behaviour,
then the inter-
action stops [7,
9, 39, 40, 41,
12, 42, 43].

Respond
and adapt
to animal
behaviour.
Autonomous,
sustained
interactions,
open-loop in-
teractions [15,
17, 48, 49, 51,
53, 34].

Closed-loop
interactions.
Social interac-
tion possible by
using biomimetic
robot(s) that
socially integrate
the group of
animals. Collec-
tive dynamics
depends on
animals-robot(s)
interactions [1].

Societies are
enduring and
cooperating
social groups
whose members
have developed
organised (e.g.
hierarchical inter-
actions) patterns
of relationships
through inter-
action with one
another. No sci-
entific work exist
yet (by 2018)
that demonstrate
animals-robots
interaction in a
society context.

Table 2.1 – Types of animal(s)-robot(s) interactions. We define Social integration as being
part of a group displaying repetitive interactions with biomimetic features similar to the animals.
The term Closed-loop refers to closed-loop interactions between animal(s) and robot(s): the
robot(s) influence the animal(s), which, in turn, influence the behaviour of the robot(s).
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did not adapt their behaviour to the animals (i.e. with open-loop interactions).

Finally, several research projects used autonomous robots to interact with fish (Fig. 2.3i).
This subject is developed in detail in Sec. 3.1 and Table 3.1.

2.1.4 Types of autonomous artificial devices

The autonomous artificial agents interacting with animals can be of three different types
(Fig. 2.4):

Mobile devices are autonomous robotic devices able to move with the animals
(Fig. 2.3a,b,d,e,f,h). As such, they can have very close interaction with the animals
and make use of spatial interactions. This involves two main technical difficulties:
it is necessary to make the autonomous devices accepted by the animals and to
understand which parameters affect animal-robot interactions.

Static devices can be networks of immobile sensors-actuators devices that can monitor
the behaviour of the animals and environmental changes (Fig. 2.3g,i).
Depending on the observed behavioural features, they can be programmed to emit
adequate signals (e.g. sounds, pheromones) or modify the physical environment (e.g.
temperature, light, humidity, distribution of food). The main technical difficulty is
to find the appropriate algorithms to link observed features to actuated response [54,
55].

Mounted devices are autonomous sensors-actuators devices, mounted on the animals to
confer them new capabilities (Fig. 2.3c). They can be used to monitor the animal
activities (e.g. GPS or RFID tags). The most challenging technical aspect is to
develop a system capable of managing individuals interacting with each other and
to determine the response of the artificial systems to environmental changes [17].
For example, studies employed smart collars to study and potentially control the
herding behaviour of cattle [16, 17] (Fig. 2.3c) in large, open fields. These smart
collars contained an embedded computer with a wireless network connection, sensors
(including a GPS), and devices to send stimuli to the cows. This project also exploits
some social behaviour of the cows, by using a dynamical model describing social
dynamics of animals during grazing periods. Note that mounted devices do not
create a single cyborg (cybernetic organism) entity, as the natural and artificial parts
are still two different entities that are just attached to one another; the mounted
device interact with the animal, but does not control it directly, as in animals
cybernetics studies (e.g. [56, 57]).
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Figure 2.4 – Abstract illustration of artificial devices used to interact with animal societies:
(1) mobile devices, (2) static devices, and (3) mounted devices. This figure was taken from [19].

Research projects involving animal-robot interactions and using either mobiles devices
or static devices can also be further separated into those based either on a conspecific or
a heterospecific relashionship between animals and artificial devices:

Artificial devices seen as conspecifics The artificial device design incorporate phys-
iological and behavioural aspects of the animals it interact with, in the hope that
it will be seen as a congener (Fig. 2.3b,d,f,i). The difficulty is to identify the set of
attributes needed to be seen as a conspecific by the animal, and to implement it in
the artificial device design.

Artificial devices seen as heterospecifics The artificial device is not designed to be
seen as a congener by the animals (Fig. 2.3a,e,g,h). It can be designed to mimics
physiological and behavioural attributes of the member of another species, or be
seen as an alien entity by the animals.

Additionally, a close field of study is the use of autonomous robots to treat plant
organisms (e.g. used for automating gardening tasks) [58, 59, 60].

2.2 Mixed-groups of animals and robots

2.2.1 Definitions

While the studies presented in Sec. 2.1.3 enabled more complex animal-robot interactions
by using autonomous robots, they did not make the robots capable of replying in an
autonomous and biomimetic way to the animals. As such, there was no closed-loop of
interaction between animals and robots. Two main strategies exist to create a system with
a closed-loop of interaction between animals and robots, depending of how the robot(s)
are seen by the animals:

Robots seen as conspecifics The robots socially integrate into the animal groups by
mimicking the physiology and behaviour of the animals (cf. definition of
biomimetism and social integration in Sec. 1.1).

Robots seen as heterospecifics The robots must find other form of interactions to
socially integrate the animal groups, for example by using coercion (e.g. a sheepdog
to the sheep).
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Using one of these strategies, it is possible to create mixed-groups of animals and robots.

What is a mixed-group ?

Mixed-groups are bio-hybrid systems where one or several artificial agents
socially integrate the animal group and interact with the animals in a sustained
and closed-loop way: the artificial agents influence the animals, which, in turn,
influence the behaviour of the artificial agents.

Mixed-group have the following defining properties:

Bio-hybrid Mixed-group incorporate groups of animals and groups of artificial agents.

Autonomous artificial agents Artificial agents in a mixed-group must be autonomous
and adapt their behaviour to both environmental cues and social (animal response)
signals. They are capable of handling sustained interactions with the animal society.

Closed-loop social interactions between animals and robots In mixed-group, ar-
tificial agents can interact and communicate with the animals. They are coherently
integrated with the animal society (closed-loop interactions): they influence the
animals, and, in turn, the animals influence the behaviour of the artificial agents
(cf. Sec. 1.1 for a description of social integration and biomimetism). The techni-
cal difficulties are to identify the sets of physical inputs and outputs the artificial
agents should provide to establish interactions with the animals, and implement
them in the artificial agents design. The artificial and natural agents reach together
collective decision from their interactions, without being individually aware of any
collective patterns.

The next step toward even more complex animal-robots interactions would be to create
mixed-societies of animals and robots, which would extend the notion of mixed-group to
include organised patterns of interactions between individuals (in all three kind of inter-
actions: animal-animal, animal-robot and robot-robot interactions) [19, 20, 21]. Using
the definition of Mondada et al. [19]:

What is a mixed-society ?

Mixed-societies are dynamical systems, where animals and artificial agents in-
teract and cooperate to produce shared collective intelligence. In such societies,
the artificial agents do not replace the animals but both collaborate and bring new
capabilities to the mixed society that are inaccessible to the pure groups of animals
or artificial agents.

Mixed-societies would have several defining properties (in addition to the previously
listed properties of mixed-groups):

Heterogeneous capabilities of the agents The individual capabilities of the artificial
agents and their interactions with the animals are diverse: each category of agents,
animal or artificial, may react to signals or exhibit specific behaviours that the
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other category does not detect or exhibit. The animals can induce new interactions
between the artificial agents, or the artificial agents can increase the range of inter-
actions between natural agents. In turn, the union of agents of different categories
can bring additional capability to the mixed-society, that are not present in either
category of agent.

Society They are dynamical systems where both animals and robots cooperate to form
enduring social groups. The interactions between agents induce organised patterns
of relationships (e.g. hierarchical relationship, division of labor), that are not present
in classical mixed-groups.

No scientific work exist yet (by 2018) that demonstrate animals-robots interaction in a
society context, and no work exists that present an effective mixed-society. However,
it is generally held as an important goal to reach by the animals-robots interactions
community. Establishing an actual mixed-society would first involve an animal species
living in society, with complex (e.g. hierarchy) and heterogeneous interactions between
individuals (e.g. ants, bees). Robots would have to form a society of their own, with
sustained, heterogeneous behaviours (and possibly several morphologies). They also would
have to learn in real-time how to socially integrate the animal society in very long-lasting
experiments (i.e. several days, or weeks) and cope with hardware failure, changes in
animal social dynamics and adversarial environmental factors. We are still very far from
this goal.

Mixed-groups, and mixed-societies can be realised using artificial devices pertaining to
any of the three types presented in Sec. 2.1.4.

2.2.2 State of the art

Halloy et al. (2007, Fig. 2.3b) presented the main scientific work establishing experimen-
tally a mixed-group of animals and robots [1]. In this study, the authors socially inte-
grate a group of mobile robots (InsBot robots) into a group of cockroaches and modulate
their collective behaviour in simple site-selection collective decision-making experiments.
The robots are capable of reacting to the animal response by making use of a model
of cockroach decision-making dynamics, and are interacting in closed-loop with animals.
The resulting mixed-group is effectively a self-organised entity where collective decision
emerges from feedbacks based on local interactions. It is shown that even when in a
minority (i.e. smaller number of robots than animals), robots can modulate the collective
decision-making dynamics of the entire mixed-group and produce a global pattern not
observed in their absence. However, the work of [1] is still not a mixed-society, as it
does not incorporate organised relationship between agents and lasting interactions (e.g.
hierarchy, division of labor).

Other studies provide preliminary work towards the development of effective mixed-
groups (in particular [34, 33, 47, 61, 51, 53]), but do not create actual mixed-groups
because they either do not demonstrate formally the social integration of the robot, or
do not use a robotic system capable of sustained closed-loop interactions with the animal
group. The work of Shi et al. (2013 [47]) does indeed demonstrate both closed-loop control
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and social integration, and can be considered as a mixed-group, but with only one robot
and only one animal. The research of Halloy et al. (2007) remained the only work prior to
this thesis (by 2018) that mixes experimentally a group of robots with a group of animals
to form a mixed-group. Moreover, no scientific work exist yet (by 2018) that demonstrate
animals-robots interaction in a society context.

The ASSISIbf project [24] are also currently working on the development of mixed-
groups and mixed-societies of bees and static artificial devices (which integrate an exten-
sive range of sensors and actuators) [62, 54, 55] (Fig. 2.3g). While most of their achieved
work is unpublished (including works presenting experimentally a working mixed-group
of bees and robots), they showed a working mixed-group of bees and robots in simula-
tion [63]. Additionally, the Flora Robotica project [60] aim to build mixed-societies of
plants and robots.

Figure 2.5 – Methodology used to create mixed societies of animals and robots. Figure was
taken from [19].

2.2.3 General design of mixed-groups

A general methodology to design mixed-groups and mixed-societies was presented by
Mondada et al. [19] (Fig. 2.5). The same methodology was used by Halloy et al. [1]
to establish the first example of an actual mixed-group of animals and robots. Since
then, several research teams have followed this methodology to make the preliminary
work towards the construction of mixed-groups and mixed-societies involving other species
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(cf. previous section). The main difficulty solved by this methodology is how to define
and model physiological and behavioural features of the animal group in order to drive
the design of the artificial devices. This methodology poses the following hypothesis
(from [19]):

Main hypothesis for mixed-groups design

Our hypothesis is that in the design of mixed-groups, despite the diversity of the
problems to solve and the size of societies, the dynamics of these systems can be
reduced to the interplay of a limited number of generic rules and thus, in turn, a
unique methodology could be developed, depending on formal models.

Animal groups, and mixed-groups, are difficult to model and predict because they are
complex systems with dynamic interactions. While simple observations can be sufficient
to gather an intuitive understanding on how a group works, it is not sufficient for the
creation of a society model to drive the behaviour of the artificial devices made to be
socially integrated with the animals. This advocates for a more thorough analysis to
formulate rigorous models embodying hypotheses of how the group works. This can be
done through the following methodology:

• The modelling process must be based on a formal description (e.g. mathematical
equations of behaviour) of the individual and collective dynamics of the group.
Often (as in [1]), the starting point for the creation of the model is the analysis of
the global patterns arising at the macroscopic level (i.e. collective dynamics).

• Each conjecture must be evaluated and validated by experiments or by simulations.
A procedure must be specified to quantify the realism and biomimetism of these
conjectures. The models must be refined incrementally to change their level of ab-
straction (from mathematical equations to realistic simulations: indeed, only models
of agents behaviour can be implemented as controllers of artificial devices), with a
real system implementation as final validation.

• The methodology must be iterative, and must be re-applied and validated for each
new conjecture, and each new modelling effort.

The main steps of this methodology are graphically presented in Fig. 2.5. It starts
from the animal society, to results in the formation of a modulated mixed-society. It
is composed of several keys processes, each of them encompassing local iterative loops,
generating feedback loops for the other processes. These processes can be split into three
main blocks:

Behavioural animal study First, behavioural analysis must be performed on animal-
only societies, using systematic experiments and appropriate monitoring tools (Boxes
1,2,3. See Sec. 2.3). This allows the generation of a multilevel formal (mathemati-
cal) model of the society, taking into account individual and collective interactions
and dynamics (Box 4. See Sec. 2.4).
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Robot design (Boxes 8 and 9) Both animal observations and formal models of their be-
haviour are important to drive the robot design process. The goal is to design robots
that only copy a selection of animal characteristics, to be efficient and functional
in a social interaction context. In particular, relevant communication signals and
behaviours must be identified (by the help of observations and formal modelling),
implemented on the robots and experimentally validated. As such, the specifica-
tion of the robots is an iterative approach were different sets of biomimetic aspects
needed to establish interaction with animals are incrementally tested [19]. This
subject is not elaborated further in this manuscript.

Society integration and modulation The formal model can be used to identify key
parameters and behaviour needed for the robots to socially integrate the group of
animals (Boxes 6, 7). In particular, these formal models can be transformed and
implemented as robotic controller. Once they are socially accepted by the animals,
the robots controllers can be adapted to also modulate the collective dynamics of
the entire society (Box 5). This subject is detailed in Sec. 2.5.

These three blocks share common experimental tests and monitoring tools (box 1, see
Sec. 2.3) and modelling and simulation tools (box 4, see Sec. 2.4), which attest to the fact
that models of both animal-only groups and mixed-groups must be tested, modeled, and
monitored using the same tools.

With the popularisation of optimisation, machine-learning and model-building algo-
rithms, it is now possible to automate certain parts of the modelling process; this subject
is covered in Sec. 2.4.5.

This thesis follows the general methodology of [19], and the thesis general workflow
(Fig. 1.1) is inspired from it – but with a strong focus on robot control, social integration,
and behavioural animal modelling, with only few consideration about robotic design: the
robot design for mixed-groups of fish and robots was essentially investigated by our EPFL
partners, sometimes with my collaboration [64, 30, 29, 65, 66].

2.3 Study of social animals behaviour

In behavioural studies of social animals (of any species), the objective is to find relevant
behavioural signals and patterns exhibited by the animals during interactions, and how
they influence the collective behaviour of the group. To this end, a large set of observations
must be gathered from experiments to identify the individual capabilities of the agents,
the nature of their interactions, and the global pattern of the group collective dynamics.
This allows researchers to establish hypothesis on how the animal group works. These
hypotheses must then be validated in experimental tests, and will be the first step towards
the formulation of a formal model (i.e. with a mathematical representation) of individual
and collective behaviour.
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2.3.1 Experimental tests

The experimental tests on animal collective behaviour can be based on the study on their
collective decision-making. Specifically, these tests often focus on the collective choice
made by the group in patchy environments found in natural conditions. In ethology,
animal choice is defined by the selection by the animal of two (binary choice) or more
(multi-choice) alternatives which will impact their survival or well-being. It can be gen-
eralised to a collective context: being part of a group, the individual decisions can be
partially or totally surpassed and subsumed to the decisions of the group, and individual
decisions are influenced by the decisions of other members of the group. This gives rise to
emerging collective dynamics, like self-organisation, characterising collective behavioural
patterns emerging of individual decisions and interactions. Typically, two kind of choices
can be investigated experimentally:

Choices between identical options Animal groups must choose between several iden-
tical artifacts (e.g. food, shelters, natural resources).

Choices between different options Animal groups must choose between quantita-
tively different artifacts (e.g. shelters with different sizes, patches with different
food quality).

The aim is to find positive retroactive feedback loops (retroactive signals induce an am-
plification, a perturbation of this signal in the group): e.g. agregation, establishment of
consensus of site occupation (examples in Fig. 2.6 [27, 67]). These choices are measured
experimentally (using metrics assessing for example, shelter occupation, individual re-
sponse to an environment stimuli, ....). The experiments must be replicated several times
to gain statistical significance.

(a) Ame et al. 2006 [27] (b) Mann et al. 2014 [67]

Figure 2.6 – Examples of binary choice experiments for (a) cockroaches and (b) humbug dam-
selfish.

2.3.2 Monitoring tools

Experimental tests must be monitored to gather sufficient data on individual and collective
dynamics. The challenge is finding which features at the individual and collective levels
are significant for the subsequent modelling process. Specifically, the number of relevant
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Figure 2.7 – Typical workflow of the high throughput ethology approach. This figure was taken
from [68].

behavioural features needed to untangle collective dynamics are often extensive [68, 69,
19], and advocates for the use of efficient and possibly automated ways of gathering
behavioural data. These considerations have recently given birth to the novel field of
high-throughput ethology, where methodologies are being developed to cope with a large
amount of behavioural data and to compile them into ethograms of animal individual and
collective behaviour [69, 70, 71, 72, 68] (Fig. 2.7).

2.4 Collective behaviour modelling

2.4.1 From qualitative to quantitative modelling of behaviour

Models of the individual agent dynamics and of the collective behaviour of the entire
group can be generated from the analysis of experimental behavioural data. This serves
two purposes:

• It allows to describe and validate the hypotheses on how collective behaviour emerge
from individual interactions.

• It provides a predictive and generative capacity, that can be used to drive the design
of artificial devices and capture both physical (robotic hardware) and behavioural
(robotic controller) aspects.

Two types of models can be defined:

Qualitative models They provide an intuitive and empirical analysis of behavioural
dynamics, without explicitly defined variables and parameters.

Quantitative models They use a mathematical description where solutions can be com-
pared with variables measures experimentally, and experimentally-calibrated param-
eters.

The modelling process is iterative and incremental (Fig. 2.8). It aims to refine a qualitative
description of the biological system into a quantitative formal model.
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2.4.2 Formal modelling of behaviour

Formal models are mathematical representation of the behaviour of a system, with pre-
cisely defined variables and parameters. They can be formulated by explicit equations,
which can be solved analytically or numerically (analytical models). Alternatively, these
solutions can be obtained by simulations (numerical experiments) on the model. Formal
models are interesting for the modelling of collective behaviour:

• They ease the identification of interactions, which are then viewed as regulating
feedback loops.

• They can describe the domain of validity of the modeled dynamics.

• They can be used to make predictions, or used as generative models (i.e. to generate
possible instances of the modeled dynamics).

• This generative aspect allows to explore the dynamics of the modeled system in
cases that would be difficult to assess experimentally. As such, they can also be
used as surrogate models [73] (i.e. models of the expected dynamics, instead of the
observed dynamics).

• The use of formally defined metrics (e.g. by comparing bifurcation diagrams, or
relevant collective dynamics) helps the validation of formal models against dynamics
observed experimentally.

Formal models are often used to describe the behaviour of complex systems. However,
the rigorous approach presented in the previous section is seldom done in ethology as it is
difficult and time-consuming; it may also involve extensive data acquisition, data analysis,
and environmental control, which were only becoming available recently. For example,
they have been used to model the behaviour of cockroaches in an arena [74, 75, 27].

2.4.3 Multi-level modelling

Models can capture phenomenological information and represent them at several levels
of abstractions. Distributed systems have a very large parameter space, ranging from
individual physiology, individual and collective behaviour, and features of the environ-
ment [19, 76, 77]. One difficulty of the modelling process is to find the appropriate
parameters to describe the studied phenomenon with sufficient accuracy. The principle
of parsimony (Occam’s razor) asserts that models should be as simple as possible to
serve their expected purpose (describe a phenomenon accurately, or generate instances
of a phenomenon). Furthermore, a large number of these parameters must be measured
experimentally, to correspond as much as possible to the observed system.

Models can represent information at different levels of abstraction, and with varying
amount of details. They can focus more on representing information at the level of the
overall system, or more at the level of its constituents. Similarly, groups of agents (natural
of artificial) can be modeled as dynamical systems, with dynamics at different levels of
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Figure 2.8 – Three main stages of building a quantitative behavioral model. Stage 1 implies
gathering information of what is known about the considered biological system. Stage 2 could be
skipped; it is used to build the first experimental studies and qualitative formal model. Stage 3 is
the main and longest step in producing a quantitative model based on experimental determination
of the main control parameters. It is also a test of the predictive value of the model. Often the
journey of building a model is as important if not more important than that the final destination
that is the model itself, as it ensures a deep understanding of the biological system considered.
This figure was taken from [19].

abstraction. At the level of the group, collective dynamics can emerge from individual
behaviours and interactions, with feedbacks links between group and individual behaviour.
Another difficulty of the modelling process is to find which level of abstraction is better
suited to represent the studied phenomenon [19, 78, 77].

Dynamical systems can typically be modeled at two levels of abstraction (Fig. 2.9):

Macroscopic level Macroscopic models describe the system at the population level,
and typically do not describe the state of individual agents. They can describe the
collective dynamics exhibited by the group. Using a formal macroscopic formulation,
these models can be solved analytically or numerically [26]. However, they cannot
be used to drive the behaviour of agents in simulation, or to drive the behaviour of
robots in experiments.
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Microscopic level Microscopic models (typically multi-agents models in behavioural
studies) capture the state of each individual, their behaviours and their relations
with the environment (e.g. agent-based models of flocking, like the Vicsek model [79]).
However, they do not explicitly describe information at the population level, which
will emerge from individual behaviour. They can be used to simulate agent spatial
behaviour [80, 27, 1, 28], and as such are easier to implement into robotic controllers.

There is a vast literature, in physics and multi-agents systems, exploring methods and
applications for both categories of models and the relations between them. These two kind
of models offer complementary descriptions of the system, and both are useful to model
agent behaviour. It is also possible to design ”hybrid” multi-level models that integrate
both macroscopic and microscopic components. This allows them to capture both the
state of the population and of individual agents, and can possibly describe explicitly the
feedback links between individual behaviours and group dynamics. In such multi-level
models, several parameters can be shared between both macroscopic and microscopic
representations.

Microscopic Level

Simplified Simulation

Macroscopic Level

S
ta

te
 o

f
so

ci
e
ty

C
o
lle

ct
io

n
 o

f 
st

a
te

s
o
f 

e
n
ti

ti
e
s

S
o
ci

e
ty

In
d
iv

id
u
a
l

Set of Rate Equations

Agent-Based Models

Figure 2.9 – Differences between macroscopic and microscopic models Models of dy-
namical systems can be separated into two categories: macroscopic and microscopic. Macroscopic
models describe the global state of the system (i.e. the state of a population). They usually take
the form of sets of equations (e.g. ODE) encapsulating a mean-field hypothesis. Microscopic mod-
els (usually agent-based) describe the state of each individual agent. The agent motion strategy
is often represented as a Markov chain. Macroscopic and microscopic models complement each
other, describing dynamics at different levels. Microscopic models can include spatial informa-
tion about the agents, which enables them to be used to simulate the modelled behaviour, or to
be implemented as a robotic controller.

2.4.4 Model validation

Models can be used to generate possible instances of the system. For macroscopic models,
these data can be extracted either analytically (resolution of the equations), or using
simulations. If the model is stochastic, it may be necessary to use a method that takes

40 Control of biohybrid systems



into account fluctuations when generating instanciations (e.g. Gillespie algorithm [81]).
For microscopic models, instances can be obtained in simulations.

Then, these behavioural data can be analysed, with the same data-analysis methods
used with animal-only experimental behavioural data, and described in Sec. 2.3. The
analysis part must capture the expected individual and collective behavioural patterns.

Finally, the realism (compared to animal-only experimental results) of the model can
be assessed by computing a behavioural biomimetism score. Behavioural biomimetism
(using similar signals and behaviours as the animals) can be quantified by using carefully
handcrafted metrics capturing the expected behavioural dynamics. This can be used to
compare different models. The associated metrics can pertain to individual behaviours
(e.g. description of movements like speed distributions, mean distance to an object, etc.)
or to collective dynamics (e.g. number of aggregated individuals in a site of interest,
alignment, inter-individual distances, attraction, etc.).

2.4.5 Automated model design, calibration and optimization

Modelling dynamical systems can be challenging and time-consuming. It is especially the
case with the design of multi-level behavioural models capable of driving robots socially
accepted in a mixed-group. However, the overall modelling process can be facilitated
and automated through the use of advanced statistical methods and machine learning
algorithms. In particular, these methods can be used to ease the following stages of the
modelling process.

To determine which parameters are important (feature selection)

In machine learning and statistics, feature selection is the process of finding a subset
of relevant features (variables, parameters) to design parsimonious models. This allows
models to integrate to be simplified (reducing parameters number) allowing them to be
easier to interpret, design and calibrate [82]. Some parameters can provide redundant
(correlated parameters) or irrelevant information and can removed without much loss of
information [83].

To find appropriate parameters values (calibration)

Some model parameters can be directly measurable from experiments (e.g. distribution
of speed of individuals, individual sizes, distance to an artefact of the environment, etc.)
to ease the search for appropriate parameter values to fit the experimental data. How-
ever, most models need to also consider parameters that cannot be directly measured
(e.g. impact of social signals vs. environmental cues). It is possible to use optimisation
algorithms to fit these parameters to match experimental data [77], in a process that we
call calibration.

In the most simple cases (low-dimensional problems), popular regression analysis meth-
ods (”curve fitting”) can be used (e.g. linear regression, least squares, etc.). However, these
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methods will often provide sub-optimal solutions, as they stay in the same local optimum
of the parameter space.

Evolutionary algorithms [84, 85, 86] can provide a more complex and powerful alter-
native, as they can be used to optimise efficiently the parameters of high-dimensional
problems. They gather a widespread use in robotics control problems [87, 88]. Amongst
evolutionary algorithms, multi-objective evolutionary algorithms [89, 90, 91] can cater to
modelling problems involving compromises between several conflicting behaviours (e.g.
aggregation towards other agents vs. wall-following vs. attraction to an artefact); in this
case, it is difficult to find a global optimum that generalise well across different initial
conditions.

To identify interactions between parameters

Finding the interactions between model parameters is the more extensive part of the
modelling process. There exist methods to automate this part, depending on which kind
of models one wants to design:

White-box models The model is meant as a tool to explain the observed phenomenon,
with explicit description of the interactions between parameters. Examples include
mathematical equations (for macroscopic models) and finite-state machines (for mi-
croscopic models). Methods that automate the design of white-box models must
present an understanding of the underlying biological concepts by describing and ex-
plicitly explaining how the interactions between parameters bring about the modeled
dynamics. This can be achieved by developing automated ethograms of individual
and collective behaviour. Examples include finite-state machines, hidden markov
models, decision trees and other explicit graphical models at the microscopic level;
and mathematical equations for macroscopic models. Methods to automatically
generate finite-state machines from behavioural data have been explored in the lit-
erature, especially in the high-throughput ethology community [68, 69, 72, 71] by
using machine-learning classification algorithms [92] (e.g. decision trees, SVM, etc.)
to identify behaviours in behavioural traces and then use statistics to make graph-
ical models. The automatic generation of formal models and differential equations
directly from experimental data have been investigated in the genetic programming
community, using symbolic regression methodologies [93, 94].

Black-box models The model is a generative construct to reproduce instances of the
observed phenomenon. The interactions between parameters is implicit rather than
explicit, and is not represented to be easily understood by a human. Examples
includes artificial neural networks. There exist numerous methods (supported by
a large scientific literature) to automatically generate artificial neural networks,
including recent popular deep-learning methods [95] (e.g. gradient-descent), deep
reinforcement-learning algorithms [96, 97], generative adversarial nets [98], neuro-
evolution [99, 100, 101]. Furthermore, more biologically plausible neural models
could be used to make the link between animal perception and biomimetic motor
response, by using for example spiking neural networks models [102, 103, 104].
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Hybrid of the two: grey-box models The model mixes white-box and black-box com-
ponents to only describe explicitly certain interactions between parameters, while
keeping generative capabilities [105, 106]. It allows, for example, to only explicit
relations that pertain to group dynamics of interest, without describing explicitly
individual spatial movements. The resulting model is still capable of generating
instances of trajectories. To automate the design of grey-box models, it is neces-
sary to use conjointly the methods previously presented to automate white-box and
black-box models design.

Additionally, the interactions between model parameters for all three types of models
could be found from experimental data in real-time: several recent works focused on on-
line evolution techniques to design and calibrate robotic controllers (e.g. [107, 108, 109]).
This allows models to adapt to change in dynamics during experiments.

2.5 Control of mixed-groups

2.5.1 From animal behavioural models to robotic controllers

The robots must respond to the animals and be socially integrated into the animal groups
to form a mixed-group. This social integration is made possible by using biomimetic robot
design, both physiologically (hardware design) and behaviourally (control).

The previously refined formal models of animal behaviour can be adapted and imple-
mented as robotic controllers. Robotic controllers make the link between robot inputs
(e.g. position in the arena, visual perception, etc.) and outputs (motors activation, move-
ments, tail beats, emission of lights, odor and noise, etc.). As such, only behavioural
models entirely or partly at the microscopic level of abstraction can be implemented as
robotic controllers. Moreover, these controllers must also take into account low-level con-
trol aspects, like collision avoidance (that might not be taken into account in the formal
models), inter-robot communication, or how to link the adapted microscopic model with
on-board sensors (e.g. camera, IR sensors, etc.) and actuators (e.g. motorised wheels
control).

2.5.2 Validation: social integration

Social integration can be viewed as a validation task for biomimetic models: if the be-
havioural model driving the robots results in their social integration, it means that it
exhibits sufficient biomimetic properties to trick animals into seeing the robot as a con-
specific.

Furthermore, it is possible to quantify social integration using empirically defined met-
rics that evaluate expected individual behaviours or collective dynamics. Such quanti-
fied social integration can be used to measure the biomimetism of several models, by
implementing them as robot controllers, and then testing their social integration scores
experimentally. In this setting, social integration metrics can be the same as biomimetism
metrics defined in Sec. 2.4.4.
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Social integration has often been used to assess the realism of a behavioural model
in previous animal-robots studies. For example, Halloy et al. [1] used site selection
dynamics and robot attraction to validate the social integration of robots in a group of
cockroaches (P. americana). With fish, Faria et al. [110] assessed the social integration
of a robot with biomimetic colour and shape into a group of three-spined sticklebacks
(Gasterosteus aculeatus). Butail et al. [111] used algorithms to determine animal response
to the robot. With rats, Shi et al. [47] validated the social integration of a complex
mobile robot capable of biomimetic movements with a living rat using rat-robot distance
and statistics on physical contacts. With chicks (Gallus gallus domesticus and Coturnix
coturnix japonica), Gribovskiy et al. [49, 50, 51] and Jolly et al. [53] made use of the
filial imprinting— mechanism to integrate socially robots as mother hen surrogates and
quantified this integration.

2.5.3 Group modulation

Even simple non-actuated devices can modulate the behaviour of a studied animal. This
modulation can make the animal behave according to a specific goal. However, fine control
of the animals becomes more difficult in the case of a group or a society (i.e. systematic
change in characteristics of the collective dynamics, or collective decision choices). A
modulated mixed-group allows the mixed-group to exhibit dynamics and patterns not
present in an animal-only groups (e.g. site occupation, or reduction of panic frequency,
task specialisation instead of unspecialisation, periodic collective behaviour instead of
stationary behaviour)

In the case where robots are designed to be seen as heterospecifics, they can control
the animal group through coercion [15], or cooperative strategies [54, 55, 62, 63].

On the other hand, if robots are designed to be seen as conspecifics, they can control the
animal group while being socially integrated. Indeed, groups of animals are self-organising
dynamical systems, where interactions instigate positive and negative feedbacks. The
network of individual responses and interactions governs the collective response of the
group. Socially integrated robots can introduce new feedbacks in the group and induce
large change in the collective response of the group with only small alteration of their
behaviour.

The following methodology can be applied to effectively modulate the collective be-
haviour of the group [19]:

• First, it is necessary to identify which characteristics of agent interactions (and cor-
responding control parameters in the robot controller) produce these feedbacks. It
can be done by using a multi-level modelling approach, capturing both of individual
interactions (at the microscopic level) and the collective dynamics (at the macro-
scopic level). It allows to identify which generic behavioural rules and feedbacks
induce relevant collective patterns (e.g. work allocation, social differentiation, syn-
chronisation, aggregation, etc.). The implementation of these rules on the robots can
be challenging, and the selected rules to be implemented on them is not necessarily
the most optimal ones.

44 Control of biohybrid systems



• The next step of the analysis is to find how parameter values corresponding to the
identified behavioural rules affect collective responses. Two keys parameters are the
number of agents (natural and artificial), and the intensity of the interactions. In
mixed-groups we can only modulate the animal-robot and robot-robot interactions,
not animal-animal interactions. If the intensity of animal-robot interactions is high
enough, it is possible to modulate the collective dynamics of the group with only
a small number of robots. Mixed-groups are stochastic systems, so individual be-
haviours may only lead to an expected collective response with a set probability. The
intensity of the interaction is a way to circumvent the impact of randomness: strong
animal-robot interactions are more deterministic than weak interactions. However,
this randomness aspect must not be eliminated, as the stochasticity of collective
dynamics allows to characterise the exploration of different concurrent alternatives
and to find effective solutions.

• Finally, the microscopic models driving robot behaviour have to be calibrated to
make use of these generic behavioural rules to modulate the dynamics of the group.
The difficulty is thus to find relevant parameters values of these models, all of
which could be found using an automated calibration methodology as described in
Sec. 2.4.5.

2.6 Conclusions

In this chapter, we presented a state-of-the-art of biohybrid systems and animal-robot
interactions (Sec. 2.1). We described what are mixed-groups (and mixed-societies) of
animals and robots (Sec. 2.2, and how to design them (Sec. 2.2.3). In particular, we
outlined how to design formal multi-level models (Sec. 2.4) of animal individual and
collective behaviours from experimental observation (Sec. 2.3), and how to construct the
controllers of autonomous robots capable of socially integrating into animal group with
closed-loop of interactions with the animals (Sec. 2.5). We succinctly presented how the
design of these models could potentially be automated (Sec. 2.4.5)

In the following chapters, we will extend further these aspects by effectively automating
the general methodology presented in Sec. 2.2.3 to generate the controllers of robots in
mixed-groups of zebrafish (Chapter 3, 4 and Annex A) and cockroaches (Chapter 5, 6). We
present a multi-level behavioural model of zebrafish behaviour (Chapter 3) and use it to
drive a biomimetic robot into a group of zebrafish with closed-loop interactions, and quan-
tify (and demonstrate) its social acceptation by the fish by measuring the biomimetism
of robot behaviour (Chapter 3). This model is then automatically calibrated (Chapter 4)
by methods listed in Sec. 2.4.5. We show that it is possible to automatically translate a
macroscopic model of group dynamics into microscopic models of agent behaviour in a
mixed-group setting (Chapter 5), and how to use this approach to modulate the collec-
tive behaviour of the entire mixed-group (Chapter 6) by methods listed in Sec. 2.5.3 and
Sec. 2.4.5.
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Part I

Mixed-groups of fish and robots
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Chapter 3

Social integration of a biomimetic
robotic fish into zebrafish groups

3

Everyone is a genius. But if you
judge a fish by its ability to climb a
tree, it will live its whole life believing
that it is stupid.

Albert Einstein
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This chapter tackles the problem of integrating a biomimetic robot driven by a biomimetic
behavioural model into a zebrafish group. This work is based on the publication [112]:

Cazenille L, Collignon B, Chemtob Y, Bonnet F, Gribovskiy A, Mondada
F, Bredeche N, Halloy J. How mimetic should a robotic fish be to socially
integrate into zebrafish groups ? Bioinspiration & Biomimetics 2017

A number of recent works used robots to study fish individual and collective behaviour.
They demonstrated that artificial agents can be used to influence or control the behaviour
of a single fish, or of a shoal of fish. One of the main objective of this process is to make
the robotic lures accepted by the animals as social companions. These studies show that
a robotic fish needs to be biomimetic in order to be socially integrated into a fish group.
However, most studies focused only on inducing attractive visual or mechanical stimuli.
Often, this translated to the search of attractive biomimetic lure morphologies.

In this article, we investigate the impact of robotic behaviour on social integration into
a group of zebrafish. Our hypothesis is that the robotic lure not only needs to have a
biomimetic visual appearance, but also needs to be driven by a biomimetic behavioural
model, in order to be socially accepted. We describe a robotic behavioural model inspired
from a model of fish behaviour of the literature. [113] We validate this model experimen-
tally, and compare it to experiments where the robot is not driven by a biomimetic model.
We complement this study by investigating the effect of lure visual appearance on social
integration. We show that both robot behaviour and lure appearance are relevant for a
robotic lure to be socially integrated into a group of fish. Our results confirm that both
aspects need to be designed to be biomimetic. This study is novel, as we present the
first integration of a biomimetic robot driven by a biomimetic model of behaviour, in a
population of zebrafish.
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Figure 3.1 – Workflow of the methodology used in this chapter, with red arrows showing the
addressed topics.
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Figure 3.1 shows how this chapter is linked to the workflow of this manuscript: here,
we use a microscopic and biomimetic model of fish behaviour and implement it as a
robot controller to drive a robot to socially integrate into a group of zebrafish. Related
supplementary information of this article can be found in annex B.1.

Contributions to this chapter

The experimental set-up was designed and built by Bertrand Collignon, Axel Seguret,
Yohann Chemtob, José Halloy and myself. The FishBot robot was developed at the EPFL,
by Frank Bonnet and Francesco Mondada. The experimental arena was built by Axel
Seguret and Yohann Chemtob, based on a early implementation by Frank Bonnet. The
control and tracking system was jointly developed by Frank Bonnet, Alexey Gribovskiy
and myself. I implemented the data analysis scripts and miscellaneous code. This paper
was mainly written by me, with the help of José Halloy and Nicolas Bredeche.
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3.1 Introduction

Robots are used in ethology and behavioural studies to isolate the behavioural features
and modes of interactions that mediate communication between animals. They can be
biomimetic mechanical artefacts that are teleoperated in order to trigger a response from
the studied animals. This allows testing various hypothesis on the type of signal used
by animals for social interactions [7, 11]. In those studies the human is still in the
loop of interactions between the artefact and the animal. This simplifies the design,
the implementation and the control of the robotic lures. Alternatively, since the pioneer
work of the robot sheepdog and ducks [15], an increasing number of studies [14] have
used fully autonomous robots to interact with animals. These robots are programmed to
induce reproducible stimuli (possibly embedded in the social context), in order to observe
the response of the studied animals during repetitive, sustained and long-lasting social
interactions. In this case, the human is not in the experimental loop, and doesn’t even
need to be present during the experiments. Examples of autonomous robots used in
ethology include cows [17], drosophila flies [114] or fish [110].

Different strategies exist to build robot and animal interactions:
(i) First, the artificial systems do not copy any feature of the animal but send signals

that the animal responds to. It can for example make use of supernormal stimuli [5]. The
signals can also be abiotic repellent stimuli such as threats or pain (like electric shocks), or
can be attractant such as food or any other attracting chemicals or features. The devices
can be carried by animals that are somehow tele-operated by these devices [17]. We call
this approach non-biomimetic as the aim of the design of the robots or devices is not to
mimic a feature of the studied animal. Indeed, being biomimetic is not a necessity to
interact with animals.

(ii) Second, the artificial agent acts as a different animal species such as a sheepdog.
The robot can be biomimetic but to another species like a dog for the sheep. This can be a
special biomimetic case of inter-species interactions [25] if the robot copies the sheepdog-
like animal in its features and behaviours and pertains also to the next category below.
But this approach can also be non biomimetic and fall back to the the first approach, the
robot being just an alien agent interacting with the animals [15].

(iii) Third, the artificial agent is mimicking the animal, luring it as if being the same ani-
mal species and using similar signals and behaviours [1]. We call this approach biomimetic
and it is the approach developed in this study. However, the biomimetic parameter and
feature space are very large. The challenge is to choose the most relevant features like
some specific visual resemblance, olfactory signature, behavioural similarity. This ap-
proach needs metrics to compare each selected features or set of features to select the
most relevant ones to avoid the elusive task of building an artificial animal in all its
features. We define social integration as being part of a group displaying biomimetic
features compared with the animals. The social integration (and its quantification using
these metrics) of a robot in a group of fish is the main contribution developed in this
study.

Several studies (see Tab. 3.1) have used robots to influence or to control the behaviour
of fish, either alone or in a shoal. Most studies involve a robot driven by simple and non-
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adaptive behaviours (termed fixed pattern in Tab. 3.1), and open-loop social interactions.
Closed-loop interactions occur when the robot influences the behaviour of the fish, and the
fish influence the behaviour of the robot. The study on the electric fish (Mormyrus rume)
opens interesting perspectives where a physical communication signal is used by both the
animals and the robots in a closed loop [34]. The electric fish study is closer to the work
done on cockroaches where a chemical signal was used [1]. However in [34], the fish robot
system represents a breakthrough where a modulated signal is used to achieve a close-loop
communication, in this case electric. In the case of the cockroaches the chemical signal
was not dynamically modulated. It remains to be shown that this interesting closed-loop
communication channel can be used to modulate collective choices like in the case of the
cockroaches.

The studies [31, 32, 33] describe experiments where there is a closed-loop of social in-
teractions and adaptive robotic behaviour. Additionally, [33] presents experiments where
the robot was driven by a biomimetic behaviour; but it was not adaptive (with respect
to the fish behaviour) and only followed fixed-patterns of behaviour. However, in these
studies, the integration of the robot in fish groups is not quantified and not established.
Indeed, this kind of controller implies that the robot is more a follower than a real group-
member (i.e. integrated into the group) making its own decisions. Simply following the
centroid of the group is not biomimetic as fish do not exhibit this kind of behaviour, and
such controller does not allow the robot to initiate action but forces it to simply follow
fish. In this regard, the embodiment of biomimetic behavioural models could lead to
a better integration of artificial agents in animal groups and could allow the robots to
influence the collective decision of the mixed group by giving specific preferences to the
robot by tuning parameter values of the model [1]. While such controllers have been said
to be developed in [32], no experiments have been analysed and reported in the literature
yet. Moreover, social integration can only be measured on long-lasting experiments, as
it allows to test robot social integration across a large set of social and environmental
contexts. While such long-lasting experiments where described in [32] (30 minutes ex-
periments), the non-adaptive biomimetic experiments in [33] were relatively shorter (5
minutes experiments).

In this study, we ask the following question: can we quantify and discriminate
between sets of biomimetic features needed for a robotic fish to be socially in-
tegrated into a group of fish as an autonomous member of the group? We make
the hypothesis that this robot must be designed not only to be biomimetic
at the level of the lure morphology and other physical aspects but also at the
level of its social behaviours.

Here, we propose to implement, in a closed-loop of social interaction, a multi-level and
context-dependent biomimetic behavioural model as a controller of a small mobile robot
moving a biomimetic fish-lure in a closed tank with a shoal of zebrafish.

We observe 10 different groups of four zebrafish and one fish-robot moving in a two-patch
square tank for 30 minutes. For each trial, we track and identify all agents. Contrary
to more cohesive species, the zebrafish often tend to have a very dynamical collective
behaviour, with short-lived sub-groups of individuals. Because such splitting influences
their behaviour as its changes the social context, we use a simple clustering method to
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Number
of lures

Study Robot behaviour Social In-
teraction

Number
of fish

Type of lure

Fixed to Phamduy et al. 2014 [115] Fixed pattern open-loop Single Biomimetic
mobile Polverino et al. 2013 [116] Fixed pattern open-loop Shoal Biomimetic
arm Polverino et al. 2013 [117] Fixed pattern open-loop Shoal Larger Size

Abaid et al. 2012 [118] Fixed pattern open-loop Single Biomimetic
Butail et al. 2014 [119] Fixed pattern open-loop Single Biomimetic
Ladu et al. 2015 [120] Fixed pattern open-loop Single Biomimetic
Ladu et al. 2015 [121] Fixed pattern open-loop Single Biomimetic
Polverino et al. 2012 [122] Fixed pattern open-loop Shoal Larger Size
Spinello et al. 2013 [123] Fixed pattern open-loop Single Larger Size
Polverino et al. 2013 [124] Fixed pattern open-loop Single Biomimetic
Ruberto et al. 2016 [125] Fixed pattern open-loop Single Biomimetic
Bartolini et al. 2016 [126] Fixed pattern open-loop Single Biomimetic

(several lures)
Kruusmaa et al. 2016
[127]

Fixed pattern open-loop Shoal Biomimetic
(shape only)

Donati et al. 2016 [34] Fixed pattern,
communication by
electric signals and
tail beats

closed-loop Shoal Biomimetic
(shape and
communica-
tion)

Romano et al. 2017 [128] Fixed pattern open-loop Single Biomimetic
Self- Abaid et al. 2013 [129] Fixed pattern open-loop Single Larger Size
propelled Butail et al. 2013 [130] Fixed pattern open-loop Shoal Larger Size

Butail et al. 2014 [111] Fixed pattern open-loop Shoal Larger Size
Moved by Faria et al. 2010 [110] Fixed pattern open-loop Single Biomimetic
a mobile Swain et al. 2012 [31] Follow the centroid closed-loop Shoal Biomimetic
robot Landgraf et al. 2014 [32] Follow the centroid

or Recruitment
closed-loop Shoal Biomimetic

Landgraf et al. 2016 [33] Follow the centroid
or Recruitment

closed-loop Shoal Biomimetic

Table 3.1 – Recent research using robots to study fish behaviour. We classified the
studies according to the technique used to move the lure, the behaviours of the lure, the number
of fish swimming with the robot and the shape of the lure. The robots used in these studies
can be classified into three categories: First, by using a fish-lure fixed to a mobile arm. This
allows to test the reaction of one (or a few) fish to lures that differ by one characteristic, e.g.
colour, size, tail-beating frequency. Second, by using a self-propelled aquatic robot that swim
in the water with the animals. Such robots are fully autonomous and are a first step towards
robots that can be used out of the lab in natural conditions. Third, by using a fish-lure linked
through magnets to a mobile robot that moves under the tank. This allows the decoupling of the
stimuli shown to the fish (the mock-up fish in the water) and the robot responsible for mobility.
By doing so, it is possible to develop a biomimetic lure that has the same size and aspect as a
real fish but also capable of reproducing their movement patterns. Four types of lures are used
in the literature: biomimetic lures are designed to look like (in term of shape and texture) a
fish and are of similar size of a fish; biomimetic (several lures) involves several lures actuated
by a single robot; biomimetic (shape only) lures have a biomimetic shape, but not a biomimetic
texture; large sized lures are not biomimetic, and are (far) larger than a fish. In [34], the lure is
equipped with electric sensors and actuators, which enables the lure to communicate with a shoal
of electric fish and to create closed-loop interactions between fish and robot.
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identify sub-groups of agents. Then, we analyse the collective dynamics of the population,
and the propensity of the robot to be integrated into the fish group. These results are then
compared with data obtained by observing 5 zebrafish swimming in the same conditions
without the fish-robot. In order to compare the experiments with fish and a robot to
the control experiments with only fish, we define a similarity measure quantifying the
social integration. This measure is based on several metrics characterising the impact
of the chosen biomimetic features: the linear speed distribution of the agents, the inter-
individual distances distributions of agents in a sub-group, the distribution of sub-group
size.

3.2 Materials and Methods

3.2.1 Experimental set-up

We use 10 groups of 5 adults wild-type AB zebrafish (Danio rerio) in our experiments.
Our experimental set-up (Fig. 4.2A) is equipped with two environmental patches (rooms)

linked by a corridor (see Fig. 3.3A). The geometry of the setup is designed to study col-
lective transitions between patches allowing to quantify the group cohesion and collective
decision-making as in [131, 132]. Thus the robot has to be socially integrated to be part
of the collective transitions between the rooms. The floor of the aquarium is covered with
a sheet of teflon to provide a smooth surface for the motion of the fish-lure. An overhead
camera (Fig. 4.2A) captures video frames of experiments. Then, our control and tracking
software (called CATS2 [66]) is able to track the positions of the agents (fish and robots),
and to control the robots. A system that controls the robots of a mixed-society containing
zebrafish must cope with their fast reaction time and sudden movements. Our system is
designed to handle low latencies (less than 70ms, as we work in 15 frames per seconds),
both at the tracking and at the control levels.

The control of FishBot motion is done through events that are sent from the control
software and that contain the parameters for the locomotion.

3.2.2 FishBot and fish lures

We consider two kinds of fish lures: a biomimetic lure, and a non-biomimetic lure. The
biomimetic lure was designed to mimic the visual appearance of a zebrafish as close as
possible (Fig. 4.2B) using the methodology presented in [133], based on a 3D scan of a
zebrafish. The lure was also covered with a decal to have the similar color patterns as
the zebrafish (the methodology is described in Sec. A.4). The non-biomimetic lure is a
zebrafish-sized 3D printed black ellipsoid (of 4.5× 0.5× 0.8cm). The lures are linked by
magnetic coupling to a mobile robot moving below the experimental tank.

We use the miniature mobile robot ”FishBot” described in [29, 30, 65] that can achieve
the required speeds and accelerations in order to reproduce the fish displacement under
water. The robot is continuously powered as described in Figs. 4.2A and 4.2C and con-
trolled with a wireless bluetooth link, therefore it is possible to achieve long duration
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experiments in closed-loop (described in Sec. A.3).

3.2.3 Data analysis

Zebrafish tend to form short-lived sub-groups of individuals (especially in fragmented
environments [131]), which often translate to different sub-group behaviour, as sub-group
size changes the social context. In particular, fish do not behave the same way when they
are alone as when they are in a group (for instance, they have different distributions of
linear and angular speeds). As such, we identify sub-groups of agents in each frame of
our experimental videos. We use a clustering algorithm that uses only the position of
each individual to detect the sub-groups in each frame of our experimental videos. This
algorithm is described in Sec. B.1.1.

Then, by using the tracked positions of agents (fish and robot) and the information
describing sub-groups membership, we compute several statistics of individual and collec-
tive behaviour: the density of presence in the arena, the distributions of linear speeds in
each room, the inter-individual distances in sub-groups of size 2 to 5 individuals, and the
distribution of the number of agents in sub-groups.

3.2.4 Quantifying social integration

It is not trivial to compare the results of the experiments with a robot with the corre-
sponding results from the biological reference case. Here, we define a similarity measure
to compare the results of all experiments, taking into account the distributions of linear
speeds in the rooms (Ilsr(Ci)) and in the corridor (Ilsc(Ci)), the distributions of inter-
individual distances for sub-groups of two to five individuals (IiiSG2(Ci), ..., IiiSG5(Ci))
and the distribution of sub-groups size (Isgs(Ci)). We postulate that this similarity mea-
sure translates directly to the capabilities of the robot to socially integrate into the group
of fish. We term this similarity measure the social integration index (I(Ci) for the Ci
experiment), and define it as:

I(Ci) =
Ilsr(Ci) + Ilsc(Ci) + IiiSG2(Ci) + ... + IiiSG5(Ci) + Isgs(Ci)

7
(3.1)

Ia(Ci) = 1−H(C0a,Cia) (3.2)

The social integration index I(Ci) of the experiment Ci has a value between 0.0 and
1.0. A value of 0.0 corresponds to the absence of social integration of the robot, and a
value of 1.0 corresponds to a social integration of the robot comparable to that of a fish.

The histograms of these parameters are presented in Figs. 3.7, 3.8 3.9, and in Sec. B.1.
We hypothesise that these are the most relevant features to identify the social integration
of the robot into the group of fish. First, the speed distributions show the ability of the
robot to follow the fish at the same speed as the fish. Second, the inter-individual distance
distributions show the capability of the robot to be at the same distance to the fish as
a fish would be towards its neighbours. Lastly, the distribution of sub-group sizes shows
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that sub-group dynamics in experiments with a robot are similar to those in experiments
with only fish.

The H(P ,Q) function is the Hellinger distance between two histograms. The Hellinger
distance [134] is a divergence measure, similar to the Kullback-Leibler (KL) divergence.
However, the Hellinger distance is symmetric and bounded, unlike the KL-divergence
(and most other statistical distance metrics). It is often used as a metric to compare
distributions, and is defined as:

H(P ,Q) =
1√
2

√√√√ d∑
i=1

(
√
pi −
√
qi)2 (3.3)

where pi and qi are respectively the i-th bin values of histograms P and Q; d is the number
of bins in both histograms P and Q.

3.3 Multi-level approach for the robot behaviour

We present here a biomimetic model of fish behaviour, that can be implemented as a
robotic controller. Our model is multi-contextual, to take into account the different
behaviours exhibited by the fish in the different zones of our fragmented experimental
set-up (with two rooms and a corridor, cf. Fig. 3.3A). We design this model to be multi-
level (Fig. 4.3.

The high-level control manages the biomimetic trajectories of the robot. We use differ-
ent behavioural schemes to generate desired target positions of the robot depending on
its position in the arena. These trajectories are calibrated to correspond to the analysed
fish trajectories.

The low-level control corresponds to the movement patterns of the robot that are also
important to facilitate social integration. It describes how the robot can move from its
current position to the target positions provided by the high-level control system.

Control at both levels can be designed to be biomimetic. At the level of trajectories,
zebrafish have a complex social behaviour and tend to form dynamic and short-lived
groups. At the level of movement patterns, zebrafish move by successive bouts of tail-
beats [135]. Each tail-beat can be modelled as a sequence of three steps: first, the tail-beat
allows the fish to reorient itself towards its target position; second, the fish accelerates
linearly by using the thrusting effect of the tail-beat; third, the tail-beating stops and the
fish slides into water with a decreasing linear speed [65]. Here, we present a biomimetic
multi-level model of these dynamics, taking into account both high-level (in Sec. 3.3.1)
and low-level (in Sec. 3.3.2) controls.

Figure 3.3B and Table 3.2 summarise the different behaviours depending of the position
of the robot, and how they are implemented in terms of high-level control (trajectories)
and low-level control (movement patterns). A general description of this biomimetic model
can be found in Fig. 4.3.

We designed our behavioural model to exhibit different behaviours depending on the
spatial position of the robot in the arena. Indeed, we observed that zebrafish exhibit dif-
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Figure 3.2 – Panel A: Experimental set-up used during the experiments [29, 30, 65]. (a)
Camera used to track the lure and the zebrafish. (b) Zebrafish. (c) Fish-lure inside the aquarium
linked to the mobile robot through magnetic coupling. (d) FishBot moving under the aquarium.
(e) Aquarium of 1000 × 1000 × 250 mm. (f) Water layer of 60 mm depth. (g) The computer
that processes the camera frames and remotely controls the robots via Bluetooth. (h) Conductive
plates to power the mobile robot. Panel B: Description of the FishBot [29, 30, 65], the robot
used for mimicking fish motion patterns. a) Magnets to magnetically couple FishBot with the
lure module. b) Electric brushes to retrieve the power from the positive conductive plate. c)
Microcontroller dspic33f128. d) Supercaps that store power if the contact with the plates is
lost. e) Bluetooth antenna. f) Maxon DC motor. g) Infrared Proximity sensors. h) Wheel i)
Electric brushes to retrieve the power from the Ground connected conductive plate. Panel C:
biomimetic lure used during the C1,C2,C3 experiments (see Table 3.3) [29, 30, 65]. Panel D:
Non-biomimetic lure used in the C4 experiment.
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Figure 3.3 – Panel A: Experimental arena composed of two linked square rooms used to study
collective transitions and decision-making. Our biomimetic lures, described in Fig. 4.2B, can be
integrated within the fish group and mimic their collective behaviours. Panel B: Colored zones
of the arena corresponding to the three different types of behaviour of the robot. These behaviours
are outlined in Table 3.2. When the robot is in the rooms (in red) or near the entrance of the
corridor (in blue), it is driven by the biomimetic model presented in Sec. 3.3. This model is
used to generate a new target position of the robot every 1/3 s. If this target position is near the
entrance of the corridor (in blue), the target position of the robot is not updated before 5 s are
passed, to give the robot enough time to go to the entrance of the corridor. When the robot is in
the corridor (green zone), it passes straight through the corridor, with a constant speed.
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ance
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Near entrance
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(cf. Sec. 3.3.1)
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(cf. Sec. 3.3.2)

Turn to avoid
(cf. Sec. 3.3.2)
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Near entrance
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(cf. Sec. 3.3.2)

Green Corridor any
Pass-through
(cf. Sec. 3.3.3)

Constant speed
(cf. Sec. 3.3.4)

Braitenberg
(cf. Sec. 3.3.4)

Table 3.2 – Robot behaviours depending on the context
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Figure 3.4 – Multilevel behavioural model (here denoted BM) used as robot controller. Our
robot control system is divided into two layers. The high-level control layer (in A and D) describes
the trajectory of the robot in the arena and generates target positions. The low-level control layer
(in B and C) handles the movement patterns of the robot to reach the target positions derived
from the high-level control layer. The robot has different behaviours depending on whether it is
in the rooms (in A and B, represented in red and blue in Fig. 3.3B) or in the corridor (in C
and D, in green in Fig. 3.3B). In the rooms, the high-level (in A) and low-level (in B) controls
are biomimetic. In the corridor, the high-level (in D) and low-level controls (in C) are not
biomimetic, and drive the robot to transit from one room to the other through the corridor.
These behaviours are summarised in Table 3.2.
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ferent behaviours when they are in the corridor compared to when they are in a room [131]
(cf. Sec. B.1). When they are in the corridor, they tend to go from one of the entrances of
the corridor to the other room, with a different speed distribution. The fish only transit
in the corridor in a rather straight manner.

When the robot is in the rooms (in red) or near the entrance of the corridor (in blue),
it is driven by a biomimetic probabilistic behavioural model (Fig. 4.3A), and described
below (cf. Sec. 3.3.1). This model is used to generate new target positions of the robot
every 1/3 s (this time step was chosen to correspond to the tail beat frequency of the
zebrafish of ∼ 2.5Hz, as in [113]). The low-level controller of the robot makes it follow
and reach these target positions with fish-like biomimetic movement patterns (Fig. 4.3B,
cf. Sec. 3.3.2). If a target position of the robot is near the entrance of the corridor (in
blue), it is not updated before 5 s are passed, to give the robot enough time to reach the
entrance of the corridor. When the robot is in the corridor (in green), it passes straight
through the corridor with a constant speed.

At present, while the robot can pass through the corridor from one room to the other
without wall-collision, it can be difficult for the robot to perform U-turns in the corridor
(i.e. turn around in the corridor and go back to the room the robot was previously
situated) without colliding into the walls due to the narrowness of the corridor. As such,
when the robot enters the corridor, it is driven by a pass-through behaviour to transit
from one room to the other in a straight line, without possibility of U-turn (Fig. 4.3D).
We do not use the biomimetic probabilistic behavioural model (Fig. 4.3A) in this case, as
it would have a small probability of generating target positions toward the room where
the robot was previously situated, thus driving the robot to perform an U-Turn.

Additionally, the teflon sheet that we put on the floor of the aquarium is not perfectly
plane (as it is difficult to glue this layer to the aquarium), which can slightly influence
the movement of the robot due to the magnetic coupling between the robot and the lure
(sliding on the teflon layer). This is especially the case when the robot is moving at
high speed, or when it performs strong accelerations, for instance when it is driven by the
biomimetic low-level controller (Fig. 4.3B). This is why we use a constant speed behaviour
(without strong acceleration, Fig. 4.3C) when the robot is passing through the corridor.

3.3.1 High-level biomimetic behavioural model in the rooms

To define the trajectories of the robot in the rooms (red and blue zones in Fig. 3.3B,
Fig. 4.3A), we developed a biomimetic behavioural model inspired from the stochastic
model of Collignon et al. [113], which used a gaussian mixtures agent-based approach to
describe zebrafish behaviour in a shoal.

Several kind of models exist to describe fish schooling. The self-propelled particles mod-
els [136, 137] describe fish interactions mostly in term of collision avoidance, alignment,
and cohesion [138, 139]. Similarly, the social forces models characterise fish as Newtonian
particles subjected to social forces (establishing group cohesion) and physical forces (re-
flecting the interactions with the environment) [140]. The kinematic models represent fish
trajectories by stochastic differential equations [141, 142, 135]. They constitute a contin-
uous time formulation of random walks (cf. Brownian motion [143, 144]), which describe
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stochastic trajectories made of successive random steps. Stochastic formulation of fish
behaviours have the distinct advantage of modeling individual choice in decision-making
processes. This is especially relevant to the modeling of animal behaviour, where animals
often have to make decisions while being exposed to concurrent stimuli (e.g. zebrafish lar-
vae that orient towards one of several light sources rather than swimming towards their
bisector [145]).

In all types of models of fish behaviour, the agents move according to conspecifics. It
can be challenging to model appropriately agent perception, and define which subset of
individuals influence the motion of a focal fish. As such, several recent works [146, 147,
148] used agent visual perception information to define movements: in these models, the
focal agent interacts with its neighbours not according to their Cartesian coordinates but
according to their representation in its visual field. These models are more coherent in
term of biological realism: it was shown that fish behaviour is mainly dependent on visual
perception [148].

The work of Collignon et al. [113] builds on these principles by designing a model of fish
trajectories at the crossroads of random walks and self-propelled particules models: agents
have a behaviour with a stochastic component (inspired by random-walk models) and
react to their perception field (inspired by self-propelled particules models). It involves
the computation of a PDF (Probability density function) determined by the presence of
stimuli (e.g. perception of conspecifics) in their visual perception field. It is computed as
a mixture distribution of von Mises distributions centered on each perceived stimulus. At
each time-step, the agents randomly choose a direction to move according to their PDF.

The model in [113] was designed to model zebrafish behaviour in an empty square arena.
We modified this model to be used as a robotic controller, and to handle our arena with
two rooms and a corridor.

In this model, the agents update their position vector Xi with a velocity vector Vi:

Xi(t+ δt) = Xi(t) + Vi(t)δt (3.4)

Vi(t+ δt) = vi(t+ δt)Θi(t+ δt) (3.5)

The speed vi is drawn from the speed distribution of the fish in the rooms (Fig. B.4,
experiment C0). The orientation Θi is drawn from the probability density function (PDF)
computed as a mixture distribution of von Mises distributions centred on the stimuli
perceived by the focal agent. In this study, we only take into account the influence of
other agents. The attraction towards the walls is not considered yet as it would put the
robots too close to the walls, increasing greatly the number of collisions between them.
Only agents present in the corridor or in the same room as the focal agent are perceived.
The agents present in the opposite room are not perceived.

The PDF f0(θ) for an agent to move in each potential direction θ in a bounded envi-
ronment without perceptible stimulus is given by:

f0(θ) =
exp(κ0cos(θ))

2πI0(κ0)
(3.6)
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with κ0 a dispersion parameter associated with movements not influenced by stimulus,
and I0 the modified Bessel function of first kind of order zero, defined as:

I0(κ) =
∞∑
k=0

(κ/2)2k

k!Γ(k + 1)
(3.7)

The model computes a PDF for the focal agent to move according to other agents
(congeners). The probability of the focal agent to orient towards a perceived agent is
given by a von Mises distribution clustered around this agent:

ffi =
exp(κfcos(θ − µfi))

2πI0(κf )
(3.8)

with θ the potential direction of movement of the agent, µfi the location of the perceived
fish i and κf a dispersion parameter associated with agent attraction.

The model computes a weighted sum of all distributions ffi for all agents i, resulting
in a PDF fF (θ) defined as:

fF (θ) =

nf∑
i=1

Afi
ATf

exp(κfcos(θ − µfi))
2πI0(κf )

(3.9)

ATi =

nf∑
i=1

Afi (3.10)

with ATf the sum of solid angles Afi captured by each perceived agent i and nf the
number of perceived agents.

Finally, we calculate a weighted sum of the PDFs to obtain the global probability
distribution function f(θ) of the focal fish to move towards a given direction. This global
PDF is different from [113], as we removed the attraction to the walls, and is computed
as follow:

f(θ) =
f0(θ) + α0ATffF (θ)

1 + α0ATf
(3.11)

with α0 a parameter weighting the influence of the perceived agents. The parameters
κ0 = 6.3 and κf = 20 are the same as in [113].

There is a delay (< 500 ms) between the time when a new target position is computed
and the time when the robot actually reaches this position. This can have an adverse effect
on the desired fish-following behaviour of the model, when the robot is part of a sub-group
and is moving alongside its neighbours. Indeed, the target-following system (low-level
control) must compromise between efficiency (the capability of reaching the target with
a low latency) and biomimetism (fish-like movement, and fish-like speed distribution).
To mitigate this effect, we selected a different value of α0 than in [113]: we consider
α0 = nA ∗1000/nD with nA = 5 the total number of agents in the experiment, and nD the
number of detected agents in the current frame. This increases the tendency of the robot
to follow fish groups. The number of detected agents is used to normalise the computation
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of α0 as the model only takes into account the agents that are actually detected by the
tracking system, which introduces a bias.

Then, we numerically compute the cumulative distribution function (CDF) correspond-
ing to this custom PDF f(θ) by performing a cumulative trapezoidal numerical integration
of the PDF in the interval [−π, π] (as described in [113]). Finally, the model draws a ran-
dom direction Θi in this distribution by inverse transform sampling. The position of the
fish is then updated according to this direction and his velocity with equations 4.1 and 4.2.
If the target position of the robot is in an unreachable area (e.g. walls), we draw another
random direction from the CDF.

3.3.2 Low-level biomimetic movement patterns in the rooms

In the rooms (red and blue zones in Fig. 3.3B), the robot is following trajectories drawn
by the high-level biomimetic model described in Sec. 3.3.1. The low-level robot controller
(Fig. 4.3B) is programmed to follow the target position computed using the high-level
behavioural model. When the target is near the entrance of the corridor (blue zone of
Fig. 3.3B), it remains there for 5s to leave enough time for the robot to reach the entrance
of the corridor, and then pass through it to the next rooms. We choose the relatively long
duration of 5s to prevent the high-level model to generate a new target not situated in
the corridor before the robot is able to reach the entrance of the corridor, as it could lead
to experiments where the robot never go thru the corridor. Indeed, this target-following
control method is simple to implement, but can create a gap between the position of the
robot and the desired target position. To compensate for this effect, the low-level robot
controller is parametrised with a speed of 12 cm.s−1 (higher than the speed of the fish)
during the relaxation phase (this parameter value was chosen experimentally). However,
the robot will not have this mean speed in practice, but an average speed (7.9 cm.s−1)
closer to the fish (8.2 cm.s−1), as can be seen in Sec. B.1.

To accurately mimics the movement patterns of the zebrafish inside the two rooms, we
used the low-level robot controller designed in [65]. At each control steps, the desired
target position generated by the model described in Sec. 3.3.1 is compared with the
current robot position and orientation. The difference in orientation is sent to the robot,
that executes a step machine composed of three steps: First, the wheels are controlled in
position to reorient the robot towards the desired target. Second, the robot accelerates to
0.7 m.s−2 and third, the speed of the robot is set to a constant speed of 8.5 cm.s−1. The
robot will keep this speed until the next control step. This mimics the typical locomotion
of zebrafish in open areas as demonstrated in in [65].

We use a simple collision avoidance scheme (termed Turn to avoid), where the robot
stops when it is too close to a wall and then turns at a reduced speed (5 cm.s−1) for 3.5 s
before going back to its normal behaviour.

3.3.3 Robot trajectories in the corridor

When the robot is in the corridor (green zone in Fig. 3.3B), it is programmed to transit
in a straight line towards the other room (Fig. 4.3D), with a constant speed of 12 cm.s−1
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if the robot is not in collision with a wall. This speed is reduced to 5 cm.s−1 when the
robot is too close to the walls, e.g. after a collision. The resulting mean speed of the
robot is still lower than the one of the fish (Fig. B.5). We could not increase the speed
of the robot to match the mean speed of the fish in the corridor, as it would increase the
probability of crashing against a wall.

3.3.4 Biomimetic movement patterns in the corridor

Inside the corridor (green zone in Fig. 3.3B), the zebrafish usually have a constant speed as
they are stressed due to the reduced size of the environment. Therefore, we implemented
a controller (Fig. 4.3C) for the robot to maintain a constant linear speed of 9.4 cm.s−1

inside the corridor while the rotating speed is controlled using a PID (Proportional-
Integral-Derivative) controller for the robot to reach the opposite room.

To mitigate the effect of eventual collisions of the robot with the walls, the low-level
controller of the robot implements a Braitenberg-based obstacle avoidance scheme [149].
While this Braitenberg obstacle avoidance scheme is more efficient than the Turn to avoid
scheme used in the rooms, it only works when the robot is moving with a constant speed.
This is why we did not use it in the rooms, where the robot is driven by the biomimetic
movement patterns (described in Sec. 3.3.4).

3.4 Results

Our goal is to socially integrate a robot driven by a multi-level biomimetic behaviour
into a group of laboratory wild-type zebrafish. The experiments are done in a two con-
nected room aquarium that is designed to study social cohesion, collective departures
and decision-making [131, 132]. We consider five different experimental conditions sum-
marised in Table 3.3. Each one of the five conditions is composed of 10 trials during each
one 30 minutes. Each experimental condition has thus been tested for 5 hours in total.
We tested 10 different fish groups per experimental conditions, i.e. 40 different fish with
the robot. We compare these five experiments by using the similarity measure described
in Sec. 3.2.4.

3.4.1 Individual trajectories

We rebuild the trajectories of each individual (fish and robot) by using the individual
tracking of the agents (cf. Sec. A.5.3). Figure 3.5 presents examples (of 1 minutes) of
such trajectories for experiments C0 and C1 (in Panel B, the robot trajectories are in
black). The fish tend to follow walls rather than staying in the center of the rooms.

Even though we did not implement any wall following behaviour into the high-level
part of the BM model (Fig. 3.3A, see Sec. 3.3.1), the robot still exhibits a wall follow-
ing behaviour as it tends to be attracted to fish. The trajectories of the robot appear
qualitatively biomimetic. We further quantify the mixed group in the following sections.
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Label Experiment Number
of agents

Robot Trajecto-
ries in the rooms

Robot Move-
ment pattern in
the rooms

Lure

C0 Wild-type zebrafish
only

5 fish + 0 robot - - -

C1 Biomimetic model
with Biomimetic
lure

4 fish + 1 robot
Biomimetic
(cf. Sec. 3.3.1)

Biomimetic
(cf. Sec. 3.3.2)

Biomimetic

C2 Random walk with
Biomimetic lure

4 fish + 1 robot Random Walk
Biomimetic

(cf. Sec. 3.3.2)
Biomimetic

C3 Biomimetic model
with Constant
Speed

4 fish + 1 robot
Biomimetic

(cf. Sec. 3.3.1)
Constant Speed Biomimetic

C4 Biomimetic
model with non-
biomimetic lure

4 fish + 1 robot
Biomimetic

(cf. Sec. 3.3.1)
Biomimetic

(cf. Sec. 3.3.2)
Non-
biomimetic

Table 3.3 – Analysed experiments. The C0 experiment is the biological reference case,
involving a group of 5 wild-type zebrafish and no robot. The C1 experiment involves 4 wild-type
zebrafish and one robot driven by the multi-level biomimetic model presented in Sec. 3.3. These
experiments are performed in the set-up described in Fig. 4.2A with the arena in Fig. 3.3B
after a 30 minutes period of acclimatization. Each experiment is repeated 10 times and lasts 30
minutes. The C2,C3 and C4 experiments are control experiments based on the C1 experiment.
The C2 experiment involves a robot driven by a random walk behaviour, to assess to impact
of biomimetic trajectories on social integration. In the C3 experiment, the robot moves with a
constant speed along its trajectory instead of moving using biomimetic movement patterns. The
C4 experiment is performed with a non-biomimetic lure.

3.4.2 Group clustering and social cohesion

We compute the mean inter-individual distances between each pair of agents (fish and
robots) of a sub-group for all experiments. Three characteristic cases were considered: all
sub-groups (i.e. sub-groups of 2 to 5 individuals) in Fig. 3.7, sub-groups of two individuals
in Fig. 3.8, and sub-groups of all (five) individuals in Fig. 3.9. For all three cases, the
distributions of inter-individual distances of the C1 and C3 experiments are the closest
to the ones of the C0 experiment.

We compute the mean fraction of non-isolated individuals in each experiment (Fig. 3.6A).
In experiments with a robot, C1 (mean of 78.1%, std of 0.050) is the closest to C0 (mean
of 83.3%, std of 0.037), followed by C3 (mean of 75.9%, std of 0.049), C4 (mean of 74.4%,
std of 0.622), and C2 (mean of 67.4%, std of 0.062). The robot tends to be isolated slightly
more often than the fish. When the robot follows our biomimetic model, it increases its
capability to be in a sub-group (experiments C1 and C3). The type of movement pattern
and lure also affect the capability of the robot to be in a sub-group (experiments C2 and
C4).

Figure 3.6B presents the mean fraction of the population either isolated (”sub-group”
of size 1) or in a sub-group with 2 to 5 individuals. Agents in the experiments with the
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A
C0

B
C1

Figure 3.5 – Examples of trajectories of the agents in experiments C0 (Panel A) and in
experiment C1 (Panel B). Each subplot corresponds to 1-minute sections of a 30-minutes
experiment. In Panel B, the robot trajectories are in black.

robot (C1, C2, C3, C4) have a higher probability to be isolated and a lower probability
to be in sub-groups of 5 individuals (whole population). Experiments C1 and C3 provide
the results that are the most similar to C0. Indeed, while the robot can integrate into
the group of fish, especially when driven by a biomimetic model, its behaviour could still
be improve to be closer to a fish. In a follow up study we improve the calibration of the
model.

3.4.3 Quantifying social integration

Table 4.1 presents the resulting social integration index and the associated Ia(Ci) values
for all experiments with a robot (C1, C2, C3, C4). The experiment with the high-
est number of biomimetic characteristics, C1, has the highest integration index: 0.860.
Experiment C3 has the second highest integration index: 0.822, followed by C2 (0.810)
and C4 (0.734). It shows the veracity of our hypothesis: a robotic fish has higher social
integration capability into a group of fish if it is designed to be biomimetic on three key
aspects: the morphology of the lure, the type of trajectories, and the type of movement
patterns. Here, we show that the morphology of the lure has the highest impact on social
integration, followed by the type of trajectory of the robot and by the type of movement
patterns of the robot, with differences of social integration indexes (mean score) with C1
of respectively 0.126, 0.050 and 0.038. For several measures (inter-individual distances
in sub-groups of 3 or 4 individuals), C3 has a higher score than C1; it shows that our
approach in the design of C1 and of the BM model can still be improved.
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C1 C2 C3 C4
Linear speed in the rooms 0.706 0.739 0.708 0.739

Linear speed in the corridor 0.812 0.694 0.608 0.637
Inter-indiv. distances in SG of 2 indiv. 0.894 0.893 0.780 0.524
Inter-indiv. distances in SG of 3 indiv. 0.927 0.897 0.972 0.885
Inter-indiv. distances in SG of 4 indiv. 0.915 0.837 0.953 0.798
Inter-indiv. distances in SG of 5 indiv. 0.866 0.759 0.861 0.706

Distribution of SG size 0.899 0.854 0.875 0.848
Social integration index (Mean score) 0.860 0.810 0.822 0.734

Table 3.4 – Social integration indexes for all experiments. Higher values correspond to better
integration of the robot in the group of fish. Results in bold correspond to the highest values
for each feature. The C1 experiment involves 4 wild-type zebrafish and one robot driven by
the multi-level biomimetic model presented in Sec. 3.3. The C2,C3 and C4 experiments are
control experiments based on the C1 experiment. The C2 experiment involves a robot driven by
a random walk behaviour, to assess to impact of biomimetic trajectories on social integration. In
the C3 experiment, the robot moves in a constant speed along its trajectory, instead of biomimetic
movement patterns. The C4 is performed with a non-biomimetic lure.
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Figure 3.6 – Panel A: Mean fraction of non-isolated individuals in all experiments. The
distributions differ significantly (Two-sample Kolmogorov-Smirnov test, with p-values < 0.05;
cf. Sec. A.5.3). Panel B: Mean fraction of the population in a sub-group of 1 (isolated indi-
viduals) to 5 (whole population) individuals. The distributions differ significantly (Two-sample
Kolmogorov-Smirnov test, with p-values < 0.05; cf. Sec. A.5.3). Results are obtained in 10 trials
of 30 minutes experiments using groups of wild-type zebrafish moving in the set-up described in
Fig. 3.3A.
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1Figure 3.7 – Mean inter-individual distances between each pair of agents (fish and robot)
in all sub-groups. Results are obtained in 30 minutes experiments using groups of wild-type
zebrafish moving in the set-up described in Fig. 3.3A. Each experiment is reiterated 10 times. All
distributions of inter-individual distances differ significantly (Two-sample Kolmogorov-Smirnov
test, with p-values < 0.05; cf Sec. A.5.3).
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1Figure 3.8 – Mean inter-individual distances between each pair of agents (fish and robot) in
sub-groups of only two individuals (pairs). Results are obtained in 30 minutes experiments
using groups of wild-type zebrafish moving in the set-up described in Fig. 3.3A. Each experiment
is reiterated 10 times. All distributions of inter-individual distances differ significantly (Two-
sample Kolmogorov-Smirnov test, with p-values < 0.05; cf Sec. A.5.3).
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1Figure 3.9 – Mean inter-individual distances between each pair of agents (fish and robot) in
sub-groups of five individuals (entire population). Results are obtained in 30 minutes experiments
using groups of wild-type zebrafish moving in the set-up described in Fig. 3.3A. Each experiment
is reiterated 10 times. All distributions of inter-individual distances differ significantly (Two-
sample Kolmogorov-Smirnov test, with p-values < 0.05; cf Sec. A.5.3).
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3.5 Conclusions

In this study, we present a biomimetic model of fish behaviour in a fragmented environ-
ment. This model is multi-contextual spatially (square rooms and corridor), multi-level
(collective dynamics, collective departures, trajectories, movement patterns) and proba-
bilistic. Then, we describe a methodology to create a closed-loop of social integration
between a shoal of zebrafish and a biomimetic fish-lure moved by a robot driven by this
biomimetic behavioural model. We use a similarity measure as a metric to quantify the
capability of this lure to be socially integrated in the shoal of fish and the biomimetism
of the behaviour of the robot.

While previous studies of the literature (Tab. 3.1) showed that a robotic fish needs
to be biomimetic in order to be socially integrated in a group of fish, most efforts were
made on finding attractive biomimetic lure morphologies, with no or few considerations
([31, 32, 33]) on the effects of robot behaviour (trajectories and movement patterns) on
social integration. Both [32] and [33] present experiments involving a closed-loop of
interaction between a group of fish and a robot driven by a controller inspired from fish
behaviour and magnetically coupled with a biomimetic lure. However, in these studies,
the social integration of the robot is not quantified and the robot is more a follower
or initiator following fixed patterns of behaviour rather than an entity capable of being
integrated with the group of fish and initiating its own decisions during trials lasting
30 minutes.

This issue is addressed in this study, where we show that a robot driven by our
biomimetic model of fish behaviour can effectively socially integrate a group of wild-type
zebrafish. This problem is challenging because zebrafish present loose social organisation
[131]. Indeed this fish species does not form stable schooling patterns (i.e. fish aligned and
swimming together in the same direction) but forms shoals (tendency to form irregular
groups). Moreover, it is difficult to model zebrafish collective behaviour and translate it
directly into a robotic controller. Here we consider complex social behaviour in a designed
set-up to study social cohesion and collective departures. This fragmented set-up induce
more elaborate behaviours than simpler round or square empty tanks. Such environment
requires to develop context dependent collective behaviour models taking into account
spatial context and social effects.

In this study, we compare mixed groups of 1 robot and 4 fish to groups of 5 fish and
no robot. It allows us to quantify the social integration of the robot i.e. if the robot
belongs to the group, like another fish, for trials lasting for 30 minutes each and during 5
hours in total. Our metrics quantify the distance between a mixed and a pure fish group.
According to our metrics, the closer we are to a pure fish group the more the robot is
socially integrated.

We analysed the impact of both lure morphology and robot behaviour aspects on social
integration and showed that a robotic fish driven by a biomimetic behavioural model
is more akin to be socially accepted by the fish compared to a robotic fish driven by a
simple non-biomimetic behavioural model. We assessed the importance of biomimetism on
different aspects of the robot design: the morphology of the lure, the type of trajectories of
the robot, and the type of movement patterns exhibited by the robot, its decision making
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capabilities depending on the context. All three aspects were shown to be relevant to
facilitate the social integration of the robot. Our results show that both the lure and the
behaviour of the robot are important in the design of robots able to socially integrate
a group of fish. We showed that the morphology of the lure is the feature with the
highest impact, followed by the type of robot trajectories and the type of robot movement
patterns.

Additionally, we include a behavioural analysis of the fish group and of the mixed-
group of fish and robot. This analysis takes into account the tendency of fish to gather
in short-lived and dynamic sub-groups, that can exhibit different behaviour depending on
sub-group size and composition. While studies in the literature established the existence
of these sub-group dynamics in fish [131], no method was described to identify them. We
present an algorithm to identify sub-groups of fish based on their spatial proximity. The
results of our sub-groups analysis show that fish exhibit different behaviours depending on
the size of the sub-group they are part of, and of their position in the arena. In particular,
fish behave differently when alone compared to when in a group. We showed that the
inter-individual distances of fish in a sub-groups is dependant of the size of the sub-group.
When they are in the corridor, they tend to pass through quickly from one room to the
other.

The social integration of the robot into the groups of fish could still be improved by
refining the behavioural model. The model could be further calibrated to take into account
more aspects of the fish collective behaviour in this complex environment. The robot
behaviour could be closer to the fish behaviour that depends on the size of its sub-group
and to its spatial position in the set-up. Our model does not yet take into account
explicitly the attraction of the agents towards the walls, like the model in [113]. This
was mainly motivated by current technical difficulties as this would greatly increase the
number of collisions between the robot and the walls. This problem is being addressed in
a subsequent study. Robots can still be seen to be following walls in the colored trajectory
presented in Fig. 3.5 because they are attracted to fish, which, in turn, tend to follow
walls.

Further improvement will be done in follow up studies. We will calibrate the model pa-
rameters automatically during an experiment thanks to an optimisation algorithm based
on evolutionary computation. Additionally, the social integration can be further quan-
tified by adding other kind of analysis, and by using more behavioural features in the
computation of the social integration indexes.

Our study is a first step towards more complex biohybrid societies: instead of just
focusing on integration, the robots could be used to control or to modulate the collective
behaviour of the mixed group of fish and robots. Indeed taking advantage of specific social
behaviours the robots could modulate the whole mixed-groups [1]. The number of robots
necessary to have a good control of the mixed societies can also be optimised for example
by evolutionary computation [28, 150]. This type of control would be based on natural
animal behaviours thus reducing stress and not using coercion to get the target results
[14, 1]. Indeed, in zebrafish groups all the fish can be leaders and induce groups transitions
from one place to the other. For example, we have shown that the number of initiation is
linearly proportional to the number of attempts performed [132]. This allows biomimetic
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robots to make use of the fish behavioural features to be capable of inducing collective
departures and to modulate the spatial distribution of the groups. Such biohybrid social
systems would allow us to modulate and to control group living animals.
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Chapter 4

Automated calibration of a
biomimetic space-dependent model
for zebrafish and robot collective
behaviour in a structured
environment

4

Give a man a fish and you feed him
for a day; teach a man to fish and you
feed him for a lifetime; teach a robot
how to behave like a fish, and it will
be socially integrated.
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This chapter extends the methodology presented in the previous chapter and investigate
how to automatically calibrate the biomimetic behavioural model from trajectory data of
fish-only experiments. This work is based on the publication:

Cazenille L, Chemtob Y, Bonnet F, Gribovskiy A, Mondada F, Bredeche
N, Halloy J. Automated calibration of a biomimetic space-dependent model
for zebrafish and robot collective behaviour in a structured environment. In
Conference on Biomimetic and Biohybrid Systems 2017 Jul 27. Springer,
Cham.

Here, we segment our model into several spatial zones corresponding to different fish
behavioural patterns. Then we automatically fit the model parameters for each zone to
experimental data using a multi-objective evolutionary algorithm. We then evaluate how
the resulting calibrated model compares to the experimental data. The model is used to
drive the behaviour of a robot that has to integrate socially in a group of zebrafish. We
show experimentally that a biomimetic multilevel and context-dependent model allows
good social integration of fish and robots in a structured environment.
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Figure 4.1 – Workflow of the methodology used in this chapter, with red arrows showing the
addressed topics.

Figure 4.1 shows how this chapter is linked to the workflow of this manuscript. Here,
we extend the approach presented in the previous chapter: we use a microscopic and
biomimetic model of fish behaviour and implement it as a robot controller to drive a
robot to socially integrate a group of zebrafish. This model is automatically calibrated
to fit the behavioural settings observed in experiments involving fish groups. Then, this
calibrated model is used to drive the behaviour of a robot in mixed-groups experiments.
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4.1 Introduction

Robotics stands now as a convenient tool to study animal behaviour. In recent etho-
logical and animal behavioural studies, robots are used to induce specific and controlled
stimuli and assess the response of the animals under scrutiny. This allows to test various
hypothesises on the nature of the signals used by the animals for social interactions [8, 11].

Autonomous robots interacting in real-time with animals [14] make it possible to create
social interactions between both of them. This has already been demonstrated by several
authors for studying the behaviours of sheepdogs [15], cows [17] or drosophila [114] to cite
a few.

In this paper, we focus on zebrafish (Danio rerio), and we describe a biomimetic model
that can be implemented in a robotic lure and validated its acceptance by four zebrafish
in a structured environment.

The main difficulty is to make the robotic lure behave in such a way that it is accepted
by the animals as social companion, just as any other interacting fish would be. Beyond
the scope of this paper, this is a first step to enable the modulation (through action) of
the collective behaviours of the observed zebrafish [1].

Different approaches have been proposed to control the movement of fish-lures [112].
Most of them do not involve a closed loop of social interaction with the fish. This is often
the case for lures fixed to a robotic arm that performs repeated movements, but also
for studies with autonomous fish-lures. Closing the loop of social interactions requires a
real-time tracking, or perception, of the agents (fish and robot), and a decision-making
algorithm to control the robot behaviours. In most of the experiments reported in the
literature, the robots driven with closed-loop control are programmed to follow the cen-
troid of the fish group, to ensures that the robot will join and follow the group of fish.
However, this type of controller implies that the robot is more a passive follower than
a real group-member making its own decisions. The embodiment of bio-inspired models
can lead to a better social integration of the artificial agents in animal groups and can
allow the robots to influence the collective decision of the mixed group by giving specific
preferences to the robot by tuning parameter values of the model [1, 112].

We present a method to calibrate automatically a new behavioural zebrafish model
by evolutionary parameters optimisation. This multilevel model describes collective be-
haviour in a structured environment in agreement with experimental observations. This
model makes important extensions to our previous model for collective behaviour in a
homogeneous environment [113]. The model takes into account a simple structured en-
vironment composed of two rooms and the fact that the fish adapt their behaviour to
the zones where they are while performing collective behaviour. For such multilevel and
spatially dependent social behaviour model it is an issue to calibrate the model because it
involves trade-offs between social tendencies (aggregation, group formation), and response
to the environment (wall-following, zone occupation). We use an evolutionary algorithm
(NSGA-II [91]) to optimise the parameters of this model so that the exhibited collective
dynamics correspond to those observed in biological experiments. Then, we validate ex-
perimentally this model by implementing it as the controller of robots that are integrated
in small fish groups.
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Figure 4.2 – Panel A: Experimental set-up used during the experiments [29, 30, 65, 66, 112].
Panel B: FishBot [29, 30, 65]: the robot used for mimicking fish motion patterns, with the
biomimetic lure used during the reference experiments. This robot was developed by the EPFL
for the ASSISI project [24]. Panel C: Experimental arena composed of a tank containing two
square rooms (350 × 350 mm at floor level) connected by a corridor (380 × 100 mm at floor
level). The fish tend to swim from one room to the other, either in small groups, or individually.
This set-up is used to study the zebrafish collective dynamics. Panel D: Positions of the three
different zones corresponding to different types of behaviours: in the corridor (zone 1), in the
center of each room (zone 2), and near of the walls of each room (zone 3).

4.2 Materials and Methods

4.2.1 Experimental set-up

We use the experimental set-up described in [66, 131, 112, 132], with the arena presented
in [112, 131]. This set-up (Fig. 4.2A) consists of a white plexiglass arena (Fig. 4.2C) of
1000× 1000× 100 mm, that is composed of two rooms linked by a corridor. To validate
experimentally our calibrated model, we use a robot developed by the EPFL [29, 30, 65, 66]
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for the ASSISI project [24]. This robot is powered by two conductive plates under the
aquarium. An overhead camera captures frames that are then processed for tracking and
control purposes (see Fig. 4.2A).

All trials have a duration of 15min. We tracked the positions of the agents by using
the idTracker software [151]. Using this software, we obtain the positions P (x, y, t) of all
agents at each time step ∆ t = 1/15 s for all experiments, and build the trajectories of
each agent.

4.2.2 Behavioural model

Most of the fish collective behaviour models do not take into account the environment
i.e. the walls or the structure of the tanks because they only focus on the social interac-
tions [139, 152].

However, zebrafish show context-dependent behaviours when they are in a structured
environment. Depending on their spatial position in the environment they adapt their
individual behavioural pattern. Moreover, because they are a gregarious species they also
take into account the position and the behaviours of the other fish and can aggregate or
start collective behaviours. As many animal species, zebrafish display strong thigmotac-
tism and follow walls or edges. We show that they adapt their behaviour in three different
zones of the structured set-up: first the zone when they are close to the walls, second the
zone when they are in the centre of the rooms and third when they use the corridor to
change room. We take into account this spatial and context-dependent behaviours.

Each zone corresponds to a behavioural attractor. When the individuals are in one of
the three zones they adapt their behaviour and perform specific behavioural patterns. In
the zone near the walls they perform mainly thigmotactism (wall following), in the centre
of the room they explore, in the corridor they transit from one room to the other. At
the same time they also take into account the behaviour of the other fish as they also
do collective behaviour such as collective departures from the rooms. The other fish can
be in any of the other zones and thus can also induce behavioural attractor switching of
their companions.

We extend the biomimetic hybrid model [113, 112] using microscopic and macroscopic
information [28, 150]. This new model (described in Fig. 4.3) takes into account zones
that correspond to different behavioural attractors and thus allows context-dependent
behaviours. The individual can switch from one behavioural attractor to the other and
at the same time perform collective behaviour. Our model describes individual choices
close to action selection and collective behaviours at the same time. It is a step towards
modelling action selection in the context of collective behaviours.

We present a multi-level and multi-agent biomimetic model, inspired from [113, 112]
that describes the individual and collective behaviours of fish. As in [113], this model
makes the link between fish visual perception (of congeners and walls) and motor response
(i.e. trajectories of the agents). However, it is also capable of expressing a variability in
agents behaviours when they occupy specific zones of the arena (behavioural attractors).
Table 4.4B lists the model parameters.
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Figure 4.3 – Multilevel model used to describe fish behaviour. The agents display different
behavioural attractors depending on the zone where they are situated. Thus, according to the
agent spatial position, the physical features of the zone drive them towards a specific behavioural
attractor. A behavioural attractor corresponds to a set of behavioural patterns adapted to the zone
where they are located. It can correspond to different parameters sets for the same behaviour
kind.

In this model, the agents update their position vector Xi with a velocity vector Vi :

Xi(t+ δt) = Xi(t) + Vi(t)δt (4.1)

Vi(t+ δt) = vi(t+ δt)Θi(t+ δt) (4.2)

The model computes a circular probability distribution function (PDF) [113] corre-
sponding to the probability of the agent to move in a specific direction (Θi). This PDF
is as a mixture of von Mises distributions, an equivalent to the Gaussian distribution in
circular probability. The computation of this PDF involves the calculation of two other
PDF functions: the first one describing agent behaviour when no stimuli is present, and
the second one characterising agent behaviour when conspecifics are perceived by the
agent.

The PDF capturing agent behaviour when no stimuli is present is given by:

f0,zj(θ) =
exp(κ0,zjcos(θ))

2πI0(κ0,zj)
(4.3)

for an agent situated in zone zj, and with I0 the modified Bessel function of first kind
of order zero. When the agent is situated in a zone close to a wall (zones 1 and 2 of
Fig. 4.2D), we implement a wall-following behaviour, by increasing the probabilities of
moving towards either side of the closest wall.
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Figure 4.4 – Panel A Computation of the PDFs functions used by the model. One function
corresponds to the focal fish; another corresponds to the perceived neighbouring agents. The final
PDF is a weighted sum of these functions, with a normalisation factor γz1,z2 corresponding to
the affinity between the zones z1 (origin) and z2 (destination). The direction taken by an agent
is drawn randomly from the resulting PDF by inverse transform sampling. Panel B Table of
model parameters for each agent. The zone zi corresponds to the zone where the agent is situated
at time t, and zj to the zone where the agent would be at time t+1. The linear speed distributions
of the agents are the same as the ones observed in the Control experiments, and they are not
optimised. The other parameters in the table are optimised.

This is achieved by using the following PDF:

f0,zj ,w(θ) =
1

2

2∑
k=1

exp(κ0,zjcos(θ − µwk))
2πI0(κ0,zj)

(4.4)

with µwk the two possible directions along the considered wall.
Examples of agents trajectories are found in Fig. B.3B. The probability of the focal fish

to orient towards a perceived fish is given by a von Mises distribution clustered around
the fish position:

fF ,zj(θ) =
n∑
i=1

Afi
ATf

exp(κf ,zjcos(θ − µfi))
2πI0(κf ,zj)

(4.5)
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with µfi the direction towards the perceived agent, AfT =
∑nf

i=1Afi the sum of the solid
angles Afi captured by each agent and nf the number of perceived agents. Only agents
present in the corridor or in the same room as the focal agent are perceived. The agents
present in the opposite room are not perceived.

The final PDF f(θ) is computed as follow:

fzj ,zk(θ) = γzj ,zk
f0,zj(θ) + αzjATffF ,zj(θ)

1 + αzjATf
(4.6)

The parameter γz1,z2 , used as a multiplicative term of the final PDF, modulates the
attraction of agents towards target zones. Figure 4.4A describes how the final PDF is
computed and how it is used to determine the agents next positions.

Unreachable areas of the PDF (e.g. the walls) are attributed a probability of 0. Then,
we numerically compute the cumulative distribution function (CDF) corresponding to
this custom PDF f(θ) by performing a cumulative trapezoidal numerical integration of
the PDF in the interval [−π, π]. Finally, the model draws a random direction Θi in this
distribution by inverse transform sampling. The position of the fish is then updated
according to this direction and his velocity with equations 4.1 and 4.2.

4.3 Results

We consider four cases. We define the Control results as obtained from biological exper-
iments with five zebrafish in the experimental set-up described in Sec. 4.2.1. The Sim-
MonoObj and Sim-MultiObj results are defined to correspond to the model in sim-
ulation with five agents, calibrated respectively using mono-objective or multi-objective
optimisation. The Biohybrid results are obtained from experiments with four zebrafish
and one robot driven by the model using the best optimised parameters.

4.3.1 Optimisation of model parameters

We define a similarity measure (ranging from 0.0 to 1.0) to compare two experiments (e1
and e2), and define it as:

S(e1, e2) = 3
√
I(Oe1 ,Oe2)I(Te1 ,Te2)I(De1 ,De2) (4.7)

with Oe the distribution of zone occupation, Te the transition probabilities from zone e
to the others, and De the distribution of inter-individual distances of all agents in zone
e. The similarity measure S(e1, e2) corresponds to the geometric mean of these three
features. The function I(P ,Q) is defined as such:

I(P ,Q) = 1−H(P ,Q) (4.8)

The H(P ,Q) function is the Hellinger distance between two histograms [134]. It is defined
as:

H(P ,Q) =
1√
2

√√√√ d∑
i=1

(
√
pi −
√
qi)2 (4.9)
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We consider two optimization methods. In the Sim-MonoObj case, we use the CMA-
ES [153] mono-objective optimisation algorithm, with the task of maximising the S(e1, e2)
function. In the Sim-MultiObj case, we use the NSGA-II [91] multi-objective algorithm
with three objectives to maximise. The first objective is a performance objective corre-
sponding to the S(e1, e2) function. We also consider two other objectives used to guide the
evolutionary process: one that promotes genotypic diversity [154] (defined by the mean
euclidean distance of the genome of an individual to the genomes of the other individuals
of the current population), the other encouraging behavioural diversity (defined by the
euclidean distance between the Oe, Te and De scores of an individual). In both methods,
we use populations of 60 individuals (approximately twice the number of dimensions of
the problem) and 300 generations. The Sim-MonoObj stabilises around the 50-th gen-
eration. The Sim-MultiObj stabilises around the 250-th generation. The linear speed
vi of the agents is not optimized, and is randomly drawn from the instantaneous speed
distribution measured in the control experiment. Note that NSGA-II tend to need more
evaluations to reach convergence when more than two objectives are considered: it is a
known limitation of this algorithm [155], that was rectified in the recent NSGA-III algo-
rithm [156]. We plan to reassess our results using the NSGA-III instead of the NSGA-II
algorithm.

4.3.2 Robot implementation

The robot is driven by the model described in Section 4.2.2, after calibration. Robotic
trials have a duration of 15 minutes, and are repeated 10 times. They involve one robot
and four zebrafish. Every 333ms, we integrate the tracked positions of the four fish into
the model, and compute the target position of a fifth agent. We then control the robot
to follow this target position by using the biomimetic movement patterns described in
[65, 112].

4.3.3 Model performance analysis and experimental validation

We assess the similarity between the results from the calibrated cases (Sim-MonoObj,
Sim-MultiObj and Biobybrid) and those of the Control case by using the similarity
measure defined in Sec. 4.3.1. The similarity scores are shown in Table 4.1.

Using information about zones occupation and probabilities of transition from one zone
to another, we define a finite state machine corresponding to the behavioural attractors
dynamics of the entire agent population. The resulting finite state machines obtained from
the Control and Biohybrid cases are shown in Fig. 4.5. The probability of presence of an
agent in each part of the arena is presented in Fig. B.3A. Examples of agents trajectories
are found in Fig. B.3B.

The best-performing individuals of the Sim-MonoObj and Sim-MultiObj cases dis-
play distributions of inter-individual distances that are relatively close to those of the
Control case, which suggests that these models can convincingly exhibit fish tendency
to aggregate. However, of the two cases performed in simulation, only Sim-MultiObj
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is capable of displaying zones dynamics (occupation of the zones, and transition prob-
abilities from one zone to the others) similar to the Control case. This suggests that
multi-objective optimisation is required to handle the conflicting dynamics present in fish
collective behaviour.

The robot of the Biohybrid case is driven by a controller using our model with
the parameters of the best-performing individual obtained in the Sim-MultiObj. The
ethogram of the Biohybrid case (cf. Fig. 4.5) shows an increased preference for the centre
of the rooms compared to the Control case. This could be explained by our current lower
level robotic implementation of wall-following behaviour that could still be sub-optimal.

Control Biohybrid

Figure 4.5 – Ethogram as finite state machine corresponding to the behavioural attractors for
all agents. Each zones drive the agents into the corresponding behavioural attractor.Thus, agents
modulate their behaviour in each zone as if they enter into a specific behavioural state. Here
we show the resulting transition probabilities obtained after optimisation and implementation as
robotic controllers (biohybrid) based on the experimental observations (control). The number in
each state corresponds to the proportion of time agent spend in this state. The numbers on the
arrows correspond to the transition probabilities between zones with a time-step of 1/3s.

Sim-
MonoObj

Sim-
MultiObj

Biohybrid

Occupation 0.57 0.97 0.89
Transitions 0.76 0.81 0.88

Interindiv. Dists 0.90 0.87 0.89
Fitness 0.73 0.88 0.89

Table 4.1 – Similarity scores between the best-performing individuals of the three calibrated
cases and the Control case used as reference, as defined in Sec. 4.3.1. We consider three stan-
dard features to characterise the collective behaviour exhibited in each case. Occupation corre-
sponds to the probability of presence of the agent in each zone. Transitions corresponds to the
probabilities of an agent to transition from one zone to another. Inter-individual distances
corresponds to the distribution of inter-individual distances between all agents in a specific zone.
The fitness function is computed as the geometric mean of these scores.
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Figure 4.6 – Panel A Probabilities of presence in each part of the arena, for all cases. Panel
B Examples of trajectories over a duration of 2 minutes (1800 frames). In the Biohybrid case,
the robot is in black.

4.4 Discussion and Conclusion

Collective behaviour models often focus on collective motion in homogeneous unbounded
environment. Here we present a multi-level model that is space-dependent with individ-
uals that behave in a context-dependent way. We make the hypothesis that the type of
behaviour displayed by the agents depends on their position in the environment. This al-
lows us to segment our environment into several characteristic zones, each corresponding
to a particular behavioural attractor, matching different types of agent behaviour.

We present a methodology to calibrate this model to correspond to the collective dy-
namics exhibited by fish in the experiments. This calibration process is challenging, as it
involves a trade-off between social tendencies (group formation), and response to the en-
vironment (wall-following, exploration). Moreover, our model encompasses the notion of
behavioural attractors, allowing agents to exhibit several different behaviours depending
on the context. Our methodology is able to cope with this trade-off by using multi-
objective optimisation.

However, this calibration methodology could still be improved: the similarity measure
we use to compare two cases only takes into account three aspects of collective behaviours
corresponding to behavioural attractors, and aggregation dynamics. Other behavioural
aspects could also be relevant at the level of collective dynamics and can be considered
(e.g. agent groups aspects, residence time in a zone), or at the level of the individuals
(e.g. agent trajectory aspects, curvature of trajectories, etc.). Moreover, in relation to the
environment (e.g. the distance of an agent to the nearest wall) could also be taken into
account. Alternatively, it would be possible to perform the calibration without defining
a similarity measure explicitly, using a method similar to [101], by co-evolving simulta-
neously the parameters of the models and classifiers. These classifiers would be trained
to identify whether or not the resulting behaviours of the optimised models are distinct
from the behaviours from the reference experiments.
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Here, we make the assumption that the behavioural attractors are linked to the position
of the agent in their environment. This assumption could be relaxed, to handle ethograms
with more complex classes of behaviours like behavioural attractors linked to agent group
dynamics. Additionally, the idea that actions are selected and segmented by the fish is
questionable. While our decomposition of fish behaviour in different behavioural attrac-
tors is convenient for modelling purpose and ease the implementation of a biomimetic
robot controller by having a collection of discrete acts that it can perform, it is not de-
termined that fish make this kind of decomposition into distinct elements (actions) [157].
Finally, we could apply our model in more complex set-up, involving large societies with
a larger number of robots, and with a more complex topology.
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This chapter describes a methodology to automatically derive a microscopic model of
behaviour (able to be implemented as the controller of a robot in a mixed-group setting)
from a macroscopic description of group collective dynamics. This work is based on the
publication:

Cazenille L, Bredeche N, Halloy J. Automated optimisation of multi-level
models of collective behaviour in a mixed society of animals and robots. arXiv
preprint arXiv:1602.05830. 2016 Feb 2. (Submitted to PEERJ CS, in review)

Animal collective behaviour can be modelled with dynamical systems and can be de-
scribed macroscopically (analytical description of the behaviour of the population) or
microscopically (explicit description of the behaviour and states of individuals and their
interactions with the environment). These two types of models are complementary. Thus,
collective choices correspond to the stable steady states of the non-linear system and are
governed by control parameters leading to bifurcation diagrams.

In this chapter, we tackle the problem of moving between models of different levels
of description. Our methodology enables us to automate the design of a microscopic
target model on the basis of a reference macroscopic model, so that the dynamics of the
microscopic model can be described with the same bifurcation diagram as the dynamics
of the macroscopic model. We apply this methodology to the cockroach shelter-selection
experiments described in [1]

We show that we can automatically calibrate both a microscopic model (finite state ma-
chine) and hybrid model (non-linear transition probability functions) to exhibit the same
dynamics as a macroscopic one (ordinary differential equations), all models describing an-
imal collective behaviour. Our approach can be used to automatically move from models
at different levels of description. The relevance of this approach is not limited to the field
of animal collective behaviour and bio-hybrid systems, as it tackles the problem of auto-
matically moving between models at different levels of description (from macroscopic to
microscopic), a key problem in the modelling of nonlinear dynamical systems. Moreover,
in a large portion of the literature, the calibration of model parameters is only done for
specific solutions – typically only one state of the system. Here, with our methodology
we can automatically calibrate all models for a set of states of the system corresponding
to a bifurcation diagram.

This chapter tackles central questions in collective adaptive systems modelling, with a
new perspective from computer science and machine learning, addressing both multi-level
modelling and automatic calibration of animal or robot collective behavioural models
from a macroscopic description. Our theoretical approach makes the link between several
scientific communities, ranging from collective behavioural biology to mean-field mod-
elling, and from multi-agent modelling to robotics. The translation from macroscopic
to microscopic models is a common, but often challenging, problem both in the non-
linear dynamical systems literature and in the robotics literature. We describe a novel
methodology to automatize this translation.

Figure 5.1 shows how this chapter is linked to the workflow of this manuscript. Here, we
consider macroscopic models of cockroach collective behaviour (calibrated to match the
observed collective dynamics from experiments) and automatically translate them into
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microscopic models of agent behaviour. This process takes also into account experimen-
tal data. Then, these microscopic models are tested in simulation to build a biohybrid
collective adaptive system of cockroaches and robots. Related supplementary information
of this article can be found in annex B.2.

Contributions to this chapter

I implemented most of the code, including the parameter set optimisation system, and
data analysis scripts. This paper was mainly written by me, with the help of José Halloy
and Nicolas Bredeche.
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Figure 5.1 – Workflow of the methodology used in this chapter, with red arrows showing the
addressed topics.
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5.1 Introduction

Groups of animals are able to reach collective consensus when presented with mutu-
ally exclusive alternatives. Over the years, scientists have compiled a large collection of
dynamics observed in collective decision-making systems based on experimental obser-
vations. These systems can be complex and it can be challenging to build models that
appropriately describe the observed behaviours.

Animal societies are systems with a very large parameter space. They can be modelled
in numerous ways, using information about individual physiology, individual behaviour,
group behaviour and features of the environment [19, 76, 77]. The collective behaviour
of a group of animals can be viewed as a dynamical system, that exhibits dynamics at
several levels of organization (hierarchical organization). One of the difficulties in the
modelling process is to find the appropriate levels of description.

Models describing dynamical systems can typically be categorized into two groups,
describing two different levels of abstraction: macroscopic and microscopic (cf. Fig. 2.9).
There are many studies, mainly in physics, examining methods and applications for both
groups of models and the relations between them. Macroscopic models describe the system
at the population level [26]. They formalize the dynamics of the system mathematically,
but they generally cannot describe the state of individual agents. They cannot be used
directly to drive the behaviour of agents in simulation, or to drive the behaviour of robots
in experiments. Microscopic models explicitly describe the state of each individual agent
(e.g. agent-based models of flocking, like the Vicsek model [79]). They can capture the
individual behaviours and their relations with the environment and, moreover are easier
to implement into robotic controllers.

These two kind of models offer complementary descriptions of the system. In this
context, collective choices can be described by the stable steady states of a nonlinear
system and are governed by control parameters leading to bifurcation diagrams. These
diagrams give the mean field asymptotic solutions of the system. Microscopic models can
be used to simulate the observed spatial behaviour of animals [27, 1, 28].

However, working with several models at different levels of abstraction can be difficult
and requires appropriate modelling frameworks and methodologies [19, 76]. In particular,
these models must be designed and calibrated to all exhibit the same individual and
collective dynamics. This poses the problem of navigating between models of different
levels of abstraction [19, 77].

In this article, we present a methodology that automates the calibration of microscopic
target models on the basis of a reference macroscopic model, so that the dynamics of the
microscopic model can be described with the same bifurcation diagram as the dynamics
of the macroscopic model. The scientific question that we address in this paper is thus the
following: how to automatically calibrate models at different level of description
to exhibit the same collective dynamics, at all levels of description, for specific
sets of parameter values corresponding to a bifurcation diagram leading to
multiple steady states.

We propose to automate the calibration of microscopic models, using information both
at the macroscopic level (a pre-existing macroscopic model) and the microscopic level (pre-
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established knowledge of the animal individual behaviour). The objective of this approach
is to automatically calibrate this new microscopic model (i.e. optimize the parameters)
to exhibit collective dynamics that fit the predictions of the macroscopic model, with the
added ability of accurately simulating the microscopic interaction between individuals.

Methodologies to calibrate microscopic models directly from experimental data, by us-
ing optimization algorithms, were already presented in [77, 158]. Our presented method-
ology improves upon these works by optimizing a microscopic model to correspond to the
dynamics exhibited by an entire bifurcation diagram. Our methodology calibrates models
with generalization capabilities, enabling them to exhibit different dynamics for different
experimental parameters.

In the following, we apply our methodology to the collective decision-making problem
described in [27, 1], where a group of cockroaches must reach a consensus on a preferred
resting site (a shelter). These papers introduced an experimentally validated ordinary
differential equations (ODE) model of cockroach shelter-selection dynamics. Here, start-
ing from a mean-field ODE model (macroscopic), we use experimental data on individual
cockroach behaviour from [74, 159] as a-priori microscopic information. We show how
our method can be used to calibrate a target model using these two sources of informa-
tion. We consider two target models: a Markov-Chain (MC) agent-based microscopic
model [28] and an agent-based Hybrid model, combining macroscopic and microscopic in-
formation, that was already used with manually defined parameters in [1]. These models
drive the behaviour of virtual agents in simulation. We use evolutionary algorithms to
automatically calibrate the parameters of the MC and Hybrid models. They are validated
by comparing their shelter-selection dynamics to those exhibited by the MF model.

In [1], Halloy et al. integrate robots into a group of cockroaches to modulate their
collective behaviour. Here, we consider this problem in simulation, with cockroaches
agents and a small number of robotic agents. The cockroach agents are driven by the MC
and Hybrid models optimized previously in animal-only simulations. The robotic agents
are driven by MC and Hybrid models with human-calibrated parameters. We show that it
is possible to program the robots to modulate the collective behaviour of the whole society.
As such, we show that our methodology could help the design of robotic controllers to
modulate the collective behaviour of societies in biohybrid systems (societies of animals
and robots).

Macroscopic models can convincingly describe collective dynamics, but cannot be im-
plemented directly in robotic controllers. Robot controllers are intrinsically microscopic,
as they describe the behaviour of individual agents. One major challenge must be
overcome to design appropriate robotic behaviour in mixed-societies of ani-
mals and robots: how to go from the collective decision dynamics observed in
animals to an algorithmic implementation in robots. In previous studies on mixed
societies, this process has been carried out empirically. For example, in [1] collective
decision-making in cockroaches is modulated using robots. The authors used observation
both to build a macroscopic model and to program the robot behaviour by tinkering. Al-
though the results are promising, designing the robot behaviour proved very challenging,
suggesting that automation would be highly beneficial.

The relevance of our approach is not limited to the field of animal collective behaviour
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and biohybrid systems, as it tackles the problem of automatically moving between models
at different levels of description (from macroscopic to microscopic), a key problem in the
modelling of nonlinear dynamical systems. It is especially relevant to the design of
mixed-societies robotic controllers. Moreover, in a large portion of the literature,
the calibration of model parameters is only done for specific solutions – typically only
one state of the system. Here, with our methodology we can automatically calibrate all
models for a set of states of the system corresponding to a bifurcation diagram.

5.2 Methods

We simulate the experimental set-up from [27, 1] (cf. Fig. 5.2): this set-up is composed of
a circular arena with two identical shelters (resting sites). Each shelter is sufficiently large
to host the entire insect group. Two species of cockroaches are considered: P. americana
and B. germanica, each with a different set of simulation parameters. The cockroaches
choose collectively to rest under one of these shelters [160, 27]. Individuals have no a
priori information about the shelters occupation and spatial position, and decide only
between staying under a shelter and leaving it to search for another. The cockroaches
tend to aggregate under the shelters.

This set-up is well adapted to the study of collective decision-making because it allows
to quantitatively analyse the interplay of social and environmental mechanisms leading
to collective choices. Group-living animals have to choose between alternative resource
sites. In this context, a central question includes determining which individuals induce
the decision, when and how [27, 1].

We consider three models of cockroach collective behaviour in a shelter selection prob-
lem (cf. Table 5.1): a macroscopic mean-field model (MF model), a microscopic markov
chain model (MC model), and a hybrid model combining macroscopic and microscopic
levels of abstraction. All three models can handle time-discrete data. The MF model
does not include extended spatial information on individuals, while the MC and Hybrid
models include explicit spatial information. Because the latter also include a microscopic
component, they can be implemented as robotic controllers. A classification of models
according to their level of abstraction can be found in [77].

5.2.1 Mean field description: Ordinary differential equation
model

Halloy et al. [1] describe a mathematical model of the collective dynamics of mixed
groups of cockroaches and robots in a shelter-selection problem (from [27]). This model
was designed to take in account the following experimental facts: (i) individuals explore
their environment by moving randomly, and randomly reach the shelters; (ii) they rest in
shelters according to their quality (in this set-up, it is mainly determined by darkness);
(iii) the presence of conspecifics influences their behaviour, through social amplification
of their resting time; and (iv) no long-range (across shelters) interactions occur among
individuals. This model describes mixed groups of animals and robots, in set-ups with two
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shelters; animals and robots exercise an equivalent influence on the collective decision-
making process, and exhibit similar and homogeneous behaviour. The model is used as
a quantitative explanation as well as an overall (macroscopic) guidance for the design of
the robot and its controller. The model takes in account the fact that robots and insects
do not occupy the same surface.

The following set of ODEs represents the evolution of the number of individuals in each
shelter (and outside), in a set-up with two shelters:

dxi
dt

= xe µi

(
1− xi + ωri

Si

)
︸ ︷︷ ︸

Probability of animals to join site i

−xi
θi

1 + ρxi+βri
Si

n︸ ︷︷ ︸
Probability of animals to leave site i

(5.1)

dri
dt

= re µri

(
1− xi + ωri

Si

)
︸ ︷︷ ︸

Probability of robots to join site i

−ri
θri

1 + ρr
γxi+δri
Si

nr︸ ︷︷ ︸
Probability of robots to leave site i

(5.2)

C = xe + x1 + x2, R = re + r1 + r2, M = R + C (5.3)

We use a mean field description of the system, instead of a exact representation, to
take the fluctuations of the system into account. Table 5.2 describes the parameters of
this ODE model.

Variables xi and ri represent respectively the numbers of cockroaches and robots present
in shelter i; and xe and re the numbers outside the shelters. Parameters C and R are
respectively the total numbers of cockroaches and robots. Parameter M is the total
number of agents (cockroaches and robots). The parameter ω corresponds to the surface
of one robot expressed as a multiple of the surface of one cockroach. Equations 5.1 and 5.2
take into account the probabilities of animals and robots to join or leave (corresponding to
1/mean resting time) a site. The parameter µi is the maximal kinetic constant of entering
the shelters for insects; µri is the equivalent parameter for robots. The parameter θi is
the maximal probability of leaving a shelter for insects (θri for robots). The parameters
ρ and n characterise the influence of the insect conspecifics (ρr and nr for robots). When
both shelters are identical (as it is the case in this study), the parameters describing them
are equal: S1 = S2; µ1 = µ2; µr1 = µr2; θ1 = θ2; θr1 = θr2. Parameters γ, β and δ
are respectively the influence of cockroaches on robots, of robots on cockroaches, and of
robots on robots. The greater they are, the greater the mutual influences. The influence
of animals on animals (α) is equal to 1.0, and is not considered in [1]: the assumption is
made that this parameter is imposed by biology, and cannot be changed in experiments.
However, parameters γ, β and δ can be modulated by changing the design of the robots,
either in term of hardware or control (behaviour). In [1], the robots are coated with a
pheromone, as the interaction dynamics of cockroaches societies is mainly chemotactile.
A higher concentration of pheromone corresponds to a higher value of β.
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Because of crowding effects, the probability of an individual joining a shelter decreases
with its level of occupancy. We define a measure σ = S/C, corresponding to the sites’
carrying capacity as a multiple of the total population.

Figure 5.2 – Experimental set-up used in [1]. It includes two identical shelters and both
cockroaches (P. americana, approximate size: ∼ 4cm, surface: 600mm2, or B. germanica, size:
∼ 0.25cm, surface: 3mm2) and robots (surface: 1230mm2 in P. americana set-ups, 6.15mm2

in B. germanica set-ups) in a circular arena (diameter: 1m for P. americana, 14cm for B. ger-
manica).

Name Experimentally Validated Wall-Following Behaviour Constant Speed

Mean Field (MF) yes [27, 1] no yes
Markov Chain (MC) yes [74, 159] yes no

Hybrid partially [1] no yes

Table 5.1 – Comparison of the models studied. The MF model is a global description
of the problem. The MC model is an agent-based model using a Markov chain representation.
The Hybrid model combines macroscopic information (nonlinear propensities drawn from the
MF model) and spatial information (with an approach similar to that of the MC model).

When no robots are present (R = 0) and only animals are considered, two different
dynamics are observed. The bifurcation point is close to σ = 0.8 for P. americana, and
σ = 1.0 for B. germanica. Before the bifurcation point (0.4 ≤ σ < 0.8 for P. americana,
0.4 ≤ σ < 1.0 for B. germanica), only one configuration exists, corresponding of an
equipartition of the individuals (x1/C = x2/C = 1/2,xe = 0). After the bifurcation
point (σ > 0.8 for P. americana, σ > 1.0 for P. americana), two stable configurations
exist, corresponding to all individuals in one of the shelters (either x1 ≈ 0,x2 ≈ 1,xe ≈ 0
or x1 ≈ 1,x2 ≈ 0,xe ≈ 0) [27]. Only results with a population of 50 cockroaches are
represented in Fig. 5.3, but similar dynamics are observed with different population sizes.
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Parameter
Value for
P. americana

Value for
B. germanica

Optimized Description

P 2 Number of sites
Si Carrying capacity of shelter i
C 50 Number of agents
xi Number of agents in shelter i
xe Number of agents outside the

shelters

M
F

µi 0.0027s−1 0.001s−1 Maximal kinetic constant of en-
tering a shelter

θi 0.44s−1 0.01s−1 Maximal rate of leaving a shelter
ρ, n 4193, 2.0 1667, 2.0 Influence of conspecifics

M
C

lc [1.0, 500.0] cm yes Mean length of path
ac [−π,π] yes Geometric mean, angle of depar-

ture
τc,exit ]0.0, 10.0[ s yes Mean time an agent follows a

wall
vc,c ]0.0, 3.0[ cm.s1 yes Mean speed in central zone
vc,p ]0.0, 3.0[ cm.s1 yes Mean speed in peripheral zone
sc,i,n [0.0, 1.0] yes Probability of stopping in shelter

i with n neighbours
τc,i,n ]0.0, 1000.0[ s yes Mean stop duration in shelter i

with n neighbours
d ]0.8, 1.0[m yes Diameter of the central zone

H
y
b

ri
d

θi ]0.0, 0.50] s−1 yes Maximum rate of leaving a shel-
ter

ρ, n [500, 5000], 2.0 yes Influence of conspecifics
l [1.0, 500.0] cm yes Mean length of path
a [−π,π] yes Geometric mean, angle of depar-

ture
v ]0.0, 3.0[ cm.s−1 yes Constant speed of agents

Table 5.2 – Parameters in the MF, MC, and Hybrid models. The parameter values
for the MF model are from [1] and [27]. We only consider the case where M = 50.
In set-ups with two shelters, the MF, MC, and Hybrid models have 18, 45 and 20 parameters
respectively. The parameter values used for the MC and Hybrid models were obtained through
the calibration process described in Sec. 5.3 and Sec. B.2. The animal influence on animals
(α) is equal to 1.0, and is kept constant in [1]: we assume that this parameter is imposed by
biology and cannot be changed in experiments. All parameters of the MC and Hybrid models are
optimized, using the method described in Sec. 5.3, to exhibit the collective dynamics described in
the reference MF model.
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Figure 5.3 – Bifurcation diagrams and distributions of 50 (C) B. germanica (Panels
A and B) or P. americana (Panels C and D) cockroaches in the first shelter as a
function of σ [27]. The bifurcation diagrams are represented as bi-dimensional histograms
of the results of using 1000 resolutions for each parameter set. In the bifurcation diagrams
(Panels A and C), the (greyscale) colour intensity of each bin of the histograms corresponds to
the frequency of observed experiments. The diagrams are symmetric for all tested values of σ,
so only one shelter is represented. The bifurcation point is close to σ = 0.8 for P. americana,
and σ = 1.0 for B. germanica. Before the bifurcation point (0.4 ≤ σ < 0.8 for P. americana,
0.4 ≤ σ < 1.0 for B. germanica), only one configuration exists, an equipartition of the individuals
between the two shelters (x1/C = x2/C = 1/2,xe = 0). After the bifurcation point (σ > 0.8 for
P. americana, σ > 1.0 for P. americana), two stable configurations exist, with all individuals
concentrated in one of the two shelters (either x1 ≈ 0,x2 ≈ 1,xe ≈ 0 or x1 ≈ 1,x2 ≈ 0,xe ≈ 0).
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5.2.2 Markov chain model

We define a Markov chain model (or Finite State Machine) as agent-based model of cock-
roaches and robots behavior. This model is very similar to the agent-based aggregation
models introduced in [74, 159] to describe the collective behavior of cockroaches in a simi-
lar setup. Jeanson et al. [74, 160] demonstrated that the aggregation behaviour exhibited
by B. germanicacockroaches depends on a self-organisation process. The probability that
a given moving cockroach stops and join a staying group increases in relation to the size
of this group. As such, cockroaches quickly aggregate in dense clusters in a homogeneous
environment. However, the natural environment of B. germanicais heterogeneous: some
sites are more attractive than others, which promotes aggregation in specific sites (e.g.
in dark places). In an arena with only one attractive site (e.g. only one dark site in a
bright arena), the cockroaches will aggregate in this site. If the arena contains several
sites of equal quality, the group will split and equally occupy these sites. This leads to a
collective choice mechanism, which was studied by Ame et al. [27], through a mean-field
model (cf previous section). This mean-field model assumes that cockroach individual be-
haviour is linked to the overall density of individuals occupying a site, and suggests that
cockroach have a global perception of the number of conspecifics occupying the shelter.
However, Garnier et al. [159] built on these results and argued that cockroach individual
behaviour was instead only linked to the local perception of the proximate neighbours.
This approach would imply the use of a microscopic model of behaviour, instead of a
macroscopic description.

Cockroaches tend to follow the walls of the arena when they are already close to them.
The model defines two zones in the arena. The ring area that borders the walls of the arena
is called the peripheral zone, while the rest of the arena is labelled as the central zone.
In the peripheral zone, agents follow a wall-following behaviour for a random number of
time steps (the mean time is denoted τc,exit). In the central zone, agents follow a random-
walk behaviour, with trajectories composed of a recurring alternation of straight lines (of
randomly chosen length, with a mean length of lc) and rotations (of randomly chosen
angles, with a geometric mean of ac). The shelters are all in the central zone. We do not
model the actual trajectories of cockroaches.

When agents enter a shelter, they have a probability of stopping (parameter sc,i,n)
for a random duration (parameter τc,i,n) before moving away from the shelter. Similarly
to [159], this probability depends on the number of agents present under the shelter,
as cockroaches are gregarious during their resting period. However, in this model (as
opposed to [74, 159]), the probability of stopping when under a shelter differs between
shelters: this model is more general, and can be used to describe more complex behaviours
with asymmetric decision-making dynamics [28]. When the cockroaches are not under a
shelter, their movements are not influenced by the presence or absence of neighbours.

Figure 5.4 represents the Markov chain used in this model. The relevant model param-
eters are found in Table. 5.2.

We use two different parameter sets of the MC model to describe either cockroaches
or robot behaviour. However, all cockroaches are considered to exhibit an homogeneous
behaviour (all cockroach agents share the same parameters). Similarly, all robots agents
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share the same parameters. We make this choice for simplicity reasons: the message of
this paper can be explored without the need to take individual variability into account.

Peripheral zone:
 Wall-following behaviorCentral zone:

 Random-walk behaviorEnter a shelter

Leave a shelter

Under a shelter: Stop

Probability of stop:

Mean stop duration:

Mean speed:

Mean time following wall:
Mean speed:

Figure 5.4 – Markov chain model of the cockroach individual behaviours. The arena
contains two zones: the peripheral zone (where agents display a wall-following behaviour), and
the central zone (where agents display a random-walk behaviour). Shelters are in the central
zone. When an agent enters a shelter, it has a probability of stopping for a random duration
before exiting the shelter. The probability of stopping under a shelter depends on the number
of neighbours present in the shelter, and can differ for each shelter. Only 10 neighbours are
considered in our experiments. In set-ups with two shelters, this model has 45 parameters per
population.

5.2.3 Hybrid model

Here, we introduce a model of the collective behaviour of cockroaches using information
at both macroscopic and microscopic levels of abstraction. We call this multi-level model
the ’Hybrid’ model. This model was already used with manually defined parameters in [1],
but was not formally described previously. This hybrid model was done to facilitate the
development of the behavioural architecture of the robots [161, 1]. Compared to the MC
model, which presents a biomimetic description of the insects trajectories, the Hybrid
model is a compromise between biomimetism and ease of implementation as robotic con-
troller. The robot control architecture is a behaviour-based controller [162] composed of a
multi-level collection of behaviours. Each behavioural building block can take inputs from
the robot sensors and/or from other behavioural building blocks, and send outputs to the
robot actuators and/or to other behaviours. The behaviours are arranged in a hierarchy
in which the behaviours on the higher levels integrate or arbitrate the ones on the lower
levels. At the higher level the Hybrid model is used as a building block that takes into
account the speciality of the agents, and thus allows to build the robot controller. The
Hybrid model is a crossover between the macroscopic MF model, which easily describes
collective behaviour and site occupation, and the microscopic MC model, which details
the spatio-temporal behaviour of single agents. As such, it is a multi-agents model (like
the MC model), but it also takes into account macroscopic information (like the MF
model). For ease of implementation, the hybrid model does not include a wall-following
behaviour, and only considers simple arenas with no distinctions between central zone
and peripheral zone. The agents can have two states: moving, or resting under a shelter.
In contrast to the MC model, the agents move with a constant speed v.

The Hybrid model builds on the MF model, introducing several parameters from the
MF model (Table 5.2). The Hybrid model has a smaller dimensionality than the MC
model: in set-ups with two shelters, the MC models has 45 parameters, while the Hybrid
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model has 20 parameters. It allows the Hybrid model to be easier to calibrate than the
MC model.

Figure 5.6 describes the Hybrid model using a Markov chain representation of the
behaviour of a single agent. When the agents are not under a shelter, they follow a
random-walk behaviour (microscopic behaviour). As in the MC model, this random-
walk behaviour involves trajectories composed of a recurring alternation of straight lines
of randomly chosen length, with a mean length of l, and rotations of randomly chosen
angles, with a geometric mean of a. When agents enter a shelter, they stop, and have a
probability of leaving the shelter at each subsequent time-step. This probability, taken
from Eq. 5.1 and 5.2, is computed using macroscopic information. For the cockroaches
agents, this probability of leaving the shelter is defined as:

θi

1 + ρxi+βri
Si

n (5.4)

For the robotic agents, this probability of leaving the shelter is defined as:

θri

1 + ρr
γxi+δri
Si

nr (5.5)

This behaviour can be described as macroscopic, as it requires information about the
density of agents under the shelter. This combination of microscopic and macroscopic
components makes it a multi-level (or hybrid) model.

As in the MC model, we use two different parameter sets of the hybrid model to describe
either cockroaches or robot behaviour. However, all cockroaches are considered to exhibit
an homogeneous behaviour (all cockroach agents share the same parameters). Similarly,
all robots agents share the same parameters.

Figure 5.5 presents examples of the trajectories of single cockroaches in a simulation
with a population of 50 cockroaches with the Hybrid model.

5.2.4 Models calibration

To use the MC and Hybrid models describing animal behaviour in simulation, we must
calibrate them to exhibit the same decision-making dynamics as the MF model. As the
MF model is parametrized using experimental data, it allows the MC and Hybrid models
to accurately describe the (macroscopic) site-selection dynamics of the cockroaches. The
calibration process is described in Fig. 5.7.

We optimize the parameters for the individual cockroaches in the MC and Hybrid
models: Table 5.2 lists the parameters of these two optimized models. Instances of the
MC and Hybrid models using these parameters are simulated for different values of σ.
This yields bifurcation diagrams for each optimized individual, similar to those in Fig. 5.3.

As there is little a priori information about the parameter space, and as it is rela-
tively high-dimensional, we use the state-of-the-art CMA-ES evolutionary optimization
method [153] to optimize the parameters of the MC and Hybrid models. To evaluate the
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Figure 5.5 – Two example trajectories of a one simulated cockroach, using the Hy-
brid model, in a population of 50 cockroaches. The arena contains two shelters. Each
grey line represents the (random-walk) trajectory of one agent. These trajectories are not meant
to fit the natural trajectories of actual cockroaches: we designed our models to reproduce quali-
tatively the observed random exploration. The opacity of the line reflects simulation time. The
timeframe of all simulations is 8 hours.

difference between two parameter sets, we use a distance metric between the two resulting
bifurcation diagrams.

The fitness, minimized by CMA-ES [153], represents a comparison between an opti-
mized bifurcation diagram and the reference diagram from the MF model. It is computed
as follows:

Objectivecalibration(x) = DHellinger(Boptimized/Nu,Breference/Nu) (5.6)

where x is the tested parameter set (genome), Nu is the number of values of σ in the
bifurcation diagrams (10) and Boptimized and Breference are one-dimensional histogram ver-
sions of the bifurcation diagrams. The term Nu is a normalization term. The Hellinger
distance [134] is defined as:

DHellinger(P ,Q) =
1√
2

√√√√ d∑
i=1

(
√
Pi −

√
Qi)2 (5.7)

where P and Q are two histograms, and Pi,Qi their i-th bins. The Hellinger distance
is a divergence measure, similar to the Kullback-Leibler (KL) divergence. However, the
Hellinger distance is symmetric and bounded, unlike the KL-divergence (and most other
distance metrics). As such, it is adapted to comparing two histograms [134].

All experiments were performed using the Grid’5000 platform (see https://www.grid5000.fr).
Depending on the model and parameters tested, each experiment were performed in 1 to
15 hours on a 8-cores computer.
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Parameterized 
Random walk

Stop under shelter

MacroscopicMicroscopic
Encountering

 site Probability of leaving site:

Leaving site

Figure 5.6 – Markov chain representation of the Hybrid behavioural model . Ta-
ble 5.2 gives the parameters of the model. The model describes two kinds of behaviour: when
the agents are not under a shelter, they will exhibit a random-walk behaviour, following a recur-
ring alternation of straight lines and rotations. This behaviour can be described as microscopic
because agents use only local information to determine their course of action. When agents
encounter a shelter, they stop. At each subsequent time-step, the stopped agent has a probability
of θi

1+ρ
xi+βri
Si

n (for cockroaches) or θri

1+ρr
γxi+δri

Si

nr (for robots) of leaving the shelter and returning

to random-walk behaviour. This behaviour can be described as macroscopic, as it requires in-
formation about the density of agents under the shelter. This combination of microscopic and
macroscopic components makes it a multi-level (or hybrid) model.
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Figure 5.7 – Workflow of the automated calibration of models by optimization.
The optimized bifurcation diagram and the reference bifurcation diagram are both converted
to one-dimensional histograms, by normalizing the sum of all bin values to 1.0. The op-
timizer will maximizes the objective function, which is computed by the formula: Obj =
1.0 − Dhellinger(Boptimized/Nu,Breference/Nu) where Nu is the number of columns in the bi-
furcation diagrams (10) and Boptimized and Breference are one-dimensional histogram versions
of the respective bifurcation diagrams. The term Nu is a normalization term. Dhellinger(P ,Q) =

1√
2

√∑d
i=1(
√
Pi −

√
Qi)2 is the Hellinger distance [134]. This approach is described in detail in

Sec. 5.2.4 and Sec. B.2
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5.3 Results

5.3.1 Models Calibration

Our goal is to find parameter sets of the MC and Hybrid models describing animal and
robot behaviour so that the resulting collective dynamics, observed in simulations, fit the
solutions of the MF model describing animal behaviour. We use use the methodology
presented in Sec. 5.2.4. We consider two types of simulations, for both P. americana and
B. germanica cockroach species. The first type describes a purely biological system, with
only 50 cockroaches (either P. americana or B. germanica) and no robots. It is used as
the biological reference case. The second type is devoted to biohybrid groups made up
of 45 cockroaches (either P. americana or B. germanica) and 5 robots. The number of
robots is kept small to reflect the settings used in a mixed-society experiment [1], where
a minority of robots can control the whole mixed group behaviour. The parameters sets
of models describing robot behaviour are chosen empirically.

We consider populations of 50 individuals. Similar results are observed with pop-
ulations of 16 and 100 (results not shown).

Figure 5.8 shows the distribution of agents in the two shelters, using parameters from
the best-performing optimized individuals after 100 optimization runs. Panels A and
C show results from simulations with 50 cockroaches and no robots. Panels B and D
show results from simulations with 45 cockroaches and 5 robots. Only results from the
bifurcation diagram at selected values of σ are shown. More generally, results before
the bifurcation point (σ < 0.8) are similar to results at σ = 0.4, and results after the
bifurcation point (σ ≥ 0.8) are similar to results at σ = 1.2.

Both the MC and Hybrid models can be optimized to approximate correctly the decision-
making dynamics described by the MF model, as shown in Fig. 5.8. Our methodology can
generate many different parameter sets for the MC and Hybrid models. Optimized param-
eters that produce the collective dynamics described by the MF model can be associated
to highly variable agent behaviour. In the MC model, the parameter d, the diameter of the
central zone of the arena, is optimized: when this parameter is very close to the diameter
of the peripheral zone, the resulting agents do not exhibit any wall-following behaviour.
In the MC and Hybrid models, the parameters that influence stopping behaviour (sc,i,n,
τc,i,n, θi) vary less than the other parameters, with only a few islands of relevant values
in the explored ranges.

We show that simulations performed with 45 cockroaches and 5 robots exhibit the same
dynamics as the simulations of groups with 50 cockroaches and no robots (Fig. 5.8). In
this case the robots are governed by the same behavioural models as the insects, but
do not have the same parameter sets as those used to describe the natural behaviour of
the cockroaches. The detailed microscopic behaviours of the robots, e.g. trajectories and
movement patterns, can be very different from the microscopic behaviours of the animals.
Nevertheless, we show that our methodology can be used to optimize the parameters of
robot behavioural models in biohybrid systems to mimic correctly the decision-making
dynamics of the animals.
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Figure 5.8 – Proportion of 50 agents in the first shelter for chosen values of σ,
using three different models: MF, MC and Hybrid. Panels A and C are obtained from
simulations using 50 cockroaches (Panel A: P. americana ; Panel C: B. germanica). Panels B
and D are obtained from simulations using 45 cockroaches and 5 robots (Panel B: P. americana
; Panel D: B. germanica). Results for MF, MC and Hybrid models results are shown respectively
in red, green, and blue. The bifurcation point is close to σ = 0.8 for P. americana, and σ = 1.0
for B. germanica. The other σ parameter values chosen are before the bifurcation point (σ = 0.4
for P. americana , σ = 0.6 for B. germanica), and just after the bifurcation point (σ = 1.2
for P. americana , σ = 1.8 and σ = 2.0 for B. germanica). The best sets of optimized model
parameters are used, after 100 runs of optimization. The diagram is symmetric for all tested
values of σ, so only one shelter is represented. Calibrated versions of the MC and Hybrid
models behave similarly to the MF model: (1) Before the bifurcation point (0.4 ≤ σ < 0.8 for
P. americana, 0.4 ≤ σ < 1.0 for B. germanica), only one configuration exists, an equipartition of
the individuals between the two shelters (x1/N = x2/N = 1/2,xe = 0); (2) After the bifurcation
point (σ > 0.8 for P. americana, σ > 1.0 for P. americana), two stable configurations exist, with
all individuals in only one of the shelters (either x1 ≈ 0,x2 ≈ 1,xe ≈ 0 or x1 ≈ 1,x2 ≈ 0,xe ≈ 0).
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Figure 5.9 – Examples of modulation of the biohybrid group behaviour when robots
are optimized to change the behaviour of cockroaches (A: P. americana, B: B. ger-
manica). (red: MF model, green: MC model, blue: Hybrid model). Results in red, green and
blue are the final states corresponding to the change of steady states induced by the robots. Re-
sults in dark red, dark green, and dark blue correspond to the reference results, from experiments
with only insects and no robots (from Fig. 5.8). Values of σ are chosen around the bifurcation
point (P. americana: σ = 0.8, B. germanica: σ = 1.0), and just after the bifurcation point
(P. americana: σ = 1.2, B. germanica: σ = 1.8). Results before the bifurcation points are not
shown.

.
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5.3.2 Modulation of collective behaviours

We also test if our methodology could be applied to calibrate robot models so that they
can modulate the collective dynamics of a group of cockroaches and robots. We consider
simulations, for both P. americana and B. germanica cockroach species. In these simula-
tions, cockroach behaviour is described by the MC or Hybrid models calibrated to have the
same collective dynamics as the reference MF model. Robot behaviour is also described by
the MC or Hybrid models, but with different parameter sets. We find relevant parameters
of models describing robot behaviour empirically, for different proportion of robots, and
for different values of σ. These examples of results of the modulation of the mixed-society
of cockroaches and robots are found in Fig. 5.9. This shows that our methodology could
be also applied to optimize parameter sets of models describing robot behaviour for a
modulation task. Additionally, Fig. 5.9 also presents examples of modulation of a mixed-
society described by the MF model. In this case, we find empirically interesting robot
behaviour related parameters of the MF model. These preliminary results suggest that
a larger number of robots than 5 may be needed to modulate a population of 50 agents.
We will investigate how robots models can be calibrated automatically to modulate the
collective dynamics of a mixed-society in a subsequent study.

5.4 Discussion

We tackle the problem of moving between models of different levels of abstraction in
the context of animal collective decision-making. Animal collective behaviour can be
described macroscopically (analytical description of the behaviour of the population) or
microscopically (explicit description of the behaviour and states of individuals and their
interactions with the environment). The two types of models are complementary. Our
methodology enables translation from one to the other: we automatically optimize the
parameters of microscopic target models on the basis of a reference macroscopic model
from the literature. We apply this methodology to the cockroach shelter-selection problem
described in [27, 1]. The Mean Field macroscopic model used as a reference is described
in [1].

We consider two target models, both agent-based. The MC model [28] is a microscopic
model inspired by the literature on individual cockroach behaviour [160, 159]. The Hy-
brid model uses both macroscopic and microscopic information. Both the MC and Hybrid
models can be used both to replay the behaviour of animals in simulation and for imple-
mentation as robot controllers. We automatically generate the parameters of the MC and
Hybrid models for cockroach agents, calibrating them to display the collective behaviour
and site-selection dynamics described in the Mean Field model.

The MC and Hybrid models presented in this study can directly be implemented into a
robot. However, here our approach does not explain how to translate them automatically
into robotic controllers. This question was tackled in [163] by using formal methods and
supervisory control theory to automatically generate robot controller code and to validate
it so that it translates into robot behaviours matching a given formal specification.
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Here, we use a user-defined metric (the bifurcation diagrams) to compare the results
in simulation of two different pairs of models and parameter sets, during the optimisa-
tion process. As a result, the obtained models and parameter sets only approximate the
collective dynamics of individuals, and not the behaviours (trajectories) of each individ-
ual. This could be further improved by considering the calibration of these models as a
multi-objective process where the first objective would cater to the collective dynamics,
and additional objectives would cater to the individual behaviour of the individuals. Al-
ternatively, one could design a methodology similar as the like in [101], where no metric is
specified, by co-evolving simultaneously models of robot behaviours and classifiers of the
resulting behaviour in simulation. These classifiers would be trained to identify whether
or not the resulting behaviours of the optimised models are distinct from the behaviours
from reference experiments.

A ”mixed society” is defined as a group of robots and animals that are able to integrate
and cooperate: each robot is influenced by the animals, but can, in turn, influence the
behaviour of the animals and of the other robots. Individuals, natural or artificial, are
perceived as equivalent, and the collective decision process results from the interactions
between natural and artificial agents [1, 22, 23]. Robots are useful for a number of
reasons [164, 165]: validating models in silico [159], inducing stimuli to observe animal
feedback [166, 22, 48, 64], modulating animal collective behaviour [1], etc. Recent work has
already used robots in mixed society to study individual and collective animal behaviours:
robots have been mixed with cockroaches in [166, 1], chicks in [22, 51], honeybees in [48],
fruit flies in [114], guppies in [32] and zebrafish in [64, 117, 111, 167]. In such systems,
complementary approaches to modelling (macroscopic vs. microscopic; analytical vs.
simulation) can be used: different models deliver the data necessary for the robot design
process, provide explicit and analytic descriptions of observed collective behaviour, yield
predictions that may be used for the modulation of the collective behaviour of the society,
and ease the development of robot controllers.

More generally, complex systems exhibit multi-level dynamics (hierarchical organiza-
tion), with both global and local behavioural patterns. Recent studies have investigated
the micro-macro link : the relationship between macroscopic and microscopic descriptions
of multi-level behavioural dynamics [168, 169, 78, 170]. This problem also applies to the
design of swarm group robotic controllers [168, 78, 171, 172, 173]. Our methodology is
a first step toward the automatic generation of controllers for robots in a mixed society
of animals and robots. Mixing animals and robots can be useful for the study of animal
behaviour, and even to modulate their individual or collective behaviour. In this paper,
the robotic agents in simulations were driven by models with human-selected parameters.
In a subsequent study, we will present how these parameters can be optimized.

Few works in the literature on animals and robotics attempt to tackle the problem of
transitioning from models of one level of abstraction (reference model) to another level of
abstraction (target model). Moreover, these studies have generally considered the transi-
tion from microscopic to macroscopic models [78, 174, 175]. The transition methodology
adopted by these studies is incremental, and relies on the creation of intermediate models,
dealing with both macroscopic and microscopic information, and that share some param-
eters with both the reference and the target models. In [78], this methodology is applied
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to go from a microscopic model to a macroscopic model of the behaviour of a swarm
of autonomous robots in a collaborative task. The resulting model outperforms human-
calibrated macroscopic models. In [174], a time-continuous kinetic mean field version
of the Couzin-Vicsek model is obtained from its discrete microscopic version. In [175],
continuous macroscopic models of pedestrian behaviour are obtained from discrete micro-
scopic agent-based models. Little work in the literature has investigated how to automate
and generalize the transition between models at different levels of abstraction. The tran-
sition process can also be more challenging if the reference and target models have no (or
few) common parameters, or if their formulation is too different.

Another study could include an application of this methodology to more complex set-
ups, with more than two shelters and more than two population types. Our methodology
could also be extended by generating microscopic Markov Chain models from scratch,
without a priori structural knowledge (i.e. the type and number of states). It may be
possible to apply it to model, calibrate, and modulate the collective behaviour of other
species (e.g. fishes, bees, and others).

108 Optimization of multi-level models of behaviour in a mixed group of animals and robots



Chapter 6

Modulation of animal collective
behaviour using biomimetic robots
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This chapter builds on the approach presented in the previous chapter, and present
a method to modulate the collective behaviour of a group of insects using biomimetic
robots. This work is based on the publication:

Cazenille L, Bredeche N, Halloy J. Multi-objective optimization of multi-level
models for controlling animal collective behavior with robots. In Conference
on Biomimetic and Biohybrid Systems 2015 Jul 28 (pp. 379-390). Springer.

Group-living animals often exhibit complex collective behaviors that emerge through
the non-linear dynamics of social interactions between individuals. Previous studies have
shown that it is possible to influence the collective decision-making process of groups of
insects by integrating them with autonomous multi-robot systems. However, generating
robot controller models for this particular task can be challenging. The main difficulties lie
in accommodating group collective dynamics (macroscopic level) and agent-based models
implemented in every individual robot (microscopic level). In this study, we show how such
systems can be appropriately modeled, and how to use them to modulate the collective
decision-making of cockroaches in a shelter-selection problem. We address two questions
in this paper: first, how to optimize a microscopic model of cockroach behavior to exhibit
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the same collective behavior as a macroscopic model from the literature, and second, how
to optimize the model describing robot behavior to modulate the collective behavior of
the group of cockroaches.
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Figure 6.1 – Workflow of the methodology used in this chapter, with red arrows showing the
addressed topics.

Figure 6.1 shows how this chapter is linked to the workflow of this manuscript. Here,
we consider macroscopic models of cockroach collective behaviour (calibrated to match
the observed collective dynamics from experiments) and automatically translate them
into microscopic models of agent behaviour. We show that it is possible to modulate
the collective behaviour of the animal group by finding appropriate parameters of the
behavioural model. We use multi-objective optimization to find these parameter sets.

Contributions to this chapter

I implemented most of the code, including the parameter set optimisation system, and
data analysis scripts. This paper was mainly written by me, with the help of José Halloy
and Nicolas Bredeche.
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6.1 Introduction

Groups of animals are able to reach consensus collectively, when presented with mutually
exclusive alternatives. Previous studies have shown that it possible to influence the col-
lective decision-making process of groups of insects by integrating them with autonomous
multi-robot systems [1]. A mixed society is defined as a group of robots and animals
able to integrate and cooperate: each robot is influenced by the animals, but can, in
turn, influence the behavior of the animals and of other robots. Individuals, natural or
artificial, are perceived as equivalent, and the collective decision process results from the
interactions between natural and artificial agents [1, 22, 23].

A number of recent works in ethology have successfully used robots to investigate
individual and collective animal behaviors, in particular by creating mixed robot-animals
societies: robots are mixed with chicks in [22], cockroaches in [166, 1], fruit flies in [114],
honeybees in [48], guppies in [32] and zebrafish in [64, 117, 111, 167].

In particular, Halloy et al. ([1]) demonstrates a system in which groups of robots are used
to modulate the collective behavior of groups of animals (cockroaches P. americana). The
same paper introduces a macroscopic Ordinary Differential Equations (ODE) model of
the collective decision-making process of the mixed-society in a shelter-selection problem.

Macroscopic models can convincingly describe collective dynamics, but cannot be imple-
mented directly into robotic controllers. Robot controllers are intrinsically microscopic, as
they describe the behavior of individual agents. One of difficulties in experiments involv-
ing mixed-societies is to implement the dynamics described in a macroscopic model into
robot controllers (microscopic models). In previous studies (including [1]), this process is
often done empirically. Ways of handling different levels of descriptions is investigated in
[176, 177, 178], but these studies do not address the issue of transitioning between models
of different level of description automatically.

This paper introduces a novel methodology to navigate between models of different
level of description by optimizing the whole range of parameter sets of models to get the
same bifurcation diagram. This methodology is applied to the problem of modulating the
collective behavior of a group of cockroaches with robots described in [1]. We take an
agent-based modelling approach, and makes a number of assumptions: firstly, a model of
the collective behavior of the animals already exists (the ODE model presented in [1]);
secondly, robots can be attractive enough to the animals; and lastly, the number of robots
is very small compared to the number of animals.

To describe the behavior of individual insects and robots, we use a Finite State Machine
(FSM) agent-based microscopic model of cockroaches behavior. To test this FSM model
in simulation, two sets of parameters are needed: one describing insect behavior, the
other describing robot behavior. We address two questions: first, how to calibrate the
FSM model describing insect behavior to exhibit the same collective behavior as the
ODE macroscopic model, and second, how to optimize the FSM model describing robot
behavior to modulate the collective behavior of the group of insects.
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6.2 Multi-level Models

We use the same experimental setup as [1] (cf Fig. 6.2): a number of cockroaches (P. amer-
icana) are put in a circular arena with two identical shelters (resting sites). Cockroaches
aggregate under the shelters. This setup is well adapted to study collective decision-
making because it implies a trade-off between competition for resources with limited
carrying capacity (the shelters) and cooperation (aggregation of the individuals).

Figure 6.2 – Experimental setup used in [1] includes two identical shelters (150 mm) and both
cockroaches (P. americana, approximate size: ∼ 4cm, surface: 600mm2) and robots (surface:
1230mm2) in a circular arena (diameter: 1 m). The setup is symmetric.

6.2.1 Ordinary Differential Equation Model

A mathematical model describing the collective dynamics of mixed groups of robots and
cockroaches was developed in [1] (based on [27]). In this model, robots and animals
equivalently influence the collective decision-making process, and they exhibit homoge-
neous behavior. This model handles two populations (robots and animals) in setups with
two shelters. The evolution of the number of individuals in each shelter (and outside) is
represented by the following set of Ordinary Differential Equations (ODE):

dxi
dt

= xeµi

(
1− xi + ωri

Si

)
− xi

θi

1 + ρxi+βri
Si

n (6.1)

dri
dt

= reµri

(
1− xi + ωri

Si

)
− ri

θri

1 + ρr
γxi+δri
Si

nr (6.2)

C = xe + x1 + x2, M = re + r1 + r2, N = M + C (6.3)

Table 6.3 lists the parameters of the ODE model.
Because of crowding effects, the probability that an individual joins a shelter decrease

with the level of occupation of this shelter.
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We only consider the case where the two shelters have the same carrying capacity:
S = S1 = S2. We define the measure σ = S/N that corresponds to the carrying capacity
as a multiple of the total population.

When only insects are considered, and no robots are present (M = 0), two different
dynamics can be observed: When 0.4 ≤ σ < 0.8, only one configuration exists, corre-
sponding of an equipartition of the individuals (x1/N = x2/N = 1/2,xe = 0). In this
case, the two shelters are saturated, with the remaining insects remaining outside. When
σ > 0.8, two stable configurations exist, corresponding to all individuals in one of the
shelter (either x1 ≈ 0,x2 ≈ 1,xe ≈ 0 or x1 ≈ 1,x2 ≈ 0,xe ≈ 0). These dynamics can
be observed in Fig. 6.4, a bifurcation diagram of the occupation of the first shelter, as
function of σ. Represented results are obtained by resolution of Eq. 6.1 using the Gillespie
method [81]. A resolution using the Gillespie method allows to take into account experi-
mental fluctuations. Figure 6.4 only represents results with population of 50 cockroaches,
but similar dynamics are observed with different population sizes.

Parameter
for P. amer-
icana

Parameter
for robots

Value
for P. amer-
icana

Description

C M - Total number of agents
xi ri - Number of agents in shelter i
xe re - Number of agents outside the shelters

µi µri 0.0027s−1 Maximal kinetic constant of entering a
shelter

θi θri 0.44s−1 Maximal rate of leaving a shelter
ρ, n ρr, nr 4193, 2.0 Influence of conspecifics

Parameter Description
Si Carrying capacity of shelter i
ω Surface of one robot as multiple of the surface of one animal
γ Influence of animals on robots
β Influence of robots on animals
δ Influence of robots on robots

Figure 6.3 – Parameters list of the ODE model. Cockroaches (P. americana) parameter values
are from [1]. We only consider the case where N = 50. In setups with two shelters, this model
has 18 parameters. The influence of animals on animals is equal to 1, and is not considered in
[1]: the assumption is made that this parameter is imposed by biology, and can’t be changed in
experiments.

Note that while models at the macroscopic level can easily describe the behavior of the
dynamical system, in term of shelter selection, and offer a mathematical basis of descrip-
tion, they cannot explicit the behavior of individual agents, and cannot be implemented
directly in actual robots.

6.2.2 Finite State Machine Model

We use the Finite State Machine model described in [150] as an agent-based model of
cockroach and robot behaviour. This model is inspired by the agent-based aggregation
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Figure 6.4 – Bifurcation diagram and distribution of N = 50 P. americana cockroaches in
the first shelter, as function of σ. The bifurcation diagram is represented as bi-dimensional
histograms of the results using 1000 solutions by parameter sets. The color of each bin of the
histogram corresponds to the occurrence of experiments. The diagram is symmetric for all tested
values of σ, so only one shelter is represented. When 0.4 ≤ σ < 0.8, only one configuration
exists, corresponding of an equipartition of the individuals (x1/N = x2/N = 1/2,xe = 0). When
σ > 0.8, two stable configurations exist, corresponding to all individuals in one of the shelters
(either x1 ≈ 0,x2 ≈ 1,xe ≈ 0 or x1 ≈ 1,x2 ≈ 0,xe ≈ 0). The bifurcation point is close to
σ = 0.8.

models in [74, 159] that describe the collective behaviour of cockroaches in a similar set-up.
Cockroaches tend to follow walls when close to the walls of the arena, and are gregarious

during their resting period. We establish two zones in the arena: the peripheral zone,
which is the ring that borders the walls of the arena, and the central zone, corresponding
to the rest of the arena. In the central zone, agents exhibit a random-walk behavior, by
following a recurring alternation of straight lines and rotations. In the peripheral zone,
agents exhibit a wall-following behavior. Shelters are in the central zone. When an agent
enters a shelter, it has a probability of stopping for a random duration before exiting
the shelter. Similarly to [159], this probability depends on the number of present agents.
Figure 6.5 provides a description of this model, with the relevant model parameters.
In our model (as opposed to [74, 159]), the probability of stopping when reaching a shelter
is not the same for both shelters. While it is not relevant when describing the behavior of
cockroaches (the shelters in the setup are identical), it can be useful for describing robots
that modulate the collective behavior of cockroaches.
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Peripheral zone:
 Wall-following behaviorCentral zone:

 Random-walk behaviorEnter a shelter

Leave a shelter

Under a shelter: Stop

Probability of stop:

Mean stop duration:

Mean speed:

Mean time following wall:
Mean speed:

Parameter Description
l Mean size of path
a Geometric mean for angle departure

τexit Mean time an agent follow a wall
vc Mean speed in central zone
vp Mean speed in peripheral zone
si,n Probability of stop in shelter i with n neighbors
τi,n Mean stop duration in shelter i with n neighbors

Figure 6.5 – Finite State Machine Model of cockroach individual behavior. The arena contains
two zones: the peripheral zone (agents follow a wall-following behavior), and the central zone
(agents follow a random-walk behavior). Shelters are in the central zone. When an agent enters
a shelter, it has a probability of stopping for a random duration before exiting the shelter. The
probability of stopping under shelter depends on the number of neighbors present in the shelter,
and can be different for each shelter. Only 10 neighbors are considered in our experiments. In
setups with two shelters, this model has 45 parameters per population.

Figure 6.6 – Examples of the trajectory of an artificial insect, using the FSM model. The
arena is circular and contains two shelters. Gray lines represents the trajectory of one agent.
The brightness of the line reflects to simulation time. All experiments last 28800 time steps
(corresponding to 8 hours). Note that the FSM model do not try to mimic the actual movement
patterns of cockroaches. The arena contains two zones: the peripheral zone (agents follow a
wall-following behavior), and the central zone (agents follow a random-walk behavior). Shelters
are in the central zone. When an agent enters a shelter, it has a probability of stopping for a
random duration before exiting the shelter.
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6.3 Results

6.3.1 Numerical Computation

All results from the ODE model were obtained by resolving Eq. 6.1 and 6.2 using the
Gillespie method ([81]). Results from the FSM model were obtained from simulations of
28800 time steps, of a setup similar to Fig. 6.2 (used in [1]): a circular arena (diameter
1m) with two identical shelters (diameter 150mm).
For both models, only populations of 50 individuals were considered.

6.3.2 Calibration of Models

In this section, we address the problem of finding parameter sets of cockroaches simulated
using the FSM model that exhibit the same collective behavior as in the ODE model. FSM
model parameters describing cockroach behavior can be derived (or ’Calibrated’) from the
ODE model.

As the ODE model is parameterized using experimental data, it allows the FSM model
to be as close as possible to the behavior of cockroaches. This process is described in Fig.
6.7.

We optimize the parameter sets of the cockroaches individuals, for the FSM model.
Instances of the FSM model using these parameter sets are simulated for different values
of σ. The aim is to optimize parameter sets of the FSM model to obtain a similar
bifurcation diagram as in Fig. 6.4.

As there is only few a-priori information about the parameter space, and as the pa-
rameter space has a relatively large dimensionality, we use the state-of-the-art CMA-ES
evolutionary optimization method ([153], population size is 20, maximal number of gen-
erations is 500).

The objective function, minimized by CMA-ES, corresponds to a comparison between
an optimized bifurcation diagram with the reference diagram from the ODE model. It is
computed as follow:

Objectivecalibration(x) = DHellinger(Boptimized/Nu,Breference/Nu) (6.4)

where x is the tested parameter set (genome), Nu is the number of considered values
of σ in the bifurcation diagrams (10) and Boptimized and Breference are one-dimensional
histograms version of the bifurcation diagrams. The term Nu is used for normalization.
The Hellinger distance ([134]) is defined by the equation:

DHellinger(P ,Q) =

√√√√2
d∑
i=1

(
√
Pi −

√
Qi)2 (6.5)

where P and Q are two histograms, and Pi,Qi their i-th bins. The Hellinger distance
is a divergence measure, similar to the Kullback-Leibler (KL) divergence. However, the
Hellinger distance is symmetric and bounded, unlike the KL-divergence (and most other
distance metrics). As such, it is adapted when comparing two histograms ([134]).
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Reference:

Optimized:

Evolutionary Algorithm (CMA-ES)

Figure 6.7 – Workflow of the Automated model calibration task by optimization. The optimized
bifurcation diagram and the reference bifurcation diagram are both converted to one-dimensional
histograms, by normalizing the sum of all bin values to 1.0. We use CMA-ES ([153]) as op-
timizer. The optimizer minimizes the objective function, which is computed by the formula:
Objectivecalibration(x) = DHellinger(Boptimized/Nu,Breference/Nu) where x is the optimized param-
eter set, Nu is the number of histograms in the bifurcation diagrams (10) and Boptimized and
Breference are one-dimensional histograms version of the bifurcation diagrams. The term Nu

is used for normalization. DHellinger(P ,Q) =
√

2
∑d

i=1(
√
Pi −

√
Qi)2 is the Hellinger distance

([134])
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Figure 6.8 – Distribution of 50 cockroaches in the first shelter for chosen values of σ, using
two different models: ODE (in dark grey) and FSM (in light grey). The parameter σ values
are chosen before the bifurcation point (σ = 0.4), and just after the bifurcation point (σ = 1.2).
Similar results are obtained for the range of values of σ present in Fig. 6.4. The best sets of
optimized model parameters are used, after 100 runs of optimization. The diagram is symmetric
for all tested values of σ, so only one shelter is represented. Calibrated versions of the FSM
model behave similarly to the ODE model: (1) before the bifurcation point (σ = 0.8), only
one configuration exists, corresponding of an equipartition of the individuals (x1/N = x2/N =
1/2,xe = 0); (2) after the bifurcation point, two stable configurations exist, corresponding to all
individuals in one of the shelters (either x1 ≈ 0,x2 ≈ 1,xe ≈ 0 or x1 ≈ 1,x2 ≈ 0,xe ≈ 0).

Figure 6.8 corresponds to the distribution of cockroaches in the two shelters, using
parameters sets from the best-performing optimized individuals in 100 runs. All values
of σ present in Fig. 6.4 are tested, and Fig. 6.8 shows typical results before and after the
bifurcation point. Results before the bifurcation point (σ < 0.8) are similar to results at
σ = 0.4, and results after the bifurcation point (σ ≥ 0.8) are similar to results at σ = 1.2.
Results show that it is possible to find parameters sets of the FSM model that exhibit
the same collective choice that the ones from ODE. Similar results are obtained using the
FSM model from [159] (results not shown).

6.3.3 Modulation of Collective Behavior By Robots

Our goal is to find sets of parameters of robots, capable of modulating the collective
behavior of the group of cockroaches.

This process is described in Fig. 6.9. Populations of 50 individuals are considered, with
a varying, but small, proportion of robots in the population.

The parameter set used for modeling cockroaches using the FSM model was taken
from the best-performing optimized individuals during the calibration process described
in 6.3.2.

An optimizer is used to generate the parameter sets of the robots modeled by the ODE
and FSM models. Instances of the FSM and ODE models using these parameter sets are
either simulated (FSM) or resolved using the Gillespie method (ODE), for specific values
of σ.

There are two objectives to minimize:

Objective1 = DHellinger(Histoptimized, Histreference) (6.6)
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Figure 6.9 – Workflow of the process of modulating of the collective behavior of a group of
cockroaches by robots. We use NSGA-II ([91]) as optimizer. The optimizer minimizes two
objectives: (1) the difference between the optimized histogram and the reference histogram using

the Hellinger distance (DHellinger(P ,Q) =
√

2
∑d

i=1(
√
Pi −

√
Qi)2 as described in [134]), (2) the

portion of robots in the population. Three reference histograms are considered, resulting of three
possible types of modulation.
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Figure 6.10 – Instances of results bio-hybrid group behavior when robots are optimized to change
the reference behavior of cockroaches alone as much as possible (dark grey: reference animal-
only model, light grey: optimized animals-and-robots models). σ values are chosen just after the
bifurcation point (σ = 1.2). Results after the bifurcation point (0.8 ≤ σ ≤ 2.2) are similar. The
three plots in the first line correspond to results obtained from the ODE model, the three plots
in the second line are from the FSM model. These results are taken from the best-performing
individuals in 30 runs.

Objective2 = M/N (6.7)

with DHellinger described in Eq. 6.5), and M the number of robots, from Eq. 6.3. We
need a multi-objective optimizer to minimize these two objectives: we use the state-of-
the-art NSGA-II evolutionary algorithm ([91], population size is 100, maximal number of
generations is 1000).

Three reference histograms are considered: (1) where all of the population gather in
the first shelter, (2) where all of the population gather in the second shelter, (3) where
half of the population gather in the first shelter, and the other half in the second shelter.

Figure 6.10 shows several instances of interesting optimized individuals (on the Pareto
Front), for both the ODE and the FSM models, and for the three different reference
histograms. Small groups of robots are capable, using the optimized controllers, to mod-
ulate the collective behavior of the group of cockroaches to correspond to one of the three
considered reference histograms.

When the objective is to force the cockroach population to select one of the two shelters,
a very small portion of robots is required (typically 2 or 3). For the ODE model, this
can be explained by the proportion of cockroaches to remain under shelter longer when
a larger number of neighbors are presents. For the FSM model, the same behavior is
evolved. This induces a progressive aggregation of the group of cockroaches toward the
shelter occupied by the robots. If the objective is to force the cockroach population to
occupy both shelters at the same time, it requires a larger portion of robots (10 robots). In

120 Modulation of animal collective behaviour using biomimetic robots



this case, the robots have to occupy both shelters to lead the cockroaches into aggregating
themselves in both shelters. Note that the modulation of the collective behavior of the
cockroaches for values of σ < 0.8 is far more challenging because of the very fast saturation
of the shelters, and was not considered in this study. Similar results are obtained using
the FSM model from [159] (results not shown).

6.4 Discussion and Conclusion

The problem of modulating the collective behavior of a group of cockroaches with robots is
challenging because it involves models of different levels of representation: an ODE-based
macroscopic model (describing the collective dynamics), and a FSM-based microscopic
model (implementable as robot controller). This paper introduces a novel methodology to
navigate between models of different level of description, by optimizing parameter value of
models already present in the literature. This approach makes three assumptions: firstly,
a model of the collective behavior of the animals already exists ([1, 27]); secondly, robots
can be attractive enough to the animals; and lastly, the number of robots is very small
compared to the number of animals.

The ODE model can describe the collective behavior of cockroaches, by using a parame-
ter set obtained by experimentation with actual insects in [1]. A FSM model of cockroach
behavior is introduced, with inspiration from [160, 159]. This model is calibrated to ex-
hibit the same collective dynamics as in the ODE model, using the CMA-ES evolutionary
algorithm. FSM is a microscopic model that can be used as robot controller. The robot
controller models are then optimized, using the NSGA-II multi-objective evolutionary
algorithm, to modulate the collective behavior of the group of cockroaches, to match a
user-defined reference.

Previous mixed-societies studies could only implement empirically the robot controllers
used in experiments. The approach presented here is a first step toward generating them
automatically, by deriving them from a validated macroscopic model of the animal col-
lective behavior.

A subsequent study would include an application of this methodology to more complex
setups, with more than two shelters and more than two population. Additionally, the
calibration of models, and the modulation of collective behavior, could be performed in
an online fashion, by using online evolutionary algorithms. The models investigated in
this paper were only strictly macroscopic (ODE) or microscopic (FSM) – alternatively,
a third kind of model could be defined, integrating both macroscopic and microscopic
aspects.

Our methodology gives promising results, and could possibly be applied to model,
calibrate, and modulate the collective behavior of other species (e.g. fishes, bees, or
others).
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Chapter 7

Conclusions and perspectives

7

So long, and thanks for all the fish.

Douglas Adams

7.1 Main contributions

Robots can be used to investigate animal behaviour by sending stimuli and studying the
animal response. Past research employed only simple robots to interact with animals in
very short experiments. As such, the robot was not able to reply in an autonomous and
biomimetic way to the animal, and this limited the scope of animal behaviours that could
be tested. In particular, it was difficult to identify the underlying mechanisms of collective
dynamics. This thesis tackles this problem by socially integrating biomimetic robots into
groups of animals with closed-loop interactions, in order to create mixed-groups of animals
and robots. This approach allows us to investigate relevant biological features of animal
collective dynamics and render possible the study of more complex animal interactions
(either with the robots or with the other animals). Our approach involves the automated
generation of models of animal behaviour, which can then be implemented into controllers
of robots socially integrated into the same group of animal. This problem is addressed
for two groups of animals with different social dynamics: insects (cockroaches) and fish
(zebrafish).

In Chapter 5 (based on [150]), we investigate the problem of automatically transitioning
from a macroscopic model of insect collective decision-making (which cannot easily be
implemented as robot controller) to microscopic (describing only agent states) or hybrid
(using both agents states and collective states) models of agent behaviour (which can easily
be used as robot controller) that exhibit the same collective dynamics, by using mono-
objective evolutionary algorithms. These models are then used to drive the behaviour of
robots in a mixed-group setting. The automatic transition of representation methodology
is fundamental to the design of robotic controllers in a mixed-group setting, as it allows
models of collective behaviour to be easily implemented in robots.
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Moreover, the relevance of this approach is not limited to the field of animal collective
behaviour and bio-hybrid systems, as it tackles the problem of automatically moving
between models at different levels of description (from macroscopic to microscopic), a key
problem in the modelling of nonlinear dynamical systems. This transition is usually done
by hand and require extensive efforts to link the two types of models (e.g. [174, 175]).
In a large portion of the literature, the calibration of model parameters is only done for
specific solutions – typically only one state of the system (e.g. only one distribution of
insects under the shelters for experiments of Chapter 5). Here, with our methodology we
can automatically calibrate all models for a set of states of the system corresponding to
a bifurcation diagram.

The methodology to automatically transition between levels of representations of Chap-
ter 5 was further refined in Chapter 6 (based on [28]) to drive robots socially integrated
in a mixed-group of insects and robots to modulate the collective behaviour of the entire
group and reach an user-defined state. This methodology makes use of multi-objective
evolutionary algorithms to iteratively refine models of agent behaviours, and identify the
minimal number of robots to use for the targeted modulation process.

In Chapter 3 (based on [112]), we established a multi-level, stochastic and microscopic
model of zebrafish behaviour in a two-patches environment. This model was further
refined in Chapter 4 (based on [179]), with a more precise description of behavioural
zones. We described a methodology to automatically calibrate these models (in Chapter 4)
by using multi-objective evolutionary algorithms. These algorithms are able to cope with
the multi-model nature of zebrafish behaviour that involves a trade-off between social
tendencies (aggregation, group formation) and environmental response (wall-following,
zone occupation). We measured the accuracy of these models compared to experimental
data by defining a set of metrics assessing the biomimetism of the exhibited trajectories
and behaviours.

We used the biomimetic models designed and calibrated in Chapters 3 and 4 to drive a
robot into groups of zebrafish. This creates a mixed-group of zebrafish and robot because
we demonstrate quantitatively that: (i) the robot responds to the animals with closed-loop
interactions; and (ii) the robot is effectively socially integrated into the group of zebrafish.
The social integration is measured using the previously defined metrics of biomimetism.

7.2 Perspectives

The workflow of the methodology adopted in this thesis (Fig. 1.1) specify how observed
behaviours of animal groups can be automatically modelled (either with models of indi-
vidual or collective behaviour) and then used to drive biomimetic robots into groups of
animals to socially integrate them with closed-loop of interactions, and creating mixed-
groups of animals and robots. In turn, the observed behaviour of these mixed-groups could
be used to potentially refine the previously devised behavioural models, which could be
then tested again to drive the behaviour of the robots in a mixed-group setting.

This methodology could be performed continuously and iteratively by following ”loops”
in our methodological workflow – i.e. successive bouts alternating ethological models
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Figure 7.1 – Methodological ”loops” in the methodology used in this thesis. The ”small-loop”
(blue dotted arrows) corresponds to the automatic generation of individual behaviour models: it
involves the analysis of experimental observations (e.g. trajectories) into microscopic models of
agent behaviour (through automated modeling and possibly automated generation of ethograms),
that are then implemented as controllers of robots put in a bio-hybrid setting; these robots then
interact with the animals in experiments, that could serve as the basis to further experimental
observations to improve models of agents behaviour, and so on. The ”big-loop” (green dashed
arrows) corresponds to the automatic generation of collective behaviour models: the experimental
observations are used to derive macroscopic models of collective behaviour (often with a formal
mathematical formulation), which could then be transformed into microscopic models of agent
behaviour exhibit the same collective dynamics, which could then be used as in the ”small-loop”
case to drive the behaviour of robots.

design and experimental validation tests with robots and animals). Two methodological
”loops” can be identified that derive and refine models of either individual or collective
behaviours (Fig. 7.1):

Models of individual behaviour (the ”Small-loop” methodology) Models of agents
behaviour are directly derived from experimental observations. The models are all
microscopic, with no explicit description of the state of the group. The approach
adopted with zebrafish in Chapter 3 and 4 is a first-step towards the ”Small-loop”
methodology.

Models of collective behaviour (the ”Big-loop” methodology) Macroscopic models of
collective behaviour are directly derived from experimental observations: they de-
scribe explicitly the state of the group, but not the state of the individuals. Then,
these models are automatically translated into microscopic models of agent be-
haviour that implicitly describe the same collective dynamics (through emerging

1257.2 Perspectives



complexity engendered by individual interactions). The approach adopted with
cockroaches in Chapter 5 and 6 is a first-step towards the ”Big-loop” methodology.

In this thesis, we also performed a single iteration of each ”loop”, but our approach
could be improved by making successive iterations of these ”loops” to continually refine
our generated behavioural models and increase robots social integration into the ani-
mal groups. Additionally, our approach could be improved on several aspects, that are
presented in the following subsections.

7.2.1 Automatic generation of ethogram of individual and col-
lective behaviour

The recent field of high-throughput ethology [68, 71, 69, 180] (Fig. 2.7) leads toward the
automated generation of ethograms: stochastic, time-series models that describes the dif-
ferent behavioural patterns exhibited by individuals and the transition probabilities from
behaviour to behaviour. These models can typically be represented by non-deterministic
Finite State Machines [181], or Hidden Markov Model [182].

In this thesis, we adopted a methodology where the models of individual behaviour
were hand-crafted and then automatically calibrated. This approach could be extended
by designing these models directly from experimental data by automatically generating
ethograms. This would involve the identification of relevant individual behaviours (classi-
fication and clustering algorithms) from a relevant set of experimental parameters (feature
identification and selection algorithms), and finding how individual transition from one
behaviour to another. These transition probabilities could be computed automatically,
either using statistics on experimental data [183], or with other techniques like recurrent
artificial neural networks [184] or inverse reinforcement learning [185]. A recent work by
Marques et al. [186] shows that it is possible to apply this methodology to reveal zebrafish
motion patterns by using clustering algorithms.

In the case of fish, using simple probabilities as transition strategies may not be sufficient
to model accurately their behaviour, and may need to take into account environmental
(e.g. presence of walls, geometry of the arena, presence of site of interest) and social (e.g.
presence of conspecifics, speed and polarity of the group, presence of other groups, pref-
erence towards specific individuals) signals: as we have showed in the previous chapters,
zebrafish do not behave the same when in group compared to when alone, or when they
are close to a wall. These models could also take into account memory and temporal
aspects (non-Markovian hypothesis), where behavioural patterns and transitions change
according to previously exhibited behaviours or according to hidden states of the system
(this could potentially be modeled using Hidden Markov Models).

Animal behaviour is multi-modal, as it can be described as sequences of loosely-defined
and loosely-separable actions. The field of ”action-selection” [187] describes how these
actions (or action sequences) are chosen by the agent given its current state and environ-
mental context.
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7.2.2 Improving social integration of the biomimetic robot into
groups of fish

The models of zebrafish behaviour used in Chapter 3 and 4 could be improved to become
more accurate and take more fish behavioural patterns into account. In particular, the
following issues could be addressed:

Modeling of zones Chapter 3 presented a model with a preliminary handling of be-
havioural zones with separate behaviours in rooms than in the corridor. This was
extended in Chapter 4, with a formal definition of behavioural zones, that are mod-
eled as a multiplicative parameter (termed γzj ,zk) that modulates the attraction of
agents towards target zones. However, this modelling choice does not actually cor-
respond to agent attraction toward a specific zone of the environment, but towards
the objects (conspecifics or walls) found in this zone. This could be extended further
by considering the behavioural zones like special objects, or site of interests (as was
described in [113]). This would allow agents to be attracted directly to behavioural
zones, and not just towards the objects placed in them. The difficulty of this ap-
proach is that it would bias the resulting PDF by increasing the probability of going
towards directions that had previously low probabilities (or null probabilities). As
such, the movement of an agent placed in a zone would be closer to a random walk
(which was not present in the model presented in Chapter 3 and 4).

Modeling of collective departures The models of Chapter 3 and 4 do not explicitly
describe the dynamics of fish collective departures from one room to the other. They
exhibit room departures behaviours because of implicit reasons (e.g. fish following
walls of a room then come and follow into the corridor towards the other room, or
they can be attracted to another individual that is transitioning to the other room).
These models could be improved by making explicit the collective departures, taking
inspiration from recent biological analyses of zebrafish collective departures [132].

Fish tail movement patterns Our modelling approach mainly caters to individual tra-
jectories, with only minimal support of fish tail-beats (low-level fish movement pat-
terns) in Chapter 3. We could complement our models with recent ethological
analyses of fish tail-beat patterns [188, 189, 186, 65, 190, 191]. In particular, several
works [190, 65, 186] demonstrate that fish movement patterns can be segmented
in tail bouts composed of a period of strong acceleration (corresponding to the tail
beat) followed by a period of relaxation. These studies also show that the character-
istics of fish movement patterns are strongly dependent on the behavioural context,
either in term of environmental (e.g. proximity to walls) or social (e.g. perception
of conspecifics, alignment, group size) signals.

Calibration methodology The calibration methodology adopted in Chapter 3 and 4
could be improved. Namely, more work could be done on the handling of the com-
promise between aggregative and wall-following behaviours, to reach higher perfor-
mance. Additionally, more metrics could be taken into account, pertaining either
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to individual behaviour (e.g. tail beats patterns, shape of the body), individual
trajectories (e.g. sinuosity, curvature, statistics on segmented parts of the trajec-
tories), social behaviour (preference over certain individuals, sub-groups duration
and dynamics, polarity and alignment) or response to environmental cues (size of
the current room, distance to nearest wall). Alternatively, it could be possible to
use a different calibration methodology that would not rely on similarity metrics,
like Turing learning [101]. Finally, it could be possible to take into account the be-
havioural features discovered by the automated ethograms methodology presented
in the previous section.

7.2.3 Deep artificial neural networks models of fish collective
behaviour based on visual perception

Building models that correctly reproduce fish trajectories is still an open question [192].
These models would be able not just to provide approximately accurate prediction of
the next pose of a fish given its current pose in short-lived experiments (as was proposed
in [190]), but also be capable of generating entire sets of realistic trajectories across varying
initial conditions (i.e. initial pose of the fish), possibly taking into account trajectory
drifts engendered by the propagation of successive errors in model prediction. A possible
methodology to automatically design generative models of fish behaviour would be to train
artificial neural network (ANN) on experimental data to make the link between agent
visual perception and motor response, by using biologically plausible reconstructions of
the perception fields of the fish (generated from the experimentally gathered trajectories).
The use of black-box models (like ANN) minimises the need for a-priori knowledge and
assumptions about fish behaviour, and allows the capture of behavioural features not
initially considered by an expert observer. Moreover, these neural networks models, while
artificial constructs, could still be used to draw parallels on how perceptual information
in zebrafish is linked to their individual and collective behaviour in a neuro-ethological
context. This topic will be covered in a work-in-progress study.

Alternatively, one could also use other artificial neural networks models or algorithms
for this problem (e.g. Generative Adversarial Networks [98], Deep Reinforcement Learn-
ing [97], Neuroevolution by Turing Learning [101], or biomimetic neural models like spik-
ing neural networks [102], etc.). However, this problem is particularly challenging, as
these neural models must be designed to cope with the ill-defined, non-linear, stochas-
tic, temporal, multi-modal and multi-level nature of fish behaviour, across varying initial
conditions.

7.2.4 Automatic generation of macroscopic models from
behavioural data

In Chapter 5 and 6, we presented a methodology to automatically calibrate the parameters
of ordinary differential equations (corresponding to models of cockroach shelter occupa-
tion). This approach could be generalised to automatically generate the entire set of
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equations directly from experimental data, find relevant parameters and constants and
calibrate them with appropriate values. Some recent studies in the Genetic Program-
ming community [93, 94] have investigated how to derive formal descriptions (equations)
of non-linear dynamical systems directly from experimental data and with few a-priori
knowledge, through the use of symbolic regression algorithms.

This methodology could also be used to automatically translate a microscopic model
of individual behaviour into a macroscopic model of collective behaviour (the opposite of
the approach from Chapter 5).

7.2.5 Real-time modelling of animal behaviour coupled with
real-time generation of robot controller in a biohybrid sys-
tem

The automated modelling methodologies used in this manuscript were all performed in
an off-line fashion. Our approach could be extended further to automatically design and
calibrate our behavioural models in real-time during experiments. This would allow the
robots to react to environmental and social signals directly observed in experiments (e.g.
modifying the number of fish or robots during an experiment, changing the geometry in
real-time, or taking into account behavioural attractors not expected before the planning
of the experiments), or to possibly cope with unpredicted adversarial conditions (e.g.
unexpected hardware failure of the robots). This real-time approach would be a way of
forming the ”small-loop” methodology presented in Fig. 7.1, by continuously progressing
from experimental observation to automatic model design to test in experiments.

We already investigated this question and adapted our methodology to calibrate our
behavioural models in real-time. The tracking and control system presented in Annex A
was already designed to track individuals and control robots in real-time. We improved
the evolutionary algorithm of Chapter 6 to calibrate in real-time the behavioural model
implemented as robot controller. To cope with the increased number of computation per-
formed in real-time, expansive software engineering efforts were needed to split our control
and calibration workflow into three interrelated parts that are executed concurrently on
three different networked computers able to communicate continuously: (i) the robot con-
trol and tracking system, (ii) the data-analysis system, (iii) the calibration system using
evolutionary computation. As in Chapter 6, we use a global multi-objective optimiser for
the calibration process. Alternatively, we could improve the calibration methodology by
adopting a global optimiser built to reduce as much as possible the number of evaluated
parameter sets to reduce the computational costs needed (e.g. Bayesian Optimisation
algorithms [193, 107]), and thus possibly obtain more accurate solutions in real-time.

We successfully demonstrated that our system is capable of calibrating our behavioural
model in real-time during one of the final demonstrators of the ASSISIbf project [24]. A
screenshot of the results of the real-time calibration process can be found in Fig. 7.2. This
topic will be covered in a work-in-progress study.
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Figure 7.2 – Screenshot of the results of the real-time calibration process. Social integration
scores (including inter-individual distances scores, distances to nearest wall scores, speeds scores,
and density of presences scores) can be found at the bottom of the picture. Scores are re-computed
each passing minute of the experiment, and take only into account the data gathered during the
last 3 minutes.

7.3 Concluding remarks

We established methodologies to automatically model animal behaviour and transform
it into the controller of robots that socially integrate the animal groups to form mixed-
groups. We believe that our approach will be useful in other scientific projects, in par-
ticular in robot-ethology and in swarm robotics. Indeed, it could one day be used to
understand in real-time animal behaviour and build new recipes to engineer artificial
collective adaptive systems (two of the goals of the ASSISIbf project).

The methodologies we describe in this thesis could be used in a broader context, and
inspire the establishment of a framework to automate experimental and data-analysis
aspects of ethological research. This would make possible the automated design of animal
behavioural models directly from experimental observation of animals group by using a
high-throughput ethology approach to identify the relevant biological features, classify
them through machine learning algorithms, quantify the transition between behavioural
states and assemble all of these results into an ethograms (e.g. Finite state machines,
Markov chains).

While this automated modelling approach can be executed without robots, they Robots
are not necessary to this automated modelling methodology. However, they can be used
conjointly with this methodology to gather additional animal behavioural data and val-
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idate the derived behavioural models. In this scenario, the robots would continuously
interact with the studied animals while the automated modelling methodology would de-
rive and refine behavioural models. In turn, these models would serve as the controller of
the robots, driving them into the group of animals and be increasingly more socially inte-
grated. They could be automatically programmed to spur the observed animals to study
different initial conditions and states (or phases) of the system. Then, another frame-
work could automatically extract scientific conclusions from the generated models and
data-analysis results, and possibly compile them into a human readable representation.
This approach would prove valuable to scientists as it would help experimental research
by automating time-extensive tasks. Additionally, these efforts could also stimulate the
creation of increasingly biomimetic robots, either in term of morphology or behaviour, in
a mixed-group context.

The next-step would be to design an effective mixed-society, with long-lasting inter-
actions between natural and artificial agents, and complex, hierarchical organisational
behavioural patterns. Mixed-societies serve two purposes: they offer a framework to
study complex animal behaviours (namely long-lasting organised collective dynamics)
and they can bring animals and robots together to create long-lasting added capabilities
not present in animal-only and robot-only societies (e.g. use the animal capabilities to
sense their environment and the robots to react to these environmental factors). This
endeavor would prove to be challenging, as it would involve robots with heterogeneous
behaviours socially integrated into a complex animal society with hierarchical organisa-
tion in very long-lasting experiments (e.g. several days, or even weeks). The robots would
have to be designed not only to handle long experiments (possibly coping with failures as
in [107]) but also to react in real-time to animal behaviour and automatically learn how to
be socially integrated. To realise an effective mixed-society of zebrafish and robots, these
robots would have to interact with them in long experimental sessions and be driven by
heterogeneous and automatically designed or calibrated behavioural models, that would
take into account zebrafish leadership behaviour (as described in the previous section)
and individual preferences. We are still very far from this goal.
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Appendix A

Set-up for long-lasting mixed-groups
experiments involving fish and
robots

A

STRANGE MAN: I wonder where that
fish has gone.
STRANGE WOMAN: You did love it so.
You looked after it like a son.
STRANGE MAN: And it went wherever
I did go.
STRANGE WOMAN: Wouldn’t you like
to know? It was a lovely little fish.
STRANGE MAN: And it went wherever
I did go.
STRANGE WOMAN: Where can that
fish be? It is a most elusive fish!

Monty Python: The Meaning of life.
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The experimental set-up used in the fish part of this manuscript was designed during
this thesis, as a joint effort between our research team at the Université Paris Diderot
(Bertrand Collignon, Axel Séeguret, Yohann Chemtob, José Halloy, and myself) and our
collaborators at the EPFL (Frank Bonnet, Alexey Gribovskiy, Marcello Elias de Oliveira,
Francesco Mondada). This set-up can be used to conduct experiments involving mixed-
societies of fish and robots.

A.1 Zebrafish as a study species

The zebrafish (Danio rerio, Fig. A.1) is a tropical freshwater species, of the Cyprinidae
family. It is widely used in biological studies as a model vertebrae organism, focusing
either on its physiological or behavioural aspects [199]. Its robustness, rapid breeding,
cheap price and broad availability explain its popularity in scientific studies. There exists
numerous strains of zebrafish with various genetic and phenotypical properties. Here, we
only use AB-strain zebrafish, a recent (circa 1991) strain that is is popular in collective
behaviour studies. These fish are bred locally, in our laboratory at the Université Paris
Diderot (Fig. A.2B).

A.1.1 Ethics statement

The experiments performed in this study were conducted under the authorization of
the Buffon Ethical Committee (registered to the French National Ethical Committee for
Animal Experiments #40) after submission to the French state ethical board for animal
experiments.

A.1.2 Animals and housing

We used 10 groups of 5 adults wild-type AB zebrafish (Danio rerio) in our experiments.
The fish were 6-12 months old at the time of the experiments. We kept the fish under
laboratory conditions, 27◦C, 500µS salinity with a 10:14 day:night cycle. The fish were
reared in housing facilities ZebTEC and fed two times a day (Special Diets Services SDS-
400 Scientific Fish Food). The water pH level was maintained at 7, and Nitrites (NO−2)
were below 0.3 mg/l.

A.2 Experimental set-up

The experimental set-up (Fig. A.2A) includes a 1.2x1.2x0.2m fish-tank and is confined in
an experimental zone of 2x2x2.35m wrapped by a white fabric (to isolate the experiments
and homogenise the luminosity). The structure is supported by a rigid structural alu-
minum framing system, which is exposed to diffused light in order to reproduce daylight.
The tank is filled with water up to a level of 60 mm.
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Figure A.1 – Group of AB-strain zebrafish. Copyright LSRO EPFL.

Figure A.2 – Experimental set-up (A) and automated fish facilities in our laboratory at the
Université Paris Diderot (B). These figures were taken from [200].
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The set-up includes an arena (Fig. 3.3) of 1000× 1000× 100 mm made of white Plex-
iglass. This arena is composed of two rooms (350 × 350 mm at floor level) linked by a
corridor(380× 100 mm at floor level).

The robots are composed of two units: a wheeled mobile robots (FishBot: Fig. A.3
and Fig. A.2B) that move underneath the tank, and a passive lure (Fig. A.2C,D) that is
magnetically coupled with the FishBot by magnets placed on top of the FishBot and at
the base of the lure. The FishBots are powered using two conductive plates, one glued
onto the bottom of the aquarium and one below the FishBot. The tank is covered with
white teflon sheets, to avoid reflections on the glass and to provide a smooth surface
to ease to motion of the lure module inside the aquarium. We use an overhead high-
resolution monochrome camera (2048x2048 px, Basler Scout acA2040-25gm) to record
the experiments (Fig. A.2A) at a rate of 15 frames per second and with latencies below
60 ms. This camera is equipped with low distortion lenses CF12.5HA-1 (Fujinon, Tokyo,
Japan). In the fish-tank, the fish and lures move in an experimental arena with two
rooms linked by a corridor. This particular arena topology was chosen to investigate the
collective dynamics of the fish (cf. Chapter 3 for more details).

A.3 Robot hardware design

We use the miniature mobile robot ”FishBot” (Fig. A.3), designed by our collaborators
at the EPFL, for our experiments involving mixed-societies of fish and robots [29, 30,
65]. It can achieve the required speeds and accelerations in order to reproduce the fish
displacement under water. The robot is continuously powered and controlled with a
wireless bluetooth link, therefore it is possible to achieve long duration experiments in
closed-loop.

A.4 Biomimetic fish lures

The lures used in our experiments can be found in Fig. 4.2 (in Section 3.2.2). The
external shape of the lure was defined from a 3D scan (using a Stereoscan 3D Breuckmann
StereoSCAN3D with two cameras of 1.4 megapixels) of a dead zebrafish. The surfaces
retrieved by the scanner were processed and scaled in order to design a mold made of
ABS using a 3D printer. The fins of the fish were made using Mylar R as it offers good
softness and is available in very thin films. The fins have a thickness of 50µm and are
also designed using the 3D scan of the fish.

A biomimetic pattern was then fixed on the fish lure. We cropped a picture of a real
zebrafish and printed it on inkjet decal paper (provider : http://www.decalpaper.com/)
with a standard printer. The printed pattern was cut off and placed in temperate water
for approximately 50 seconds. Then, the decal was slipped off the paper and was applied
on the fish lure. After a few hours, the lure was plunged into liquid latex for a few seconds
to form a protective layer once dry.
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(a) Zebrafish (Danio rerio) group interacting with
one Fishbot robot.

(b) The FishBot robot with its protection cover.

(c) The FishBot robot. This figure was taken from [65]. a) Magnets to couple the FishBot with
the lure module. b) Electric brushes to retrieve the power from the positive conductive plate. c)
Microcontroller dsPIC33f128. d) Supercapacitors that store power if the contact with the plates is
lost. e) Bluetooth antenna. f) Maxon DC motor. g) Infrared Proximity sensors. h) Wheel i) Electric
brushes to retrieve the power from the ground connected conductive plate.

Figure A.3 – FishBot design [29, 30, 65]. Copyright LSRO EPFL.
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A.5 Control and Tracking System (CATS)

The Control and Tracking Software (CATS) is able to track the positions of the agents
(fish and robots), and to control the fishBots robots. CATS is able to concurrently
handle small groups of robots (10). Each robot can be controlled to display a collection of
implemented behaviours. A system that controls the robots of a mixed-society containing
zebrafish must cope with their fast reaction time and sudden movements: our system is
designed to handle very low latencies both at the tracking and at the control levels.

CATS’s architecture is modular. It is composed of four parts, described in Fig. A.4.
The first part manages the video stream from the camera of the experimental setup.
The second part tracks the positions of fish and fish-CASUs. A Graphical User Interface
(GUI) is provided to allow the experimenters to see the video stream, and to change
the behaviour of the robots. It allows the experimenter to assess the progress of an
experiment, visualise the tracked positions of the agents and control the robots. The
Control part contains implementations of the various behaviours and movement patterns
of the robots, and low-level methods to communicate with them. A screenshot of a typical
use of CATS is found in Fig.A.5.

Note that a new version of the CATS system, named CATS2, was developed (mostly
by Alexey Gribovskiy). However, it was not used in the experiments presented in this
manuscript. It is described in detail in the publication [66]:

Bonnet F, Cazenille L, Gribovskiy A, Halloy J, Mondada F. Multi-robots
control and tracking framework for bio-hybrid systems with closed-loop inter-
action. ICRA 2017 Conference.

A.5.1 Video capture and streaming

We use the library aravis (https://github.com/GNOME/aravis) to access the camera. All
video stream operations are handled using the GStreamer library (http://gstreamer.
freedesktop.org/). We capture greyscale video frames from the camera at a resolution
of 2040 × 2040 pixels, at a frequency of 15 frames per seconds. The video stream from
the camera is split in two differents streams: one in high-resolution (2040 × 2040 pixels,
grayscale), the other in a lower-resolution (500×500 pixels, grayscale). The video is saved
on disk in high-resolution (2040×2040), after been compressed by the Huffman encoding,
a simple and fast algorithm for lossless compression. The tracking part uses only the
low-resolution video stream to track the positions of the agents. The use of low-resolution
frames instead of high-resolution ones allow the tracking process to be less computationally
expensive. We tuned the parameters of the GStreamer media components to have a very
low latency. On our setup, frames from the camera can be converted and sent to the
tracking system in approximately 40ms.
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Figure A.4 – Workflow of CATS, the Control And Tracking System. Description of the Con-
trol And Tracking Software (CATS), used to save videos of the experiments, track in real-time
the positions of the fishes and of the robots, and control robot behaviour. The video stream
from the camera is compressed and saved on disk in high resolution (2040 × 2040 pixels).
It is also converted to a lower resolution (500 × 500 pixels) and published on the internet
(http: // streamyfish. com ). The tracking of the fishes and robots is performed in real-time on
the low-resolution video stream, using a simple corner detection method. The software provides
a GUI that displays the video stream with tracking information. Robot control makes use of the
tracked positions of the robots. Several kind of robots behaviours and movement patterns are
available, and can be selected by the user in the GUI. Low-level control of the robots is achieved
by using the ASEBA system [66].
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Figure A.5 – Screenshot of the graphical Interface of CATS during a typical experiment. The
video stream from the camera is displayed on the visualisation area, at the center panel. Colored
disks are placed on the detected positions of the fish and robots: the tracking system detects the
centroids of each agent, and the position of the head of the fish or lures. Big colour circles are
used to represent the positions of the robots. The user can choose the current behaviour and
movement pattern of each robot using the controls on the left and right of the visualisation area.

A.5.2 Tracking

The tracking of the agents is performed on the low-resolution (500 × 500) video stream.
All operations are processed using the OpenCV library (http://opencv.org/). First, we
apply a background subtraction preprocessing step, on each frame, by using the Gaussian
Mixture-based Background/Foreground Segmentation method described by [201]. The
position of the agents is detected by using a corner detection method on the resulting
foreground frame: the head of the fish and lures has a very sharp corner. We use the
Shi-Tomasi method [202]. The ”Auto-Assign” control mode of the GUI can be selected
to identify manually the positions of the robots. Afterwards, the tracking system updates
the supposed positions of the robots by selecting the blob closest to the previous positions
of the robots.

Our tracking system can currently only identify (i.e. attribute the correct ID to the
detected agent) robots in real time (fish are detected, but not individually identified).
The high-resolution videos are analysed off-line by the idTracker software [151] to identify
the fish. This process is time-consuming and computationally intensive (using a 32-cores
computer, idTracker takes 2 days to track and identify 10 fish in 1 hour high definition
videos) but relatively reliable: no false positive, no propagation of identification errors,
and fishes are identified correctly in 90% of time-steps on average.
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A.5.3 Data analysis

For our off-line analysis (after the experiment), we tracked the positions of the agents by
using the idTracker software [151] on our high-resolution videos (2040 × 2040 pixels in
15 FPS). This multi-tracking software is capable of identifying each agent, without the
need of markings, throughout the videos, by extracting image features of each agent. This
methods avoids error propagation, typically seen in other kind of trackers, and successfully
solves crossing, superposition and occlusion problems. However, idTracker is designed to
work only in an off-line fashion, as its identification methodology involves the creation of
a database of agents images. Using this software, we obtain the positions P (x, y, t) of all
agents at each time step ∆ t = 1/15 s for all experiments, and build the trajectories of each
agent. For each video, we manually select which trajectory corresponds to the robot (used
to compare the traces of the robot and those of the fish). The idTracker software detected
and identified agents (represented by 250-400 pixels) on our videos with an accuracy of
99% on average. We also verified empirically the validity of idTracker identification, and
never saw any mismatch on our data.

For each frame of each video, we identified the sub-groups of agents by using the
clustering algorithm described in Sec. B.1.1. We also identified which agents occupied each
room at all time-steps. Then, we computed several metrics characterising the collective
dynamics of the agents, including: the probability of presence in the arena, the mean
occupation of each room, the inter-individual distance between individuals of a sub-group,
the fraction of time a random fish (or the robot) is in a group with another agent, the
distribution of sub-groups sizes, and the distribution of instantaneous linear speed.

The instantaneous linear speed was computed as the distance between P (x, y, t − 2)
and P (x, y, t + 2) divided by 4 time steps. The distributions of speed were computed
only for parts of the trajectory during which the fish were not in freezing behaviour (i.e.
immobile). This corresponds to a spontaneous speed higher than 1mms−1.

We measure the statistical difference between the distributions of results from the dif-
ferent experiments by using the Two-sample Kolmogorov-Smirnov test on 10 random
samplings of 1000 points of the distributions; if the resulting p-values are all below 5%,
the distributions are considered as statistically different. As we have a large number of
points in our experimental distributions, we performed the statistical difference tests on
random samplings of these distributions to prevent the resulting p-values to always have
a value of 0.
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Appendix B

Supplementary Information

B

B.1 Social integration of a biomimetic robotic fish

into zebrafish groups

B.1.1 Group clustering

As the number of clusters (sub-groups) is not known in advance, and varies from frame
to frame, we do not use classical clustering algorithms (like K-Means) [203], where the
number of clusters is a required parameter. Instead, we use a locality-based clustering
algorithm: an individual is part of a sub-group if and only if it is within a maximal
distance of dc = 0.30 m of another individual of this sub-group (the parameter dc is the
cutoff distance). As we only have few points (our experiments are limited to five agents),
our algorithm performs a linear search of all neighbours and iteratively groups points
with their neighbours within a maximal distance of dc. To select the parameter value
dc = 0.30 m, we tested several values of dc (from dc = 0.10 m to dc = 0.50 m) and selected
the value that maximized the scores of social integration (cf. Table IV).

Our clustering algorithm only uses spatial information, as it is sufficient to provide rel-
evant results. We also tried more complex algorithms, taking into account more features,
like the alignment of the agents and their linear speed and acceleration, but they provided
similar results.

Figure B.1 presents examples of sub-groups configurations detected by our clustering
algorithm in several representative frames. Clustering is more informative than room
occupation (see Fig. B.1).

B.1.2 Population fraction in the three set-up zones

We compute the mean population fraction (termed the mean occupation) in the three
set-up zones (Fig. B.2) over all trial runs. In all experiments, the agents are more fre-
quently present in the two square rooms than in the corridor. The two square rooms
have similar occupation, in all experiments (small biases are present in the C3 and C4
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distMat = generateInterindividualDistanceMatrix();
sortedMatIndexes = indexes of sorted distMat matrix values;
nbClusters = 1;
cluster = matrix containing unset values;
while True do

quit = True;
for all indexes (origin, dest) in sortedMatIndexes do

if cluster[origin] is set and cluster[dest] is not set and distMat[origin, dest]
< distanceThreshold then

cluster[dest] = cluster[origin];
quit = False;

else if cluster[dest] is set and cluster[origin] is not set and distMat[origin,
dest] < distanceThreshold then

cluster[origin] = cluster[dest];
quit = False;

end
if quit == True and cluster still has unset values then

set first unset value of cluster to nbClusters;
nbClusters += 1;
quit = False;

if quit == True then
break;

end
Algorithm 1: Spatial Locality Clustering algorithm
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C0

C1

Figure B.1 – Examples of sub-groups configurations detected by our clustering algorithm. The
first row corresponds to experiments with five fish and no robot (C0), and the second row cor-
responds to experiments with four fish and a robot driven by our biomimetic model (C1). Our
clustering algorithm is locality-based: to be part of a sub-group, an individual must be at maximal
distance dc of at least one another member of this sub-group. The cutoff distance has a value of
dc = 0.30 m.
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Figure B.2 – Mean occupation of the rooms for all experiments. Each experiment is reiterated
10 times. All distributions differ significantly from each other (Two-sample Kolmogorov-Smirnov
test, with p-values < 0.05).
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experiments, but may be attributed to experimental fluctuations). In experiments with a
robot (C1,C2,C3,C4), the agents tend to occupy the square rooms more frequently than
in experiment C0. This is less the case with experiment C2 (with a robot driven by a
random walk trajectory model). Indeed, the BM model simplifies the behaviour of the
fish in the corridor by only passing through from one room to the other, while fish can
sometimes rest in the corridor, or even perform U-Turns and return back to the room
they occupied before.

B.1.3 Presence density in the set-up

We present the mean probability of presence of agents in Fig. B.3. We separate the
cases where individuals are alone (sub-groups of one individual) and where they are in a
group because both the fish and the robot behave differently when they are in a group
compared to when they are alone. When alone, without any social stimuli or attraction,
the fish tend to exhibit a more exploratory behaviour, and pass more frequently through
the corridor. This is reproduced adequately by the robot. The fish tend to follow the
wall, either alone or in a group. However, it is still difficult for our robot to be too close to
the walls (because it would greatly increase the probability of a collision with the walls).
Still, we can observe that the agents (presumably not just the fish) follow also the walls
in the C1 experiment, but at a larger distance than in the C0 experiment. This can be
explained by the attraction of the robot to the fish, which influence the robot to follow a
fish, that, in turn, can follow walls. The same dynamics can be observed in experiment
C4; it is not a surprising result, as the robot in C4 moves as in C1. On the other hand, C2
and C3 experiments show that individuals (and thus the robot) have a higher propensity
to follow the walls.

B.1.4 Distributions of linear speed

We computed the distribution of instantaneous linear speeds of the agents in the rooms
(Fig. B.4) and in the corridor (Fig. B.5). In the C0 reference experiment, the fish have
a median speed around 8.2cm.s−1 in the rooms and 10.7cm.s−1 in the corridor. This is
coherent with the literature on the subject. Indeed, fish tend to pass through the corridor
in fast motion, with a reduced interest in exploring their immediate environment. Fish
stop only for a short duration, both in the rooms and in the corridor (cf. first bins of
speed distribution of Fig. B.4 and Fig. B.5). In the C1 experiment, the medians of
speed distributions are similar to the C0 experiment in the rooms (around 7.9cm.s−1),
but different in the corridor (9.4cm.s−1). This can be explained by the small number of
collisions between the robot and the walls: in case of collision, the robot has to slow down
momentarily to reposition itself. These collisions are more frequent in the corridor than
in the room (cf. first bin of the speed distribution of the C1 experiment in the corridor in
Fig. B.5). Similar results are seen with C2 (medians of 8.6cm.s−1 in rooms and 10.3cm.s−1

in the corridor), C3 (medians of 9.4cm.s−1 in the rooms and 10.0cm.s−1 in the corridor)
and C4 (medians of 8.0cm.s−1 in the rooms and 9.8cm.s−1 in the corridor) experiments.
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1Figure B.3 – Mean probability of presence for all experiments. Results are obtained in 30
minutes experiments using groups of AB strain zebrafish. Each experiment is reiterated 10
times.
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1Figure B.4 – Distribution of linear speed of agents in the rooms, for all experiments. Results
are obtained in 30 minutes experiments using groups of AB strain zebrafish. Each experiment
is reiterated 10 times. The distributions differ significantly (Two-sample Kolmogorov–Smirnov
test, with p-values < 0.05).
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1Figure B.5 – Distribution of linear speed of agents in the corridor, for all experiments. Results
are obtained in 30 minutes experiments using groups of AB strain zebrafish. Each experiment
is reiterated 10 times. The distributions differ significantly (Two-sample Kolmogorov–Smirnov
test, with p-values < 0.05).
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B.2 Automated optimization of multi-level models of

collective behaviour in a mixed society of ani-

mals and robots

B.2.1 Simulations

Results from the MC and Hybrid models are obtained from simulations of 28800 time
steps. The set-up is as described in [27, 1] (cf Fig. 5.2): a circular arena (diameter 1m)
containing two identical shelters (diameter 150mm). For all models, only populations
of 50 individuals are considered (similar results are observed with populations of 16 and
100).

B.2.2 Mean Field model resolution

The Mean Field model [1] used in this article is defined as follows:

dxi
dt

= xeµi

(
1− xi + ωri

Si

)
− xi

θi

1 + ρxi+βri
Si

n (B.1)

dri
dt

= reµri

(
1− xi + ωri

Si

)
− ri

θri

1 + ρr
γxi+δri
Si

nr (B.2)

C = xe + x1 + x2, R = re + r1 + r2, M = R + C (B.3)

Results are obtained by solving Eq. B.1 and Eq. B.2 using the Gillespie method [81].
The Gillespie method allows experimental fluctuations to be taken into account. The
Gillespie algorithm generates a birth-and-death stochastic process, described by the fol-
lowing master equation:

d

dt
P (x1,x2, r1, r2, t) = +W1(x1)P (x1 − 1,x2, r1, r2, t)−W1(x1)P (x1,x2, r1, r2, t)

+W2(x1 + 1)P (x1 + 1,x2, r1, r2, t)−W2(x1)P (x1,x2, r1, r2, t)

+W3(x2)P (x1,x2 − 1, r1, r2, t)−W3(x2)P (x1,x2, r1, r2, t)

+W4(x2 + 1)P (x1,x2 + 1, r1, r2, t)−W4(x2)P (x1,x2, r1, r2, t)

+W5(r1)P (x1,x2, r1 − 1, r2, t)−W5(r1)P (x1,x2, r1, r2, t)

+W6(r1 + 1)P (x1,x2, r1 + 1, r2, t)−W6(r1)P (x1,x2, r1, r2, t)

+W7(r2)P (x1,x2, r1, r2 − 1, t)−W7(r2)P (x1,x2, r1, r2, t)

+W8(r2 + 1)P (x1,x2, r1, r2 + 1, t)−W8(r2)P (x1,x2, r1, r2, t)

(B.4)
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This equation gives the time evolution of probability d
dt
P (x1,x2, r1, r2, t) of finding xe

animals outside the shelters, re robots outside the shelters, x1 animals under the first shel-
ter, r1 robots under the first shelter, x2 animals under the second shelter and r2 robots
under the second shelter. As this probability depends only on the previous state of the
system, the process is Markovian. The number of agents is taken into account by the
Gillespie algorithm, as described in Eq. B.3.

Only populations of 50 individuals are considered. Similar results are observed
with populations of 16 and 100 (results not shown).

Halloy et al. [1] only consider cases with two populations and two sites. The model can
be generalized to P sites and N populations:

dxj,k
dt

= xeµj,k

(
1− ν · xᵀk

Sk

)
− xj,k

θj,k

1 + ρj

(
αj ·xᵀk
Sj

)nj
for j = 1, ...,n k = 1, ..., p

(B.9)

M = xe +
N∑
j

P∑
k

xj,k (B.10)
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S Canonge, and JM Amé. Social integration of robots into groups of cockroaches
to control self-organized choices. Science, 318(5853):1155–1158, 2007.

[2] C Darwin. The expression of the emotions in man and animals, volume 526. Uni-
versity of Chicago press, 1965.

[3] P Marler. Animal communication signals. Science, 157(3790):769–774, 1967.

[4] ME Laidre and RA Johnstone. Animal signals. Current Biology, 23(18):R829–R833,
2013.

[5] N Tinbergen. The study of instinct. Clarendon Press/Oxford University Press, 1951.

[6] N Tinbergen. The herring gull’s world: a study of the social behaviour of birds.
Frederick A. Praeger, Inc., 1953.

[7] GL Patricelli, JC Uy, G Walsh, and G Borgia. Sexual selection: male displays
adjusted to female’s response. Nature, 415(6869):279–280, 2002.

[8] GL Patricelli. Robotics in the study of animal behavior. In Encyclopedia of Animal
Behavior, pages 91–99. Elsevier, 12 2010.
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[38] D Grémillet, W Puech, V Garçon, T Boulinier, and Y Le Maho. Robots in ecology:
welcome to the machine. Open Journal of Ecology, 2(2):49–57, 2012.

[39] RD MacLaren, WJ Rowland, and N Morgan. Female preferences for sailfin and
body size in the sailfin molly, poecilia latipinna. Ethology, 110(5):363–379, 2004.

[40] C Brian Smith and EP Martins. Display plasticity in response to a robotic lizard:
signal matching or song sharing in lizards? Ethology, 112(10):955–962, 2006.

[41] AS Rundus, DH Owings, SS Joshi, E Chinn, and N Giannini. Ground squirrels
use an infrared signal to deter rattlesnake predation. Proceedings of the National
Academy of Sciences, 104(36):14372–14376, 2007.

[42] SDA Leaver and TE Reimchen. Behavioural responses of canis familiaris to different
tail lengths of a remotely-controlled life-size dog replica. Behaviour, 145(3):377–390,
2008.

[43] Y Le Maho, JD Whittington, N Hanuise, L Pereira, M Boureau, M Brucker,
N Chatelain, J Courtecuisse, F Crenner, B Friess, et al. Rovers minimize human
disturbance in research on wild animals. Nature methods, 11(12):1242–1244, 2014.

[44] H Ishii, M Ogura, S Kurisu, A Komura, A Takanishi, N Iida, and H Kimura.
Experimental study on task teaching to real rats through interaction with a robotic
rat. From Animals to Animats 9, pages 643–654, 2006.

[45] H Ishii, M Ogura, S Kurisu, A Komura, A Takanishi, N Iida, and H Kimura. De-
velopment of autonomous experimental setup for behavior analysis of rats. In Intel-
ligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference
on, pages 4152–4157. IEEE, 2007.

[46] H Ishii, Q Shi, Y Masuda, S Miyagishima, S Fumino, A Takanishi, S Okabayashi,
N Iida, H Kimura, Y Tahara, et al. Development of experimental setup to create
novel mental disorder model rats using small mobile robot. In Intelligent Robots and
Systems (IROS), 2010 IEEE/RSJ International Conference on, pages 3905–3910.
IEEE, 2010.

[47] Q Shi, H Ishii, S Kinoshita, A Takanishi, S Okabayashi, N Iida, H Kimura, and
S Shibata. Modulation of rat behaviour by using a rat-like robot. Bioinspiration &
biomimetics, 8(4):046002, 2013.

[48] T Landgraf, M Oertel, D Rhiel, and R Rojas. A biomimetic honeybee robot for the
analysis of the honeybee dance communication system. In IROS, pages 3097–3102,
2010.

158 Bibliography



[49] A Gribovskiy, J Halloy, JL Deneubourg, H Bleuler, and F Mondada. Towards mixed
societies of chickens and robots. In Intelligent Robots and Systems (IROS), 2010
IEEE/RSJ International Conference on, pages 4722–4728. IEEE, 2010.

[50] A Gribovskiy, J Halloy, JL Deneubourg, and F Mondada. Building a safe robot for
behavioral biology experiments. In IEEE International Conference on Robotics and
Biomimetics, pages 582–587. IEEE, 2012.

[51] A Gribovskiy, F Mondada, JL Deneubourg, L Cazenille, N Bredeche, and J Halloy.
Automated analysis of behavioural variability and filial imprinting of chicks (g.
gallus), using autonomous robots. arXiv preprint arXiv:1509.01957, 2015.

[52] E De Margerie, S Lumineau, C Houdelier, and MAR Yris. Influence of a mobile robot
on the spatial behaviour of quail chicks. Bioinspiration & Biomimetics, 6(3):034001,
2011.

[53] L Jolly, F Pittet, JP Caudal, JB Mouret, C Houdelier, S Lumineau, and E De Marg-
erie. Animal-to-robot social attachment: initial requisites in a gallinaceous bird.
Bioinspiration & biomimetics, 11(1):016007, 2016.
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[201] P KaewTraKulPong and R Bowden. An improved adaptive background mixture
model for real-time tracking with shadow detection. In Video-based surveillance
systems, pages 135–144. Springer, 2002.

[202] J Shi and C Tomasi. Good features to track. Computer Vision and Pattern Recog-
nition, Proceedings CVPR, 1994.

[203] M Kantardzic. Data mining: concepts, models, methods, and algorithms. John
Wiley & Sons, 2011.

170 Bibliography



Notes

171Bibliography



172 Bibliography



173Bibliography



174 Bibliography



175Bibliography


	List of Figures
	List of Tables
	Introduction
	Concept and Objectives
	Scientific collaborators and acknowledgments
	Contributions
	Outline

	Control of biohybrid systems
	From passive lures to mixed-societies
	The use of passive lures in ethology
	Using robots to study animal behaviour
	Autonomous robots interacting with animal groups
	Types of autonomous artificial devices

	Mixed-groups of animals and robots
	Definitions
	State of the art
	General design of mixed-groups

	Study of social animals behaviour
	Experimental tests
	Monitoring tools

	Collective behaviour modelling
	From qualitative to quantitative modelling of behaviour
	Formal modelling of behaviour
	Multi-level modelling
	Model validation
	Automated model design, calibration and optimization

	Control of mixed-groups
	From animal behavioural models to robotic controllers
	Validation: social integration
	Group modulation

	Conclusions

	I Mixed-groups of fish and robots
	Social integration of a biomimetic robotic fish into zebrafish groups
	Introduction
	Materials and Methods
	Experimental set-up
	FishBot and fish lures
	Data analysis
	Quantifying social integration

	Multi-level approach for the robot behaviour
	High-level biomimetic behavioural model in the rooms
	Low-level biomimetic movement patterns in the rooms
	Robot trajectories in the corridor
	Biomimetic movement patterns in the corridor

	Results
	Individual trajectories
	Group clustering and social cohesion
	Quantifying social integration

	Conclusions

	Automated calibration of a biomimetic model for zebrafish and robot collective behaviour
	Introduction
	Materials and Methods
	Experimental set-up
	Behavioural model

	Results
	Optimisation of model parameters
	Robot implementation
	Model performance analysis and experimental validation

	Discussion and Conclusion


	II Mixed-groups of insects and robots
	Optimization of multi-level models of behaviour in a mixed group of animals and robots
	Introduction
	Methods
	Mean field description: ODE model
	Markov chain model
	Hybrid model
	Models calibration

	Results
	Models Calibration
	Modulation of collective behaviours

	Discussion

	Modulation of animal collective behaviour using biomimetic robots
	Introduction
	Multi-level Models
	Ordinary Differential Equation Model
	Finite State Machine Model

	Results
	Numerical Computation
	Calibration of Models
	Modulation of Collective Behavior By Robots

	Discussion and Conclusion


	III Discussions
	Conclusions and perspectives
	Main contributions
	Perspectives
	Automatic generation of ethogram of individual and collective behaviour
	Improving social integration of the biomimetic robot into groups of fish
	Deep artificial neural networks models of fish collective behaviour based on visual perception
	Automatic generation of macroscopic models frombehavioural data
	Real-time modelling of animal behaviour coupled with real-time generation of robot controller in a biohybrid system

	Concluding remarks

	Publications
	Set-up for long-lasting mixed-groups experiments involving fish and robots
	Zebrafish as a study species
	Ethics statement
	Animals and housing

	Experimental set-up
	Robot hardware design
	Biomimetic fish lures
	Control and Tracking System (CATS)
	Video capture and streaming
	Tracking
	Data analysis

	Acknowledgments

	Supplementary Information
	Social integration of a biomimetic robotic fish into zebrafish groups
	Group clustering
	Population fraction in the three set-up zones
	Presence density in the set-up
	Distributions of linear speed

	Optimization of multi-level models of behaviour in a mixed group of animals and robots
	Simulations
	Mean Field model resolution


	Index


